]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - block/blk-mq.c
blk-mq: cleanup and improve list insertion
[thirdparty/kernel/stable.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
105ab3d8 23#include <linux/sched/topology.h>
174cd4b1 24#include <linux/sched/signal.h>
320ae51f 25#include <linux/delay.h>
aedcd72f 26#include <linux/crash_dump.h>
88c7b2b7 27#include <linux/prefetch.h>
320ae51f
JA
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
9c1051aa 34#include "blk-mq-debugfs.h"
320ae51f 35#include "blk-mq-tag.h"
986d413b 36#include "blk-pm.h"
cf43e6be 37#include "blk-stat.h"
bd166ef1 38#include "blk-mq-sched.h"
c1c80384 39#include "blk-rq-qos.h"
320ae51f 40
ea435e1b 41static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
34dbad5d
OS
42static void blk_mq_poll_stats_start(struct request_queue *q);
43static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
720b8ccc
SB
45static int blk_mq_poll_stats_bkt(const struct request *rq)
46{
47 int ddir, bytes, bucket;
48
99c749a4 49 ddir = rq_data_dir(rq);
720b8ccc
SB
50 bytes = blk_rq_bytes(rq);
51
52 bucket = ddir + 2*(ilog2(bytes) - 9);
53
54 if (bucket < 0)
55 return -1;
56 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
57 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58
59 return bucket;
60}
61
320ae51f
JA
62/*
63 * Check if any of the ctx's have pending work in this hardware queue
64 */
79f720a7 65static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 66{
79f720a7
JA
67 return !list_empty_careful(&hctx->dispatch) ||
68 sbitmap_any_bit_set(&hctx->ctx_map) ||
bd166ef1 69 blk_mq_sched_has_work(hctx);
1429d7c9
JA
70}
71
320ae51f
JA
72/*
73 * Mark this ctx as having pending work in this hardware queue
74 */
75static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
76 struct blk_mq_ctx *ctx)
77{
f31967f0
JA
78 const int bit = ctx->index_hw[hctx->type];
79
80 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
81 sbitmap_set_bit(&hctx->ctx_map, bit);
1429d7c9
JA
82}
83
84static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
85 struct blk_mq_ctx *ctx)
86{
f31967f0
JA
87 const int bit = ctx->index_hw[hctx->type];
88
89 sbitmap_clear_bit(&hctx->ctx_map, bit);
320ae51f
JA
90}
91
f299b7c7
JA
92struct mq_inflight {
93 struct hd_struct *part;
94 unsigned int *inflight;
95};
96
97static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
98 struct request *rq, void *priv,
99 bool reserved)
100{
101 struct mq_inflight *mi = priv;
102
6131837b
OS
103 /*
104 * index[0] counts the specific partition that was asked for. index[1]
105 * counts the ones that are active on the whole device, so increment
106 * that if mi->part is indeed a partition, and not a whole device.
107 */
108 if (rq->part == mi->part)
109 mi->inflight[0]++;
110 if (mi->part->partno)
111 mi->inflight[1]++;
f299b7c7
JA
112}
113
114void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
115 unsigned int inflight[2])
116{
117 struct mq_inflight mi = { .part = part, .inflight = inflight, };
118
b8d62b3a 119 inflight[0] = inflight[1] = 0;
f299b7c7
JA
120 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121}
122
bf0ddaba
OS
123static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
124 struct request *rq, void *priv,
125 bool reserved)
126{
127 struct mq_inflight *mi = priv;
128
129 if (rq->part == mi->part)
130 mi->inflight[rq_data_dir(rq)]++;
131}
132
133void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
134 unsigned int inflight[2])
135{
136 struct mq_inflight mi = { .part = part, .inflight = inflight, };
137
138 inflight[0] = inflight[1] = 0;
139 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
140}
141
1671d522 142void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 143{
4ecd4fef 144 int freeze_depth;
cddd5d17 145
4ecd4fef
CH
146 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
147 if (freeze_depth == 1) {
3ef28e83 148 percpu_ref_kill(&q->q_usage_counter);
055f6e18
ML
149 if (q->mq_ops)
150 blk_mq_run_hw_queues(q, false);
cddd5d17 151 }
f3af020b 152}
1671d522 153EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 154
6bae363e 155void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 156{
3ef28e83 157 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 158}
6bae363e 159EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 160
f91328c4
KB
161int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
162 unsigned long timeout)
163{
164 return wait_event_timeout(q->mq_freeze_wq,
165 percpu_ref_is_zero(&q->q_usage_counter),
166 timeout);
167}
168EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 169
f3af020b
TH
170/*
171 * Guarantee no request is in use, so we can change any data structure of
172 * the queue afterward.
173 */
3ef28e83 174void blk_freeze_queue(struct request_queue *q)
f3af020b 175{
3ef28e83
DW
176 /*
177 * In the !blk_mq case we are only calling this to kill the
178 * q_usage_counter, otherwise this increases the freeze depth
179 * and waits for it to return to zero. For this reason there is
180 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
181 * exported to drivers as the only user for unfreeze is blk_mq.
182 */
1671d522 183 blk_freeze_queue_start(q);
f3af020b
TH
184 blk_mq_freeze_queue_wait(q);
185}
3ef28e83
DW
186
187void blk_mq_freeze_queue(struct request_queue *q)
188{
189 /*
190 * ...just an alias to keep freeze and unfreeze actions balanced
191 * in the blk_mq_* namespace
192 */
193 blk_freeze_queue(q);
194}
c761d96b 195EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 196
b4c6a028 197void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 198{
4ecd4fef 199 int freeze_depth;
320ae51f 200
4ecd4fef
CH
201 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
202 WARN_ON_ONCE(freeze_depth < 0);
203 if (!freeze_depth) {
bdd63160 204 percpu_ref_resurrect(&q->q_usage_counter);
320ae51f 205 wake_up_all(&q->mq_freeze_wq);
add703fd 206 }
320ae51f 207}
b4c6a028 208EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 209
852ec809
BVA
210/*
211 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
212 * mpt3sas driver such that this function can be removed.
213 */
214void blk_mq_quiesce_queue_nowait(struct request_queue *q)
215{
8814ce8a 216 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
852ec809
BVA
217}
218EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
219
6a83e74d 220/**
69e07c4a 221 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
6a83e74d
BVA
222 * @q: request queue.
223 *
224 * Note: this function does not prevent that the struct request end_io()
69e07c4a
ML
225 * callback function is invoked. Once this function is returned, we make
226 * sure no dispatch can happen until the queue is unquiesced via
227 * blk_mq_unquiesce_queue().
6a83e74d
BVA
228 */
229void blk_mq_quiesce_queue(struct request_queue *q)
230{
231 struct blk_mq_hw_ctx *hctx;
232 unsigned int i;
233 bool rcu = false;
234
1d9e9bc6 235 blk_mq_quiesce_queue_nowait(q);
f4560ffe 236
6a83e74d
BVA
237 queue_for_each_hw_ctx(q, hctx, i) {
238 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 239 synchronize_srcu(hctx->srcu);
6a83e74d
BVA
240 else
241 rcu = true;
242 }
243 if (rcu)
244 synchronize_rcu();
245}
246EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
247
e4e73913
ML
248/*
249 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
250 * @q: request queue.
251 *
252 * This function recovers queue into the state before quiescing
253 * which is done by blk_mq_quiesce_queue.
254 */
255void blk_mq_unquiesce_queue(struct request_queue *q)
256{
8814ce8a 257 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
f4560ffe 258
1d9e9bc6
ML
259 /* dispatch requests which are inserted during quiescing */
260 blk_mq_run_hw_queues(q, true);
e4e73913
ML
261}
262EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
263
aed3ea94
JA
264void blk_mq_wake_waiters(struct request_queue *q)
265{
266 struct blk_mq_hw_ctx *hctx;
267 unsigned int i;
268
269 queue_for_each_hw_ctx(q, hctx, i)
270 if (blk_mq_hw_queue_mapped(hctx))
271 blk_mq_tag_wakeup_all(hctx->tags, true);
272}
273
320ae51f
JA
274bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
275{
276 return blk_mq_has_free_tags(hctx->tags);
277}
278EXPORT_SYMBOL(blk_mq_can_queue);
279
e4cdf1a1
CH
280static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
281 unsigned int tag, unsigned int op)
320ae51f 282{
e4cdf1a1
CH
283 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
284 struct request *rq = tags->static_rqs[tag];
bf9ae8c5 285 req_flags_t rq_flags = 0;
c3a148d2 286
e4cdf1a1
CH
287 if (data->flags & BLK_MQ_REQ_INTERNAL) {
288 rq->tag = -1;
289 rq->internal_tag = tag;
290 } else {
d263ed99 291 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
bf9ae8c5 292 rq_flags = RQF_MQ_INFLIGHT;
e4cdf1a1
CH
293 atomic_inc(&data->hctx->nr_active);
294 }
295 rq->tag = tag;
296 rq->internal_tag = -1;
297 data->hctx->tags->rqs[rq->tag] = rq;
298 }
299
af76e555 300 /* csd/requeue_work/fifo_time is initialized before use */
e4cdf1a1
CH
301 rq->q = data->q;
302 rq->mq_ctx = data->ctx;
ea4f995e 303 rq->mq_hctx = data->hctx;
bf9ae8c5 304 rq->rq_flags = rq_flags;
ef295ecf 305 rq->cmd_flags = op;
1b6d65a0
BVA
306 if (data->flags & BLK_MQ_REQ_PREEMPT)
307 rq->rq_flags |= RQF_PREEMPT;
e4cdf1a1 308 if (blk_queue_io_stat(data->q))
e8064021 309 rq->rq_flags |= RQF_IO_STAT;
7c3fb70f 310 INIT_LIST_HEAD(&rq->queuelist);
af76e555
CH
311 INIT_HLIST_NODE(&rq->hash);
312 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
313 rq->rq_disk = NULL;
314 rq->part = NULL;
522a7775 315 rq->start_time_ns = ktime_get_ns();
544ccc8d 316 rq->io_start_time_ns = 0;
af76e555
CH
317 rq->nr_phys_segments = 0;
318#if defined(CONFIG_BLK_DEV_INTEGRITY)
319 rq->nr_integrity_segments = 0;
320#endif
af76e555
CH
321 rq->special = NULL;
322 /* tag was already set */
af76e555 323 rq->extra_len = 0;
e14575b3 324 rq->__deadline = 0;
af76e555 325
af76e555 326 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
327 rq->timeout = 0;
328
af76e555
CH
329 rq->end_io = NULL;
330 rq->end_io_data = NULL;
331 rq->next_rq = NULL;
332
e4cdf1a1 333 data->ctx->rq_dispatched[op_is_sync(op)]++;
12f5b931 334 refcount_set(&rq->ref, 1);
e4cdf1a1 335 return rq;
5dee8577
CH
336}
337
d2c0d383 338static struct request *blk_mq_get_request(struct request_queue *q,
f9afca4d
JA
339 struct bio *bio,
340 struct blk_mq_alloc_data *data)
d2c0d383
CH
341{
342 struct elevator_queue *e = q->elevator;
343 struct request *rq;
e4cdf1a1 344 unsigned int tag;
21e768b4 345 bool put_ctx_on_error = false;
d2c0d383
CH
346
347 blk_queue_enter_live(q);
348 data->q = q;
21e768b4
BVA
349 if (likely(!data->ctx)) {
350 data->ctx = blk_mq_get_ctx(q);
351 put_ctx_on_error = true;
352 }
d2c0d383 353 if (likely(!data->hctx))
f9afca4d
JA
354 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
355 data->ctx->cpu);
356 if (data->cmd_flags & REQ_NOWAIT)
03a07c92 357 data->flags |= BLK_MQ_REQ_NOWAIT;
d2c0d383
CH
358
359 if (e) {
360 data->flags |= BLK_MQ_REQ_INTERNAL;
361
362 /*
363 * Flush requests are special and go directly to the
17a51199
JA
364 * dispatch list. Don't include reserved tags in the
365 * limiting, as it isn't useful.
d2c0d383 366 */
f9afca4d
JA
367 if (!op_is_flush(data->cmd_flags) &&
368 e->type->ops.limit_depth &&
17a51199 369 !(data->flags & BLK_MQ_REQ_RESERVED))
f9afca4d 370 e->type->ops.limit_depth(data->cmd_flags, data);
d263ed99
JW
371 } else {
372 blk_mq_tag_busy(data->hctx);
d2c0d383
CH
373 }
374
e4cdf1a1
CH
375 tag = blk_mq_get_tag(data);
376 if (tag == BLK_MQ_TAG_FAIL) {
21e768b4
BVA
377 if (put_ctx_on_error) {
378 blk_mq_put_ctx(data->ctx);
1ad43c00
ML
379 data->ctx = NULL;
380 }
037cebb8
CH
381 blk_queue_exit(q);
382 return NULL;
d2c0d383
CH
383 }
384
f9afca4d
JA
385 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
386 if (!op_is_flush(data->cmd_flags)) {
037cebb8 387 rq->elv.icq = NULL;
f9cd4bfe 388 if (e && e->type->ops.prepare_request) {
44e8c2bf
CH
389 if (e->type->icq_cache && rq_ioc(bio))
390 blk_mq_sched_assign_ioc(rq, bio);
391
f9cd4bfe 392 e->type->ops.prepare_request(rq, bio);
5bbf4e5a 393 rq->rq_flags |= RQF_ELVPRIV;
44e8c2bf 394 }
037cebb8
CH
395 }
396 data->hctx->queued++;
397 return rq;
d2c0d383
CH
398}
399
cd6ce148 400struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
9a95e4ef 401 blk_mq_req_flags_t flags)
320ae51f 402{
f9afca4d 403 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
bd166ef1 404 struct request *rq;
a492f075 405 int ret;
320ae51f 406
3a0a5299 407 ret = blk_queue_enter(q, flags);
a492f075
JL
408 if (ret)
409 return ERR_PTR(ret);
320ae51f 410
f9afca4d 411 rq = blk_mq_get_request(q, NULL, &alloc_data);
3280d66a 412 blk_queue_exit(q);
841bac2c 413
bd166ef1 414 if (!rq)
a492f075 415 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3 416
1ad43c00 417 blk_mq_put_ctx(alloc_data.ctx);
1ad43c00 418
0c4de0f3
CH
419 rq->__data_len = 0;
420 rq->__sector = (sector_t) -1;
421 rq->bio = rq->biotail = NULL;
320ae51f
JA
422 return rq;
423}
4bb659b1 424EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 425
cd6ce148 426struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
9a95e4ef 427 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
1f5bd336 428{
f9afca4d 429 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
1f5bd336 430 struct request *rq;
6d2809d5 431 unsigned int cpu;
1f5bd336
ML
432 int ret;
433
434 /*
435 * If the tag allocator sleeps we could get an allocation for a
436 * different hardware context. No need to complicate the low level
437 * allocator for this for the rare use case of a command tied to
438 * a specific queue.
