]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - block/blk-mq.c
blk-mq: improve blk_mq_try_issue_directly
[thirdparty/kernel/stable.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
105ab3d8 23#include <linux/sched/topology.h>
174cd4b1 24#include <linux/sched/signal.h>
320ae51f 25#include <linux/delay.h>
aedcd72f 26#include <linux/crash_dump.h>
88c7b2b7 27#include <linux/prefetch.h>
320ae51f
JA
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
34#include "blk-mq-tag.h"
cf43e6be 35#include "blk-stat.h"
87760e5e 36#include "blk-wbt.h"
bd166ef1 37#include "blk-mq-sched.h"
320ae51f
JA
38
39static DEFINE_MUTEX(all_q_mutex);
40static LIST_HEAD(all_q_list);
41
34dbad5d
OS
42static void blk_mq_poll_stats_start(struct request_queue *q);
43static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
320ae51f
JA
45/*
46 * Check if any of the ctx's have pending work in this hardware queue
47 */
50e1dab8 48bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 49{
bd166ef1
JA
50 return sbitmap_any_bit_set(&hctx->ctx_map) ||
51 !list_empty_careful(&hctx->dispatch) ||
52 blk_mq_sched_has_work(hctx);
1429d7c9
JA
53}
54
320ae51f
JA
55/*
56 * Mark this ctx as having pending work in this hardware queue
57 */
58static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
59 struct blk_mq_ctx *ctx)
60{
88459642
OS
61 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
62 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
63}
64
65static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
66 struct blk_mq_ctx *ctx)
67{
88459642 68 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
69}
70
b4c6a028 71void blk_mq_freeze_queue_start(struct request_queue *q)
43a5e4e2 72{
4ecd4fef 73 int freeze_depth;
cddd5d17 74
4ecd4fef
CH
75 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
76 if (freeze_depth == 1) {
3ef28e83 77 percpu_ref_kill(&q->q_usage_counter);
b94ec296 78 blk_mq_run_hw_queues(q, false);
cddd5d17 79 }
f3af020b 80}
b4c6a028 81EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
f3af020b 82
6bae363e 83void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 84{
3ef28e83 85 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 86}
6bae363e 87EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 88
f91328c4
KB
89int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
90 unsigned long timeout)
91{
92 return wait_event_timeout(q->mq_freeze_wq,
93 percpu_ref_is_zero(&q->q_usage_counter),
94 timeout);
95}
96EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 97
f3af020b
TH
98/*
99 * Guarantee no request is in use, so we can change any data structure of
100 * the queue afterward.
101 */
3ef28e83 102void blk_freeze_queue(struct request_queue *q)
f3af020b 103{
3ef28e83
DW
104 /*
105 * In the !blk_mq case we are only calling this to kill the
106 * q_usage_counter, otherwise this increases the freeze depth
107 * and waits for it to return to zero. For this reason there is
108 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 * exported to drivers as the only user for unfreeze is blk_mq.
110 */
f3af020b
TH
111 blk_mq_freeze_queue_start(q);
112 blk_mq_freeze_queue_wait(q);
113}
3ef28e83
DW
114
115void blk_mq_freeze_queue(struct request_queue *q)
116{
117 /*
118 * ...just an alias to keep freeze and unfreeze actions balanced
119 * in the blk_mq_* namespace
120 */
121 blk_freeze_queue(q);
122}
c761d96b 123EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 124
b4c6a028 125void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 126{
4ecd4fef 127 int freeze_depth;
320ae51f 128
4ecd4fef
CH
129 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130 WARN_ON_ONCE(freeze_depth < 0);
131 if (!freeze_depth) {
3ef28e83 132 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 133 wake_up_all(&q->mq_freeze_wq);
add703fd 134 }
320ae51f 135}
b4c6a028 136EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 137
6a83e74d
BVA
138/**
139 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
140 * @q: request queue.
141 *
142 * Note: this function does not prevent that the struct request end_io()
143 * callback function is invoked. Additionally, it is not prevented that
144 * new queue_rq() calls occur unless the queue has been stopped first.
145 */
146void blk_mq_quiesce_queue(struct request_queue *q)
147{
148 struct blk_mq_hw_ctx *hctx;
149 unsigned int i;
150 bool rcu = false;
151
152 blk_mq_stop_hw_queues(q);
153
154 queue_for_each_hw_ctx(q, hctx, i) {
155 if (hctx->flags & BLK_MQ_F_BLOCKING)
156 synchronize_srcu(&hctx->queue_rq_srcu);
157 else
158 rcu = true;
159 }
160 if (rcu)
161 synchronize_rcu();
162}
163EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
164
aed3ea94
JA
165void blk_mq_wake_waiters(struct request_queue *q)
166{
167 struct blk_mq_hw_ctx *hctx;
168 unsigned int i;
169
170 queue_for_each_hw_ctx(q, hctx, i)
171 if (blk_mq_hw_queue_mapped(hctx))
172 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
173
174 /*
175 * If we are called because the queue has now been marked as
176 * dying, we need to ensure that processes currently waiting on
177 * the queue are notified as well.
178 */
179 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
180}
181
320ae51f
JA
182bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
183{
184 return blk_mq_has_free_tags(hctx->tags);
185}
186EXPORT_SYMBOL(blk_mq_can_queue);
187
2c3ad667
JA
188void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
189 struct request *rq, unsigned int op)
320ae51f 190{
af76e555
CH
191 INIT_LIST_HEAD(&rq->queuelist);
192 /* csd/requeue_work/fifo_time is initialized before use */
193 rq->q = q;
320ae51f 194 rq->mq_ctx = ctx;
ef295ecf 195 rq->cmd_flags = op;
e8064021
CH
196 if (blk_queue_io_stat(q))
197 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
198 /* do not touch atomic flags, it needs atomic ops against the timer */
199 rq->cpu = -1;
af76e555
CH
200 INIT_HLIST_NODE(&rq->hash);
201 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
202 rq->rq_disk = NULL;
203 rq->part = NULL;
3ee32372 204 rq->start_time = jiffies;
af76e555
CH
205#ifdef CONFIG_BLK_CGROUP
206 rq->rl = NULL;
0fec08b4 207 set_start_time_ns(rq);
af76e555
CH
208 rq->io_start_time_ns = 0;
209#endif
210 rq->nr_phys_segments = 0;
211#if defined(CONFIG_BLK_DEV_INTEGRITY)
212 rq->nr_integrity_segments = 0;
213#endif
af76e555
CH
214 rq->special = NULL;
215 /* tag was already set */
216 rq->errors = 0;
af76e555 217 rq->extra_len = 0;
af76e555 218
af76e555 219 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
220 rq->timeout = 0;
221
af76e555
CH
222 rq->end_io = NULL;
223 rq->end_io_data = NULL;
224 rq->next_rq = NULL;
225
ef295ecf 226 ctx->rq_dispatched[op_is_sync(op)]++;
320ae51f 227}
2c3ad667 228EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
320ae51f 229
2c3ad667
JA
230struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
231 unsigned int op)
5dee8577
CH
232{
233 struct request *rq;
234 unsigned int tag;
235
cb96a42c 236 tag = blk_mq_get_tag(data);
5dee8577 237 if (tag != BLK_MQ_TAG_FAIL) {
bd166ef1
JA
238 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
239
240 rq = tags->static_rqs[tag];
5dee8577 241
bd166ef1
JA
242 if (data->flags & BLK_MQ_REQ_INTERNAL) {
243 rq->tag = -1;
244 rq->internal_tag = tag;
245 } else {
200e86b3
JA
246 if (blk_mq_tag_busy(data->hctx)) {
247 rq->rq_flags = RQF_MQ_INFLIGHT;
248 atomic_inc(&data->hctx->nr_active);
249 }
bd166ef1
JA
250 rq->tag = tag;
251 rq->internal_tag = -1;
562bef42 252 data->hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
253 }
254
ef295ecf 255 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
5dee8577
CH
256 return rq;
257 }
258
259 return NULL;
260}
2c3ad667 261EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
5dee8577 262
6f3b0e8b
CH
263struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
264 unsigned int flags)
320ae51f 265{
5a797e00 266 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 267 struct request *rq;
a492f075 268 int ret;
320ae51f 269
6f3b0e8b 270 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
a492f075
JL
271 if (ret)
272 return ERR_PTR(ret);
320ae51f 273
bd166ef1 274 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
841bac2c 275
bd166ef1
JA
276 blk_mq_put_ctx(alloc_data.ctx);
277 blk_queue_exit(q);
278
279 if (!rq)
a492f075 280 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3
CH
281
282 rq->__data_len = 0;
283 rq->__sector = (sector_t) -1;
284 rq->bio = rq->biotail = NULL;
320ae51f
JA
285 return rq;
286}
4bb659b1 287EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 288
1f5bd336
ML
289struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
290 unsigned int flags, unsigned int hctx_idx)
291{
6d2809d5 292 struct blk_mq_alloc_data alloc_data = { .flags = flags };
1f5bd336 293 struct request *rq;
6d2809d5 294 unsigned int cpu;
1f5bd336
ML
295 int ret;
296
297 /*
298 * If the tag allocator sleeps we could get an allocation for a
299 * different hardware context. No need to complicate the low level
300 * allocator for this for the rare use case of a command tied to
301 * a specific queue.
302 */
303 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
304 return ERR_PTR(-EINVAL);
305
306 if (hctx_idx >= q->nr_hw_queues)
307 return ERR_PTR(-EIO);
308
309 ret = blk_queue_enter(q, true);
310 if (ret)
311 return ERR_PTR(ret);
312
c8712c6a
CH
313 /*
314 * Check if the hardware context is actually mapped to anything.
315 * If not tell the caller that it should skip this queue.
