]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - block/blk-mq.c
blk-flush: don't run queue for requests bypassing flush
[thirdparty/kernel/stable.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
105ab3d8 23#include <linux/sched/topology.h>
174cd4b1 24#include <linux/sched/signal.h>
320ae51f 25#include <linux/delay.h>
aedcd72f 26#include <linux/crash_dump.h>
88c7b2b7 27#include <linux/prefetch.h>
320ae51f
JA
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
9c1051aa 34#include "blk-mq-debugfs.h"
320ae51f 35#include "blk-mq-tag.h"
cf43e6be 36#include "blk-stat.h"
87760e5e 37#include "blk-wbt.h"
bd166ef1 38#include "blk-mq-sched.h"
320ae51f 39
ea435e1b 40static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
34dbad5d
OS
41static void blk_mq_poll_stats_start(struct request_queue *q);
42static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
720b8ccc
SB
44static int blk_mq_poll_stats_bkt(const struct request *rq)
45{
46 int ddir, bytes, bucket;
47
99c749a4 48 ddir = rq_data_dir(rq);
720b8ccc
SB
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59}
60
320ae51f
JA
61/*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
50e1dab8 64bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 65{
bd166ef1
JA
66 return sbitmap_any_bit_set(&hctx->ctx_map) ||
67 !list_empty_careful(&hctx->dispatch) ||
68 blk_mq_sched_has_work(hctx);
1429d7c9
JA
69}
70
320ae51f
JA
71/*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76{
88459642
OS
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
79}
80
81static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83{
88459642 84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
85}
86
f299b7c7
JA
87struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90};
91
92static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95{
96 struct mq_inflight *mi = priv;
97
98 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
99 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
100 /*
b8d62b3a
JA
101 * index[0] counts the specific partition that was asked
102 * for. index[1] counts the ones that are active on the
103 * whole device, so increment that if mi->part is indeed
104 * a partition, and not a whole device.
f299b7c7 105 */
b8d62b3a 106 if (rq->part == mi->part)
f299b7c7 107 mi->inflight[0]++;
b8d62b3a
JA
108 if (mi->part->partno)
109 mi->inflight[1]++;
f299b7c7
JA
110 }
111}
112
113void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
114 unsigned int inflight[2])
115{
116 struct mq_inflight mi = { .part = part, .inflight = inflight, };
117
b8d62b3a 118 inflight[0] = inflight[1] = 0;
f299b7c7
JA
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120}
121
1671d522 122void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 123{
4ecd4fef 124 int freeze_depth;
cddd5d17 125
4ecd4fef
CH
126 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
127 if (freeze_depth == 1) {
3ef28e83 128 percpu_ref_kill(&q->q_usage_counter);
b94ec296 129 blk_mq_run_hw_queues(q, false);
cddd5d17 130 }
f3af020b 131}
1671d522 132EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 133
6bae363e 134void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 135{
3ef28e83 136 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 137}
6bae363e 138EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 139
f91328c4
KB
140int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
141 unsigned long timeout)
142{
143 return wait_event_timeout(q->mq_freeze_wq,
144 percpu_ref_is_zero(&q->q_usage_counter),
145 timeout);
146}
147EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 148
f3af020b
TH
149/*
150 * Guarantee no request is in use, so we can change any data structure of
151 * the queue afterward.
152 */
3ef28e83 153void blk_freeze_queue(struct request_queue *q)
f3af020b 154{
3ef28e83
DW
155 /*
156 * In the !blk_mq case we are only calling this to kill the
157 * q_usage_counter, otherwise this increases the freeze depth
158 * and waits for it to return to zero. For this reason there is
159 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
160 * exported to drivers as the only user for unfreeze is blk_mq.
161 */
1671d522 162 blk_freeze_queue_start(q);
f3af020b
TH
163 blk_mq_freeze_queue_wait(q);
164}
3ef28e83
DW
165
166void blk_mq_freeze_queue(struct request_queue *q)
167{
168 /*
169 * ...just an alias to keep freeze and unfreeze actions balanced
170 * in the blk_mq_* namespace
171 */
172 blk_freeze_queue(q);
173}
c761d96b 174EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 175
b4c6a028 176void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 177{
4ecd4fef 178 int freeze_depth;
320ae51f 179
4ecd4fef
CH
180 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
181 WARN_ON_ONCE(freeze_depth < 0);
182 if (!freeze_depth) {
3ef28e83 183 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 184 wake_up_all(&q->mq_freeze_wq);
add703fd 185 }
320ae51f 186}
b4c6a028 187EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 188
852ec809
BVA
189/*
190 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
191 * mpt3sas driver such that this function can be removed.