439 */
440 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
441 return ERR_PTR(-EINVAL);
442
443 if (hctx_idx >= q->nr_hw_queues)
444 return ERR_PTR(-EIO);
445
3a0a5299 446 ret = blk_queue_enter(q, flags);
1f5bd336
ML
447 if (ret)
448 return ERR_PTR(ret);
449
c8712c6a
CH
450 /*
451 * Check if the hardware context is actually mapped to anything.
452 * If not tell the caller that it should skip this queue.
453 */
6d2809d5
OS
454 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
455 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
456 blk_queue_exit(q);
457 return ERR_PTR(-EXDEV);
c8712c6a 458 }
20e4d813 459 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
6d2809d5 460 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 461
f9afca4d 462 rq = blk_mq_get_request(q, NULL, &alloc_data);
3280d66a 463 blk_queue_exit(q);
c8712c6a 464
6d2809d5
OS
465 if (!rq)
466 return ERR_PTR(-EWOULDBLOCK);
467
468 return rq;
1f5bd336
ML
469}
470EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
471
12f5b931
KB
472static void __blk_mq_free_request(struct request *rq)
473{
474 struct request_queue *q = rq->q;
475 struct blk_mq_ctx *ctx = rq->mq_ctx;
ea4f995e 476 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
12f5b931
KB
477 const int sched_tag = rq->internal_tag;
478
986d413b 479 blk_pm_mark_last_busy(rq);
ea4f995e 480 rq->mq_hctx = NULL;
12f5b931
KB
481 if (rq->tag != -1)
482 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
483 if (sched_tag != -1)
484 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
485 blk_mq_sched_restart(hctx);
486 blk_queue_exit(q);
487}
488
6af54051 489void blk_mq_free_request(struct request *rq)
320ae51f 490{
320ae51f 491 struct request_queue *q = rq->q;
6af54051
CH
492 struct elevator_queue *e = q->elevator;
493 struct blk_mq_ctx *ctx = rq->mq_ctx;
ea4f995e 494 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
6af54051 495
5bbf4e5a 496 if (rq->rq_flags & RQF_ELVPRIV) {
f9cd4bfe
JA
497 if (e && e->type->ops.finish_request)
498 e->type->ops.finish_request(rq);
6af54051
CH
499 if (rq->elv.icq) {
500 put_io_context(rq->elv.icq->ioc);
501 rq->elv.icq = NULL;
502 }
503 }
320ae51f 504
6af54051 505 ctx->rq_completed[rq_is_sync(rq)]++;
e8064021 506 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 507 atomic_dec(&hctx->nr_active);
87760e5e 508
7beb2f84
JA
509 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
510 laptop_io_completion(q->backing_dev_info);
511
a7905043 512 rq_qos_done(q, rq);
0d2602ca 513
12f5b931
KB
514 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
515 if (refcount_dec_and_test(&rq->ref))
516 __blk_mq_free_request(rq);
320ae51f 517}
1a3b595a 518EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 519
2a842aca 520inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
320ae51f 521{
522a7775
OS
522 u64 now = ktime_get_ns();
523
4bc6339a
OS
524 if (rq->rq_flags & RQF_STATS) {
525 blk_mq_poll_stats_start(rq->q);
522a7775 526 blk_stat_add(rq, now);
4bc6339a
OS
527 }
528
ed88660a
OS
529 if (rq->internal_tag != -1)
530 blk_mq_sched_completed_request(rq, now);
531
522a7775 532 blk_account_io_done(rq, now);
0d11e6ac 533
91b63639 534 if (rq->end_io) {
a7905043 535 rq_qos_done(rq->q, rq);
320ae51f 536 rq->end_io(rq, error);
91b63639
CH
537 } else {
538 if (unlikely(blk_bidi_rq(rq)))
539 blk_mq_free_request(rq->next_rq);
320ae51f 540 blk_mq_free_request(rq);
91b63639 541 }
320ae51f 542}
c8a446ad 543EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 544
2a842aca 545void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
546{
547 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
548 BUG();
c8a446ad 549 __blk_mq_end_request(rq, error);
63151a44 550}
c8a446ad 551EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 552
30a91cb4 553static void __blk_mq_complete_request_remote(void *data)
320ae51f 554{
3d6efbf6 555 struct request *rq = data;
c7bb9ad1 556 struct request_queue *q = rq->q;
320ae51f 557
c7bb9ad1 558 q->mq_ops->complete(rq);
320ae51f 559}
320ae51f 560
453f8341 561static void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
562{
563 struct blk_mq_ctx *ctx = rq->mq_ctx;
c7bb9ad1 564 struct request_queue *q = rq->q;
38535201 565 bool shared = false;
320ae51f
JA
566 int cpu;
567
0fc09f92 568 if (!blk_mq_mark_complete(rq))
12f5b931 569 return;
453f8341 570
36e76539
ML
571 /*
572 * Most of single queue controllers, there is only one irq vector
573 * for handling IO completion, and the only irq's affinity is set
574 * as all possible CPUs. On most of ARCHs, this affinity means the
575 * irq is handled on one specific CPU.
576 *
577 * So complete IO reqeust in softirq context in case of single queue
578 * for not degrading IO performance by irqsoff latency.
579 */
c7bb9ad1 580 if (q->nr_hw_queues == 1) {
36e76539
ML
581 __blk_complete_request(rq);
582 return;
583 }
584
c7bb9ad1
JA
585 if (!test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
586 q->mq_ops->complete(rq);
30a91cb4
CH
587 return;
588 }
320ae51f
JA
589
590 cpu = get_cpu();
c7bb9ad1 591 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
38535201
CH
592 shared = cpus_share_cache(cpu, ctx->cpu);
593
594 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 595 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
596 rq->csd.info = rq;
597 rq->csd.flags = 0;
c46fff2a 598 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 599 } else {
c7bb9ad1 600 q->mq_ops->complete(rq);
3d6efbf6 601 }
320ae51f
JA
602 put_cpu();
603}
30a91cb4 604
04ced159 605static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
b7435db8 606 __releases(hctx->srcu)
04ced159
JA
607{
608 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
609 rcu_read_unlock();
610 else
05707b64 611 srcu_read_unlock(hctx->srcu, srcu_idx);
04ced159
JA
612}
613
614static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
b7435db8 615 __acquires(hctx->srcu)
04ced159 616{
08b5a6e2
JA
617 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
618 /* shut up gcc false positive */
619 *srcu_idx = 0;
04ced159 620 rcu_read_lock();
08b5a6e2 621 } else
05707b64 622 *srcu_idx = srcu_read_lock(hctx->srcu);
04ced159
JA
623}
624
30a91cb4
CH
625/**
626 * blk_mq_complete_request - end I/O on a request
627 * @rq: the request being processed
628 *
629 * Description:
630 * Ends all I/O on a request. It does not handle partial completions.
631 * The actual completion happens out-of-order, through a IPI handler.
632 **/
08e0029a 633void blk_mq_complete_request(struct request *rq)
30a91cb4 634{
12f5b931 635 if (unlikely(blk_should_fake_timeout(rq->q)))
30a91cb4 636 return;
12f5b931 637 __blk_mq_complete_request(rq);
30a91cb4
CH
638}
639EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 640
973c0191
KB
641int blk_mq_request_started(struct request *rq)
642{
5a61c363 643 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
973c0191
KB
644}
645EXPORT_SYMBOL_GPL(blk_mq_request_started);
646
e2490073 647void blk_mq_start_request(struct request *rq)
320ae51f
JA
648{
649 struct request_queue *q = rq->q;
650
bd166ef1
JA
651 blk_mq_sched_started_request(rq);
652
320ae51f
JA
653 trace_block_rq_issue(q, rq);
654
cf43e6be 655 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
544ccc8d
OS
656 rq->io_start_time_ns = ktime_get_ns();
657#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
658 rq->throtl_size = blk_rq_sectors(rq);
659#endif
cf43e6be 660 rq->rq_flags |= RQF_STATS;
a7905043 661 rq_qos_issue(q, rq);
cf43e6be
JA
662 }
663
1d9bd516 664 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
538b7534 665
1d9bd516 666 blk_add_timer(rq);
12f5b931 667 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
49f5baa5
CH
668
669 if (q->dma_drain_size && blk_rq_bytes(rq)) {
670 /*
671 * Make sure space for the drain appears. We know we can do
672 * this because max_hw_segments has been adjusted to be one
673 * fewer than the device can handle.
674 */
675 rq->nr_phys_segments++;
676 }
320ae51f 677}
e2490073 678EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 679
ed0791b2 680static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
681{
682 struct request_queue *q = rq->q;
683
923218f6
ML
684 blk_mq_put_driver_tag(rq);
685
320ae51f 686 trace_block_rq_requeue(q, rq);
a7905043 687 rq_qos_requeue(q, rq);
49f5baa5 688
12f5b931
KB
689 if (blk_mq_request_started(rq)) {
690 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
da661267 691 rq->rq_flags &= ~RQF_TIMED_OUT;
e2490073
CH
692 if (q->dma_drain_size && blk_rq_bytes(rq))
693 rq->nr_phys_segments--;
694 }
320ae51f
JA
695}
696
2b053aca 697void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 698{
ed0791b2 699 __blk_mq_requeue_request(rq);
ed0791b2 700
105976f5
ML
701 /* this request will be re-inserted to io scheduler queue */
702 blk_mq_sched_requeue_request(rq);
703
7d692330 704 BUG_ON(!list_empty(&rq->queuelist));
2b053aca 705 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
706}
707EXPORT_SYMBOL(blk_mq_requeue_request);
708
6fca6a61
CH
709static void blk_mq_requeue_work(struct work_struct *work)
710{
711 struct request_queue *q =
2849450a 712 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
713 LIST_HEAD(rq_list);
714 struct request *rq, *next;
6fca6a61 715
18e9781d 716 spin_lock_irq(&q->requeue_lock);
6fca6a61 717 list_splice_init(&q->requeue_list, &rq_list);
18e9781d 718 spin_unlock_irq(&q->requeue_lock);
6fca6a61
CH
719
720 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 721 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
722 continue;
723
e8064021 724 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 725 list_del_init(&rq->queuelist);
9e97d295 726 blk_mq_sched_insert_request(rq, true, false, false);
6fca6a61
CH
727 }
728
729 while (!list_empty(&rq_list)) {
730 rq = list_entry(rq_list.next, struct request, queuelist);
731 list_del_init(&rq->queuelist);
9e97d295 732 blk_mq_sched_insert_request(rq, false, false, false);
6fca6a61
CH
733 }
734
52d7f1b5 735 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
736}
737
2b053aca
BVA
738void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
739 bool kick_requeue_list)
6fca6a61
CH
740{
741 struct request_queue *q = rq->q;
742 unsigned long flags;
743
744 /*
745 * We abuse this flag that is otherwise used by the I/O scheduler to
ff821d27 746 * request head insertion from the workqueue.
6fca6a61 747 */
e8064021 748 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
749
750 spin_lock_irqsave(&q->requeue_lock, flags);
751 if (at_head) {
e8064021 752 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
753 list_add(&rq->queuelist, &q->requeue_list);
754 } else {
755 list_add_tail(&rq->queuelist, &q->requeue_list);
756 }
757 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
758
759 if (kick_requeue_list)
760 blk_mq_kick_requeue_list(q);
6fca6a61
CH
761}
762EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
763
764void blk_mq_kick_requeue_list(struct request_queue *q)
765{
ae943d20 766 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
6fca6a61
CH
767}
768EXPORT_SYMBOL(blk_mq_kick_requeue_list);
769
2849450a
MS
770void blk_mq_delay_kick_requeue_list(struct request_queue *q,
771 unsigned long msecs)
772{
d4acf365
BVA
773 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
774 msecs_to_jiffies(msecs));
2849450a
MS
775}
776EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
777
0e62f51f
JA
778struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
779{
88c7b2b7
JA
780 if (tag < tags->nr_tags) {
781 prefetch(tags->rqs[tag]);
4ee86bab 782 return tags->rqs[tag];
88c7b2b7 783 }
4ee86bab
HR
784
785 return NULL;
24d2f903
CH
786}
787EXPORT_SYMBOL(blk_mq_tag_to_rq);
788
358f70da 789static void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 790{
da661267 791 req->rq_flags |= RQF_TIMED_OUT;
d1210d5a
CH
792 if (req->q->mq_ops->timeout) {
793 enum blk_eh_timer_return ret;
794
795 ret = req->q->mq_ops->timeout(req, reserved);
796 if (ret == BLK_EH_DONE)
797 return;
798 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
46f92d42 799 }
d1210d5a
CH
800
801 blk_add_timer(req);
87ee7b11 802}
5b3f25fc 803
12f5b931 804static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
81481eb4 805{
12f5b931 806 unsigned long deadline;
87ee7b11 807
12f5b931
KB
808 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
809 return false;
da661267
CH
810 if (rq->rq_flags & RQF_TIMED_OUT)
811 return false;
a7af0af3 812
12f5b931
KB
813 deadline = blk_rq_deadline(rq);
814 if (time_after_eq(jiffies, deadline))
815 return true;
a7af0af3 816
12f5b931
KB
817 if (*next == 0)
818 *next = deadline;
819 else if (time_after(*next, deadline))
820 *next = deadline;
821 return false;
87ee7b11
JA
822}
823
12f5b931 824static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
1d9bd516
TH
825 struct request *rq, void *priv, bool reserved)
826{
12f5b931
KB
827 unsigned long *next = priv;
828
829 /*
830 * Just do a quick check if it is expired before locking the request in
831 * so we're not unnecessarilly synchronizing across CPUs.
832 */
833 if (!blk_mq_req_expired(rq, next))
834 return;
835
836 /*
837 * We have reason to believe the request may be expired. Take a
838 * reference on the request to lock this request lifetime into its
839 * currently allocated context to prevent it from being reallocated in
840 * the event the completion by-passes this timeout handler.
841 *
842 * If the reference was already released, then the driver beat the
843 * timeout handler to posting a natural completion.
