]> git.ipfire.org Git - people/arne_f/kernel.git/blame - block/blk-mq.c
blk-mq: fix potential race in queue restart and driver tag allocation
[people/arne_f/kernel.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
23#include <linux/delay.h>
aedcd72f 24#include <linux/crash_dump.h>
88c7b2b7 25#include <linux/prefetch.h>
320ae51f
JA
26
27#include <trace/events/block.h>
28
29#include <linux/blk-mq.h>
30#include "blk.h"
31#include "blk-mq.h"
32#include "blk-mq-tag.h"
cf43e6be 33#include "blk-stat.h"
87760e5e 34#include "blk-wbt.h"
bd166ef1 35#include "blk-mq-sched.h"
320ae51f
JA
36
37static DEFINE_MUTEX(all_q_mutex);
38static LIST_HEAD(all_q_list);
39
320ae51f
JA
40/*
41 * Check if any of the ctx's have pending work in this hardware queue
42 */
43static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
44{
bd166ef1
JA
45 return sbitmap_any_bit_set(&hctx->ctx_map) ||
46 !list_empty_careful(&hctx->dispatch) ||
47 blk_mq_sched_has_work(hctx);
1429d7c9
JA
48}
49
320ae51f
JA
50/*
51 * Mark this ctx as having pending work in this hardware queue
52 */
53static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
54 struct blk_mq_ctx *ctx)
55{
88459642
OS
56 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
57 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
58}
59
60static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
61 struct blk_mq_ctx *ctx)
62{
88459642 63 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
64}
65
b4c6a028 66void blk_mq_freeze_queue_start(struct request_queue *q)
43a5e4e2 67{
4ecd4fef 68 int freeze_depth;
cddd5d17 69
4ecd4fef
CH
70 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
71 if (freeze_depth == 1) {
3ef28e83 72 percpu_ref_kill(&q->q_usage_counter);
b94ec296 73 blk_mq_run_hw_queues(q, false);
cddd5d17 74 }
f3af020b 75}
b4c6a028 76EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
f3af020b
TH
77
78static void blk_mq_freeze_queue_wait(struct request_queue *q)
79{
3ef28e83 80 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2
ML
81}
82
f3af020b
TH
83/*
84 * Guarantee no request is in use, so we can change any data structure of
85 * the queue afterward.
86 */
3ef28e83 87void blk_freeze_queue(struct request_queue *q)
f3af020b 88{
3ef28e83
DW
89 /*
90 * In the !blk_mq case we are only calling this to kill the
91 * q_usage_counter, otherwise this increases the freeze depth
92 * and waits for it to return to zero. For this reason there is
93 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
94 * exported to drivers as the only user for unfreeze is blk_mq.
95 */
f3af020b
TH
96 blk_mq_freeze_queue_start(q);
97 blk_mq_freeze_queue_wait(q);
98}
3ef28e83
DW
99
100void blk_mq_freeze_queue(struct request_queue *q)
101{
102 /*
103 * ...just an alias to keep freeze and unfreeze actions balanced
104 * in the blk_mq_* namespace
105 */
106 blk_freeze_queue(q);
107}
c761d96b 108EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 109
b4c6a028 110void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 111{
4ecd4fef 112 int freeze_depth;
320ae51f 113
4ecd4fef
CH
114 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
115 WARN_ON_ONCE(freeze_depth < 0);
116 if (!freeze_depth) {
3ef28e83 117 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 118 wake_up_all(&q->mq_freeze_wq);
add703fd 119 }
320ae51f 120}
b4c6a028 121EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 122
6a83e74d
BVA
123/**
124 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
125 * @q: request queue.
126 *
127 * Note: this function does not prevent that the struct request end_io()
128 * callback function is invoked. Additionally, it is not prevented that
129 * new queue_rq() calls occur unless the queue has been stopped first.
130 */
131void blk_mq_quiesce_queue(struct request_queue *q)
132{
133 struct blk_mq_hw_ctx *hctx;
134 unsigned int i;
135 bool rcu = false;
136
137 blk_mq_stop_hw_queues(q);
138
139 queue_for_each_hw_ctx(q, hctx, i) {
140 if (hctx->flags & BLK_MQ_F_BLOCKING)
141 synchronize_srcu(&hctx->queue_rq_srcu);
142 else
143 rcu = true;
144 }
145 if (rcu)
146 synchronize_rcu();
147}
148EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
149
aed3ea94
JA
150void blk_mq_wake_waiters(struct request_queue *q)
151{
152 struct blk_mq_hw_ctx *hctx;
153 unsigned int i;
154
155 queue_for_each_hw_ctx(q, hctx, i)
156 if (blk_mq_hw_queue_mapped(hctx))
157 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
158
159 /*
160 * If we are called because the queue has now been marked as
161 * dying, we need to ensure that processes currently waiting on
162 * the queue are notified as well.
163 */
164 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
165}
166
320ae51f
JA
167bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
168{
169 return blk_mq_has_free_tags(hctx->tags);
170}
171EXPORT_SYMBOL(blk_mq_can_queue);
172
2c3ad667
JA
173void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
174 struct request *rq, unsigned int op)
320ae51f 175{
af76e555
CH
176 INIT_LIST_HEAD(&rq->queuelist);
177 /* csd/requeue_work/fifo_time is initialized before use */
178 rq->q = q;
320ae51f 179 rq->mq_ctx = ctx;
ef295ecf 180 rq->cmd_flags = op;
e8064021
CH
181 if (blk_queue_io_stat(q))
182 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
183 /* do not touch atomic flags, it needs atomic ops against the timer */
184 rq->cpu = -1;
af76e555
CH
185 INIT_HLIST_NODE(&rq->hash);
186 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
187 rq->rq_disk = NULL;
188 rq->part = NULL;
3ee32372 189 rq->start_time = jiffies;
af76e555
CH
190#ifdef CONFIG_BLK_CGROUP
191 rq->rl = NULL;
0fec08b4 192 set_start_time_ns(rq);
af76e555
CH
193 rq->io_start_time_ns = 0;
194#endif
195 rq->nr_phys_segments = 0;
196#if defined(CONFIG_BLK_DEV_INTEGRITY)
197 rq->nr_integrity_segments = 0;
198#endif
af76e555
CH
199 rq->special = NULL;
200 /* tag was already set */
201 rq->errors = 0;
af76e555 202
6f4a1626
TB
203 rq->cmd = rq->__cmd;
204
af76e555
CH
205 rq->extra_len = 0;
206 rq->sense_len = 0;
207 rq->resid_len = 0;
208 rq->sense = NULL;
209
af76e555 210 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
211 rq->timeout = 0;
212
af76e555
CH
213 rq->end_io = NULL;
214 rq->end_io_data = NULL;
215 rq->next_rq = NULL;
216
ef295ecf 217 ctx->rq_dispatched[op_is_sync(op)]++;
320ae51f 218}
2c3ad667 219EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
320ae51f 220
2c3ad667
JA
221struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
222 unsigned int op)
5dee8577
CH
223{
224 struct request *rq;
225 unsigned int tag;
226
cb96a42c 227 tag = blk_mq_get_tag(data);
5dee8577 228 if (tag != BLK_MQ_TAG_FAIL) {
bd166ef1
JA
229 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
230
231 rq = tags->static_rqs[tag];
5dee8577 232
bd166ef1
JA
233 if (data->flags & BLK_MQ_REQ_INTERNAL) {
234 rq->tag = -1;
235 rq->internal_tag = tag;
236 } else {
200e86b3
JA
237 if (blk_mq_tag_busy(data->hctx)) {
238 rq->rq_flags = RQF_MQ_INFLIGHT;
239 atomic_inc(&data->hctx->nr_active);
240 }
bd166ef1
JA
241 rq->tag = tag;
242 rq->internal_tag = -1;
243 }
244
ef295ecf 245 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
5dee8577
CH
246 return rq;
247 }
248
249 return NULL;
250}
2c3ad667 251EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
5dee8577 252
6f3b0e8b
CH
253struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
254 unsigned int flags)
320ae51f 255{
5a797e00 256 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 257 struct request *rq;
a492f075 258 int ret;
320ae51f 259
6f3b0e8b 260 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
a492f075
JL
261 if (ret)
262 return ERR_PTR(ret);
320ae51f 263
bd166ef1 264 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
841bac2c 265
bd166ef1
JA
266 blk_mq_put_ctx(alloc_data.ctx);
267 blk_queue_exit(q);
268
269 if (!rq)
a492f075 270 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3
CH
271
272 rq->__data_len = 0;
273 rq->__sector = (sector_t) -1;
274 rq->bio = rq->biotail = NULL;
320ae51f
JA
275 return rq;
276}
4bb659b1 277EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 278
1f5bd336
ML
279struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
280 unsigned int flags, unsigned int hctx_idx)
281{
282 struct blk_mq_hw_ctx *hctx;
283 struct blk_mq_ctx *ctx;
284 struct request *rq;
285 struct blk_mq_alloc_data alloc_data;
286 int ret;
287
288 /*
289 * If the tag allocator sleeps we could get an allocation for a
290 * different hardware context. No need to complicate the low level
291 * allocator for this for the rare use case of a command tied to
292 * a specific queue.
293 */
294 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
295 return ERR_PTR(-EINVAL);
296
297 if (hctx_idx >= q->nr_hw_queues)
298 return ERR_PTR(-EIO);
299
300 ret = blk_queue_enter(q, true);
301 if (ret)
302 return ERR_PTR(ret);
303
c8712c6a
CH
304 /*
305 * Check if the hardware context is actually mapped to anything.
306 * If not tell the caller that it should skip this queue.
