]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - block/blk-mq.c
blk-mq: avoid to map CPU into stale hw queue
[thirdparty/kernel/stable.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
105ab3d8 23#include <linux/sched/topology.h>
174cd4b1 24#include <linux/sched/signal.h>
320ae51f 25#include <linux/delay.h>
aedcd72f 26#include <linux/crash_dump.h>
88c7b2b7 27#include <linux/prefetch.h>
320ae51f
JA
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
9c1051aa 34#include "blk-mq-debugfs.h"
320ae51f 35#include "blk-mq-tag.h"
cf43e6be 36#include "blk-stat.h"
87760e5e 37#include "blk-wbt.h"
bd166ef1 38#include "blk-mq-sched.h"
320ae51f 39
ea435e1b 40static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
34dbad5d
OS
41static void blk_mq_poll_stats_start(struct request_queue *q);
42static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
720b8ccc
SB
44static int blk_mq_poll_stats_bkt(const struct request *rq)
45{
46 int ddir, bytes, bucket;
47
99c749a4 48 ddir = rq_data_dir(rq);
720b8ccc
SB
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59}
60
320ae51f
JA
61/*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
79f720a7 64static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 65{
79f720a7
JA
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
bd166ef1 68 blk_mq_sched_has_work(hctx);
1429d7c9
JA
69}
70
320ae51f
JA
71/*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76{
88459642
OS
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
79}
80
81static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83{
88459642 84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
85}
86
f299b7c7
JA
87struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90};
91
92static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95{
96 struct mq_inflight *mi = priv;
97
98 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
99 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
100 /*
b8d62b3a
JA
101 * index[0] counts the specific partition that was asked
102 * for. index[1] counts the ones that are active on the
103 * whole device, so increment that if mi->part is indeed
104 * a partition, and not a whole device.
f299b7c7 105 */
b8d62b3a 106 if (rq->part == mi->part)
f299b7c7 107 mi->inflight[0]++;
b8d62b3a
JA
108 if (mi->part->partno)
109 mi->inflight[1]++;
f299b7c7
JA
110 }
111}
112
113void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
114 unsigned int inflight[2])
115{
116 struct mq_inflight mi = { .part = part, .inflight = inflight, };
117
b8d62b3a 118 inflight[0] = inflight[1] = 0;
f299b7c7
JA
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120}
121
1671d522 122void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 123{
4ecd4fef 124 int freeze_depth;
cddd5d17 125
4ecd4fef
CH
126 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
127 if (freeze_depth == 1) {
3ef28e83 128 percpu_ref_kill(&q->q_usage_counter);
055f6e18
ML
129 if (q->mq_ops)
130 blk_mq_run_hw_queues(q, false);
cddd5d17 131 }
f3af020b 132}
1671d522 133EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 134
6bae363e 135void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 136{
3ef28e83 137 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 138}
6bae363e 139EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 140
f91328c4
KB
141int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
142 unsigned long timeout)
143{
144 return wait_event_timeout(q->mq_freeze_wq,
145 percpu_ref_is_zero(&q->q_usage_counter),
146 timeout);
147}
148EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 149
f3af020b
TH
150/*
151 * Guarantee no request is in use, so we can change any data structure of
152 * the queue afterward.
153 */
3ef28e83 154void blk_freeze_queue(struct request_queue *q)
f3af020b 155{
3ef28e83
DW
156 /*
157 * In the !blk_mq case we are only calling this to kill the
158 * q_usage_counter, otherwise this increases the freeze depth
159 * and waits for it to return to zero. For this reason there is
160 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
161 * exported to drivers as the only user for unfreeze is blk_mq.
162 */
1671d522 163 blk_freeze_queue_start(q);
f3af020b
TH
164 blk_mq_freeze_queue_wait(q);
165}
3ef28e83
DW
166
167void blk_mq_freeze_queue(struct request_queue *q)
168{
169 /*
170 * ...just an alias to keep freeze and unfreeze actions balanced
171 * in the blk_mq_* namespace
172 */
173 blk_freeze_queue(q);
174}
c761d96b 175EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 176
b4c6a028 177void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 178{
4ecd4fef 179 int freeze_depth;
320ae51f 180
4ecd4fef
CH
181 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
182 WARN_ON_ONCE(freeze_depth < 0);
183 if (!freeze_depth) {
3ef28e83 184 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 185 wake_up_all(&q->mq_freeze_wq);
add703fd 186 }
320ae51f 187}
b4c6a028 188EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 189
852ec809
BVA
190/*
191 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
192 * mpt3sas driver such that this function can be removed.
193 */
194void blk_mq_quiesce_queue_nowait(struct request_queue *q)
195{
196 unsigned long flags;
197
198 spin_lock_irqsave(q->queue_lock, flags);
199 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
200 spin_unlock_irqrestore(q->queue_lock, flags);
201}
202EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
203
6a83e74d 204/**
69e07c4a 205 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
6a83e74d
BVA
206 * @q: request queue.
207 *
208 * Note: this function does not prevent that the struct request end_io()
69e07c4a
ML
209 * callback function is invoked. Once this function is returned, we make
210 * sure no dispatch can happen until the queue is unquiesced via
211 * blk_mq_unquiesce_queue().
6a83e74d
BVA
212 */
213void blk_mq_quiesce_queue(struct request_queue *q)
214{
215 struct blk_mq_hw_ctx *hctx;
216 unsigned int i;
217 bool rcu = false;
218
1d9e9bc6 219 blk_mq_quiesce_queue_nowait(q);
f4560ffe 220
6a83e74d
BVA
221 queue_for_each_hw_ctx(q, hctx, i) {
222 if (hctx->flags & BLK_MQ_F_BLOCKING)
07319678 223 synchronize_srcu(hctx->queue_rq_srcu);
6a83e74d
BVA
224 else
225 rcu = true;
226 }
227 if (rcu)
228 synchronize_rcu();
229}
230EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
231
e4e73913
ML
232/*
233 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
234 * @q: request queue.
235 *
236 * This function recovers queue into the state before quiescing
237 * which is done by blk_mq_quiesce_queue.
238 */
239void blk_mq_unquiesce_queue(struct request_queue *q)
240{
852ec809
BVA
241 unsigned long flags;
242
243 spin_lock_irqsave(q->queue_lock, flags);
f4560ffe 244 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
852ec809 245 spin_unlock_irqrestore(q->queue_lock, flags);
f4560ffe 246
1d9e9bc6
ML
247 /* dispatch requests which are inserted during quiescing */
248 blk_mq_run_hw_queues(q, true);
e4e73913
ML
249}
250EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
251
aed3ea94
JA
252void blk_mq_wake_waiters(struct request_queue *q)
253{
254 struct blk_mq_hw_ctx *hctx;
255 unsigned int i;
256
257 queue_for_each_hw_ctx(q, hctx, i)
258 if (blk_mq_hw_queue_mapped(hctx))
259 blk_mq_tag_wakeup_all(hctx->tags, true);
260}
261
320ae51f
JA
262bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
263{
264 return blk_mq_has_free_tags(hctx->tags);
265}
266EXPORT_SYMBOL(blk_mq_can_queue);
267
e4cdf1a1
CH
268static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
269 unsigned int tag, unsigned int op)
320ae51f 270{
e4cdf1a1
CH
271 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
272 struct request *rq = tags->static_rqs[tag];
273
c3a148d2
BVA
274 rq->rq_flags = 0;
275
e4cdf1a1
CH
276 if (data->flags & BLK_MQ_REQ_INTERNAL) {
277 rq->tag = -1;
278 rq->internal_tag = tag;
279 } else {
280 if (blk_mq_tag_busy(data->hctx)) {
281 rq->rq_flags = RQF_MQ_INFLIGHT;
282 atomic_inc(&data->hctx->nr_active);
283 }
284 rq->tag = tag;
285 rq->internal_tag = -1;
286 data->hctx->tags->rqs[rq->tag] = rq;
287 }
288
af76e555
CH
289 INIT_LIST_HEAD(&rq->queuelist);
290 /* csd/requeue_work/fifo_time is initialized before use */
e4cdf1a1
CH
291 rq->q = data->q;
292 rq->mq_ctx = data->ctx;
ef295ecf 293 rq->cmd_flags = op;
1b6d65a0
BVA
294 if (data->flags & BLK_MQ_REQ_PREEMPT)
295 rq->rq_flags |= RQF_PREEMPT;
e4cdf1a1 296 if (blk_queue_io_stat(data->q))
e8064021 297 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
298 /* do not touch atomic flags, it needs atomic ops against the timer */
299 rq->cpu = -1;
af76e555
CH
300 INIT_HLIST_NODE(&rq->hash);
301 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
302 rq->rq_disk = NULL;
303 rq->part = NULL;
3ee32372 304 rq->start_time = jiffies;
af76e555
CH
305#ifdef CONFIG_BLK_CGROUP
306 rq->rl = NULL;
0fec08b4 307 set_start_time_ns(rq);
af76e555
CH
308 rq->io_start_time_ns = 0;
309#endif
310 rq->nr_phys_segments = 0;
311#if defined(CONFIG_BLK_DEV_INTEGRITY)
312 rq->nr_integrity_segments = 0;
313#endif
af76e555
CH
314 rq->special = NULL;
315 /* tag was already set */
af76e555 316 rq->extra_len = 0;
af76e555 317
af76e555 318 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
319 rq->timeout = 0;
320
af76e555
CH
321 rq->end_io = NULL;
322 rq->end_io_data = NULL;
323 rq->next_rq = NULL;
324
e4cdf1a1
CH
325 data->ctx->rq_dispatched[op_is_sync(op)]++;
326 return rq;
5dee8577
CH
327}
328
d2c0d383
CH
329static struct request *blk_mq_get_request(struct request_queue *q,
330 struct bio *bio, unsigned int op,
331 struct blk_mq_alloc_data *data)
332{
333 struct elevator_queue *e = q->elevator;
334 struct request *rq;
e4cdf1a1 335 unsigned int tag;
21e768b4 336 bool put_ctx_on_error = false;
d2c0d383
CH
337
338 blk_queue_enter_live(q);
339 data->q = q;
21e768b4
BVA
340 if (likely(!data->ctx)) {
341 data->ctx = blk_mq_get_ctx(q);
342 put_ctx_on_error = true;
343 }
d2c0d383
CH
344 if (likely(!data->hctx))
345 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
03a07c92
GR
346 if (op & REQ_NOWAIT)
347 data->flags |= BLK_MQ_REQ_NOWAIT;
d2c0d383
CH
348
349 if (e) {
350 data->flags |= BLK_MQ_REQ_INTERNAL;
351
352 /*
353 * Flush requests are special and go directly to the
354 * dispatch list.
355 */
5bbf4e5a
CH
356 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
357 e->type->ops.mq.limit_depth(op, data);
d2c0d383
CH
358 }
359
e4cdf1a1
CH
360 tag = blk_mq_get_tag(data);
361 if (tag == BLK_MQ_TAG_FAIL) {
21e768b4
BVA
362 if (put_ctx_on_error) {
363 blk_mq_put_ctx(data->ctx);
1ad43c00
ML
364 data->ctx = NULL;
365 }
037cebb8
CH
366 blk_queue_exit(q);
367 return NULL;
d2c0d383
CH
368 }
369
e4cdf1a1 370 rq = blk_mq_rq_ctx_init(data, tag, op);
037cebb8
CH
371 if (!op_is_flush(op)) {
372 rq->elv.icq = NULL;
5bbf4e5a 373 if (e && e->type->ops.mq.prepare_request) {
44e8c2bf
CH
374 if (e->type->icq_cache && rq_ioc(bio))
375 blk_mq_sched_assign_ioc(rq, bio);
376
5bbf4e5a
CH
377 e->type->ops.mq.prepare_request(rq, bio);
378 rq->rq_flags |= RQF_ELVPRIV;
44e8c2bf 379 }
037cebb8
CH
380 }
381 data->hctx->queued++;
382 return rq;
d2c0d383
CH
383}
384
cd6ce148 385struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
9a95e4ef 386 blk_mq_req_flags_t flags)
320ae51f 387{
5a797e00 388 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 389 struct request *rq;
a492f075 390 int ret;
320ae51f 391
3a0a5299 392 ret = blk_queue_enter(q, flags);
a492f075
JL
393 if (ret)
394 return ERR_PTR(ret);
320ae51f 395
cd6ce148 396 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
3280d66a 397 blk_queue_exit(q);
841bac2c 398
bd166ef1 399 if (!rq)
a492f075 400 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3 401
1ad43c00 402 blk_mq_put_ctx(alloc_data.ctx);
1ad43c00 403
0c4de0f3
CH
404 rq->__data_len = 0;
405 rq->__sector = (sector_t) -1;
406 rq->bio = rq->biotail = NULL;
320ae51f
JA
407 return rq;
408}
4bb659b1 409EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 410
cd6ce148 411struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
9a95e4ef 412 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
1f5bd336 413{
6d2809d5 414 struct blk_mq_alloc_data alloc_data = { .flags = flags };
1f5bd336 415 struct request *rq;
6d2809d5 416 unsigned int cpu;
1f5bd336
ML
417 int ret;
418
419 /*
420 * If the tag allocator sleeps we could get an allocation for a
421 * different hardware context. No need to complicate the low level
422 * allocator for this for the rare use case of a command tied to
423 * a specific queue.
