]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - block/blk-mq.c
Merge branch 'bcache-for-3.14' of git://evilpiepirate.org/~kent/linux-bcache into...
[thirdparty/kernel/stable.git] / block / blk-mq.c
CommitLineData
320ae51f
JA
1#include <linux/kernel.h>
2#include <linux/module.h>
3#include <linux/backing-dev.h>
4#include <linux/bio.h>
5#include <linux/blkdev.h>
6#include <linux/mm.h>
7#include <linux/init.h>
8#include <linux/slab.h>
9#include <linux/workqueue.h>
10#include <linux/smp.h>
11#include <linux/llist.h>
12#include <linux/list_sort.h>
13#include <linux/cpu.h>
14#include <linux/cache.h>
15#include <linux/sched/sysctl.h>
16#include <linux/delay.h>
17
18#include <trace/events/block.h>
19
20#include <linux/blk-mq.h>
21#include "blk.h"
22#include "blk-mq.h"
23#include "blk-mq-tag.h"
24
25static DEFINE_MUTEX(all_q_mutex);
26static LIST_HEAD(all_q_list);
27
28static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
29
320ae51f
JA
30static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
31 unsigned int cpu)
32{
33 return per_cpu_ptr(q->queue_ctx, cpu);
34}
35
36/*
37 * This assumes per-cpu software queueing queues. They could be per-node
38 * as well, for instance. For now this is hardcoded as-is. Note that we don't
39 * care about preemption, since we know the ctx's are persistent. This does
40 * mean that we can't rely on ctx always matching the currently running CPU.
41 */
42static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
43{
44 return __blk_mq_get_ctx(q, get_cpu());
45}
46
47static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
48{
49 put_cpu();
50}
51
52/*
53 * Check if any of the ctx's have pending work in this hardware queue
54 */
55static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
56{
57 unsigned int i;
58
59 for (i = 0; i < hctx->nr_ctx_map; i++)
60 if (hctx->ctx_map[i])
61 return true;
62
63 return false;
64}
65
66/*
67 * Mark this ctx as having pending work in this hardware queue
68 */
69static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70 struct blk_mq_ctx *ctx)
71{
72 if (!test_bit(ctx->index_hw, hctx->ctx_map))
73 set_bit(ctx->index_hw, hctx->ctx_map);
74}
75
76static struct request *blk_mq_alloc_rq(struct blk_mq_hw_ctx *hctx, gfp_t gfp,
77 bool reserved)
78{
79 struct request *rq;
80 unsigned int tag;
81
82 tag = blk_mq_get_tag(hctx->tags, gfp, reserved);
83 if (tag != BLK_MQ_TAG_FAIL) {
84 rq = hctx->rqs[tag];
85 rq->tag = tag;
86
87 return rq;
88 }
89
90 return NULL;
91}
92
93static int blk_mq_queue_enter(struct request_queue *q)
94{
95 int ret;
96
97 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
98 smp_wmb();
99 /* we have problems to freeze the queue if it's initializing */
100 if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
101 return 0;
102
103 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
104
105 spin_lock_irq(q->queue_lock);
106 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
43a5e4e2
ML
107 !blk_queue_bypass(q) || blk_queue_dying(q),
108 *q->queue_lock);
320ae51f 109 /* inc usage with lock hold to avoid freeze_queue runs here */
43a5e4e2 110 if (!ret && !blk_queue_dying(q))
320ae51f 111 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
43a5e4e2
ML
112 else if (blk_queue_dying(q))
113 ret = -ENODEV;
320ae51f
JA
114 spin_unlock_irq(q->queue_lock);
115
116 return ret;
117}
118
119static void blk_mq_queue_exit(struct request_queue *q)
120{
121 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
122}
123
43a5e4e2
ML
124static void __blk_mq_drain_queue(struct request_queue *q)
125{
126 while (true) {
127 s64 count;
128
129 spin_lock_irq(q->queue_lock);
130 count = percpu_counter_sum(&q->mq_usage_counter);
131 spin_unlock_irq(q->queue_lock);
132
133 if (count == 0)
134 break;
135 blk_mq_run_queues(q, false);
136 msleep(10);
137 }
138}
139
320ae51f
JA
140/*
141 * Guarantee no request is in use, so we can change any data structure of
142 * the queue afterward.
