]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - block/blk-mq.c
blk-mq: simplify blk_mq_free_request
[thirdparty/kernel/stable.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
105ab3d8 23#include <linux/sched/topology.h>
174cd4b1 24#include <linux/sched/signal.h>
320ae51f 25#include <linux/delay.h>
aedcd72f 26#include <linux/crash_dump.h>
88c7b2b7 27#include <linux/prefetch.h>
320ae51f
JA
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
9c1051aa 34#include "blk-mq-debugfs.h"
320ae51f 35#include "blk-mq-tag.h"
cf43e6be 36#include "blk-stat.h"
87760e5e 37#include "blk-wbt.h"
bd166ef1 38#include "blk-mq-sched.h"
320ae51f
JA
39
40static DEFINE_MUTEX(all_q_mutex);
41static LIST_HEAD(all_q_list);
42
34dbad5d
OS
43static void blk_mq_poll_stats_start(struct request_queue *q);
44static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
2719aa21 45static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync);
34dbad5d 46
720b8ccc
SB
47static int blk_mq_poll_stats_bkt(const struct request *rq)
48{
49 int ddir, bytes, bucket;
50
99c749a4 51 ddir = rq_data_dir(rq);
720b8ccc
SB
52 bytes = blk_rq_bytes(rq);
53
54 bucket = ddir + 2*(ilog2(bytes) - 9);
55
56 if (bucket < 0)
57 return -1;
58 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
59 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
60
61 return bucket;
62}
63
320ae51f
JA
64/*
65 * Check if any of the ctx's have pending work in this hardware queue
66 */
50e1dab8 67bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 68{
bd166ef1
JA
69 return sbitmap_any_bit_set(&hctx->ctx_map) ||
70 !list_empty_careful(&hctx->dispatch) ||
71 blk_mq_sched_has_work(hctx);
1429d7c9
JA
72}
73
320ae51f
JA
74/*
75 * Mark this ctx as having pending work in this hardware queue
76 */
77static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
78 struct blk_mq_ctx *ctx)
79{
88459642
OS
80 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
81 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
82}
83
84static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
85 struct blk_mq_ctx *ctx)
86{
88459642 87 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
88}
89
1671d522 90void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 91{
4ecd4fef 92 int freeze_depth;
cddd5d17 93
4ecd4fef
CH
94 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
95 if (freeze_depth == 1) {
3ef28e83 96 percpu_ref_kill(&q->q_usage_counter);
b94ec296 97 blk_mq_run_hw_queues(q, false);
cddd5d17 98 }
f3af020b 99}
1671d522 100EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 101
6bae363e 102void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 103{
3ef28e83 104 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 105}
6bae363e 106EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 107
f91328c4
KB
108int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
109 unsigned long timeout)
110{
111 return wait_event_timeout(q->mq_freeze_wq,
112 percpu_ref_is_zero(&q->q_usage_counter),
113 timeout);
114}
115EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 116
f3af020b
TH
117/*
118 * Guarantee no request is in use, so we can change any data structure of
119 * the queue afterward.
120 */
3ef28e83 121void blk_freeze_queue(struct request_queue *q)
f3af020b 122{
3ef28e83
DW
123 /*
124 * In the !blk_mq case we are only calling this to kill the
125 * q_usage_counter, otherwise this increases the freeze depth
126 * and waits for it to return to zero. For this reason there is
127 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
128 * exported to drivers as the only user for unfreeze is blk_mq.
129 */
1671d522 130 blk_freeze_queue_start(q);
f3af020b
TH
131 blk_mq_freeze_queue_wait(q);
132}
3ef28e83
DW
133
134void blk_mq_freeze_queue(struct request_queue *q)
135{
136 /*
137 * ...just an alias to keep freeze and unfreeze actions balanced
138 * in the blk_mq_* namespace
139 */
140 blk_freeze_queue(q);
141}
c761d96b 142EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 143
b4c6a028 144void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 145{
4ecd4fef 146 int freeze_depth;
320ae51f 147
4ecd4fef
CH
148 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
149 WARN_ON_ONCE(freeze_depth < 0);
150 if (!freeze_depth) {
3ef28e83 151 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 152 wake_up_all(&q->mq_freeze_wq);
add703fd 153 }
320ae51f 154}
b4c6a028 155EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 156
6a83e74d
BVA
157/**
158 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
159 * @q: request queue.
160 *
161 * Note: this function does not prevent that the struct request end_io()
162 * callback function is invoked. Additionally, it is not prevented that
163 * new queue_rq() calls occur unless the queue has been stopped first.
164 */
165void blk_mq_quiesce_queue(struct request_queue *q)
166{
167 struct blk_mq_hw_ctx *hctx;
168 unsigned int i;
169 bool rcu = false;
170
2719aa21 171 __blk_mq_stop_hw_queues(q, true);
6a83e74d
BVA
172
173 queue_for_each_hw_ctx(q, hctx, i) {
174 if (hctx->flags & BLK_MQ_F_BLOCKING)
175 synchronize_srcu(&hctx->queue_rq_srcu);
176 else
177 rcu = true;
178 }
179 if (rcu)
180 synchronize_rcu();
181}
182EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
183
aed3ea94
JA
184void blk_mq_wake_waiters(struct request_queue *q)
185{
186 struct blk_mq_hw_ctx *hctx;
187 unsigned int i;
188
189 queue_for_each_hw_ctx(q, hctx, i)
190 if (blk_mq_hw_queue_mapped(hctx))
191 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
192
193 /*
194 * If we are called because the queue has now been marked as
195 * dying, we need to ensure that processes currently waiting on
196 * the queue are notified as well.
197 */
198 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
199}
200
320ae51f
JA
201bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
202{
203 return blk_mq_has_free_tags(hctx->tags);
204}
205EXPORT_SYMBOL(blk_mq_can_queue);
206
6e15cf2a
CH
207static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
208 struct request *rq, unsigned int op)
320ae51f 209{
af76e555
CH
210 INIT_LIST_HEAD(&rq->queuelist);
211 /* csd/requeue_work/fifo_time is initialized before use */
212 rq->q = q;
320ae51f 213 rq->mq_ctx = ctx;
ef295ecf 214 rq->cmd_flags = op;
e8064021
CH
215 if (blk_queue_io_stat(q))
216 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
217 /* do not touch atomic flags, it needs atomic ops against the timer */
218 rq->cpu = -1;
af76e555
CH
219 INIT_HLIST_NODE(&rq->hash);
220 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
221 rq->rq_disk = NULL;
222 rq->part = NULL;
3ee32372 223 rq->start_time = jiffies;
af76e555
CH
224#ifdef CONFIG_BLK_CGROUP
225 rq->rl = NULL;
0fec08b4 226 set_start_time_ns(rq);
af76e555
CH
227 rq->io_start_time_ns = 0;
228#endif
229 rq->nr_phys_segments = 0;
230#if defined(CONFIG_BLK_DEV_INTEGRITY)
231 rq->nr_integrity_segments = 0;
232#endif
af76e555
CH
233 rq->special = NULL;
234 /* tag was already set */
af76e555 235 rq->extra_len = 0;
af76e555 236
af76e555 237 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
238 rq->timeout = 0;
239
af76e555
CH
240 rq->end_io = NULL;
241 rq->end_io_data = NULL;
242 rq->next_rq = NULL;
243
ef295ecf 244 ctx->rq_dispatched[op_is_sync(op)]++;
320ae51f
JA
245}
246
2c3ad667
JA
247struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
248 unsigned int op)
5dee8577
CH
249{
250 struct request *rq;
251 unsigned int tag;
252
cb96a42c 253 tag = blk_mq_get_tag(data);
5dee8577 254 if (tag != BLK_MQ_TAG_FAIL) {
bd166ef1
JA
255 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
256
257 rq = tags->static_rqs[tag];
5dee8577 258
bd166ef1
JA
259 if (data->flags & BLK_MQ_REQ_INTERNAL) {
260 rq->tag = -1;
261 rq->internal_tag = tag;
262 } else {
200e86b3
JA
263 if (blk_mq_tag_busy(data->hctx)) {
264 rq->rq_flags = RQF_MQ_INFLIGHT;
265 atomic_inc(&data->hctx->nr_active);
266 }
bd166ef1
JA
267 rq->tag = tag;
268 rq->internal_tag = -1;
562bef42 269 data->hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
270 }
271
ef295ecf 272 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
5dee8577
CH
273 return rq;
274 }
275
276 return NULL;
277}
2c3ad667 278EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
5dee8577 279
d2c0d383
CH
280static struct request *blk_mq_get_request(struct request_queue *q,
281 struct bio *bio, unsigned int op,
282 struct blk_mq_alloc_data *data)
283{
284 struct elevator_queue *e = q->elevator;
285 struct request *rq;
286
287 blk_queue_enter_live(q);
288 data->q = q;
289 if (likely(!data->ctx))
290 data->ctx = blk_mq_get_ctx(q);
291 if (likely(!data->hctx))
292 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
293
294 if (e) {
295 data->flags |= BLK_MQ_REQ_INTERNAL;
296
297 /*
298 * Flush requests are special and go directly to the
299 * dispatch list.
300 */
301 if (!op_is_flush(op) && e->type->ops.mq.get_request) {
302 rq = e->type->ops.mq.get_request(q, op, data);
303 if (rq)
304 rq->rq_flags |= RQF_QUEUED;
305 } else
306 rq = __blk_mq_alloc_request(data, op);
307 } else {
308 rq = __blk_mq_alloc_request(data, op);
309 }
310
311 if (rq) {
312 if (!op_is_flush(op)) {
313 rq->elv.icq = NULL;
314 if (e && e->type->icq_cache)
315 blk_mq_sched_assign_ioc(q, rq, bio);
316 }
317 data->hctx->queued++;
318 return rq;
319 }
320
321 blk_queue_exit(q);
322 return NULL;
323}
324
6f3b0e8b
CH
325struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
326 unsigned int flags)
320ae51f 327{
5a797e00 328 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 329 struct request *rq;
a492f075 330 int ret;
320ae51f 331
6f3b0e8b 332 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
a492f075
JL
333 if (ret)
334 return ERR_PTR(ret);
320ae51f 335
d2c0d383 336 rq = blk_mq_get_request(q, NULL, rw, &alloc_data);
841bac2c 337
bd166ef1
JA
338 blk_mq_put_ctx(alloc_data.ctx);
339 blk_queue_exit(q);
340
341 if (!rq)
a492f075 342 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3
CH
343
344 rq->__data_len = 0;
345 rq->__sector = (sector_t) -1;
346 rq->bio = rq->biotail = NULL;
320ae51f
JA
347 return rq;
348}
4bb659b1 349EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 350
1f5bd336
ML
351struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
352 unsigned int flags, unsigned int hctx_idx)
353{
6d2809d5 354 struct blk_mq_alloc_data alloc_data = { .flags = flags };
1f5bd336 355 struct request *rq;
6d2809d5 356 unsigned int cpu;
1f5bd336
ML
357 int ret;
358
359 /*
360 * If the tag allocator sleeps we could get an allocation for a
361 * different hardware context. No need to complicate the low level
362 * allocator for this for the rare use case of a command tied to
363 * a specific queue.
364 */
365 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
366 return ERR_PTR(-EINVAL);
367
368 if (hctx_idx >= q->nr_hw_queues)
369 return ERR_PTR(-EIO);
370
371 ret = blk_queue_enter(q, true);
372 if (ret)
373 return ERR_PTR(ret);
374
c8712c6a
CH
375 /*
376 * Check if the hardware context is actually mapped to anything.
377 * If not tell the caller that it should skip this queue.