316 */
6d2809d5
OS
317 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
318 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
319 blk_queue_exit(q);
320 return ERR_PTR(-EXDEV);
c8712c6a 321 }
6d2809d5
OS
322 cpu = cpumask_first(alloc_data.hctx->cpumask);
323 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 324
6d2809d5 325 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
c8712c6a 326
6d2809d5 327 blk_mq_put_ctx(alloc_data.ctx);
c8712c6a 328 blk_queue_exit(q);
6d2809d5
OS
329
330 if (!rq)
331 return ERR_PTR(-EWOULDBLOCK);
332
333 return rq;
1f5bd336
ML
334}
335EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
336
bd166ef1
JA
337void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
338 struct request *rq)
320ae51f 339{
bd166ef1 340 const int sched_tag = rq->internal_tag;
320ae51f
JA
341 struct request_queue *q = rq->q;
342
e8064021 343 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 344 atomic_dec(&hctx->nr_active);
87760e5e
JA
345
346 wbt_done(q->rq_wb, &rq->issue_stat);
e8064021 347 rq->rq_flags = 0;
0d2602ca 348
af76e555 349 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 350 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
bd166ef1
JA
351 if (rq->tag != -1)
352 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
353 if (sched_tag != -1)
354 blk_mq_sched_completed_request(hctx, rq);
50e1dab8 355 blk_mq_sched_restart_queues(hctx);
3ef28e83 356 blk_queue_exit(q);
320ae51f
JA
357}
358
bd166ef1 359static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
16a3c2a7 360 struct request *rq)
320ae51f
JA
361{
362 struct blk_mq_ctx *ctx = rq->mq_ctx;
320ae51f
JA
363
364 ctx->rq_completed[rq_is_sync(rq)]++;
bd166ef1
JA
365 __blk_mq_finish_request(hctx, ctx, rq);
366}
367
368void blk_mq_finish_request(struct request *rq)
369{
370 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
7c7f2f2b 371}
7c7f2f2b
JA
372
373void blk_mq_free_request(struct request *rq)
374{
bd166ef1 375 blk_mq_sched_put_request(rq);
320ae51f 376}
1a3b595a 377EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 378
c8a446ad 379inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 380{
0d11e6ac
ML
381 blk_account_io_done(rq);
382
91b63639 383 if (rq->end_io) {
87760e5e 384 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 385 rq->end_io(rq, error);
91b63639
CH
386 } else {
387 if (unlikely(blk_bidi_rq(rq)))
388 blk_mq_free_request(rq->next_rq);
320ae51f 389 blk_mq_free_request(rq);
91b63639 390 }
320ae51f 391}
c8a446ad 392EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 393
c8a446ad 394void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
395{
396 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
397 BUG();
c8a446ad 398 __blk_mq_end_request(rq, error);
63151a44 399}
c8a446ad 400EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 401
30a91cb4 402static void __blk_mq_complete_request_remote(void *data)
320ae51f 403{
3d6efbf6 404 struct request *rq = data;
320ae51f 405
30a91cb4 406 rq->q->softirq_done_fn(rq);
320ae51f 407}
320ae51f 408
ed851860 409static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
410{
411 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 412 bool shared = false;
320ae51f
JA
413 int cpu;
414
38535201 415 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
416 rq->q->softirq_done_fn(rq);
417 return;
418 }
320ae51f
JA
419
420 cpu = get_cpu();
38535201
CH
421 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
422 shared = cpus_share_cache(cpu, ctx->cpu);
423
424 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 425 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
426 rq->csd.info = rq;
427 rq->csd.flags = 0;
c46fff2a 428 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 429 } else {
30a91cb4 430 rq->q->softirq_done_fn(rq);
3d6efbf6 431 }
320ae51f
JA
432 put_cpu();
433}
30a91cb4 434
cf43e6be
JA
435static void blk_mq_stat_add(struct request *rq)
436{
437 if (rq->rq_flags & RQF_STATS) {
34dbad5d
OS
438 blk_mq_poll_stats_start(rq->q);
439 blk_stat_add(rq);
cf43e6be
JA
440 }
441}
442
1fa8cc52 443static void __blk_mq_complete_request(struct request *rq)
ed851860
JA
444{
445 struct request_queue *q = rq->q;
446
cf43e6be
JA
447 blk_mq_stat_add(rq);
448
ed851860 449 if (!q->softirq_done_fn)
c8a446ad 450 blk_mq_end_request(rq, rq->errors);
ed851860
JA
451 else
452 blk_mq_ipi_complete_request(rq);
453}
454
30a91cb4
CH
455/**
456 * blk_mq_complete_request - end I/O on a request
457 * @rq: the request being processed
458 *
459 * Description:
460 * Ends all I/O on a request. It does not handle partial completions.
461 * The actual completion happens out-of-order, through a IPI handler.
462 **/
f4829a9b 463void blk_mq_complete_request(struct request *rq, int error)
30a91cb4 464{
95f09684
JA
465 struct request_queue *q = rq->q;
466
467 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 468 return;
f4829a9b
CH
469 if (!blk_mark_rq_complete(rq)) {
470 rq->errors = error;
ed851860 471 __blk_mq_complete_request(rq);
f4829a9b 472 }
30a91cb4
CH
473}
474EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 475
973c0191
KB
476int blk_mq_request_started(struct request *rq)
477{
478 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
479}
480EXPORT_SYMBOL_GPL(blk_mq_request_started);
481
e2490073 482void blk_mq_start_request(struct request *rq)
320ae51f
JA
483{
484 struct request_queue *q = rq->q;
485
bd166ef1
JA
486 blk_mq_sched_started_request(rq);
487
320ae51f
JA
488 trace_block_rq_issue(q, rq);
489
cf43e6be
JA
490 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
491 blk_stat_set_issue_time(&rq->issue_stat);
492 rq->rq_flags |= RQF_STATS;
87760e5e 493 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
494 }
495
2b8393b4 496 blk_add_timer(rq);
87ee7b11 497
538b7534
JA
498 /*
499 * Ensure that ->deadline is visible before set the started
500 * flag and clear the completed flag.
501 */
502 smp_mb__before_atomic();
503
87ee7b11
JA
504 /*
505 * Mark us as started and clear complete. Complete might have been
506 * set if requeue raced with timeout, which then marked it as
507 * complete. So be sure to clear complete again when we start
508 * the request, otherwise we'll ignore the completion event.
509 */
4b570521
JA
510 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
511 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
512 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
513 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
514
515 if (q->dma_drain_size && blk_rq_bytes(rq)) {
516 /*
517 * Make sure space for the drain appears. We know we can do
518 * this because max_hw_segments has been adjusted to be one
519 * fewer than the device can handle.
520 */
521 rq->nr_phys_segments++;
522 }
320ae51f 523}
e2490073 524EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 525
ed0791b2 526static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
527{
528 struct request_queue *q = rq->q;
529
530 trace_block_rq_requeue(q, rq);
87760e5e 531 wbt_requeue(q->rq_wb, &rq->issue_stat);
bd166ef1 532 blk_mq_sched_requeue_request(rq);
49f5baa5 533
e2490073
CH
534 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
535 if (q->dma_drain_size && blk_rq_bytes(rq))
536 rq->nr_phys_segments--;
537 }
320ae51f
JA
538}
539
2b053aca 540void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 541{
ed0791b2 542 __blk_mq_requeue_request(rq);
ed0791b2 543
ed0791b2 544 BUG_ON(blk_queued_rq(rq));
2b053aca 545 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
546}
547EXPORT_SYMBOL(blk_mq_requeue_request);
548
6fca6a61
CH
549static void blk_mq_requeue_work(struct work_struct *work)
550{
551 struct request_queue *q =
2849450a 552 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
553 LIST_HEAD(rq_list);
554 struct request *rq, *next;
555 unsigned long flags;
556
557 spin_lock_irqsave(&q->requeue_lock, flags);
558 list_splice_init(&q->requeue_list, &rq_list);
559 spin_unlock_irqrestore(&q->requeue_lock, flags);
560
561 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 562 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
563 continue;
564
e8064021 565 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 566 list_del_init(&rq->queuelist);
bd6737f1 567 blk_mq_sched_insert_request(rq, true, false, false, true);
6fca6a61
CH
568 }
569
570 while (!list_empty(&rq_list)) {
571 rq = list_entry(rq_list.next, struct request, queuelist);
572 list_del_init(&rq->queuelist);
bd6737f1 573 blk_mq_sched_insert_request(rq, false, false, false, true);
6fca6a61
CH
574 }
575
52d7f1b5 576 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
577}
578
2b053aca
BVA
579void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
580 bool kick_requeue_list)
6fca6a61
CH
581{
582 struct request_queue *q = rq->q;
583 unsigned long flags;
584
585 /*
586 * We abuse this flag that is otherwise used by the I/O scheduler to
587 * request head insertation from the workqueue.
588 */
e8064021 589 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
590
591 spin_lock_irqsave(&q->requeue_lock, flags);
592 if (at_head) {
e8064021 593 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
594 list_add(&rq->queuelist, &q->requeue_list);
595 } else {
596 list_add_tail(&rq->queuelist, &q->requeue_list);
597 }
598 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
599
600 if (kick_requeue_list)
601 blk_mq_kick_requeue_list(q);
6fca6a61
CH
602}
603EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
604
605void blk_mq_kick_requeue_list(struct request_queue *q)
606{
2849450a 607 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
608}
609EXPORT_SYMBOL(blk_mq_kick_requeue_list);
610
2849450a
MS
611void blk_mq_delay_kick_requeue_list(struct request_queue *q,
612 unsigned long msecs)
613{
614 kblockd_schedule_delayed_work(&q->requeue_work,
615 msecs_to_jiffies(msecs));
616}
617EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
618
1885b24d
JA
619void blk_mq_abort_requeue_list(struct request_queue *q)
620{
621 unsigned long flags;
622 LIST_HEAD(rq_list);
623
624 spin_lock_irqsave(&q->requeue_lock, flags);
625 list_splice_init(&q->requeue_list, &rq_list);
626 spin_unlock_irqrestore(&q->requeue_lock, flags);
627
628 while (!list_empty(&rq_list)) {
629 struct request *rq;
630
631 rq = list_first_entry(&rq_list, struct request, queuelist);
632 list_del_init(&rq->queuelist);
633 rq->errors = -EIO;
634 blk_mq_end_request(rq, rq->errors);
635 }
636}
637EXPORT_SYMBOL(blk_mq_abort_requeue_list);
638
0e62f51f
JA
639struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
640{
88c7b2b7
JA
641 if (tag < tags->nr_tags) {
642 prefetch(tags->rqs[tag]);
4ee86bab 643 return tags->rqs[tag];
88c7b2b7 644 }
4ee86bab
HR
645
646 return NULL;
24d2f903
CH
647}
648EXPORT_SYMBOL(blk_mq_tag_to_rq);
649
320ae51f 650struct blk_mq_timeout_data {
46f92d42
CH
651 unsigned long next;
652 unsigned int next_set;
320ae51f
JA
653};
654
90415837 655void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 656{
f8a5b122 657 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 658 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
659
660 /*
661 * We know that complete is set at this point. If STARTED isn't set
662 * anymore, then the request isn't active and the "timeout" should
663 * just be ignored. This can happen due to the bitflag ordering.
664 * Timeout first checks if STARTED is set, and if it is, assumes
665 * the request is active. But if we race with completion, then
666 * we both flags will get cleared. So check here again, and ignore
667 * a timeout event with a request that isn't active.
668 */
46f92d42
CH
669 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
670 return;
87ee7b11 671
46f92d42 672 if (ops->timeout)
0152fb6b 673 ret = ops->timeout(req, reserved);
46f92d42
CH
674
675 switch (ret) {
676 case BLK_EH_HANDLED:
677 __blk_mq_complete_request(req);
678 break;
679 case BLK_EH_RESET_TIMER:
680 blk_add_timer(req);
681 blk_clear_rq_complete(req);
682 break;
683 case BLK_EH_NOT_HANDLED:
684 break;
685 default:
686 printk(KERN_ERR "block: bad eh return: %d\n", ret);
687 break;
688 }
87ee7b11 689}
5b3f25fc 690
81481eb4
CH
691static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
692 struct request *rq, void *priv, bool reserved)
693{
694 struct blk_mq_timeout_data *data = priv;
87ee7b11 695
eb130dbf
KB
696 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
697 /*
698 * If a request wasn't started before the queue was
699 * marked dying, kill it here or it'll go unnoticed.
700 */
a59e0f57
KB
701 if (unlikely(blk_queue_dying(rq->q))) {
702 rq->errors = -EIO;
703 blk_mq_end_request(rq, rq->errors);
704 }
46f92d42 705 return;
eb130dbf 706 }
87ee7b11 707
46f92d42
CH
708 if (time_after_eq(jiffies, rq->deadline)) {
709 if (!blk_mark_rq_complete(rq))
0152fb6b 710 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
711 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
712 data->next = rq->deadline;
713 data->next_set = 1;
714 }
87ee7b11
JA
715}
716
287922eb 717static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 718{
287922eb
CH
719 struct request_queue *q =
720 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
721 struct blk_mq_timeout_data data = {
722 .next = 0,
723 .next_set = 0,
724 };
81481eb4 725 int i;
320ae51f 726
71f79fb3
GKB
727 /* A deadlock might occur if a request is stuck requiring a
728 * timeout at the same time a queue freeze is waiting
729 * completion, since the timeout code would not be able to
730 * acquire the queue reference here.