307 */
1f5bd336 308 hctx = q->queue_hw_ctx[hctx_idx];
c8712c6a
CH
309 if (!blk_mq_hw_queue_mapped(hctx)) {
310 ret = -EXDEV;
311 goto out_queue_exit;
312 }
1f5bd336
ML
313 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
314
315 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
ef295ecf 316 rq = __blk_mq_alloc_request(&alloc_data, rw);
1f5bd336 317 if (!rq) {
c8712c6a
CH
318 ret = -EWOULDBLOCK;
319 goto out_queue_exit;
1f5bd336
ML
320 }
321
322 return rq;
c8712c6a
CH
323
324out_queue_exit:
325 blk_queue_exit(q);
326 return ERR_PTR(ret);
1f5bd336
ML
327}
328EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
329
bd166ef1
JA
330void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
331 struct request *rq)
320ae51f 332{
bd166ef1 333 const int sched_tag = rq->internal_tag;
320ae51f
JA
334 struct request_queue *q = rq->q;
335
e8064021 336 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 337 atomic_dec(&hctx->nr_active);
87760e5e
JA
338
339 wbt_done(q->rq_wb, &rq->issue_stat);
e8064021 340 rq->rq_flags = 0;
0d2602ca 341
af76e555 342 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 343 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
bd166ef1
JA
344 if (rq->tag != -1)
345 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
346 if (sched_tag != -1)
347 blk_mq_sched_completed_request(hctx, rq);
3ef28e83 348 blk_queue_exit(q);
320ae51f
JA
349}
350
bd166ef1 351static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
16a3c2a7 352 struct request *rq)
320ae51f
JA
353{
354 struct blk_mq_ctx *ctx = rq->mq_ctx;
320ae51f
JA
355
356 ctx->rq_completed[rq_is_sync(rq)]++;
bd166ef1
JA
357 __blk_mq_finish_request(hctx, ctx, rq);
358}
359
360void blk_mq_finish_request(struct request *rq)
361{
362 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
7c7f2f2b 363}
7c7f2f2b
JA
364
365void blk_mq_free_request(struct request *rq)
366{
bd166ef1 367 blk_mq_sched_put_request(rq);
320ae51f 368}
1a3b595a 369EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 370
c8a446ad 371inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 372{
0d11e6ac
ML
373 blk_account_io_done(rq);
374
91b63639 375 if (rq->end_io) {
87760e5e 376 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 377 rq->end_io(rq, error);
91b63639
CH
378 } else {
379 if (unlikely(blk_bidi_rq(rq)))
380 blk_mq_free_request(rq->next_rq);
320ae51f 381 blk_mq_free_request(rq);
91b63639 382 }
320ae51f 383}
c8a446ad 384EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 385
c8a446ad 386void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
387{
388 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
389 BUG();
c8a446ad 390 __blk_mq_end_request(rq, error);
63151a44 391}
c8a446ad 392EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 393
30a91cb4 394static void __blk_mq_complete_request_remote(void *data)
320ae51f 395{
3d6efbf6 396 struct request *rq = data;
320ae51f 397
30a91cb4 398 rq->q->softirq_done_fn(rq);
320ae51f 399}
320ae51f 400
ed851860 401static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
402{
403 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 404 bool shared = false;
320ae51f
JA
405 int cpu;
406
38535201 407 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
408 rq->q->softirq_done_fn(rq);
409 return;
410 }
320ae51f
JA
411
412 cpu = get_cpu();
38535201
CH
413 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
414 shared = cpus_share_cache(cpu, ctx->cpu);
415
416 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 417 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
418 rq->csd.info = rq;
419 rq->csd.flags = 0;
c46fff2a 420 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 421 } else {
30a91cb4 422 rq->q->softirq_done_fn(rq);
3d6efbf6 423 }
320ae51f
JA
424 put_cpu();
425}
30a91cb4 426
cf43e6be
JA
427static void blk_mq_stat_add(struct request *rq)
428{
429 if (rq->rq_flags & RQF_STATS) {
430 /*
431 * We could rq->mq_ctx here, but there's less of a risk
432 * of races if we have the completion event add the stats
433 * to the local software queue.
434 */
435 struct blk_mq_ctx *ctx;
436
437 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
438 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
439 }
440}
441
1fa8cc52 442static void __blk_mq_complete_request(struct request *rq)
ed851860
JA
443{
444 struct request_queue *q = rq->q;
445
cf43e6be
JA
446 blk_mq_stat_add(rq);
447
ed851860 448 if (!q->softirq_done_fn)
c8a446ad 449 blk_mq_end_request(rq, rq->errors);
ed851860
JA
450 else
451 blk_mq_ipi_complete_request(rq);
452}
453
30a91cb4
CH
454/**
455 * blk_mq_complete_request - end I/O on a request
456 * @rq: the request being processed
457 *
458 * Description:
459 * Ends all I/O on a request. It does not handle partial completions.
460 * The actual completion happens out-of-order, through a IPI handler.
461 **/
f4829a9b 462void blk_mq_complete_request(struct request *rq, int error)
30a91cb4 463{
95f09684
JA
464 struct request_queue *q = rq->q;
465
466 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 467 return;
f4829a9b
CH
468 if (!blk_mark_rq_complete(rq)) {
469 rq->errors = error;
ed851860 470 __blk_mq_complete_request(rq);
f4829a9b 471 }
30a91cb4
CH
472}
473EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 474
973c0191
KB
475int blk_mq_request_started(struct request *rq)
476{
477 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
478}
479EXPORT_SYMBOL_GPL(blk_mq_request_started);
480
e2490073 481void blk_mq_start_request(struct request *rq)
320ae51f
JA
482{
483 struct request_queue *q = rq->q;
484
bd166ef1
JA
485 blk_mq_sched_started_request(rq);
486
320ae51f
JA
487 trace_block_rq_issue(q, rq);
488
742ee69b 489 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
490 if (unlikely(blk_bidi_rq(rq)))
491 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 492
cf43e6be
JA
493 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
494 blk_stat_set_issue_time(&rq->issue_stat);
495 rq->rq_flags |= RQF_STATS;
87760e5e 496 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
497 }
498
2b8393b4 499 blk_add_timer(rq);
87ee7b11 500
538b7534
JA
501 /*
502 * Ensure that ->deadline is visible before set the started
503 * flag and clear the completed flag.
504 */
505 smp_mb__before_atomic();
506
87ee7b11
JA
507 /*
508 * Mark us as started and clear complete. Complete might have been
509 * set if requeue raced with timeout, which then marked it as
510 * complete. So be sure to clear complete again when we start
511 * the request, otherwise we'll ignore the completion event.
512 */
4b570521
JA
513 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
514 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
515 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
516 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
517
518 if (q->dma_drain_size && blk_rq_bytes(rq)) {
519 /*
520 * Make sure space for the drain appears. We know we can do
521 * this because max_hw_segments has been adjusted to be one
522 * fewer than the device can handle.
523 */
524 rq->nr_phys_segments++;
525 }
320ae51f 526}
e2490073 527EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 528
ed0791b2 529static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
530{
531 struct request_queue *q = rq->q;
532
533 trace_block_rq_requeue(q, rq);
87760e5e 534 wbt_requeue(q->rq_wb, &rq->issue_stat);
bd166ef1 535 blk_mq_sched_requeue_request(rq);
49f5baa5 536
e2490073
CH
537 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
538 if (q->dma_drain_size && blk_rq_bytes(rq))
539 rq->nr_phys_segments--;
540 }
320ae51f
JA
541}
542
2b053aca 543void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 544{
ed0791b2 545 __blk_mq_requeue_request(rq);
ed0791b2 546
ed0791b2 547 BUG_ON(blk_queued_rq(rq));
2b053aca 548 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
549}
550EXPORT_SYMBOL(blk_mq_requeue_request);
551
6fca6a61
CH
552static void blk_mq_requeue_work(struct work_struct *work)
553{
554 struct request_queue *q =
2849450a 555 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
556 LIST_HEAD(rq_list);
557 struct request *rq, *next;
558 unsigned long flags;
559
560 spin_lock_irqsave(&q->requeue_lock, flags);
561 list_splice_init(&q->requeue_list, &rq_list);
562 spin_unlock_irqrestore(&q->requeue_lock, flags);
563
564 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 565 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
566 continue;
567
e8064021 568 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 569 list_del_init(&rq->queuelist);
bd166ef1 570 blk_mq_sched_insert_request(rq, true, false, false);
6fca6a61
CH
571 }
572
573 while (!list_empty(&rq_list)) {
574 rq = list_entry(rq_list.next, struct request, queuelist);
575 list_del_init(&rq->queuelist);
bd166ef1 576 blk_mq_sched_insert_request(rq, false, false, false);
6fca6a61
CH
577 }
578
52d7f1b5 579 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
580}
581
2b053aca
BVA
582void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
583 bool kick_requeue_list)
6fca6a61
CH
584{
585 struct request_queue *q = rq->q;
586 unsigned long flags;
587
588 /*
589 * We abuse this flag that is otherwise used by the I/O scheduler to
590 * request head insertation from the workqueue.
591 */
e8064021 592 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
593
594 spin_lock_irqsave(&q->requeue_lock, flags);
595 if (at_head) {
e8064021 596 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
597 list_add(&rq->queuelist, &q->requeue_list);
598 } else {
599 list_add_tail(&rq->queuelist, &q->requeue_list);
600 }
601 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
602
603 if (kick_requeue_list)
604 blk_mq_kick_requeue_list(q);
6fca6a61
CH
605}
606EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
607
608void blk_mq_kick_requeue_list(struct request_queue *q)
609{
2849450a 610 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
611}
612EXPORT_SYMBOL(blk_mq_kick_requeue_list);
613
2849450a
MS
614void blk_mq_delay_kick_requeue_list(struct request_queue *q,
615 unsigned long msecs)
616{
617 kblockd_schedule_delayed_work(&q->requeue_work,
618 msecs_to_jiffies(msecs));
619}
620EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
621
1885b24d
JA
622void blk_mq_abort_requeue_list(struct request_queue *q)
623{
624 unsigned long flags;
625 LIST_HEAD(rq_list);
626
627 spin_lock_irqsave(&q->requeue_lock, flags);
628 list_splice_init(&q->requeue_list, &rq_list);
629 spin_unlock_irqrestore(&q->requeue_lock, flags);
630
631 while (!list_empty(&rq_list)) {
632 struct request *rq;
633
634 rq = list_first_entry(&rq_list, struct request, queuelist);
635 list_del_init(&rq->queuelist);
636 rq->errors = -EIO;
637 blk_mq_end_request(rq, rq->errors);
638 }
639}
640EXPORT_SYMBOL(blk_mq_abort_requeue_list);
641
0e62f51f
JA
642struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
643{
88c7b2b7
JA
644 if (tag < tags->nr_tags) {
645 prefetch(tags->rqs[tag]);
4ee86bab 646 return tags->rqs[tag];
88c7b2b7 647 }
4ee86bab
HR
648
649 return NULL;
24d2f903
CH
650}
651EXPORT_SYMBOL(blk_mq_tag_to_rq);
652
320ae51f 653struct blk_mq_timeout_data {
46f92d42
CH
654 unsigned long next;
655 unsigned int next_set;
320ae51f
JA
656};
657
90415837 658void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 659{
f8a5b122 660 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 661 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
662
663 /*
664 * We know that complete is set at this point. If STARTED isn't set
665 * anymore, then the request isn't active and the "timeout" should
666 * just be ignored. This can happen due to the bitflag ordering.
667 * Timeout first checks if STARTED is set, and if it is, assumes
668 * the request is active. But if we race with completion, then
669 * we both flags will get cleared. So check here again, and ignore
670 * a timeout event with a request that isn't active.
671 */
46f92d42
CH
672 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
673 return;
87ee7b11 674
46f92d42 675 if (ops->timeout)
0152fb6b 676 ret = ops->timeout(req, reserved);
46f92d42
CH
677
678 switch (ret) {
679 case BLK_EH_HANDLED:
680 __blk_mq_complete_request(req);
681 break;
682 case BLK_EH_RESET_TIMER:
683 blk_add_timer(req);
684 blk_clear_rq_complete(req);
685 break;
686 case BLK_EH_NOT_HANDLED:
687 break;
688 default:
689 printk(KERN_ERR "block: bad eh return: %d\n", ret);
690 break;
691 }
87ee7b11 692}
5b3f25fc 693
81481eb4
CH
694static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
695 struct request *rq, void *priv, bool reserved)
696{
697 struct blk_mq_timeout_data *data = priv;
87ee7b11 698
eb130dbf
KB
699 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
700 /*
701 * If a request wasn't started before the queue was
702 * marked dying, kill it here or it'll go unnoticed.
703 */
a59e0f57
KB
704 if (unlikely(blk_queue_dying(rq->q))) {
705 rq->errors = -EIO;
706 blk_mq_end_request(rq, rq->errors);
707 }
46f92d42 708 return;
eb130dbf 709 }
87ee7b11 710
46f92d42
CH
711 if (time_after_eq(jiffies, rq->deadline)) {
712 if (!blk_mark_rq_complete(rq))
0152fb6b 713 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
714 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
715 data->next = rq->deadline;
716 data->next_set = 1;
717 }
87ee7b11
JA
718}
719
287922eb 720static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 721{
287922eb
CH
722 struct request_queue *q =
723 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
724 struct blk_mq_timeout_data data = {
725 .next = 0,
726 .next_set = 0,
727 };
81481eb4 728 int i;
320ae51f 729
71f79fb3
GKB
730 /* A deadlock might occur if a request is stuck requiring a
731 * timeout at the same time a queue freeze is waiting
732 * completion, since the timeout code would not be able to
733 * acquire the queue reference here.