424 */
425 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
426 return ERR_PTR(-EINVAL);
427
428 if (hctx_idx >= q->nr_hw_queues)
429 return ERR_PTR(-EIO);
430
3a0a5299 431 ret = blk_queue_enter(q, flags);
1f5bd336
ML
432 if (ret)
433 return ERR_PTR(ret);
434
c8712c6a
CH
435 /*
436 * Check if the hardware context is actually mapped to anything.
437 * If not tell the caller that it should skip this queue.
438 */
6d2809d5
OS
439 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
440 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
441 blk_queue_exit(q);
442 return ERR_PTR(-EXDEV);
c8712c6a 443 }
6d2809d5
OS
444 cpu = cpumask_first(alloc_data.hctx->cpumask);
445 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 446
cd6ce148 447 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
3280d66a 448 blk_queue_exit(q);
c8712c6a 449
6d2809d5
OS
450 if (!rq)
451 return ERR_PTR(-EWOULDBLOCK);
452
453 return rq;
1f5bd336
ML
454}
455EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
456
6af54051 457void blk_mq_free_request(struct request *rq)
320ae51f 458{
320ae51f 459 struct request_queue *q = rq->q;
6af54051
CH
460 struct elevator_queue *e = q->elevator;
461 struct blk_mq_ctx *ctx = rq->mq_ctx;
462 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
463 const int sched_tag = rq->internal_tag;
464
5bbf4e5a 465 if (rq->rq_flags & RQF_ELVPRIV) {
6af54051
CH
466 if (e && e->type->ops.mq.finish_request)
467 e->type->ops.mq.finish_request(rq);
468 if (rq->elv.icq) {
469 put_io_context(rq->elv.icq->ioc);
470 rq->elv.icq = NULL;
471 }
472 }
320ae51f 473
6af54051 474 ctx->rq_completed[rq_is_sync(rq)]++;
e8064021 475 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 476 atomic_dec(&hctx->nr_active);
87760e5e 477
7beb2f84
JA
478 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
479 laptop_io_completion(q->backing_dev_info);
480
87760e5e 481 wbt_done(q->rq_wb, &rq->issue_stat);
0d2602ca 482
85acb3ba
SL
483 if (blk_rq_rl(rq))
484 blk_put_rl(blk_rq_rl(rq));
485
af76e555 486 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 487 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
bd166ef1
JA
488 if (rq->tag != -1)
489 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
490 if (sched_tag != -1)
c05f8525 491 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
6d8c6c0f 492 blk_mq_sched_restart(hctx);
3ef28e83 493 blk_queue_exit(q);
320ae51f 494}
1a3b595a 495EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 496
2a842aca 497inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
320ae51f 498{
0d11e6ac
ML
499 blk_account_io_done(rq);
500
91b63639 501 if (rq->end_io) {
87760e5e 502 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 503 rq->end_io(rq, error);
91b63639
CH
504 } else {
505 if (unlikely(blk_bidi_rq(rq)))
506 blk_mq_free_request(rq->next_rq);
320ae51f 507 blk_mq_free_request(rq);
91b63639 508 }
320ae51f 509}
c8a446ad 510EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 511
2a842aca 512void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
513{
514 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
515 BUG();
c8a446ad 516 __blk_mq_end_request(rq, error);
63151a44 517}
c8a446ad 518EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 519
30a91cb4 520static void __blk_mq_complete_request_remote(void *data)
320ae51f 521{
3d6efbf6 522 struct request *rq = data;
320ae51f 523
30a91cb4 524 rq->q->softirq_done_fn(rq);
320ae51f 525}
320ae51f 526
453f8341 527static void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
528{
529 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 530 bool shared = false;
320ae51f
JA
531 int cpu;
532
453f8341
CH
533 if (rq->internal_tag != -1)
534 blk_mq_sched_completed_request(rq);
535 if (rq->rq_flags & RQF_STATS) {
536 blk_mq_poll_stats_start(rq->q);
537 blk_stat_add(rq);
538 }
539
38535201 540 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
541 rq->q->softirq_done_fn(rq);
542 return;
543 }
320ae51f
JA
544
545 cpu = get_cpu();
38535201
CH
546 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
547 shared = cpus_share_cache(cpu, ctx->cpu);
548
549 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 550 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
551 rq->csd.info = rq;
552 rq->csd.flags = 0;
c46fff2a 553 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 554 } else {
30a91cb4 555 rq->q->softirq_done_fn(rq);
3d6efbf6 556 }
320ae51f
JA
557 put_cpu();
558}
30a91cb4
CH
559
560/**
561 * blk_mq_complete_request - end I/O on a request
562 * @rq: the request being processed
563 *
564 * Description:
565 * Ends all I/O on a request. It does not handle partial completions.
566 * The actual completion happens out-of-order, through a IPI handler.
567 **/
08e0029a 568void blk_mq_complete_request(struct request *rq)
30a91cb4 569{
95f09684
JA
570 struct request_queue *q = rq->q;
571
572 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 573 return;
08e0029a 574 if (!blk_mark_rq_complete(rq))
ed851860 575 __blk_mq_complete_request(rq);
30a91cb4
CH
576}
577EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 578
973c0191
KB
579int blk_mq_request_started(struct request *rq)
580{
581 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
582}
583EXPORT_SYMBOL_GPL(blk_mq_request_started);
584
e2490073 585void blk_mq_start_request(struct request *rq)
320ae51f
JA
586{
587 struct request_queue *q = rq->q;
588
bd166ef1
JA
589 blk_mq_sched_started_request(rq);
590
320ae51f
JA
591 trace_block_rq_issue(q, rq);
592
cf43e6be 593 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
88eeca49 594 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
cf43e6be 595 rq->rq_flags |= RQF_STATS;
87760e5e 596 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
597 }
598
2b8393b4 599 blk_add_timer(rq);
87ee7b11 600
a7af0af3 601 WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
538b7534 602
87ee7b11
JA
603 /*
604 * Mark us as started and clear complete. Complete might have been
605 * set if requeue raced with timeout, which then marked it as
606 * complete. So be sure to clear complete again when we start
607 * the request, otherwise we'll ignore the completion event.
a7af0af3
PZ
608 *
609 * Ensure that ->deadline is visible before we set STARTED, such that
610 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
611 * it observes STARTED.
87ee7b11 612 */
a7af0af3
PZ
613 smp_wmb();
614 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
615 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
616 /*
617 * Coherence order guarantees these consecutive stores to a
618 * single variable propagate in the specified order. Thus the
619 * clear_bit() is ordered _after_ the set bit. See
620 * blk_mq_check_expired().
621 *
622 * (the bits must be part of the same byte for this to be
623 * true).
624 */
4b570521 625 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
a7af0af3 626 }
49f5baa5
CH
627
628 if (q->dma_drain_size && blk_rq_bytes(rq)) {
629 /*
630 * Make sure space for the drain appears. We know we can do
631 * this because max_hw_segments has been adjusted to be one
632 * fewer than the device can handle.
633 */
634 rq->nr_phys_segments++;
635 }
320ae51f 636}
e2490073 637EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 638
d9d149a3
ML
639/*
640 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
48b99c9d 641 * flag isn't set yet, so there may be race with timeout handler,
d9d149a3
ML
642 * but given rq->deadline is just set in .queue_rq() under
643 * this situation, the race won't be possible in reality because
644 * rq->timeout should be set as big enough to cover the window
645 * between blk_mq_start_request() called from .queue_rq() and
646 * clearing REQ_ATOM_STARTED here.
647 */
ed0791b2 648static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
649{
650 struct request_queue *q = rq->q;
651
923218f6
ML
652 blk_mq_put_driver_tag(rq);
653
320ae51f 654 trace_block_rq_requeue(q, rq);
87760e5e 655 wbt_requeue(q->rq_wb, &rq->issue_stat);
bd166ef1 656 blk_mq_sched_requeue_request(rq);
49f5baa5 657
e2490073
CH
658 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
659 if (q->dma_drain_size && blk_rq_bytes(rq))
660 rq->nr_phys_segments--;
661 }
320ae51f
JA
662}
663
2b053aca 664void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 665{
ed0791b2 666 __blk_mq_requeue_request(rq);
ed0791b2 667
ed0791b2 668 BUG_ON(blk_queued_rq(rq));
2b053aca 669 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
670}
671EXPORT_SYMBOL(blk_mq_requeue_request);
672
6fca6a61
CH
673static void blk_mq_requeue_work(struct work_struct *work)
674{
675 struct request_queue *q =
2849450a 676 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
677 LIST_HEAD(rq_list);
678 struct request *rq, *next;
6fca6a61 679
18e9781d 680 spin_lock_irq(&q->requeue_lock);
6fca6a61 681 list_splice_init(&q->requeue_list, &rq_list);
18e9781d 682 spin_unlock_irq(&q->requeue_lock);
6fca6a61
CH
683
684 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 685 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
686 continue;
687
e8064021 688 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 689 list_del_init(&rq->queuelist);
bd6737f1 690 blk_mq_sched_insert_request(rq, true, false, false, true);
6fca6a61
CH
691 }
692
693 while (!list_empty(&rq_list)) {
694 rq = list_entry(rq_list.next, struct request, queuelist);
695 list_del_init(&rq->queuelist);
bd6737f1 696 blk_mq_sched_insert_request(rq, false, false, false, true);
6fca6a61
CH
697 }
698
52d7f1b5 699 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
700}
701
2b053aca
BVA
702void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
703 bool kick_requeue_list)
6fca6a61
CH
704{
705 struct request_queue *q = rq->q;
706 unsigned long flags;
707
708 /*
709 * We abuse this flag that is otherwise used by the I/O scheduler to
ff821d27 710 * request head insertion from the workqueue.
6fca6a61 711 */
e8064021 712 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
713
714 spin_lock_irqsave(&q->requeue_lock, flags);
715 if (at_head) {
e8064021 716 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
717 list_add(&rq->queuelist, &q->requeue_list);
718 } else {
719 list_add_tail(&rq->queuelist, &q->requeue_list);
720 }
721 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
722
723 if (kick_requeue_list)
724 blk_mq_kick_requeue_list(q);
6fca6a61
CH
725}
726EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
727
728void blk_mq_kick_requeue_list(struct request_queue *q)
729{
2849450a 730 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
731}
732EXPORT_SYMBOL(blk_mq_kick_requeue_list);
733
2849450a
MS
734void blk_mq_delay_kick_requeue_list(struct request_queue *q,
735 unsigned long msecs)
736{
d4acf365
BVA
737 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
738 msecs_to_jiffies(msecs));
2849450a
MS
739}
740EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
741
0e62f51f
JA
742struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
743{
88c7b2b7
JA
744 if (tag < tags->nr_tags) {
745 prefetch(tags->rqs[tag]);
4ee86bab 746 return tags->rqs[tag];
88c7b2b7 747 }
4ee86bab
HR
748
749 return NULL;
24d2f903
CH
750}
751EXPORT_SYMBOL(blk_mq_tag_to_rq);
752
320ae51f 753struct blk_mq_timeout_data {
46f92d42
CH
754 unsigned long next;
755 unsigned int next_set;
320ae51f
JA
756};
757
90415837 758void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 759{
f8a5b122 760 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 761 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
762
763 /*
764 * We know that complete is set at this point. If STARTED isn't set
765 * anymore, then the request isn't active and the "timeout" should
766 * just be ignored. This can happen due to the bitflag ordering.
767 * Timeout first checks if STARTED is set, and if it is, assumes
768 * the request is active. But if we race with completion, then
48b99c9d 769 * both flags will get cleared. So check here again, and ignore
87ee7b11
JA
770 * a timeout event with a request that isn't active.