731 *
732 * That's why we don't use blk_queue_enter here; instead, we use
733 * percpu_ref_tryget directly, because we need to be able to
734 * obtain a reference even in the short window between the queue
735 * starting to freeze, by dropping the first reference in
736 * blk_mq_freeze_queue_start, and the moment the last request is
737 * consumed, marked by the instant q_usage_counter reaches
738 * zero.
739 */
740 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
741 return;
742
0bf6cd5b 743 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 744
81481eb4
CH
745 if (data.next_set) {
746 data.next = blk_rq_timeout(round_jiffies_up(data.next));
747 mod_timer(&q->timeout, data.next);
0d2602ca 748 } else {
0bf6cd5b
CH
749 struct blk_mq_hw_ctx *hctx;
750
f054b56c
ML
751 queue_for_each_hw_ctx(q, hctx, i) {
752 /* the hctx may be unmapped, so check it here */
753 if (blk_mq_hw_queue_mapped(hctx))
754 blk_mq_tag_idle(hctx);
755 }
0d2602ca 756 }
287922eb 757 blk_queue_exit(q);
320ae51f
JA
758}
759
760/*
761 * Reverse check our software queue for entries that we could potentially
762 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
763 * too much time checking for merges.
764 */
765static bool blk_mq_attempt_merge(struct request_queue *q,
766 struct blk_mq_ctx *ctx, struct bio *bio)
767{
768 struct request *rq;
769 int checked = 8;
770
771 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
34fe7c05 772 bool merged = false;
320ae51f
JA
773
774 if (!checked--)
775 break;
776
777 if (!blk_rq_merge_ok(rq, bio))
778 continue;
779
34fe7c05
CH
780 switch (blk_try_merge(rq, bio)) {
781 case ELEVATOR_BACK_MERGE:
782 if (blk_mq_sched_allow_merge(q, rq, bio))
783 merged = bio_attempt_back_merge(q, rq, bio);
bd166ef1 784 break;
34fe7c05
CH
785 case ELEVATOR_FRONT_MERGE:
786 if (blk_mq_sched_allow_merge(q, rq, bio))
787 merged = bio_attempt_front_merge(q, rq, bio);
320ae51f 788 break;
1e739730
CH
789 case ELEVATOR_DISCARD_MERGE:
790 merged = bio_attempt_discard_merge(q, rq, bio);
320ae51f 791 break;
34fe7c05
CH
792 default:
793 continue;
320ae51f 794 }
34fe7c05
CH
795
796 if (merged)
797 ctx->rq_merged++;
798 return merged;
320ae51f
JA
799 }
800
801 return false;
802}
803
88459642
OS
804struct flush_busy_ctx_data {
805 struct blk_mq_hw_ctx *hctx;
806 struct list_head *list;
807};
808
809static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
810{
811 struct flush_busy_ctx_data *flush_data = data;
812 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
813 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
814
815 sbitmap_clear_bit(sb, bitnr);
816 spin_lock(&ctx->lock);
817 list_splice_tail_init(&ctx->rq_list, flush_data->list);
818 spin_unlock(&ctx->lock);
819 return true;
820}
821
1429d7c9
JA
822/*
823 * Process software queues that have been marked busy, splicing them
824 * to the for-dispatch
825 */
2c3ad667 826void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 827{
88459642
OS
828 struct flush_busy_ctx_data data = {
829 .hctx = hctx,
830 .list = list,
831 };
1429d7c9 832
88459642 833 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 834}
2c3ad667 835EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 836
703fd1c0
JA
837static inline unsigned int queued_to_index(unsigned int queued)
838{
839 if (!queued)
840 return 0;
1429d7c9 841
703fd1c0 842 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
843}
844
bd6737f1
JA
845bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
846 bool wait)
bd166ef1
JA
847{
848 struct blk_mq_alloc_data data = {
849 .q = rq->q,
bd166ef1
JA
850 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
851 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
852 };
853
bd166ef1
JA
854 if (rq->tag != -1) {
855done:
856 if (hctx)
857 *hctx = data.hctx;
858 return true;
859 }
860
415b806d
SG
861 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
862 data.flags |= BLK_MQ_REQ_RESERVED;
863
bd166ef1
JA
864 rq->tag = blk_mq_get_tag(&data);
865 if (rq->tag >= 0) {
200e86b3
JA
866 if (blk_mq_tag_busy(data.hctx)) {
867 rq->rq_flags |= RQF_MQ_INFLIGHT;
868 atomic_inc(&data.hctx->nr_active);
869 }
bd166ef1
JA
870 data.hctx->tags->rqs[rq->tag] = rq;
871 goto done;
872 }
873
874 return false;
875}
876
113285b4
JA
877static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
878 struct request *rq)
99cf1dc5 879{
99cf1dc5
JA
880 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
881 rq->tag = -1;
882
883 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
884 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
885 atomic_dec(&hctx->nr_active);
886 }
887}
888
113285b4
JA
889static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
890 struct request *rq)
891{
892 if (rq->tag == -1 || rq->internal_tag == -1)
893 return;
894
895 __blk_mq_put_driver_tag(hctx, rq);
896}
897
898static void blk_mq_put_driver_tag(struct request *rq)
899{
900 struct blk_mq_hw_ctx *hctx;
901
902 if (rq->tag == -1 || rq->internal_tag == -1)
903 return;
904
905 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
906 __blk_mq_put_driver_tag(hctx, rq);
907}
908
bd166ef1
JA
909/*
910 * If we fail getting a driver tag because all the driver tags are already
911 * assigned and on the dispatch list, BUT the first entry does not have a
912 * tag, then we could deadlock. For that case, move entries with assigned
913 * driver tags to the front, leaving the set of tagged requests in the
914 * same order, and the untagged set in the same order.
915 */
916static bool reorder_tags_to_front(struct list_head *list)
917{
918 struct request *rq, *tmp, *first = NULL;
919
920 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
921 if (rq == first)
922 break;
923 if (rq->tag != -1) {
924 list_move(&rq->queuelist, list);
925 if (!first)
926 first = rq;
927 }
928 }
929
930 return first != NULL;
931}
932
da55f2cc
OS
933static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
934 void *key)
935{
936 struct blk_mq_hw_ctx *hctx;
937
938 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
939
940 list_del(&wait->task_list);
941 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
942 blk_mq_run_hw_queue(hctx, true);
943 return 1;
944}
945
946static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
947{
948 struct sbq_wait_state *ws;
949
950 /*
951 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
952 * The thread which wins the race to grab this bit adds the hardware
953 * queue to the wait queue.
954 */
955 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
956 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
957 return false;
958
959 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
960 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
961
962 /*
963 * As soon as this returns, it's no longer safe to fiddle with
964 * hctx->dispatch_wait, since a completion can wake up the wait queue
965 * and unlock the bit.
966 */
967 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
968 return true;
969}
970
f04c3df3 971bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
320ae51f
JA
972{
973 struct request_queue *q = hctx->queue;
320ae51f 974 struct request *rq;
74c45052
JA
975 LIST_HEAD(driver_list);
976 struct list_head *dptr;
f04c3df3 977 int queued, ret = BLK_MQ_RQ_QUEUE_OK;
320ae51f 978
74c45052
JA
979 /*
980 * Start off with dptr being NULL, so we start the first request
981 * immediately, even if we have more pending.
982 */
983 dptr = NULL;
984
320ae51f
JA
985 /*
986 * Now process all the entries, sending them to the driver.
987 */
1429d7c9 988 queued = 0;
f04c3df3 989 while (!list_empty(list)) {
74c45052 990 struct blk_mq_queue_data bd;
320ae51f 991
f04c3df3 992 rq = list_first_entry(list, struct request, queuelist);
bd166ef1
JA
993 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
994 if (!queued && reorder_tags_to_front(list))
995 continue;
3c782d67
JA
996
997 /*
da55f2cc
OS
998 * The initial allocation attempt failed, so we need to
999 * rerun the hardware queue when a tag is freed.
3c782d67 1000 */
da55f2cc
OS
1001 if (blk_mq_dispatch_wait_add(hctx)) {
1002 /*
1003 * It's possible that a tag was freed in the
1004 * window between the allocation failure and
1005 * adding the hardware queue to the wait queue.
1006 */
1007 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1008 break;
1009 } else {
3c782d67 1010 break;
da55f2cc 1011 }
bd166ef1 1012 }
da55f2cc 1013
320ae51f 1014 list_del_init(&rq->queuelist);
320ae51f 1015
74c45052
JA
1016 bd.rq = rq;
1017 bd.list = dptr;
113285b4
JA
1018
1019 /*
1020 * Flag last if we have no more requests, or if we have more
1021 * but can't assign a driver tag to it.
1022 */
1023 if (list_empty(list))
1024 bd.last = true;
1025 else {
1026 struct request *nxt;
1027
1028 nxt = list_first_entry(list, struct request, queuelist);
1029 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1030 }
74c45052
JA
1031
1032 ret = q->mq_ops->queue_rq(hctx, &bd);
320ae51f
JA
1033 switch (ret) {
1034 case BLK_MQ_RQ_QUEUE_OK:
1035 queued++;
52b9c330 1036 break;
320ae51f 1037 case BLK_MQ_RQ_QUEUE_BUSY:
113285b4 1038 blk_mq_put_driver_tag_hctx(hctx, rq);
f04c3df3 1039 list_add(&rq->queuelist, list);
ed0791b2 1040 __blk_mq_requeue_request(rq);
320ae51f
JA
1041 break;
1042 default:
1043 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 1044 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 1045 rq->errors = -EIO;
c8a446ad 1046 blk_mq_end_request(rq, rq->errors);
320ae51f
JA
1047 break;
1048 }
1049
1050 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1051 break;
74c45052
JA
1052
1053 /*
1054 * We've done the first request. If we have more than 1
1055 * left in the list, set dptr to defer issue.
1056 */
f04c3df3 1057 if (!dptr && list->next != list->prev)
74c45052 1058 dptr = &driver_list;
320ae51f
JA
1059 }
1060
703fd1c0 1061 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1062
1063 /*
1064 * Any items that need requeuing? Stuff them into hctx->dispatch,
1065 * that is where we will continue on next queue run.
1066 */
f04c3df3 1067 if (!list_empty(list)) {
113285b4
JA
1068 /*
1069 * If we got a driver tag for the next request already,
1070 * free it again.
1071 */
1072 rq = list_first_entry(list, struct request, queuelist);
1073 blk_mq_put_driver_tag(rq);
1074
320ae51f 1075 spin_lock(&hctx->lock);
c13660a0 1076 list_splice_init(list, &hctx->dispatch);
320ae51f 1077 spin_unlock(&hctx->lock);
f04c3df3 1078
9ba52e58
SL
1079 /*
1080 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1081 * it's possible the queue is stopped and restarted again
1082 * before this. Queue restart will dispatch requests. And since
1083 * requests in rq_list aren't added into hctx->dispatch yet,
1084 * the requests in rq_list might get lost.