734 *
735 * That's why we don't use blk_queue_enter here; instead, we use
736 * percpu_ref_tryget directly, because we need to be able to
737 * obtain a reference even in the short window between the queue
738 * starting to freeze, by dropping the first reference in
739 * blk_mq_freeze_queue_start, and the moment the last request is
740 * consumed, marked by the instant q_usage_counter reaches
741 * zero.
742 */
743 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
744 return;
745
0bf6cd5b 746 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 747
81481eb4
CH
748 if (data.next_set) {
749 data.next = blk_rq_timeout(round_jiffies_up(data.next));
750 mod_timer(&q->timeout, data.next);
0d2602ca 751 } else {
0bf6cd5b
CH
752 struct blk_mq_hw_ctx *hctx;
753
f054b56c
ML
754 queue_for_each_hw_ctx(q, hctx, i) {
755 /* the hctx may be unmapped, so check it here */
756 if (blk_mq_hw_queue_mapped(hctx))
757 blk_mq_tag_idle(hctx);
758 }
0d2602ca 759 }
287922eb 760 blk_queue_exit(q);
320ae51f
JA
761}
762
763/*
764 * Reverse check our software queue for entries that we could potentially
765 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
766 * too much time checking for merges.
767 */
768static bool blk_mq_attempt_merge(struct request_queue *q,
769 struct blk_mq_ctx *ctx, struct bio *bio)
770{
771 struct request *rq;
772 int checked = 8;
773
774 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
775 int el_ret;
776
777 if (!checked--)
778 break;
779
780 if (!blk_rq_merge_ok(rq, bio))
781 continue;
782
783 el_ret = blk_try_merge(rq, bio);
bd166ef1
JA
784 if (el_ret == ELEVATOR_NO_MERGE)
785 continue;
786
787 if (!blk_mq_sched_allow_merge(q, rq, bio))
788 break;
789
320ae51f
JA
790 if (el_ret == ELEVATOR_BACK_MERGE) {
791 if (bio_attempt_back_merge(q, rq, bio)) {
792 ctx->rq_merged++;
793 return true;
794 }
795 break;
796 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
797 if (bio_attempt_front_merge(q, rq, bio)) {
798 ctx->rq_merged++;
799 return true;
800 }
801 break;
802 }
803 }
804
805 return false;
806}
807
88459642
OS
808struct flush_busy_ctx_data {
809 struct blk_mq_hw_ctx *hctx;
810 struct list_head *list;
811};
812
813static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
814{
815 struct flush_busy_ctx_data *flush_data = data;
816 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
817 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
818
819 sbitmap_clear_bit(sb, bitnr);
820 spin_lock(&ctx->lock);
821 list_splice_tail_init(&ctx->rq_list, flush_data->list);
822 spin_unlock(&ctx->lock);
823 return true;
824}
825
1429d7c9
JA
826/*
827 * Process software queues that have been marked busy, splicing them
828 * to the for-dispatch
829 */
2c3ad667 830void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 831{
88459642
OS
832 struct flush_busy_ctx_data data = {
833 .hctx = hctx,
834 .list = list,
835 };
1429d7c9 836
88459642 837 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 838}
2c3ad667 839EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 840
703fd1c0
JA
841static inline unsigned int queued_to_index(unsigned int queued)
842{
843 if (!queued)
844 return 0;
1429d7c9 845
703fd1c0 846 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
847}
848
bd166ef1
JA
849static bool blk_mq_get_driver_tag(struct request *rq,
850 struct blk_mq_hw_ctx **hctx, bool wait)
851{
852 struct blk_mq_alloc_data data = {
853 .q = rq->q,
854 .ctx = rq->mq_ctx,
855 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
856 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
857 };
858
859 if (blk_mq_hctx_stopped(data.hctx))
860 return false;
861
862 if (rq->tag != -1) {
863done:
864 if (hctx)
865 *hctx = data.hctx;
866 return true;
867 }
868
869 rq->tag = blk_mq_get_tag(&data);
870 if (rq->tag >= 0) {
200e86b3
JA
871 if (blk_mq_tag_busy(data.hctx)) {
872 rq->rq_flags |= RQF_MQ_INFLIGHT;
873 atomic_inc(&data.hctx->nr_active);
874 }
bd166ef1
JA
875 data.hctx->tags->rqs[rq->tag] = rq;
876 goto done;
877 }
878
879 return false;
880}
881
882/*
883 * If we fail getting a driver tag because all the driver tags are already
884 * assigned and on the dispatch list, BUT the first entry does not have a
885 * tag, then we could deadlock. For that case, move entries with assigned
886 * driver tags to the front, leaving the set of tagged requests in the
887 * same order, and the untagged set in the same order.
888 */
889static bool reorder_tags_to_front(struct list_head *list)
890{
891 struct request *rq, *tmp, *first = NULL;
892
893 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
894 if (rq == first)
895 break;
896 if (rq->tag != -1) {
897 list_move(&rq->queuelist, list);
898 if (!first)
899 first = rq;
900 }
901 }
902
903 return first != NULL;
904}
905
f04c3df3 906bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
320ae51f
JA
907{
908 struct request_queue *q = hctx->queue;
320ae51f 909 struct request *rq;
74c45052
JA
910 LIST_HEAD(driver_list);
911 struct list_head *dptr;
f04c3df3 912 int queued, ret = BLK_MQ_RQ_QUEUE_OK;
320ae51f 913
74c45052
JA
914 /*
915 * Start off with dptr being NULL, so we start the first request
916 * immediately, even if we have more pending.
917 */
918 dptr = NULL;
919
320ae51f
JA
920 /*
921 * Now process all the entries, sending them to the driver.
922 */
1429d7c9 923 queued = 0;
f04c3df3 924 while (!list_empty(list)) {
74c45052 925 struct blk_mq_queue_data bd;
320ae51f 926
f04c3df3 927 rq = list_first_entry(list, struct request, queuelist);
bd166ef1
JA
928 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
929 if (!queued && reorder_tags_to_front(list))
930 continue;
3c782d67
JA
931
932 /*
933 * We failed getting a driver tag. Mark the queue(s)
934 * as needing a restart. Retry getting a tag again,
935 * in case the needed IO completed right before we
936 * marked the queue as needing a restart.
937 */
bd166ef1 938 blk_mq_sched_mark_restart(hctx);
3c782d67
JA
939 if (!blk_mq_get_driver_tag(rq, &hctx, false))
940 break;
bd166ef1 941 }
320ae51f 942 list_del_init(&rq->queuelist);
320ae51f 943
74c45052
JA
944 bd.rq = rq;
945 bd.list = dptr;
f04c3df3 946 bd.last = list_empty(list);
74c45052
JA
947
948 ret = q->mq_ops->queue_rq(hctx, &bd);
320ae51f
JA
949 switch (ret) {
950 case BLK_MQ_RQ_QUEUE_OK:
951 queued++;
52b9c330 952 break;
320ae51f 953 case BLK_MQ_RQ_QUEUE_BUSY:
f04c3df3 954 list_add(&rq->queuelist, list);
ed0791b2 955 __blk_mq_requeue_request(rq);
320ae51f
JA
956 break;
957 default:
958 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 959 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 960 rq->errors = -EIO;
c8a446ad 961 blk_mq_end_request(rq, rq->errors);
320ae51f
JA
962 break;
963 }
964
965 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
966 break;
74c45052
JA
967
968 /*
969 * We've done the first request. If we have more than 1
970 * left in the list, set dptr to defer issue.
971 */
f04c3df3 972 if (!dptr && list->next != list->prev)
74c45052 973 dptr = &driver_list;
320ae51f
JA
974 }
975
703fd1c0 976 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
977
978 /*
979 * Any items that need requeuing? Stuff them into hctx->dispatch,
980 * that is where we will continue on next queue run.
981 */
f04c3df3 982 if (!list_empty(list)) {
320ae51f 983 spin_lock(&hctx->lock);
f04c3df3 984 list_splice(list, &hctx->dispatch);
320ae51f 985 spin_unlock(&hctx->lock);
f04c3df3 986
9ba52e58
SL
987 /*
988 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
989 * it's possible the queue is stopped and restarted again
990 * before this. Queue restart will dispatch requests. And since
991 * requests in rq_list aren't added into hctx->dispatch yet,
992 * the requests in rq_list might get lost.
993 *
994 * blk_mq_run_hw_queue() already checks the STOPPED bit
bd166ef1
JA
995 *
996 * If RESTART is set, then let completion restart the queue
997 * instead of potentially looping here.
998 */
999 if (!blk_mq_sched_needs_restart(hctx))
1000 blk_mq_run_hw_queue(hctx, true);
320ae51f 1001 }
f04c3df3
JA
1002
1003 return ret != BLK_MQ_RQ_QUEUE_BUSY;
1004}
1005
6a83e74d
BVA
1006static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1007{
1008 int srcu_idx;
1009
1010 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1011 cpu_online(hctx->next_cpu));
1012
1013 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1014 rcu_read_lock();
bd166ef1 1015 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1016 rcu_read_unlock();
1017 } else {
1018 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
bd166ef1 1019 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1020 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1021 }
1022}
1023
506e931f
JA
1024/*
1025 * It'd be great if the workqueue API had a way to pass
1026 * in a mask and had some smarts for more clever placement.
1027 * For now we just round-robin here, switching for every
1028 * BLK_MQ_CPU_WORK_BATCH queued items.
1029 */
1030static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1031{
b657d7e6
CH
1032 if (hctx->queue->nr_hw_queues == 1)
1033 return WORK_CPU_UNBOUND;
506e931f
JA
1034
1035 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1036 int next_cpu;
506e931f
JA
1037
1038 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1039 if (next_cpu >= nr_cpu_ids)
1040 next_cpu = cpumask_first(hctx->cpumask);
1041
1042 hctx->next_cpu = next_cpu;
1043 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1044 }
1045
b657d7e6 1046 return hctx->next_cpu;
506e931f
JA
1047}
1048
320ae51f
JA
1049void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1050{
5d1b25c1
BVA
1051 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1052 !blk_mq_hw_queue_mapped(hctx)))
320ae51f
JA
1053 return;
1054
1b792f2f 1055 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1056 int cpu = get_cpu();
1057 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1058 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1059 put_cpu();
398205b8
PB
1060 return;
1061 }
e4043dcf 1062
2a90d4aa 1063 put_cpu();
e4043dcf 1064 }
398205b8 1065
27489a3c 1066 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
320ae51f
JA
1067}
1068
b94ec296 1069void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1070{
1071 struct blk_mq_hw_ctx *hctx;
1072 int i;
1073
1074 queue_for_each_hw_ctx(q, hctx, i) {
bd166ef1 1075 if (!blk_mq_hctx_has_pending(hctx) ||
5d1b25c1 1076 blk_mq_hctx_stopped(hctx))
320ae51f
JA
1077 continue;
1078
b94ec296 1079 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1080 }
1081}
b94ec296 1082EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1083
fd001443
BVA
1084/**
1085 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1086 * @q: request queue.