844 */
845 if (!refcount_inc_not_zero(&rq->ref))
846 return;
847
1d9bd516 848 /*
12f5b931
KB
849 * The request is now locked and cannot be reallocated underneath the
850 * timeout handler's processing. Re-verify this exact request is truly
851 * expired; if it is not expired, then the request was completed and
852 * reallocated as a new request.
1d9bd516 853 */
12f5b931 854 if (blk_mq_req_expired(rq, next))
1d9bd516 855 blk_mq_rq_timed_out(rq, reserved);
12f5b931
KB
856 if (refcount_dec_and_test(&rq->ref))
857 __blk_mq_free_request(rq);
1d9bd516
TH
858}
859
287922eb 860static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 861{
287922eb
CH
862 struct request_queue *q =
863 container_of(work, struct request_queue, timeout_work);
12f5b931 864 unsigned long next = 0;
1d9bd516 865 struct blk_mq_hw_ctx *hctx;
81481eb4 866 int i;
320ae51f 867
71f79fb3
GKB
868 /* A deadlock might occur if a request is stuck requiring a
869 * timeout at the same time a queue freeze is waiting
870 * completion, since the timeout code would not be able to
871 * acquire the queue reference here.
872 *
873 * That's why we don't use blk_queue_enter here; instead, we use
874 * percpu_ref_tryget directly, because we need to be able to
875 * obtain a reference even in the short window between the queue
876 * starting to freeze, by dropping the first reference in
1671d522 877 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
878 * consumed, marked by the instant q_usage_counter reaches
879 * zero.
880 */
881 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
882 return;
883
12f5b931 884 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
320ae51f 885
12f5b931
KB
886 if (next != 0) {
887 mod_timer(&q->timeout, next);
0d2602ca 888 } else {
fcd36c36
BVA
889 /*
890 * Request timeouts are handled as a forward rolling timer. If
891 * we end up here it means that no requests are pending and
892 * also that no request has been pending for a while. Mark
893 * each hctx as idle.
894 */
f054b56c
ML
895 queue_for_each_hw_ctx(q, hctx, i) {
896 /* the hctx may be unmapped, so check it here */
897 if (blk_mq_hw_queue_mapped(hctx))
898 blk_mq_tag_idle(hctx);
899 }
0d2602ca 900 }
287922eb 901 blk_queue_exit(q);
320ae51f
JA
902}
903
88459642
OS
904struct flush_busy_ctx_data {
905 struct blk_mq_hw_ctx *hctx;
906 struct list_head *list;
907};
908
909static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
910{
911 struct flush_busy_ctx_data *flush_data = data;
912 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
913 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
914
88459642
OS
915 spin_lock(&ctx->lock);
916 list_splice_tail_init(&ctx->rq_list, flush_data->list);
e9a99a63 917 sbitmap_clear_bit(sb, bitnr);
88459642
OS
918 spin_unlock(&ctx->lock);
919 return true;
920}
921
1429d7c9
JA
922/*
923 * Process software queues that have been marked busy, splicing them
924 * to the for-dispatch
925 */
2c3ad667 926void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 927{
88459642
OS
928 struct flush_busy_ctx_data data = {
929 .hctx = hctx,
930 .list = list,
931 };
1429d7c9 932
88459642 933 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 934}
2c3ad667 935EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 936
b347689f
ML
937struct dispatch_rq_data {
938 struct blk_mq_hw_ctx *hctx;
939 struct request *rq;
940};
941
942static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
943 void *data)
944{
945 struct dispatch_rq_data *dispatch_data = data;
946 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
947 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
948
949 spin_lock(&ctx->lock);
b4f6f38d 950 if (!list_empty(&ctx->rq_list)) {
b347689f
ML
951 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
952 list_del_init(&dispatch_data->rq->queuelist);
953 if (list_empty(&ctx->rq_list))
954 sbitmap_clear_bit(sb, bitnr);
955 }
956 spin_unlock(&ctx->lock);
957
958 return !dispatch_data->rq;
959}
960
961struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
962 struct blk_mq_ctx *start)
963{
f31967f0 964 unsigned off = start ? start->index_hw[hctx->type] : 0;
b347689f
ML
965 struct dispatch_rq_data data = {
966 .hctx = hctx,
967 .rq = NULL,
968 };
969
970 __sbitmap_for_each_set(&hctx->ctx_map, off,
971 dispatch_rq_from_ctx, &data);
972
973 return data.rq;
974}
975
703fd1c0
JA
976static inline unsigned int queued_to_index(unsigned int queued)
977{
978 if (!queued)
979 return 0;
1429d7c9 980
703fd1c0 981 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
982}
983
8ab6bb9e 984bool blk_mq_get_driver_tag(struct request *rq)
bd166ef1
JA
985{
986 struct blk_mq_alloc_data data = {
987 .q = rq->q,
ea4f995e 988 .hctx = rq->mq_hctx,
8ab6bb9e 989 .flags = BLK_MQ_REQ_NOWAIT,
f9afca4d 990 .cmd_flags = rq->cmd_flags,
bd166ef1 991 };
d263ed99 992 bool shared;
5feeacdd 993
81380ca1
OS
994 if (rq->tag != -1)
995 goto done;
bd166ef1 996
415b806d
SG
997 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
998 data.flags |= BLK_MQ_REQ_RESERVED;
999
d263ed99 1000 shared = blk_mq_tag_busy(data.hctx);
bd166ef1
JA
1001 rq->tag = blk_mq_get_tag(&data);
1002 if (rq->tag >= 0) {
d263ed99 1003 if (shared) {
200e86b3
JA
1004 rq->rq_flags |= RQF_MQ_INFLIGHT;
1005 atomic_inc(&data.hctx->nr_active);
1006 }
bd166ef1 1007 data.hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
1008 }
1009
81380ca1 1010done:
81380ca1 1011 return rq->tag != -1;
bd166ef1
JA
1012}
1013
eb619fdb
JA
1014static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1015 int flags, void *key)
da55f2cc
OS
1016{
1017 struct blk_mq_hw_ctx *hctx;
1018
1019 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1020
5815839b 1021 spin_lock(&hctx->dispatch_wait_lock);
eb619fdb 1022 list_del_init(&wait->entry);
5815839b
ML
1023 spin_unlock(&hctx->dispatch_wait_lock);
1024
da55f2cc
OS
1025 blk_mq_run_hw_queue(hctx, true);
1026 return 1;
1027}
1028
f906a6a0
JA
1029/*
1030 * Mark us waiting for a tag. For shared tags, this involves hooking us into
ee3e4de5
BVA
1031 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1032 * restart. For both cases, take care to check the condition again after
f906a6a0
JA
1033 * marking us as waiting.
1034 */
2278d69f 1035static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
f906a6a0 1036 struct request *rq)
da55f2cc 1037{
5815839b 1038 struct wait_queue_head *wq;
f906a6a0
JA
1039 wait_queue_entry_t *wait;
1040 bool ret;
da55f2cc 1041
2278d69f
ML
1042 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1043 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1044 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
f906a6a0 1045
c27d53fb
BVA
1046 /*
1047 * It's possible that a tag was freed in the window between the
1048 * allocation failure and adding the hardware queue to the wait
1049 * queue.
1050 *
1051 * Don't clear RESTART here, someone else could have set it.
1052 * At most this will cost an extra queue run.
1053 */
8ab6bb9e 1054 return blk_mq_get_driver_tag(rq);
eb619fdb 1055 }
eb619fdb 1056
2278d69f 1057 wait = &hctx->dispatch_wait;
c27d53fb
BVA
1058 if (!list_empty_careful(&wait->entry))
1059 return false;
1060
5815839b
ML
1061 wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1062
1063 spin_lock_irq(&wq->lock);
1064 spin_lock(&hctx->dispatch_wait_lock);
c27d53fb 1065 if (!list_empty(&wait->entry)) {
5815839b
ML
1066 spin_unlock(&hctx->dispatch_wait_lock);
1067 spin_unlock_irq(&wq->lock);
c27d53fb 1068 return false;
eb619fdb
JA
1069 }
1070
5815839b
ML
1071 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1072 __add_wait_queue(wq, wait);
c27d53fb 1073
da55f2cc 1074 /*
eb619fdb
JA
1075 * It's possible that a tag was freed in the window between the
1076 * allocation failure and adding the hardware queue to the wait
1077 * queue.
da55f2cc 1078 */
8ab6bb9e 1079 ret = blk_mq_get_driver_tag(rq);
c27d53fb 1080 if (!ret) {
5815839b
ML
1081 spin_unlock(&hctx->dispatch_wait_lock);
1082 spin_unlock_irq(&wq->lock);
c27d53fb 1083 return false;
eb619fdb 1084 }
c27d53fb
BVA
1085
1086 /*
1087 * We got a tag, remove ourselves from the wait queue to ensure
1088 * someone else gets the wakeup.
1089 */
c27d53fb 1090 list_del_init(&wait->entry);
5815839b
ML
1091 spin_unlock(&hctx->dispatch_wait_lock);
1092 spin_unlock_irq(&wq->lock);
c27d53fb
BVA
1093
1094 return true;
da55f2cc
OS
1095}
1096
6e768717
ML
1097#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1098#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1099/*
1100 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1101 * - EWMA is one simple way to compute running average value
1102 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1103 * - take 4 as factor for avoiding to get too small(0) result, and this
1104 * factor doesn't matter because EWMA decreases exponentially
1105 */
1106static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1107{
1108 unsigned int ewma;
1109
1110 if (hctx->queue->elevator)
1111 return;
1112
1113 ewma = hctx->dispatch_busy;
1114
1115 if (!ewma && !busy)
1116 return;
1117
1118 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1119 if (busy)
1120 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1121 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1122
1123 hctx->dispatch_busy = ewma;
1124}
1125
86ff7c2a
ML
1126#define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1127
1f57f8d4
JA
1128/*
1129 * Returns true if we did some work AND can potentially do more.
1130 */
de148297 1131bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
eb619fdb 1132 bool got_budget)
320ae51f 1133{
81380ca1 1134 struct blk_mq_hw_ctx *hctx;
6d6f167c 1135 struct request *rq, *nxt;
eb619fdb 1136 bool no_tag = false;
fc17b653 1137 int errors, queued;
86ff7c2a 1138 blk_status_t ret = BLK_STS_OK;
320ae51f 1139
81380ca1
OS
1140 if (list_empty(list))
1141 return false;
1142
de148297
ML
1143 WARN_ON(!list_is_singular(list) && got_budget);
1144
320ae51f
JA
1145 /*
1146 * Now process all the entries, sending them to the driver.
1147 */
93efe981 1148 errors = queued = 0;
81380ca1 1149 do {
74c45052 1150 struct blk_mq_queue_data bd;
320ae51f 1151
f04c3df3 1152 rq = list_first_entry(list, struct request, queuelist);
0bca799b 1153
ea4f995e 1154 hctx = rq->mq_hctx;
0bca799b
ML
1155 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1156 break;
1157
8ab6bb9e 1158 if (!blk_mq_get_driver_tag(rq)) {
3c782d67 1159 /*
da55f2cc 1160 * The initial allocation attempt failed, so we need to
eb619fdb
JA
1161 * rerun the hardware queue when a tag is freed. The
1162 * waitqueue takes care of that. If the queue is run
1163 * before we add this entry back on the dispatch list,
1164 * we'll re-run it below.
3c782d67 1165 */
2278d69f 1166 if (!blk_mq_mark_tag_wait(hctx, rq)) {
0bca799b 1167 blk_mq_put_dispatch_budget(hctx);
f906a6a0
JA
1168 /*
1169 * For non-shared tags, the RESTART check
1170 * will suffice.
1171 */
1172 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1173 no_tag = true;
de148297
ML
1174 break;
1175 }
1176 }
1177
320ae51f 1178 list_del_init(&rq->queuelist);
320ae51f 1179
74c45052 1180 bd.rq = rq;
113285b4
JA
1181
1182 /*
1183 * Flag last if we have no more requests, or if we have more
1184 * but can't assign a driver tag to it.
1185 */
1186 if (list_empty(list))
1187 bd.last = true;
1188 else {
113285b4 1189 nxt = list_first_entry(list, struct request, queuelist);
8ab6bb9e 1190 bd.last = !blk_mq_get_driver_tag(nxt);
113285b4 1191 }
74c45052
JA
1192
1193 ret = q->mq_ops->queue_rq(hctx, &bd);
86ff7c2a 1194 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
6d6f167c
JW
1195 /*
1196 * If an I/O scheduler has been configured and we got a
ff821d27
JA
1197 * driver tag for the next request already, free it
1198 * again.
6d6f167c
JW
1199 */
1200 if (!list_empty(list)) {
1201 nxt = list_first_entry(list, struct request, queuelist);
1202 blk_mq_put_driver_tag(nxt);
1203 }
f04c3df3 1204 list_add(&rq->queuelist, list);
ed0791b2 1205 __blk_mq_requeue_request(rq);
320ae51f 1206 break;
fc17b653
CH
1207 }
1208
1209 if (unlikely(ret != BLK_STS_OK)) {
93efe981 1210 errors++;
2a842aca 1211 blk_mq_end_request(rq, BLK_STS_IOERR);
fc17b653 1212 continue;
320ae51f
JA
1213 }
1214
fc17b653 1215 queued++;
81380ca1 1216 } while (!list_empty(list));
320ae51f 1217
703fd1c0 1218 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1219
1220 /*
1221 * Any items that need requeuing? Stuff them into hctx->dispatch,
1222 * that is where we will continue on next queue run.
1223 */
f04c3df3 1224 if (!list_empty(list)) {
86ff7c2a
ML
1225 bool needs_restart;
1226
320ae51f 1227 spin_lock(&hctx->lock);
c13660a0 1228 list_splice_init(list, &hctx->dispatch);
320ae51f 1229 spin_unlock(&hctx->lock);
f04c3df3 1230
9ba52e58 1231 /*
710c785f
BVA
1232 * If SCHED_RESTART was set by the caller of this function and
1233 * it is no longer set that means that it was cleared by another
1234 * thread and hence that a queue rerun is needed.
9ba52e58 1235 *
eb619fdb
JA
1236 * If 'no_tag' is set, that means that we failed getting
1237 * a driver tag with an I/O scheduler attached. If our dispatch
1238 * waitqueue is no longer active, ensure that we run the queue
1239 * AFTER adding our entries back to the list.
bd166ef1 1240 *
710c785f
BVA
1241 * If no I/O scheduler has been configured it is possible that
1242 * the hardware queue got stopped and restarted before requests
1243 * were pushed back onto the dispatch list. Rerun the queue to
1244 * avoid starvation. Notes:
1245 * - blk_mq_run_hw_queue() checks whether or not a queue has
1246 * been stopped before rerunning a queue.