192 */
193void blk_mq_quiesce_queue_nowait(struct request_queue *q)
194{
195 unsigned long flags;
196
197 spin_lock_irqsave(q->queue_lock, flags);
198 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
199 spin_unlock_irqrestore(q->queue_lock, flags);
200}
201EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
202
6a83e74d 203/**
69e07c4a 204 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
6a83e74d
BVA
205 * @q: request queue.
206 *
207 * Note: this function does not prevent that the struct request end_io()
69e07c4a
ML
208 * callback function is invoked. Once this function is returned, we make
209 * sure no dispatch can happen until the queue is unquiesced via
210 * blk_mq_unquiesce_queue().
6a83e74d
BVA
211 */
212void blk_mq_quiesce_queue(struct request_queue *q)
213{
214 struct blk_mq_hw_ctx *hctx;
215 unsigned int i;
216 bool rcu = false;
217
1d9e9bc6 218 blk_mq_quiesce_queue_nowait(q);
f4560ffe 219
6a83e74d
BVA
220 queue_for_each_hw_ctx(q, hctx, i) {
221 if (hctx->flags & BLK_MQ_F_BLOCKING)
07319678 222 synchronize_srcu(hctx->queue_rq_srcu);
6a83e74d
BVA
223 else
224 rcu = true;
225 }
226 if (rcu)
227 synchronize_rcu();
228}
229EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
230
e4e73913
ML
231/*
232 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
233 * @q: request queue.
234 *
235 * This function recovers queue into the state before quiescing
236 * which is done by blk_mq_quiesce_queue.
237 */
238void blk_mq_unquiesce_queue(struct request_queue *q)
239{
852ec809
BVA
240 unsigned long flags;
241
242 spin_lock_irqsave(q->queue_lock, flags);
f4560ffe 243 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
852ec809 244 spin_unlock_irqrestore(q->queue_lock, flags);
f4560ffe 245
1d9e9bc6
ML
246 /* dispatch requests which are inserted during quiescing */
247 blk_mq_run_hw_queues(q, true);
e4e73913
ML
248}
249EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
250
aed3ea94
JA
251void blk_mq_wake_waiters(struct request_queue *q)
252{
253 struct blk_mq_hw_ctx *hctx;
254 unsigned int i;
255
256 queue_for_each_hw_ctx(q, hctx, i)
257 if (blk_mq_hw_queue_mapped(hctx))
258 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
259
260 /*
261 * If we are called because the queue has now been marked as
262 * dying, we need to ensure that processes currently waiting on
263 * the queue are notified as well.
264 */
265 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
266}
267
320ae51f
JA
268bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
269{
270 return blk_mq_has_free_tags(hctx->tags);
271}
272EXPORT_SYMBOL(blk_mq_can_queue);
273
e4cdf1a1
CH
274static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
275 unsigned int tag, unsigned int op)
320ae51f 276{
e4cdf1a1
CH
277 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
278 struct request *rq = tags->static_rqs[tag];
279
c3a148d2
BVA
280 rq->rq_flags = 0;
281
e4cdf1a1
CH
282 if (data->flags & BLK_MQ_REQ_INTERNAL) {
283 rq->tag = -1;
284 rq->internal_tag = tag;
285 } else {
286 if (blk_mq_tag_busy(data->hctx)) {
287 rq->rq_flags = RQF_MQ_INFLIGHT;
288 atomic_inc(&data->hctx->nr_active);
289 }
290 rq->tag = tag;
291 rq->internal_tag = -1;
292 data->hctx->tags->rqs[rq->tag] = rq;
293 }
294
af76e555
CH
295 INIT_LIST_HEAD(&rq->queuelist);
296 /* csd/requeue_work/fifo_time is initialized before use */
e4cdf1a1
CH
297 rq->q = data->q;
298 rq->mq_ctx = data->ctx;
ef295ecf 299 rq->cmd_flags = op;
e4cdf1a1 300 if (blk_queue_io_stat(data->q))
e8064021 301 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
302 /* do not touch atomic flags, it needs atomic ops against the timer */
303 rq->cpu = -1;
af76e555
CH
304 INIT_HLIST_NODE(&rq->hash);
305 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
306 rq->rq_disk = NULL;