1087 *
1088 * The caller is responsible for serializing this function against
1089 * blk_mq_{start,stop}_hw_queue().
1090 */
1091bool blk_mq_queue_stopped(struct request_queue *q)
1092{
1093 struct blk_mq_hw_ctx *hctx;
1094 int i;
1095
1096 queue_for_each_hw_ctx(q, hctx, i)
1097 if (blk_mq_hctx_stopped(hctx))
1098 return true;
1099
1100 return false;
1101}
1102EXPORT_SYMBOL(blk_mq_queue_stopped);
1103
320ae51f
JA
1104void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1105{
27489a3c 1106 cancel_work(&hctx->run_work);
70f4db63 1107 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
1108 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1109}
1110EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1111
280d45f6
CH
1112void blk_mq_stop_hw_queues(struct request_queue *q)
1113{
1114 struct blk_mq_hw_ctx *hctx;
1115 int i;
1116
1117 queue_for_each_hw_ctx(q, hctx, i)
1118 blk_mq_stop_hw_queue(hctx);
1119}
1120EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1121
320ae51f
JA
1122void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1123{
1124 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1125
0ffbce80 1126 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1127}
1128EXPORT_SYMBOL(blk_mq_start_hw_queue);
1129
2f268556
CH
1130void blk_mq_start_hw_queues(struct request_queue *q)
1131{
1132 struct blk_mq_hw_ctx *hctx;
1133 int i;
1134
1135 queue_for_each_hw_ctx(q, hctx, i)
1136 blk_mq_start_hw_queue(hctx);
1137}
1138EXPORT_SYMBOL(blk_mq_start_hw_queues);
1139
ae911c5e
JA
1140void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1141{
1142 if (!blk_mq_hctx_stopped(hctx))
1143 return;
1144
1145 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1146 blk_mq_run_hw_queue(hctx, async);
1147}
1148EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1149
1b4a3258 1150void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1151{
1152 struct blk_mq_hw_ctx *hctx;
1153 int i;
1154
ae911c5e
JA
1155 queue_for_each_hw_ctx(q, hctx, i)
1156 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1157}
1158EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1159
70f4db63 1160static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1161{
1162 struct blk_mq_hw_ctx *hctx;
1163
27489a3c 1164 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
e4043dcf 1165
320ae51f
JA
1166 __blk_mq_run_hw_queue(hctx);
1167}
1168
70f4db63
CH
1169static void blk_mq_delay_work_fn(struct work_struct *work)
1170{
1171 struct blk_mq_hw_ctx *hctx;
1172
1173 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1174
1175 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1176 __blk_mq_run_hw_queue(hctx);
1177}
1178
1179void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1180{
19c66e59
ML
1181 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1182 return;
70f4db63 1183
7e79dadc 1184 blk_mq_stop_hw_queue(hctx);
b657d7e6
CH
1185 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1186 &hctx->delay_work, msecs_to_jiffies(msecs));
70f4db63
CH
1187}
1188EXPORT_SYMBOL(blk_mq_delay_queue);
1189
cfd0c552 1190static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1191 struct request *rq,
1192 bool at_head)
320ae51f 1193{
e57690fe
JA
1194 struct blk_mq_ctx *ctx = rq->mq_ctx;
1195
01b983c9
JA
1196 trace_block_rq_insert(hctx->queue, rq);
1197
72a0a36e
CH
1198 if (at_head)
1199 list_add(&rq->queuelist, &ctx->rq_list);
1200 else
1201 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1202}
4bb659b1 1203
2c3ad667
JA
1204void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1205 bool at_head)
cfd0c552
ML
1206{
1207 struct blk_mq_ctx *ctx = rq->mq_ctx;
1208
e57690fe 1209 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1210 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1211}
1212
bd166ef1
JA
1213void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1214 struct list_head *list)
320ae51f
JA
1215
1216{
320ae51f
JA
1217 /*
1218 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1219 * offline now
1220 */
1221 spin_lock(&ctx->lock);
1222 while (!list_empty(list)) {
1223 struct request *rq;
1224
1225 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1226 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1227 list_del_init(&rq->queuelist);
e57690fe 1228 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1229 }
cfd0c552 1230 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1231 spin_unlock(&ctx->lock);
320ae51f
JA
1232}
1233
1234static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1235{
1236 struct request *rqa = container_of(a, struct request, queuelist);
1237 struct request *rqb = container_of(b, struct request, queuelist);
1238
1239 return !(rqa->mq_ctx < rqb->mq_ctx ||
1240 (rqa->mq_ctx == rqb->mq_ctx &&
1241 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1242}
1243
1244void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1245{
1246 struct blk_mq_ctx *this_ctx;
1247 struct request_queue *this_q;
1248 struct request *rq;
1249 LIST_HEAD(list);
1250 LIST_HEAD(ctx_list);
1251 unsigned int depth;
1252
1253 list_splice_init(&plug->mq_list, &list);
1254
1255 list_sort(NULL, &list, plug_ctx_cmp);
1256
1257 this_q = NULL;
1258 this_ctx = NULL;
1259 depth = 0;
1260
1261 while (!list_empty(&list)) {
1262 rq = list_entry_rq(list.next);
1263 list_del_init(&rq->queuelist);
1264 BUG_ON(!rq->q);
1265 if (rq->mq_ctx != this_ctx) {
1266 if (this_ctx) {
bd166ef1
JA
1267 trace_block_unplug(this_q, depth, from_schedule);
1268 blk_mq_sched_insert_requests(this_q, this_ctx,
1269 &ctx_list,
1270 from_schedule);
320ae51f
JA
1271 }
1272
1273 this_ctx = rq->mq_ctx;
1274 this_q = rq->q;
1275 depth = 0;
1276 }
1277
1278 depth++;
1279 list_add_tail(&rq->queuelist, &ctx_list);
1280 }
1281
1282 /*
1283 * If 'this_ctx' is set, we know we have entries to complete
1284 * on 'ctx_list'. Do those.
1285 */
1286 if (this_ctx) {
bd166ef1
JA
1287 trace_block_unplug(this_q, depth, from_schedule);
1288 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1289 from_schedule);
320ae51f
JA
1290 }
1291}
1292
1293static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1294{
1295 init_request_from_bio(rq, bio);
4b570521 1296
6e85eaf3 1297 blk_account_io_start(rq, true);
320ae51f
JA
1298}
1299
274a5843
JA
1300static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1301{
1302 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1303 !blk_queue_nomerges(hctx->queue);
1304}
1305
07068d5b
JA
1306static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1307 struct blk_mq_ctx *ctx,
1308 struct request *rq, struct bio *bio)
320ae51f 1309{
e18378a6 1310 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
07068d5b
JA
1311 blk_mq_bio_to_request(rq, bio);
1312 spin_lock(&ctx->lock);
1313insert_rq:
1314 __blk_mq_insert_request(hctx, rq, false);
1315 spin_unlock(&ctx->lock);
1316 return false;
1317 } else {
274a5843
JA
1318 struct request_queue *q = hctx->queue;
1319
07068d5b
JA
1320 spin_lock(&ctx->lock);
1321 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1322 blk_mq_bio_to_request(rq, bio);
1323 goto insert_rq;
1324 }
320ae51f 1325
07068d5b 1326 spin_unlock(&ctx->lock);
bd166ef1 1327 __blk_mq_finish_request(hctx, ctx, rq);
07068d5b 1328 return true;
14ec77f3 1329 }
07068d5b 1330}
14ec77f3 1331
fd2d3326
JA
1332static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1333{
bd166ef1
JA
1334 if (rq->tag != -1)
1335 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1336
1337 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1338}
1339
066a4a73 1340static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
f984df1f 1341{
f984df1f 1342 struct request_queue *q = rq->q;
f984df1f
SL
1343 struct blk_mq_queue_data bd = {
1344 .rq = rq,
1345 .list = NULL,
1346 .last = 1
1347 };
bd166ef1
JA
1348 struct blk_mq_hw_ctx *hctx;
1349 blk_qc_t new_cookie;
1350 int ret;
f984df1f 1351
bd166ef1 1352 if (q->elevator)
2253efc8
BVA
1353 goto insert;
1354
bd166ef1
JA
1355 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1356 goto insert;
1357
1358 new_cookie = request_to_qc_t(hctx, rq);
1359
f984df1f
SL
1360 /*
1361 * For OK queue, we are done. For error, kill it. Any other
1362 * error (busy), just add it to our list as we previously
1363 * would have done
1364 */
1365 ret = q->mq_ops->queue_rq(hctx, &bd);
7b371636
JA
1366 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1367 *cookie = new_cookie;
2253efc8 1368 return;
7b371636 1369 }
f984df1f 1370
7b371636
JA
1371 __blk_mq_requeue_request(rq);
1372
1373 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1374 *cookie = BLK_QC_T_NONE;
1375 rq->errors = -EIO;
1376 blk_mq_end_request(rq, rq->errors);
2253efc8 1377 return;
f984df1f 1378 }
7b371636 1379
2253efc8 1380insert:
bd166ef1 1381 blk_mq_sched_insert_request(rq, false, true, true);
f984df1f
SL
1382}
1383
07068d5b
JA
1384/*
1385 * Multiple hardware queue variant. This will not use per-process plugs,
1386 * but will attempt to bypass the hctx queueing if we can go straight to
1387 * hardware for SYNC IO.
1388 */
dece1635 1389static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1390{
ef295ecf 1391 const int is_sync = op_is_sync(bio->bi_opf);
1eff9d32 1392 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
5a797e00 1393 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1394 struct request *rq;
6a83e74d 1395 unsigned int request_count = 0, srcu_idx;
f984df1f 1396 struct blk_plug *plug;
5b3f341f 1397 struct request *same_queue_rq = NULL;
7b371636 1398 blk_qc_t cookie;
87760e5e 1399 unsigned int wb_acct;
07068d5b
JA
1400
1401 blk_queue_bounce(q, &bio);
1402
1403 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1404 bio_io_error(bio);
dece1635 1405 return BLK_QC_T_NONE;
07068d5b
JA
1406 }
1407
54efd50b
KO
1408 blk_queue_split(q, &bio, q->bio_split);
1409
87c279e6
OS
1410 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1411 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1412 return BLK_QC_T_NONE;
f984df1f 1413
bd166ef1
JA
1414 if (blk_mq_sched_bio_merge(q, bio))
1415 return BLK_QC_T_NONE;
1416
87760e5e
JA
1417 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1418
bd166ef1
JA
1419 trace_block_getrq(q, bio, bio->bi_opf);
1420
1421 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1422 if (unlikely(!rq)) {
1423 __wbt_done(q->rq_wb, wb_acct);
dece1635 1424 return BLK_QC_T_NONE;
87760e5e
JA
1425 }
1426
1427 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1428
fd2d3326 1429 cookie = request_to_qc_t(data.hctx, rq);
07068d5b
JA
1430
1431 if (unlikely(is_flush_fua)) {
1432 blk_mq_bio_to_request(rq, bio);
bd166ef1 1433 blk_mq_get_driver_tag(rq, NULL, true);
07068d5b
JA
1434 blk_insert_flush(rq);
1435 goto run_queue;
1436 }
1437
f984df1f 1438 plug = current->plug;
e167dfb5
JA
1439 /*
1440 * If the driver supports defer issued based on 'last', then
1441 * queue it up like normal since we can potentially save some
1442 * CPU this way.