771 */
46f92d42
CH
772 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
773 return;
87ee7b11 774
46f92d42 775 if (ops->timeout)
0152fb6b 776 ret = ops->timeout(req, reserved);
46f92d42
CH
777
778 switch (ret) {
779 case BLK_EH_HANDLED:
780 __blk_mq_complete_request(req);
781 break;
782 case BLK_EH_RESET_TIMER:
783 blk_add_timer(req);
784 blk_clear_rq_complete(req);
785 break;
786 case BLK_EH_NOT_HANDLED:
787 break;
788 default:
789 printk(KERN_ERR "block: bad eh return: %d\n", ret);
790 break;
791 }
87ee7b11 792}
5b3f25fc 793
81481eb4
CH
794static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
795 struct request *rq, void *priv, bool reserved)
796{
797 struct blk_mq_timeout_data *data = priv;
a7af0af3 798 unsigned long deadline;
87ee7b11 799
95a49603 800 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
46f92d42 801 return;
87ee7b11 802
a7af0af3
PZ
803 /*
804 * Ensures that if we see STARTED we must also see our
805 * up-to-date deadline, see blk_mq_start_request().
806 */
807 smp_rmb();
808
809 deadline = READ_ONCE(rq->deadline);
810
d9d149a3
ML
811 /*
812 * The rq being checked may have been freed and reallocated
813 * out already here, we avoid this race by checking rq->deadline
814 * and REQ_ATOM_COMPLETE flag together:
815 *
816 * - if rq->deadline is observed as new value because of
817 * reusing, the rq won't be timed out because of timing.
818 * - if rq->deadline is observed as previous value,
819 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
820 * because we put a barrier between setting rq->deadline
821 * and clearing the flag in blk_mq_start_request(), so
822 * this rq won't be timed out too.
823 */
a7af0af3
PZ
824 if (time_after_eq(jiffies, deadline)) {
825 if (!blk_mark_rq_complete(rq)) {
826 /*
827 * Again coherence order ensures that consecutive reads
828 * from the same variable must be in that order. This
829 * ensures that if we see COMPLETE clear, we must then
830 * see STARTED set and we'll ignore this timeout.
831 *
832 * (There's also the MB implied by the test_and_clear())
833 */
0152fb6b 834 blk_mq_rq_timed_out(rq, reserved);
a7af0af3
PZ
835 }
836 } else if (!data->next_set || time_after(data->next, deadline)) {
837 data->next = deadline;
46f92d42
CH
838 data->next_set = 1;
839 }
87ee7b11
JA
840}
841
287922eb 842static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 843{
287922eb
CH
844 struct request_queue *q =
845 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
846 struct blk_mq_timeout_data data = {
847 .next = 0,
848 .next_set = 0,
849 };
81481eb4 850 int i;
320ae51f 851
71f79fb3
GKB
852 /* A deadlock might occur if a request is stuck requiring a
853 * timeout at the same time a queue freeze is waiting
854 * completion, since the timeout code would not be able to
855 * acquire the queue reference here.
856 *
857 * That's why we don't use blk_queue_enter here; instead, we use
858 * percpu_ref_tryget directly, because we need to be able to
859 * obtain a reference even in the short window between the queue
860 * starting to freeze, by dropping the first reference in
1671d522 861 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
862 * consumed, marked by the instant q_usage_counter reaches
863 * zero.
864 */
865 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
866 return;
867
0bf6cd5b 868 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 869
81481eb4
CH
870 if (data.next_set) {
871 data.next = blk_rq_timeout(round_jiffies_up(data.next));
872 mod_timer(&q->timeout, data.next);
0d2602ca 873 } else {
0bf6cd5b
CH
874 struct blk_mq_hw_ctx *hctx;
875
f054b56c
ML
876 queue_for_each_hw_ctx(q, hctx, i) {
877 /* the hctx may be unmapped, so check it here */
878 if (blk_mq_hw_queue_mapped(hctx))
879 blk_mq_tag_idle(hctx);
880 }
0d2602ca 881 }
287922eb 882 blk_queue_exit(q);
320ae51f
JA
883}
884
88459642
OS
885struct flush_busy_ctx_data {
886 struct blk_mq_hw_ctx *hctx;
887 struct list_head *list;
888};
889
890static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
891{
892 struct flush_busy_ctx_data *flush_data = data;
893 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
894 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
895
896 sbitmap_clear_bit(sb, bitnr);
897 spin_lock(&ctx->lock);
898 list_splice_tail_init(&ctx->rq_list, flush_data->list);
899 spin_unlock(&ctx->lock);
900 return true;
901}
902
1429d7c9
JA
903/*
904 * Process software queues that have been marked busy, splicing them
905 * to the for-dispatch
906 */
2c3ad667 907void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 908{
88459642
OS
909 struct flush_busy_ctx_data data = {
910 .hctx = hctx,
911 .list = list,
912 };
1429d7c9 913
88459642 914 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 915}
2c3ad667 916EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 917
b347689f
ML
918struct dispatch_rq_data {
919 struct blk_mq_hw_ctx *hctx;
920 struct request *rq;
921};
922
923static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
924 void *data)
925{
926 struct dispatch_rq_data *dispatch_data = data;
927 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
928 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
929
930 spin_lock(&ctx->lock);
931 if (unlikely(!list_empty(&ctx->rq_list))) {
932 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
933 list_del_init(&dispatch_data->rq->queuelist);
934 if (list_empty(&ctx->rq_list))
935 sbitmap_clear_bit(sb, bitnr);
936 }
937 spin_unlock(&ctx->lock);
938
939 return !dispatch_data->rq;
940}
941
942struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
943 struct blk_mq_ctx *start)
944{
945 unsigned off = start ? start->index_hw : 0;
946 struct dispatch_rq_data data = {
947 .hctx = hctx,
948 .rq = NULL,
949 };
950
951 __sbitmap_for_each_set(&hctx->ctx_map, off,
952 dispatch_rq_from_ctx, &data);
953
954 return data.rq;
955}
956
703fd1c0
JA
957static inline unsigned int queued_to_index(unsigned int queued)
958{
959 if (!queued)
960 return 0;
1429d7c9 961
703fd1c0 962 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
963}
964
bd6737f1
JA
965bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
966 bool wait)
bd166ef1
JA
967{
968 struct blk_mq_alloc_data data = {
969 .q = rq->q,
bd166ef1
JA
970 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
971 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
972 };
973
5feeacdd
JA
974 might_sleep_if(wait);
975
81380ca1
OS
976 if (rq->tag != -1)
977 goto done;
bd166ef1 978
415b806d
SG
979 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
980 data.flags |= BLK_MQ_REQ_RESERVED;
981
bd166ef1
JA
982 rq->tag = blk_mq_get_tag(&data);
983 if (rq->tag >= 0) {
200e86b3
JA
984 if (blk_mq_tag_busy(data.hctx)) {
985 rq->rq_flags |= RQF_MQ_INFLIGHT;
986 atomic_inc(&data.hctx->nr_active);
987 }
bd166ef1 988 data.hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
989 }
990
81380ca1
OS
991done:
992 if (hctx)
993 *hctx = data.hctx;
994 return rq->tag != -1;
bd166ef1
JA
995}
996
eb619fdb
JA
997static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
998 int flags, void *key)
da55f2cc
OS
999{
1000 struct blk_mq_hw_ctx *hctx;
1001
1002 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1003
eb619fdb 1004 list_del_init(&wait->entry);
da55f2cc
OS
1005 blk_mq_run_hw_queue(hctx, true);
1006 return 1;
1007}
1008
f906a6a0
JA
1009/*
1010 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1011 * the tag wakeups. For non-shared tags, we can simply mark us nedeing a
1012 * restart. For both caes, take care to check the condition again after
1013 * marking us as waiting.
1014 */
1015static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1016 struct request *rq)
da55f2cc 1017{
eb619fdb 1018 struct blk_mq_hw_ctx *this_hctx = *hctx;
f906a6a0 1019 bool shared_tags = (this_hctx->flags & BLK_MQ_F_TAG_SHARED) != 0;
da55f2cc 1020 struct sbq_wait_state *ws;
f906a6a0
JA
1021 wait_queue_entry_t *wait;
1022 bool ret;
da55f2cc 1023
f906a6a0
JA
1024 if (!shared_tags) {
1025 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1026 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1027 } else {
1028 wait = &this_hctx->dispatch_wait;
1029 if (!list_empty_careful(&wait->entry))
1030 return false;
1031
1032 spin_lock(&this_hctx->lock);
1033 if (!list_empty(&wait->entry)) {
1034 spin_unlock(&this_hctx->lock);
1035 return false;
1036 }
eb619fdb 1037
f906a6a0
JA
1038 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1039 add_wait_queue(&ws->wait, wait);
eb619fdb
JA
1040 }
1041
da55f2cc 1042 /*
eb619fdb
JA
1043 * It's possible that a tag was freed in the window between the
1044 * allocation failure and adding the hardware queue to the wait
1045 * queue.
da55f2cc 1046 */
f906a6a0
JA
1047 ret = blk_mq_get_driver_tag(rq, hctx, false);
1048
1049 if (!shared_tags) {
1050 /*
1051 * Don't clear RESTART here, someone else could have set it.
1052 * At most this will cost an extra queue run.
1053 */
1054 return ret;
1055 } else {
1056 if (!ret) {
1057 spin_unlock(&this_hctx->lock);
1058 return false;
1059 }
1060
1061 /*
1062 * We got a tag, remove ourselves from the wait queue to ensure
1063 * someone else gets the wakeup.
1064 */
1065 spin_lock_irq(&ws->wait.lock);
1066 list_del_init(&wait->entry);
1067 spin_unlock_irq(&ws->wait.lock);
eb619fdb 1068 spin_unlock(&this_hctx->lock);
f906a6a0 1069 return true;
eb619fdb 1070 }
da55f2cc
OS
1071}
1072
de148297 1073bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
eb619fdb 1074 bool got_budget)
320ae51f 1075{
81380ca1 1076 struct blk_mq_hw_ctx *hctx;
6d6f167c 1077 struct request *rq, *nxt;
eb619fdb 1078 bool no_tag = false;
fc17b653 1079 int errors, queued;
320ae51f 1080
81380ca1
OS
1081 if (list_empty(list))
1082 return false;
1083
de148297
ML
1084 WARN_ON(!list_is_singular(list) && got_budget);
1085
320ae51f
JA
1086 /*
1087 * Now process all the entries, sending them to the driver.
1088 */
93efe981 1089 errors = queued = 0;
81380ca1 1090 do {
74c45052 1091 struct blk_mq_queue_data bd;
fc17b653 1092 blk_status_t ret;
320ae51f 1093
f04c3df3 1094 rq = list_first_entry(list, struct request, queuelist);
bd166ef1 1095 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
3c782d67 1096 /*
da55f2cc 1097 * The initial allocation attempt failed, so we need to
eb619fdb
JA
1098 * rerun the hardware queue when a tag is freed. The
1099 * waitqueue takes care of that. If the queue is run
1100 * before we add this entry back on the dispatch list,
1101 * we'll re-run it below.
3c782d67 1102 */
f906a6a0 1103 if (!blk_mq_mark_tag_wait(&hctx, rq)) {
de148297
ML
1104 if (got_budget)
1105 blk_mq_put_dispatch_budget(hctx);
f906a6a0
JA
1106 /*
1107 * For non-shared tags, the RESTART check
1108 * will suffice.
1109 */
1110 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1111 no_tag = true;
de148297
ML
1112 break;
1113 }
1114 }
1115
0c6af1cc
ML
1116 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
1117 blk_mq_put_driver_tag(rq);
88022d72 1118 break;
0c6af1cc 1119 }
da55f2cc 1120
320ae51f 1121 list_del_init(&rq->queuelist);
320ae51f 1122
74c45052 1123 bd.rq = rq;
113285b4
JA
1124
1125 /*
1126 * Flag last if we have no more requests, or if we have more
1127 * but can't assign a driver tag to it.
1128 */
1129 if (list_empty(list))
1130 bd.last = true;
1131 else {
113285b4
JA
1132 nxt = list_first_entry(list, struct request, queuelist);
1133 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1134 }
74c45052
JA
1135
1136 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653 1137 if (ret == BLK_STS_RESOURCE) {
6d6f167c
JW
1138 /*
1139 * If an I/O scheduler has been configured and we got a
ff821d27
JA
1140 * driver tag for the next request already, free it
1141 * again.