143 */
144static void blk_mq_freeze_queue(struct request_queue *q)
145{
146 bool drain;
147
148 spin_lock_irq(q->queue_lock);
149 drain = !q->bypass_depth++;
150 queue_flag_set(QUEUE_FLAG_BYPASS, q);
151 spin_unlock_irq(q->queue_lock);
152
43a5e4e2
ML
153 if (drain)
154 __blk_mq_drain_queue(q);
155}
320ae51f 156
43a5e4e2
ML
157void blk_mq_drain_queue(struct request_queue *q)
158{
159 __blk_mq_drain_queue(q);
320ae51f
JA
160}
161
162static void blk_mq_unfreeze_queue(struct request_queue *q)
163{
164 bool wake = false;
165
166 spin_lock_irq(q->queue_lock);
167 if (!--q->bypass_depth) {
168 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
169 wake = true;
170 }
171 WARN_ON_ONCE(q->bypass_depth < 0);
172 spin_unlock_irq(q->queue_lock);
173 if (wake)
174 wake_up_all(&q->mq_freeze_wq);
175}
176
177bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
178{
179 return blk_mq_has_free_tags(hctx->tags);
180}
181EXPORT_SYMBOL(blk_mq_can_queue);
182
94eddfbe
JA
183static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
184 struct request *rq, unsigned int rw_flags)
320ae51f 185{
94eddfbe
JA
186 if (blk_queue_io_stat(q))
187 rw_flags |= REQ_IO_STAT;
188
320ae51f
JA
189 rq->mq_ctx = ctx;
190 rq->cmd_flags = rw_flags;
0fec08b4
ML
191 rq->start_time = jiffies;
192 set_start_time_ns(rq);
320ae51f
JA
193 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
194}
195
196static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
f0276924
SL
197 gfp_t gfp, bool reserved,
198 int rw)
320ae51f 199{
f0276924
SL
200 struct request *req;
201 bool is_flush = false;
202 /*
203 * flush need allocate a request, leave at least one request for
204 * non-flush IO to avoid deadlock
205 */
206 if ((rw & REQ_FLUSH) && !(rw & REQ_FLUSH_SEQ)) {
207 if (atomic_inc_return(&hctx->pending_flush) >=
208 hctx->queue_depth - hctx->reserved_tags - 1) {
209 atomic_dec(&hctx->pending_flush);
210 return NULL;
211 }
212 is_flush = true;
213 }
214 req = blk_mq_alloc_rq(hctx, gfp, reserved);
215 if (!req && is_flush)
216 atomic_dec(&hctx->pending_flush);
217 return req;
320ae51f
JA
218}
219
220static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
221 int rw, gfp_t gfp,
222 bool reserved)
223{
224 struct request *rq;
225
226 do {
227 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
228 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
229
f0276924 230 rq = __blk_mq_alloc_request(hctx, gfp & ~__GFP_WAIT, reserved, rw);
320ae51f 231 if (rq) {
94eddfbe 232 blk_mq_rq_ctx_init(q, ctx, rq, rw);
320ae51f 233 break;
959a35f1 234 }
320ae51f
JA
235
236 blk_mq_put_ctx(ctx);
959a35f1
JM
237 if (!(gfp & __GFP_WAIT))
238 break;
239
320ae51f
JA
240 __blk_mq_run_hw_queue(hctx);
241 blk_mq_wait_for_tags(hctx->tags);
242 } while (1);
243
244 return rq;
245}
246
3228f48b
CH
247struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
248 gfp_t gfp, bool reserved)
320ae51f
JA
249{
250 struct request *rq;
251
252 if (blk_mq_queue_enter(q))
253 return NULL;
254
3228f48b 255 rq = blk_mq_alloc_request_pinned(q, rw, gfp, reserved);
959a35f1
JM
256 if (rq)
257 blk_mq_put_ctx(rq->mq_ctx);
320ae51f
JA
258 return rq;
259}
260
261struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
262 gfp_t gfp)
263{
264 struct request *rq;
265
266 if (blk_mq_queue_enter(q))
267 return NULL;
268
269 rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
959a35f1
JM
270 if (rq)
271 blk_mq_put_ctx(rq->mq_ctx);
320ae51f
JA
272 return rq;
273}
274EXPORT_SYMBOL(blk_mq_alloc_reserved_request);
275
276/*
277 * Re-init and set pdu, if we have it
278 */
279static void blk_mq_rq_init(struct blk_mq_hw_ctx *hctx, struct request *rq)
280{
281 blk_rq_init(hctx->queue, rq);
282
283 if (hctx->cmd_size)
284 rq->special = blk_mq_rq_to_pdu(rq);
285}
286
287static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
288 struct blk_mq_ctx *ctx, struct request *rq)
289{
290 const int tag = rq->tag;
291 struct request_queue *q = rq->q;
292
f0276924
SL
293 if ((rq->cmd_flags & REQ_FLUSH) && !(rq->cmd_flags & REQ_FLUSH_SEQ))
294 atomic_dec(&hctx->pending_flush);
295
320ae51f
JA
296 blk_mq_rq_init(hctx, rq);
297 blk_mq_put_tag(hctx->tags, tag);
298
299 blk_mq_queue_exit(q);
300}
301
302void blk_mq_free_request(struct request *rq)
303{
304 struct blk_mq_ctx *ctx = rq->mq_ctx;
305 struct blk_mq_hw_ctx *hctx;
306 struct request_queue *q = rq->q;
307
308 ctx->rq_completed[rq_is_sync(rq)]++;
309
310 hctx = q->mq_ops->map_queue(q, ctx->cpu);
311 __blk_mq_free_request(hctx, ctx, rq);
312}
313
314static void blk_mq_bio_endio(struct request *rq, struct bio *bio, int error)
315{
316 if (error)
317 clear_bit(BIO_UPTODATE, &bio->bi_flags);
318 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
319 error = -EIO;
320
321 if (unlikely(rq->cmd_flags & REQ_QUIET))
322 set_bit(BIO_QUIET, &bio->bi_flags);
323
324 /* don't actually finish bio if it's part of flush sequence */
325 if (!(rq->cmd_flags & REQ_FLUSH_SEQ))
326 bio_endio(bio, error);
327}
328
329void blk_mq_complete_request(struct request *rq, int error)
330{
331 struct bio *bio = rq->bio;
332 unsigned int bytes = 0;
333
334 trace_block_rq_complete(rq->q, rq);
335
336 while (bio) {
337 struct bio *next = bio->bi_next;
338
339 bio->bi_next = NULL;
4f024f37 340 bytes += bio->bi_iter.bi_size;
320ae51f
JA
341 blk_mq_bio_endio(rq, bio, error);
342 bio = next;
343 }
344
345 blk_account_io_completion(rq, bytes);
346
0d11e6ac
ML
347 blk_account_io_done(rq);
348
320ae51f
JA
349 if (rq->end_io)
350 rq->end_io(rq, error);
351 else
352 blk_mq_free_request(rq);
320ae51f
JA
353}
354
355void __blk_mq_end_io(struct request *rq, int error)
356{
357 if (!blk_mark_rq_complete(rq))
358 blk_mq_complete_request(rq, error);
359}
360
3d6efbf6 361static void blk_mq_end_io_remote(void *data)
320ae51f 362{
3d6efbf6 363 struct request *rq = data;
320ae51f 364
3d6efbf6 365 __blk_mq_end_io(rq, rq->errors);
320ae51f 366}
320ae51f
JA
367
368/*
369 * End IO on this request on a multiqueue enabled driver. We'll either do
370 * it directly inline, or punt to a local IPI handler on the matching
371 * remote CPU.