307 rq->part = NULL;
3ee32372 308 rq->start_time = jiffies;
af76e555
CH
309#ifdef CONFIG_BLK_CGROUP
310 rq->rl = NULL;
0fec08b4 311 set_start_time_ns(rq);
af76e555
CH
312 rq->io_start_time_ns = 0;
313#endif
314 rq->nr_phys_segments = 0;
315#if defined(CONFIG_BLK_DEV_INTEGRITY)
316 rq->nr_integrity_segments = 0;
317#endif
af76e555
CH
318 rq->special = NULL;
319 /* tag was already set */
af76e555 320 rq->extra_len = 0;
af76e555 321
af76e555 322 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
323 rq->timeout = 0;
324
af76e555
CH
325 rq->end_io = NULL;
326 rq->end_io_data = NULL;
327 rq->next_rq = NULL;
328
e4cdf1a1
CH
329 data->ctx->rq_dispatched[op_is_sync(op)]++;
330 return rq;
5dee8577
CH
331}
332
d2c0d383
CH
333static struct request *blk_mq_get_request(struct request_queue *q,
334 struct bio *bio, unsigned int op,
335 struct blk_mq_alloc_data *data)
336{
337 struct elevator_queue *e = q->elevator;
338 struct request *rq;
e4cdf1a1 339 unsigned int tag;
21e768b4 340 bool put_ctx_on_error = false;
d2c0d383
CH
341
342 blk_queue_enter_live(q);
343 data->q = q;
21e768b4
BVA
344 if (likely(!data->ctx)) {
345 data->ctx = blk_mq_get_ctx(q);
346 put_ctx_on_error = true;
347 }
d2c0d383
CH
348 if (likely(!data->hctx))
349 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
03a07c92
GR
350 if (op & REQ_NOWAIT)
351 data->flags |= BLK_MQ_REQ_NOWAIT;
d2c0d383
CH
352
353 if (e) {
354 data->flags |= BLK_MQ_REQ_INTERNAL;
355
356 /*
357 * Flush requests are special and go directly to the
358 * dispatch list.
359 */
5bbf4e5a
CH
360 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
361 e->type->ops.mq.limit_depth(op, data);
d2c0d383
CH
362 }
363
e4cdf1a1
CH
364 tag = blk_mq_get_tag(data);
365 if (tag == BLK_MQ_TAG_FAIL) {
21e768b4
BVA
366 if (put_ctx_on_error) {
367 blk_mq_put_ctx(data->ctx);
1ad43c00
ML
368 data->ctx = NULL;
369 }
037cebb8
CH
370 blk_queue_exit(q);
371 return NULL;
d2c0d383
CH
372 }
373
e4cdf1a1 374 rq = blk_mq_rq_ctx_init(data, tag, op);
037cebb8
CH
375 if (!op_is_flush(op)) {
376 rq->elv.icq = NULL;
5bbf4e5a 377 if (e && e->type->ops.mq.prepare_request) {
44e8c2bf
CH
378 if (e->type->icq_cache && rq_ioc(bio))
379 blk_mq_sched_assign_ioc(rq, bio);
380
5bbf4e5a
CH
381 e->type->ops.mq.prepare_request(rq, bio);
382 rq->rq_flags |= RQF_ELVPRIV;
44e8c2bf 383 }
037cebb8
CH
384 }
385 data->hctx->queued++;
386 return rq;
d2c0d383
CH
387}
388
cd6ce148 389struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
6f3b0e8b 390 unsigned int flags)
320ae51f 391{
5a797e00 392 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 393 struct request *rq;
a492f075 394 int ret;
320ae51f 395
6f3b0e8b 396 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
a492f075
JL
397 if (ret)
398 return ERR_PTR(ret);
320ae51f 399
cd6ce148 400 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
3280d66a 401 blk_queue_exit(q);
841bac2c 402
bd166ef1 403 if (!rq)
a492f075 404 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3 405
1ad43c00 406 blk_mq_put_ctx(alloc_data.ctx);
1ad43c00 407
0c4de0f3
CH
408 rq->__data_len = 0;
409 rq->__sector = (sector_t) -1;
410 rq->bio = rq->biotail = NULL;
320ae51f
JA
411 return rq;
412}
4bb659b1 413EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 414
cd6ce148
BVA
415struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
416 unsigned int op, unsigned int flags, unsigned int hctx_idx)
1f5bd336 417{
6d2809d5 418 struct blk_mq_alloc_data alloc_data = { .flags = flags };
1f5bd336 419 struct request *rq;
6d2809d5 420 unsigned int cpu;
1f5bd336
ML
421 int ret;
422
423 /*
424 * If the tag allocator sleeps we could get an allocation for a
425 * different hardware context. No need to complicate the low level
426 * allocator for this for the rare use case of a command tied to
427 * a specific queue.