6d6f167c
JW
1142 */
1143 if (!list_empty(list)) {
1144 nxt = list_first_entry(list, struct request, queuelist);
1145 blk_mq_put_driver_tag(nxt);
1146 }
f04c3df3 1147 list_add(&rq->queuelist, list);
ed0791b2 1148 __blk_mq_requeue_request(rq);
320ae51f 1149 break;
fc17b653
CH
1150 }
1151
1152 if (unlikely(ret != BLK_STS_OK)) {
93efe981 1153 errors++;
2a842aca 1154 blk_mq_end_request(rq, BLK_STS_IOERR);
fc17b653 1155 continue;
320ae51f
JA
1156 }
1157
fc17b653 1158 queued++;
81380ca1 1159 } while (!list_empty(list));
320ae51f 1160
703fd1c0 1161 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1162
1163 /*
1164 * Any items that need requeuing? Stuff them into hctx->dispatch,
1165 * that is where we will continue on next queue run.
1166 */
f04c3df3 1167 if (!list_empty(list)) {
320ae51f 1168 spin_lock(&hctx->lock);
c13660a0 1169 list_splice_init(list, &hctx->dispatch);
320ae51f 1170 spin_unlock(&hctx->lock);
f04c3df3 1171
9ba52e58 1172 /*
710c785f
BVA
1173 * If SCHED_RESTART was set by the caller of this function and
1174 * it is no longer set that means that it was cleared by another
1175 * thread and hence that a queue rerun is needed.
9ba52e58 1176 *
eb619fdb
JA
1177 * If 'no_tag' is set, that means that we failed getting
1178 * a driver tag with an I/O scheduler attached. If our dispatch
1179 * waitqueue is no longer active, ensure that we run the queue
1180 * AFTER adding our entries back to the list.
bd166ef1 1181 *
710c785f
BVA
1182 * If no I/O scheduler has been configured it is possible that
1183 * the hardware queue got stopped and restarted before requests
1184 * were pushed back onto the dispatch list. Rerun the queue to
1185 * avoid starvation. Notes:
1186 * - blk_mq_run_hw_queue() checks whether or not a queue has
1187 * been stopped before rerunning a queue.
1188 * - Some but not all block drivers stop a queue before
fc17b653 1189 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1190 * and dm-rq.
bd166ef1 1191 */
eb619fdb
JA
1192 if (!blk_mq_sched_needs_restart(hctx) ||
1193 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
bd166ef1 1194 blk_mq_run_hw_queue(hctx, true);
320ae51f 1195 }
f04c3df3 1196
93efe981 1197 return (queued + errors) != 0;
f04c3df3
JA
1198}
1199
6a83e74d
BVA
1200static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1201{
1202 int srcu_idx;
1203
b7a71e66
JA
1204 /*
1205 * We should be running this queue from one of the CPUs that
1206 * are mapped to it.
1207 */
6a83e74d
BVA
1208 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1209 cpu_online(hctx->next_cpu));
1210
b7a71e66
JA
1211 /*
1212 * We can't run the queue inline with ints disabled. Ensure that
1213 * we catch bad users of this early.
1214 */
1215 WARN_ON_ONCE(in_interrupt());
1216
6a83e74d
BVA
1217 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1218 rcu_read_lock();
1f460b63 1219 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1220 rcu_read_unlock();
1221 } else {
bf4907c0
JA
1222 might_sleep();
1223
07319678 1224 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1f460b63 1225 blk_mq_sched_dispatch_requests(hctx);
07319678 1226 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
6a83e74d
BVA
1227 }
1228}
1229
506e931f
JA
1230/*
1231 * It'd be great if the workqueue API had a way to pass
1232 * in a mask and had some smarts for more clever placement.
1233 * For now we just round-robin here, switching for every
1234 * BLK_MQ_CPU_WORK_BATCH queued items.
1235 */
1236static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1237{
b657d7e6
CH
1238 if (hctx->queue->nr_hw_queues == 1)
1239 return WORK_CPU_UNBOUND;
506e931f
JA
1240
1241 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1242 int next_cpu;
506e931f
JA
1243
1244 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1245 if (next_cpu >= nr_cpu_ids)
1246 next_cpu = cpumask_first(hctx->cpumask);
1247
1248 hctx->next_cpu = next_cpu;
1249 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1250 }
1251
b657d7e6 1252 return hctx->next_cpu;
506e931f
JA
1253}
1254
7587a5ae
BVA
1255static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1256 unsigned long msecs)
320ae51f 1257{
5435c023
BVA
1258 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1259 return;
1260
1261 if (unlikely(blk_mq_hctx_stopped(hctx)))
320ae51f
JA
1262 return;
1263
1b792f2f 1264 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1265 int cpu = get_cpu();
1266 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1267 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1268 put_cpu();
398205b8
PB
1269 return;
1270 }
e4043dcf 1271
2a90d4aa 1272 put_cpu();
e4043dcf 1273 }
398205b8 1274
9f993737
JA
1275 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1276 &hctx->run_work,
1277 msecs_to_jiffies(msecs));
7587a5ae
BVA
1278}
1279
1280void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1281{
1282 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1283}
1284EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1285
79f720a7 1286bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
7587a5ae 1287{
24f5a90f
ML
1288 int srcu_idx;
1289 bool need_run;
1290
1291 /*
1292 * When queue is quiesced, we may be switching io scheduler, or
1293 * updating nr_hw_queues, or other things, and we can't run queue
1294 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1295 *
1296 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1297 * quiesced.
1298 */
1299 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1300 rcu_read_lock();
1301 need_run = !blk_queue_quiesced(hctx->queue) &&
1302 blk_mq_hctx_has_pending(hctx);
1303 rcu_read_unlock();
1304 } else {
1305 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1306 need_run = !blk_queue_quiesced(hctx->queue) &&
1307 blk_mq_hctx_has_pending(hctx);
1308 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1309 }
1310
1311 if (need_run) {
79f720a7
JA
1312 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1313 return true;
1314 }
1315
1316 return false;
320ae51f 1317}
5b727272 1318EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 1319
b94ec296 1320void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1321{
1322 struct blk_mq_hw_ctx *hctx;
1323 int i;
1324
1325 queue_for_each_hw_ctx(q, hctx, i) {
79f720a7 1326 if (blk_mq_hctx_stopped(hctx))
320ae51f
JA
1327 continue;
1328
b94ec296 1329 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1330 }
1331}
b94ec296 1332EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1333
fd001443
BVA
1334/**
1335 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1336 * @q: request queue.
1337 *
1338 * The caller is responsible for serializing this function against
1339 * blk_mq_{start,stop}_hw_queue().
1340 */
1341bool blk_mq_queue_stopped(struct request_queue *q)
1342{
1343 struct blk_mq_hw_ctx *hctx;
1344 int i;
1345
1346 queue_for_each_hw_ctx(q, hctx, i)
1347 if (blk_mq_hctx_stopped(hctx))
1348 return true;
1349
1350 return false;
1351}
1352EXPORT_SYMBOL(blk_mq_queue_stopped);
1353
39a70c76
ML
1354/*
1355 * This function is often used for pausing .queue_rq() by driver when
1356 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1357 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1358 *
1359 * We do not guarantee that dispatch can be drained or blocked
1360 * after blk_mq_stop_hw_queue() returns. Please use
1361 * blk_mq_quiesce_queue() for that requirement.
1362 */
2719aa21
JA
1363void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1364{
641a9ed6 1365 cancel_delayed_work(&hctx->run_work);
280d45f6 1366
641a9ed6 1367 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2719aa21 1368}
641a9ed6 1369EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2719aa21 1370
39a70c76
ML
1371/*
1372 * This function is often used for pausing .queue_rq() by driver when
1373 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1374 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1375 *
1376 * We do not guarantee that dispatch can be drained or blocked
1377 * after blk_mq_stop_hw_queues() returns. Please use
1378 * blk_mq_quiesce_queue() for that requirement.
1379 */
2719aa21
JA
1380void blk_mq_stop_hw_queues(struct request_queue *q)
1381{
641a9ed6
ML
1382 struct blk_mq_hw_ctx *hctx;
1383 int i;
1384
1385 queue_for_each_hw_ctx(q, hctx, i)
1386 blk_mq_stop_hw_queue(hctx);
280d45f6
CH
1387}
1388EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1389
320ae51f
JA
1390void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1391{
1392 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1393
0ffbce80 1394 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1395}
1396EXPORT_SYMBOL(blk_mq_start_hw_queue);
1397
2f268556
CH
1398void blk_mq_start_hw_queues(struct request_queue *q)
1399{
1400 struct blk_mq_hw_ctx *hctx;
1401 int i;
1402
1403 queue_for_each_hw_ctx(q, hctx, i)
1404 blk_mq_start_hw_queue(hctx);
1405}
1406EXPORT_SYMBOL(blk_mq_start_hw_queues);
1407
ae911c5e
JA
1408void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1409{
1410 if (!blk_mq_hctx_stopped(hctx))
1411 return;
1412
1413 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1414 blk_mq_run_hw_queue(hctx, async);
1415}
1416EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1417
1b4a3258 1418void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1419{
1420 struct blk_mq_hw_ctx *hctx;
1421 int i;
1422
ae911c5e
JA
1423 queue_for_each_hw_ctx(q, hctx, i)
1424 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1425}
1426EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1427
70f4db63 1428static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1429{
1430 struct blk_mq_hw_ctx *hctx;
1431
9f993737 1432 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 1433
21c6e939
JA
1434 /*
1435 * If we are stopped, don't run the queue. The exception is if
1436 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1437 * the STOPPED bit and run it.
1438 */
1439 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1440 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1441 return;
7587a5ae 1442
21c6e939
JA
1443 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1444 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1445 }
7587a5ae
BVA
1446
1447 __blk_mq_run_hw_queue(hctx);
1448}
1449
70f4db63
CH
1450
1451void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1452{
5435c023 1453 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
19c66e59 1454 return;
70f4db63 1455
21c6e939
JA
1456 /*
1457 * Stop the hw queue, then modify currently delayed work.
1458 * This should prevent us from running the queue prematurely.
1459 * Mark the queue as auto-clearing STOPPED when it runs.
1460 */
7e79dadc 1461 blk_mq_stop_hw_queue(hctx);
21c6e939
JA
1462 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1463 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1464 &hctx->run_work,
1465 msecs_to_jiffies(msecs));
70f4db63
CH
1466}
1467EXPORT_SYMBOL(blk_mq_delay_queue);
1468
cfd0c552 1469static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1470 struct request *rq,
1471 bool at_head)
320ae51f 1472{
e57690fe
JA
1473 struct blk_mq_ctx *ctx = rq->mq_ctx;
1474
7b607814
BVA
1475 lockdep_assert_held(&ctx->lock);
1476
01b983c9
JA
1477 trace_block_rq_insert(hctx->queue, rq);
1478
72a0a36e
CH
1479 if (at_head)
1480 list_add(&rq->queuelist, &ctx->rq_list);
1481 else
1482 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1483}
4bb659b1 1484
2c3ad667
JA
1485void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1486 bool at_head)
cfd0c552
ML
1487{
1488 struct blk_mq_ctx *ctx = rq->mq_ctx;
1489
7b607814
BVA
1490 lockdep_assert_held(&ctx->lock);
1491
e57690fe 1492 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1493 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1494}
1495
157f377b
JA
1496/*
1497 * Should only be used carefully, when the caller knows we want to
1498 * bypass a potential IO scheduler on the target device.