372 */
373void blk_mq_end_io(struct request *rq, int error)
374{
375 struct blk_mq_ctx *ctx = rq->mq_ctx;
376 int cpu;
377
378 if (!ctx->ipi_redirect)
379 return __blk_mq_end_io(rq, error);
380
381 cpu = get_cpu();
3d6efbf6
CH
382 if (cpu != ctx->cpu && cpu_online(ctx->cpu)) {
383 rq->errors = error;
384 rq->csd.func = blk_mq_end_io_remote;
385 rq->csd.info = rq;
386 rq->csd.flags = 0;
387 __smp_call_function_single(ctx->cpu, &rq->csd, 0);
388 } else {
320ae51f 389 __blk_mq_end_io(rq, error);
3d6efbf6 390 }
320ae51f
JA
391 put_cpu();
392}
393EXPORT_SYMBOL(blk_mq_end_io);
394
395static void blk_mq_start_request(struct request *rq)
396{
397 struct request_queue *q = rq->q;
398
399 trace_block_rq_issue(q, rq);
400
401 /*
402 * Just mark start time and set the started bit. Due to memory
403 * ordering, we know we'll see the correct deadline as long as
404 * REQ_ATOMIC_STARTED is seen.
405 */
406 rq->deadline = jiffies + q->rq_timeout;
407 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
408}
409
410static void blk_mq_requeue_request(struct request *rq)
411{
412 struct request_queue *q = rq->q;
413
414 trace_block_rq_requeue(q, rq);
415 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
416}
417
418struct blk_mq_timeout_data {
419 struct blk_mq_hw_ctx *hctx;
420 unsigned long *next;
421 unsigned int *next_set;
422};
423
424static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
425{
426 struct blk_mq_timeout_data *data = __data;
427 struct blk_mq_hw_ctx *hctx = data->hctx;
428 unsigned int tag;
429
430 /* It may not be in flight yet (this is where
431 * the REQ_ATOMIC_STARTED flag comes in). The requests are
432 * statically allocated, so we know it's always safe to access the
433 * memory associated with a bit offset into ->rqs[].
434 */
435 tag = 0;
436 do {
437 struct request *rq;
438
439 tag = find_next_zero_bit(free_tags, hctx->queue_depth, tag);
440 if (tag >= hctx->queue_depth)
441 break;
442
443 rq = hctx->rqs[tag++];
444
445 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
446 continue;
447
448 blk_rq_check_expired(rq, data->next, data->next_set);
449 } while (1);
450}
451
452static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
453 unsigned long *next,
454 unsigned int *next_set)
455{
456 struct blk_mq_timeout_data data = {
457 .hctx = hctx,
458 .next = next,
459 .next_set = next_set,
460 };
461
462 /*
463 * Ask the tagging code to iterate busy requests, so we can
464 * check them for timeout.
465 */
466 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
467}
468
469static void blk_mq_rq_timer(unsigned long data)
470{
471 struct request_queue *q = (struct request_queue *) data;
472 struct blk_mq_hw_ctx *hctx;
473 unsigned long next = 0;
474 int i, next_set = 0;
475
476 queue_for_each_hw_ctx(q, hctx, i)
477 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
478
479 if (next_set)
480 mod_timer(&q->timeout, round_jiffies_up(next));
481}
482
483/*
484 * Reverse check our software queue for entries that we could potentially
485 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
486 * too much time checking for merges.
487 */
488static bool blk_mq_attempt_merge(struct request_queue *q,
489 struct blk_mq_ctx *ctx, struct bio *bio)
490{
491 struct request *rq;
492 int checked = 8;
493
494 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
495 int el_ret;
496
497 if (!checked--)
498 break;
499
500 if (!blk_rq_merge_ok(rq, bio))
501 continue;
502
503 el_ret = blk_try_merge(rq, bio);
504 if (el_ret == ELEVATOR_BACK_MERGE) {
505 if (bio_attempt_back_merge(q, rq, bio)) {
506 ctx->rq_merged++;
507 return true;
508 }
509 break;
510 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
511 if (bio_attempt_front_merge(q, rq, bio)) {
512 ctx->rq_merged++;
513 return true;
514 }
515 break;
516 }
517 }
518
519 return false;
520}
521
522void blk_mq_add_timer(struct request *rq)
523{
524 __blk_add_timer(rq, NULL);
525}
526
527/*
528 * Run this hardware queue, pulling any software queues mapped to it in.
529 * Note that this function currently has various problems around ordering
530 * of IO. In particular, we'd like FIFO behaviour on handling existing
531 * items on the hctx->dispatch list. Ignore that for now.
532 */
533static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
534{
535 struct request_queue *q = hctx->queue;
536 struct blk_mq_ctx *ctx;
537 struct request *rq;
538 LIST_HEAD(rq_list);
539 int bit, queued;
540
541 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->flags)))
542 return;
543
544 hctx->run++;
545
546 /*
547 * Touch any software queue that has pending entries.
548 */
549 for_each_set_bit(bit, hctx->ctx_map, hctx->nr_ctx) {
550 clear_bit(bit, hctx->ctx_map);
551 ctx = hctx->ctxs[bit];
552 BUG_ON(bit != ctx->index_hw);
553
554 spin_lock(&ctx->lock);
555 list_splice_tail_init(&ctx->rq_list, &rq_list);
556 spin_unlock(&ctx->lock);
557 }
558
559 /*
560 * If we have previous entries on our dispatch list, grab them
561 * and stuff them at the front for more fair dispatch.
562 */
563 if (!list_empty_careful(&hctx->dispatch)) {
564 spin_lock(&hctx->lock);
565 if (!list_empty(&hctx->dispatch))
566 list_splice_init(&hctx->dispatch, &rq_list);
567 spin_unlock(&hctx->lock);
568 }
569
570 /*
571 * Delete and return all entries from our dispatch list
572 */
573 queued = 0;
574
575 /*
576 * Now process all the entries, sending them to the driver.
577 */
578 while (!list_empty(&rq_list)) {
579 int ret;
580
581 rq = list_first_entry(&rq_list, struct request, queuelist);
582 list_del_init(&rq->queuelist);
583 blk_mq_start_request(rq);
584
585 /*
586 * Last request in the series. Flag it as such, this
587 * enables drivers to know when IO should be kicked off,
588 * if they don't do it on a per-request basis.