1247 * - Some but not all block drivers stop a queue before
fc17b653 1248 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1249 * and dm-rq.
86ff7c2a
ML
1250 *
1251 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1252 * bit is set, run queue after a delay to avoid IO stalls
1253 * that could otherwise occur if the queue is idle.
bd166ef1 1254 */
86ff7c2a
ML
1255 needs_restart = blk_mq_sched_needs_restart(hctx);
1256 if (!needs_restart ||
eb619fdb 1257 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
bd166ef1 1258 blk_mq_run_hw_queue(hctx, true);
86ff7c2a
ML
1259 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1260 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1f57f8d4 1261
6e768717 1262 blk_mq_update_dispatch_busy(hctx, true);
1f57f8d4 1263 return false;
6e768717
ML
1264 } else
1265 blk_mq_update_dispatch_busy(hctx, false);
f04c3df3 1266
1f57f8d4
JA
1267 /*
1268 * If the host/device is unable to accept more work, inform the
1269 * caller of that.
1270 */
1271 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1272 return false;
1273
93efe981 1274 return (queued + errors) != 0;
f04c3df3
JA
1275}
1276
6a83e74d
BVA
1277static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1278{
1279 int srcu_idx;
1280
b7a71e66
JA
1281 /*
1282 * We should be running this queue from one of the CPUs that
1283 * are mapped to it.
7df938fb
ML
1284 *
1285 * There are at least two related races now between setting
1286 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1287 * __blk_mq_run_hw_queue():
1288 *
1289 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1290 * but later it becomes online, then this warning is harmless
1291 * at all
1292 *
1293 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1294 * but later it becomes offline, then the warning can't be
1295 * triggered, and we depend on blk-mq timeout handler to
1296 * handle dispatched requests to this hctx
b7a71e66 1297 */
7df938fb
ML
1298 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1299 cpu_online(hctx->next_cpu)) {
1300 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1301 raw_smp_processor_id(),
1302 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1303 dump_stack();
1304 }
6a83e74d 1305
b7a71e66
JA
1306 /*
1307 * We can't run the queue inline with ints disabled. Ensure that
1308 * we catch bad users of this early.
1309 */
1310 WARN_ON_ONCE(in_interrupt());
1311
04ced159 1312 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
bf4907c0 1313
04ced159
JA
1314 hctx_lock(hctx, &srcu_idx);
1315 blk_mq_sched_dispatch_requests(hctx);
1316 hctx_unlock(hctx, srcu_idx);
6a83e74d
BVA
1317}
1318
f82ddf19
ML
1319static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1320{
1321 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1322
1323 if (cpu >= nr_cpu_ids)
1324 cpu = cpumask_first(hctx->cpumask);
1325 return cpu;
1326}
1327
506e931f
JA
1328/*
1329 * It'd be great if the workqueue API had a way to pass
1330 * in a mask and had some smarts for more clever placement.
1331 * For now we just round-robin here, switching for every
1332 * BLK_MQ_CPU_WORK_BATCH queued items.
1333 */
1334static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1335{
7bed4595 1336 bool tried = false;
476f8c98 1337 int next_cpu = hctx->next_cpu;
7bed4595 1338
b657d7e6
CH
1339 if (hctx->queue->nr_hw_queues == 1)
1340 return WORK_CPU_UNBOUND;
506e931f
JA
1341
1342 if (--hctx->next_cpu_batch <= 0) {
7bed4595 1343select_cpu:
476f8c98 1344 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
20e4d813 1345 cpu_online_mask);
506e931f 1346 if (next_cpu >= nr_cpu_ids)
f82ddf19 1347 next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
1348 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1349 }
1350
7bed4595
ML
1351 /*
1352 * Do unbound schedule if we can't find a online CPU for this hctx,
1353 * and it should only happen in the path of handling CPU DEAD.
1354 */
476f8c98 1355 if (!cpu_online(next_cpu)) {
7bed4595
ML
1356 if (!tried) {
1357 tried = true;
1358 goto select_cpu;
1359 }
1360
1361 /*
1362 * Make sure to re-select CPU next time once after CPUs
1363 * in hctx->cpumask become online again.
1364 */
476f8c98 1365 hctx->next_cpu = next_cpu;
7bed4595
ML
1366 hctx->next_cpu_batch = 1;
1367 return WORK_CPU_UNBOUND;
1368 }
476f8c98
ML
1369
1370 hctx->next_cpu = next_cpu;
1371 return next_cpu;
506e931f
JA
1372}
1373
7587a5ae
BVA
1374static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1375 unsigned long msecs)
320ae51f 1376{
5435c023 1377 if (unlikely(blk_mq_hctx_stopped(hctx)))
320ae51f
JA
1378 return;
1379
1b792f2f 1380 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1381 int cpu = get_cpu();
1382 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1383 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1384 put_cpu();
398205b8
PB
1385 return;
1386 }
e4043dcf 1387
2a90d4aa 1388 put_cpu();
e4043dcf 1389 }
398205b8 1390
ae943d20
BVA
1391 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1392 msecs_to_jiffies(msecs));
7587a5ae
BVA
1393}
1394
1395void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1396{
1397 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1398}
1399EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1400
79f720a7 1401bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
7587a5ae 1402{
24f5a90f
ML
1403 int srcu_idx;
1404 bool need_run;
1405
1406 /*
1407 * When queue is quiesced, we may be switching io scheduler, or
1408 * updating nr_hw_queues, or other things, and we can't run queue
1409 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1410 *
1411 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1412 * quiesced.
1413 */
04ced159
JA
1414 hctx_lock(hctx, &srcu_idx);
1415 need_run = !blk_queue_quiesced(hctx->queue) &&
1416 blk_mq_hctx_has_pending(hctx);
1417 hctx_unlock(hctx, srcu_idx);
24f5a90f
ML
1418
1419 if (need_run) {
79f720a7
JA
1420 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1421 return true;
1422 }
1423
1424 return false;
320ae51f 1425}
5b727272 1426EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 1427
b94ec296 1428void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1429{
1430 struct blk_mq_hw_ctx *hctx;
1431 int i;
1432
1433 queue_for_each_hw_ctx(q, hctx, i) {
79f720a7 1434 if (blk_mq_hctx_stopped(hctx))
320ae51f
JA
1435 continue;
1436
b94ec296 1437 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1438 }
1439}
b94ec296 1440EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1441
fd001443
BVA
1442/**
1443 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1444 * @q: request queue.
1445 *
1446 * The caller is responsible for serializing this function against
1447 * blk_mq_{start,stop}_hw_queue().
1448 */
1449bool blk_mq_queue_stopped(struct request_queue *q)
1450{
1451 struct blk_mq_hw_ctx *hctx;
1452 int i;
1453
1454 queue_for_each_hw_ctx(q, hctx, i)
1455 if (blk_mq_hctx_stopped(hctx))
1456 return true;
1457
1458 return false;
1459}
1460EXPORT_SYMBOL(blk_mq_queue_stopped);
1461
39a70c76
ML
1462/*
1463 * This function is often used for pausing .queue_rq() by driver when
1464 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1465 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1466 *
1467 * We do not guarantee that dispatch can be drained or blocked
1468 * after blk_mq_stop_hw_queue() returns. Please use
1469 * blk_mq_quiesce_queue() for that requirement.
1470 */
2719aa21
JA
1471void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1472{
641a9ed6 1473 cancel_delayed_work(&hctx->run_work);
280d45f6 1474
641a9ed6 1475 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2719aa21 1476}
641a9ed6 1477EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2719aa21 1478
39a70c76
ML
1479/*
1480 * This function is often used for pausing .queue_rq() by driver when
1481 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1482 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1483 *
1484 * We do not guarantee that dispatch can be drained or blocked
1485 * after blk_mq_stop_hw_queues() returns. Please use
1486 * blk_mq_quiesce_queue() for that requirement.
1487 */
2719aa21
JA
1488void blk_mq_stop_hw_queues(struct request_queue *q)
1489{
641a9ed6
ML
1490 struct blk_mq_hw_ctx *hctx;
1491 int i;
1492
1493 queue_for_each_hw_ctx(q, hctx, i)
1494 blk_mq_stop_hw_queue(hctx);
280d45f6
CH
1495}
1496EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1497
320ae51f
JA
1498void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1499{
1500 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1501
0ffbce80 1502 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1503}
1504EXPORT_SYMBOL(blk_mq_start_hw_queue);
1505
2f268556
CH
1506void blk_mq_start_hw_queues(struct request_queue *q)
1507{
1508 struct blk_mq_hw_ctx *hctx;
1509 int i;
1510
1511 queue_for_each_hw_ctx(q, hctx, i)
1512 blk_mq_start_hw_queue(hctx);
1513}
1514EXPORT_SYMBOL(blk_mq_start_hw_queues);
1515
ae911c5e
JA
1516void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1517{
1518 if (!blk_mq_hctx_stopped(hctx))
1519 return;
1520
1521 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1522 blk_mq_run_hw_queue(hctx, async);
1523}
1524EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1525
1b4a3258 1526void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1527{
1528 struct blk_mq_hw_ctx *hctx;
1529 int i;
1530
ae911c5e
JA
1531 queue_for_each_hw_ctx(q, hctx, i)
1532 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1533}
1534EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1535
70f4db63 1536static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1537{
1538 struct blk_mq_hw_ctx *hctx;
1539
9f993737 1540 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 1541
21c6e939 1542 /*
15fe8a90 1543 * If we are stopped, don't run the queue.
21c6e939 1544 */
15fe8a90 1545 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
0196d6b4 1546 return;
7587a5ae
BVA
1547
1548 __blk_mq_run_hw_queue(hctx);
1549}
1550
cfd0c552 1551static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1552 struct request *rq,
1553 bool at_head)
320ae51f 1554{
e57690fe
JA
1555 struct blk_mq_ctx *ctx = rq->mq_ctx;
1556
7b607814
BVA
1557 lockdep_assert_held(&ctx->lock);
1558
01b983c9
JA
1559 trace_block_rq_insert(hctx->queue, rq);
1560
72a0a36e
CH
1561 if (at_head)
1562 list_add(&rq->queuelist, &ctx->rq_list);
1563 else
1564 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1565}
4bb659b1 1566
2c3ad667
JA
1567void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1568 bool at_head)
cfd0c552
ML
1569{
1570 struct blk_mq_ctx *ctx = rq->mq_ctx;
1571
7b607814
BVA
1572 lockdep_assert_held(&ctx->lock);
1573
e57690fe 1574 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1575 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1576}
1577
157f377b
JA
1578/*
1579 * Should only be used carefully, when the caller knows we want to
1580 * bypass a potential IO scheduler on the target device.
1581 */
b0850297 1582void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
157f377b 1583{
ea4f995e 1584 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
157f377b
JA
1585
1586 spin_lock(&hctx->lock);
1587 list_add_tail(&rq->queuelist, &hctx->dispatch);
1588 spin_unlock(&hctx->lock);
1589
b0850297
ML
1590 if (run_queue)
1591 blk_mq_run_hw_queue(hctx, false);
157f377b
JA
1592}
1593
bd166ef1
JA
1594void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1595 struct list_head *list)
320ae51f
JA
1596
1597{
3f0cedc7
ML
1598 struct request *rq;
1599
320ae51f
JA
1600 /*
1601 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1602 * offline now
1603 */
3f0cedc7 1604 list_for_each_entry(rq, list, queuelist) {
e57690fe 1605 BUG_ON(rq->mq_ctx != ctx);
3f0cedc7 1606 trace_block_rq_insert(hctx->queue, rq);
320ae51f 1607 }
3f0cedc7
ML
1608
1609 spin_lock(&ctx->lock);
1610 list_splice_tail_init(list, &ctx->rq_list);
cfd0c552 1611 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1612 spin_unlock(&ctx->lock);
320ae51f
JA
1613}
1614
1615static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1616{
1617 struct request *rqa = container_of(a, struct request, queuelist);
1618 struct request *rqb = container_of(b, struct request, queuelist);
1619
1620 return !(rqa->mq_ctx < rqb->mq_ctx ||
1621 (rqa->mq_ctx == rqb->mq_ctx &&
1622 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1623}
1624
1625void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1626{
67cae4c9 1627 struct blk_mq_hw_ctx *this_hctx;
320ae51f
JA
1628 struct blk_mq_ctx *this_ctx;
1629 struct request_queue *this_q;
1630 struct request *rq;
1631 LIST_HEAD(list);
67cae4c9 1632 LIST_HEAD(rq_list);
320ae51f
JA
1633 unsigned int depth;
1634
1635 list_splice_init(&plug->mq_list, &list);
1636
1637 list_sort(NULL, &list, plug_ctx_cmp);
1638
1639 this_q = NULL;
67cae4c9 1640 this_hctx = NULL;
320ae51f
JA
1641 this_ctx = NULL;
1642 depth = 0;
1643
1644 while (!list_empty(&list)) {
1645 rq = list_entry_rq(list.next);
1646 list_del_init(&rq->queuelist);
1647 BUG_ON(!rq->q);
67cae4c9
JA
1648 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1649 if (this_hctx) {
587562d0 1650 trace_block_unplug(this_q, depth, !from_schedule);
67cae4c9
JA
1651 blk_mq_sched_insert_requests(this_hctx, this_ctx,
1652 &rq_list,
bd166ef1 1653 from_schedule);
320ae51f
JA
1654 }
1655
320ae51f 1656 this_q = rq->q;
67cae4c9
JA
1657 this_ctx = rq->mq_ctx;
1658 this_hctx = rq->mq_hctx;
320ae51f
JA
1659 depth = 0;
1660 }
1661
1662 depth++;
67cae4c9 1663 list_add_tail(&rq->queuelist, &rq_list);
320ae51f
JA
1664 }
1665
1666 /*
67cae4c9
JA
1667 * If 'this_hctx' is set, we know we have entries to complete
1668 * on 'rq_list'. Do those.