1499 */
b0850297 1500void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
157f377b
JA
1501{
1502 struct blk_mq_ctx *ctx = rq->mq_ctx;
1503 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1504
1505 spin_lock(&hctx->lock);
1506 list_add_tail(&rq->queuelist, &hctx->dispatch);
1507 spin_unlock(&hctx->lock);
1508
b0850297
ML
1509 if (run_queue)
1510 blk_mq_run_hw_queue(hctx, false);
157f377b
JA
1511}
1512
bd166ef1
JA
1513void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1514 struct list_head *list)
320ae51f
JA
1515
1516{
320ae51f
JA
1517 /*
1518 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1519 * offline now
1520 */
1521 spin_lock(&ctx->lock);
1522 while (!list_empty(list)) {
1523 struct request *rq;
1524
1525 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1526 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1527 list_del_init(&rq->queuelist);
e57690fe 1528 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1529 }
cfd0c552 1530 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1531 spin_unlock(&ctx->lock);
320ae51f
JA
1532}
1533
1534static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1535{
1536 struct request *rqa = container_of(a, struct request, queuelist);
1537 struct request *rqb = container_of(b, struct request, queuelist);
1538
1539 return !(rqa->mq_ctx < rqb->mq_ctx ||
1540 (rqa->mq_ctx == rqb->mq_ctx &&
1541 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1542}
1543
1544void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1545{
1546 struct blk_mq_ctx *this_ctx;
1547 struct request_queue *this_q;
1548 struct request *rq;
1549 LIST_HEAD(list);
1550 LIST_HEAD(ctx_list);
1551 unsigned int depth;
1552
1553 list_splice_init(&plug->mq_list, &list);
1554
1555 list_sort(NULL, &list, plug_ctx_cmp);
1556
1557 this_q = NULL;
1558 this_ctx = NULL;
1559 depth = 0;
1560
1561 while (!list_empty(&list)) {
1562 rq = list_entry_rq(list.next);
1563 list_del_init(&rq->queuelist);
1564 BUG_ON(!rq->q);
1565 if (rq->mq_ctx != this_ctx) {
1566 if (this_ctx) {
bd166ef1
JA
1567 trace_block_unplug(this_q, depth, from_schedule);
1568 blk_mq_sched_insert_requests(this_q, this_ctx,
1569 &ctx_list,
1570 from_schedule);
320ae51f
JA
1571 }
1572
1573 this_ctx = rq->mq_ctx;
1574 this_q = rq->q;
1575 depth = 0;
1576 }
1577
1578 depth++;
1579 list_add_tail(&rq->queuelist, &ctx_list);
1580 }
1581
1582 /*
1583 * If 'this_ctx' is set, we know we have entries to complete
1584 * on 'ctx_list'. Do those.
1585 */
1586 if (this_ctx) {
bd166ef1
JA
1587 trace_block_unplug(this_q, depth, from_schedule);
1588 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1589 from_schedule);
320ae51f
JA
1590 }
1591}
1592
1593static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1594{
da8d7f07 1595 blk_init_request_from_bio(rq, bio);
4b570521 1596
85acb3ba
SL
1597 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1598
6e85eaf3 1599 blk_account_io_start(rq, true);
320ae51f
JA
1600}
1601
ab42f35d
ML
1602static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1603 struct blk_mq_ctx *ctx,
1604 struct request *rq)
1605{
1606 spin_lock(&ctx->lock);
1607 __blk_mq_insert_request(hctx, rq, false);
1608 spin_unlock(&ctx->lock);
07068d5b 1609}
14ec77f3 1610
fd2d3326
JA
1611static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1612{
bd166ef1
JA
1613 if (rq->tag != -1)
1614 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1615
1616 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1617}
1618
d964f04a
ML
1619static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1620 struct request *rq,
1621 blk_qc_t *cookie, bool may_sleep)
f984df1f 1622{
f984df1f 1623 struct request_queue *q = rq->q;
f984df1f
SL
1624 struct blk_mq_queue_data bd = {
1625 .rq = rq,
d945a365 1626 .last = true,
f984df1f 1627 };
bd166ef1 1628 blk_qc_t new_cookie;
f06345ad 1629 blk_status_t ret;
d964f04a
ML
1630 bool run_queue = true;
1631
f4560ffe
ML
1632 /* RCU or SRCU read lock is needed before checking quiesced flag */
1633 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
d964f04a
ML
1634 run_queue = false;
1635 goto insert;
1636 }
f984df1f 1637
bd166ef1 1638 if (q->elevator)
2253efc8
BVA
1639 goto insert;
1640
d964f04a 1641 if (!blk_mq_get_driver_tag(rq, NULL, false))
bd166ef1
JA
1642 goto insert;
1643
88022d72 1644 if (!blk_mq_get_dispatch_budget(hctx)) {
de148297
ML
1645 blk_mq_put_driver_tag(rq);
1646 goto insert;
88022d72 1647 }
de148297 1648
bd166ef1
JA
1649 new_cookie = request_to_qc_t(hctx, rq);
1650
f984df1f
SL
1651 /*
1652 * For OK queue, we are done. For error, kill it. Any other
1653 * error (busy), just add it to our list as we previously
1654 * would have done
1655 */
1656 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653
CH
1657 switch (ret) {
1658 case BLK_STS_OK:
7b371636 1659 *cookie = new_cookie;
2253efc8 1660 return;
fc17b653
CH
1661 case BLK_STS_RESOURCE:
1662 __blk_mq_requeue_request(rq);
1663 goto insert;
1664 default:
7b371636 1665 *cookie = BLK_QC_T_NONE;
fc17b653 1666 blk_mq_end_request(rq, ret);
2253efc8 1667 return;
f984df1f 1668 }
7b371636 1669
2253efc8 1670insert:
d964f04a 1671 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
f984df1f
SL
1672}
1673
5eb6126e
CH
1674static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1675 struct request *rq, blk_qc_t *cookie)
1676{
1677 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1678 rcu_read_lock();
d964f04a 1679 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
5eb6126e
CH
1680 rcu_read_unlock();
1681 } else {
bf4907c0
JA
1682 unsigned int srcu_idx;
1683
1684 might_sleep();
1685
07319678 1686 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
d964f04a 1687 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
07319678 1688 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
5eb6126e
CH
1689 }
1690}
1691
dece1635 1692static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1693{
ef295ecf 1694 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1695 const int is_flush_fua = op_is_flush(bio->bi_opf);
5a797e00 1696 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1697 struct request *rq;
5eb6126e 1698 unsigned int request_count = 0;
f984df1f 1699 struct blk_plug *plug;
5b3f341f 1700 struct request *same_queue_rq = NULL;
7b371636 1701 blk_qc_t cookie;
87760e5e 1702 unsigned int wb_acct;
07068d5b
JA
1703
1704 blk_queue_bounce(q, &bio);
1705
af67c31f 1706 blk_queue_split(q, &bio);
f36ea50c 1707
e23947bd 1708 if (!bio_integrity_prep(bio))
dece1635 1709 return BLK_QC_T_NONE;
07068d5b 1710
87c279e6
OS
1711 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1712 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1713 return BLK_QC_T_NONE;
f984df1f 1714
bd166ef1
JA
1715 if (blk_mq_sched_bio_merge(q, bio))
1716 return BLK_QC_T_NONE;
1717
87760e5e
JA
1718 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1719
bd166ef1
JA
1720 trace_block_getrq(q, bio, bio->bi_opf);
1721
d2c0d383 1722 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1723 if (unlikely(!rq)) {
1724 __wbt_done(q->rq_wb, wb_acct);
03a07c92
GR
1725 if (bio->bi_opf & REQ_NOWAIT)
1726 bio_wouldblock_error(bio);
dece1635 1727 return BLK_QC_T_NONE;
87760e5e
JA
1728 }
1729
1730 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1731
fd2d3326 1732 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 1733
f984df1f 1734 plug = current->plug;
07068d5b 1735 if (unlikely(is_flush_fua)) {
f984df1f 1736 blk_mq_put_ctx(data.ctx);
07068d5b 1737 blk_mq_bio_to_request(rq, bio);
923218f6
ML
1738
1739 /* bypass scheduler for flush rq */
1740 blk_insert_flush(rq);
1741 blk_mq_run_hw_queue(data.hctx, true);
a4d907b6 1742 } else if (plug && q->nr_hw_queues == 1) {
600271d9
SL
1743 struct request *last = NULL;
1744
b00c53e8 1745 blk_mq_put_ctx(data.ctx);
e6c4438b 1746 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1747
1748 /*
1749 * @request_count may become stale because of schedule
1750 * out, so check the list again.
1751 */
1752 if (list_empty(&plug->mq_list))
1753 request_count = 0;
254d259d
CH
1754 else if (blk_queue_nomerges(q))
1755 request_count = blk_plug_queued_count(q);
1756
676d0607 1757 if (!request_count)
e6c4438b 1758 trace_block_plug(q);
600271d9
SL
1759 else
1760 last = list_entry_rq(plug->mq_list.prev);
b094f89c 1761
600271d9
SL
1762 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1763 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1764 blk_flush_plug_list(plug, false);
1765 trace_block_plug(q);
320ae51f 1766 }
b094f89c 1767
e6c4438b 1768 list_add_tail(&rq->queuelist, &plug->mq_list);
2299722c 1769 } else if (plug && !blk_queue_nomerges(q)) {
bd166ef1 1770 blk_mq_bio_to_request(rq, bio);
07068d5b 1771
07068d5b 1772 /*
6a83e74d 1773 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1774 * Otherwise the existing request in the plug list will be
1775 * issued. So the plug list will have one request at most
2299722c
CH
1776 * The plug list might get flushed before this. If that happens,
1777 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 1778 */
2299722c
CH
1779 if (list_empty(&plug->mq_list))
1780 same_queue_rq = NULL;
1781 if (same_queue_rq)
1782 list_del_init(&same_queue_rq->queuelist);
1783 list_add_tail(&rq->queuelist, &plug->mq_list);
1784
bf4907c0
JA
1785 blk_mq_put_ctx(data.ctx);
1786
dad7a3be
ML
1787 if (same_queue_rq) {
1788 data.hctx = blk_mq_map_queue(q,
1789 same_queue_rq->mq_ctx->cpu);
2299722c
CH
1790 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1791 &cookie);
dad7a3be 1792 }
a4d907b6 1793 } else if (q->nr_hw_queues > 1 && is_sync) {
bf4907c0 1794 blk_mq_put_ctx(data.ctx);
2299722c 1795 blk_mq_bio_to_request(rq, bio);
2299722c 1796 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
a4d907b6 1797 } else if (q->elevator) {
b00c53e8 1798 blk_mq_put_ctx(data.ctx);
bd166ef1 1799 blk_mq_bio_to_request(rq, bio);
a4d907b6 1800 blk_mq_sched_insert_request(rq, false, true, true, true);
ab42f35d 1801 } else {
b00c53e8 1802 blk_mq_put_ctx(data.ctx);
ab42f35d
ML
1803 blk_mq_bio_to_request(rq, bio);
1804 blk_mq_queue_io(data.hctx, data.ctx, rq);
a4d907b6 1805 blk_mq_run_hw_queue(data.hctx, true);
ab42f35d 1806 }
320ae51f 1807
7b371636 1808 return cookie;
320ae51f
JA
1809}
1810
cc71a6f4
JA
1811void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1812 unsigned int hctx_idx)
95363efd 1813{
e9b267d9 1814 struct page *page;
320ae51f 1815
24d2f903 1816 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1817 int i;
320ae51f 1818
24d2f903 1819 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1820 struct request *rq = tags->static_rqs[i];
1821
1822 if (!rq)
e9b267d9 1823 continue;
d6296d39 1824 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 1825 tags->static_rqs[i] = NULL;
e9b267d9 1826 }
320ae51f 1827 }
320ae51f 1828
24d2f903
CH
1829 while (!list_empty(&tags->page_list)) {
1830 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1831 list_del_init(&page->lru);
f75782e4
CM
1832 /*
1833 * Remove kmemleak object previously allocated in
1834 * blk_mq_init_rq_map().
1835 */
1836 kmemleak_free(page_address(page));
320ae51f
JA
1837 __free_pages(page, page->private);
1838 }
cc71a6f4 1839}
320ae51f 1840
cc71a6f4
JA
1841void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1842{
24d2f903 1843 kfree(tags->rqs);
cc71a6f4 1844 tags->rqs = NULL;
2af8cbe3
JA
1845 kfree(tags->static_rqs);
1846 tags->static_rqs = NULL;
320ae51f 1847
24d2f903 1848 blk_mq_free_tags(tags);
320ae51f
JA
1849}
1850
cc71a6f4
JA
1851struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1852 unsigned int hctx_idx,
1853 unsigned int nr_tags,
1854 unsigned int reserved_tags)
320ae51f 1855{
24d2f903 1856 struct blk_mq_tags *tags;
59f082e4 1857 int node;
320ae51f 1858
59f082e4
SL
1859 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1860 if (node == NUMA_NO_NODE)
1861 node = set->numa_node;
1862
1863 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 1864 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1865 if (!tags)
1866 return NULL;
320ae51f 1867
cc71a6f4 1868 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1869 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1870 node);
24d2f903
CH
1871 if (!tags->rqs) {
1872 blk_mq_free_tags(tags);
1873 return NULL;
1874 }
320ae51f 1875
2af8cbe3
JA
1876 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1877 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1878 node);
2af8cbe3
JA
1879 if (!tags->static_rqs) {
1880 kfree(tags->rqs);
1881 blk_mq_free_tags(tags);
1882 return NULL;
1883 }
1884
cc71a6f4
JA
1885 return tags;
1886}
1887
1888static size_t order_to_size(unsigned int order)
1889{
1890 return (size_t)PAGE_SIZE << order;
1891}
1892
1893int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1894 unsigned int hctx_idx, unsigned int depth)
1895{
1896 unsigned int i, j, entries_per_page, max_order = 4;
1897 size_t rq_size, left;
59f082e4
SL
1898 int node;
1899
1900 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1901 if (node == NUMA_NO_NODE)
1902 node = set->numa_node;
cc71a6f4
JA
1903
1904 INIT_LIST_HEAD(&tags->page_list);
1905
320ae51f
JA
1906 /*
1907 * rq_size is the size of the request plus driver payload, rounded
1908 * to the cacheline size
1909 */
24d2f903 1910 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1911 cache_line_size());
cc71a6f4 1912 left = rq_size * depth;
320ae51f 1913
cc71a6f4 1914 for (i = 0; i < depth; ) {
320ae51f
JA
1915 int this_order = max_order;
1916 struct page *page;
1917 int to_do;
1918 void *p;
1919
b3a834b1 1920 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1921 this_order--;
1922
1923 do {
59f082e4 1924 page = alloc_pages_node(node,
36e1f3d1 1925 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1926 this_order);
320ae51f
JA
1927 if (page)
1928 break;
1929 if (!this_order--)
1930 break;
1931 if (order_to_size(this_order) < rq_size)
1932 break;
1933 } while (1);
1934
1935 if (!page)
24d2f903 1936 goto fail;
320ae51f
JA
1937
1938 page->private = this_order;
24d2f903 1939 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1940
1941 p = page_address(page);
f75782e4
CM
1942 /*
1943 * Allow kmemleak to scan these pages as they contain pointers
1944 * to additional allocations like via ops->init_request().