589 *
590 * Note: the flag isn't the only condition drivers
591 * should do kick off. If drive is busy, the last
592 * request might not have the bit set.
593 */
594 if (list_empty(&rq_list))
595 rq->cmd_flags |= REQ_END;
596
597 ret = q->mq_ops->queue_rq(hctx, rq);
598 switch (ret) {
599 case BLK_MQ_RQ_QUEUE_OK:
600 queued++;
601 continue;
602 case BLK_MQ_RQ_QUEUE_BUSY:
603 /*
604 * FIXME: we should have a mechanism to stop the queue
605 * like blk_stop_queue, otherwise we will waste cpu
606 * time
607 */
608 list_add(&rq->queuelist, &rq_list);
609 blk_mq_requeue_request(rq);
610 break;
611 default:
612 pr_err("blk-mq: bad return on queue: %d\n", ret);
613 rq->errors = -EIO;
614 case BLK_MQ_RQ_QUEUE_ERROR:
615 blk_mq_end_io(rq, rq->errors);
616 break;
617 }
618
619 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
620 break;
621 }
622
623 if (!queued)
624 hctx->dispatched[0]++;
625 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
626 hctx->dispatched[ilog2(queued) + 1]++;
627
628 /*
629 * Any items that need requeuing? Stuff them into hctx->dispatch,
630 * that is where we will continue on next queue run.
631 */
632 if (!list_empty(&rq_list)) {
633 spin_lock(&hctx->lock);
634 list_splice(&rq_list, &hctx->dispatch);
635 spin_unlock(&hctx->lock);
636 }
637}
638
639void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
640{
641 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->flags)))
642 return;
643
644 if (!async)
645 __blk_mq_run_hw_queue(hctx);
646 else {
647 struct request_queue *q = hctx->queue;
648
649 kblockd_schedule_delayed_work(q, &hctx->delayed_work, 0);
650 }
651}
652
653void blk_mq_run_queues(struct request_queue *q, bool async)
654{
655 struct blk_mq_hw_ctx *hctx;
656 int i;
657
658 queue_for_each_hw_ctx(q, hctx, i) {
659 if ((!blk_mq_hctx_has_pending(hctx) &&
660 list_empty_careful(&hctx->dispatch)) ||
661 test_bit(BLK_MQ_S_STOPPED, &hctx->flags))
662 continue;
663
664 blk_mq_run_hw_queue(hctx, async);
665 }
666}
667EXPORT_SYMBOL(blk_mq_run_queues);
668
669void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
670{
671 cancel_delayed_work(&hctx->delayed_work);
672 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
673}
674EXPORT_SYMBOL(blk_mq_stop_hw_queue);
675
280d45f6
CH
676void blk_mq_stop_hw_queues(struct request_queue *q)
677{
678 struct blk_mq_hw_ctx *hctx;
679 int i;
680
681 queue_for_each_hw_ctx(q, hctx, i)
682 blk_mq_stop_hw_queue(hctx);
683}
684EXPORT_SYMBOL(blk_mq_stop_hw_queues);
685
320ae51f
JA
686void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
687{
688 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
689 __blk_mq_run_hw_queue(hctx);
690}
691EXPORT_SYMBOL(blk_mq_start_hw_queue);
692
693void blk_mq_start_stopped_hw_queues(struct request_queue *q)
694{
695 struct blk_mq_hw_ctx *hctx;
696 int i;
697
698 queue_for_each_hw_ctx(q, hctx, i) {
699 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
700 continue;
701
702 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
703 blk_mq_run_hw_queue(hctx, true);
704 }
705}
706EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
707
708static void blk_mq_work_fn(struct work_struct *work)
709{
710 struct blk_mq_hw_ctx *hctx;
711
712 hctx = container_of(work, struct blk_mq_hw_ctx, delayed_work.work);
713 __blk_mq_run_hw_queue(hctx);
714}
715
716static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
717 struct request *rq)
718{
719 struct blk_mq_ctx *ctx = rq->mq_ctx;
720
01b983c9
JA
721 trace_block_rq_insert(hctx->queue, rq);
722
320ae51f
JA
723 list_add_tail(&rq->queuelist, &ctx->rq_list);
724 blk_mq_hctx_mark_pending(hctx, ctx);
725
726 /*
727 * We do this early, to ensure we are on the right CPU.
728 */
729 blk_mq_add_timer(rq);
730}
731
732void blk_mq_insert_request(struct request_queue *q, struct request *rq,
733 bool run_queue)
734{
735 struct blk_mq_hw_ctx *hctx;
736 struct blk_mq_ctx *ctx, *current_ctx;
737
738 ctx = rq->mq_ctx;
739 hctx = q->mq_ops->map_queue(q, ctx->cpu);
740
741 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) {
742 blk_insert_flush(rq);
743 } else {
744 current_ctx = blk_mq_get_ctx(q);
745
746 if (!cpu_online(ctx->cpu)) {
747 ctx = current_ctx;
748 hctx = q->mq_ops->map_queue(q, ctx->cpu);
749 rq->mq_ctx = ctx;
750 }
751 spin_lock(&ctx->lock);
752 __blk_mq_insert_request(hctx, rq);
753 spin_unlock(&ctx->lock);
754
755 blk_mq_put_ctx(current_ctx);
756 }
757
758 if (run_queue)
759 __blk_mq_run_hw_queue(hctx);
760}
761EXPORT_SYMBOL(blk_mq_insert_request);
762
763/*
764 * This is a special version of blk_mq_insert_request to bypass FLUSH request
765 * check. Should only be used internally.