378 */
6d2809d5
OS
379 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
380 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
381 blk_queue_exit(q);
382 return ERR_PTR(-EXDEV);
c8712c6a 383 }
6d2809d5
OS
384 cpu = cpumask_first(alloc_data.hctx->cpumask);
385 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 386
d2c0d383 387 rq = blk_mq_get_request(q, NULL, rw, &alloc_data);
c8712c6a 388
c8712c6a 389 blk_queue_exit(q);
6d2809d5
OS
390
391 if (!rq)
392 return ERR_PTR(-EWOULDBLOCK);
393
394 return rq;
1f5bd336
ML
395}
396EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
397
6af54051 398void blk_mq_free_request(struct request *rq)
320ae51f 399{
320ae51f 400 struct request_queue *q = rq->q;
6af54051
CH
401 struct elevator_queue *e = q->elevator;
402 struct blk_mq_ctx *ctx = rq->mq_ctx;
403 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
404 const int sched_tag = rq->internal_tag;
405
406 if (rq->rq_flags & (RQF_ELVPRIV | RQF_QUEUED)) {
407 if (e && e->type->ops.mq.finish_request)
408 e->type->ops.mq.finish_request(rq);
409 if (rq->elv.icq) {
410 put_io_context(rq->elv.icq->ioc);
411 rq->elv.icq = NULL;
412 }
413 }
320ae51f 414
6af54051 415 ctx->rq_completed[rq_is_sync(rq)]++;
e8064021 416 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 417 atomic_dec(&hctx->nr_active);
87760e5e
JA
418
419 wbt_done(q->rq_wb, &rq->issue_stat);
e8064021 420 rq->rq_flags = 0;
0d2602ca 421
af76e555 422 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 423 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
bd166ef1
JA
424 if (rq->tag != -1)
425 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
426 if (sched_tag != -1)
c05f8525 427 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
6d8c6c0f 428 blk_mq_sched_restart(hctx);
3ef28e83 429 blk_queue_exit(q);
320ae51f 430}
1a3b595a 431EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 432
2a842aca 433inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
320ae51f 434{
0d11e6ac
ML
435 blk_account_io_done(rq);
436
91b63639 437 if (rq->end_io) {
87760e5e 438 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 439 rq->end_io(rq, error);
91b63639
CH
440 } else {
441 if (unlikely(blk_bidi_rq(rq)))
442 blk_mq_free_request(rq->next_rq);
320ae51f 443 blk_mq_free_request(rq);
91b63639 444 }
320ae51f 445}
c8a446ad 446EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 447
2a842aca 448void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
449{
450 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
451 BUG();
c8a446ad 452 __blk_mq_end_request(rq, error);
63151a44 453}
c8a446ad 454EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 455
30a91cb4 456static void __blk_mq_complete_request_remote(void *data)
320ae51f 457{
3d6efbf6 458 struct request *rq = data;
320ae51f 459
30a91cb4 460 rq->q->softirq_done_fn(rq);
320ae51f 461}
320ae51f 462
453f8341 463static void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
464{
465 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 466 bool shared = false;
320ae51f
JA
467 int cpu;
468
453f8341
CH
469 if (rq->internal_tag != -1)
470 blk_mq_sched_completed_request(rq);
471 if (rq->rq_flags & RQF_STATS) {
472 blk_mq_poll_stats_start(rq->q);
473 blk_stat_add(rq);
474 }
475
38535201 476 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
477 rq->q->softirq_done_fn(rq);
478 return;
479 }
320ae51f
JA
480
481 cpu = get_cpu();
38535201
CH
482 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
483 shared = cpus_share_cache(cpu, ctx->cpu);
484
485 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 486 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
487 rq->csd.info = rq;
488 rq->csd.flags = 0;
c46fff2a 489 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 490 } else {
30a91cb4 491 rq->q->softirq_done_fn(rq);
3d6efbf6 492 }
320ae51f
JA
493 put_cpu();
494}
30a91cb4
CH
495
496/**
497 * blk_mq_complete_request - end I/O on a request
498 * @rq: the request being processed
499 *
500 * Description:
501 * Ends all I/O on a request. It does not handle partial completions.
502 * The actual completion happens out-of-order, through a IPI handler.
503 **/
08e0029a 504void blk_mq_complete_request(struct request *rq)
30a91cb4 505{
95f09684
JA
506 struct request_queue *q = rq->q;
507
508 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 509 return;
08e0029a 510 if (!blk_mark_rq_complete(rq))
ed851860 511 __blk_mq_complete_request(rq);
30a91cb4
CH
512}
513EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 514
973c0191
KB
515int blk_mq_request_started(struct request *rq)
516{
517 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
518}
519EXPORT_SYMBOL_GPL(blk_mq_request_started);
520
e2490073 521void blk_mq_start_request(struct request *rq)
320ae51f
JA
522{
523 struct request_queue *q = rq->q;
524
bd166ef1
JA
525 blk_mq_sched_started_request(rq);
526
320ae51f
JA
527 trace_block_rq_issue(q, rq);
528
cf43e6be 529 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
88eeca49 530 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
cf43e6be 531 rq->rq_flags |= RQF_STATS;
87760e5e 532 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
533 }
534
2b8393b4 535 blk_add_timer(rq);
87ee7b11 536
538b7534
JA
537 /*
538 * Ensure that ->deadline is visible before set the started
539 * flag and clear the completed flag.
540 */
541 smp_mb__before_atomic();
542
87ee7b11
JA
543 /*
544 * Mark us as started and clear complete. Complete might have been
545 * set if requeue raced with timeout, which then marked it as
546 * complete. So be sure to clear complete again when we start
547 * the request, otherwise we'll ignore the completion event.
548 */
4b570521
JA
549 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
550 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
551 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
552 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
553
554 if (q->dma_drain_size && blk_rq_bytes(rq)) {
555 /*
556 * Make sure space for the drain appears. We know we can do
557 * this because max_hw_segments has been adjusted to be one
558 * fewer than the device can handle.
559 */
560 rq->nr_phys_segments++;
561 }
320ae51f 562}
e2490073 563EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 564
d9d149a3
ML
565/*
566 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
48b99c9d 567 * flag isn't set yet, so there may be race with timeout handler,
d9d149a3
ML
568 * but given rq->deadline is just set in .queue_rq() under
569 * this situation, the race won't be possible in reality because
570 * rq->timeout should be set as big enough to cover the window
571 * between blk_mq_start_request() called from .queue_rq() and
572 * clearing REQ_ATOM_STARTED here.
573 */
ed0791b2 574static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
575{
576 struct request_queue *q = rq->q;
577
578 trace_block_rq_requeue(q, rq);
87760e5e 579 wbt_requeue(q->rq_wb, &rq->issue_stat);
bd166ef1 580 blk_mq_sched_requeue_request(rq);
49f5baa5 581
e2490073
CH
582 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
583 if (q->dma_drain_size && blk_rq_bytes(rq))
584 rq->nr_phys_segments--;
585 }
320ae51f
JA
586}
587
2b053aca 588void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 589{
ed0791b2 590 __blk_mq_requeue_request(rq);
ed0791b2 591
ed0791b2 592 BUG_ON(blk_queued_rq(rq));
2b053aca 593 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
594}
595EXPORT_SYMBOL(blk_mq_requeue_request);
596
6fca6a61
CH
597static void blk_mq_requeue_work(struct work_struct *work)
598{
599 struct request_queue *q =
2849450a 600 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
601 LIST_HEAD(rq_list);
602 struct request *rq, *next;
603 unsigned long flags;
604
605 spin_lock_irqsave(&q->requeue_lock, flags);
606 list_splice_init(&q->requeue_list, &rq_list);
607 spin_unlock_irqrestore(&q->requeue_lock, flags);
608
609 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 610 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
611 continue;
612
e8064021 613 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 614 list_del_init(&rq->queuelist);
bd6737f1 615 blk_mq_sched_insert_request(rq, true, false, false, true);
6fca6a61
CH
616 }
617
618 while (!list_empty(&rq_list)) {
619 rq = list_entry(rq_list.next, struct request, queuelist);
620 list_del_init(&rq->queuelist);
bd6737f1 621 blk_mq_sched_insert_request(rq, false, false, false, true);
6fca6a61
CH
622 }
623
52d7f1b5 624 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
625}
626
2b053aca
BVA
627void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
628 bool kick_requeue_list)
6fca6a61
CH
629{
630 struct request_queue *q = rq->q;
631 unsigned long flags;
632
633 /*
634 * We abuse this flag that is otherwise used by the I/O scheduler to
635 * request head insertation from the workqueue.
636 */
e8064021 637 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
638
639 spin_lock_irqsave(&q->requeue_lock, flags);
640 if (at_head) {
e8064021 641 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
642 list_add(&rq->queuelist, &q->requeue_list);
643 } else {
644 list_add_tail(&rq->queuelist, &q->requeue_list);
645 }
646 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
647
648 if (kick_requeue_list)
649 blk_mq_kick_requeue_list(q);
6fca6a61
CH
650}
651EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
652
653void blk_mq_kick_requeue_list(struct request_queue *q)
654{
2849450a 655 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
656}
657EXPORT_SYMBOL(blk_mq_kick_requeue_list);
658
2849450a
MS
659void blk_mq_delay_kick_requeue_list(struct request_queue *q,
660 unsigned long msecs)
661{
662 kblockd_schedule_delayed_work(&q->requeue_work,
663 msecs_to_jiffies(msecs));
664}
665EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
666
0e62f51f
JA
667struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
668{
88c7b2b7
JA
669 if (tag < tags->nr_tags) {
670 prefetch(tags->rqs[tag]);
4ee86bab 671 return tags->rqs[tag];
88c7b2b7 672 }
4ee86bab
HR
673
674 return NULL;
24d2f903
CH
675}
676EXPORT_SYMBOL(blk_mq_tag_to_rq);
677
320ae51f 678struct blk_mq_timeout_data {
46f92d42
CH
679 unsigned long next;
680 unsigned int next_set;
320ae51f
JA
681};
682
90415837 683void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 684{
f8a5b122 685 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 686 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
687
688 /*
689 * We know that complete is set at this point. If STARTED isn't set
690 * anymore, then the request isn't active and the "timeout" should
691 * just be ignored. This can happen due to the bitflag ordering.
692 * Timeout first checks if STARTED is set, and if it is, assumes
693 * the request is active. But if we race with completion, then
48b99c9d 694 * both flags will get cleared. So check here again, and ignore
87ee7b11
JA
695 * a timeout event with a request that isn't active.
696 */
46f92d42
CH
697 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
698 return;
87ee7b11 699
46f92d42 700 if (ops->timeout)
0152fb6b 701 ret = ops->timeout(req, reserved);
46f92d42
CH
702
703 switch (ret) {
704 case BLK_EH_HANDLED:
705 __blk_mq_complete_request(req);
706 break;
707 case BLK_EH_RESET_TIMER:
708 blk_add_timer(req);
709 blk_clear_rq_complete(req);
710 break;
711 case BLK_EH_NOT_HANDLED:
712 break;
713 default:
714 printk(KERN_ERR "block: bad eh return: %d\n", ret);
715 break;
716 }
87ee7b11 717}
5b3f25fc 718
81481eb4
CH
719static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
720 struct request *rq, void *priv, bool reserved)
721{
722 struct blk_mq_timeout_data *data = priv;
87ee7b11 723
95a49603 724 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
46f92d42 725 return;
87ee7b11 726
d9d149a3
ML
727 /*
728 * The rq being checked may have been freed and reallocated
729 * out already here, we avoid this race by checking rq->deadline
730 * and REQ_ATOM_COMPLETE flag together:
731 *
732 * - if rq->deadline is observed as new value because of
733 * reusing, the rq won't be timed out because of timing.