1443 */
f984df1f
SL
1444 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1445 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1446 struct request *old_rq = NULL;
07068d5b
JA
1447
1448 blk_mq_bio_to_request(rq, bio);
07068d5b
JA
1449
1450 /*
6a83e74d 1451 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1452 * Otherwise the existing request in the plug list will be
1453 * issued. So the plug list will have one request at most
07068d5b 1454 */
f984df1f 1455 if (plug) {
5b3f341f
SL
1456 /*
1457 * The plug list might get flushed before this. If that
b094f89c
JA
1458 * happens, same_queue_rq is invalid and plug list is
1459 * empty
1460 */
5b3f341f
SL
1461 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1462 old_rq = same_queue_rq;
f984df1f 1463 list_del_init(&old_rq->queuelist);
07068d5b 1464 }
f984df1f
SL
1465 list_add_tail(&rq->queuelist, &plug->mq_list);
1466 } else /* is_sync */
1467 old_rq = rq;
1468 blk_mq_put_ctx(data.ctx);
1469 if (!old_rq)
7b371636 1470 goto done;
6a83e74d
BVA
1471
1472 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1473 rcu_read_lock();
066a4a73 1474 blk_mq_try_issue_directly(old_rq, &cookie);
6a83e74d
BVA
1475 rcu_read_unlock();
1476 } else {
1477 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
066a4a73 1478 blk_mq_try_issue_directly(old_rq, &cookie);
6a83e74d
BVA
1479 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1480 }
7b371636 1481 goto done;
07068d5b
JA
1482 }
1483
bd166ef1
JA
1484 if (q->elevator) {
1485 blk_mq_put_ctx(data.ctx);
1486 blk_mq_bio_to_request(rq, bio);
0abad774
JA
1487 blk_mq_sched_insert_request(rq, false, true,
1488 !is_sync || is_flush_fua);
bd166ef1
JA
1489 goto done;
1490 }
07068d5b
JA
1491 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1492 /*
1493 * For a SYNC request, send it to the hardware immediately. For
1494 * an ASYNC request, just ensure that we run it later on. The
1495 * latter allows for merging opportunities and more efficient
1496 * dispatching.
1497 */
1498run_queue:
1499 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1500 }
07068d5b 1501 blk_mq_put_ctx(data.ctx);
7b371636
JA
1502done:
1503 return cookie;
07068d5b
JA
1504}
1505
1506/*
1507 * Single hardware queue variant. This will attempt to use any per-process
1508 * plug for merging and IO deferral.
1509 */
dece1635 1510static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1511{
ef295ecf 1512 const int is_sync = op_is_sync(bio->bi_opf);
1eff9d32 1513 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
e6c4438b
JM
1514 struct blk_plug *plug;
1515 unsigned int request_count = 0;
5a797e00 1516 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1517 struct request *rq;
7b371636 1518 blk_qc_t cookie;
87760e5e 1519 unsigned int wb_acct;
07068d5b 1520
07068d5b
JA
1521 blk_queue_bounce(q, &bio);
1522
1523 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1524 bio_io_error(bio);
dece1635 1525 return BLK_QC_T_NONE;
07068d5b
JA
1526 }
1527
54efd50b
KO
1528 blk_queue_split(q, &bio, q->bio_split);
1529
87c279e6
OS
1530 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1531 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1532 return BLK_QC_T_NONE;
1533 } else
1534 request_count = blk_plug_queued_count(q);
07068d5b 1535
bd166ef1
JA
1536 if (blk_mq_sched_bio_merge(q, bio))
1537 return BLK_QC_T_NONE;
1538
87760e5e
JA
1539 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1540
bd166ef1
JA
1541 trace_block_getrq(q, bio, bio->bi_opf);
1542
1543 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1544 if (unlikely(!rq)) {
1545 __wbt_done(q->rq_wb, wb_acct);
dece1635 1546 return BLK_QC_T_NONE;
87760e5e
JA
1547 }
1548
1549 wbt_track(&rq->issue_stat, wb_acct);
320ae51f 1550
fd2d3326 1551 cookie = request_to_qc_t(data.hctx, rq);
320ae51f
JA
1552
1553 if (unlikely(is_flush_fua)) {
1554 blk_mq_bio_to_request(rq, bio);
bd166ef1 1555 blk_mq_get_driver_tag(rq, NULL, true);
320ae51f
JA
1556 blk_insert_flush(rq);
1557 goto run_queue;
1558 }
1559
1560 /*
1561 * A task plug currently exists. Since this is completely lockless,
1562 * utilize that to temporarily store requests until the task is
1563 * either done or scheduled away.
1564 */
e6c4438b
JM
1565 plug = current->plug;
1566 if (plug) {
600271d9
SL
1567 struct request *last = NULL;
1568
e6c4438b 1569 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1570
1571 /*
1572 * @request_count may become stale because of schedule
1573 * out, so check the list again.
1574 */
1575 if (list_empty(&plug->mq_list))
1576 request_count = 0;
676d0607 1577 if (!request_count)
e6c4438b 1578 trace_block_plug(q);
600271d9
SL
1579 else
1580 last = list_entry_rq(plug->mq_list.prev);
b094f89c
JA
1581
1582 blk_mq_put_ctx(data.ctx);
1583
600271d9
SL
1584 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1585 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1586 blk_flush_plug_list(plug, false);
1587 trace_block_plug(q);
320ae51f 1588 }
b094f89c 1589
e6c4438b 1590 list_add_tail(&rq->queuelist, &plug->mq_list);
7b371636 1591 return cookie;
320ae51f
JA
1592 }
1593
bd166ef1
JA
1594 if (q->elevator) {
1595 blk_mq_put_ctx(data.ctx);
1596 blk_mq_bio_to_request(rq, bio);
0abad774
JA
1597 blk_mq_sched_insert_request(rq, false, true,
1598 !is_sync || is_flush_fua);
bd166ef1
JA
1599 goto done;
1600 }
07068d5b
JA
1601 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1602 /*
1603 * For a SYNC request, send it to the hardware immediately. For
1604 * an ASYNC request, just ensure that we run it later on. The
1605 * latter allows for merging opportunities and more efficient
1606 * dispatching.
1607 */
1608run_queue:
1609 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1610 }
1611
07068d5b 1612 blk_mq_put_ctx(data.ctx);
bd166ef1 1613done:
7b371636 1614 return cookie;
320ae51f
JA
1615}
1616
cc71a6f4
JA
1617void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1618 unsigned int hctx_idx)
95363efd 1619{
e9b267d9 1620 struct page *page;
320ae51f 1621
24d2f903 1622 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1623 int i;
320ae51f 1624
24d2f903 1625 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1626 struct request *rq = tags->static_rqs[i];
1627
1628 if (!rq)
e9b267d9 1629 continue;
2af8cbe3 1630 set->ops->exit_request(set->driver_data, rq,
24d2f903 1631 hctx_idx, i);
2af8cbe3 1632 tags->static_rqs[i] = NULL;
e9b267d9 1633 }
320ae51f 1634 }
320ae51f 1635
24d2f903
CH
1636 while (!list_empty(&tags->page_list)) {
1637 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1638 list_del_init(&page->lru);
f75782e4
CM
1639 /*
1640 * Remove kmemleak object previously allocated in
1641 * blk_mq_init_rq_map().
1642 */
1643 kmemleak_free(page_address(page));
320ae51f
JA
1644 __free_pages(page, page->private);
1645 }
cc71a6f4 1646}
320ae51f 1647
cc71a6f4
JA
1648void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1649{
24d2f903 1650 kfree(tags->rqs);
cc71a6f4 1651 tags->rqs = NULL;
2af8cbe3
JA
1652 kfree(tags->static_rqs);
1653 tags->static_rqs = NULL;
320ae51f 1654
24d2f903 1655 blk_mq_free_tags(tags);
320ae51f
JA
1656}
1657
cc71a6f4
JA
1658struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1659 unsigned int hctx_idx,
1660 unsigned int nr_tags,
1661 unsigned int reserved_tags)
320ae51f 1662{
24d2f903 1663 struct blk_mq_tags *tags;
320ae51f 1664
cc71a6f4 1665 tags = blk_mq_init_tags(nr_tags, reserved_tags,
24391c0d
SL
1666 set->numa_node,
1667 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1668 if (!tags)
1669 return NULL;
320ae51f 1670
cc71a6f4 1671 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1672 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
a5164405 1673 set->numa_node);
24d2f903
CH
1674 if (!tags->rqs) {
1675 blk_mq_free_tags(tags);
1676 return NULL;
1677 }
320ae51f 1678
2af8cbe3
JA
1679 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1680 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1681 set->numa_node);
1682 if (!tags->static_rqs) {
1683 kfree(tags->rqs);
1684 blk_mq_free_tags(tags);
1685 return NULL;
1686 }
1687
cc71a6f4
JA
1688 return tags;
1689}
1690
1691static size_t order_to_size(unsigned int order)
1692{
1693 return (size_t)PAGE_SIZE << order;
1694}
1695
1696int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1697 unsigned int hctx_idx, unsigned int depth)
1698{
1699 unsigned int i, j, entries_per_page, max_order = 4;
1700 size_t rq_size, left;
1701
1702 INIT_LIST_HEAD(&tags->page_list);
1703
320ae51f
JA
1704 /*
1705 * rq_size is the size of the request plus driver payload, rounded
1706 * to the cacheline size
1707 */
24d2f903 1708 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1709 cache_line_size());
cc71a6f4 1710 left = rq_size * depth;
320ae51f 1711
cc71a6f4 1712 for (i = 0; i < depth; ) {
320ae51f
JA
1713 int this_order = max_order;
1714 struct page *page;
1715 int to_do;
1716 void *p;
1717
b3a834b1 1718 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1719 this_order--;
1720
1721 do {
a5164405 1722 page = alloc_pages_node(set->numa_node,
36e1f3d1 1723 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1724 this_order);
320ae51f
JA
1725 if (page)
1726 break;
1727 if (!this_order--)
1728 break;
1729 if (order_to_size(this_order) < rq_size)
1730 break;
1731 } while (1);
1732
1733 if (!page)
24d2f903 1734 goto fail;
320ae51f
JA
1735
1736 page->private = this_order;
24d2f903 1737 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1738
1739 p = page_address(page);
f75782e4
CM
1740 /*
1741 * Allow kmemleak to scan these pages as they contain pointers
1742 * to additional allocations like via ops->init_request().
1743 */
36e1f3d1 1744 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 1745 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 1746 to_do = min(entries_per_page, depth - i);
320ae51f
JA
1747 left -= to_do * rq_size;
1748 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
1749 struct request *rq = p;
1750
1751 tags->static_rqs[i] = rq;
24d2f903
CH
1752 if (set->ops->init_request) {
1753 if (set->ops->init_request(set->driver_data,
2af8cbe3 1754 rq, hctx_idx, i,
a5164405 1755 set->numa_node)) {
2af8cbe3 1756 tags->static_rqs[i] = NULL;
24d2f903 1757 goto fail;
a5164405 1758 }
e9b267d9
CH
1759 }
1760
320ae51f
JA
1761 p += rq_size;
1762 i++;
1763 }
1764 }
cc71a6f4 1765 return 0;
320ae51f 1766
24d2f903 1767fail:
cc71a6f4
JA
1768 blk_mq_free_rqs(set, tags, hctx_idx);
1769 return -ENOMEM;
320ae51f
JA
1770}
1771
e57690fe
JA
1772/*
1773 * 'cpu' is going away. splice any existing rq_list entries from this
1774 * software queue to the hw queue dispatch list, and ensure that it
1775 * gets run.