766 */
767void blk_mq_run_request(struct request *rq, bool run_queue, bool async)
768{
769 struct request_queue *q = rq->q;
770 struct blk_mq_hw_ctx *hctx;
771 struct blk_mq_ctx *ctx, *current_ctx;
772
773 current_ctx = blk_mq_get_ctx(q);
774
775 ctx = rq->mq_ctx;
776 if (!cpu_online(ctx->cpu)) {
777 ctx = current_ctx;
778 rq->mq_ctx = ctx;
779 }
780 hctx = q->mq_ops->map_queue(q, ctx->cpu);
781
782 /* ctx->cpu might be offline */
783 spin_lock(&ctx->lock);
784 __blk_mq_insert_request(hctx, rq);
785 spin_unlock(&ctx->lock);
786
787 blk_mq_put_ctx(current_ctx);
788
789 if (run_queue)
790 blk_mq_run_hw_queue(hctx, async);
791}
792
793static void blk_mq_insert_requests(struct request_queue *q,
794 struct blk_mq_ctx *ctx,
795 struct list_head *list,
796 int depth,
797 bool from_schedule)
798
799{
800 struct blk_mq_hw_ctx *hctx;
801 struct blk_mq_ctx *current_ctx;
802
803 trace_block_unplug(q, depth, !from_schedule);
804
805 current_ctx = blk_mq_get_ctx(q);
806
807 if (!cpu_online(ctx->cpu))
808 ctx = current_ctx;
809 hctx = q->mq_ops->map_queue(q, ctx->cpu);
810
811 /*
812 * preemption doesn't flush plug list, so it's possible ctx->cpu is
813 * offline now
814 */
815 spin_lock(&ctx->lock);
816 while (!list_empty(list)) {
817 struct request *rq;
818
819 rq = list_first_entry(list, struct request, queuelist);
820 list_del_init(&rq->queuelist);
821 rq->mq_ctx = ctx;
822 __blk_mq_insert_request(hctx, rq);
823 }
824 spin_unlock(&ctx->lock);
825
826 blk_mq_put_ctx(current_ctx);
827
828 blk_mq_run_hw_queue(hctx, from_schedule);
829}
830
831static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
832{
833 struct request *rqa = container_of(a, struct request, queuelist);
834 struct request *rqb = container_of(b, struct request, queuelist);
835
836 return !(rqa->mq_ctx < rqb->mq_ctx ||
837 (rqa->mq_ctx == rqb->mq_ctx &&
838 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
839}
840
841void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
842{
843 struct blk_mq_ctx *this_ctx;
844 struct request_queue *this_q;
845 struct request *rq;
846 LIST_HEAD(list);
847 LIST_HEAD(ctx_list);
848 unsigned int depth;
849
850 list_splice_init(&plug->mq_list, &list);
851
852 list_sort(NULL, &list, plug_ctx_cmp);
853
854 this_q = NULL;
855 this_ctx = NULL;
856 depth = 0;
857
858 while (!list_empty(&list)) {
859 rq = list_entry_rq(list.next);
860 list_del_init(&rq->queuelist);
861 BUG_ON(!rq->q);
862 if (rq->mq_ctx != this_ctx) {
863 if (this_ctx) {
864 blk_mq_insert_requests(this_q, this_ctx,
865 &ctx_list, depth,
866 from_schedule);
867 }
868
869 this_ctx = rq->mq_ctx;
870 this_q = rq->q;
871 depth = 0;
872 }
873
874 depth++;
875 list_add_tail(&rq->queuelist, &ctx_list);
876 }
877
878 /*
879 * If 'this_ctx' is set, we know we have entries to complete
880 * on 'ctx_list'. Do those.
881 */
882 if (this_ctx) {
883 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
884 from_schedule);
885 }
886}
887
888static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
889{
890 init_request_from_bio(rq, bio);
891 blk_account_io_start(rq, 1);
892}
893
894static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
895{
896 struct blk_mq_hw_ctx *hctx;
897 struct blk_mq_ctx *ctx;
898 const int is_sync = rw_is_sync(bio->bi_rw);
899 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
900 int rw = bio_data_dir(bio);
901 struct request *rq;
902 unsigned int use_plug, request_count = 0;
903
904 /*
905 * If we have multiple hardware queues, just go directly to
906 * one of those for sync IO.
907 */
908 use_plug = !is_flush_fua && ((q->nr_hw_queues == 1) || !is_sync);
909
910 blk_queue_bounce(q, &bio);
911
912 if (use_plug && blk_attempt_plug_merge(q, bio, &request_count))
913 return;
914
915 if (blk_mq_queue_enter(q)) {
916 bio_endio(bio, -EIO);
917 return;
918 }
919
920 ctx = blk_mq_get_ctx(q);
921 hctx = q->mq_ops->map_queue(q, ctx->cpu);
922
923 trace_block_getrq(q, bio, rw);
f0276924 924 rq = __blk_mq_alloc_request(hctx, GFP_ATOMIC, false, bio->bi_rw);
320ae51f 925 if (likely(rq))
f0276924 926 blk_mq_rq_ctx_init(q, ctx, rq, bio->bi_rw);
320ae51f
JA
927 else {
928 blk_mq_put_ctx(ctx);
929 trace_block_sleeprq(q, bio, rw);
f0276924
SL
930 rq = blk_mq_alloc_request_pinned(q, bio->bi_rw,
931 __GFP_WAIT|GFP_ATOMIC, false);
320ae51f
JA
932 ctx = rq->mq_ctx;
933 hctx = q->mq_ops->map_queue(q, ctx->cpu);
934 }
935
936 hctx->queued++;
937
938 if (unlikely(is_flush_fua)) {
939 blk_mq_bio_to_request(rq, bio);
940 blk_mq_put_ctx(ctx);
941 blk_insert_flush(rq);
942 goto run_queue;
943 }
944
945 /*
946 * A task plug currently exists. Since this is completely lockless,
947 * utilize that to temporarily store requests until the task is
948 * either done or scheduled away.