734 * - if rq->deadline is observed as previous value,
735 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
736 * because we put a barrier between setting rq->deadline
737 * and clearing the flag in blk_mq_start_request(), so
738 * this rq won't be timed out too.
739 */
46f92d42
CH
740 if (time_after_eq(jiffies, rq->deadline)) {
741 if (!blk_mark_rq_complete(rq))
0152fb6b 742 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
743 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
744 data->next = rq->deadline;
745 data->next_set = 1;
746 }
87ee7b11
JA
747}
748
287922eb 749static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 750{
287922eb
CH
751 struct request_queue *q =
752 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
753 struct blk_mq_timeout_data data = {
754 .next = 0,
755 .next_set = 0,
756 };
81481eb4 757 int i;
320ae51f 758
71f79fb3
GKB
759 /* A deadlock might occur if a request is stuck requiring a
760 * timeout at the same time a queue freeze is waiting
761 * completion, since the timeout code would not be able to
762 * acquire the queue reference here.
763 *
764 * That's why we don't use blk_queue_enter here; instead, we use
765 * percpu_ref_tryget directly, because we need to be able to
766 * obtain a reference even in the short window between the queue
767 * starting to freeze, by dropping the first reference in
1671d522 768 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
769 * consumed, marked by the instant q_usage_counter reaches
770 * zero.
771 */
772 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
773 return;
774
0bf6cd5b 775 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 776
81481eb4
CH
777 if (data.next_set) {
778 data.next = blk_rq_timeout(round_jiffies_up(data.next));
779 mod_timer(&q->timeout, data.next);
0d2602ca 780 } else {
0bf6cd5b
CH
781 struct blk_mq_hw_ctx *hctx;
782
f054b56c
ML
783 queue_for_each_hw_ctx(q, hctx, i) {
784 /* the hctx may be unmapped, so check it here */
785 if (blk_mq_hw_queue_mapped(hctx))
786 blk_mq_tag_idle(hctx);
787 }
0d2602ca 788 }
287922eb 789 blk_queue_exit(q);
320ae51f
JA
790}
791
88459642
OS
792struct flush_busy_ctx_data {
793 struct blk_mq_hw_ctx *hctx;
794 struct list_head *list;
795};
796
797static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
798{
799 struct flush_busy_ctx_data *flush_data = data;
800 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
801 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
802
803 sbitmap_clear_bit(sb, bitnr);
804 spin_lock(&ctx->lock);
805 list_splice_tail_init(&ctx->rq_list, flush_data->list);
806 spin_unlock(&ctx->lock);
807 return true;
808}
809
1429d7c9
JA
810/*
811 * Process software queues that have been marked busy, splicing them
812 * to the for-dispatch
813 */
2c3ad667 814void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 815{
88459642
OS
816 struct flush_busy_ctx_data data = {
817 .hctx = hctx,
818 .list = list,
819 };
1429d7c9 820
88459642 821 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 822}
2c3ad667 823EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 824
703fd1c0
JA
825static inline unsigned int queued_to_index(unsigned int queued)
826{
827 if (!queued)
828 return 0;
1429d7c9 829
703fd1c0 830 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
831}
832
bd6737f1
JA
833bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
834 bool wait)
bd166ef1
JA
835{
836 struct blk_mq_alloc_data data = {
837 .q = rq->q,
bd166ef1
JA
838 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
839 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
840 };
841
5feeacdd
JA
842 might_sleep_if(wait);
843
81380ca1
OS
844 if (rq->tag != -1)
845 goto done;
bd166ef1 846
415b806d
SG
847 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
848 data.flags |= BLK_MQ_REQ_RESERVED;
849
bd166ef1
JA
850 rq->tag = blk_mq_get_tag(&data);
851 if (rq->tag >= 0) {
200e86b3
JA
852 if (blk_mq_tag_busy(data.hctx)) {
853 rq->rq_flags |= RQF_MQ_INFLIGHT;
854 atomic_inc(&data.hctx->nr_active);
855 }
bd166ef1 856 data.hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
857 }
858
81380ca1
OS
859done:
860 if (hctx)
861 *hctx = data.hctx;
862 return rq->tag != -1;
bd166ef1
JA
863}
864
113285b4
JA
865static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
866 struct request *rq)
99cf1dc5 867{
99cf1dc5
JA
868 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
869 rq->tag = -1;
870
871 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
872 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
873 atomic_dec(&hctx->nr_active);
874 }
875}
876
113285b4
JA
877static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
878 struct request *rq)
879{
880 if (rq->tag == -1 || rq->internal_tag == -1)
881 return;
882
883 __blk_mq_put_driver_tag(hctx, rq);
884}
885
886static void blk_mq_put_driver_tag(struct request *rq)
887{
888 struct blk_mq_hw_ctx *hctx;
889
890 if (rq->tag == -1 || rq->internal_tag == -1)
891 return;
892
893 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
894 __blk_mq_put_driver_tag(hctx, rq);
895}
896
bd166ef1
JA
897/*
898 * If we fail getting a driver tag because all the driver tags are already
899 * assigned and on the dispatch list, BUT the first entry does not have a
900 * tag, then we could deadlock. For that case, move entries with assigned
901 * driver tags to the front, leaving the set of tagged requests in the
902 * same order, and the untagged set in the same order.
903 */
904static bool reorder_tags_to_front(struct list_head *list)
905{
906 struct request *rq, *tmp, *first = NULL;
907
908 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
909 if (rq == first)
910 break;
911 if (rq->tag != -1) {
912 list_move(&rq->queuelist, list);
913 if (!first)
914 first = rq;
915 }
916 }
917
918 return first != NULL;
919}
920
da55f2cc
OS
921static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
922 void *key)
923{
924 struct blk_mq_hw_ctx *hctx;
925
926 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
927
928 list_del(&wait->task_list);
929 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
930 blk_mq_run_hw_queue(hctx, true);
931 return 1;
932}
933
934static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
935{
936 struct sbq_wait_state *ws;
937
938 /*
939 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
940 * The thread which wins the race to grab this bit adds the hardware
941 * queue to the wait queue.
942 */
943 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
944 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
945 return false;
946
947 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
948 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
949
950 /*
951 * As soon as this returns, it's no longer safe to fiddle with
952 * hctx->dispatch_wait, since a completion can wake up the wait queue
953 * and unlock the bit.
954 */
955 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
956 return true;
957}
958
81380ca1 959bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
320ae51f 960{
81380ca1 961 struct blk_mq_hw_ctx *hctx;
320ae51f 962 struct request *rq;
fc17b653 963 int errors, queued;
320ae51f 964
81380ca1
OS
965 if (list_empty(list))
966 return false;
967
320ae51f
JA
968 /*
969 * Now process all the entries, sending them to the driver.
970 */
93efe981 971 errors = queued = 0;
81380ca1 972 do {
74c45052 973 struct blk_mq_queue_data bd;
fc17b653 974 blk_status_t ret;
320ae51f 975
f04c3df3 976 rq = list_first_entry(list, struct request, queuelist);
bd166ef1
JA
977 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
978 if (!queued && reorder_tags_to_front(list))
979 continue;
3c782d67
JA
980
981 /*
da55f2cc
OS
982 * The initial allocation attempt failed, so we need to
983 * rerun the hardware queue when a tag is freed.
3c782d67 984 */
807b1041
OS
985 if (!blk_mq_dispatch_wait_add(hctx))
986 break;
987
988 /*
989 * It's possible that a tag was freed in the window
990 * between the allocation failure and adding the
991 * hardware queue to the wait queue.
992 */
993 if (!blk_mq_get_driver_tag(rq, &hctx, false))
3c782d67 994 break;
bd166ef1 995 }
da55f2cc 996
320ae51f 997 list_del_init(&rq->queuelist);
320ae51f 998
74c45052 999 bd.rq = rq;
113285b4
JA
1000
1001 /*
1002 * Flag last if we have no more requests, or if we have more
1003 * but can't assign a driver tag to it.
1004 */
1005 if (list_empty(list))
1006 bd.last = true;
1007 else {
1008 struct request *nxt;
1009
1010 nxt = list_first_entry(list, struct request, queuelist);
1011 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1012 }
74c45052
JA
1013
1014 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653 1015 if (ret == BLK_STS_RESOURCE) {
113285b4 1016 blk_mq_put_driver_tag_hctx(hctx, rq);
f04c3df3 1017 list_add(&rq->queuelist, list);
ed0791b2 1018 __blk_mq_requeue_request(rq);
320ae51f 1019 break;
fc17b653
CH
1020 }
1021
1022 if (unlikely(ret != BLK_STS_OK)) {
93efe981 1023 errors++;
2a842aca 1024 blk_mq_end_request(rq, BLK_STS_IOERR);
fc17b653 1025 continue;
320ae51f
JA
1026 }
1027
fc17b653 1028 queued++;
81380ca1 1029 } while (!list_empty(list));
320ae51f 1030
703fd1c0 1031 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1032
1033 /*
1034 * Any items that need requeuing? Stuff them into hctx->dispatch,
1035 * that is where we will continue on next queue run.
1036 */
f04c3df3 1037 if (!list_empty(list)) {
113285b4 1038 /*
710c785f
BVA
1039 * If an I/O scheduler has been configured and we got a driver
1040 * tag for the next request already, free it again.
113285b4
JA
1041 */
1042 rq = list_first_entry(list, struct request, queuelist);
1043 blk_mq_put_driver_tag(rq);
1044
320ae51f 1045 spin_lock(&hctx->lock);
c13660a0 1046 list_splice_init(list, &hctx->dispatch);
320ae51f 1047 spin_unlock(&hctx->lock);
f04c3df3 1048
9ba52e58 1049 /*
710c785f
BVA
1050 * If SCHED_RESTART was set by the caller of this function and
1051 * it is no longer set that means that it was cleared by another
1052 * thread and hence that a queue rerun is needed.
9ba52e58 1053 *
710c785f
BVA
1054 * If TAG_WAITING is set that means that an I/O scheduler has
1055 * been configured and another thread is waiting for a driver
1056 * tag. To guarantee fairness, do not rerun this hardware queue
1057 * but let the other thread grab the driver tag.
bd166ef1 1058 *
710c785f
BVA
1059 * If no I/O scheduler has been configured it is possible that
1060 * the hardware queue got stopped and restarted before requests
1061 * were pushed back onto the dispatch list. Rerun the queue to
1062 * avoid starvation. Notes:
1063 * - blk_mq_run_hw_queue() checks whether or not a queue has
1064 * been stopped before rerunning a queue.
1065 * - Some but not all block drivers stop a queue before
fc17b653 1066 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1067 * and dm-rq.
bd166ef1 1068 */
da55f2cc
OS
1069 if (!blk_mq_sched_needs_restart(hctx) &&
1070 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
bd166ef1 1071 blk_mq_run_hw_queue(hctx, true);
320ae51f 1072 }
f04c3df3 1073
93efe981 1074 return (queued + errors) != 0;
f04c3df3
JA
1075}
1076
6a83e74d
BVA
1077static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1078{
1079 int srcu_idx;
1080
1081 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1082 cpu_online(hctx->next_cpu));
1083
1084 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1085 rcu_read_lock();
bd166ef1 1086 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1087 rcu_read_unlock();
1088 } else {
bf4907c0
JA
1089 might_sleep();
1090
6a83e74d 1091 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
bd166ef1 1092 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1093 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1094 }
1095}
1096
506e931f
JA
1097/*
1098 * It'd be great if the workqueue API had a way to pass
1099 * in a mask and had some smarts for more clever placement.
1100 * For now we just round-robin here, switching for every
1101 * BLK_MQ_CPU_WORK_BATCH queued items.