428 */
429 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
430 return ERR_PTR(-EINVAL);
431
432 if (hctx_idx >= q->nr_hw_queues)
433 return ERR_PTR(-EIO);
434
435 ret = blk_queue_enter(q, true);
436 if (ret)
437 return ERR_PTR(ret);
438
c8712c6a
CH
439 /*
440 * Check if the hardware context is actually mapped to anything.
441 * If not tell the caller that it should skip this queue.
442 */
6d2809d5
OS
443 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
444 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
445 blk_queue_exit(q);
446 return ERR_PTR(-EXDEV);
c8712c6a 447 }
6d2809d5
OS
448 cpu = cpumask_first(alloc_data.hctx->cpumask);
449 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 450
cd6ce148 451 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
3280d66a 452 blk_queue_exit(q);
c8712c6a 453
6d2809d5
OS
454 if (!rq)
455 return ERR_PTR(-EWOULDBLOCK);
456
457 return rq;
1f5bd336
ML
458}
459EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
460
6af54051 461void blk_mq_free_request(struct request *rq)
320ae51f 462{
320ae51f 463 struct request_queue *q = rq->q;
6af54051
CH
464 struct elevator_queue *e = q->elevator;
465 struct blk_mq_ctx *ctx = rq->mq_ctx;
466 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
467 const int sched_tag = rq->internal_tag;
468
5bbf4e5a 469 if (rq->rq_flags & RQF_ELVPRIV) {
6af54051
CH
470 if (e && e->type->ops.mq.finish_request)
471 e->type->ops.mq.finish_request(rq);
472 if (rq->elv.icq) {
473 put_io_context(rq->elv.icq->ioc);
474 rq->elv.icq = NULL;
475 }
476 }
320ae51f 477
6af54051 478 ctx->rq_completed[rq_is_sync(rq)]++;
e8064021 479 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 480 atomic_dec(&hctx->nr_active);
87760e5e 481
7beb2f84
JA
482 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
483 laptop_io_completion(q->backing_dev_info);
484
87760e5e 485 wbt_done(q->rq_wb, &rq->issue_stat);
0d2602ca 486
85acb3ba
SL
487 if (blk_rq_rl(rq))
488 blk_put_rl(blk_rq_rl(rq));
489
af76e555 490 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 491 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
bd166ef1
JA
492 if (rq->tag != -1)
493 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
494 if (sched_tag != -1)
c05f8525 495 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
6d8c6c0f 496 blk_mq_sched_restart(hctx);
3ef28e83 497 blk_queue_exit(q);
320ae51f 498}
1a3b595a 499EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 500
2a842aca 501inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
320ae51f 502{
0d11e6ac
ML
503 blk_account_io_done(rq);
504
91b63639 505 if (rq->end_io) {
87760e5e 506 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 507 rq->end_io(rq, error);
91b63639
CH
508 } else {
509 if (unlikely(blk_bidi_rq(rq)))
510 blk_mq_free_request(rq->next_rq);
320ae51f 511 blk_mq_free_request(rq);
91b63639 512 }
320ae51f 513}
c8a446ad 514EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 515
2a842aca 516void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
517{
518 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
519 BUG();
c8a446ad 520 __blk_mq_end_request(rq, error);
63151a44 521}
c8a446ad 522EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 523
30a91cb4 524static void __blk_mq_complete_request_remote(void *data)
320ae51f 525{
3d6efbf6 526 struct request *rq = data;
320ae51f 527
30a91cb4 528 rq->q->softirq_done_fn(rq);
320ae51f 529}
320ae51f 530
453f8341 531static void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
532{
533 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 534 bool shared = false;
320ae51f
JA
535 int cpu;
536
453f8341
CH
537 if (rq->internal_tag != -1)
538 blk_mq_sched_completed_request(rq);
539 if (rq->rq_flags & RQF_STATS) {
540 blk_mq_poll_stats_start(rq->q);
541 blk_stat_add(rq);
542 }
543
38535201 544 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
545 rq->q->softirq_done_fn(rq);
546 return;
547 }
320ae51f
JA
548
549 cpu = get_cpu();
38535201
CH
550 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
551 shared = cpus_share_cache(cpu, ctx->cpu);
552
553 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 554 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
555 rq->csd.info = rq;
556 rq->csd.flags = 0;
c46fff2a 557 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 558 } else {
30a91cb4 559 rq->q->softirq_done_fn(rq);
3d6efbf6 560 }
320ae51f
JA
561 put_cpu();
562}
30a91cb4
CH
563
564/**
565 * blk_mq_complete_request - end I/O on a request
566 * @rq: the request being processed
567 *
568 * Description:
569 * Ends all I/O on a request. It does not handle partial completions.