1945 */
36e1f3d1 1946 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 1947 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 1948 to_do = min(entries_per_page, depth - i);
320ae51f
JA
1949 left -= to_do * rq_size;
1950 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
1951 struct request *rq = p;
1952
1953 tags->static_rqs[i] = rq;
24d2f903 1954 if (set->ops->init_request) {
d6296d39 1955 if (set->ops->init_request(set, rq, hctx_idx,
59f082e4 1956 node)) {
2af8cbe3 1957 tags->static_rqs[i] = NULL;
24d2f903 1958 goto fail;
a5164405 1959 }
e9b267d9
CH
1960 }
1961
320ae51f
JA
1962 p += rq_size;
1963 i++;
1964 }
1965 }
cc71a6f4 1966 return 0;
320ae51f 1967
24d2f903 1968fail:
cc71a6f4
JA
1969 blk_mq_free_rqs(set, tags, hctx_idx);
1970 return -ENOMEM;
320ae51f
JA
1971}
1972
e57690fe
JA
1973/*
1974 * 'cpu' is going away. splice any existing rq_list entries from this
1975 * software queue to the hw queue dispatch list, and ensure that it
1976 * gets run.
1977 */
9467f859 1978static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 1979{
9467f859 1980 struct blk_mq_hw_ctx *hctx;
484b4061
JA
1981 struct blk_mq_ctx *ctx;
1982 LIST_HEAD(tmp);
1983
9467f859 1984 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 1985 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1986
1987 spin_lock(&ctx->lock);
1988 if (!list_empty(&ctx->rq_list)) {
1989 list_splice_init(&ctx->rq_list, &tmp);
1990 blk_mq_hctx_clear_pending(hctx, ctx);
1991 }
1992 spin_unlock(&ctx->lock);
1993
1994 if (list_empty(&tmp))
9467f859 1995 return 0;
484b4061 1996
e57690fe
JA
1997 spin_lock(&hctx->lock);
1998 list_splice_tail_init(&tmp, &hctx->dispatch);
1999 spin_unlock(&hctx->lock);
484b4061
JA
2000
2001 blk_mq_run_hw_queue(hctx, true);
9467f859 2002 return 0;
484b4061
JA
2003}
2004
9467f859 2005static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 2006{
9467f859
TG
2007 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2008 &hctx->cpuhp_dead);
484b4061
JA
2009}
2010
c3b4afca 2011/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
2012static void blk_mq_exit_hctx(struct request_queue *q,
2013 struct blk_mq_tag_set *set,
2014 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2015{
9c1051aa
OS
2016 blk_mq_debugfs_unregister_hctx(hctx);
2017
08e98fc6
ML
2018 blk_mq_tag_idle(hctx);
2019
f70ced09 2020 if (set->ops->exit_request)
d6296d39 2021 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
f70ced09 2022
93252632
OS
2023 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2024
08e98fc6
ML
2025 if (set->ops->exit_hctx)
2026 set->ops->exit_hctx(hctx, hctx_idx);
2027
6a83e74d 2028 if (hctx->flags & BLK_MQ_F_BLOCKING)
07319678 2029 cleanup_srcu_struct(hctx->queue_rq_srcu);
6a83e74d 2030
9467f859 2031 blk_mq_remove_cpuhp(hctx);
f70ced09 2032 blk_free_flush_queue(hctx->fq);
88459642 2033 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2034}
2035
624dbe47
ML
2036static void blk_mq_exit_hw_queues(struct request_queue *q,
2037 struct blk_mq_tag_set *set, int nr_queue)
2038{
2039 struct blk_mq_hw_ctx *hctx;
2040 unsigned int i;
2041
2042 queue_for_each_hw_ctx(q, hctx, i) {
2043 if (i == nr_queue)
2044 break;
08e98fc6 2045 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 2046 }
624dbe47
ML
2047}
2048
08e98fc6
ML
2049static int blk_mq_init_hctx(struct request_queue *q,
2050 struct blk_mq_tag_set *set,
2051 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 2052{
08e98fc6
ML
2053 int node;
2054
2055 node = hctx->numa_node;
2056 if (node == NUMA_NO_NODE)
2057 node = hctx->numa_node = set->numa_node;
2058
9f993737 2059 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
2060 spin_lock_init(&hctx->lock);
2061 INIT_LIST_HEAD(&hctx->dispatch);
2062 hctx->queue = q;
2404e607 2063 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 2064
9467f859 2065 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
2066
2067 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
2068
2069 /*
08e98fc6
ML
2070 * Allocate space for all possible cpus to avoid allocation at
2071 * runtime
320ae51f 2072 */
d904bfa7 2073 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
08e98fc6
ML
2074 GFP_KERNEL, node);
2075 if (!hctx->ctxs)
2076 goto unregister_cpu_notifier;
320ae51f 2077
88459642
OS
2078 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2079 node))
08e98fc6 2080 goto free_ctxs;
320ae51f 2081
08e98fc6 2082 hctx->nr_ctx = 0;
320ae51f 2083
eb619fdb
JA
2084 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2085 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2086
08e98fc6
ML
2087 if (set->ops->init_hctx &&
2088 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2089 goto free_bitmap;
320ae51f 2090
93252632
OS
2091 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2092 goto exit_hctx;
2093
f70ced09
ML
2094 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2095 if (!hctx->fq)
93252632 2096 goto sched_exit_hctx;
320ae51f 2097
f70ced09 2098 if (set->ops->init_request &&
d6296d39
CH
2099 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2100 node))
f70ced09 2101 goto free_fq;
320ae51f 2102
6a83e74d 2103 if (hctx->flags & BLK_MQ_F_BLOCKING)
07319678 2104 init_srcu_struct(hctx->queue_rq_srcu);
6a83e74d 2105
9c1051aa
OS
2106 blk_mq_debugfs_register_hctx(q, hctx);
2107
08e98fc6 2108 return 0;
320ae51f 2109
f70ced09
ML
2110 free_fq:
2111 kfree(hctx->fq);
93252632
OS
2112 sched_exit_hctx:
2113 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
f70ced09
ML
2114 exit_hctx:
2115 if (set->ops->exit_hctx)
2116 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 2117 free_bitmap:
88459642 2118 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2119 free_ctxs:
2120 kfree(hctx->ctxs);
2121 unregister_cpu_notifier:
9467f859 2122 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
2123 return -1;
2124}
320ae51f 2125
320ae51f
JA
2126static void blk_mq_init_cpu_queues(struct request_queue *q,
2127 unsigned int nr_hw_queues)
2128{
2129 unsigned int i;
2130
2131 for_each_possible_cpu(i) {
2132 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2133 struct blk_mq_hw_ctx *hctx;
2134
320ae51f
JA
2135 __ctx->cpu = i;
2136 spin_lock_init(&__ctx->lock);
2137 INIT_LIST_HEAD(&__ctx->rq_list);
2138 __ctx->queue = q;
2139
4b855ad3
CH
2140 /* If the cpu isn't present, the cpu is mapped to first hctx */
2141 if (!cpu_present(i))
320ae51f
JA
2142 continue;
2143
7d7e0f90 2144 hctx = blk_mq_map_queue(q, i);
e4043dcf 2145
320ae51f
JA
2146 /*
2147 * Set local node, IFF we have more than one hw queue. If
2148 * not, we remain on the home node of the device
2149 */
2150 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 2151 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
2152 }
2153}
2154
cc71a6f4
JA
2155static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2156{
2157 int ret = 0;
2158
2159 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2160 set->queue_depth, set->reserved_tags);
2161 if (!set->tags[hctx_idx])
2162 return false;
2163
2164 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2165 set->queue_depth);
2166 if (!ret)
2167 return true;
2168
2169 blk_mq_free_rq_map(set->tags[hctx_idx]);
2170 set->tags[hctx_idx] = NULL;
2171 return false;
2172}
2173
2174static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2175 unsigned int hctx_idx)
2176{
bd166ef1
JA
2177 if (set->tags[hctx_idx]) {
2178 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2179 blk_mq_free_rq_map(set->tags[hctx_idx]);
2180 set->tags[hctx_idx] = NULL;
2181 }
cc71a6f4
JA
2182}
2183
4b855ad3 2184static void blk_mq_map_swqueue(struct request_queue *q)
320ae51f 2185{
d1b1cea1 2186 unsigned int i, hctx_idx;
320ae51f
JA
2187 struct blk_mq_hw_ctx *hctx;
2188 struct blk_mq_ctx *ctx;
2a34c087 2189 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2190
60de074b
AM
2191 /*
2192 * Avoid others reading imcomplete hctx->cpumask through sysfs
2193 */
2194 mutex_lock(&q->sysfs_lock);
2195
320ae51f 2196 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2197 cpumask_clear(hctx->cpumask);
320ae51f
JA
2198 hctx->nr_ctx = 0;
2199 }
2200
2201 /*
4b855ad3
CH
2202 * Map software to hardware queues.
2203 *
2204 * If the cpu isn't present, the cpu is mapped to first hctx.
320ae51f 2205 */
4b855ad3 2206 for_each_present_cpu(i) {
d1b1cea1
GKB
2207 hctx_idx = q->mq_map[i];
2208 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2209 if (!set->tags[hctx_idx] &&
2210 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2211 /*
2212 * If tags initialization fail for some hctx,
2213 * that hctx won't be brought online. In this
2214 * case, remap the current ctx to hctx[0] which
2215 * is guaranteed to always have tags allocated
2216 */
cc71a6f4 2217 q->mq_map[i] = 0;
d1b1cea1
GKB
2218 }
2219
897bb0c7 2220 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2221 hctx = blk_mq_map_queue(q, i);
868f2f0b 2222
e4043dcf 2223 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2224 ctx->index_hw = hctx->nr_ctx;
2225 hctx->ctxs[hctx->nr_ctx++] = ctx;
2226 }
506e931f 2227
60de074b
AM
2228 mutex_unlock(&q->sysfs_lock);
2229
506e931f 2230 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2231 /*
a68aafa5
JA
2232 * If no software queues are mapped to this hardware queue,
2233 * disable it and free the request entries.
484b4061
JA
2234 */
2235 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2236 /* Never unmap queue 0. We need it as a
2237 * fallback in case of a new remap fails
2238 * allocation
2239 */
cc71a6f4
JA
2240 if (i && set->tags[i])
2241 blk_mq_free_map_and_requests(set, i);
2242
2a34c087 2243 hctx->tags = NULL;
484b4061
JA
2244 continue;
2245 }
2246
2a34c087
ML
2247 hctx->tags = set->tags[i];
2248 WARN_ON(!hctx->tags);
2249
889fa31f
CY
2250 /*
2251 * Set the map size to the number of mapped software queues.
2252 * This is more accurate and more efficient than looping
2253 * over all possibly mapped software queues.