1102 */
1103static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1104{
b657d7e6
CH
1105 if (hctx->queue->nr_hw_queues == 1)
1106 return WORK_CPU_UNBOUND;
506e931f
JA
1107
1108 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1109 int next_cpu;
506e931f
JA
1110
1111 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1112 if (next_cpu >= nr_cpu_ids)
1113 next_cpu = cpumask_first(hctx->cpumask);
1114
1115 hctx->next_cpu = next_cpu;
1116 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1117 }
1118
b657d7e6 1119 return hctx->next_cpu;
506e931f
JA
1120}
1121
7587a5ae
BVA
1122static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1123 unsigned long msecs)
320ae51f 1124{
5d1b25c1
BVA
1125 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1126 !blk_mq_hw_queue_mapped(hctx)))
320ae51f
JA
1127 return;
1128
1b792f2f 1129 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1130 int cpu = get_cpu();
1131 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1132 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1133 put_cpu();
398205b8
PB
1134 return;
1135 }
e4043dcf 1136
2a90d4aa 1137 put_cpu();
e4043dcf 1138 }
398205b8 1139
9f993737
JA
1140 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1141 &hctx->run_work,
1142 msecs_to_jiffies(msecs));
7587a5ae
BVA
1143}
1144
1145void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1146{
1147 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1148}
1149EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1150
1151void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1152{
1153 __blk_mq_delay_run_hw_queue(hctx, async, 0);
320ae51f 1154}
5b727272 1155EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 1156
b94ec296 1157void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1158{
1159 struct blk_mq_hw_ctx *hctx;
1160 int i;
1161
1162 queue_for_each_hw_ctx(q, hctx, i) {
bd166ef1 1163 if (!blk_mq_hctx_has_pending(hctx) ||
5d1b25c1 1164 blk_mq_hctx_stopped(hctx))
320ae51f
JA
1165 continue;
1166
b94ec296 1167 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1168 }
1169}
b94ec296 1170EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1171
fd001443
BVA
1172/**
1173 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1174 * @q: request queue.
1175 *
1176 * The caller is responsible for serializing this function against
1177 * blk_mq_{start,stop}_hw_queue().
1178 */
1179bool blk_mq_queue_stopped(struct request_queue *q)
1180{
1181 struct blk_mq_hw_ctx *hctx;
1182 int i;
1183
1184 queue_for_each_hw_ctx(q, hctx, i)
1185 if (blk_mq_hctx_stopped(hctx))
1186 return true;
1187
1188 return false;
1189}
1190EXPORT_SYMBOL(blk_mq_queue_stopped);
1191
2719aa21 1192static void __blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx, bool sync)
320ae51f 1193{
2719aa21
JA
1194 if (sync)
1195 cancel_delayed_work_sync(&hctx->run_work);
1196 else
1197 cancel_delayed_work(&hctx->run_work);
1198
320ae51f
JA
1199 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1200}
2719aa21
JA
1201
1202void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1203{
1204 __blk_mq_stop_hw_queue(hctx, false);
1205}
320ae51f
JA
1206EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1207
ebd76857 1208static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync)
280d45f6
CH
1209{
1210 struct blk_mq_hw_ctx *hctx;
1211 int i;
1212
1213 queue_for_each_hw_ctx(q, hctx, i)
2719aa21
JA
1214 __blk_mq_stop_hw_queue(hctx, sync);
1215}
1216
1217void blk_mq_stop_hw_queues(struct request_queue *q)
1218{
1219 __blk_mq_stop_hw_queues(q, false);
280d45f6
CH
1220}
1221EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1222
320ae51f
JA
1223void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1224{
1225 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1226
0ffbce80 1227 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1228}
1229EXPORT_SYMBOL(blk_mq_start_hw_queue);
1230
2f268556
CH
1231void blk_mq_start_hw_queues(struct request_queue *q)
1232{
1233 struct blk_mq_hw_ctx *hctx;
1234 int i;
1235
1236 queue_for_each_hw_ctx(q, hctx, i)
1237 blk_mq_start_hw_queue(hctx);
1238}
1239EXPORT_SYMBOL(blk_mq_start_hw_queues);
1240
ae911c5e
JA
1241void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1242{
1243 if (!blk_mq_hctx_stopped(hctx))
1244 return;
1245
1246 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1247 blk_mq_run_hw_queue(hctx, async);
1248}
1249EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1250
1b4a3258 1251void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1252{
1253 struct blk_mq_hw_ctx *hctx;
1254 int i;
1255
ae911c5e
JA
1256 queue_for_each_hw_ctx(q, hctx, i)
1257 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1258}
1259EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1260
70f4db63 1261static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1262{
1263 struct blk_mq_hw_ctx *hctx;
1264
9f993737 1265 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 1266
21c6e939
JA
1267 /*
1268 * If we are stopped, don't run the queue. The exception is if
1269 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1270 * the STOPPED bit and run it.
1271 */
1272 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1273 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1274 return;
7587a5ae 1275
21c6e939
JA
1276 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1277 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1278 }
7587a5ae
BVA
1279
1280 __blk_mq_run_hw_queue(hctx);
1281}
1282
70f4db63
CH
1283
1284void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1285{
19c66e59
ML
1286 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1287 return;
70f4db63 1288
21c6e939
JA
1289 /*
1290 * Stop the hw queue, then modify currently delayed work.
1291 * This should prevent us from running the queue prematurely.
1292 * Mark the queue as auto-clearing STOPPED when it runs.
1293 */
7e79dadc 1294 blk_mq_stop_hw_queue(hctx);
21c6e939
JA
1295 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1296 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1297 &hctx->run_work,
1298 msecs_to_jiffies(msecs));
70f4db63
CH
1299}
1300EXPORT_SYMBOL(blk_mq_delay_queue);
1301
cfd0c552 1302static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1303 struct request *rq,
1304 bool at_head)
320ae51f 1305{
e57690fe
JA
1306 struct blk_mq_ctx *ctx = rq->mq_ctx;
1307
01b983c9
JA
1308 trace_block_rq_insert(hctx->queue, rq);
1309
72a0a36e
CH
1310 if (at_head)
1311 list_add(&rq->queuelist, &ctx->rq_list);
1312 else
1313 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1314}
4bb659b1 1315
2c3ad667
JA
1316void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1317 bool at_head)
cfd0c552
ML
1318{
1319 struct blk_mq_ctx *ctx = rq->mq_ctx;
1320
e57690fe 1321 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1322 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1323}
1324
bd166ef1
JA
1325void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1326 struct list_head *list)
320ae51f
JA
1327
1328{
320ae51f
JA
1329 /*
1330 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1331 * offline now
1332 */
1333 spin_lock(&ctx->lock);
1334 while (!list_empty(list)) {
1335 struct request *rq;
1336
1337 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1338 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1339 list_del_init(&rq->queuelist);
e57690fe 1340 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1341 }
cfd0c552 1342 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1343 spin_unlock(&ctx->lock);
320ae51f
JA
1344}
1345
1346static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1347{
1348 struct request *rqa = container_of(a, struct request, queuelist);
1349 struct request *rqb = container_of(b, struct request, queuelist);
1350
1351 return !(rqa->mq_ctx < rqb->mq_ctx ||
1352 (rqa->mq_ctx == rqb->mq_ctx &&
1353 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1354}
1355
1356void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1357{
1358 struct blk_mq_ctx *this_ctx;
1359 struct request_queue *this_q;
1360 struct request *rq;
1361 LIST_HEAD(list);
1362 LIST_HEAD(ctx_list);
1363 unsigned int depth;
1364
1365 list_splice_init(&plug->mq_list, &list);
1366
1367 list_sort(NULL, &list, plug_ctx_cmp);
1368
1369 this_q = NULL;
1370 this_ctx = NULL;
1371 depth = 0;
1372
1373 while (!list_empty(&list)) {
1374 rq = list_entry_rq(list.next);
1375 list_del_init(&rq->queuelist);
1376 BUG_ON(!rq->q);
1377 if (rq->mq_ctx != this_ctx) {
1378 if (this_ctx) {
bd166ef1
JA
1379 trace_block_unplug(this_q, depth, from_schedule);
1380 blk_mq_sched_insert_requests(this_q, this_ctx,
1381 &ctx_list,
1382 from_schedule);
320ae51f
JA
1383 }
1384
1385 this_ctx = rq->mq_ctx;
1386 this_q = rq->q;
1387 depth = 0;
1388 }
1389
1390 depth++;
1391 list_add_tail(&rq->queuelist, &ctx_list);
1392 }
1393
1394 /*
1395 * If 'this_ctx' is set, we know we have entries to complete
1396 * on 'ctx_list'. Do those.
1397 */
1398 if (this_ctx) {
bd166ef1
JA
1399 trace_block_unplug(this_q, depth, from_schedule);
1400 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1401 from_schedule);
320ae51f
JA
1402 }
1403}
1404
1405static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1406{
da8d7f07 1407 blk_init_request_from_bio(rq, bio);
4b570521 1408
6e85eaf3 1409 blk_account_io_start(rq, true);
320ae51f
JA
1410}
1411
274a5843
JA
1412static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1413{
1414 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1415 !blk_queue_nomerges(hctx->queue);
1416}
1417
ab42f35d
ML
1418static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1419 struct blk_mq_ctx *ctx,
1420 struct request *rq)
1421{
1422 spin_lock(&ctx->lock);
1423 __blk_mq_insert_request(hctx, rq, false);
1424 spin_unlock(&ctx->lock);
07068d5b 1425}
14ec77f3 1426
fd2d3326
JA
1427static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1428{
bd166ef1
JA
1429 if (rq->tag != -1)
1430 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1431
1432 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1433}
1434
d964f04a
ML
1435static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1436 struct request *rq,
1437 blk_qc_t *cookie, bool may_sleep)
f984df1f 1438{
f984df1f 1439 struct request_queue *q = rq->q;
f984df1f
SL
1440 struct blk_mq_queue_data bd = {
1441 .rq = rq,
d945a365 1442 .last = true,
f984df1f 1443 };
bd166ef1 1444 blk_qc_t new_cookie;
f06345ad 1445 blk_status_t ret;
d964f04a
ML
1446 bool run_queue = true;
1447
1448 if (blk_mq_hctx_stopped(hctx)) {
1449 run_queue = false;
1450 goto insert;
1451 }
f984df1f 1452
bd166ef1 1453 if (q->elevator)
2253efc8
BVA
1454 goto insert;
1455
d964f04a 1456 if (!blk_mq_get_driver_tag(rq, NULL, false))
bd166ef1
JA
1457 goto insert;
1458
1459 new_cookie = request_to_qc_t(hctx, rq);
1460
f984df1f
SL
1461 /*
1462 * For OK queue, we are done. For error, kill it. Any other
1463 * error (busy), just add it to our list as we previously
1464 * would have done
1465 */
1466 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653
CH
1467 switch (ret) {
1468 case BLK_STS_OK:
7b371636 1469 *cookie = new_cookie;
2253efc8 1470 return;
fc17b653
CH
1471 case BLK_STS_RESOURCE:
1472 __blk_mq_requeue_request(rq);
1473 goto insert;
1474 default:
7b371636 1475 *cookie = BLK_QC_T_NONE;
fc17b653 1476 blk_mq_end_request(rq, ret);
2253efc8 1477 return;
f984df1f 1478 }
7b371636 1479
2253efc8 1480insert:
d964f04a 1481 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
f984df1f
SL
1482}
1483
5eb6126e
CH
1484static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1485 struct request *rq, blk_qc_t *cookie)
1486{
1487 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1488 rcu_read_lock();
d964f04a 1489 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
5eb6126e
CH
1490 rcu_read_unlock();
1491 } else {
bf4907c0
JA
1492 unsigned int srcu_idx;
1493
1494 might_sleep();
1495
1496 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
d964f04a 1497 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
5eb6126e
CH
1498 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1499 }
1500}
1501
dece1635 1502static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1503{
ef295ecf 1504 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1505 const int is_flush_fua = op_is_flush(bio->bi_opf);
5a797e00 1506 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1507 struct request *rq;
5eb6126e 1508 unsigned int request_count = 0;
f984df1f 1509 struct blk_plug *plug;
5b3f341f 1510 struct request *same_queue_rq = NULL;
7b371636 1511 blk_qc_t cookie;
87760e5e 1512 unsigned int wb_acct;
07068d5b
JA
1513
1514 blk_queue_bounce(q, &bio);
1515
f36ea50c
WX
1516 blk_queue_split(q, &bio, q->bio_split);
1517
07068d5b 1518 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1519 bio_io_error(bio);
dece1635 1520 return BLK_QC_T_NONE;
07068d5b
JA
1521 }
1522
87c279e6
OS
1523 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1524 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1525 return BLK_QC_T_NONE;
f984df1f 1526
bd166ef1
JA
1527 if (blk_mq_sched_bio_merge(q, bio))
1528 return BLK_QC_T_NONE;
1529
87760e5e
JA
1530 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1531
bd166ef1
JA
1532 trace_block_getrq(q, bio, bio->bi_opf);
1533
d2c0d383 1534 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1535 if (unlikely(!rq)) {
1536 __wbt_done(q->rq_wb, wb_acct);
dece1635 1537 return BLK_QC_T_NONE;
87760e5e
JA
1538 }
1539
1540 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1541
fd2d3326 1542 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 1543
f984df1f 1544 plug = current->plug;
07068d5b 1545 if (unlikely(is_flush_fua)) {
f984df1f 1546 blk_mq_put_ctx(data.ctx);
07068d5b 1547 blk_mq_bio_to_request(rq, bio);
a4d907b6
CH
1548 if (q->elevator) {
1549 blk_mq_sched_insert_request(rq, false, true, true,
1550 true);
6a83e74d 1551 } else {
a4d907b6
CH
1552 blk_insert_flush(rq);
1553 blk_mq_run_hw_queue(data.hctx, true);
6a83e74d 1554 }
a4d907b6 1555 } else if (plug && q->nr_hw_queues == 1) {
600271d9
SL
1556 struct request *last = NULL;
1557
b00c53e8 1558 blk_mq_put_ctx(data.ctx);
e6c4438b 1559 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1560
1561 /*
1562 * @request_count may become stale because of schedule
1563 * out, so check the list again.