949 */
950 if (use_plug) {
951 struct blk_plug *plug = current->plug;
952
953 if (plug) {
954 blk_mq_bio_to_request(rq, bio);
92f399c7 955 if (list_empty(&plug->mq_list))
320ae51f
JA
956 trace_block_plug(q);
957 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
958 blk_flush_plug_list(plug, false);
959 trace_block_plug(q);
960 }
961 list_add_tail(&rq->queuelist, &plug->mq_list);
962 blk_mq_put_ctx(ctx);
963 return;
964 }
965 }
966
967 spin_lock(&ctx->lock);
968
969 if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
970 blk_mq_attempt_merge(q, ctx, bio))
971 __blk_mq_free_request(hctx, ctx, rq);
972 else {
973 blk_mq_bio_to_request(rq, bio);
974 __blk_mq_insert_request(hctx, rq);
975 }
976
977 spin_unlock(&ctx->lock);
978 blk_mq_put_ctx(ctx);
979
980 /*
981 * For a SYNC request, send it to the hardware immediately. For an
982 * ASYNC request, just ensure that we run it later on. The latter
983 * allows for merging opportunities and more efficient dispatching.
984 */
985run_queue:
986 blk_mq_run_hw_queue(hctx, !is_sync || is_flush_fua);
987}
988
989/*
990 * Default mapping to a software queue, since we use one per CPU.
991 */
992struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
993{
994 return q->queue_hw_ctx[q->mq_map[cpu]];
995}
996EXPORT_SYMBOL(blk_mq_map_queue);
997
998struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_reg *reg,
999 unsigned int hctx_index)
1000{
1001 return kmalloc_node(sizeof(struct blk_mq_hw_ctx),
1002 GFP_KERNEL | __GFP_ZERO, reg->numa_node);
1003}
1004EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);
1005
1006void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
1007 unsigned int hctx_index)
1008{
1009 kfree(hctx);
1010}
1011EXPORT_SYMBOL(blk_mq_free_single_hw_queue);
1012
1013static void blk_mq_hctx_notify(void *data, unsigned long action,
1014 unsigned int cpu)
1015{
1016 struct blk_mq_hw_ctx *hctx = data;
1017 struct blk_mq_ctx *ctx;
1018 LIST_HEAD(tmp);
1019
1020 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1021 return;
1022
1023 /*
1024 * Move ctx entries to new CPU, if this one is going away.
1025 */
1026 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1027
1028 spin_lock(&ctx->lock);
1029 if (!list_empty(&ctx->rq_list)) {
1030 list_splice_init(&ctx->rq_list, &tmp);
1031 clear_bit(ctx->index_hw, hctx->ctx_map);
1032 }
1033 spin_unlock(&ctx->lock);
1034
1035 if (list_empty(&tmp))
1036 return;
1037
1038 ctx = blk_mq_get_ctx(hctx->queue);
1039 spin_lock(&ctx->lock);
1040
1041 while (!list_empty(&tmp)) {
1042 struct request *rq;
1043
1044 rq = list_first_entry(&tmp, struct request, queuelist);
1045 rq->mq_ctx = ctx;
1046 list_move_tail(&rq->queuelist, &ctx->rq_list);
1047 }
1048
1049 blk_mq_hctx_mark_pending(hctx, ctx);
1050
1051 spin_unlock(&ctx->lock);
1052 blk_mq_put_ctx(ctx);
1053}
1054
1055static void blk_mq_init_hw_commands(struct blk_mq_hw_ctx *hctx,
1056 void (*init)(void *, struct blk_mq_hw_ctx *,
1057 struct request *, unsigned int),
1058 void *data)
1059{
1060 unsigned int i;
1061
1062 for (i = 0; i < hctx->queue_depth; i++) {
1063 struct request *rq = hctx->rqs[i];
1064
1065 init(data, hctx, rq, i);
1066 }
1067}
1068
1069void blk_mq_init_commands(struct request_queue *q,
1070 void (*init)(void *, struct blk_mq_hw_ctx *,
1071 struct request *, unsigned int),
1072 void *data)
1073{
1074 struct blk_mq_hw_ctx *hctx;
1075 unsigned int i;
1076
1077 queue_for_each_hw_ctx(q, hctx, i)
1078 blk_mq_init_hw_commands(hctx, init, data);
1079}
1080EXPORT_SYMBOL(blk_mq_init_commands);
1081
1082static void blk_mq_free_rq_map(struct blk_mq_hw_ctx *hctx)
1083{
1084 struct page *page;
1085
1086 while (!list_empty(&hctx->page_list)) {
6753471c
DH
1087 page = list_first_entry(&hctx->page_list, struct page, lru);
1088 list_del_init(&page->lru);
320ae51f
JA
1089 __free_pages(page, page->private);
1090 }
1091
1092 kfree(hctx->rqs);
1093
1094 if (hctx->tags)
1095 blk_mq_free_tags(hctx->tags);
1096}
1097
1098static size_t order_to_size(unsigned int order)
1099{
1100 size_t ret = PAGE_SIZE;
1101
1102 while (order--)
1103 ret *= 2;
1104
1105 return ret;
1106}
1107
1108static int blk_mq_init_rq_map(struct blk_mq_hw_ctx *hctx,
1109 unsigned int reserved_tags, int node)
1110{
1111 unsigned int i, j, entries_per_page, max_order = 4;
1112 size_t rq_size, left;
1113
1114 INIT_LIST_HEAD(&hctx->page_list);
1115
1116 hctx->rqs = kmalloc_node(hctx->queue_depth * sizeof(struct request *),
1117 GFP_KERNEL, node);
1118 if (!hctx->rqs)
1119 return -ENOMEM;
1120
1121 /*
1122 * rq_size is the size of the request plus driver payload, rounded
1123 * to the cacheline size
1124 */
1125 rq_size = round_up(sizeof(struct request) + hctx->cmd_size,
1126 cache_line_size());
1127 left = rq_size * hctx->queue_depth;
1128
1129 for (i = 0; i < hctx->queue_depth;) {