2254 */
88459642 2255 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2256
484b4061
JA
2257 /*
2258 * Initialize batch roundrobin counts
2259 */
506e931f
JA
2260 hctx->next_cpu = cpumask_first(hctx->cpumask);
2261 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2262 }
320ae51f
JA
2263}
2264
8e8320c9
JA
2265/*
2266 * Caller needs to ensure that we're either frozen/quiesced, or that
2267 * the queue isn't live yet.
2268 */
2404e607 2269static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2270{
2271 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2272 int i;
2273
2404e607 2274 queue_for_each_hw_ctx(q, hctx, i) {
8e8320c9
JA
2275 if (shared) {
2276 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2277 atomic_inc(&q->shared_hctx_restart);
2404e607 2278 hctx->flags |= BLK_MQ_F_TAG_SHARED;
8e8320c9
JA
2279 } else {
2280 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2281 atomic_dec(&q->shared_hctx_restart);
2404e607 2282 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
8e8320c9 2283 }
2404e607
JM
2284 }
2285}
2286
8e8320c9
JA
2287static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2288 bool shared)
2404e607
JM
2289{
2290 struct request_queue *q;
0d2602ca 2291
705cda97
BVA
2292 lockdep_assert_held(&set->tag_list_lock);
2293
0d2602ca
JA
2294 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2295 blk_mq_freeze_queue(q);
2404e607 2296 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2297 blk_mq_unfreeze_queue(q);
2298 }
2299}
2300
2301static void blk_mq_del_queue_tag_set(struct request_queue *q)
2302{
2303 struct blk_mq_tag_set *set = q->tag_set;
2304
0d2602ca 2305 mutex_lock(&set->tag_list_lock);
705cda97
BVA
2306 list_del_rcu(&q->tag_set_list);
2307 INIT_LIST_HEAD(&q->tag_set_list);
2404e607
JM
2308 if (list_is_singular(&set->tag_list)) {
2309 /* just transitioned to unshared */
2310 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2311 /* update existing queue */
2312 blk_mq_update_tag_set_depth(set, false);
2313 }
0d2602ca 2314 mutex_unlock(&set->tag_list_lock);
705cda97
BVA
2315
2316 synchronize_rcu();
0d2602ca
JA
2317}
2318
2319static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2320 struct request_queue *q)
2321{
2322 q->tag_set = set;
2323
2324 mutex_lock(&set->tag_list_lock);
2404e607 2325
ff821d27
JA
2326 /*
2327 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2328 */
2329 if (!list_empty(&set->tag_list) &&
2330 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2404e607
JM
2331 set->flags |= BLK_MQ_F_TAG_SHARED;
2332 /* update existing queue */
2333 blk_mq_update_tag_set_depth(set, true);
2334 }
2335 if (set->flags & BLK_MQ_F_TAG_SHARED)
2336 queue_set_hctx_shared(q, true);
705cda97 2337 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2404e607 2338
0d2602ca
JA
2339 mutex_unlock(&set->tag_list_lock);
2340}
2341
e09aae7e
ML
2342/*
2343 * It is the actual release handler for mq, but we do it from
2344 * request queue's release handler for avoiding use-after-free
2345 * and headache because q->mq_kobj shouldn't have been introduced,
2346 * but we can't group ctx/kctx kobj without it.
2347 */
2348void blk_mq_release(struct request_queue *q)
2349{
2350 struct blk_mq_hw_ctx *hctx;
2351 unsigned int i;
2352
2353 /* hctx kobj stays in hctx */
c3b4afca
ML
2354 queue_for_each_hw_ctx(q, hctx, i) {
2355 if (!hctx)
2356 continue;
6c8b232e 2357 kobject_put(&hctx->kobj);
c3b4afca 2358 }
e09aae7e 2359
a723bab3
AM
2360 q->mq_map = NULL;
2361
e09aae7e
ML
2362 kfree(q->queue_hw_ctx);
2363
7ea5fe31
ML
2364 /*
2365 * release .mq_kobj and sw queue's kobject now because
2366 * both share lifetime with request queue.
2367 */
2368 blk_mq_sysfs_deinit(q);
2369
e09aae7e
ML
2370 free_percpu(q->queue_ctx);
2371}
2372
24d2f903 2373struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2374{
2375 struct request_queue *uninit_q, *q;
2376
2377 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2378 if (!uninit_q)
2379 return ERR_PTR(-ENOMEM);
2380
2381 q = blk_mq_init_allocated_queue(set, uninit_q);
2382 if (IS_ERR(q))
2383 blk_cleanup_queue(uninit_q);
2384
2385 return q;
2386}
2387EXPORT_SYMBOL(blk_mq_init_queue);
2388
07319678
BVA
2389static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2390{
2391 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2392
2393 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2394 __alignof__(struct blk_mq_hw_ctx)) !=
2395 sizeof(struct blk_mq_hw_ctx));
2396
2397 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2398 hw_ctx_size += sizeof(struct srcu_struct);
2399
2400 return hw_ctx_size;
2401}
2402
868f2f0b
KB
2403static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2404 struct request_queue *q)
320ae51f 2405{
868f2f0b
KB
2406 int i, j;
2407 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2408
868f2f0b 2409 blk_mq_sysfs_unregister(q);
24d2f903 2410 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2411 int node;
f14bbe77 2412
868f2f0b
KB
2413 if (hctxs[i])
2414 continue;
2415
2416 node = blk_mq_hw_queue_to_node(q->mq_map, i);
07319678 2417 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
cdef54dd 2418 GFP_KERNEL, node);
320ae51f 2419 if (!hctxs[i])
868f2f0b 2420 break;
320ae51f 2421
a86073e4 2422 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2423 node)) {
2424 kfree(hctxs[i]);
2425 hctxs[i] = NULL;
2426 break;
2427 }
e4043dcf 2428
0d2602ca 2429 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2430 hctxs[i]->numa_node = node;
320ae51f 2431 hctxs[i]->queue_num = i;
868f2f0b
KB
2432
2433 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2434 free_cpumask_var(hctxs[i]->cpumask);
2435 kfree(hctxs[i]);
2436 hctxs[i] = NULL;
2437 break;
2438 }
2439 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2440 }
868f2f0b
KB
2441 for (j = i; j < q->nr_hw_queues; j++) {
2442 struct blk_mq_hw_ctx *hctx = hctxs[j];
2443
2444 if (hctx) {
cc71a6f4
JA
2445 if (hctx->tags)
2446 blk_mq_free_map_and_requests(set, j);
868f2f0b 2447 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2448 kobject_put(&hctx->kobj);
868f2f0b
KB
2449 hctxs[j] = NULL;
2450
2451 }
2452 }
2453 q->nr_hw_queues = i;
2454 blk_mq_sysfs_register(q);
2455}
2456
2457struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2458 struct request_queue *q)
2459{
66841672
ML
2460 /* mark the queue as mq asap */
2461 q->mq_ops = set->ops;
2462
34dbad5d 2463 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
2464 blk_mq_poll_stats_bkt,
2465 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
2466 if (!q->poll_cb)
2467 goto err_exit;
2468
868f2f0b
KB
2469 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2470 if (!q->queue_ctx)
c7de5726 2471 goto err_exit;
868f2f0b 2472
737f98cf
ML
2473 /* init q->mq_kobj and sw queues' kobjects */
2474 blk_mq_sysfs_init(q);
2475
868f2f0b
KB
2476 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2477 GFP_KERNEL, set->numa_node);
2478 if (!q->queue_hw_ctx)
2479 goto err_percpu;
2480
bdd17e75 2481 q->mq_map = set->mq_map;
868f2f0b
KB
2482
2483 blk_mq_realloc_hw_ctxs(set, q);
2484 if (!q->nr_hw_queues)
2485 goto err_hctxs;
320ae51f 2486
287922eb 2487 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2488 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2489
2490 q->nr_queues = nr_cpu_ids;
320ae51f 2491
94eddfbe 2492 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2493
05f1dd53
JA
2494 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2495 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2496
1be036e9
CH
2497 q->sg_reserved_size = INT_MAX;
2498
2849450a 2499 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2500 INIT_LIST_HEAD(&q->requeue_list);
2501 spin_lock_init(&q->requeue_lock);
2502
254d259d 2503 blk_queue_make_request(q, blk_mq_make_request);
ea435e1b
CH
2504 if (q->mq_ops->poll)
2505 q->poll_fn = blk_mq_poll;
07068d5b 2506
eba71768
JA
2507 /*
2508 * Do this after blk_queue_make_request() overrides it...
2509 */
2510 q->nr_requests = set->queue_depth;
2511
64f1c21e
JA
2512 /*
2513 * Default to classic polling
2514 */
2515 q->poll_nsec = -1;
2516
24d2f903
CH
2517 if (set->ops->complete)
2518 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2519
24d2f903 2520 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
0d2602ca 2521 blk_mq_add_queue_tag_set(set, q);
4b855ad3 2522 blk_mq_map_swqueue(q);
4593fdbe 2523
d3484991
JA
2524 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2525 int ret;
2526
2527 ret = blk_mq_sched_init(q);
2528 if (ret)
2529 return ERR_PTR(ret);
2530 }
2531
320ae51f 2532 return q;
18741986 2533
320ae51f 2534err_hctxs:
868f2f0b 2535 kfree(q->queue_hw_ctx);
320ae51f 2536err_percpu:
868f2f0b 2537 free_percpu(q->queue_ctx);
c7de5726
ML
2538err_exit:
2539 q->mq_ops = NULL;
320ae51f
JA
2540 return ERR_PTR(-ENOMEM);
2541}
b62c21b7 2542EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2543
2544void blk_mq_free_queue(struct request_queue *q)
2545{
624dbe47 2546 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2547
0d2602ca 2548 blk_mq_del_queue_tag_set(q);
624dbe47 2549 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2550}
320ae51f
JA
2551
2552/* Basically redo blk_mq_init_queue with queue frozen */
4b855ad3 2553static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f 2554{
4ecd4fef 2555 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2556
9c1051aa 2557 blk_mq_debugfs_unregister_hctxs(q);
67aec14c
JA
2558 blk_mq_sysfs_unregister(q);
2559
320ae51f
JA
2560 /*
2561 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
ff821d27
JA
2562 * we should change hctx numa_node according to the new topology (this
2563 * involves freeing and re-allocating memory, worth doing?)
320ae51f 2564 */
4b855ad3 2565 blk_mq_map_swqueue(q);
320ae51f 2566
67aec14c 2567 blk_mq_sysfs_register(q);
9c1051aa 2568 blk_mq_debugfs_register_hctxs(q);
320ae51f
JA
2569}
2570
a5164405
JA
2571static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2572{
2573 int i;
2574
cc71a6f4
JA
2575 for (i = 0; i < set->nr_hw_queues; i++)
2576 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2577 goto out_unwind;
a5164405
JA
2578
2579 return 0;
2580
2581out_unwind:
2582 while (--i >= 0)
cc71a6f4 2583 blk_mq_free_rq_map(set->tags[i]);
a5164405 2584
a5164405
JA
2585 return -ENOMEM;
2586}
2587
2588/*
2589 * Allocate the request maps associated with this tag_set. Note that this
2590 * may reduce the depth asked for, if memory is tight. set->queue_depth
2591 * will be updated to reflect the allocated depth.
2592 */
2593static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2594{
2595 unsigned int depth;
2596 int err;
2597
2598 depth = set->queue_depth;
2599 do {
2600 err = __blk_mq_alloc_rq_maps(set);
2601 if (!err)
2602 break;
2603
2604 set->queue_depth >>= 1;
2605 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2606 err = -ENOMEM;
2607 break;
2608 }
2609 } while (set->queue_depth);
2610
2611 if (!set->queue_depth || err) {
2612 pr_err("blk-mq: failed to allocate request map\n");
2613 return -ENOMEM;
2614 }
2615
2616 if (depth != set->queue_depth)
2617 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2618 depth, set->queue_depth);
2619
2620 return 0;
2621}
2622
ebe8bddb
OS
2623static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2624{
7d4901a9
ML
2625 if (set->ops->map_queues) {
2626 int cpu;
2627 /*
2628 * transport .map_queues is usually done in the following
2629 * way:
2630 *
2631 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2632 * mask = get_cpu_mask(queue)
2633 * for_each_cpu(cpu, mask)
2634 * set->mq_map[cpu] = queue;
2635 * }
2636 *
2637 * When we need to remap, the table has to be cleared for
2638 * killing stale mapping since one CPU may not be mapped
2639 * to any hw queue.