570 * The actual completion happens out-of-order, through a IPI handler.
571 **/
08e0029a 572void blk_mq_complete_request(struct request *rq)
30a91cb4 573{
95f09684
JA
574 struct request_queue *q = rq->q;
575
576 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 577 return;
08e0029a 578 if (!blk_mark_rq_complete(rq))
ed851860 579 __blk_mq_complete_request(rq);
30a91cb4
CH
580}
581EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 582
973c0191
KB
583int blk_mq_request_started(struct request *rq)
584{
585 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
586}
587EXPORT_SYMBOL_GPL(blk_mq_request_started);
588
e2490073 589void blk_mq_start_request(struct request *rq)
320ae51f
JA
590{
591 struct request_queue *q = rq->q;
592
bd166ef1
JA
593 blk_mq_sched_started_request(rq);
594
320ae51f
JA
595 trace_block_rq_issue(q, rq);
596
cf43e6be 597 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
88eeca49 598 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
cf43e6be 599 rq->rq_flags |= RQF_STATS;
87760e5e 600 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
601 }
602
2b8393b4 603 blk_add_timer(rq);
87ee7b11 604
a7af0af3 605 WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
538b7534 606
87ee7b11
JA
607 /*
608 * Mark us as started and clear complete. Complete might have been
609 * set if requeue raced with timeout, which then marked it as
610 * complete. So be sure to clear complete again when we start
611 * the request, otherwise we'll ignore the completion event.
a7af0af3
PZ
612 *
613 * Ensure that ->deadline is visible before we set STARTED, such that
614 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
615 * it observes STARTED.
87ee7b11 616 */
a7af0af3
PZ
617 smp_wmb();
618 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
619 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
620 /*
621 * Coherence order guarantees these consecutive stores to a
622 * single variable propagate in the specified order. Thus the
623 * clear_bit() is ordered _after_ the set bit. See
624 * blk_mq_check_expired().
625 *
626 * (the bits must be part of the same byte for this to be
627 * true).
628 */
4b570521 629 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
a7af0af3 630 }
49f5baa5
CH
631
632 if (q->dma_drain_size && blk_rq_bytes(rq)) {
633 /*
634 * Make sure space for the drain appears. We know we can do
635 * this because max_hw_segments has been adjusted to be one
636 * fewer than the device can handle.
637 */
638 rq->nr_phys_segments++;
639 }
320ae51f 640}
e2490073 641EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 642
d9d149a3
ML
643/*
644 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
48b99c9d 645 * flag isn't set yet, so there may be race with timeout handler,
d9d149a3
ML
646 * but given rq->deadline is just set in .queue_rq() under
647 * this situation, the race won't be possible in reality because
648 * rq->timeout should be set as big enough to cover the window
649 * between blk_mq_start_request() called from .queue_rq() and
650 * clearing REQ_ATOM_STARTED here.