1085 *
1086 * blk_mq_run_hw_queue() already checks the STOPPED bit
bd166ef1 1087 *
da55f2cc
OS
1088 * If RESTART or TAG_WAITING is set, then let completion restart
1089 * the queue instead of potentially looping here.
bd166ef1 1090 */
da55f2cc
OS
1091 if (!blk_mq_sched_needs_restart(hctx) &&
1092 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
bd166ef1 1093 blk_mq_run_hw_queue(hctx, true);
320ae51f 1094 }
f04c3df3 1095
2aa0f21d 1096 return queued != 0;
f04c3df3
JA
1097}
1098
6a83e74d
BVA
1099static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1100{
1101 int srcu_idx;
1102
1103 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1104 cpu_online(hctx->next_cpu));
1105
1106 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1107 rcu_read_lock();
bd166ef1 1108 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1109 rcu_read_unlock();
1110 } else {
1111 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
bd166ef1 1112 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1113 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1114 }
1115}
1116
506e931f
JA
1117/*
1118 * It'd be great if the workqueue API had a way to pass
1119 * in a mask and had some smarts for more clever placement.
1120 * For now we just round-robin here, switching for every
1121 * BLK_MQ_CPU_WORK_BATCH queued items.
1122 */
1123static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1124{
b657d7e6
CH
1125 if (hctx->queue->nr_hw_queues == 1)
1126 return WORK_CPU_UNBOUND;
506e931f
JA
1127
1128 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1129 int next_cpu;
506e931f
JA
1130
1131 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1132 if (next_cpu >= nr_cpu_ids)
1133 next_cpu = cpumask_first(hctx->cpumask);
1134
1135 hctx->next_cpu = next_cpu;
1136 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1137 }
1138
b657d7e6 1139 return hctx->next_cpu;
506e931f
JA
1140}
1141
320ae51f
JA
1142void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1143{
5d1b25c1
BVA
1144 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1145 !blk_mq_hw_queue_mapped(hctx)))
320ae51f
JA
1146 return;
1147
1b792f2f 1148 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1149 int cpu = get_cpu();
1150 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1151 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1152 put_cpu();
398205b8
PB
1153 return;
1154 }
e4043dcf 1155
2a90d4aa 1156 put_cpu();
e4043dcf 1157 }
398205b8 1158
27489a3c 1159 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
320ae51f
JA
1160}
1161
b94ec296 1162void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1163{
1164 struct blk_mq_hw_ctx *hctx;
1165 int i;
1166
1167 queue_for_each_hw_ctx(q, hctx, i) {
bd166ef1 1168 if (!blk_mq_hctx_has_pending(hctx) ||
5d1b25c1 1169 blk_mq_hctx_stopped(hctx))
320ae51f
JA
1170 continue;
1171
b94ec296 1172 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1173 }
1174}
b94ec296 1175EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1176
fd001443
BVA
1177/**
1178 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1179 * @q: request queue.
1180 *
1181 * The caller is responsible for serializing this function against
1182 * blk_mq_{start,stop}_hw_queue().
1183 */
1184bool blk_mq_queue_stopped(struct request_queue *q)
1185{
1186 struct blk_mq_hw_ctx *hctx;
1187 int i;
1188
1189 queue_for_each_hw_ctx(q, hctx, i)
1190 if (blk_mq_hctx_stopped(hctx))
1191 return true;
1192
1193 return false;
1194}
1195EXPORT_SYMBOL(blk_mq_queue_stopped);
1196
320ae51f
JA
1197void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1198{
27489a3c 1199 cancel_work(&hctx->run_work);
70f4db63 1200 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
1201 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1202}
1203EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1204
280d45f6
CH
1205void blk_mq_stop_hw_queues(struct request_queue *q)
1206{
1207 struct blk_mq_hw_ctx *hctx;
1208 int i;
1209
1210 queue_for_each_hw_ctx(q, hctx, i)
1211 blk_mq_stop_hw_queue(hctx);
1212}
1213EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1214
320ae51f
JA
1215void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1216{
1217 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1218
0ffbce80 1219 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1220}
1221EXPORT_SYMBOL(blk_mq_start_hw_queue);
1222
2f268556
CH
1223void blk_mq_start_hw_queues(struct request_queue *q)
1224{
1225 struct blk_mq_hw_ctx *hctx;
1226 int i;
1227
1228 queue_for_each_hw_ctx(q, hctx, i)
1229 blk_mq_start_hw_queue(hctx);
1230}
1231EXPORT_SYMBOL(blk_mq_start_hw_queues);
1232
ae911c5e
JA
1233void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1234{
1235 if (!blk_mq_hctx_stopped(hctx))
1236 return;
1237
1238 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1239 blk_mq_run_hw_queue(hctx, async);
1240}
1241EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1242
1b4a3258 1243void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1244{
1245 struct blk_mq_hw_ctx *hctx;
1246 int i;
1247
ae911c5e
JA
1248 queue_for_each_hw_ctx(q, hctx, i)
1249 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1250}
1251EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1252
70f4db63 1253static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1254{
1255 struct blk_mq_hw_ctx *hctx;
1256
27489a3c 1257 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
e4043dcf 1258
320ae51f
JA
1259 __blk_mq_run_hw_queue(hctx);
1260}
1261
70f4db63
CH
1262static void blk_mq_delay_work_fn(struct work_struct *work)
1263{
1264 struct blk_mq_hw_ctx *hctx;
1265
1266 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1267
1268 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1269 __blk_mq_run_hw_queue(hctx);
1270}
1271
1272void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1273{
19c66e59
ML
1274 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1275 return;
70f4db63 1276
7e79dadc 1277 blk_mq_stop_hw_queue(hctx);
b657d7e6
CH
1278 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1279 &hctx->delay_work, msecs_to_jiffies(msecs));
70f4db63
CH
1280}
1281EXPORT_SYMBOL(blk_mq_delay_queue);
1282
cfd0c552 1283static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1284 struct request *rq,
1285 bool at_head)
320ae51f 1286{
e57690fe
JA
1287 struct blk_mq_ctx *ctx = rq->mq_ctx;
1288
01b983c9
JA
1289 trace_block_rq_insert(hctx->queue, rq);
1290
72a0a36e
CH
1291 if (at_head)
1292 list_add(&rq->queuelist, &ctx->rq_list);
1293 else
1294 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1295}
4bb659b1 1296
2c3ad667
JA
1297void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1298 bool at_head)
cfd0c552
ML
1299{
1300 struct blk_mq_ctx *ctx = rq->mq_ctx;
1301
e57690fe 1302 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1303 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1304}
1305
bd166ef1
JA
1306void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1307 struct list_head *list)
320ae51f
JA
1308
1309{
320ae51f
JA
1310 /*
1311 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1312 * offline now
1313 */
1314 spin_lock(&ctx->lock);
1315 while (!list_empty(list)) {
1316 struct request *rq;
1317
1318 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1319 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1320 list_del_init(&rq->queuelist);
e57690fe 1321 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1322 }
cfd0c552 1323 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1324 spin_unlock(&ctx->lock);
320ae51f
JA
1325}
1326
1327static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1328{
1329 struct request *rqa = container_of(a, struct request, queuelist);
1330 struct request *rqb = container_of(b, struct request, queuelist);
1331
1332 return !(rqa->mq_ctx < rqb->mq_ctx ||
1333 (rqa->mq_ctx == rqb->mq_ctx &&
1334 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1335}
1336
1337void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1338{
1339 struct blk_mq_ctx *this_ctx;
1340 struct request_queue *this_q;
1341 struct request *rq;
1342 LIST_HEAD(list);
1343 LIST_HEAD(ctx_list);
1344 unsigned int depth;
1345
1346 list_splice_init(&plug->mq_list, &list);
1347
1348 list_sort(NULL, &list, plug_ctx_cmp);
1349
1350 this_q = NULL;
1351 this_ctx = NULL;
1352 depth = 0;
1353
1354 while (!list_empty(&list)) {
1355 rq = list_entry_rq(list.next);
1356 list_del_init(&rq->queuelist);
1357 BUG_ON(!rq->q);
1358 if (rq->mq_ctx != this_ctx) {
1359 if (this_ctx) {
bd166ef1
JA
1360 trace_block_unplug(this_q, depth, from_schedule);
1361 blk_mq_sched_insert_requests(this_q, this_ctx,
1362 &ctx_list,
1363 from_schedule);
320ae51f
JA
1364 }
1365
1366 this_ctx = rq->mq_ctx;
1367 this_q = rq->q;
1368 depth = 0;
1369 }
1370
1371 depth++;
1372 list_add_tail(&rq->queuelist, &ctx_list);
1373 }
1374
1375 /*
1376 * If 'this_ctx' is set, we know we have entries to complete
1377 * on 'ctx_list'. Do those.
1378 */
1379 if (this_ctx) {
bd166ef1
JA
1380 trace_block_unplug(this_q, depth, from_schedule);
1381 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1382 from_schedule);
320ae51f
JA
1383 }
1384}
1385
1386static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1387{
1388 init_request_from_bio(rq, bio);
4b570521 1389
6e85eaf3 1390 blk_account_io_start(rq, true);
320ae51f
JA
1391}
1392
274a5843
JA
1393static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1394{
1395 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1396 !blk_queue_nomerges(hctx->queue);
1397}
1398
07068d5b
JA
1399static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1400 struct blk_mq_ctx *ctx,
1401 struct request *rq, struct bio *bio)
320ae51f 1402{
e18378a6 1403 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
07068d5b
JA
1404 blk_mq_bio_to_request(rq, bio);
1405 spin_lock(&ctx->lock);
1406insert_rq:
1407 __blk_mq_insert_request(hctx, rq, false);
1408 spin_unlock(&ctx->lock);
1409 return false;
1410 } else {
274a5843
JA
1411 struct request_queue *q = hctx->queue;
1412
07068d5b
JA
1413 spin_lock(&ctx->lock);
1414 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1415 blk_mq_bio_to_request(rq, bio);
1416 goto insert_rq;
1417 }
320ae51f 1418
07068d5b 1419 spin_unlock(&ctx->lock);
bd166ef1 1420 __blk_mq_finish_request(hctx, ctx, rq);
07068d5b 1421 return true;
14ec77f3 1422 }
07068d5b 1423}
14ec77f3 1424
fd2d3326
JA
1425static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1426{
bd166ef1
JA
1427 if (rq->tag != -1)
1428 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1429
1430 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1431}
1432
5eb6126e 1433static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
9c621104 1434 bool may_sleep)
f984df1f 1435{
f984df1f 1436 struct request_queue *q = rq->q;
f984df1f
SL
1437 struct blk_mq_queue_data bd = {
1438 .rq = rq,
1439 .list = NULL,
1440 .last = 1
1441 };
bd166ef1
JA
1442 struct blk_mq_hw_ctx *hctx;
1443 blk_qc_t new_cookie;
1444 int ret;
f984df1f 1445
bd166ef1 1446 if (q->elevator)
2253efc8
BVA
1447 goto insert;
1448
bd166ef1
JA
1449 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1450 goto insert;
1451
1452 new_cookie = request_to_qc_t(hctx, rq);
1453
f984df1f
SL
1454 /*
1455 * For OK queue, we are done. For error, kill it. Any other
1456 * error (busy), just add it to our list as we previously
1457 * would have done
1458 */
1459 ret = q->mq_ops->queue_rq(hctx, &bd);
7b371636
JA
1460 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1461 *cookie = new_cookie;
2253efc8 1462 return;
7b371636 1463 }
f984df1f 1464
7b371636
JA
1465 __blk_mq_requeue_request(rq);
1466
1467 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1468 *cookie = BLK_QC_T_NONE;
1469 rq->errors = -EIO;
1470 blk_mq_end_request(rq, rq->errors);
2253efc8 1471 return;
f984df1f 1472 }
7b371636 1473
2253efc8 1474insert:
9c621104 1475 blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
f984df1f
SL
1476}
1477
5eb6126e
CH
1478static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1479 struct request *rq, blk_qc_t *cookie)
1480{
1481 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1482 rcu_read_lock();
1483 __blk_mq_try_issue_directly(rq, cookie, false);
1484 rcu_read_unlock();
1485 } else {
1486 unsigned int srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1487 __blk_mq_try_issue_directly(rq, cookie, true);
1488 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1489 }
1490}
1491
dece1635 1492static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1493{
ef295ecf 1494 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1495 const int is_flush_fua = op_is_flush(bio->bi_opf);
5a797e00 1496 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1497 struct request *rq;
5eb6126e 1498 unsigned int request_count = 0;
f984df1f 1499 struct blk_plug *plug;
5b3f341f 1500 struct request *same_queue_rq = NULL;
7b371636 1501 blk_qc_t cookie;
87760e5e 1502 unsigned int wb_acct;
07068d5b
JA
1503
1504 blk_queue_bounce(q, &bio);
1505
1506 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1507 bio_io_error(bio);
dece1635 1508 return BLK_QC_T_NONE;
07068d5b
JA
1509 }
1510
54efd50b
KO
1511 blk_queue_split(q, &bio, q->bio_split);
1512
87c279e6
OS
1513 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1514 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1515 return BLK_QC_T_NONE;
f984df1f 1516
bd166ef1
JA
1517 if (blk_mq_sched_bio_merge(q, bio))
1518 return BLK_QC_T_NONE;
1519
87760e5e
JA
1520 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1521
bd166ef1
JA
1522 trace_block_getrq(q, bio, bio->bi_opf);
1523
1524 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1525 if (unlikely(!rq)) {
1526 __wbt_done(q->rq_wb, wb_acct);
dece1635 1527 return BLK_QC_T_NONE;
87760e5e
JA
1528 }
1529
1530 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1531
fd2d3326 1532 cookie = request_to_qc_t(data.hctx, rq);
07068d5b
JA
1533
1534 if (unlikely(is_flush_fua)) {
0c2a6fe4
JA
1535 if (q->elevator)
1536 goto elv_insert;
07068d5b
JA
1537 blk_mq_bio_to_request(rq, bio);
1538 blk_insert_flush(rq);
0c2a6fe4 1539 goto run_queue;
07068d5b
JA
1540 }
1541
f984df1f 1542 plug = current->plug;
254d259d
CH
1543 if (plug && q->nr_hw_queues == 1) {
1544 struct request *last = NULL;
1545
1546 blk_mq_bio_to_request(rq, bio);
1547
1548 /*
1549 * @request_count may become stale because of schedule
1550 * out, so check the list again.