1130 int this_order = max_order;
1131 struct page *page;
1132 int to_do;
1133 void *p;
1134
1135 while (left < order_to_size(this_order - 1) && this_order)
1136 this_order--;
1137
1138 do {
1139 page = alloc_pages_node(node, GFP_KERNEL, this_order);
1140 if (page)
1141 break;
1142 if (!this_order--)
1143 break;
1144 if (order_to_size(this_order) < rq_size)
1145 break;
1146 } while (1);
1147
1148 if (!page)
1149 break;
1150
1151 page->private = this_order;
6753471c 1152 list_add_tail(&page->lru, &hctx->page_list);
320ae51f
JA
1153
1154 p = page_address(page);
1155 entries_per_page = order_to_size(this_order) / rq_size;
1156 to_do = min(entries_per_page, hctx->queue_depth - i);
1157 left -= to_do * rq_size;
1158 for (j = 0; j < to_do; j++) {
1159 hctx->rqs[i] = p;
1160 blk_mq_rq_init(hctx, hctx->rqs[i]);
1161 p += rq_size;
1162 i++;
1163 }
1164 }
1165
1166 if (i < (reserved_tags + BLK_MQ_TAG_MIN))
1167 goto err_rq_map;
1168 else if (i != hctx->queue_depth) {
1169 hctx->queue_depth = i;
1170 pr_warn("%s: queue depth set to %u because of low memory\n",
1171 __func__, i);
1172 }
1173
1174 hctx->tags = blk_mq_init_tags(hctx->queue_depth, reserved_tags, node);
1175 if (!hctx->tags) {
1176err_rq_map:
1177 blk_mq_free_rq_map(hctx);
1178 return -ENOMEM;
1179 }
1180
1181 return 0;
1182}
1183
1184static int blk_mq_init_hw_queues(struct request_queue *q,
1185 struct blk_mq_reg *reg, void *driver_data)
1186{
1187 struct blk_mq_hw_ctx *hctx;
1188 unsigned int i, j;
1189
1190 /*
1191 * Initialize hardware queues
1192 */
1193 queue_for_each_hw_ctx(q, hctx, i) {
1194 unsigned int num_maps;
1195 int node;
1196
1197 node = hctx->numa_node;
1198 if (node == NUMA_NO_NODE)
1199 node = hctx->numa_node = reg->numa_node;
1200
1201 INIT_DELAYED_WORK(&hctx->delayed_work, blk_mq_work_fn);
1202 spin_lock_init(&hctx->lock);
1203 INIT_LIST_HEAD(&hctx->dispatch);
1204 hctx->queue = q;
1205 hctx->queue_num = i;
1206 hctx->flags = reg->flags;
1207 hctx->queue_depth = reg->queue_depth;
f0276924 1208 hctx->reserved_tags = reg->reserved_tags;
320ae51f 1209 hctx->cmd_size = reg->cmd_size;
f0276924 1210 atomic_set(&hctx->pending_flush, 0);
320ae51f
JA
1211
1212 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1213 blk_mq_hctx_notify, hctx);
1214 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1215
1216 if (blk_mq_init_rq_map(hctx, reg->reserved_tags, node))
1217 break;
1218
1219 /*
1220 * Allocate space for all possible cpus to avoid allocation in
1221 * runtime
1222 */
1223 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1224 GFP_KERNEL, node);
1225 if (!hctx->ctxs)
1226 break;
1227
1228 num_maps = ALIGN(nr_cpu_ids, BITS_PER_LONG) / BITS_PER_LONG;
1229 hctx->ctx_map = kzalloc_node(num_maps * sizeof(unsigned long),
1230 GFP_KERNEL, node);
1231 if (!hctx->ctx_map)
1232 break;
1233
1234 hctx->nr_ctx_map = num_maps;
1235 hctx->nr_ctx = 0;
1236
1237 if (reg->ops->init_hctx &&
1238 reg->ops->init_hctx(hctx, driver_data, i))
1239 break;
1240 }
1241
1242 if (i == q->nr_hw_queues)
1243 return 0;
1244
1245 /*
1246 * Init failed
1247 */
1248 queue_for_each_hw_ctx(q, hctx, j) {
1249 if (i == j)
1250 break;
1251
1252 if (reg->ops->exit_hctx)
1253 reg->ops->exit_hctx(hctx, j);
1254
1255 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1256 blk_mq_free_rq_map(hctx);
1257 kfree(hctx->ctxs);
1258 }
1259
1260 return 1;
1261}
1262
1263static void blk_mq_init_cpu_queues(struct request_queue *q,
1264 unsigned int nr_hw_queues)
1265{
1266 unsigned int i;
1267
1268 for_each_possible_cpu(i) {
1269 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1270 struct blk_mq_hw_ctx *hctx;
1271
1272 memset(__ctx, 0, sizeof(*__ctx));
1273 __ctx->cpu = i;
1274 spin_lock_init(&__ctx->lock);
1275 INIT_LIST_HEAD(&__ctx->rq_list);
1276 __ctx->queue = q;
1277
1278 /* If the cpu isn't online, the cpu is mapped to first hctx */
1279 hctx = q->mq_ops->map_queue(q, i);
1280 hctx->nr_ctx++;
1281
1282 if (!cpu_online(i))
1283 continue;
1284
1285 /*
1286 * Set local node, IFF we have more than one hw queue. If
1287 * not, we remain on the home node of the device
1288 */
1289 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1290 hctx->numa_node = cpu_to_node(i);
1291 }
1292}
1293
1294static void blk_mq_map_swqueue(struct request_queue *q)
1295{
1296 unsigned int i;
1297 struct blk_mq_hw_ctx *hctx;
1298 struct blk_mq_ctx *ctx;
1299
1300 queue_for_each_hw_ctx(q, hctx, i) {
1301 hctx->nr_ctx = 0;
1302 }
1303
1304 /*
1305 * Map software to hardware queues
1306 */
1307 queue_for_each_ctx(q, ctx, i) {
1308 /* If the cpu isn't online, the cpu is mapped to first hctx */
1309 hctx = q->mq_ops->map_queue(q, i);
1310 ctx->index_hw = hctx->nr_ctx;
1311 hctx->ctxs[hctx->nr_ctx++] = ctx;
1312 }
1313}
1314
1315struct request_queue *blk_mq_init_queue(struct blk_mq_reg *reg,