1776 */
9467f859 1777static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 1778{
9467f859 1779 struct blk_mq_hw_ctx *hctx;
484b4061
JA
1780 struct blk_mq_ctx *ctx;
1781 LIST_HEAD(tmp);
1782
9467f859 1783 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 1784 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1785
1786 spin_lock(&ctx->lock);
1787 if (!list_empty(&ctx->rq_list)) {
1788 list_splice_init(&ctx->rq_list, &tmp);
1789 blk_mq_hctx_clear_pending(hctx, ctx);
1790 }
1791 spin_unlock(&ctx->lock);
1792
1793 if (list_empty(&tmp))
9467f859 1794 return 0;
484b4061 1795
e57690fe
JA
1796 spin_lock(&hctx->lock);
1797 list_splice_tail_init(&tmp, &hctx->dispatch);
1798 spin_unlock(&hctx->lock);
484b4061
JA
1799
1800 blk_mq_run_hw_queue(hctx, true);
9467f859 1801 return 0;
484b4061
JA
1802}
1803
9467f859 1804static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 1805{
9467f859
TG
1806 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1807 &hctx->cpuhp_dead);
484b4061
JA
1808}
1809
c3b4afca 1810/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1811static void blk_mq_exit_hctx(struct request_queue *q,
1812 struct blk_mq_tag_set *set,
1813 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1814{
f70ced09
ML
1815 unsigned flush_start_tag = set->queue_depth;
1816
08e98fc6
ML
1817 blk_mq_tag_idle(hctx);
1818
f70ced09
ML
1819 if (set->ops->exit_request)
1820 set->ops->exit_request(set->driver_data,
1821 hctx->fq->flush_rq, hctx_idx,
1822 flush_start_tag + hctx_idx);
1823
08e98fc6
ML
1824 if (set->ops->exit_hctx)
1825 set->ops->exit_hctx(hctx, hctx_idx);
1826
6a83e74d
BVA
1827 if (hctx->flags & BLK_MQ_F_BLOCKING)
1828 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1829
9467f859 1830 blk_mq_remove_cpuhp(hctx);
f70ced09 1831 blk_free_flush_queue(hctx->fq);
88459642 1832 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1833}
1834
624dbe47
ML
1835static void blk_mq_exit_hw_queues(struct request_queue *q,
1836 struct blk_mq_tag_set *set, int nr_queue)
1837{
1838 struct blk_mq_hw_ctx *hctx;
1839 unsigned int i;
1840
1841 queue_for_each_hw_ctx(q, hctx, i) {
1842 if (i == nr_queue)
1843 break;
08e98fc6 1844 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1845 }
624dbe47
ML
1846}
1847
1848static void blk_mq_free_hw_queues(struct request_queue *q,
1849 struct blk_mq_tag_set *set)
1850{
1851 struct blk_mq_hw_ctx *hctx;
1852 unsigned int i;
1853
e09aae7e 1854 queue_for_each_hw_ctx(q, hctx, i)
624dbe47 1855 free_cpumask_var(hctx->cpumask);
624dbe47
ML
1856}
1857
08e98fc6
ML
1858static int blk_mq_init_hctx(struct request_queue *q,
1859 struct blk_mq_tag_set *set,
1860 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1861{
08e98fc6 1862 int node;
f70ced09 1863 unsigned flush_start_tag = set->queue_depth;
08e98fc6
ML
1864
1865 node = hctx->numa_node;
1866 if (node == NUMA_NO_NODE)
1867 node = hctx->numa_node = set->numa_node;
1868
27489a3c 1869 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
1870 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1871 spin_lock_init(&hctx->lock);
1872 INIT_LIST_HEAD(&hctx->dispatch);
1873 hctx->queue = q;
1874 hctx->queue_num = hctx_idx;
2404e607 1875 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 1876
9467f859 1877 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
1878
1879 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1880
1881 /*
08e98fc6
ML
1882 * Allocate space for all possible cpus to avoid allocation at
1883 * runtime
320ae51f 1884 */
08e98fc6
ML
1885 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1886 GFP_KERNEL, node);
1887 if (!hctx->ctxs)
1888 goto unregister_cpu_notifier;
320ae51f 1889
88459642
OS
1890 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1891 node))
08e98fc6 1892 goto free_ctxs;
320ae51f 1893
08e98fc6 1894 hctx->nr_ctx = 0;
320ae51f 1895
08e98fc6
ML
1896 if (set->ops->init_hctx &&
1897 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1898 goto free_bitmap;
320ae51f 1899
f70ced09
ML
1900 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1901 if (!hctx->fq)
1902 goto exit_hctx;
320ae51f 1903
f70ced09
ML
1904 if (set->ops->init_request &&
1905 set->ops->init_request(set->driver_data,
1906 hctx->fq->flush_rq, hctx_idx,
1907 flush_start_tag + hctx_idx, node))
1908 goto free_fq;
320ae51f 1909
6a83e74d
BVA
1910 if (hctx->flags & BLK_MQ_F_BLOCKING)
1911 init_srcu_struct(&hctx->queue_rq_srcu);
1912
08e98fc6 1913 return 0;
320ae51f 1914
f70ced09
ML
1915 free_fq:
1916 kfree(hctx->fq);
1917 exit_hctx:
1918 if (set->ops->exit_hctx)
1919 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 1920 free_bitmap:
88459642 1921 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1922 free_ctxs:
1923 kfree(hctx->ctxs);
1924 unregister_cpu_notifier:
9467f859 1925 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
1926 return -1;
1927}
320ae51f 1928
320ae51f
JA
1929static void blk_mq_init_cpu_queues(struct request_queue *q,
1930 unsigned int nr_hw_queues)
1931{
1932 unsigned int i;
1933
1934 for_each_possible_cpu(i) {
1935 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1936 struct blk_mq_hw_ctx *hctx;
1937
1938 memset(__ctx, 0, sizeof(*__ctx));
1939 __ctx->cpu = i;
1940 spin_lock_init(&__ctx->lock);
1941 INIT_LIST_HEAD(&__ctx->rq_list);
1942 __ctx->queue = q;
cf43e6be
JA
1943 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
1944 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
320ae51f
JA
1945
1946 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1947 if (!cpu_online(i))
1948 continue;
1949
7d7e0f90 1950 hctx = blk_mq_map_queue(q, i);
e4043dcf 1951
320ae51f
JA
1952 /*
1953 * Set local node, IFF we have more than one hw queue. If
1954 * not, we remain on the home node of the device
1955 */
1956 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 1957 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
1958 }
1959}
1960
cc71a6f4
JA
1961static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1962{
1963 int ret = 0;
1964
1965 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1966 set->queue_depth, set->reserved_tags);
1967 if (!set->tags[hctx_idx])
1968 return false;
1969
1970 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1971 set->queue_depth);
1972 if (!ret)
1973 return true;
1974
1975 blk_mq_free_rq_map(set->tags[hctx_idx]);
1976 set->tags[hctx_idx] = NULL;
1977 return false;
1978}
1979
1980static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1981 unsigned int hctx_idx)
1982{
bd166ef1
JA
1983 if (set->tags[hctx_idx]) {
1984 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
1985 blk_mq_free_rq_map(set->tags[hctx_idx]);
1986 set->tags[hctx_idx] = NULL;
1987 }
cc71a6f4
JA
1988}
1989
5778322e
AM
1990static void blk_mq_map_swqueue(struct request_queue *q,
1991 const struct cpumask *online_mask)
320ae51f 1992{
d1b1cea1 1993 unsigned int i, hctx_idx;
320ae51f
JA
1994 struct blk_mq_hw_ctx *hctx;
1995 struct blk_mq_ctx *ctx;
2a34c087 1996 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 1997
60de074b
AM
1998 /*
1999 * Avoid others reading imcomplete hctx->cpumask through sysfs
2000 */
2001 mutex_lock(&q->sysfs_lock);
2002
320ae51f 2003 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2004 cpumask_clear(hctx->cpumask);
320ae51f
JA
2005 hctx->nr_ctx = 0;
2006 }
2007
2008 /*
2009 * Map software to hardware queues
2010 */
897bb0c7 2011 for_each_possible_cpu(i) {
320ae51f 2012 /* If the cpu isn't online, the cpu is mapped to first hctx */
5778322e 2013 if (!cpumask_test_cpu(i, online_mask))
e4043dcf
JA
2014 continue;
2015
d1b1cea1
GKB
2016 hctx_idx = q->mq_map[i];
2017 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2018 if (!set->tags[hctx_idx] &&
2019 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2020 /*
2021 * If tags initialization fail for some hctx,
2022 * that hctx won't be brought online. In this
2023 * case, remap the current ctx to hctx[0] which
2024 * is guaranteed to always have tags allocated
2025 */
cc71a6f4 2026 q->mq_map[i] = 0;
d1b1cea1
GKB
2027 }
2028
897bb0c7 2029 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2030 hctx = blk_mq_map_queue(q, i);
868f2f0b 2031
e4043dcf 2032 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2033 ctx->index_hw = hctx->nr_ctx;
2034 hctx->ctxs[hctx->nr_ctx++] = ctx;
2035 }
506e931f 2036
60de074b
AM
2037 mutex_unlock(&q->sysfs_lock);
2038
506e931f 2039 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2040 /*
a68aafa5
JA
2041 * If no software queues are mapped to this hardware queue,
2042 * disable it and free the request entries.
484b4061
JA
2043 */
2044 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2045 /* Never unmap queue 0. We need it as a
2046 * fallback in case of a new remap fails
2047 * allocation
2048 */
cc71a6f4
JA
2049 if (i && set->tags[i])
2050 blk_mq_free_map_and_requests(set, i);
2051
2a34c087 2052 hctx->tags = NULL;
484b4061
JA
2053 continue;
2054 }
2055
2a34c087
ML
2056 hctx->tags = set->tags[i];
2057 WARN_ON(!hctx->tags);
2058
889fa31f
CY
2059 /*
2060 * Set the map size to the number of mapped software queues.
2061 * This is more accurate and more efficient than looping
2062 * over all possibly mapped software queues.
2063 */
88459642 2064 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2065
484b4061
JA
2066 /*
2067 * Initialize batch roundrobin counts
2068 */
506e931f
JA
2069 hctx->next_cpu = cpumask_first(hctx->cpumask);
2070 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2071 }
320ae51f
JA
2072}
2073
2404e607 2074static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2075{
2076 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2077 int i;
2078
2404e607
JM
2079 queue_for_each_hw_ctx(q, hctx, i) {
2080 if (shared)
2081 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2082 else
2083 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2084 }
2085}
2086
2087static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2088{
2089 struct request_queue *q;
0d2602ca
JA
2090
2091 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2092 blk_mq_freeze_queue(q);
2404e607 2093 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2094 blk_mq_unfreeze_queue(q);
2095 }
2096}
2097
2098static void blk_mq_del_queue_tag_set(struct request_queue *q)
2099{
2100 struct blk_mq_tag_set *set = q->tag_set;
2101
0d2602ca
JA
2102 mutex_lock(&set->tag_list_lock);
2103 list_del_init(&q->tag_set_list);
2404e607
JM
2104 if (list_is_singular(&set->tag_list)) {
2105 /* just transitioned to unshared */
2106 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2107 /* update existing queue */
2108 blk_mq_update_tag_set_depth(set, false);
2109 }
0d2602ca 2110 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
2111}
2112
2113static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2114 struct request_queue *q)
2115{
2116 q->tag_set = set;
2117
2118 mutex_lock(&set->tag_list_lock);
2404e607
JM
2119
2120 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2121 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2122 set->flags |= BLK_MQ_F_TAG_SHARED;
2123 /* update existing queue */
2124 blk_mq_update_tag_set_depth(set, true);
2125 }
2126 if (set->flags & BLK_MQ_F_TAG_SHARED)
2127 queue_set_hctx_shared(q, true);
0d2602ca 2128 list_add_tail(&q->tag_set_list, &set->tag_list);
2404e607 2129
0d2602ca
JA
2130 mutex_unlock(&set->tag_list_lock);
2131}
2132
e09aae7e
ML
2133/*
2134 * It is the actual release handler for mq, but we do it from
2135 * request queue's release handler for avoiding use-after-free
2136 * and headache because q->mq_kobj shouldn't have been introduced,
2137 * but we can't group ctx/kctx kobj without it.