320ae51f 1669 */
67cae4c9 1670 if (this_hctx) {
587562d0 1671 trace_block_unplug(this_q, depth, !from_schedule);
67cae4c9 1672 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
bd166ef1 1673 from_schedule);
320ae51f
JA
1674 }
1675}
1676
1677static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1678{
da8d7f07 1679 blk_init_request_from_bio(rq, bio);
4b570521 1680
6e85eaf3 1681 blk_account_io_start(rq, true);
320ae51f
JA
1682}
1683
fd2d3326
JA
1684static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1685{
bd166ef1
JA
1686 if (rq->tag != -1)
1687 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1688
1689 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1690}
1691
0f95549c
MS
1692static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1693 struct request *rq,
1694 blk_qc_t *cookie)
f984df1f 1695{
f984df1f 1696 struct request_queue *q = rq->q;
f984df1f
SL
1697 struct blk_mq_queue_data bd = {
1698 .rq = rq,
d945a365 1699 .last = true,
f984df1f 1700 };
bd166ef1 1701 blk_qc_t new_cookie;
f06345ad 1702 blk_status_t ret;
0f95549c
MS
1703
1704 new_cookie = request_to_qc_t(hctx, rq);
1705
1706 /*
1707 * For OK queue, we are done. For error, caller may kill it.
1708 * Any other error (busy), just add it to our list as we
1709 * previously would have done.
1710 */
1711 ret = q->mq_ops->queue_rq(hctx, &bd);
1712 switch (ret) {
1713 case BLK_STS_OK:
6ce3dd6e 1714 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
1715 *cookie = new_cookie;
1716 break;
1717 case BLK_STS_RESOURCE:
86ff7c2a 1718 case BLK_STS_DEV_RESOURCE:
6ce3dd6e 1719 blk_mq_update_dispatch_busy(hctx, true);
0f95549c
MS
1720 __blk_mq_requeue_request(rq);
1721 break;
1722 default:
6ce3dd6e 1723 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
1724 *cookie = BLK_QC_T_NONE;
1725 break;
1726 }
1727
1728 return ret;
1729}
1730
0f95549c
MS
1731static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1732 struct request *rq,
396eaf21
ML
1733 blk_qc_t *cookie,
1734 bool bypass_insert)
0f95549c
MS
1735{
1736 struct request_queue *q = rq->q;
d964f04a
ML
1737 bool run_queue = true;
1738
23d4ee19
ML
1739 /*
1740 * RCU or SRCU read lock is needed before checking quiesced flag.
1741 *
1742 * When queue is stopped or quiesced, ignore 'bypass_insert' from
c77ff7fd 1743 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
23d4ee19
ML
1744 * and avoid driver to try to dispatch again.
1745 */
f4560ffe 1746 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
d964f04a 1747 run_queue = false;
23d4ee19 1748 bypass_insert = false;
d964f04a
ML
1749 goto insert;
1750 }
f984df1f 1751
396eaf21 1752 if (q->elevator && !bypass_insert)
2253efc8
BVA
1753 goto insert;
1754
0bca799b 1755 if (!blk_mq_get_dispatch_budget(hctx))
bd166ef1
JA
1756 goto insert;
1757
8ab6bb9e 1758 if (!blk_mq_get_driver_tag(rq)) {
0bca799b 1759 blk_mq_put_dispatch_budget(hctx);
de148297 1760 goto insert;
88022d72 1761 }
de148297 1762
0f95549c 1763 return __blk_mq_issue_directly(hctx, rq, cookie);
2253efc8 1764insert:
396eaf21
ML
1765 if (bypass_insert)
1766 return BLK_STS_RESOURCE;
0f95549c 1767
23d4ee19 1768 blk_mq_sched_insert_request(rq, false, run_queue, false);
0f95549c 1769 return BLK_STS_OK;
f984df1f
SL
1770}
1771
5eb6126e
CH
1772static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1773 struct request *rq, blk_qc_t *cookie)
1774{
0f95549c 1775 blk_status_t ret;
04ced159 1776 int srcu_idx;
bf4907c0 1777
04ced159 1778 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
bf4907c0 1779
04ced159 1780 hctx_lock(hctx, &srcu_idx);
0f95549c 1781
396eaf21 1782 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
86ff7c2a 1783 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
23d4ee19 1784 blk_mq_sched_insert_request(rq, false, true, false);
0f95549c
MS
1785 else if (ret != BLK_STS_OK)
1786 blk_mq_end_request(rq, ret);
1787
04ced159 1788 hctx_unlock(hctx, srcu_idx);
5eb6126e
CH
1789}
1790
c77ff7fd 1791blk_status_t blk_mq_request_issue_directly(struct request *rq)
396eaf21
ML
1792{
1793 blk_status_t ret;
1794 int srcu_idx;
1795 blk_qc_t unused_cookie;
ea4f995e 1796 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
396eaf21
ML
1797
1798 hctx_lock(hctx, &srcu_idx);
1799 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1800 hctx_unlock(hctx, srcu_idx);
1801
1802 return ret;
5eb6126e
CH
1803}
1804
6ce3dd6e
ML
1805void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1806 struct list_head *list)
1807{
1808 while (!list_empty(list)) {
1809 blk_status_t ret;
1810 struct request *rq = list_first_entry(list, struct request,
1811 queuelist);
1812
1813 list_del_init(&rq->queuelist);
1814 ret = blk_mq_request_issue_directly(rq);
1815 if (ret != BLK_STS_OK) {
8824f622
ML
1816 if (ret == BLK_STS_RESOURCE ||
1817 ret == BLK_STS_DEV_RESOURCE) {
1818 list_add(&rq->queuelist, list);
1819 break;
1820 }
1821 blk_mq_end_request(rq, ret);
6ce3dd6e
ML
1822 }
1823 }
1824}
1825
dece1635 1826static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1827{
ef295ecf 1828 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1829 const int is_flush_fua = op_is_flush(bio->bi_opf);
f9afca4d 1830 struct blk_mq_alloc_data data = { .flags = 0, .cmd_flags = bio->bi_opf };
07068d5b 1831 struct request *rq;
5eb6126e 1832 unsigned int request_count = 0;
f984df1f 1833 struct blk_plug *plug;
5b3f341f 1834 struct request *same_queue_rq = NULL;
7b371636 1835 blk_qc_t cookie;
07068d5b
JA
1836
1837 blk_queue_bounce(q, &bio);
1838
af67c31f 1839 blk_queue_split(q, &bio);
f36ea50c 1840
e23947bd 1841 if (!bio_integrity_prep(bio))
dece1635 1842 return BLK_QC_T_NONE;
07068d5b 1843
87c279e6
OS
1844 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1845 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1846 return BLK_QC_T_NONE;
f984df1f 1847
bd166ef1
JA
1848 if (blk_mq_sched_bio_merge(q, bio))
1849 return BLK_QC_T_NONE;
1850
c1c80384 1851 rq_qos_throttle(q, bio, NULL);
87760e5e 1852
f9afca4d 1853 rq = blk_mq_get_request(q, bio, &data);
87760e5e 1854 if (unlikely(!rq)) {
c1c80384 1855 rq_qos_cleanup(q, bio);
03a07c92
GR
1856 if (bio->bi_opf & REQ_NOWAIT)
1857 bio_wouldblock_error(bio);
dece1635 1858 return BLK_QC_T_NONE;
87760e5e
JA
1859 }
1860
d6f1dda2
XW
1861 trace_block_getrq(q, bio, bio->bi_opf);
1862
c1c80384 1863 rq_qos_track(q, rq, bio);
07068d5b 1864
fd2d3326 1865 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 1866
f984df1f 1867 plug = current->plug;
07068d5b 1868 if (unlikely(is_flush_fua)) {
f984df1f 1869 blk_mq_put_ctx(data.ctx);
07068d5b 1870 blk_mq_bio_to_request(rq, bio);
923218f6
ML
1871
1872 /* bypass scheduler for flush rq */
1873 blk_insert_flush(rq);
1874 blk_mq_run_hw_queue(data.hctx, true);
a4d907b6 1875 } else if (plug && q->nr_hw_queues == 1) {
600271d9
SL
1876 struct request *last = NULL;
1877
b00c53e8 1878 blk_mq_put_ctx(data.ctx);
e6c4438b 1879 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1880
1881 /*
1882 * @request_count may become stale because of schedule
1883 * out, so check the list again.
1884 */
1885 if (list_empty(&plug->mq_list))
1886 request_count = 0;
254d259d
CH
1887 else if (blk_queue_nomerges(q))
1888 request_count = blk_plug_queued_count(q);
1889
676d0607 1890 if (!request_count)
e6c4438b 1891 trace_block_plug(q);
600271d9
SL
1892 else
1893 last = list_entry_rq(plug->mq_list.prev);
b094f89c 1894
600271d9
SL
1895 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1896 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1897 blk_flush_plug_list(plug, false);
1898 trace_block_plug(q);
320ae51f 1899 }
b094f89c 1900
e6c4438b 1901 list_add_tail(&rq->queuelist, &plug->mq_list);
2299722c 1902 } else if (plug && !blk_queue_nomerges(q)) {
bd166ef1 1903 blk_mq_bio_to_request(rq, bio);
07068d5b 1904
07068d5b 1905 /*
6a83e74d 1906 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1907 * Otherwise the existing request in the plug list will be
1908 * issued. So the plug list will have one request at most
2299722c
CH
1909 * The plug list might get flushed before this. If that happens,
1910 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 1911 */
2299722c
CH
1912 if (list_empty(&plug->mq_list))
1913 same_queue_rq = NULL;
1914 if (same_queue_rq)
1915 list_del_init(&same_queue_rq->queuelist);
1916 list_add_tail(&rq->queuelist, &plug->mq_list);
1917
bf4907c0
JA
1918 blk_mq_put_ctx(data.ctx);
1919
dad7a3be 1920 if (same_queue_rq) {
ea4f995e 1921 data.hctx = same_queue_rq->mq_hctx;
2299722c
CH
1922 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1923 &cookie);
dad7a3be 1924 }
6ce3dd6e
ML
1925 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
1926 !data.hctx->dispatch_busy)) {
bf4907c0 1927 blk_mq_put_ctx(data.ctx);
2299722c 1928 blk_mq_bio_to_request(rq, bio);
2299722c 1929 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
ab42f35d 1930 } else {
b00c53e8 1931 blk_mq_put_ctx(data.ctx);
ab42f35d 1932 blk_mq_bio_to_request(rq, bio);
8fa9f556 1933 blk_mq_sched_insert_request(rq, false, true, true);
ab42f35d 1934 }
320ae51f 1935
7b371636 1936 return cookie;
320ae51f
JA
1937}
1938
cc71a6f4
JA
1939void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1940 unsigned int hctx_idx)
95363efd 1941{
e9b267d9 1942 struct page *page;
320ae51f 1943
24d2f903 1944 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1945 int i;
320ae51f 1946
24d2f903 1947 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1948 struct request *rq = tags->static_rqs[i];
1949
1950 if (!rq)
e9b267d9 1951 continue;
d6296d39 1952 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 1953 tags->static_rqs[i] = NULL;
e9b267d9 1954 }
320ae51f 1955 }
320ae51f 1956
24d2f903
CH
1957 while (!list_empty(&tags->page_list)) {
1958 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1959 list_del_init(&page->lru);
f75782e4
CM
1960 /*
1961 * Remove kmemleak object previously allocated in
1962 * blk_mq_init_rq_map().
1963 */
1964 kmemleak_free(page_address(page));
320ae51f
JA
1965 __free_pages(page, page->private);
1966 }
cc71a6f4 1967}
320ae51f 1968
cc71a6f4
JA
1969void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1970{
24d2f903 1971 kfree(tags->rqs);
cc71a6f4 1972 tags->rqs = NULL;
2af8cbe3
JA
1973 kfree(tags->static_rqs);
1974 tags->static_rqs = NULL;
320ae51f 1975
24d2f903 1976 blk_mq_free_tags(tags);
320ae51f
JA
1977}
1978
cc71a6f4
JA
1979struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1980 unsigned int hctx_idx,
1981 unsigned int nr_tags,
1982 unsigned int reserved_tags)
320ae51f 1983{
24d2f903 1984 struct blk_mq_tags *tags;
59f082e4 1985 int node;
320ae51f 1986
ed76e329 1987 node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
59f082e4
SL
1988 if (node == NUMA_NO_NODE)
1989 node = set->numa_node;
1990
1991 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 1992 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1993 if (!tags)
1994 return NULL;
320ae51f 1995
590b5b7d 1996 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
36e1f3d1 1997 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1998 node);
24d2f903
CH
1999 if (!tags->rqs) {
2000 blk_mq_free_tags(tags);
2001 return NULL;
2002 }
320ae51f 2003
590b5b7d
KC
2004 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2005 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2006 node);
2af8cbe3
JA
2007 if (!tags->static_rqs) {
2008 kfree(tags->rqs);
2009 blk_mq_free_tags(tags);
2010 return NULL;
2011 }
2012
cc71a6f4
JA
2013 return tags;
2014}
2015
2016static size_t order_to_size(unsigned int order)
2017{
2018 return (size_t)PAGE_SIZE << order;
2019}
2020
1d9bd516
TH
2021static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2022 unsigned int hctx_idx, int node)
2023{
2024 int ret;
2025
2026 if (set->ops->init_request) {
2027 ret = set->ops->init_request(set, rq, hctx_idx, node);
2028 if (ret)
2029 return ret;
2030 }
2031
12f5b931 2032 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1d9bd516
TH
2033 return 0;
2034}
2035
cc71a6f4
JA
2036int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2037 unsigned int hctx_idx, unsigned int depth)
2038{
2039 unsigned int i, j, entries_per_page, max_order = 4;
2040 size_t rq_size, left;
59f082e4
SL
2041 int node;
2042
ed76e329 2043 node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
59f082e4
SL
2044 if (node == NUMA_NO_NODE)
2045 node = set->numa_node;
cc71a6f4
JA
2046
2047 INIT_LIST_HEAD(&tags->page_list);
2048
320ae51f
JA
2049 /*
2050 * rq_size is the size of the request plus driver payload, rounded
2051 * to the cacheline size
2052 */
24d2f903 2053 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 2054 cache_line_size());
cc71a6f4 2055 left = rq_size * depth;
320ae51f 2056
cc71a6f4 2057 for (i = 0; i < depth; ) {
320ae51f
JA
2058 int this_order = max_order;
2059 struct page *page;
2060 int to_do;
2061 void *p;
2062
b3a834b1 2063 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
2064 this_order--;
2065
2066 do {
59f082e4 2067 page = alloc_pages_node(node,
36e1f3d1 2068 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 2069 this_order);
320ae51f
JA
2070 if (page)
2071 break;
2072 if (!this_order--)
2073 break;
2074 if (order_to_size(this_order) < rq_size)
2075 break;
2076 } while (1);
2077
2078 if (!page)
24d2f903 2079 goto fail;
320ae51f
JA
2080
2081 page->private = this_order;
24d2f903 2082 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
2083
2084 p = page_address(page);
f75782e4
CM
2085 /*
2086 * Allow kmemleak to scan these pages as they contain pointers
2087 * to additional allocations like via ops->init_request().