1564 */
1565 if (list_empty(&plug->mq_list))
1566 request_count = 0;
254d259d
CH
1567 else if (blk_queue_nomerges(q))
1568 request_count = blk_plug_queued_count(q);
1569
676d0607 1570 if (!request_count)
e6c4438b 1571 trace_block_plug(q);
600271d9
SL
1572 else
1573 last = list_entry_rq(plug->mq_list.prev);
b094f89c 1574
600271d9
SL
1575 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1576 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1577 blk_flush_plug_list(plug, false);
1578 trace_block_plug(q);
320ae51f 1579 }
b094f89c 1580
e6c4438b 1581 list_add_tail(&rq->queuelist, &plug->mq_list);
2299722c 1582 } else if (plug && !blk_queue_nomerges(q)) {
bd166ef1 1583 blk_mq_bio_to_request(rq, bio);
07068d5b 1584
07068d5b 1585 /*
6a83e74d 1586 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1587 * Otherwise the existing request in the plug list will be
1588 * issued. So the plug list will have one request at most
2299722c
CH
1589 * The plug list might get flushed before this. If that happens,
1590 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 1591 */
2299722c
CH
1592 if (list_empty(&plug->mq_list))
1593 same_queue_rq = NULL;
1594 if (same_queue_rq)
1595 list_del_init(&same_queue_rq->queuelist);
1596 list_add_tail(&rq->queuelist, &plug->mq_list);
1597
bf4907c0
JA
1598 blk_mq_put_ctx(data.ctx);
1599
dad7a3be
ML
1600 if (same_queue_rq) {
1601 data.hctx = blk_mq_map_queue(q,
1602 same_queue_rq->mq_ctx->cpu);
2299722c
CH
1603 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1604 &cookie);
dad7a3be 1605 }
a4d907b6 1606 } else if (q->nr_hw_queues > 1 && is_sync) {
bf4907c0 1607 blk_mq_put_ctx(data.ctx);
2299722c 1608 blk_mq_bio_to_request(rq, bio);
2299722c 1609 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
a4d907b6 1610 } else if (q->elevator) {
b00c53e8 1611 blk_mq_put_ctx(data.ctx);
bd166ef1 1612 blk_mq_bio_to_request(rq, bio);
a4d907b6 1613 blk_mq_sched_insert_request(rq, false, true, true, true);
ab42f35d 1614 } else {
b00c53e8 1615 blk_mq_put_ctx(data.ctx);
ab42f35d
ML
1616 blk_mq_bio_to_request(rq, bio);
1617 blk_mq_queue_io(data.hctx, data.ctx, rq);
a4d907b6 1618 blk_mq_run_hw_queue(data.hctx, true);
ab42f35d 1619 }
320ae51f 1620
7b371636 1621 return cookie;
320ae51f
JA
1622}
1623
cc71a6f4
JA
1624void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1625 unsigned int hctx_idx)
95363efd 1626{
e9b267d9 1627 struct page *page;
320ae51f 1628
24d2f903 1629 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1630 int i;
320ae51f 1631
24d2f903 1632 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1633 struct request *rq = tags->static_rqs[i];
1634
1635 if (!rq)
e9b267d9 1636 continue;
d6296d39 1637 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 1638 tags->static_rqs[i] = NULL;
e9b267d9 1639 }
320ae51f 1640 }
320ae51f 1641
24d2f903
CH
1642 while (!list_empty(&tags->page_list)) {
1643 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1644 list_del_init(&page->lru);
f75782e4
CM
1645 /*
1646 * Remove kmemleak object previously allocated in
1647 * blk_mq_init_rq_map().
1648 */
1649 kmemleak_free(page_address(page));
320ae51f
JA
1650 __free_pages(page, page->private);
1651 }
cc71a6f4 1652}
320ae51f 1653
cc71a6f4
JA
1654void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1655{
24d2f903 1656 kfree(tags->rqs);
cc71a6f4 1657 tags->rqs = NULL;
2af8cbe3
JA
1658 kfree(tags->static_rqs);
1659 tags->static_rqs = NULL;
320ae51f 1660
24d2f903 1661 blk_mq_free_tags(tags);
320ae51f
JA
1662}
1663
cc71a6f4
JA
1664struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1665 unsigned int hctx_idx,
1666 unsigned int nr_tags,
1667 unsigned int reserved_tags)
320ae51f 1668{
24d2f903 1669 struct blk_mq_tags *tags;
59f082e4 1670 int node;
320ae51f 1671
59f082e4
SL
1672 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1673 if (node == NUMA_NO_NODE)
1674 node = set->numa_node;
1675
1676 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 1677 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1678 if (!tags)
1679 return NULL;
320ae51f 1680
cc71a6f4 1681 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1682 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1683 node);
24d2f903
CH
1684 if (!tags->rqs) {
1685 blk_mq_free_tags(tags);
1686 return NULL;
1687 }
320ae51f 1688
2af8cbe3
JA
1689 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1690 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1691 node);
2af8cbe3
JA
1692 if (!tags->static_rqs) {
1693 kfree(tags->rqs);
1694 blk_mq_free_tags(tags);
1695 return NULL;
1696 }
1697
cc71a6f4
JA
1698 return tags;
1699}
1700
1701static size_t order_to_size(unsigned int order)
1702{
1703 return (size_t)PAGE_SIZE << order;
1704}
1705
1706int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1707 unsigned int hctx_idx, unsigned int depth)
1708{
1709 unsigned int i, j, entries_per_page, max_order = 4;
1710 size_t rq_size, left;
59f082e4
SL
1711 int node;
1712
1713 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1714 if (node == NUMA_NO_NODE)
1715 node = set->numa_node;
cc71a6f4
JA
1716
1717 INIT_LIST_HEAD(&tags->page_list);
1718
320ae51f
JA
1719 /*
1720 * rq_size is the size of the request plus driver payload, rounded
1721 * to the cacheline size
1722 */
24d2f903 1723 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1724 cache_line_size());
cc71a6f4 1725 left = rq_size * depth;
320ae51f 1726
cc71a6f4 1727 for (i = 0; i < depth; ) {
320ae51f
JA
1728 int this_order = max_order;
1729 struct page *page;
1730 int to_do;
1731 void *p;
1732
b3a834b1 1733 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1734 this_order--;
1735
1736 do {
59f082e4 1737 page = alloc_pages_node(node,
36e1f3d1 1738 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1739 this_order);
320ae51f
JA
1740 if (page)
1741 break;
1742 if (!this_order--)
1743 break;
1744 if (order_to_size(this_order) < rq_size)
1745 break;
1746 } while (1);
1747
1748 if (!page)
24d2f903 1749 goto fail;
320ae51f
JA
1750
1751 page->private = this_order;
24d2f903 1752 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1753
1754 p = page_address(page);
f75782e4
CM
1755 /*
1756 * Allow kmemleak to scan these pages as they contain pointers
1757 * to additional allocations like via ops->init_request().
1758 */
36e1f3d1 1759 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 1760 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 1761 to_do = min(entries_per_page, depth - i);
320ae51f
JA
1762 left -= to_do * rq_size;
1763 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
1764 struct request *rq = p;
1765
1766 tags->static_rqs[i] = rq;
24d2f903 1767 if (set->ops->init_request) {
d6296d39 1768 if (set->ops->init_request(set, rq, hctx_idx,
59f082e4 1769 node)) {
2af8cbe3 1770 tags->static_rqs[i] = NULL;
24d2f903 1771 goto fail;
a5164405 1772 }
e9b267d9
CH
1773 }
1774
320ae51f
JA
1775 p += rq_size;
1776 i++;
1777 }
1778 }
cc71a6f4 1779 return 0;
320ae51f 1780
24d2f903 1781fail:
cc71a6f4
JA
1782 blk_mq_free_rqs(set, tags, hctx_idx);
1783 return -ENOMEM;
320ae51f
JA
1784}
1785
e57690fe
JA
1786/*
1787 * 'cpu' is going away. splice any existing rq_list entries from this
1788 * software queue to the hw queue dispatch list, and ensure that it
1789 * gets run.