2138 */
2139void blk_mq_release(struct request_queue *q)
2140{
2141 struct blk_mq_hw_ctx *hctx;
2142 unsigned int i;
2143
bd166ef1
JA
2144 blk_mq_sched_teardown(q);
2145
e09aae7e 2146 /* hctx kobj stays in hctx */
c3b4afca
ML
2147 queue_for_each_hw_ctx(q, hctx, i) {
2148 if (!hctx)
2149 continue;
2150 kfree(hctx->ctxs);
e09aae7e 2151 kfree(hctx);
c3b4afca 2152 }
e09aae7e 2153
a723bab3
AM
2154 q->mq_map = NULL;
2155
e09aae7e
ML
2156 kfree(q->queue_hw_ctx);
2157
2158 /* ctx kobj stays in queue_ctx */
2159 free_percpu(q->queue_ctx);
2160}
2161
24d2f903 2162struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2163{
2164 struct request_queue *uninit_q, *q;
2165
2166 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2167 if (!uninit_q)
2168 return ERR_PTR(-ENOMEM);
2169
2170 q = blk_mq_init_allocated_queue(set, uninit_q);
2171 if (IS_ERR(q))
2172 blk_cleanup_queue(uninit_q);
2173
2174 return q;
2175}
2176EXPORT_SYMBOL(blk_mq_init_queue);
2177
868f2f0b
KB
2178static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2179 struct request_queue *q)
320ae51f 2180{
868f2f0b
KB
2181 int i, j;
2182 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2183
868f2f0b 2184 blk_mq_sysfs_unregister(q);
24d2f903 2185 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2186 int node;
f14bbe77 2187
868f2f0b
KB
2188 if (hctxs[i])
2189 continue;
2190
2191 node = blk_mq_hw_queue_to_node(q->mq_map, i);
cdef54dd
CH
2192 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2193 GFP_KERNEL, node);
320ae51f 2194 if (!hctxs[i])
868f2f0b 2195 break;
320ae51f 2196
a86073e4 2197 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2198 node)) {
2199 kfree(hctxs[i]);
2200 hctxs[i] = NULL;
2201 break;
2202 }
e4043dcf 2203
0d2602ca 2204 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2205 hctxs[i]->numa_node = node;
320ae51f 2206 hctxs[i]->queue_num = i;
868f2f0b
KB
2207
2208 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2209 free_cpumask_var(hctxs[i]->cpumask);
2210 kfree(hctxs[i]);
2211 hctxs[i] = NULL;
2212 break;
2213 }
2214 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2215 }
868f2f0b
KB
2216 for (j = i; j < q->nr_hw_queues; j++) {
2217 struct blk_mq_hw_ctx *hctx = hctxs[j];
2218
2219 if (hctx) {
cc71a6f4
JA
2220 if (hctx->tags)
2221 blk_mq_free_map_and_requests(set, j);
868f2f0b
KB
2222 blk_mq_exit_hctx(q, set, hctx, j);
2223 free_cpumask_var(hctx->cpumask);
2224 kobject_put(&hctx->kobj);
2225 kfree(hctx->ctxs);
2226 kfree(hctx);
2227 hctxs[j] = NULL;
2228
2229 }
2230 }
2231 q->nr_hw_queues = i;
2232 blk_mq_sysfs_register(q);
2233}
2234
2235struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2236 struct request_queue *q)
2237{
66841672
ML
2238 /* mark the queue as mq asap */
2239 q->mq_ops = set->ops;
2240
868f2f0b
KB
2241 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2242 if (!q->queue_ctx)
c7de5726 2243 goto err_exit;
868f2f0b
KB
2244
2245 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2246 GFP_KERNEL, set->numa_node);
2247 if (!q->queue_hw_ctx)
2248 goto err_percpu;
2249
bdd17e75 2250 q->mq_map = set->mq_map;
868f2f0b
KB
2251
2252 blk_mq_realloc_hw_ctxs(set, q);
2253 if (!q->nr_hw_queues)
2254 goto err_hctxs;
320ae51f 2255
287922eb 2256 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2257 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2258
2259 q->nr_queues = nr_cpu_ids;
320ae51f 2260
94eddfbe 2261 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2262
05f1dd53
JA
2263 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2264 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2265
1be036e9
CH
2266 q->sg_reserved_size = INT_MAX;
2267
2849450a 2268 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2269 INIT_LIST_HEAD(&q->requeue_list);
2270 spin_lock_init(&q->requeue_lock);
2271
07068d5b
JA
2272 if (q->nr_hw_queues > 1)
2273 blk_queue_make_request(q, blk_mq_make_request);
2274 else
2275 blk_queue_make_request(q, blk_sq_make_request);
2276
eba71768
JA
2277 /*
2278 * Do this after blk_queue_make_request() overrides it...
2279 */
2280 q->nr_requests = set->queue_depth;
2281
64f1c21e
JA
2282 /*
2283 * Default to classic polling
2284 */
2285 q->poll_nsec = -1;
2286
24d2f903
CH
2287 if (set->ops->complete)
2288 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2289
24d2f903 2290 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 2291
5778322e 2292 get_online_cpus();
320ae51f 2293 mutex_lock(&all_q_mutex);
320ae51f 2294
4593fdbe 2295 list_add_tail(&q->all_q_node, &all_q_list);
0d2602ca 2296 blk_mq_add_queue_tag_set(set, q);
5778322e 2297 blk_mq_map_swqueue(q, cpu_online_mask);
484b4061 2298
4593fdbe 2299 mutex_unlock(&all_q_mutex);
5778322e 2300 put_online_cpus();
4593fdbe 2301
d3484991
JA
2302 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2303 int ret;
2304
2305 ret = blk_mq_sched_init(q);
2306 if (ret)
2307 return ERR_PTR(ret);
2308 }
2309
320ae51f 2310 return q;
18741986 2311
320ae51f 2312err_hctxs:
868f2f0b 2313 kfree(q->queue_hw_ctx);
320ae51f 2314err_percpu:
868f2f0b 2315 free_percpu(q->queue_ctx);
c7de5726
ML
2316err_exit:
2317 q->mq_ops = NULL;
320ae51f
JA
2318 return ERR_PTR(-ENOMEM);
2319}
b62c21b7 2320EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2321
2322void blk_mq_free_queue(struct request_queue *q)
2323{
624dbe47 2324 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2325
0e626368
AM
2326 mutex_lock(&all_q_mutex);
2327 list_del_init(&q->all_q_node);
2328 mutex_unlock(&all_q_mutex);
2329
87760e5e
JA
2330 wbt_exit(q);
2331
0d2602ca
JA
2332 blk_mq_del_queue_tag_set(q);
2333
624dbe47
ML
2334 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2335 blk_mq_free_hw_queues(q, set);
320ae51f 2336}
320ae51f
JA
2337
2338/* Basically redo blk_mq_init_queue with queue frozen */
5778322e
AM
2339static void blk_mq_queue_reinit(struct request_queue *q,
2340 const struct cpumask *online_mask)
320ae51f 2341{
4ecd4fef 2342 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2343
67aec14c
JA
2344 blk_mq_sysfs_unregister(q);
2345
320ae51f
JA
2346 /*
2347 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2348 * we should change hctx numa_node according to new topology (this
2349 * involves free and re-allocate memory, worthy doing?)
2350 */
2351
5778322e 2352 blk_mq_map_swqueue(q, online_mask);
320ae51f 2353
67aec14c 2354 blk_mq_sysfs_register(q);
320ae51f
JA
2355}
2356
65d5291e
SAS
2357/*
2358 * New online cpumask which is going to be set in this hotplug event.
2359 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2360 * one-by-one and dynamically allocating this could result in a failure.
2361 */
2362static struct cpumask cpuhp_online_new;
2363
2364static void blk_mq_queue_reinit_work(void)
320ae51f
JA
2365{
2366 struct request_queue *q;
320ae51f
JA
2367
2368 mutex_lock(&all_q_mutex);
f3af020b
TH
2369 /*
2370 * We need to freeze and reinit all existing queues. Freezing
2371 * involves synchronous wait for an RCU grace period and doing it
2372 * one by one may take a long time. Start freezing all queues in
2373 * one swoop and then wait for the completions so that freezing can
2374 * take place in parallel.
2375 */
2376 list_for_each_entry(q, &all_q_list, all_q_node)
2377 blk_mq_freeze_queue_start(q);
415d3dab 2378 list_for_each_entry(q, &all_q_list, all_q_node)
f3af020b
TH
2379 blk_mq_freeze_queue_wait(q);
2380
320ae51f 2381 list_for_each_entry(q, &all_q_list, all_q_node)
65d5291e 2382 blk_mq_queue_reinit(q, &cpuhp_online_new);
f3af020b
TH
2383
2384 list_for_each_entry(q, &all_q_list, all_q_node)
2385 blk_mq_unfreeze_queue(q);
2386
320ae51f 2387 mutex_unlock(&all_q_mutex);
65d5291e
SAS
2388}
2389
2390static int blk_mq_queue_reinit_dead(unsigned int cpu)
2391{
97a32864 2392 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
65d5291e
SAS
2393 blk_mq_queue_reinit_work();
2394 return 0;
2395}
2396
2397/*
2398 * Before hotadded cpu starts handling requests, new mappings must be
2399 * established. Otherwise, these requests in hw queue might never be
2400 * dispatched.
2401 *
2402 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2403 * for CPU0, and ctx1 for CPU1).
2404 *
2405 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2406 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2407 *
2c3ad667
JA
2408 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2409 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2410 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2411 * ignored.
65d5291e
SAS
2412 */
2413static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2414{
2415 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2416 cpumask_set_cpu(cpu, &cpuhp_online_new);
2417 blk_mq_queue_reinit_work();
2418 return 0;
320ae51f
JA
2419}
2420
a5164405
JA
2421static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2422{
2423 int i;
2424
cc71a6f4
JA
2425 for (i = 0; i < set->nr_hw_queues; i++)
2426 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2427 goto out_unwind;
a5164405
JA
2428
2429 return 0;
2430
2431out_unwind:
2432 while (--i >= 0)
cc71a6f4 2433 blk_mq_free_rq_map(set->tags[i]);
a5164405 2434
a5164405
JA
2435 return -ENOMEM;
2436}
2437
2438/*
2439 * Allocate the request maps associated with this tag_set. Note that this
2440 * may reduce the depth asked for, if memory is tight. set->queue_depth
2441 * will be updated to reflect the allocated depth.