651 */
ed0791b2 652static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
653{
654 struct request_queue *q = rq->q;
655
656 trace_block_rq_requeue(q, rq);
87760e5e 657 wbt_requeue(q->rq_wb, &rq->issue_stat);
bd166ef1 658 blk_mq_sched_requeue_request(rq);
49f5baa5 659
e2490073
CH
660 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
661 if (q->dma_drain_size && blk_rq_bytes(rq))
662 rq->nr_phys_segments--;
663 }
320ae51f
JA
664}
665
2b053aca 666void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 667{
ed0791b2 668 __blk_mq_requeue_request(rq);
ed0791b2 669
ed0791b2 670 BUG_ON(blk_queued_rq(rq));
2b053aca 671 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
672}
673EXPORT_SYMBOL(blk_mq_requeue_request);
674
6fca6a61
CH
675static void blk_mq_requeue_work(struct work_struct *work)
676{
677 struct request_queue *q =
2849450a 678 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
679 LIST_HEAD(rq_list);
680 struct request *rq, *next;
6fca6a61 681
18e9781d 682 spin_lock_irq(&q->requeue_lock);
6fca6a61 683 list_splice_init(&q->requeue_list, &rq_list);
18e9781d 684 spin_unlock_irq(&q->requeue_lock);
6fca6a61
CH
685
686 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 687 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
688 continue;
689
e8064021 690 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 691 list_del_init(&rq->queuelist);
bd6737f1 692 blk_mq_sched_insert_request(rq, true, false, false, true);
6fca6a61
CH
693 }
694
695 while (!list_empty(&rq_list)) {
696 rq = list_entry(rq_list.next, struct request, queuelist);
697 list_del_init(&rq->queuelist);
bd6737f1 698 blk_mq_sched_insert_request(rq, false, false, false, true);
6fca6a61
CH
699 }
700
52d7f1b5 701 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
702}
703
2b053aca
BVA
704void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
705 bool kick_requeue_list)
6fca6a61
CH
706{
707 struct request_queue *q = rq->q;
708 unsigned long flags;
709
710 /*
711 * We abuse this flag that is otherwise used by the I/O scheduler to
712 * request head insertation from the workqueue.
713 */
e8064021 714 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
715
716 spin_lock_irqsave(&q->requeue_lock, flags);
717 if (at_head) {
e8064021 718 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
719 list_add(&rq->queuelist, &q->requeue_list);
720 } else {
721 list_add_tail(&rq->queuelist, &q->requeue_list);
722 }
723 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
724
725 if (kick_requeue_list)
726 blk_mq_kick_requeue_list(q);
6fca6a61
CH
727}
728EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
729
730void blk_mq_kick_requeue_list(struct request_queue *q)
731{
2849450a 732 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
733}
734EXPORT_SYMBOL(blk_mq_kick_requeue_list);
735
2849450a
MS
736void blk_mq_delay_kick_requeue_list(struct request_queue *q,
737 unsigned long msecs)
738{
d4acf365
BVA
739 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
740 msecs_to_jiffies(msecs));
2849450a
MS
741}
742EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
743
0e62f51f
JA
744struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
745{
88c7b2b7
JA
746 if (tag < tags->nr_tags) {
747 prefetch(tags->rqs[tag]);
4ee86bab 748 return tags->rqs[tag];
88c7b2b7 749 }
4ee86bab
HR
750
751 return NULL;
24d2f903
CH
752}
753EXPORT_SYMBOL(blk_mq_tag_to_rq);
754
320ae51f 755struct blk_mq_timeout_data {
46f92d42
CH
756 unsigned long next;
757 unsigned int next_set;
320ae51f
JA
758};
759
90415837 760void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 761{
f8a5b122 762 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 763 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
764
765 /*
766 * We know that complete is set at this point. If STARTED isn't set
767 * anymore, then the request isn't active and the "timeout" should
768 * just be ignored. This can happen due to the bitflag ordering.
769 * Timeout first checks if STARTED is set, and if it is, assumes
770 * the request is active. But if we race with completion, then
48b99c9d 771 * both flags will get cleared. So check here again, and ignore
87ee7b11
JA
772 * a timeout event with a request that isn't active.
773 */
46f92d42
CH
774 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
775 return;
87ee7b11 776
46f92d42 777 if (ops->timeout)
0152fb6b 778 ret = ops->timeout(req, reserved);
46f92d42
CH
779
780 switch (ret) {
781 case BLK_EH_HANDLED:
782 __blk_mq_complete_request(req);
783 break;
784 case BLK_EH_RESET_TIMER:
785 blk_add_timer(req);
786 blk_clear_rq_complete(req);
787 break;
788 case BLK_EH_NOT_HANDLED:
789 break;
790 default:
791 printk(KERN_ERR "block: bad eh return: %d\n", ret);
792 break;
793 }
87ee7b11 794}
5b3f25fc 795
81481eb4
CH
796static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
797 struct request *rq, void *priv, bool reserved)
798{
799 struct blk_mq_timeout_data *data = priv;
a7af0af3 800 unsigned long deadline;
87ee7b11 801
95a49603 802 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
46f92d42 803 return;
87ee7b11 804
a7af0af3
PZ
805 /*
806 * Ensures that if we see STARTED we must also see our
807 * up-to-date deadline, see blk_mq_start_request().