2640 */
2641 for_each_possible_cpu(cpu)
2642 set->mq_map[cpu] = 0;
2643
ebe8bddb 2644 return set->ops->map_queues(set);
7d4901a9 2645 } else
ebe8bddb
OS
2646 return blk_mq_map_queues(set);
2647}
2648
a4391c64
JA
2649/*
2650 * Alloc a tag set to be associated with one or more request queues.
2651 * May fail with EINVAL for various error conditions. May adjust the
2652 * requested depth down, if if it too large. In that case, the set
2653 * value will be stored in set->queue_depth.
2654 */
24d2f903
CH
2655int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2656{
da695ba2
CH
2657 int ret;
2658
205fb5f5
BVA
2659 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2660
24d2f903
CH
2661 if (!set->nr_hw_queues)
2662 return -EINVAL;
a4391c64 2663 if (!set->queue_depth)
24d2f903
CH
2664 return -EINVAL;
2665 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2666 return -EINVAL;
2667
7d7e0f90 2668 if (!set->ops->queue_rq)
24d2f903
CH
2669 return -EINVAL;
2670
de148297
ML
2671 if (!set->ops->get_budget ^ !set->ops->put_budget)
2672 return -EINVAL;
2673
a4391c64
JA
2674 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2675 pr_info("blk-mq: reduced tag depth to %u\n",
2676 BLK_MQ_MAX_DEPTH);
2677 set->queue_depth = BLK_MQ_MAX_DEPTH;
2678 }
24d2f903 2679
6637fadf
SL
2680 /*
2681 * If a crashdump is active, then we are potentially in a very
2682 * memory constrained environment. Limit us to 1 queue and
2683 * 64 tags to prevent using too much memory.
2684 */
2685 if (is_kdump_kernel()) {
2686 set->nr_hw_queues = 1;
2687 set->queue_depth = min(64U, set->queue_depth);
2688 }
868f2f0b
KB
2689 /*
2690 * There is no use for more h/w queues than cpus.
2691 */
2692 if (set->nr_hw_queues > nr_cpu_ids)
2693 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2694
868f2f0b 2695 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2696 GFP_KERNEL, set->numa_node);
2697 if (!set->tags)
a5164405 2698 return -ENOMEM;
24d2f903 2699
da695ba2
CH
2700 ret = -ENOMEM;
2701 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2702 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2703 if (!set->mq_map)
2704 goto out_free_tags;
2705
ebe8bddb 2706 ret = blk_mq_update_queue_map(set);
da695ba2
CH
2707 if (ret)
2708 goto out_free_mq_map;
2709
2710 ret = blk_mq_alloc_rq_maps(set);
2711 if (ret)
bdd17e75 2712 goto out_free_mq_map;
24d2f903 2713
0d2602ca
JA
2714 mutex_init(&set->tag_list_lock);
2715 INIT_LIST_HEAD(&set->tag_list);
2716
24d2f903 2717 return 0;
bdd17e75
CH
2718
2719out_free_mq_map:
2720 kfree(set->mq_map);
2721 set->mq_map = NULL;
2722out_free_tags:
5676e7b6
RE
2723 kfree(set->tags);
2724 set->tags = NULL;
da695ba2 2725 return ret;
24d2f903
CH
2726}
2727EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2728
2729void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2730{
2731 int i;
2732
cc71a6f4
JA
2733 for (i = 0; i < nr_cpu_ids; i++)
2734 blk_mq_free_map_and_requests(set, i);
484b4061 2735
bdd17e75
CH
2736 kfree(set->mq_map);
2737 set->mq_map = NULL;
2738
981bd189 2739 kfree(set->tags);
5676e7b6 2740 set->tags = NULL;
24d2f903
CH
2741}
2742EXPORT_SYMBOL(blk_mq_free_tag_set);
2743
e3a2b3f9
JA
2744int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2745{
2746 struct blk_mq_tag_set *set = q->tag_set;
2747 struct blk_mq_hw_ctx *hctx;
2748 int i, ret;
2749
bd166ef1 2750 if (!set)
e3a2b3f9
JA
2751 return -EINVAL;
2752
70f36b60 2753 blk_mq_freeze_queue(q);
24f5a90f 2754 blk_mq_quiesce_queue(q);
70f36b60 2755
e3a2b3f9
JA
2756 ret = 0;
2757 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2758 if (!hctx->tags)
2759 continue;
bd166ef1
JA
2760 /*
2761 * If we're using an MQ scheduler, just update the scheduler
2762 * queue depth. This is similar to what the old code would do.
2763 */
70f36b60 2764 if (!hctx->sched_tags) {
c2e82a23 2765 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
70f36b60
JA
2766 false);
2767 } else {
2768 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2769 nr, true);
2770 }
e3a2b3f9
JA
2771 if (ret)
2772 break;
2773 }
2774
2775 if (!ret)
2776 q->nr_requests = nr;
2777
24f5a90f 2778 blk_mq_unquiesce_queue(q);
70f36b60 2779 blk_mq_unfreeze_queue(q);
70f36b60 2780
e3a2b3f9
JA
2781 return ret;
2782}
2783
e4dc2b32
KB
2784static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2785 int nr_hw_queues)
868f2f0b
KB
2786{
2787 struct request_queue *q;
2788
705cda97
BVA
2789 lockdep_assert_held(&set->tag_list_lock);
2790
868f2f0b
KB
2791 if (nr_hw_queues > nr_cpu_ids)
2792 nr_hw_queues = nr_cpu_ids;
2793 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2794 return;
2795
2796 list_for_each_entry(q, &set->tag_list, tag_set_list)
2797 blk_mq_freeze_queue(q);
2798
2799 set->nr_hw_queues = nr_hw_queues;
ebe8bddb 2800 blk_mq_update_queue_map(set);
868f2f0b
KB
2801 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2802 blk_mq_realloc_hw_ctxs(set, q);
4b855ad3 2803 blk_mq_queue_reinit(q);
868f2f0b
KB
2804 }
2805
2806 list_for_each_entry(q, &set->tag_list, tag_set_list)
2807 blk_mq_unfreeze_queue(q);
2808}
e4dc2b32
KB
2809
2810void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2811{
2812 mutex_lock(&set->tag_list_lock);
2813 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2814 mutex_unlock(&set->tag_list_lock);
2815}
868f2f0b
KB
2816EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2817
34dbad5d
OS
2818/* Enable polling stats and return whether they were already enabled. */
2819static bool blk_poll_stats_enable(struct request_queue *q)
2820{
2821 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2822 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2823 return true;
2824 blk_stat_add_callback(q, q->poll_cb);
2825 return false;
2826}
2827
2828static void blk_mq_poll_stats_start(struct request_queue *q)
2829{
2830 /*
2831 * We don't arm the callback if polling stats are not enabled or the
2832 * callback is already active.
2833 */
2834 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2835 blk_stat_is_active(q->poll_cb))
2836 return;
2837
2838 blk_stat_activate_msecs(q->poll_cb, 100);
2839}
2840
2841static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2842{
2843 struct request_queue *q = cb->data;
720b8ccc 2844 int bucket;
34dbad5d 2845
720b8ccc
SB
2846 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2847 if (cb->stat[bucket].nr_samples)
2848 q->poll_stat[bucket] = cb->stat[bucket];
2849 }
34dbad5d
OS
2850}
2851
64f1c21e
JA
2852static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2853 struct blk_mq_hw_ctx *hctx,
2854 struct request *rq)
2855{
64f1c21e 2856 unsigned long ret = 0;
720b8ccc 2857 int bucket;
64f1c21e
JA
2858
2859 /*
2860 * If stats collection isn't on, don't sleep but turn it on for
2861 * future users
2862 */
34dbad5d 2863 if (!blk_poll_stats_enable(q))
64f1c21e
JA
2864 return 0;
2865
64f1c21e
JA
2866 /*
2867 * As an optimistic guess, use half of the mean service time
2868 * for this type of request. We can (and should) make this smarter.
2869 * For instance, if the completion latencies are tight, we can
2870 * get closer than just half the mean. This is especially
2871 * important on devices where the completion latencies are longer
720b8ccc
SB
2872 * than ~10 usec. We do use the stats for the relevant IO size
2873 * if available which does lead to better estimates.
64f1c21e 2874 */
720b8ccc
SB
2875 bucket = blk_mq_poll_stats_bkt(rq);
2876 if (bucket < 0)
2877 return ret;
2878
2879 if (q->poll_stat[bucket].nr_samples)
2880 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
2881
2882 return ret;
2883}
2884
06426adf 2885static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2886 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2887 struct request *rq)
2888{
2889 struct hrtimer_sleeper hs;
2890 enum hrtimer_mode mode;
64f1c21e 2891 unsigned int nsecs;
06426adf
JA
2892 ktime_t kt;
2893
64f1c21e
JA
2894 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2895 return false;
2896
2897 /*
2898 * poll_nsec can be:
2899 *
2900 * -1: don't ever hybrid sleep
2901 * 0: use half of prev avg
2902 * >0: use this specific value
2903 */
2904 if (q->poll_nsec == -1)
2905 return false;
2906 else if (q->poll_nsec > 0)
2907 nsecs = q->poll_nsec;
2908 else
2909 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2910
2911 if (!nsecs)
06426adf
JA
2912 return false;
2913
2914 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2915
2916 /*
2917 * This will be replaced with the stats tracking code, using
2918 * 'avg_completion_time / 2' as the pre-sleep target.
2919 */
8b0e1953 2920 kt = nsecs;
06426adf
JA
2921
2922 mode = HRTIMER_MODE_REL;
2923 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2924 hrtimer_set_expires(&hs.timer, kt);
2925
2926 hrtimer_init_sleeper(&hs, current);
2927 do {
2928 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2929 break;
2930 set_current_state(TASK_UNINTERRUPTIBLE);
2931 hrtimer_start_expires(&hs.timer, mode);
2932 if (hs.task)
2933 io_schedule();
2934 hrtimer_cancel(&hs.timer);
2935 mode = HRTIMER_MODE_ABS;
2936 } while (hs.task && !signal_pending(current));
2937
2938 __set_current_state(TASK_RUNNING);
2939 destroy_hrtimer_on_stack(&hs.timer);
2940 return true;
2941}
2942
bbd7bb70
JA
2943static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2944{
2945 struct request_queue *q = hctx->queue;
2946 long state;
2947
06426adf
JA
2948 /*
2949 * If we sleep, have the caller restart the poll loop to reset
2950 * the state. Like for the other success return cases, the
2951 * caller is responsible for checking if the IO completed. If
2952 * the IO isn't complete, we'll get called again and will go
2953 * straight to the busy poll loop.
2954 */
64f1c21e 2955 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
2956 return true;
2957
bbd7bb70
JA
2958 hctx->poll_considered++;
2959
2960 state = current->state;
2961 while (!need_resched()) {
2962 int ret;
2963
2964 hctx->poll_invoked++;
2965
2966 ret = q->mq_ops->poll(hctx, rq->tag);
2967 if (ret > 0) {
2968 hctx->poll_success++;
2969 set_current_state(TASK_RUNNING);
2970 return true;
2971 }
2972
2973 if (signal_pending_state(state, current))
2974 set_current_state(TASK_RUNNING);
2975
2976 if (current->state == TASK_RUNNING)
2977 return true;
2978 if (ret < 0)
2979 break;
2980 cpu_relax();
2981 }
2982
2983 return false;
2984}
2985
ea435e1b 2986static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
bbd7bb70
JA
2987{
2988 struct blk_mq_hw_ctx *hctx;
bbd7bb70
JA
2989 struct request *rq;
2990
ea435e1b 2991 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
bbd7bb70
JA
2992 return false;
2993
bbd7bb70 2994 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
2995 if (!blk_qc_t_is_internal(cookie))
2996 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3a07bb1d 2997 else {
bd166ef1 2998 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3a07bb1d
JA
2999 /*
3000 * With scheduling, if the request has completed, we'll
3001 * get a NULL return here, as we clear the sched tag when
3002 * that happens. The request still remains valid, like always,
3003 * so we should be safe with just the NULL check.
3004 */
3005 if (!rq)
3006 return false;
3007 }
bbd7bb70
JA
3008
3009 return __blk_mq_poll(hctx, rq);
3010}
bbd7bb70 3011
320ae51f
JA
3012static int __init blk_mq_init(void)
3013{
fc13457f
JA
3014 /*
3015 * See comment in block/blk.h rq_atomic_flags enum
3016 */
3017 BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
3018 (REQ_ATOM_COMPLETE / BITS_PER_BYTE));
3019
9467f859
TG
3020 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3021 blk_mq_hctx_notify_dead);
320ae51f
JA
3022 return 0;
3023}
3024subsys_initcall(blk_mq_init);