1551 */
1552 if (list_empty(&plug->mq_list))
1553 request_count = 0;
1554 else if (blk_queue_nomerges(q))
1555 request_count = blk_plug_queued_count(q);
1556
1557 if (!request_count)
1558 trace_block_plug(q);
1559 else
1560 last = list_entry_rq(plug->mq_list.prev);
1561
1562 blk_mq_put_ctx(data.ctx);
1563
1564 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1565 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1566 blk_flush_plug_list(plug, false);
1567 trace_block_plug(q);
1568 }
1569
1570 list_add_tail(&rq->queuelist, &plug->mq_list);
1571 goto done;
1572 } else if (((plug && !blk_queue_nomerges(q)) || is_sync)) {
f984df1f 1573 struct request *old_rq = NULL;
07068d5b
JA
1574
1575 blk_mq_bio_to_request(rq, bio);
07068d5b
JA
1576
1577 /*
6a83e74d 1578 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1579 * Otherwise the existing request in the plug list will be
1580 * issued. So the plug list will have one request at most
07068d5b 1581 */
f984df1f 1582 if (plug) {
5b3f341f
SL
1583 /*
1584 * The plug list might get flushed before this. If that
b094f89c
JA
1585 * happens, same_queue_rq is invalid and plug list is
1586 * empty
1587 */
5b3f341f
SL
1588 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1589 old_rq = same_queue_rq;
f984df1f 1590 list_del_init(&old_rq->queuelist);
07068d5b 1591 }
f984df1f
SL
1592 list_add_tail(&rq->queuelist, &plug->mq_list);
1593 } else /* is_sync */
1594 old_rq = rq;
1595 blk_mq_put_ctx(data.ctx);
5eb6126e
CH
1596 if (old_rq)
1597 blk_mq_try_issue_directly(data.hctx, old_rq, &cookie);
7b371636 1598 goto done;
07068d5b
JA
1599 }
1600
bd166ef1 1601 if (q->elevator) {
0c2a6fe4 1602elv_insert:
bd166ef1
JA
1603 blk_mq_put_ctx(data.ctx);
1604 blk_mq_bio_to_request(rq, bio);
0abad774 1605 blk_mq_sched_insert_request(rq, false, true,
bd6737f1 1606 !is_sync || is_flush_fua, true);
bd166ef1
JA
1607 goto done;
1608 }
07068d5b
JA
1609 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1610 /*
1611 * For a SYNC request, send it to the hardware immediately. For
1612 * an ASYNC request, just ensure that we run it later on. The
1613 * latter allows for merging opportunities and more efficient
1614 * dispatching.
1615 */
0c2a6fe4 1616run_queue:
07068d5b
JA
1617 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1618 }
07068d5b 1619 blk_mq_put_ctx(data.ctx);
7b371636
JA
1620done:
1621 return cookie;
07068d5b
JA
1622}
1623
cc71a6f4
JA
1624void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1625 unsigned int hctx_idx)
95363efd 1626{
e9b267d9 1627 struct page *page;
320ae51f 1628
24d2f903 1629 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1630 int i;
320ae51f 1631
24d2f903 1632 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1633 struct request *rq = tags->static_rqs[i];
1634
1635 if (!rq)
e9b267d9 1636 continue;
2af8cbe3 1637 set->ops->exit_request(set->driver_data, rq,
24d2f903 1638 hctx_idx, i);
2af8cbe3 1639 tags->static_rqs[i] = NULL;
e9b267d9 1640 }
320ae51f 1641 }
320ae51f 1642
24d2f903
CH
1643 while (!list_empty(&tags->page_list)) {
1644 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1645 list_del_init(&page->lru);
f75782e4
CM
1646 /*
1647 * Remove kmemleak object previously allocated in
1648 * blk_mq_init_rq_map().
1649 */
1650 kmemleak_free(page_address(page));
320ae51f
JA
1651 __free_pages(page, page->private);
1652 }
cc71a6f4 1653}
320ae51f 1654
cc71a6f4
JA
1655void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1656{
24d2f903 1657 kfree(tags->rqs);
cc71a6f4 1658 tags->rqs = NULL;
2af8cbe3
JA
1659 kfree(tags->static_rqs);
1660 tags->static_rqs = NULL;
320ae51f 1661
24d2f903 1662 blk_mq_free_tags(tags);
320ae51f
JA
1663}
1664
cc71a6f4
JA
1665struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1666 unsigned int hctx_idx,
1667 unsigned int nr_tags,
1668 unsigned int reserved_tags)
320ae51f 1669{
24d2f903 1670 struct blk_mq_tags *tags;
59f082e4 1671 int node;
320ae51f 1672
59f082e4
SL
1673 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1674 if (node == NUMA_NO_NODE)
1675 node = set->numa_node;
1676
1677 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 1678 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1679 if (!tags)
1680 return NULL;
320ae51f 1681
cc71a6f4 1682 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1683 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1684 node);
24d2f903
CH
1685 if (!tags->rqs) {
1686 blk_mq_free_tags(tags);
1687 return NULL;
1688 }
320ae51f 1689
2af8cbe3
JA
1690 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1691 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1692 node);
2af8cbe3
JA
1693 if (!tags->static_rqs) {
1694 kfree(tags->rqs);
1695 blk_mq_free_tags(tags);
1696 return NULL;
1697 }
1698
cc71a6f4
JA
1699 return tags;
1700}
1701
1702static size_t order_to_size(unsigned int order)
1703{
1704 return (size_t)PAGE_SIZE << order;
1705}
1706
1707int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1708 unsigned int hctx_idx, unsigned int depth)
1709{
1710 unsigned int i, j, entries_per_page, max_order = 4;
1711 size_t rq_size, left;
59f082e4
SL
1712 int node;
1713
1714 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1715 if (node == NUMA_NO_NODE)
1716 node = set->numa_node;
cc71a6f4
JA
1717
1718 INIT_LIST_HEAD(&tags->page_list);
1719
320ae51f
JA
1720 /*
1721 * rq_size is the size of the request plus driver payload, rounded
1722 * to the cacheline size
1723 */
24d2f903 1724 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1725 cache_line_size());
cc71a6f4 1726 left = rq_size * depth;
320ae51f 1727
cc71a6f4 1728 for (i = 0; i < depth; ) {
320ae51f
JA
1729 int this_order = max_order;
1730 struct page *page;
1731 int to_do;
1732 void *p;
1733
b3a834b1 1734 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1735 this_order--;
1736
1737 do {
59f082e4 1738 page = alloc_pages_node(node,
36e1f3d1 1739 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1740 this_order);
320ae51f
JA
1741 if (page)
1742 break;
1743 if (!this_order--)
1744 break;
1745 if (order_to_size(this_order) < rq_size)
1746 break;
1747 } while (1);
1748
1749 if (!page)
24d2f903 1750 goto fail;
320ae51f
JA
1751
1752 page->private = this_order;
24d2f903 1753 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1754
1755 p = page_address(page);
f75782e4
CM
1756 /*
1757 * Allow kmemleak to scan these pages as they contain pointers
1758 * to additional allocations like via ops->init_request().
1759 */
36e1f3d1 1760 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 1761 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 1762 to_do = min(entries_per_page, depth - i);
320ae51f
JA
1763 left -= to_do * rq_size;
1764 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
1765 struct request *rq = p;
1766
1767 tags->static_rqs[i] = rq;
24d2f903
CH
1768 if (set->ops->init_request) {
1769 if (set->ops->init_request(set->driver_data,
2af8cbe3 1770 rq, hctx_idx, i,
59f082e4 1771 node)) {
2af8cbe3 1772 tags->static_rqs[i] = NULL;
24d2f903 1773 goto fail;
a5164405 1774 }
e9b267d9
CH
1775 }
1776
320ae51f
JA
1777 p += rq_size;
1778 i++;
1779 }
1780 }
cc71a6f4 1781 return 0;
320ae51f 1782
24d2f903 1783fail:
cc71a6f4
JA
1784 blk_mq_free_rqs(set, tags, hctx_idx);
1785 return -ENOMEM;
320ae51f
JA
1786}
1787
e57690fe
JA
1788/*
1789 * 'cpu' is going away. splice any existing rq_list entries from this
1790 * software queue to the hw queue dispatch list, and ensure that it
1791 * gets run.