1790 */
9467f859 1791static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 1792{
9467f859 1793 struct blk_mq_hw_ctx *hctx;
484b4061
JA
1794 struct blk_mq_ctx *ctx;
1795 LIST_HEAD(tmp);
1796
9467f859 1797 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 1798 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1799
1800 spin_lock(&ctx->lock);
1801 if (!list_empty(&ctx->rq_list)) {
1802 list_splice_init(&ctx->rq_list, &tmp);
1803 blk_mq_hctx_clear_pending(hctx, ctx);
1804 }
1805 spin_unlock(&ctx->lock);
1806
1807 if (list_empty(&tmp))
9467f859 1808 return 0;
484b4061 1809
e57690fe
JA
1810 spin_lock(&hctx->lock);
1811 list_splice_tail_init(&tmp, &hctx->dispatch);
1812 spin_unlock(&hctx->lock);
484b4061
JA
1813
1814 blk_mq_run_hw_queue(hctx, true);
9467f859 1815 return 0;
484b4061
JA
1816}
1817
9467f859 1818static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 1819{
9467f859
TG
1820 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1821 &hctx->cpuhp_dead);
484b4061
JA
1822}
1823
c3b4afca 1824/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1825static void blk_mq_exit_hctx(struct request_queue *q,
1826 struct blk_mq_tag_set *set,
1827 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1828{
9c1051aa
OS
1829 blk_mq_debugfs_unregister_hctx(hctx);
1830
08e98fc6
ML
1831 blk_mq_tag_idle(hctx);
1832
f70ced09 1833 if (set->ops->exit_request)
d6296d39 1834 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
f70ced09 1835
93252632
OS
1836 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1837
08e98fc6
ML
1838 if (set->ops->exit_hctx)
1839 set->ops->exit_hctx(hctx, hctx_idx);
1840
6a83e74d
BVA
1841 if (hctx->flags & BLK_MQ_F_BLOCKING)
1842 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1843
9467f859 1844 blk_mq_remove_cpuhp(hctx);
f70ced09 1845 blk_free_flush_queue(hctx->fq);
88459642 1846 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1847}
1848
624dbe47
ML
1849static void blk_mq_exit_hw_queues(struct request_queue *q,
1850 struct blk_mq_tag_set *set, int nr_queue)
1851{
1852 struct blk_mq_hw_ctx *hctx;
1853 unsigned int i;
1854
1855 queue_for_each_hw_ctx(q, hctx, i) {
1856 if (i == nr_queue)
1857 break;
08e98fc6 1858 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1859 }
624dbe47
ML
1860}
1861
08e98fc6
ML
1862static int blk_mq_init_hctx(struct request_queue *q,
1863 struct blk_mq_tag_set *set,
1864 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1865{
08e98fc6
ML
1866 int node;
1867
1868 node = hctx->numa_node;
1869 if (node == NUMA_NO_NODE)
1870 node = hctx->numa_node = set->numa_node;
1871
9f993737 1872 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
1873 spin_lock_init(&hctx->lock);
1874 INIT_LIST_HEAD(&hctx->dispatch);
1875 hctx->queue = q;
1876 hctx->queue_num = hctx_idx;
2404e607 1877 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 1878
9467f859 1879 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
1880
1881 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1882
1883 /*
08e98fc6
ML
1884 * Allocate space for all possible cpus to avoid allocation at
1885 * runtime
320ae51f 1886 */
08e98fc6
ML
1887 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1888 GFP_KERNEL, node);
1889 if (!hctx->ctxs)
1890 goto unregister_cpu_notifier;
320ae51f 1891
88459642
OS
1892 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1893 node))
08e98fc6 1894 goto free_ctxs;
320ae51f 1895
08e98fc6 1896 hctx->nr_ctx = 0;
320ae51f 1897
08e98fc6
ML
1898 if (set->ops->init_hctx &&
1899 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1900 goto free_bitmap;
320ae51f 1901
93252632
OS
1902 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1903 goto exit_hctx;
1904
f70ced09
ML
1905 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1906 if (!hctx->fq)
93252632 1907 goto sched_exit_hctx;
320ae51f 1908
f70ced09 1909 if (set->ops->init_request &&
d6296d39
CH
1910 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
1911 node))
f70ced09 1912 goto free_fq;
320ae51f 1913
6a83e74d
BVA
1914 if (hctx->flags & BLK_MQ_F_BLOCKING)
1915 init_srcu_struct(&hctx->queue_rq_srcu);
1916
9c1051aa
OS
1917 blk_mq_debugfs_register_hctx(q, hctx);
1918
08e98fc6 1919 return 0;
320ae51f 1920
f70ced09
ML
1921 free_fq:
1922 kfree(hctx->fq);
93252632
OS
1923 sched_exit_hctx:
1924 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
f70ced09
ML
1925 exit_hctx:
1926 if (set->ops->exit_hctx)
1927 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 1928 free_bitmap:
88459642 1929 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1930 free_ctxs:
1931 kfree(hctx->ctxs);
1932 unregister_cpu_notifier:
9467f859 1933 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
1934 return -1;
1935}
320ae51f 1936
320ae51f
JA
1937static void blk_mq_init_cpu_queues(struct request_queue *q,
1938 unsigned int nr_hw_queues)
1939{
1940 unsigned int i;
1941
1942 for_each_possible_cpu(i) {
1943 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1944 struct blk_mq_hw_ctx *hctx;
1945
320ae51f
JA
1946 __ctx->cpu = i;
1947 spin_lock_init(&__ctx->lock);
1948 INIT_LIST_HEAD(&__ctx->rq_list);
1949 __ctx->queue = q;
1950
1951 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1952 if (!cpu_online(i))
1953 continue;
1954
7d7e0f90 1955 hctx = blk_mq_map_queue(q, i);
e4043dcf 1956
320ae51f
JA
1957 /*
1958 * Set local node, IFF we have more than one hw queue. If
1959 * not, we remain on the home node of the device
1960 */
1961 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 1962 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
1963 }
1964}
1965
cc71a6f4
JA
1966static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1967{
1968 int ret = 0;
1969
1970 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1971 set->queue_depth, set->reserved_tags);
1972 if (!set->tags[hctx_idx])
1973 return false;
1974
1975 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1976 set->queue_depth);
1977 if (!ret)
1978 return true;
1979
1980 blk_mq_free_rq_map(set->tags[hctx_idx]);
1981 set->tags[hctx_idx] = NULL;
1982 return false;
1983}
1984
1985static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1986 unsigned int hctx_idx)
1987{
bd166ef1
JA
1988 if (set->tags[hctx_idx]) {
1989 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
1990 blk_mq_free_rq_map(set->tags[hctx_idx]);
1991 set->tags[hctx_idx] = NULL;
1992 }
cc71a6f4
JA
1993}
1994
5778322e
AM
1995static void blk_mq_map_swqueue(struct request_queue *q,
1996 const struct cpumask *online_mask)
320ae51f 1997{
d1b1cea1 1998 unsigned int i, hctx_idx;
320ae51f
JA
1999 struct blk_mq_hw_ctx *hctx;
2000 struct blk_mq_ctx *ctx;
2a34c087 2001 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2002
60de074b
AM
2003 /*
2004 * Avoid others reading imcomplete hctx->cpumask through sysfs
2005 */
2006 mutex_lock(&q->sysfs_lock);
2007
320ae51f 2008 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2009 cpumask_clear(hctx->cpumask);
320ae51f
JA
2010 hctx->nr_ctx = 0;
2011 }
2012
2013 /*
2014 * Map software to hardware queues
2015 */
897bb0c7 2016 for_each_possible_cpu(i) {
320ae51f 2017 /* If the cpu isn't online, the cpu is mapped to first hctx */
5778322e 2018 if (!cpumask_test_cpu(i, online_mask))
e4043dcf
JA
2019 continue;
2020
d1b1cea1
GKB
2021 hctx_idx = q->mq_map[i];
2022 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2023 if (!set->tags[hctx_idx] &&
2024 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2025 /*
2026 * If tags initialization fail for some hctx,
2027 * that hctx won't be brought online. In this
2028 * case, remap the current ctx to hctx[0] which
2029 * is guaranteed to always have tags allocated
2030 */
cc71a6f4 2031 q->mq_map[i] = 0;
d1b1cea1
GKB
2032 }
2033
897bb0c7 2034 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2035 hctx = blk_mq_map_queue(q, i);
868f2f0b 2036
e4043dcf 2037 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2038 ctx->index_hw = hctx->nr_ctx;
2039 hctx->ctxs[hctx->nr_ctx++] = ctx;
2040 }
506e931f 2041
60de074b
AM
2042 mutex_unlock(&q->sysfs_lock);
2043
506e931f 2044 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2045 /*
a68aafa5
JA
2046 * If no software queues are mapped to this hardware queue,
2047 * disable it and free the request entries.
484b4061
JA
2048 */
2049 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2050 /* Never unmap queue 0. We need it as a
2051 * fallback in case of a new remap fails
2052 * allocation
2053 */
cc71a6f4
JA
2054 if (i && set->tags[i])
2055 blk_mq_free_map_and_requests(set, i);
2056
2a34c087 2057 hctx->tags = NULL;
484b4061
JA
2058 continue;
2059 }
2060
2a34c087
ML
2061 hctx->tags = set->tags[i];
2062 WARN_ON(!hctx->tags);
2063
889fa31f
CY
2064 /*
2065 * Set the map size to the number of mapped software queues.
2066 * This is more accurate and more efficient than looping
2067 * over all possibly mapped software queues.
2068 */
88459642 2069 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2070
484b4061
JA
2071 /*
2072 * Initialize batch roundrobin counts
2073 */
506e931f
JA
2074 hctx->next_cpu = cpumask_first(hctx->cpumask);
2075 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2076 }
320ae51f
JA
2077}
2078
2404e607 2079static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2080{
2081 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2082 int i;
2083
2404e607
JM
2084 queue_for_each_hw_ctx(q, hctx, i) {
2085 if (shared)
2086 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2087 else
2088 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2089 }
2090}
2091
2092static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2093{
2094 struct request_queue *q;
0d2602ca 2095
705cda97
BVA
2096 lockdep_assert_held(&set->tag_list_lock);
2097
0d2602ca
JA
2098 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2099 blk_mq_freeze_queue(q);
2404e607 2100 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2101 blk_mq_unfreeze_queue(q);
2102 }
2103}
2104
2105static void blk_mq_del_queue_tag_set(struct request_queue *q)
2106{
2107 struct blk_mq_tag_set *set = q->tag_set;
2108
0d2602ca 2109 mutex_lock(&set->tag_list_lock);
705cda97
BVA
2110 list_del_rcu(&q->tag_set_list);
2111 INIT_LIST_HEAD(&q->tag_set_list);
2404e607
JM
2112 if (list_is_singular(&set->tag_list)) {
2113 /* just transitioned to unshared */
2114 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2115 /* update existing queue */
2116 blk_mq_update_tag_set_depth(set, false);
2117 }
0d2602ca 2118 mutex_unlock(&set->tag_list_lock);
705cda97
BVA
2119
2120 synchronize_rcu();
0d2602ca
JA
2121}
2122
2123static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2124 struct request_queue *q)
2125{
2126 q->tag_set = set;
2127
2128 mutex_lock(&set->tag_list_lock);
2404e607
JM
2129
2130 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2131 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2132 set->flags |= BLK_MQ_F_TAG_SHARED;
2133 /* update existing queue */
2134 blk_mq_update_tag_set_depth(set, true);
2135 }
2136 if (set->flags & BLK_MQ_F_TAG_SHARED)
2137 queue_set_hctx_shared(q, true);
705cda97 2138 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2404e607 2139
0d2602ca
JA
2140 mutex_unlock(&set->tag_list_lock);
2141}
2142
e09aae7e
ML
2143/*
2144 * It is the actual release handler for mq, but we do it from
2145 * request queue's release handler for avoiding use-after-free
2146 * and headache because q->mq_kobj shouldn't have been introduced,
2147 * but we can't group ctx/kctx kobj without it.
2148 */
2149void blk_mq_release(struct request_queue *q)
2150{
2151 struct blk_mq_hw_ctx *hctx;
2152 unsigned int i;
2153
2154 /* hctx kobj stays in hctx */
c3b4afca
ML
2155 queue_for_each_hw_ctx(q, hctx, i) {
2156 if (!hctx)
2157 continue;
6c8b232e 2158 kobject_put(&hctx->kobj);
c3b4afca 2159 }
e09aae7e 2160
a723bab3
AM
2161 q->mq_map = NULL;
2162
e09aae7e
ML
2163 kfree(q->queue_hw_ctx);
2164
7ea5fe31
ML
2165 /*
2166 * release .mq_kobj and sw queue's kobject now because
2167 * both share lifetime with request queue.