2088 */
36e1f3d1 2089 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 2090 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 2091 to_do = min(entries_per_page, depth - i);
320ae51f
JA
2092 left -= to_do * rq_size;
2093 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
2094 struct request *rq = p;
2095
2096 tags->static_rqs[i] = rq;
1d9bd516
TH
2097 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2098 tags->static_rqs[i] = NULL;
2099 goto fail;
e9b267d9
CH
2100 }
2101
320ae51f
JA
2102 p += rq_size;
2103 i++;
2104 }
2105 }
cc71a6f4 2106 return 0;
320ae51f 2107
24d2f903 2108fail:
cc71a6f4
JA
2109 blk_mq_free_rqs(set, tags, hctx_idx);
2110 return -ENOMEM;
320ae51f
JA
2111}
2112
e57690fe
JA
2113/*
2114 * 'cpu' is going away. splice any existing rq_list entries from this
2115 * software queue to the hw queue dispatch list, and ensure that it
2116 * gets run.
2117 */
9467f859 2118static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 2119{
9467f859 2120 struct blk_mq_hw_ctx *hctx;
484b4061
JA
2121 struct blk_mq_ctx *ctx;
2122 LIST_HEAD(tmp);
2123
9467f859 2124 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 2125 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
2126
2127 spin_lock(&ctx->lock);
2128 if (!list_empty(&ctx->rq_list)) {
2129 list_splice_init(&ctx->rq_list, &tmp);
2130 blk_mq_hctx_clear_pending(hctx, ctx);
2131 }
2132 spin_unlock(&ctx->lock);
2133
2134 if (list_empty(&tmp))
9467f859 2135 return 0;
484b4061 2136
e57690fe
JA
2137 spin_lock(&hctx->lock);
2138 list_splice_tail_init(&tmp, &hctx->dispatch);
2139 spin_unlock(&hctx->lock);
484b4061
JA
2140
2141 blk_mq_run_hw_queue(hctx, true);
9467f859 2142 return 0;
484b4061
JA
2143}
2144
9467f859 2145static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 2146{
9467f859
TG
2147 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2148 &hctx->cpuhp_dead);
484b4061
JA
2149}
2150
c3b4afca 2151/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
2152static void blk_mq_exit_hctx(struct request_queue *q,
2153 struct blk_mq_tag_set *set,
2154 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2155{
8ab0b7dc
ML
2156 if (blk_mq_hw_queue_mapped(hctx))
2157 blk_mq_tag_idle(hctx);
08e98fc6 2158
f70ced09 2159 if (set->ops->exit_request)
d6296d39 2160 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
f70ced09 2161
08e98fc6
ML
2162 if (set->ops->exit_hctx)
2163 set->ops->exit_hctx(hctx, hctx_idx);
2164
6a83e74d 2165 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 2166 cleanup_srcu_struct(hctx->srcu);
6a83e74d 2167
9467f859 2168 blk_mq_remove_cpuhp(hctx);
f70ced09 2169 blk_free_flush_queue(hctx->fq);
88459642 2170 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2171}
2172
624dbe47
ML
2173static void blk_mq_exit_hw_queues(struct request_queue *q,
2174 struct blk_mq_tag_set *set, int nr_queue)
2175{
2176 struct blk_mq_hw_ctx *hctx;
2177 unsigned int i;
2178
2179 queue_for_each_hw_ctx(q, hctx, i) {
2180 if (i == nr_queue)
2181 break;
477e19de 2182 blk_mq_debugfs_unregister_hctx(hctx);
08e98fc6 2183 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 2184 }
624dbe47
ML
2185}
2186
08e98fc6
ML
2187static int blk_mq_init_hctx(struct request_queue *q,
2188 struct blk_mq_tag_set *set,
2189 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 2190{
08e98fc6
ML
2191 int node;
2192
2193 node = hctx->numa_node;
2194 if (node == NUMA_NO_NODE)
2195 node = hctx->numa_node = set->numa_node;
2196
9f993737 2197 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
2198 spin_lock_init(&hctx->lock);
2199 INIT_LIST_HEAD(&hctx->dispatch);
2200 hctx->queue = q;
2404e607 2201 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 2202
9467f859 2203 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
2204
2205 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
2206
2207 /*
08e98fc6
ML
2208 * Allocate space for all possible cpus to avoid allocation at
2209 * runtime
320ae51f 2210 */
d904bfa7 2211 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
5b202853 2212 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
08e98fc6
ML
2213 if (!hctx->ctxs)
2214 goto unregister_cpu_notifier;
320ae51f 2215
5b202853
JW
2216 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2217 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
08e98fc6 2218 goto free_ctxs;
320ae51f 2219
08e98fc6 2220 hctx->nr_ctx = 0;
320ae51f 2221
5815839b 2222 spin_lock_init(&hctx->dispatch_wait_lock);
eb619fdb
JA
2223 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2224 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2225
08e98fc6
ML
2226 if (set->ops->init_hctx &&
2227 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2228 goto free_bitmap;
320ae51f 2229
5b202853
JW
2230 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2231 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
f70ced09 2232 if (!hctx->fq)
d48ece20 2233 goto exit_hctx;
320ae51f 2234
1d9bd516 2235 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
f70ced09 2236 goto free_fq;
320ae51f 2237
6a83e74d 2238 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 2239 init_srcu_struct(hctx->srcu);
6a83e74d 2240
08e98fc6 2241 return 0;
320ae51f 2242
f70ced09
ML
2243 free_fq:
2244 kfree(hctx->fq);
2245 exit_hctx:
2246 if (set->ops->exit_hctx)
2247 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 2248 free_bitmap:
88459642 2249 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2250 free_ctxs:
2251 kfree(hctx->ctxs);
2252 unregister_cpu_notifier:
9467f859 2253 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
2254 return -1;
2255}
320ae51f 2256
320ae51f
JA
2257static void blk_mq_init_cpu_queues(struct request_queue *q,
2258 unsigned int nr_hw_queues)
2259{
b3c661b1
JA
2260 struct blk_mq_tag_set *set = q->tag_set;
2261 unsigned int i, j;
320ae51f
JA
2262
2263 for_each_possible_cpu(i) {
2264 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2265 struct blk_mq_hw_ctx *hctx;
2266
320ae51f
JA
2267 __ctx->cpu = i;
2268 spin_lock_init(&__ctx->lock);
2269 INIT_LIST_HEAD(&__ctx->rq_list);
2270 __ctx->queue = q;
2271
320ae51f
JA
2272 /*
2273 * Set local node, IFF we have more than one hw queue. If
2274 * not, we remain on the home node of the device
2275 */
b3c661b1
JA
2276 for (j = 0; j < set->nr_maps; j++) {
2277 hctx = blk_mq_map_queue_type(q, j, i);
2278 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2279 hctx->numa_node = local_memory_node(cpu_to_node(i));
2280 }
320ae51f
JA
2281 }
2282}
2283
cc71a6f4
JA
2284static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2285{
2286 int ret = 0;
2287
2288 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2289 set->queue_depth, set->reserved_tags);
2290 if (!set->tags[hctx_idx])
2291 return false;
2292
2293 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2294 set->queue_depth);
2295 if (!ret)
2296 return true;
2297
2298 blk_mq_free_rq_map(set->tags[hctx_idx]);
2299 set->tags[hctx_idx] = NULL;
2300 return false;
2301}
2302
2303static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2304 unsigned int hctx_idx)
2305{
bd166ef1
JA
2306 if (set->tags[hctx_idx]) {
2307 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2308 blk_mq_free_rq_map(set->tags[hctx_idx]);
2309 set->tags[hctx_idx] = NULL;
2310 }
cc71a6f4
JA
2311}
2312
4b855ad3 2313static void blk_mq_map_swqueue(struct request_queue *q)
320ae51f 2314{
b3c661b1 2315 unsigned int i, j, hctx_idx;
320ae51f
JA
2316 struct blk_mq_hw_ctx *hctx;
2317 struct blk_mq_ctx *ctx;
2a34c087 2318 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2319
60de074b
AM
2320 /*
2321 * Avoid others reading imcomplete hctx->cpumask through sysfs
2322 */
2323 mutex_lock(&q->sysfs_lock);
2324
320ae51f 2325 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2326 cpumask_clear(hctx->cpumask);
320ae51f 2327 hctx->nr_ctx = 0;
d416c92c 2328 hctx->dispatch_from = NULL;
320ae51f
JA
2329 }
2330
2331 /*
4b855ad3 2332 * Map software to hardware queues.
4412efec
ML
2333 *
2334 * If the cpu isn't present, the cpu is mapped to first hctx.
320ae51f 2335 */
20e4d813 2336 for_each_possible_cpu(i) {
ed76e329 2337 hctx_idx = set->map[0].mq_map[i];
4412efec
ML
2338 /* unmapped hw queue can be remapped after CPU topo changed */
2339 if (!set->tags[hctx_idx] &&
2340 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2341 /*
2342 * If tags initialization fail for some hctx,
2343 * that hctx won't be brought online. In this
2344 * case, remap the current ctx to hctx[0] which
2345 * is guaranteed to always have tags allocated
2346 */
ed76e329 2347 set->map[0].mq_map[i] = 0;
4412efec
ML
2348 }
2349
897bb0c7 2350 ctx = per_cpu_ptr(q->queue_ctx, i);
b3c661b1
JA
2351 for (j = 0; j < set->nr_maps; j++) {
2352 hctx = blk_mq_map_queue_type(q, j, i);
f31967f0 2353
b3c661b1
JA
2354 /*
2355 * If the CPU is already set in the mask, then we've
2356 * mapped this one already. This can happen if
2357 * devices share queues across queue maps.
2358 */
2359 if (cpumask_test_cpu(i, hctx->cpumask))
2360 continue;
2361
2362 cpumask_set_cpu(i, hctx->cpumask);
2363 hctx->type = j;
2364 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2365 hctx->ctxs[hctx->nr_ctx++] = ctx;
2366
2367 /*
2368 * If the nr_ctx type overflows, we have exceeded the
2369 * amount of sw queues we can support.
2370 */
2371 BUG_ON(!hctx->nr_ctx);
2372 }
320ae51f 2373 }
506e931f 2374
60de074b
AM
2375 mutex_unlock(&q->sysfs_lock);
2376
506e931f 2377 queue_for_each_hw_ctx(q, hctx, i) {
4412efec
ML
2378 /*
2379 * If no software queues are mapped to this hardware queue,
2380 * disable it and free the request entries.
2381 */
2382 if (!hctx->nr_ctx) {
2383 /* Never unmap queue 0. We need it as a
2384 * fallback in case of a new remap fails
2385 * allocation
2386 */
2387 if (i && set->tags[i])
2388 blk_mq_free_map_and_requests(set, i);
2389
2390 hctx->tags = NULL;
2391 continue;
2392 }
484b4061 2393
2a34c087
ML
2394 hctx->tags = set->tags[i];
2395 WARN_ON(!hctx->tags);
2396
889fa31f
CY
2397 /*
2398 * Set the map size to the number of mapped software queues.
2399 * This is more accurate and more efficient than looping
2400 * over all possibly mapped software queues.
2401 */
88459642 2402 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2403
484b4061
JA
2404 /*
2405 * Initialize batch roundrobin counts
2406 */
f82ddf19 2407 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
2408 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2409 }
320ae51f
JA
2410}
2411
8e8320c9
JA
2412/*
2413 * Caller needs to ensure that we're either frozen/quiesced, or that
2414 * the queue isn't live yet.
2415 */
2404e607 2416static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2417{
2418 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2419 int i;
2420
2404e607 2421 queue_for_each_hw_ctx(q, hctx, i) {
97889f9a 2422 if (shared)
2404e607 2423 hctx->flags |= BLK_MQ_F_TAG_SHARED;
97889f9a 2424 else
2404e607
JM
2425 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2426 }
2427}
2428
8e8320c9
JA
2429static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2430 bool shared)
2404e607
JM
2431{
2432 struct request_queue *q;
0d2602ca 2433
705cda97
BVA
2434 lockdep_assert_held(&set->tag_list_lock);
2435
0d2602ca
JA
2436 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2437 blk_mq_freeze_queue(q);
2404e607 2438 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2439 blk_mq_unfreeze_queue(q);
2440 }
2441}
2442
2443static void blk_mq_del_queue_tag_set(struct request_queue *q)
2444{
2445 struct blk_mq_tag_set *set = q->tag_set;
2446
0d2602ca 2447 mutex_lock(&set->tag_list_lock);
705cda97 2448 list_del_rcu(&q->tag_set_list);
2404e607
JM
2449 if (list_is_singular(&set->tag_list)) {
2450 /* just transitioned to unshared */
2451 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2452 /* update existing queue */
2453 blk_mq_update_tag_set_depth(set, false);
2454 }
0d2602ca 2455 mutex_unlock(&set->tag_list_lock);
a347c7ad 2456 INIT_LIST_HEAD(&q->tag_set_list);
0d2602ca
JA
2457}
2458
2459static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2460 struct request_queue *q)
2461{
0d2602ca 2462 mutex_lock(&set->tag_list_lock);
2404e607 2463
ff821d27
JA
2464 /*
2465 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2466 */
2467 if (!list_empty(&set->tag_list) &&
2468 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2404e607
JM
2469 set->flags |= BLK_MQ_F_TAG_SHARED;
2470 /* update existing queue */
2471 blk_mq_update_tag_set_depth(set, true);
2472 }
2473 if (set->flags & BLK_MQ_F_TAG_SHARED)
2474 queue_set_hctx_shared(q, true);
705cda97 2475 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2404e607 2476
0d2602ca
JA
2477 mutex_unlock(&set->tag_list_lock);
2478}
2479
e09aae7e
ML
2480/*
2481 * It is the actual release handler for mq, but we do it from
2482 * request queue's release handler for avoiding use-after-free
2483 * and headache because q->mq_kobj shouldn't have been introduced,
2484 * but we can't group ctx/kctx kobj without it.
2485 */
2486void blk_mq_release(struct request_queue *q)
2487{
2488 struct blk_mq_hw_ctx *hctx;
2489 unsigned int i;
2490
2491 /* hctx kobj stays in hctx */
c3b4afca
ML
2492 queue_for_each_hw_ctx(q, hctx, i) {
2493 if (!hctx)
2494 continue;
6c8b232e 2495 kobject_put(&hctx->kobj);
c3b4afca 2496 }
e09aae7e
ML
2497
2498 kfree(q->queue_hw_ctx);
2499
7ea5fe31
ML
2500 /*
2501 * release .mq_kobj and sw queue's kobject now because
2502 * both share lifetime with request queue.