1792 */
9467f859 1793static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 1794{
9467f859 1795 struct blk_mq_hw_ctx *hctx;
484b4061
JA
1796 struct blk_mq_ctx *ctx;
1797 LIST_HEAD(tmp);
1798
9467f859 1799 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 1800 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1801
1802 spin_lock(&ctx->lock);
1803 if (!list_empty(&ctx->rq_list)) {
1804 list_splice_init(&ctx->rq_list, &tmp);
1805 blk_mq_hctx_clear_pending(hctx, ctx);
1806 }
1807 spin_unlock(&ctx->lock);
1808
1809 if (list_empty(&tmp))
9467f859 1810 return 0;
484b4061 1811
e57690fe
JA
1812 spin_lock(&hctx->lock);
1813 list_splice_tail_init(&tmp, &hctx->dispatch);
1814 spin_unlock(&hctx->lock);
484b4061
JA
1815
1816 blk_mq_run_hw_queue(hctx, true);
9467f859 1817 return 0;
484b4061
JA
1818}
1819
9467f859 1820static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 1821{
9467f859
TG
1822 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1823 &hctx->cpuhp_dead);
484b4061
JA
1824}
1825
c3b4afca 1826/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1827static void blk_mq_exit_hctx(struct request_queue *q,
1828 struct blk_mq_tag_set *set,
1829 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1830{
f70ced09
ML
1831 unsigned flush_start_tag = set->queue_depth;
1832
08e98fc6
ML
1833 blk_mq_tag_idle(hctx);
1834
f70ced09
ML
1835 if (set->ops->exit_request)
1836 set->ops->exit_request(set->driver_data,
1837 hctx->fq->flush_rq, hctx_idx,
1838 flush_start_tag + hctx_idx);
1839
08e98fc6
ML
1840 if (set->ops->exit_hctx)
1841 set->ops->exit_hctx(hctx, hctx_idx);
1842
6a83e74d
BVA
1843 if (hctx->flags & BLK_MQ_F_BLOCKING)
1844 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1845
9467f859 1846 blk_mq_remove_cpuhp(hctx);
f70ced09 1847 blk_free_flush_queue(hctx->fq);
88459642 1848 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1849}
1850
624dbe47
ML
1851static void blk_mq_exit_hw_queues(struct request_queue *q,
1852 struct blk_mq_tag_set *set, int nr_queue)
1853{
1854 struct blk_mq_hw_ctx *hctx;
1855 unsigned int i;
1856
1857 queue_for_each_hw_ctx(q, hctx, i) {
1858 if (i == nr_queue)
1859 break;
08e98fc6 1860 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1861 }
624dbe47
ML
1862}
1863
08e98fc6
ML
1864static int blk_mq_init_hctx(struct request_queue *q,
1865 struct blk_mq_tag_set *set,
1866 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1867{
08e98fc6 1868 int node;
f70ced09 1869 unsigned flush_start_tag = set->queue_depth;
08e98fc6
ML
1870
1871 node = hctx->numa_node;
1872 if (node == NUMA_NO_NODE)
1873 node = hctx->numa_node = set->numa_node;
1874
27489a3c 1875 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
1876 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1877 spin_lock_init(&hctx->lock);
1878 INIT_LIST_HEAD(&hctx->dispatch);
1879 hctx->queue = q;
1880 hctx->queue_num = hctx_idx;
2404e607 1881 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 1882
9467f859 1883 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
1884
1885 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1886
1887 /*
08e98fc6
ML
1888 * Allocate space for all possible cpus to avoid allocation at
1889 * runtime
320ae51f 1890 */
08e98fc6
ML
1891 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1892 GFP_KERNEL, node);
1893 if (!hctx->ctxs)
1894 goto unregister_cpu_notifier;
320ae51f 1895
88459642
OS
1896 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1897 node))
08e98fc6 1898 goto free_ctxs;
320ae51f 1899
08e98fc6 1900 hctx->nr_ctx = 0;
320ae51f 1901
08e98fc6
ML
1902 if (set->ops->init_hctx &&
1903 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1904 goto free_bitmap;
320ae51f 1905
f70ced09
ML
1906 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1907 if (!hctx->fq)
1908 goto exit_hctx;
320ae51f 1909
f70ced09
ML
1910 if (set->ops->init_request &&
1911 set->ops->init_request(set->driver_data,
1912 hctx->fq->flush_rq, hctx_idx,
1913 flush_start_tag + hctx_idx, node))
1914 goto free_fq;
320ae51f 1915
6a83e74d
BVA
1916 if (hctx->flags & BLK_MQ_F_BLOCKING)
1917 init_srcu_struct(&hctx->queue_rq_srcu);
1918
08e98fc6 1919 return 0;
320ae51f 1920
f70ced09
ML
1921 free_fq:
1922 kfree(hctx->fq);
1923 exit_hctx:
1924 if (set->ops->exit_hctx)
1925 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 1926 free_bitmap:
88459642 1927 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1928 free_ctxs:
1929 kfree(hctx->ctxs);
1930 unregister_cpu_notifier:
9467f859 1931 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
1932 return -1;
1933}
320ae51f 1934
320ae51f
JA
1935static void blk_mq_init_cpu_queues(struct request_queue *q,
1936 unsigned int nr_hw_queues)
1937{
1938 unsigned int i;
1939
1940 for_each_possible_cpu(i) {
1941 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1942 struct blk_mq_hw_ctx *hctx;
1943
320ae51f
JA
1944 __ctx->cpu = i;
1945 spin_lock_init(&__ctx->lock);
1946 INIT_LIST_HEAD(&__ctx->rq_list);
1947 __ctx->queue = q;
1948
1949 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1950 if (!cpu_online(i))
1951 continue;
1952
7d7e0f90 1953 hctx = blk_mq_map_queue(q, i);
e4043dcf 1954
320ae51f
JA
1955 /*
1956 * Set local node, IFF we have more than one hw queue. If
1957 * not, we remain on the home node of the device
1958 */
1959 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 1960 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
1961 }
1962}
1963
cc71a6f4
JA
1964static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1965{
1966 int ret = 0;
1967
1968 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1969 set->queue_depth, set->reserved_tags);
1970 if (!set->tags[hctx_idx])
1971 return false;
1972
1973 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1974 set->queue_depth);
1975 if (!ret)
1976 return true;
1977
1978 blk_mq_free_rq_map(set->tags[hctx_idx]);
1979 set->tags[hctx_idx] = NULL;
1980 return false;
1981}
1982
1983static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1984 unsigned int hctx_idx)
1985{
bd166ef1
JA
1986 if (set->tags[hctx_idx]) {
1987 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
1988 blk_mq_free_rq_map(set->tags[hctx_idx]);
1989 set->tags[hctx_idx] = NULL;
1990 }
cc71a6f4
JA
1991}
1992
5778322e
AM
1993static void blk_mq_map_swqueue(struct request_queue *q,
1994 const struct cpumask *online_mask)
320ae51f 1995{
d1b1cea1 1996 unsigned int i, hctx_idx;
320ae51f
JA
1997 struct blk_mq_hw_ctx *hctx;
1998 struct blk_mq_ctx *ctx;
2a34c087 1999 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2000
60de074b
AM
2001 /*
2002 * Avoid others reading imcomplete hctx->cpumask through sysfs
2003 */
2004 mutex_lock(&q->sysfs_lock);
2005
320ae51f 2006 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2007 cpumask_clear(hctx->cpumask);
320ae51f
JA
2008 hctx->nr_ctx = 0;
2009 }
2010
2011 /*
2012 * Map software to hardware queues
2013 */
897bb0c7 2014 for_each_possible_cpu(i) {
320ae51f 2015 /* If the cpu isn't online, the cpu is mapped to first hctx */
5778322e 2016 if (!cpumask_test_cpu(i, online_mask))
e4043dcf
JA
2017 continue;
2018
d1b1cea1
GKB
2019 hctx_idx = q->mq_map[i];
2020 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2021 if (!set->tags[hctx_idx] &&
2022 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2023 /*
2024 * If tags initialization fail for some hctx,
2025 * that hctx won't be brought online. In this
2026 * case, remap the current ctx to hctx[0] which
2027 * is guaranteed to always have tags allocated
2028 */
cc71a6f4 2029 q->mq_map[i] = 0;
d1b1cea1
GKB
2030 }
2031
897bb0c7 2032 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2033 hctx = blk_mq_map_queue(q, i);
868f2f0b 2034
e4043dcf 2035 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2036 ctx->index_hw = hctx->nr_ctx;
2037 hctx->ctxs[hctx->nr_ctx++] = ctx;
2038 }
506e931f 2039
60de074b
AM
2040 mutex_unlock(&q->sysfs_lock);
2041
506e931f 2042 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2043 /*
a68aafa5
JA
2044 * If no software queues are mapped to this hardware queue,
2045 * disable it and free the request entries.
484b4061
JA
2046 */
2047 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2048 /* Never unmap queue 0. We need it as a
2049 * fallback in case of a new remap fails
2050 * allocation
2051 */
cc71a6f4
JA
2052 if (i && set->tags[i])
2053 blk_mq_free_map_and_requests(set, i);
2054
2a34c087 2055 hctx->tags = NULL;
484b4061
JA
2056 continue;
2057 }
2058
2a34c087
ML
2059 hctx->tags = set->tags[i];
2060 WARN_ON(!hctx->tags);
2061
889fa31f
CY
2062 /*
2063 * Set the map size to the number of mapped software queues.
2064 * This is more accurate and more efficient than looping
2065 * over all possibly mapped software queues.
2066 */
88459642 2067 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2068
484b4061
JA
2069 /*
2070 * Initialize batch roundrobin counts
2071 */
506e931f
JA
2072 hctx->next_cpu = cpumask_first(hctx->cpumask);
2073 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2074 }
320ae51f
JA
2075}
2076
2404e607 2077static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2078{
2079 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2080 int i;
2081
2404e607
JM
2082 queue_for_each_hw_ctx(q, hctx, i) {
2083 if (shared)
2084 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2085 else
2086 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2087 }
2088}
2089
2090static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2091{
2092 struct request_queue *q;
0d2602ca
JA
2093
2094 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2095 blk_mq_freeze_queue(q);
2404e607 2096 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2097 blk_mq_unfreeze_queue(q);
2098 }
2099}
2100
2101static void blk_mq_del_queue_tag_set(struct request_queue *q)
2102{
2103 struct blk_mq_tag_set *set = q->tag_set;
2104
0d2602ca
JA
2105 mutex_lock(&set->tag_list_lock);
2106 list_del_init(&q->tag_set_list);
2404e607
JM
2107 if (list_is_singular(&set->tag_list)) {
2108 /* just transitioned to unshared */
2109 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2110 /* update existing queue */
2111 blk_mq_update_tag_set_depth(set, false);
2112 }
0d2602ca 2113 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
2114}
2115
2116static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2117 struct request_queue *q)
2118{
2119 q->tag_set = set;
2120
2121 mutex_lock(&set->tag_list_lock);
2404e607
JM
2122
2123 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2124 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2125 set->flags |= BLK_MQ_F_TAG_SHARED;
2126 /* update existing queue */
2127 blk_mq_update_tag_set_depth(set, true);
2128 }
2129 if (set->flags & BLK_MQ_F_TAG_SHARED)
2130 queue_set_hctx_shared(q, true);
0d2602ca 2131 list_add_tail(&q->tag_set_list, &set->tag_list);
2404e607 2132
0d2602ca
JA
2133 mutex_unlock(&set->tag_list_lock);
2134}
2135
e09aae7e
ML
2136/*
2137 * It is the actual release handler for mq, but we do it from
2138 * request queue's release handler for avoiding use-after-free
2139 * and headache because q->mq_kobj shouldn't have been introduced,
2140 * but we can't group ctx/kctx kobj without it.