1316 void *driver_data)
1317{
1318 struct blk_mq_hw_ctx **hctxs;
1319 struct blk_mq_ctx *ctx;
1320 struct request_queue *q;
1321 int i;
1322
1323 if (!reg->nr_hw_queues ||
1324 !reg->ops->queue_rq || !reg->ops->map_queue ||
1325 !reg->ops->alloc_hctx || !reg->ops->free_hctx)
1326 return ERR_PTR(-EINVAL);
1327
1328 if (!reg->queue_depth)
1329 reg->queue_depth = BLK_MQ_MAX_DEPTH;
1330 else if (reg->queue_depth > BLK_MQ_MAX_DEPTH) {
1331 pr_err("blk-mq: queuedepth too large (%u)\n", reg->queue_depth);
1332 reg->queue_depth = BLK_MQ_MAX_DEPTH;
1333 }
1334
1335 if (reg->queue_depth < (reg->reserved_tags + BLK_MQ_TAG_MIN))
1336 return ERR_PTR(-EINVAL);
1337
1338 ctx = alloc_percpu(struct blk_mq_ctx);
1339 if (!ctx)
1340 return ERR_PTR(-ENOMEM);
1341
1342 hctxs = kmalloc_node(reg->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1343 reg->numa_node);
1344
1345 if (!hctxs)
1346 goto err_percpu;
1347
1348 for (i = 0; i < reg->nr_hw_queues; i++) {
1349 hctxs[i] = reg->ops->alloc_hctx(reg, i);
1350 if (!hctxs[i])
1351 goto err_hctxs;
1352
1353 hctxs[i]->numa_node = NUMA_NO_NODE;
1354 hctxs[i]->queue_num = i;
1355 }
1356
1357 q = blk_alloc_queue_node(GFP_KERNEL, reg->numa_node);
1358 if (!q)
1359 goto err_hctxs;
1360
1361 q->mq_map = blk_mq_make_queue_map(reg);
1362 if (!q->mq_map)
1363 goto err_map;
1364
1365 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1366 blk_queue_rq_timeout(q, 30000);
1367
1368 q->nr_queues = nr_cpu_ids;
1369 q->nr_hw_queues = reg->nr_hw_queues;
1370
1371 q->queue_ctx = ctx;
1372 q->queue_hw_ctx = hctxs;
1373
1374 q->mq_ops = reg->ops;
94eddfbe 1375 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f
JA
1376
1377 blk_queue_make_request(q, blk_mq_make_request);
1378 blk_queue_rq_timed_out(q, reg->ops->timeout);
1379 if (reg->timeout)
1380 blk_queue_rq_timeout(q, reg->timeout);
1381
1382 blk_mq_init_flush(q);
1383 blk_mq_init_cpu_queues(q, reg->nr_hw_queues);
1384
1385 if (blk_mq_init_hw_queues(q, reg, driver_data))
1386 goto err_hw;
1387
1388 blk_mq_map_swqueue(q);
1389
1390 mutex_lock(&all_q_mutex);
1391 list_add_tail(&q->all_q_node, &all_q_list);
1392 mutex_unlock(&all_q_mutex);
1393
1394 return q;
1395err_hw:
1396 kfree(q->mq_map);
1397err_map:
1398 blk_cleanup_queue(q);
1399err_hctxs:
1400 for (i = 0; i < reg->nr_hw_queues; i++) {
1401 if (!hctxs[i])
1402 break;
1403 reg->ops->free_hctx(hctxs[i], i);
1404 }
1405 kfree(hctxs);
1406err_percpu:
1407 free_percpu(ctx);
1408 return ERR_PTR(-ENOMEM);
1409}
1410EXPORT_SYMBOL(blk_mq_init_queue);
1411
1412void blk_mq_free_queue(struct request_queue *q)
1413{
1414 struct blk_mq_hw_ctx *hctx;
1415 int i;
1416
1417 queue_for_each_hw_ctx(q, hctx, i) {
320ae51f
JA
1418 kfree(hctx->ctx_map);
1419 kfree(hctx->ctxs);
1420 blk_mq_free_rq_map(hctx);
1421 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1422 if (q->mq_ops->exit_hctx)
1423 q->mq_ops->exit_hctx(hctx, i);
1424 q->mq_ops->free_hctx(hctx, i);
1425 }
1426
1427 free_percpu(q->queue_ctx);
1428 kfree(q->queue_hw_ctx);
1429 kfree(q->mq_map);
1430
1431 q->queue_ctx = NULL;
1432 q->queue_hw_ctx = NULL;
1433 q->mq_map = NULL;
1434
1435 mutex_lock(&all_q_mutex);
1436 list_del_init(&q->all_q_node);
1437 mutex_unlock(&all_q_mutex);
1438}
320ae51f
JA
1439
1440/* Basically redo blk_mq_init_queue with queue frozen */
f618ef7c 1441static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f
JA
1442{
1443 blk_mq_freeze_queue(q);
1444
1445 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1446
1447 /*
1448 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1449 * we should change hctx numa_node according to new topology (this
1450 * involves free and re-allocate memory, worthy doing?)
1451 */
1452
1453 blk_mq_map_swqueue(q);
1454
1455 blk_mq_unfreeze_queue(q);
1456}
1457
f618ef7c
PG
1458static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1459 unsigned long action, void *hcpu)
320ae51f
JA
1460{
1461 struct request_queue *q;
1462
1463 /*
1464 * Before new mapping is established, hotadded cpu might already start
1465 * handling requests. This doesn't break anything as we map offline
1466 * CPUs to first hardware queue. We will re-init queue below to get
1467 * optimal settings.
1468 */
1469 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1470 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1471 return NOTIFY_OK;
1472
1473 mutex_lock(&all_q_mutex);
1474 list_for_each_entry(q, &all_q_list, all_q_node)
1475 blk_mq_queue_reinit(q);
1476 mutex_unlock(&all_q_mutex);
1477 return NOTIFY_OK;
1478}
1479
1480static int __init blk_mq_init(void)
1481{
320ae51f
JA
1482 blk_mq_cpu_init();
1483
1484 /* Must be called after percpu_counter_hotcpu_callback() */
1485 hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
1486
1487 return 0;
1488}
1489subsys_initcall(blk_mq_init);