2168 */
2169 blk_mq_sysfs_deinit(q);
2170
e09aae7e
ML
2171 free_percpu(q->queue_ctx);
2172}
2173
24d2f903 2174struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2175{
2176 struct request_queue *uninit_q, *q;
2177
2178 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2179 if (!uninit_q)
2180 return ERR_PTR(-ENOMEM);
2181
2182 q = blk_mq_init_allocated_queue(set, uninit_q);
2183 if (IS_ERR(q))
2184 blk_cleanup_queue(uninit_q);
2185
2186 return q;
2187}
2188EXPORT_SYMBOL(blk_mq_init_queue);
2189
868f2f0b
KB
2190static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2191 struct request_queue *q)
320ae51f 2192{
868f2f0b
KB
2193 int i, j;
2194 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2195
868f2f0b 2196 blk_mq_sysfs_unregister(q);
24d2f903 2197 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2198 int node;
f14bbe77 2199
868f2f0b
KB
2200 if (hctxs[i])
2201 continue;
2202
2203 node = blk_mq_hw_queue_to_node(q->mq_map, i);
cdef54dd
CH
2204 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2205 GFP_KERNEL, node);
320ae51f 2206 if (!hctxs[i])
868f2f0b 2207 break;
320ae51f 2208
a86073e4 2209 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2210 node)) {
2211 kfree(hctxs[i]);
2212 hctxs[i] = NULL;
2213 break;
2214 }
e4043dcf 2215
0d2602ca 2216 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2217 hctxs[i]->numa_node = node;
320ae51f 2218 hctxs[i]->queue_num = i;
868f2f0b
KB
2219
2220 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2221 free_cpumask_var(hctxs[i]->cpumask);
2222 kfree(hctxs[i]);
2223 hctxs[i] = NULL;
2224 break;
2225 }
2226 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2227 }
868f2f0b
KB
2228 for (j = i; j < q->nr_hw_queues; j++) {
2229 struct blk_mq_hw_ctx *hctx = hctxs[j];
2230
2231 if (hctx) {
cc71a6f4
JA
2232 if (hctx->tags)
2233 blk_mq_free_map_and_requests(set, j);
868f2f0b 2234 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2235 kobject_put(&hctx->kobj);
868f2f0b
KB
2236 hctxs[j] = NULL;
2237
2238 }
2239 }
2240 q->nr_hw_queues = i;
2241 blk_mq_sysfs_register(q);
2242}
2243
2244struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2245 struct request_queue *q)
2246{
66841672
ML
2247 /* mark the queue as mq asap */
2248 q->mq_ops = set->ops;
2249
34dbad5d 2250 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
2251 blk_mq_poll_stats_bkt,
2252 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
2253 if (!q->poll_cb)
2254 goto err_exit;
2255
868f2f0b
KB
2256 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2257 if (!q->queue_ctx)
c7de5726 2258 goto err_exit;
868f2f0b 2259
737f98cf
ML
2260 /* init q->mq_kobj and sw queues' kobjects */
2261 blk_mq_sysfs_init(q);
2262
868f2f0b
KB
2263 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2264 GFP_KERNEL, set->numa_node);
2265 if (!q->queue_hw_ctx)
2266 goto err_percpu;
2267
bdd17e75 2268 q->mq_map = set->mq_map;
868f2f0b
KB
2269
2270 blk_mq_realloc_hw_ctxs(set, q);
2271 if (!q->nr_hw_queues)
2272 goto err_hctxs;
320ae51f 2273
287922eb 2274 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2275 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2276
2277 q->nr_queues = nr_cpu_ids;
320ae51f 2278
94eddfbe 2279 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2280
05f1dd53
JA
2281 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2282 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2283
1be036e9
CH
2284 q->sg_reserved_size = INT_MAX;
2285
2849450a 2286 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2287 INIT_LIST_HEAD(&q->requeue_list);
2288 spin_lock_init(&q->requeue_lock);
2289
254d259d 2290 blk_queue_make_request(q, blk_mq_make_request);
07068d5b 2291
eba71768
JA
2292 /*
2293 * Do this after blk_queue_make_request() overrides it...
2294 */
2295 q->nr_requests = set->queue_depth;
2296
64f1c21e
JA
2297 /*
2298 * Default to classic polling
2299 */
2300 q->poll_nsec = -1;
2301
24d2f903
CH
2302 if (set->ops->complete)
2303 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2304
24d2f903 2305 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 2306
eabe0659 2307 get_online_cpus();
51d638b1 2308 mutex_lock(&all_q_mutex);
320ae51f 2309
4593fdbe 2310 list_add_tail(&q->all_q_node, &all_q_list);
0d2602ca 2311 blk_mq_add_queue_tag_set(set, q);
5778322e 2312 blk_mq_map_swqueue(q, cpu_online_mask);
484b4061 2313
eabe0659 2314 mutex_unlock(&all_q_mutex);
51d638b1 2315 put_online_cpus();
4593fdbe 2316
d3484991
JA
2317 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2318 int ret;
2319
2320 ret = blk_mq_sched_init(q);
2321 if (ret)
2322 return ERR_PTR(ret);
2323 }
2324
320ae51f 2325 return q;
18741986 2326
320ae51f 2327err_hctxs:
868f2f0b 2328 kfree(q->queue_hw_ctx);
320ae51f 2329err_percpu:
868f2f0b 2330 free_percpu(q->queue_ctx);
c7de5726
ML
2331err_exit:
2332 q->mq_ops = NULL;
320ae51f
JA
2333 return ERR_PTR(-ENOMEM);
2334}
b62c21b7 2335EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2336
2337void blk_mq_free_queue(struct request_queue *q)
2338{
624dbe47 2339 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2340
0e626368
AM
2341 mutex_lock(&all_q_mutex);
2342 list_del_init(&q->all_q_node);
2343 mutex_unlock(&all_q_mutex);
2344
0d2602ca
JA
2345 blk_mq_del_queue_tag_set(q);
2346
624dbe47 2347 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2348}
320ae51f
JA
2349
2350/* Basically redo blk_mq_init_queue with queue frozen */
5778322e
AM
2351static void blk_mq_queue_reinit(struct request_queue *q,
2352 const struct cpumask *online_mask)
320ae51f 2353{
4ecd4fef 2354 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2355
9c1051aa 2356 blk_mq_debugfs_unregister_hctxs(q);
67aec14c
JA
2357 blk_mq_sysfs_unregister(q);
2358
320ae51f
JA
2359 /*
2360 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2361 * we should change hctx numa_node according to new topology (this
2362 * involves free and re-allocate memory, worthy doing?)
2363 */
2364
5778322e 2365 blk_mq_map_swqueue(q, online_mask);
320ae51f 2366
67aec14c 2367 blk_mq_sysfs_register(q);
9c1051aa 2368 blk_mq_debugfs_register_hctxs(q);
320ae51f
JA
2369}
2370
65d5291e
SAS
2371/*
2372 * New online cpumask which is going to be set in this hotplug event.
2373 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2374 * one-by-one and dynamically allocating this could result in a failure.
2375 */
2376static struct cpumask cpuhp_online_new;
2377
2378static void blk_mq_queue_reinit_work(void)
320ae51f
JA
2379{
2380 struct request_queue *q;
320ae51f
JA
2381
2382 mutex_lock(&all_q_mutex);
f3af020b
TH
2383 /*
2384 * We need to freeze and reinit all existing queues. Freezing
2385 * involves synchronous wait for an RCU grace period and doing it
2386 * one by one may take a long time. Start freezing all queues in
2387 * one swoop and then wait for the completions so that freezing can
2388 * take place in parallel.
2389 */
2390 list_for_each_entry(q, &all_q_list, all_q_node)
1671d522 2391 blk_freeze_queue_start(q);
415d3dab 2392 list_for_each_entry(q, &all_q_list, all_q_node)
f3af020b
TH
2393 blk_mq_freeze_queue_wait(q);
2394
320ae51f 2395 list_for_each_entry(q, &all_q_list, all_q_node)
65d5291e 2396 blk_mq_queue_reinit(q, &cpuhp_online_new);
f3af020b
TH
2397
2398 list_for_each_entry(q, &all_q_list, all_q_node)
2399 blk_mq_unfreeze_queue(q);
2400
320ae51f 2401 mutex_unlock(&all_q_mutex);
65d5291e
SAS
2402}
2403
2404static int blk_mq_queue_reinit_dead(unsigned int cpu)
2405{
97a32864 2406 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
65d5291e
SAS
2407 blk_mq_queue_reinit_work();
2408 return 0;
2409}
2410
2411/*
2412 * Before hotadded cpu starts handling requests, new mappings must be
2413 * established. Otherwise, these requests in hw queue might never be
2414 * dispatched.
2415 *
2416 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2417 * for CPU0, and ctx1 for CPU1).
2418 *
2419 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2420 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2421 *
2c3ad667
JA
2422 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2423 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2424 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2425 * ignored.
65d5291e
SAS
2426 */
2427static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2428{
2429 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2430 cpumask_set_cpu(cpu, &cpuhp_online_new);
2431 blk_mq_queue_reinit_work();
2432 return 0;
320ae51f
JA
2433}
2434
a5164405
JA
2435static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2436{
2437 int i;
2438
cc71a6f4
JA
2439 for (i = 0; i < set->nr_hw_queues; i++)
2440 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2441 goto out_unwind;
a5164405
JA
2442
2443 return 0;
2444
2445out_unwind:
2446 while (--i >= 0)
cc71a6f4 2447 blk_mq_free_rq_map(set->tags[i]);
a5164405 2448
a5164405
JA
2449 return -ENOMEM;
2450}
2451
2452/*
2453 * Allocate the request maps associated with this tag_set. Note that this
2454 * may reduce the depth asked for, if memory is tight. set->queue_depth
2455 * will be updated to reflect the allocated depth.
2456 */
2457static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2458{
2459 unsigned int depth;
2460 int err;
2461
2462 depth = set->queue_depth;
2463 do {
2464 err = __blk_mq_alloc_rq_maps(set);
2465 if (!err)
2466 break;
2467
2468 set->queue_depth >>= 1;
2469 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2470 err = -ENOMEM;
2471 break;
2472 }
2473 } while (set->queue_depth);
2474
2475 if (!set->queue_depth || err) {
2476 pr_err("blk-mq: failed to allocate request map\n");
2477 return -ENOMEM;
2478 }
2479
2480 if (depth != set->queue_depth)
2481 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2482 depth, set->queue_depth);
2483
2484 return 0;
2485}
2486
ebe8bddb
OS
2487static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2488{
2489 if (set->ops->map_queues)
2490 return set->ops->map_queues(set);
2491 else
2492 return blk_mq_map_queues(set);
2493}
2494
a4391c64
JA
2495/*
2496 * Alloc a tag set to be associated with one or more request queues.
2497 * May fail with EINVAL for various error conditions. May adjust the
2498 * requested depth down, if if it too large. In that case, the set
2499 * value will be stored in set->queue_depth.
2500 */
24d2f903
CH
2501int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2502{
da695ba2
CH
2503 int ret;
2504
205fb5f5
BVA
2505 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2506
24d2f903
CH
2507 if (!set->nr_hw_queues)
2508 return -EINVAL;
a4391c64 2509 if (!set->queue_depth)
24d2f903
CH
2510 return -EINVAL;
2511 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2512 return -EINVAL;
2513
7d7e0f90 2514 if (!set->ops->queue_rq)
24d2f903
CH
2515 return -EINVAL;
2516
a4391c64
JA
2517 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2518 pr_info("blk-mq: reduced tag depth to %u\n",
2519 BLK_MQ_MAX_DEPTH);
2520 set->queue_depth = BLK_MQ_MAX_DEPTH;
2521 }
24d2f903 2522
6637fadf
SL
2523 /*
2524 * If a crashdump is active, then we are potentially in a very
2525 * memory constrained environment. Limit us to 1 queue and
2526 * 64 tags to prevent using too much memory.