2442 */
2443static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2444{
2445 unsigned int depth;
2446 int err;
2447
2448 depth = set->queue_depth;
2449 do {
2450 err = __blk_mq_alloc_rq_maps(set);
2451 if (!err)
2452 break;
2453
2454 set->queue_depth >>= 1;
2455 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2456 err = -ENOMEM;
2457 break;
2458 }
2459 } while (set->queue_depth);
2460
2461 if (!set->queue_depth || err) {
2462 pr_err("blk-mq: failed to allocate request map\n");
2463 return -ENOMEM;
2464 }
2465
2466 if (depth != set->queue_depth)
2467 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2468 depth, set->queue_depth);
2469
2470 return 0;
2471}
2472
a4391c64
JA
2473/*
2474 * Alloc a tag set to be associated with one or more request queues.
2475 * May fail with EINVAL for various error conditions. May adjust the
2476 * requested depth down, if if it too large. In that case, the set
2477 * value will be stored in set->queue_depth.
2478 */
24d2f903
CH
2479int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2480{
da695ba2
CH
2481 int ret;
2482
205fb5f5
BVA
2483 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2484
24d2f903
CH
2485 if (!set->nr_hw_queues)
2486 return -EINVAL;
a4391c64 2487 if (!set->queue_depth)
24d2f903
CH
2488 return -EINVAL;
2489 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2490 return -EINVAL;
2491
7d7e0f90 2492 if (!set->ops->queue_rq)
24d2f903
CH
2493 return -EINVAL;
2494
a4391c64
JA
2495 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2496 pr_info("blk-mq: reduced tag depth to %u\n",
2497 BLK_MQ_MAX_DEPTH);
2498 set->queue_depth = BLK_MQ_MAX_DEPTH;
2499 }
24d2f903 2500
6637fadf
SL
2501 /*
2502 * If a crashdump is active, then we are potentially in a very
2503 * memory constrained environment. Limit us to 1 queue and
2504 * 64 tags to prevent using too much memory.
2505 */
2506 if (is_kdump_kernel()) {
2507 set->nr_hw_queues = 1;
2508 set->queue_depth = min(64U, set->queue_depth);
2509 }
868f2f0b
KB
2510 /*
2511 * There is no use for more h/w queues than cpus.
2512 */
2513 if (set->nr_hw_queues > nr_cpu_ids)
2514 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2515
868f2f0b 2516 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2517 GFP_KERNEL, set->numa_node);
2518 if (!set->tags)
a5164405 2519 return -ENOMEM;
24d2f903 2520
da695ba2
CH
2521 ret = -ENOMEM;
2522 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2523 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2524 if (!set->mq_map)
2525 goto out_free_tags;
2526
da695ba2
CH
2527 if (set->ops->map_queues)
2528 ret = set->ops->map_queues(set);
2529 else
2530 ret = blk_mq_map_queues(set);
2531 if (ret)
2532 goto out_free_mq_map;
2533
2534 ret = blk_mq_alloc_rq_maps(set);
2535 if (ret)
bdd17e75 2536 goto out_free_mq_map;
24d2f903 2537
0d2602ca
JA
2538 mutex_init(&set->tag_list_lock);
2539 INIT_LIST_HEAD(&set->tag_list);
2540
24d2f903 2541 return 0;
bdd17e75
CH
2542
2543out_free_mq_map:
2544 kfree(set->mq_map);
2545 set->mq_map = NULL;
2546out_free_tags:
5676e7b6
RE
2547 kfree(set->tags);
2548 set->tags = NULL;
da695ba2 2549 return ret;
24d2f903
CH
2550}
2551EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2552
2553void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2554{
2555 int i;
2556
cc71a6f4
JA
2557 for (i = 0; i < nr_cpu_ids; i++)
2558 blk_mq_free_map_and_requests(set, i);
484b4061 2559
bdd17e75
CH
2560 kfree(set->mq_map);
2561 set->mq_map = NULL;
2562
981bd189 2563 kfree(set->tags);
5676e7b6 2564 set->tags = NULL;
24d2f903
CH
2565}
2566EXPORT_SYMBOL(blk_mq_free_tag_set);
2567
e3a2b3f9
JA
2568int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2569{
2570 struct blk_mq_tag_set *set = q->tag_set;
2571 struct blk_mq_hw_ctx *hctx;
2572 int i, ret;
2573
bd166ef1 2574 if (!set)
e3a2b3f9
JA
2575 return -EINVAL;
2576
70f36b60
JA
2577 blk_mq_freeze_queue(q);
2578 blk_mq_quiesce_queue(q);
2579
e3a2b3f9
JA
2580 ret = 0;
2581 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2582 if (!hctx->tags)
2583 continue;
bd166ef1
JA
2584 /*
2585 * If we're using an MQ scheduler, just update the scheduler
2586 * queue depth. This is similar to what the old code would do.
2587 */
70f36b60
JA
2588 if (!hctx->sched_tags) {
2589 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2590 min(nr, set->queue_depth),
2591 false);
2592 } else {
2593 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2594 nr, true);
2595 }
e3a2b3f9
JA
2596 if (ret)
2597 break;
2598 }
2599
2600 if (!ret)
2601 q->nr_requests = nr;
2602
70f36b60
JA
2603 blk_mq_unfreeze_queue(q);
2604 blk_mq_start_stopped_hw_queues(q, true);
2605
e3a2b3f9
JA
2606 return ret;
2607}
2608
868f2f0b
KB
2609void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2610{
2611 struct request_queue *q;
2612
2613 if (nr_hw_queues > nr_cpu_ids)
2614 nr_hw_queues = nr_cpu_ids;
2615 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2616 return;
2617
2618 list_for_each_entry(q, &set->tag_list, tag_set_list)
2619 blk_mq_freeze_queue(q);
2620
2621 set->nr_hw_queues = nr_hw_queues;
2622 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2623 blk_mq_realloc_hw_ctxs(set, q);
2624
2625 if (q->nr_hw_queues > 1)
2626 blk_queue_make_request(q, blk_mq_make_request);
2627 else
2628 blk_queue_make_request(q, blk_sq_make_request);
2629
2630 blk_mq_queue_reinit(q, cpu_online_mask);
2631 }
2632
2633 list_for_each_entry(q, &set->tag_list, tag_set_list)
2634 blk_mq_unfreeze_queue(q);
2635}
2636EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2637
64f1c21e
JA
2638static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2639 struct blk_mq_hw_ctx *hctx,
2640 struct request *rq)
2641{
2642 struct blk_rq_stat stat[2];
2643 unsigned long ret = 0;
2644
2645 /*
2646 * If stats collection isn't on, don't sleep but turn it on for
2647 * future users
2648 */
2649 if (!blk_stat_enable(q))
2650 return 0;
2651
2652 /*
2653 * We don't have to do this once per IO, should optimize this
2654 * to just use the current window of stats until it changes
2655 */
2656 memset(&stat, 0, sizeof(stat));
2657 blk_hctx_stat_get(hctx, stat);
2658
2659 /*
2660 * As an optimistic guess, use half of the mean service time
2661 * for this type of request. We can (and should) make this smarter.
2662 * For instance, if the completion latencies are tight, we can
2663 * get closer than just half the mean. This is especially
2664 * important on devices where the completion latencies are longer
2665 * than ~10 usec.
2666 */
2667 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2668 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2669 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2670 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2671
2672 return ret;
2673}
2674
06426adf 2675static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2676 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2677 struct request *rq)
2678{
2679 struct hrtimer_sleeper hs;
2680 enum hrtimer_mode mode;
64f1c21e 2681 unsigned int nsecs;
06426adf
JA
2682 ktime_t kt;
2683
64f1c21e
JA
2684 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2685 return false;
2686
2687 /*
2688 * poll_nsec can be:
2689 *
2690 * -1: don't ever hybrid sleep
2691 * 0: use half of prev avg
2692 * >0: use this specific value
2693 */
2694 if (q->poll_nsec == -1)
2695 return false;
2696 else if (q->poll_nsec > 0)
2697 nsecs = q->poll_nsec;
2698 else
2699 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2700
2701 if (!nsecs)
06426adf
JA
2702 return false;
2703
2704 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2705
2706 /*
2707 * This will be replaced with the stats tracking code, using
2708 * 'avg_completion_time / 2' as the pre-sleep target.
2709 */
8b0e1953 2710 kt = nsecs;
06426adf
JA
2711
2712 mode = HRTIMER_MODE_REL;
2713 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2714 hrtimer_set_expires(&hs.timer, kt);
2715
2716 hrtimer_init_sleeper(&hs, current);
2717 do {
2718 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2719 break;
2720 set_current_state(TASK_UNINTERRUPTIBLE);
2721 hrtimer_start_expires(&hs.timer, mode);
2722 if (hs.task)
2723 io_schedule();
2724 hrtimer_cancel(&hs.timer);
2725 mode = HRTIMER_MODE_ABS;
2726 } while (hs.task && !signal_pending(current));
2727
2728 __set_current_state(TASK_RUNNING);
2729 destroy_hrtimer_on_stack(&hs.timer);
2730 return true;
2731}
2732
bbd7bb70
JA
2733static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2734{
2735 struct request_queue *q = hctx->queue;
2736 long state;
2737
06426adf
JA
2738 /*
2739 * If we sleep, have the caller restart the poll loop to reset
2740 * the state. Like for the other success return cases, the
2741 * caller is responsible for checking if the IO completed. If
2742 * the IO isn't complete, we'll get called again and will go
2743 * straight to the busy poll loop.
2744 */
64f1c21e 2745 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
2746 return true;
2747
bbd7bb70
JA
2748 hctx->poll_considered++;
2749
2750 state = current->state;
2751 while (!need_resched()) {
2752 int ret;
2753
2754 hctx->poll_invoked++;
2755
2756 ret = q->mq_ops->poll(hctx, rq->tag);
2757 if (ret > 0) {
2758 hctx->poll_success++;
2759 set_current_state(TASK_RUNNING);
2760 return true;
2761 }
2762
2763 if (signal_pending_state(state, current))
2764 set_current_state(TASK_RUNNING);
2765
2766 if (current->state == TASK_RUNNING)
2767 return true;
2768 if (ret < 0)
2769 break;
2770 cpu_relax();
2771 }
2772
2773 return false;
2774}
2775
2776bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2777{
2778 struct blk_mq_hw_ctx *hctx;
2779 struct blk_plug *plug;
2780 struct request *rq;
2781
2782 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2783 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2784 return false;
2785
2786 plug = current->plug;
2787 if (plug)
2788 blk_flush_plug_list(plug, false);
2789
2790 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
2791 if (!blk_qc_t_is_internal(cookie))
2792 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2793 else
2794 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
bbd7bb70
JA
2795
2796 return __blk_mq_poll(hctx, rq);
2797}
2798EXPORT_SYMBOL_GPL(blk_mq_poll);
2799
676141e4
JA
2800void blk_mq_disable_hotplug(void)
2801{
2802 mutex_lock(&all_q_mutex);
2803}
2804
2805void blk_mq_enable_hotplug(void)
2806{
2807 mutex_unlock(&all_q_mutex);
2808}
2809
320ae51f
JA
2810static int __init blk_mq_init(void)
2811{
07e4fead
OS
2812 blk_mq_debugfs_init();
2813
9467f859
TG
2814 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2815 blk_mq_hctx_notify_dead);
320ae51f 2816
65d5291e
SAS
2817 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2818 blk_mq_queue_reinit_prepare,
2819 blk_mq_queue_reinit_dead);
320ae51f
JA
2820 return 0;
2821}
2822subsys_initcall(blk_mq_init);