2141 */
2142void blk_mq_release(struct request_queue *q)
2143{
2144 struct blk_mq_hw_ctx *hctx;
2145 unsigned int i;
2146
bd166ef1
JA
2147 blk_mq_sched_teardown(q);
2148
e09aae7e 2149 /* hctx kobj stays in hctx */
c3b4afca
ML
2150 queue_for_each_hw_ctx(q, hctx, i) {
2151 if (!hctx)
2152 continue;
6c8b232e 2153 kobject_put(&hctx->kobj);
c3b4afca 2154 }
e09aae7e 2155
a723bab3
AM
2156 q->mq_map = NULL;
2157
e09aae7e
ML
2158 kfree(q->queue_hw_ctx);
2159
7ea5fe31
ML
2160 /*
2161 * release .mq_kobj and sw queue's kobject now because
2162 * both share lifetime with request queue.
2163 */
2164 blk_mq_sysfs_deinit(q);
2165
e09aae7e
ML
2166 free_percpu(q->queue_ctx);
2167}
2168
24d2f903 2169struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2170{
2171 struct request_queue *uninit_q, *q;
2172
2173 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2174 if (!uninit_q)
2175 return ERR_PTR(-ENOMEM);
2176
2177 q = blk_mq_init_allocated_queue(set, uninit_q);
2178 if (IS_ERR(q))
2179 blk_cleanup_queue(uninit_q);
2180
2181 return q;
2182}
2183EXPORT_SYMBOL(blk_mq_init_queue);
2184
868f2f0b
KB
2185static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2186 struct request_queue *q)
320ae51f 2187{
868f2f0b
KB
2188 int i, j;
2189 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2190
868f2f0b 2191 blk_mq_sysfs_unregister(q);
24d2f903 2192 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2193 int node;
f14bbe77 2194
868f2f0b
KB
2195 if (hctxs[i])
2196 continue;
2197
2198 node = blk_mq_hw_queue_to_node(q->mq_map, i);
cdef54dd
CH
2199 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2200 GFP_KERNEL, node);
320ae51f 2201 if (!hctxs[i])
868f2f0b 2202 break;
320ae51f 2203
a86073e4 2204 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2205 node)) {
2206 kfree(hctxs[i]);
2207 hctxs[i] = NULL;
2208 break;
2209 }
e4043dcf 2210
0d2602ca 2211 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2212 hctxs[i]->numa_node = node;
320ae51f 2213 hctxs[i]->queue_num = i;
868f2f0b
KB
2214
2215 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2216 free_cpumask_var(hctxs[i]->cpumask);
2217 kfree(hctxs[i]);
2218 hctxs[i] = NULL;
2219 break;
2220 }
2221 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2222 }
868f2f0b
KB
2223 for (j = i; j < q->nr_hw_queues; j++) {
2224 struct blk_mq_hw_ctx *hctx = hctxs[j];
2225
2226 if (hctx) {
cc71a6f4
JA
2227 if (hctx->tags)
2228 blk_mq_free_map_and_requests(set, j);
868f2f0b 2229 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2230 kobject_put(&hctx->kobj);
868f2f0b
KB
2231 hctxs[j] = NULL;
2232
2233 }
2234 }
2235 q->nr_hw_queues = i;
2236 blk_mq_sysfs_register(q);
2237}
2238
2239struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2240 struct request_queue *q)
2241{
66841672
ML
2242 /* mark the queue as mq asap */
2243 q->mq_ops = set->ops;
2244
34dbad5d
OS
2245 q->stats = blk_alloc_queue_stats();
2246 if (!q->stats)
2247 goto err_exit;
2248
2249 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2250 blk_stat_rq_ddir, 2, q);
2251 if (!q->poll_cb)
2252 goto err_exit;
2253
868f2f0b
KB
2254 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2255 if (!q->queue_ctx)
c7de5726 2256 goto err_exit;
868f2f0b 2257
737f98cf
ML
2258 /* init q->mq_kobj and sw queues' kobjects */
2259 blk_mq_sysfs_init(q);
2260
868f2f0b
KB
2261 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2262 GFP_KERNEL, set->numa_node);
2263 if (!q->queue_hw_ctx)
2264 goto err_percpu;
2265
bdd17e75 2266 q->mq_map = set->mq_map;
868f2f0b
KB
2267
2268 blk_mq_realloc_hw_ctxs(set, q);
2269 if (!q->nr_hw_queues)
2270 goto err_hctxs;
320ae51f 2271
287922eb 2272 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2273 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2274
2275 q->nr_queues = nr_cpu_ids;
320ae51f 2276
94eddfbe 2277 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2278
05f1dd53
JA
2279 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2280 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2281
1be036e9
CH
2282 q->sg_reserved_size = INT_MAX;
2283
2849450a 2284 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2285 INIT_LIST_HEAD(&q->requeue_list);
2286 spin_lock_init(&q->requeue_lock);
2287
254d259d 2288 blk_queue_make_request(q, blk_mq_make_request);
07068d5b 2289
eba71768
JA
2290 /*
2291 * Do this after blk_queue_make_request() overrides it...
2292 */
2293 q->nr_requests = set->queue_depth;
2294
64f1c21e
JA
2295 /*
2296 * Default to classic polling
2297 */
2298 q->poll_nsec = -1;
2299
24d2f903
CH
2300 if (set->ops->complete)
2301 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2302
24d2f903 2303 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 2304
5778322e 2305 get_online_cpus();
320ae51f 2306 mutex_lock(&all_q_mutex);
320ae51f 2307
4593fdbe 2308 list_add_tail(&q->all_q_node, &all_q_list);
0d2602ca 2309 blk_mq_add_queue_tag_set(set, q);
5778322e 2310 blk_mq_map_swqueue(q, cpu_online_mask);
484b4061 2311
4593fdbe 2312 mutex_unlock(&all_q_mutex);
5778322e 2313 put_online_cpus();
4593fdbe 2314
d3484991
JA
2315 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2316 int ret;
2317
2318 ret = blk_mq_sched_init(q);
2319 if (ret)
2320 return ERR_PTR(ret);
2321 }
2322
320ae51f 2323 return q;
18741986 2324
320ae51f 2325err_hctxs:
868f2f0b 2326 kfree(q->queue_hw_ctx);
320ae51f 2327err_percpu:
868f2f0b 2328 free_percpu(q->queue_ctx);
c7de5726
ML
2329err_exit:
2330 q->mq_ops = NULL;
320ae51f
JA
2331 return ERR_PTR(-ENOMEM);
2332}
b62c21b7 2333EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2334
2335void blk_mq_free_queue(struct request_queue *q)
2336{
624dbe47 2337 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2338
0e626368
AM
2339 mutex_lock(&all_q_mutex);
2340 list_del_init(&q->all_q_node);
2341 mutex_unlock(&all_q_mutex);
2342
0d2602ca
JA
2343 blk_mq_del_queue_tag_set(q);
2344
624dbe47 2345 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2346}
320ae51f
JA
2347
2348/* Basically redo blk_mq_init_queue with queue frozen */
5778322e
AM
2349static void blk_mq_queue_reinit(struct request_queue *q,
2350 const struct cpumask *online_mask)
320ae51f 2351{
4ecd4fef 2352 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2353
67aec14c
JA
2354 blk_mq_sysfs_unregister(q);
2355
320ae51f
JA
2356 /*
2357 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2358 * we should change hctx numa_node according to new topology (this
2359 * involves free and re-allocate memory, worthy doing?)
2360 */
2361
5778322e 2362 blk_mq_map_swqueue(q, online_mask);
320ae51f 2363
67aec14c 2364 blk_mq_sysfs_register(q);
320ae51f
JA
2365}
2366
65d5291e
SAS
2367/*
2368 * New online cpumask which is going to be set in this hotplug event.
2369 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2370 * one-by-one and dynamically allocating this could result in a failure.
2371 */
2372static struct cpumask cpuhp_online_new;
2373
2374static void blk_mq_queue_reinit_work(void)
320ae51f
JA
2375{
2376 struct request_queue *q;
320ae51f
JA
2377
2378 mutex_lock(&all_q_mutex);
f3af020b
TH
2379 /*
2380 * We need to freeze and reinit all existing queues. Freezing
2381 * involves synchronous wait for an RCU grace period and doing it
2382 * one by one may take a long time. Start freezing all queues in
2383 * one swoop and then wait for the completions so that freezing can
2384 * take place in parallel.
2385 */
2386 list_for_each_entry(q, &all_q_list, all_q_node)
2387 blk_mq_freeze_queue_start(q);
415d3dab 2388 list_for_each_entry(q, &all_q_list, all_q_node)
f3af020b
TH
2389 blk_mq_freeze_queue_wait(q);
2390
320ae51f 2391 list_for_each_entry(q, &all_q_list, all_q_node)
65d5291e 2392 blk_mq_queue_reinit(q, &cpuhp_online_new);
f3af020b
TH
2393
2394 list_for_each_entry(q, &all_q_list, all_q_node)
2395 blk_mq_unfreeze_queue(q);
2396
320ae51f 2397 mutex_unlock(&all_q_mutex);
65d5291e
SAS
2398}
2399
2400static int blk_mq_queue_reinit_dead(unsigned int cpu)
2401{
97a32864 2402 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
65d5291e
SAS
2403 blk_mq_queue_reinit_work();
2404 return 0;
2405}
2406
2407/*
2408 * Before hotadded cpu starts handling requests, new mappings must be
2409 * established. Otherwise, these requests in hw queue might never be
2410 * dispatched.
2411 *
2412 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2413 * for CPU0, and ctx1 for CPU1).
2414 *
2415 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2416 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2417 *
2c3ad667
JA
2418 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2419 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2420 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2421 * ignored.
65d5291e
SAS
2422 */
2423static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2424{
2425 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2426 cpumask_set_cpu(cpu, &cpuhp_online_new);
2427 blk_mq_queue_reinit_work();
2428 return 0;
320ae51f
JA
2429}
2430
a5164405
JA
2431static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2432{
2433 int i;
2434
cc71a6f4
JA
2435 for (i = 0; i < set->nr_hw_queues; i++)
2436 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2437 goto out_unwind;
a5164405
JA
2438
2439 return 0;
2440
2441out_unwind:
2442 while (--i >= 0)
cc71a6f4 2443 blk_mq_free_rq_map(set->tags[i]);
a5164405 2444
a5164405
JA
2445 return -ENOMEM;
2446}
2447
2448/*
2449 * Allocate the request maps associated with this tag_set. Note that this
2450 * may reduce the depth asked for, if memory is tight. set->queue_depth
2451 * will be updated to reflect the allocated depth.
2452 */
2453static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2454{
2455 unsigned int depth;
2456 int err;
2457
2458 depth = set->queue_depth;
2459 do {
2460 err = __blk_mq_alloc_rq_maps(set);
2461 if (!err)
2462 break;
2463
2464 set->queue_depth >>= 1;
2465 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2466 err = -ENOMEM;
2467 break;
2468 }
2469 } while (set->queue_depth);
2470
2471 if (!set->queue_depth || err) {
2472 pr_err("blk-mq: failed to allocate request map\n");
2473 return -ENOMEM;
2474 }
2475
2476 if (depth != set->queue_depth)
2477 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2478 depth, set->queue_depth);
2479
2480 return 0;
2481}
2482
a4391c64
JA
2483/*
2484 * Alloc a tag set to be associated with one or more request queues.
2485 * May fail with EINVAL for various error conditions. May adjust the
2486 * requested depth down, if if it too large. In that case, the set
2487 * value will be stored in set->queue_depth.