2503 */
2504 blk_mq_sysfs_deinit(q);
2505
e09aae7e
ML
2506 free_percpu(q->queue_ctx);
2507}
2508
24d2f903 2509struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2510{
2511 struct request_queue *uninit_q, *q;
2512
5ee0524b 2513 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
b62c21b7
MS
2514 if (!uninit_q)
2515 return ERR_PTR(-ENOMEM);
2516
2517 q = blk_mq_init_allocated_queue(set, uninit_q);
2518 if (IS_ERR(q))
2519 blk_cleanup_queue(uninit_q);
2520
2521 return q;
2522}
2523EXPORT_SYMBOL(blk_mq_init_queue);
2524
9316a9ed
JA
2525/*
2526 * Helper for setting up a queue with mq ops, given queue depth, and
2527 * the passed in mq ops flags.
2528 */
2529struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2530 const struct blk_mq_ops *ops,
2531 unsigned int queue_depth,
2532 unsigned int set_flags)
2533{
2534 struct request_queue *q;
2535 int ret;
2536
2537 memset(set, 0, sizeof(*set));
2538 set->ops = ops;
2539 set->nr_hw_queues = 1;
b3c661b1 2540 set->nr_maps = 1;
9316a9ed
JA
2541 set->queue_depth = queue_depth;
2542 set->numa_node = NUMA_NO_NODE;
2543 set->flags = set_flags;
2544
2545 ret = blk_mq_alloc_tag_set(set);
2546 if (ret)
2547 return ERR_PTR(ret);
2548
2549 q = blk_mq_init_queue(set);
2550 if (IS_ERR(q)) {
2551 blk_mq_free_tag_set(set);
2552 return q;
2553 }
2554
2555 return q;
2556}
2557EXPORT_SYMBOL(blk_mq_init_sq_queue);
2558
07319678
BVA
2559static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2560{
2561 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2562
05707b64 2563 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
07319678
BVA
2564 __alignof__(struct blk_mq_hw_ctx)) !=
2565 sizeof(struct blk_mq_hw_ctx));
2566
2567 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2568 hw_ctx_size += sizeof(struct srcu_struct);
2569
2570 return hw_ctx_size;
2571}
2572
34d11ffa
JW
2573static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2574 struct blk_mq_tag_set *set, struct request_queue *q,
2575 int hctx_idx, int node)
2576{
2577 struct blk_mq_hw_ctx *hctx;
2578
2579 hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
2580 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2581 node);
2582 if (!hctx)
2583 return NULL;
2584
2585 if (!zalloc_cpumask_var_node(&hctx->cpumask,
2586 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2587 node)) {
2588 kfree(hctx);
2589 return NULL;
2590 }
2591
2592 atomic_set(&hctx->nr_active, 0);
2593 hctx->numa_node = node;
2594 hctx->queue_num = hctx_idx;
2595
2596 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
2597 free_cpumask_var(hctx->cpumask);
2598 kfree(hctx);
2599 return NULL;
2600 }
2601 blk_mq_hctx_kobj_init(hctx);
2602
2603 return hctx;
2604}
2605
868f2f0b
KB
2606static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2607 struct request_queue *q)
320ae51f 2608{
e01ad46d 2609 int i, j, end;
868f2f0b 2610 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2611
fb350e0a
ML
2612 /* protect against switching io scheduler */
2613 mutex_lock(&q->sysfs_lock);
24d2f903 2614 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2615 int node;
34d11ffa 2616 struct blk_mq_hw_ctx *hctx;
868f2f0b 2617
ed76e329 2618 node = blk_mq_hw_queue_to_node(&set->map[0], i);
34d11ffa
JW
2619 /*
2620 * If the hw queue has been mapped to another numa node,
2621 * we need to realloc the hctx. If allocation fails, fallback
2622 * to use the previous one.
2623 */
2624 if (hctxs[i] && (hctxs[i]->numa_node == node))
2625 continue;
868f2f0b 2626
34d11ffa
JW
2627 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2628 if (hctx) {
2629 if (hctxs[i]) {
2630 blk_mq_exit_hctx(q, set, hctxs[i], i);
2631 kobject_put(&hctxs[i]->kobj);
2632 }
2633 hctxs[i] = hctx;
2634 } else {
2635 if (hctxs[i])
2636 pr_warn("Allocate new hctx on node %d fails,\
2637 fallback to previous one on node %d\n",
2638 node, hctxs[i]->numa_node);
2639 else
2640 break;
868f2f0b 2641 }
320ae51f 2642 }
e01ad46d
JW
2643 /*
2644 * Increasing nr_hw_queues fails. Free the newly allocated
2645 * hctxs and keep the previous q->nr_hw_queues.
2646 */
2647 if (i != set->nr_hw_queues) {
2648 j = q->nr_hw_queues;
2649 end = i;
2650 } else {
2651 j = i;
2652 end = q->nr_hw_queues;
2653 q->nr_hw_queues = set->nr_hw_queues;
2654 }
34d11ffa 2655
e01ad46d 2656 for (; j < end; j++) {
868f2f0b
KB
2657 struct blk_mq_hw_ctx *hctx = hctxs[j];
2658
2659 if (hctx) {
cc71a6f4
JA
2660 if (hctx->tags)
2661 blk_mq_free_map_and_requests(set, j);
868f2f0b 2662 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2663 kobject_put(&hctx->kobj);
868f2f0b
KB
2664 hctxs[j] = NULL;
2665
2666 }
2667 }
fb350e0a 2668 mutex_unlock(&q->sysfs_lock);
868f2f0b
KB
2669}
2670
392546ae
JA
2671/*
2672 * Maximum number of hardware queues we support. For single sets, we'll never
2673 * have more than the CPUs (software queues). For multiple sets, the tag_set
2674 * user may have set ->nr_hw_queues larger.
2675 */
2676static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2677{
2678 if (set->nr_maps == 1)
2679 return nr_cpu_ids;
2680
2681 return max(set->nr_hw_queues, nr_cpu_ids);
2682}
2683
868f2f0b
KB
2684struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2685 struct request_queue *q)
2686{
66841672
ML
2687 /* mark the queue as mq asap */
2688 q->mq_ops = set->ops;
2689
34dbad5d 2690 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
2691 blk_mq_poll_stats_bkt,
2692 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
2693 if (!q->poll_cb)
2694 goto err_exit;
2695
868f2f0b
KB
2696 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2697 if (!q->queue_ctx)
c7de5726 2698 goto err_exit;
868f2f0b 2699
737f98cf
ML
2700 /* init q->mq_kobj and sw queues' kobjects */
2701 blk_mq_sysfs_init(q);
2702
392546ae
JA
2703 q->nr_queues = nr_hw_queues(set);
2704 q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
868f2f0b
KB
2705 GFP_KERNEL, set->numa_node);
2706 if (!q->queue_hw_ctx)
2707 goto err_percpu;
2708
868f2f0b
KB
2709 blk_mq_realloc_hw_ctxs(set, q);
2710 if (!q->nr_hw_queues)
2711 goto err_hctxs;
320ae51f 2712
287922eb 2713 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2714 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f 2715
a8908939 2716 q->tag_set = set;
320ae51f 2717
94eddfbe 2718 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2719
05f1dd53 2720 if (!(set->flags & BLK_MQ_F_SG_MERGE))
f78bac2c 2721 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
05f1dd53 2722
1be036e9
CH
2723 q->sg_reserved_size = INT_MAX;
2724
2849450a 2725 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2726 INIT_LIST_HEAD(&q->requeue_list);
2727 spin_lock_init(&q->requeue_lock);
2728
254d259d 2729 blk_queue_make_request(q, blk_mq_make_request);
ea435e1b
CH
2730 if (q->mq_ops->poll)
2731 q->poll_fn = blk_mq_poll;
07068d5b 2732
eba71768
JA
2733 /*
2734 * Do this after blk_queue_make_request() overrides it...
2735 */
2736 q->nr_requests = set->queue_depth;
2737
64f1c21e
JA
2738 /*
2739 * Default to classic polling
2740 */
2741 q->poll_nsec = -1;
2742
24d2f903 2743 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
0d2602ca 2744 blk_mq_add_queue_tag_set(set, q);
4b855ad3 2745 blk_mq_map_swqueue(q);
4593fdbe 2746
d3484991
JA
2747 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2748 int ret;
2749
131d08e1 2750 ret = elevator_init_mq(q);
d3484991
JA
2751 if (ret)
2752 return ERR_PTR(ret);
2753 }
2754
320ae51f 2755 return q;
18741986 2756
320ae51f 2757err_hctxs:
868f2f0b 2758 kfree(q->queue_hw_ctx);
320ae51f 2759err_percpu:
868f2f0b 2760 free_percpu(q->queue_ctx);
c7de5726
ML
2761err_exit:
2762 q->mq_ops = NULL;
320ae51f
JA
2763 return ERR_PTR(-ENOMEM);
2764}
b62c21b7 2765EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2766
2767void blk_mq_free_queue(struct request_queue *q)
2768{
624dbe47 2769 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2770
0d2602ca 2771 blk_mq_del_queue_tag_set(q);
624dbe47 2772 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2773}
320ae51f 2774
a5164405
JA
2775static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2776{
2777 int i;
2778
cc71a6f4
JA
2779 for (i = 0; i < set->nr_hw_queues; i++)
2780 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2781 goto out_unwind;
a5164405
JA
2782
2783 return 0;
2784
2785out_unwind:
2786 while (--i >= 0)
cc71a6f4 2787 blk_mq_free_rq_map(set->tags[i]);
a5164405 2788
a5164405
JA
2789 return -ENOMEM;
2790}
2791
2792/*
2793 * Allocate the request maps associated with this tag_set. Note that this
2794 * may reduce the depth asked for, if memory is tight. set->queue_depth
2795 * will be updated to reflect the allocated depth.
2796 */
2797static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2798{
2799 unsigned int depth;
2800 int err;
2801
2802 depth = set->queue_depth;
2803 do {
2804 err = __blk_mq_alloc_rq_maps(set);
2805 if (!err)
2806 break;
2807
2808 set->queue_depth >>= 1;
2809 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2810 err = -ENOMEM;
2811 break;
2812 }
2813 } while (set->queue_depth);
2814
2815 if (!set->queue_depth || err) {
2816 pr_err("blk-mq: failed to allocate request map\n");
2817 return -ENOMEM;
2818 }
2819
2820 if (depth != set->queue_depth)
2821 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2822 depth, set->queue_depth);
2823
2824 return 0;
2825}
2826
ebe8bddb
OS
2827static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2828{
7d4901a9 2829 if (set->ops->map_queues) {
b3c661b1
JA
2830 int i;
2831
7d4901a9
ML
2832 /*
2833 * transport .map_queues is usually done in the following
2834 * way:
2835 *
2836 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2837 * mask = get_cpu_mask(queue)
2838 * for_each_cpu(cpu, mask)
b3c661b1 2839 * set->map[x].mq_map[cpu] = queue;
7d4901a9
ML
2840 * }
2841 *
2842 * When we need to remap, the table has to be cleared for
2843 * killing stale mapping since one CPU may not be mapped
2844 * to any hw queue.
2845 */
b3c661b1
JA
2846 for (i = 0; i < set->nr_maps; i++)
2847 blk_mq_clear_mq_map(&set->map[i]);
7d4901a9 2848
ebe8bddb 2849 return set->ops->map_queues(set);
b3c661b1
JA
2850 } else {
2851 BUG_ON(set->nr_maps > 1);
ed76e329 2852 return blk_mq_map_queues(&set->map[0]);
b3c661b1 2853 }
ebe8bddb
OS
2854}
2855
a4391c64
JA
2856/*
2857 * Alloc a tag set to be associated with one or more request queues.
2858 * May fail with EINVAL for various error conditions. May adjust the
c018c84f 2859 * requested depth down, if it's too large. In that case, the set
a4391c64
JA
2860 * value will be stored in set->queue_depth.
2861 */
24d2f903
CH
2862int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2863{
b3c661b1 2864 int i, ret;
da695ba2 2865
205fb5f5
BVA
2866 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2867
24d2f903
CH
2868 if (!set->nr_hw_queues)
2869 return -EINVAL;
a4391c64 2870 if (!set->queue_depth)
24d2f903
CH
2871 return -EINVAL;
2872 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2873 return -EINVAL;
2874
7d7e0f90 2875 if (!set->ops->queue_rq)
24d2f903
CH
2876 return -EINVAL;
2877
de148297
ML
2878 if (!set->ops->get_budget ^ !set->ops->put_budget)
2879 return -EINVAL;
2880
a4391c64
JA
2881 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2882 pr_info("blk-mq: reduced tag depth to %u\n",
2883 BLK_MQ_MAX_DEPTH);
2884 set->queue_depth = BLK_MQ_MAX_DEPTH;
2885 }
24d2f903 2886
b3c661b1
JA
2887 if (!set->nr_maps)
2888 set->nr_maps = 1;
2889 else if (set->nr_maps > HCTX_MAX_TYPES)
2890 return -EINVAL;
2891
6637fadf
SL
2892 /*
2893 * If a crashdump is active, then we are potentially in a very
2894 * memory constrained environment. Limit us to 1 queue and
2895 * 64 tags to prevent using too much memory.