2527 */
2528 if (is_kdump_kernel()) {
2529 set->nr_hw_queues = 1;
2530 set->queue_depth = min(64U, set->queue_depth);
2531 }
868f2f0b
KB
2532 /*
2533 * There is no use for more h/w queues than cpus.
2534 */
2535 if (set->nr_hw_queues > nr_cpu_ids)
2536 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2537
868f2f0b 2538 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2539 GFP_KERNEL, set->numa_node);
2540 if (!set->tags)
a5164405 2541 return -ENOMEM;
24d2f903 2542
da695ba2
CH
2543 ret = -ENOMEM;
2544 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2545 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2546 if (!set->mq_map)
2547 goto out_free_tags;
2548
ebe8bddb 2549 ret = blk_mq_update_queue_map(set);
da695ba2
CH
2550 if (ret)
2551 goto out_free_mq_map;
2552
2553 ret = blk_mq_alloc_rq_maps(set);
2554 if (ret)
bdd17e75 2555 goto out_free_mq_map;
24d2f903 2556
0d2602ca
JA
2557 mutex_init(&set->tag_list_lock);
2558 INIT_LIST_HEAD(&set->tag_list);
2559
24d2f903 2560 return 0;
bdd17e75
CH
2561
2562out_free_mq_map:
2563 kfree(set->mq_map);
2564 set->mq_map = NULL;
2565out_free_tags:
5676e7b6
RE
2566 kfree(set->tags);
2567 set->tags = NULL;
da695ba2 2568 return ret;
24d2f903
CH
2569}
2570EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2571
2572void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2573{
2574 int i;
2575
cc71a6f4
JA
2576 for (i = 0; i < nr_cpu_ids; i++)
2577 blk_mq_free_map_and_requests(set, i);
484b4061 2578
bdd17e75
CH
2579 kfree(set->mq_map);
2580 set->mq_map = NULL;
2581
981bd189 2582 kfree(set->tags);
5676e7b6 2583 set->tags = NULL;
24d2f903
CH
2584}
2585EXPORT_SYMBOL(blk_mq_free_tag_set);
2586
e3a2b3f9
JA
2587int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2588{
2589 struct blk_mq_tag_set *set = q->tag_set;
2590 struct blk_mq_hw_ctx *hctx;
2591 int i, ret;
2592
bd166ef1 2593 if (!set)
e3a2b3f9
JA
2594 return -EINVAL;
2595
70f36b60 2596 blk_mq_freeze_queue(q);
70f36b60 2597
e3a2b3f9
JA
2598 ret = 0;
2599 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2600 if (!hctx->tags)
2601 continue;
bd166ef1
JA
2602 /*
2603 * If we're using an MQ scheduler, just update the scheduler
2604 * queue depth. This is similar to what the old code would do.
2605 */
70f36b60
JA
2606 if (!hctx->sched_tags) {
2607 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2608 min(nr, set->queue_depth),
2609 false);
2610 } else {
2611 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2612 nr, true);
2613 }
e3a2b3f9
JA
2614 if (ret)
2615 break;
2616 }
2617
2618 if (!ret)
2619 q->nr_requests = nr;
2620
70f36b60 2621 blk_mq_unfreeze_queue(q);
70f36b60 2622
e3a2b3f9
JA
2623 return ret;
2624}
2625
e4dc2b32
KB
2626static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2627 int nr_hw_queues)
868f2f0b
KB
2628{
2629 struct request_queue *q;
2630
705cda97
BVA
2631 lockdep_assert_held(&set->tag_list_lock);
2632
868f2f0b
KB
2633 if (nr_hw_queues > nr_cpu_ids)
2634 nr_hw_queues = nr_cpu_ids;
2635 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2636 return;
2637
2638 list_for_each_entry(q, &set->tag_list, tag_set_list)
2639 blk_mq_freeze_queue(q);
2640
2641 set->nr_hw_queues = nr_hw_queues;
ebe8bddb 2642 blk_mq_update_queue_map(set);
868f2f0b
KB
2643 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2644 blk_mq_realloc_hw_ctxs(set, q);
868f2f0b
KB
2645 blk_mq_queue_reinit(q, cpu_online_mask);
2646 }
2647
2648 list_for_each_entry(q, &set->tag_list, tag_set_list)
2649 blk_mq_unfreeze_queue(q);
2650}
e4dc2b32
KB
2651
2652void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2653{
2654 mutex_lock(&set->tag_list_lock);
2655 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2656 mutex_unlock(&set->tag_list_lock);
2657}
868f2f0b
KB
2658EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2659
34dbad5d
OS
2660/* Enable polling stats and return whether they were already enabled. */
2661static bool blk_poll_stats_enable(struct request_queue *q)
2662{
2663 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2664 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2665 return true;
2666 blk_stat_add_callback(q, q->poll_cb);
2667 return false;
2668}
2669
2670static void blk_mq_poll_stats_start(struct request_queue *q)
2671{
2672 /*
2673 * We don't arm the callback if polling stats are not enabled or the
2674 * callback is already active.
2675 */
2676 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2677 blk_stat_is_active(q->poll_cb))
2678 return;
2679
2680 blk_stat_activate_msecs(q->poll_cb, 100);
2681}
2682
2683static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2684{
2685 struct request_queue *q = cb->data;
720b8ccc 2686 int bucket;
34dbad5d 2687
720b8ccc
SB
2688 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2689 if (cb->stat[bucket].nr_samples)
2690 q->poll_stat[bucket] = cb->stat[bucket];
2691 }
34dbad5d
OS
2692}
2693
64f1c21e
JA
2694static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2695 struct blk_mq_hw_ctx *hctx,
2696 struct request *rq)
2697{
64f1c21e 2698 unsigned long ret = 0;
720b8ccc 2699 int bucket;
64f1c21e
JA
2700
2701 /*
2702 * If stats collection isn't on, don't sleep but turn it on for
2703 * future users
2704 */
34dbad5d 2705 if (!blk_poll_stats_enable(q))
64f1c21e
JA
2706 return 0;
2707
64f1c21e
JA
2708 /*
2709 * As an optimistic guess, use half of the mean service time
2710 * for this type of request. We can (and should) make this smarter.
2711 * For instance, if the completion latencies are tight, we can
2712 * get closer than just half the mean. This is especially
2713 * important on devices where the completion latencies are longer
720b8ccc
SB
2714 * than ~10 usec. We do use the stats for the relevant IO size
2715 * if available which does lead to better estimates.
64f1c21e 2716 */
720b8ccc
SB
2717 bucket = blk_mq_poll_stats_bkt(rq);
2718 if (bucket < 0)
2719 return ret;
2720
2721 if (q->poll_stat[bucket].nr_samples)
2722 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
2723
2724 return ret;
2725}
2726
06426adf 2727static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2728 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2729 struct request *rq)
2730{
2731 struct hrtimer_sleeper hs;
2732 enum hrtimer_mode mode;
64f1c21e 2733 unsigned int nsecs;
06426adf
JA
2734 ktime_t kt;
2735
64f1c21e
JA
2736 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2737 return false;
2738
2739 /*
2740 * poll_nsec can be:
2741 *
2742 * -1: don't ever hybrid sleep
2743 * 0: use half of prev avg
2744 * >0: use this specific value
2745 */
2746 if (q->poll_nsec == -1)
2747 return false;
2748 else if (q->poll_nsec > 0)
2749 nsecs = q->poll_nsec;
2750 else
2751 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2752
2753 if (!nsecs)
06426adf
JA
2754 return false;
2755
2756 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2757
2758 /*
2759 * This will be replaced with the stats tracking code, using
2760 * 'avg_completion_time / 2' as the pre-sleep target.
2761 */
8b0e1953 2762 kt = nsecs;
06426adf
JA
2763
2764 mode = HRTIMER_MODE_REL;
2765 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2766 hrtimer_set_expires(&hs.timer, kt);
2767
2768 hrtimer_init_sleeper(&hs, current);
2769 do {
2770 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2771 break;
2772 set_current_state(TASK_UNINTERRUPTIBLE);
2773 hrtimer_start_expires(&hs.timer, mode);
2774 if (hs.task)
2775 io_schedule();
2776 hrtimer_cancel(&hs.timer);
2777 mode = HRTIMER_MODE_ABS;
2778 } while (hs.task && !signal_pending(current));
2779
2780 __set_current_state(TASK_RUNNING);
2781 destroy_hrtimer_on_stack(&hs.timer);
2782 return true;
2783}
2784
bbd7bb70
JA
2785static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2786{
2787 struct request_queue *q = hctx->queue;
2788 long state;
2789
06426adf
JA
2790 /*
2791 * If we sleep, have the caller restart the poll loop to reset
2792 * the state. Like for the other success return cases, the
2793 * caller is responsible for checking if the IO completed. If
2794 * the IO isn't complete, we'll get called again and will go
2795 * straight to the busy poll loop.
2796 */
64f1c21e 2797 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
2798 return true;
2799
bbd7bb70
JA
2800 hctx->poll_considered++;
2801
2802 state = current->state;
2803 while (!need_resched()) {
2804 int ret;
2805
2806 hctx->poll_invoked++;
2807
2808 ret = q->mq_ops->poll(hctx, rq->tag);
2809 if (ret > 0) {
2810 hctx->poll_success++;
2811 set_current_state(TASK_RUNNING);
2812 return true;
2813 }
2814
2815 if (signal_pending_state(state, current))
2816 set_current_state(TASK_RUNNING);
2817
2818 if (current->state == TASK_RUNNING)
2819 return true;
2820 if (ret < 0)
2821 break;
2822 cpu_relax();
2823 }
2824
2825 return false;
2826}
2827
2828bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2829{
2830 struct blk_mq_hw_ctx *hctx;
2831 struct blk_plug *plug;
2832 struct request *rq;
2833
2834 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2835 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2836 return false;
2837
2838 plug = current->plug;
2839 if (plug)
2840 blk_flush_plug_list(plug, false);
2841
2842 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
2843 if (!blk_qc_t_is_internal(cookie))
2844 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3a07bb1d 2845 else {
bd166ef1 2846 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3a07bb1d
JA
2847 /*
2848 * With scheduling, if the request has completed, we'll
2849 * get a NULL return here, as we clear the sched tag when
2850 * that happens. The request still remains valid, like always,
2851 * so we should be safe with just the NULL check.
2852 */
2853 if (!rq)
2854 return false;
2855 }
bbd7bb70
JA
2856
2857 return __blk_mq_poll(hctx, rq);
2858}
2859EXPORT_SYMBOL_GPL(blk_mq_poll);
2860
676141e4
JA
2861void blk_mq_disable_hotplug(void)
2862{
2863 mutex_lock(&all_q_mutex);
2864}
2865
2866void blk_mq_enable_hotplug(void)
2867{
2868 mutex_unlock(&all_q_mutex);
2869}
2870
320ae51f
JA
2871static int __init blk_mq_init(void)
2872{
9467f859
TG
2873 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2874 blk_mq_hctx_notify_dead);
320ae51f 2875
65d5291e
SAS
2876 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2877 blk_mq_queue_reinit_prepare,
2878 blk_mq_queue_reinit_dead);
320ae51f
JA
2879 return 0;
2880}
2881subsys_initcall(blk_mq_init);