2488 */
24d2f903
CH
2489int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2490{
da695ba2
CH
2491 int ret;
2492
205fb5f5
BVA
2493 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2494
24d2f903
CH
2495 if (!set->nr_hw_queues)
2496 return -EINVAL;
a4391c64 2497 if (!set->queue_depth)
24d2f903
CH
2498 return -EINVAL;
2499 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2500 return -EINVAL;
2501
7d7e0f90 2502 if (!set->ops->queue_rq)
24d2f903
CH
2503 return -EINVAL;
2504
a4391c64
JA
2505 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2506 pr_info("blk-mq: reduced tag depth to %u\n",
2507 BLK_MQ_MAX_DEPTH);
2508 set->queue_depth = BLK_MQ_MAX_DEPTH;
2509 }
24d2f903 2510
6637fadf
SL
2511 /*
2512 * If a crashdump is active, then we are potentially in a very
2513 * memory constrained environment. Limit us to 1 queue and
2514 * 64 tags to prevent using too much memory.
2515 */
2516 if (is_kdump_kernel()) {
2517 set->nr_hw_queues = 1;
2518 set->queue_depth = min(64U, set->queue_depth);
2519 }
868f2f0b
KB
2520 /*
2521 * There is no use for more h/w queues than cpus.
2522 */
2523 if (set->nr_hw_queues > nr_cpu_ids)
2524 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2525
868f2f0b 2526 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2527 GFP_KERNEL, set->numa_node);
2528 if (!set->tags)
a5164405 2529 return -ENOMEM;
24d2f903 2530
da695ba2
CH
2531 ret = -ENOMEM;
2532 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2533 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2534 if (!set->mq_map)
2535 goto out_free_tags;
2536
da695ba2
CH
2537 if (set->ops->map_queues)
2538 ret = set->ops->map_queues(set);
2539 else
2540 ret = blk_mq_map_queues(set);
2541 if (ret)
2542 goto out_free_mq_map;
2543
2544 ret = blk_mq_alloc_rq_maps(set);
2545 if (ret)
bdd17e75 2546 goto out_free_mq_map;
24d2f903 2547
0d2602ca
JA
2548 mutex_init(&set->tag_list_lock);
2549 INIT_LIST_HEAD(&set->tag_list);
2550
24d2f903 2551 return 0;
bdd17e75
CH
2552
2553out_free_mq_map:
2554 kfree(set->mq_map);
2555 set->mq_map = NULL;
2556out_free_tags:
5676e7b6
RE
2557 kfree(set->tags);
2558 set->tags = NULL;
da695ba2 2559 return ret;
24d2f903
CH
2560}
2561EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2562
2563void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2564{
2565 int i;
2566
cc71a6f4
JA
2567 for (i = 0; i < nr_cpu_ids; i++)
2568 blk_mq_free_map_and_requests(set, i);
484b4061 2569
bdd17e75
CH
2570 kfree(set->mq_map);
2571 set->mq_map = NULL;
2572
981bd189 2573 kfree(set->tags);
5676e7b6 2574 set->tags = NULL;
24d2f903
CH
2575}
2576EXPORT_SYMBOL(blk_mq_free_tag_set);
2577
e3a2b3f9
JA
2578int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2579{
2580 struct blk_mq_tag_set *set = q->tag_set;
2581 struct blk_mq_hw_ctx *hctx;
2582 int i, ret;
2583
bd166ef1 2584 if (!set)
e3a2b3f9
JA
2585 return -EINVAL;
2586
70f36b60
JA
2587 blk_mq_freeze_queue(q);
2588 blk_mq_quiesce_queue(q);
2589
e3a2b3f9
JA
2590 ret = 0;
2591 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2592 if (!hctx->tags)
2593 continue;
bd166ef1
JA
2594 /*
2595 * If we're using an MQ scheduler, just update the scheduler
2596 * queue depth. This is similar to what the old code would do.
2597 */
70f36b60
JA
2598 if (!hctx->sched_tags) {
2599 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2600 min(nr, set->queue_depth),
2601 false);
2602 } else {
2603 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2604 nr, true);
2605 }
e3a2b3f9
JA
2606 if (ret)
2607 break;
2608 }
2609
2610 if (!ret)
2611 q->nr_requests = nr;
2612
70f36b60
JA
2613 blk_mq_unfreeze_queue(q);
2614 blk_mq_start_stopped_hw_queues(q, true);
2615
e3a2b3f9
JA
2616 return ret;
2617}
2618
868f2f0b
KB
2619void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2620{
2621 struct request_queue *q;
2622
2623 if (nr_hw_queues > nr_cpu_ids)
2624 nr_hw_queues = nr_cpu_ids;
2625 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2626 return;
2627
2628 list_for_each_entry(q, &set->tag_list, tag_set_list)
2629 blk_mq_freeze_queue(q);
2630
2631 set->nr_hw_queues = nr_hw_queues;
2632 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2633 blk_mq_realloc_hw_ctxs(set, q);
868f2f0b
KB
2634 blk_mq_queue_reinit(q, cpu_online_mask);
2635 }
2636
2637 list_for_each_entry(q, &set->tag_list, tag_set_list)
2638 blk_mq_unfreeze_queue(q);
2639}
2640EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2641
34dbad5d
OS
2642/* Enable polling stats and return whether they were already enabled. */
2643static bool blk_poll_stats_enable(struct request_queue *q)
2644{
2645 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2646 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2647 return true;
2648 blk_stat_add_callback(q, q->poll_cb);
2649 return false;
2650}
2651
2652static void blk_mq_poll_stats_start(struct request_queue *q)
2653{
2654 /*
2655 * We don't arm the callback if polling stats are not enabled or the
2656 * callback is already active.
2657 */
2658 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2659 blk_stat_is_active(q->poll_cb))
2660 return;
2661
2662 blk_stat_activate_msecs(q->poll_cb, 100);
2663}
2664
2665static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2666{
2667 struct request_queue *q = cb->data;
2668
2669 if (cb->stat[READ].nr_samples)
2670 q->poll_stat[READ] = cb->stat[READ];
2671 if (cb->stat[WRITE].nr_samples)
2672 q->poll_stat[WRITE] = cb->stat[WRITE];
2673}
2674
64f1c21e
JA
2675static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2676 struct blk_mq_hw_ctx *hctx,
2677 struct request *rq)
2678{
64f1c21e
JA
2679 unsigned long ret = 0;
2680
2681 /*
2682 * If stats collection isn't on, don't sleep but turn it on for
2683 * future users
2684 */
34dbad5d 2685 if (!blk_poll_stats_enable(q))
64f1c21e
JA
2686 return 0;
2687
64f1c21e
JA
2688 /*
2689 * As an optimistic guess, use half of the mean service time
2690 * for this type of request. We can (and should) make this smarter.
2691 * For instance, if the completion latencies are tight, we can
2692 * get closer than just half the mean. This is especially
2693 * important on devices where the completion latencies are longer
2694 * than ~10 usec.
2695 */
34dbad5d
OS
2696 if (req_op(rq) == REQ_OP_READ && q->poll_stat[READ].nr_samples)
2697 ret = (q->poll_stat[READ].mean + 1) / 2;
2698 else if (req_op(rq) == REQ_OP_WRITE && q->poll_stat[WRITE].nr_samples)
2699 ret = (q->poll_stat[WRITE].mean + 1) / 2;
64f1c21e
JA
2700
2701 return ret;
2702}
2703
06426adf 2704static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2705 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2706 struct request *rq)
2707{
2708 struct hrtimer_sleeper hs;
2709 enum hrtimer_mode mode;
64f1c21e 2710 unsigned int nsecs;
06426adf
JA
2711 ktime_t kt;
2712
64f1c21e
JA
2713 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2714 return false;
2715
2716 /*
2717 * poll_nsec can be:
2718 *
2719 * -1: don't ever hybrid sleep
2720 * 0: use half of prev avg
2721 * >0: use this specific value
2722 */
2723 if (q->poll_nsec == -1)
2724 return false;
2725 else if (q->poll_nsec > 0)
2726 nsecs = q->poll_nsec;
2727 else
2728 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2729
2730 if (!nsecs)
06426adf
JA
2731 return false;
2732
2733 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2734
2735 /*
2736 * This will be replaced with the stats tracking code, using
2737 * 'avg_completion_time / 2' as the pre-sleep target.
2738 */
8b0e1953 2739 kt = nsecs;
06426adf
JA
2740
2741 mode = HRTIMER_MODE_REL;
2742 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2743 hrtimer_set_expires(&hs.timer, kt);
2744
2745 hrtimer_init_sleeper(&hs, current);
2746 do {
2747 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2748 break;
2749 set_current_state(TASK_UNINTERRUPTIBLE);
2750 hrtimer_start_expires(&hs.timer, mode);
2751 if (hs.task)
2752 io_schedule();
2753 hrtimer_cancel(&hs.timer);
2754 mode = HRTIMER_MODE_ABS;
2755 } while (hs.task && !signal_pending(current));
2756
2757 __set_current_state(TASK_RUNNING);
2758 destroy_hrtimer_on_stack(&hs.timer);
2759 return true;
2760}
2761
bbd7bb70
JA
2762static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2763{
2764 struct request_queue *q = hctx->queue;
2765 long state;
2766
06426adf
JA
2767 /*
2768 * If we sleep, have the caller restart the poll loop to reset
2769 * the state. Like for the other success return cases, the
2770 * caller is responsible for checking if the IO completed. If
2771 * the IO isn't complete, we'll get called again and will go
2772 * straight to the busy poll loop.
2773 */
64f1c21e 2774 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
2775 return true;
2776
bbd7bb70
JA
2777 hctx->poll_considered++;
2778
2779 state = current->state;
2780 while (!need_resched()) {
2781 int ret;
2782
2783 hctx->poll_invoked++;
2784
2785 ret = q->mq_ops->poll(hctx, rq->tag);
2786 if (ret > 0) {
2787 hctx->poll_success++;
2788 set_current_state(TASK_RUNNING);
2789 return true;
2790 }
2791
2792 if (signal_pending_state(state, current))
2793 set_current_state(TASK_RUNNING);
2794
2795 if (current->state == TASK_RUNNING)
2796 return true;
2797 if (ret < 0)
2798 break;
2799 cpu_relax();
2800 }
2801
2802 return false;
2803}
2804
2805bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2806{
2807 struct blk_mq_hw_ctx *hctx;
2808 struct blk_plug *plug;
2809 struct request *rq;
2810
2811 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2812 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2813 return false;
2814
2815 plug = current->plug;
2816 if (plug)
2817 blk_flush_plug_list(plug, false);
2818
2819 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
2820 if (!blk_qc_t_is_internal(cookie))
2821 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2822 else
2823 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
bbd7bb70
JA
2824
2825 return __blk_mq_poll(hctx, rq);
2826}
2827EXPORT_SYMBOL_GPL(blk_mq_poll);
2828
676141e4
JA
2829void blk_mq_disable_hotplug(void)
2830{
2831 mutex_lock(&all_q_mutex);
2832}
2833
2834void blk_mq_enable_hotplug(void)
2835{
2836 mutex_unlock(&all_q_mutex);
2837}
2838
320ae51f
JA
2839static int __init blk_mq_init(void)
2840{
9467f859
TG
2841 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2842 blk_mq_hctx_notify_dead);
320ae51f 2843
65d5291e
SAS
2844 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2845 blk_mq_queue_reinit_prepare,
2846 blk_mq_queue_reinit_dead);
320ae51f
JA
2847 return 0;
2848}
2849subsys_initcall(blk_mq_init);