2896 */
2897 if (is_kdump_kernel()) {
2898 set->nr_hw_queues = 1;
2899 set->queue_depth = min(64U, set->queue_depth);
2900 }
868f2f0b 2901 /*
392546ae
JA
2902 * There is no use for more h/w queues than cpus if we just have
2903 * a single map
868f2f0b 2904 */
392546ae 2905 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
868f2f0b 2906 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2907
392546ae 2908 set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
24d2f903
CH
2909 GFP_KERNEL, set->numa_node);
2910 if (!set->tags)
a5164405 2911 return -ENOMEM;
24d2f903 2912
da695ba2 2913 ret = -ENOMEM;
b3c661b1
JA
2914 for (i = 0; i < set->nr_maps; i++) {
2915 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
2916 sizeof(struct blk_mq_queue_map),
2917 GFP_KERNEL, set->numa_node);
2918 if (!set->map[i].mq_map)
2919 goto out_free_mq_map;
2920 set->map[i].nr_queues = set->nr_hw_queues;
2921 }
bdd17e75 2922
ebe8bddb 2923 ret = blk_mq_update_queue_map(set);
da695ba2
CH
2924 if (ret)
2925 goto out_free_mq_map;
2926
2927 ret = blk_mq_alloc_rq_maps(set);
2928 if (ret)
bdd17e75 2929 goto out_free_mq_map;
24d2f903 2930
0d2602ca
JA
2931 mutex_init(&set->tag_list_lock);
2932 INIT_LIST_HEAD(&set->tag_list);
2933
24d2f903 2934 return 0;
bdd17e75
CH
2935
2936out_free_mq_map:
b3c661b1
JA
2937 for (i = 0; i < set->nr_maps; i++) {
2938 kfree(set->map[i].mq_map);
2939 set->map[i].mq_map = NULL;
2940 }
5676e7b6
RE
2941 kfree(set->tags);
2942 set->tags = NULL;
da695ba2 2943 return ret;
24d2f903
CH
2944}
2945EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2946
2947void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2948{
b3c661b1 2949 int i, j;
24d2f903 2950
392546ae 2951 for (i = 0; i < nr_hw_queues(set); i++)
cc71a6f4 2952 blk_mq_free_map_and_requests(set, i);
484b4061 2953
b3c661b1
JA
2954 for (j = 0; j < set->nr_maps; j++) {
2955 kfree(set->map[j].mq_map);
2956 set->map[j].mq_map = NULL;
2957 }
bdd17e75 2958
981bd189 2959 kfree(set->tags);
5676e7b6 2960 set->tags = NULL;
24d2f903
CH
2961}
2962EXPORT_SYMBOL(blk_mq_free_tag_set);
2963
e3a2b3f9
JA
2964int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2965{
2966 struct blk_mq_tag_set *set = q->tag_set;
2967 struct blk_mq_hw_ctx *hctx;
2968 int i, ret;
2969
bd166ef1 2970 if (!set)
e3a2b3f9
JA
2971 return -EINVAL;
2972
70f36b60 2973 blk_mq_freeze_queue(q);
24f5a90f 2974 blk_mq_quiesce_queue(q);
70f36b60 2975
e3a2b3f9
JA
2976 ret = 0;
2977 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2978 if (!hctx->tags)
2979 continue;
bd166ef1
JA
2980 /*
2981 * If we're using an MQ scheduler, just update the scheduler
2982 * queue depth. This is similar to what the old code would do.
2983 */
70f36b60 2984 if (!hctx->sched_tags) {
c2e82a23 2985 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
70f36b60
JA
2986 false);
2987 } else {
2988 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2989 nr, true);
2990 }
e3a2b3f9
JA
2991 if (ret)
2992 break;
2993 }
2994
2995 if (!ret)
2996 q->nr_requests = nr;
2997
24f5a90f 2998 blk_mq_unquiesce_queue(q);
70f36b60 2999 blk_mq_unfreeze_queue(q);
70f36b60 3000
e3a2b3f9
JA
3001 return ret;
3002}
3003
d48ece20
JW
3004/*
3005 * request_queue and elevator_type pair.
3006 * It is just used by __blk_mq_update_nr_hw_queues to cache
3007 * the elevator_type associated with a request_queue.
3008 */
3009struct blk_mq_qe_pair {
3010 struct list_head node;
3011 struct request_queue *q;
3012 struct elevator_type *type;
3013};
3014
3015/*
3016 * Cache the elevator_type in qe pair list and switch the
3017 * io scheduler to 'none'
3018 */
3019static bool blk_mq_elv_switch_none(struct list_head *head,
3020 struct request_queue *q)
3021{
3022 struct blk_mq_qe_pair *qe;
3023
3024 if (!q->elevator)
3025 return true;
3026
3027 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3028 if (!qe)
3029 return false;
3030
3031 INIT_LIST_HEAD(&qe->node);
3032 qe->q = q;
3033 qe->type = q->elevator->type;
3034 list_add(&qe->node, head);
3035
3036 mutex_lock(&q->sysfs_lock);
3037 /*
3038 * After elevator_switch_mq, the previous elevator_queue will be
3039 * released by elevator_release. The reference of the io scheduler
3040 * module get by elevator_get will also be put. So we need to get
3041 * a reference of the io scheduler module here to prevent it to be
3042 * removed.
3043 */
3044 __module_get(qe->type->elevator_owner);
3045 elevator_switch_mq(q, NULL);
3046 mutex_unlock(&q->sysfs_lock);
3047
3048 return true;
3049}
3050
3051static void blk_mq_elv_switch_back(struct list_head *head,
3052 struct request_queue *q)
3053{
3054 struct blk_mq_qe_pair *qe;
3055 struct elevator_type *t = NULL;
3056
3057 list_for_each_entry(qe, head, node)
3058 if (qe->q == q) {
3059 t = qe->type;
3060 break;
3061 }
3062
3063 if (!t)
3064 return;
3065
3066 list_del(&qe->node);
3067 kfree(qe);
3068
3069 mutex_lock(&q->sysfs_lock);
3070 elevator_switch_mq(q, t);
3071 mutex_unlock(&q->sysfs_lock);
3072}
3073
e4dc2b32
KB
3074static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3075 int nr_hw_queues)
868f2f0b
KB
3076{
3077 struct request_queue *q;
d48ece20 3078 LIST_HEAD(head);
e01ad46d 3079 int prev_nr_hw_queues;
868f2f0b 3080
705cda97
BVA
3081 lockdep_assert_held(&set->tag_list_lock);
3082
392546ae 3083 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
868f2f0b
KB
3084 nr_hw_queues = nr_cpu_ids;
3085 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3086 return;
3087
3088 list_for_each_entry(q, &set->tag_list, tag_set_list)
3089 blk_mq_freeze_queue(q);
f5bbbbe4
JW
3090 /*
3091 * Sync with blk_mq_queue_tag_busy_iter.
3092 */
3093 synchronize_rcu();
d48ece20
JW
3094 /*
3095 * Switch IO scheduler to 'none', cleaning up the data associated
3096 * with the previous scheduler. We will switch back once we are done
3097 * updating the new sw to hw queue mappings.
3098 */
3099 list_for_each_entry(q, &set->tag_list, tag_set_list)
3100 if (!blk_mq_elv_switch_none(&head, q))
3101 goto switch_back;
868f2f0b 3102
477e19de
JW
3103 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3104 blk_mq_debugfs_unregister_hctxs(q);
3105 blk_mq_sysfs_unregister(q);
3106 }
3107
e01ad46d 3108 prev_nr_hw_queues = set->nr_hw_queues;
868f2f0b 3109 set->nr_hw_queues = nr_hw_queues;
ebe8bddb 3110 blk_mq_update_queue_map(set);
e01ad46d 3111fallback:
868f2f0b
KB
3112 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3113 blk_mq_realloc_hw_ctxs(set, q);
e01ad46d
JW
3114 if (q->nr_hw_queues != set->nr_hw_queues) {
3115 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3116 nr_hw_queues, prev_nr_hw_queues);
3117 set->nr_hw_queues = prev_nr_hw_queues;
ed76e329 3118 blk_mq_map_queues(&set->map[0]);
e01ad46d
JW
3119 goto fallback;
3120 }
477e19de
JW
3121 blk_mq_map_swqueue(q);
3122 }
3123
3124 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3125 blk_mq_sysfs_register(q);
3126 blk_mq_debugfs_register_hctxs(q);
868f2f0b
KB
3127 }
3128
d48ece20
JW
3129switch_back:
3130 list_for_each_entry(q, &set->tag_list, tag_set_list)
3131 blk_mq_elv_switch_back(&head, q);
3132
868f2f0b
KB
3133 list_for_each_entry(q, &set->tag_list, tag_set_list)
3134 blk_mq_unfreeze_queue(q);
3135}
e4dc2b32
KB
3136
3137void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3138{
3139 mutex_lock(&set->tag_list_lock);
3140 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3141 mutex_unlock(&set->tag_list_lock);
3142}
868f2f0b
KB
3143EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3144
34dbad5d
OS
3145/* Enable polling stats and return whether they were already enabled. */
3146static bool blk_poll_stats_enable(struct request_queue *q)
3147{
3148 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
7dfdbc73 3149 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
34dbad5d
OS
3150 return true;
3151 blk_stat_add_callback(q, q->poll_cb);
3152 return false;
3153}
3154
3155static void blk_mq_poll_stats_start(struct request_queue *q)
3156{
3157 /*
3158 * We don't arm the callback if polling stats are not enabled or the
3159 * callback is already active.
3160 */
3161 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3162 blk_stat_is_active(q->poll_cb))
3163 return;
3164
3165 blk_stat_activate_msecs(q->poll_cb, 100);
3166}
3167
3168static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3169{
3170 struct request_queue *q = cb->data;
720b8ccc 3171 int bucket;
34dbad5d 3172
720b8ccc
SB
3173 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3174 if (cb->stat[bucket].nr_samples)
3175 q->poll_stat[bucket] = cb->stat[bucket];
3176 }
34dbad5d
OS
3177}
3178
64f1c21e
JA
3179static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3180 struct blk_mq_hw_ctx *hctx,
3181 struct request *rq)
3182{
64f1c21e 3183 unsigned long ret = 0;
720b8ccc 3184 int bucket;
64f1c21e
JA
3185
3186 /*
3187 * If stats collection isn't on, don't sleep but turn it on for
3188 * future users
3189 */
34dbad5d 3190 if (!blk_poll_stats_enable(q))
64f1c21e
JA
3191 return 0;
3192
64f1c21e
JA
3193 /*
3194 * As an optimistic guess, use half of the mean service time
3195 * for this type of request. We can (and should) make this smarter.
3196 * For instance, if the completion latencies are tight, we can
3197 * get closer than just half the mean. This is especially
3198 * important on devices where the completion latencies are longer
720b8ccc
SB
3199 * than ~10 usec. We do use the stats for the relevant IO size
3200 * if available which does lead to better estimates.
64f1c21e 3201 */
720b8ccc
SB
3202 bucket = blk_mq_poll_stats_bkt(rq);
3203 if (bucket < 0)
3204 return ret;
3205
3206 if (q->poll_stat[bucket].nr_samples)
3207 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
3208
3209 return ret;
3210}
3211
06426adf 3212static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 3213 struct blk_mq_hw_ctx *hctx,
06426adf
JA
3214 struct request *rq)
3215{
3216 struct hrtimer_sleeper hs;
3217 enum hrtimer_mode mode;
64f1c21e 3218 unsigned int nsecs;
06426adf
JA
3219 ktime_t kt;
3220
76a86f9d 3221 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
64f1c21e
JA
3222 return false;
3223
3224 /*
3225 * poll_nsec can be:
3226 *
3227 * -1: don't ever hybrid sleep
3228 * 0: use half of prev avg
3229 * >0: use this specific value
3230 */
3231 if (q->poll_nsec == -1)
3232 return false;
3233 else if (q->poll_nsec > 0)
3234 nsecs = q->poll_nsec;
3235 else
3236 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3237
3238 if (!nsecs)
06426adf
JA
3239 return false;
3240
76a86f9d 3241 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
06426adf
JA
3242
3243 /*
3244 * This will be replaced with the stats tracking code, using
3245 * 'avg_completion_time / 2' as the pre-sleep target.
3246 */
8b0e1953 3247 kt = nsecs;
06426adf
JA
3248
3249 mode = HRTIMER_MODE_REL;
3250 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3251 hrtimer_set_expires(&hs.timer, kt);
3252
3253 hrtimer_init_sleeper(&hs, current);
3254 do {
5a61c363 3255 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
06426adf
JA
3256 break;
3257 set_current_state(TASK_UNINTERRUPTIBLE);
3258 hrtimer_start_expires(&hs.timer, mode);
3259 if (hs.task)
3260 io_schedule();
3261 hrtimer_cancel(&hs.timer);
3262 mode = HRTIMER_MODE_ABS;
3263 } while (hs.task && !signal_pending(current));
3264
3265 __set_current_state(TASK_RUNNING);
3266 destroy_hrtimer_on_stack(&hs.timer);
3267 return true;
3268}
3269
bbd7bb70
JA
3270static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3271{
3272 struct request_queue *q = hctx->queue;
3273 long state;
3274
06426adf
JA
3275 /*
3276 * If we sleep, have the caller restart the poll loop to reset
3277 * the state. Like for the other success return cases, the
3278 * caller is responsible for checking if the IO completed. If
3279 * the IO isn't complete, we'll get called again and will go
3280 * straight to the busy poll loop.
3281 */
64f1c21e 3282 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
3283 return true;
3284
bbd7bb70
JA
3285 hctx->poll_considered++;
3286
3287 state = current->state;
3288 while (!need_resched()) {
3289 int ret;
3290
3291 hctx->poll_invoked++;
3292
3293 ret = q->mq_ops->poll(hctx, rq->tag);
3294 if (ret > 0) {
3295 hctx->poll_success++;
3296 set_current_state(TASK_RUNNING);
3297 return true;
3298 }
3299
3300 if (signal_pending_state(state, current))
3301 set_current_state(TASK_RUNNING);
3302
3303 if (current->state == TASK_RUNNING)
3304 return true;
3305 if (ret < 0)
3306 break;
3307 cpu_relax();
3308 }
3309
67b4110f 3310 __set_current_state(TASK_RUNNING);
bbd7bb70
JA
3311 return false;
3312}
3313
ea435e1b 3314static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
bbd7bb70
JA
3315{
3316 struct blk_mq_hw_ctx *hctx;
bbd7bb70
JA
3317 struct request *rq;
3318
ea435e1b 3319 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
bbd7bb70
JA
3320 return false;
3321
bbd7bb70 3322 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
3323 if (!blk_qc_t_is_internal(cookie))
3324 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3a07bb1d 3325 else {
bd166ef1 3326 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3a07bb1d
JA
3327 /*
3328 * With scheduling, if the request has completed, we'll
3329 * get a NULL return here, as we clear the sched tag when
3330 * that happens. The request still remains valid, like always,
3331 * so we should be safe with just the NULL check.
3332 */
3333 if (!rq)
3334 return false;
3335 }
bbd7bb70
JA
3336
3337 return __blk_mq_poll(hctx, rq);
3338}
bbd7bb70 3339
9cf2bab6
JA
3340unsigned int blk_mq_rq_cpu(struct request *rq)
3341{
3342 return rq->mq_ctx->cpu;
3343}
3344EXPORT_SYMBOL(blk_mq_rq_cpu);
3345
320ae51f
JA
3346static int __init blk_mq_init(void)
3347{
9467f859
TG
3348 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3349 blk_mq_hctx_notify_dead);
320ae51f
JA
3350 return 0;
3351}
3352subsys_initcall(blk_mq_init);