808 */
809 smp_rmb();
810
811 deadline = READ_ONCE(rq->deadline);
812
d9d149a3
ML
813 /*
814 * The rq being checked may have been freed and reallocated
815 * out already here, we avoid this race by checking rq->deadline
816 * and REQ_ATOM_COMPLETE flag together:
817 *
818 * - if rq->deadline is observed as new value because of
819 * reusing, the rq won't be timed out because of timing.
820 * - if rq->deadline is observed as previous value,
821 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
822 * because we put a barrier between setting rq->deadline
823 * and clearing the flag in blk_mq_start_request(), so
824 * this rq won't be timed out too.
825 */
a7af0af3
PZ
826 if (time_after_eq(jiffies, deadline)) {
827 if (!blk_mark_rq_complete(rq)) {
828 /*
829 * Again coherence order ensures that consecutive reads
830 * from the same variable must be in that order. This
831 * ensures that if we see COMPLETE clear, we must then
832 * see STARTED set and we'll ignore this timeout.
833 *
834 * (There's also the MB implied by the test_and_clear())
835 */
0152fb6b 836 blk_mq_rq_timed_out(rq, reserved);
a7af0af3
PZ
837 }
838 } else if (!data->next_set || time_after(data->next, deadline)) {
839 data->next = deadline;
46f92d42
CH
840 data->next_set = 1;
841 }
87ee7b11
JA
842}
843
287922eb 844static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 845{
287922eb
CH
846 struct request_queue *q =
847 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
848 struct blk_mq_timeout_data data = {
849 .next = 0,
850 .next_set = 0,
851 };
81481eb4 852 int i;
320ae51f 853
71f79fb3
GKB
854 /* A deadlock might occur if a request is stuck requiring a
855 * timeout at the same time a queue freeze is waiting
856 * completion, since the timeout code would not be able to
857 * acquire the queue reference here.
858 *
859 * That's why we don't use blk_queue_enter here; instead, we use
860 * percpu_ref_tryget directly, because we need to be able to
861 * obtain a reference even in the short window between the queue
862 * starting to freeze, by dropping the first reference in
1671d522 863 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
864 * consumed, marked by the instant q_usage_counter reaches
865 * zero.
866 */
867 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
868 return;
869
0bf6cd5b 870 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 871
81481eb4
CH
872 if (data.next_set) {
873 data.next = blk_rq_timeout(round_jiffies_up(data.next));
874 mod_timer(&q->timeout, data.next);
0d2602ca 875 } else {
0bf6cd5b
CH
876 struct blk_mq_hw_ctx *hctx;
877
f054b56c
ML
878 queue_for_each_hw_ctx(q, hctx, i) {
879 /* the hctx may be unmapped, so check it here */
880 if (blk_mq_hw_queue_mapped(hctx))
881 blk_mq_tag_idle(hctx);
882 }
0d2602ca 883 }
287922eb 884 blk_queue_exit(q);
320ae51f
JA
885}
886
88459642
OS
887struct flush_busy_ctx_data {
888 struct blk_mq_hw_ctx *hctx;
889 struct list_head *list;
890};
891
892static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
893{
894 struct flush_busy_ctx_data *flush_data = data;
895 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
896 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
897
898 sbitmap_clear_bit(sb, bitnr);
899 spin_lock(&ctx->lock);
900 list_splice_tail_init(&ctx->rq_list, flush_data->list);
901 spin_unlock(&ctx->lock);
902 return true;
903}
904
1429d7c9
JA
905/*
906 * Process software queues that have been marked busy, splicing them
907 * to the for-dispatch
908 */
2c3ad667 909void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 910{
88459642
OS
911 struct flush_busy_ctx_data data = {
912 .hctx = hctx,
913 .list = list,
914 };
1429d7c9 915
88459642 916 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 917}
2c3ad667 918EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 919
b347689f
ML
920struct dispatch_rq_data {
921 struct blk_mq_hw_ctx *hctx;
922 struct request *rq;
923};
924
925static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
926 void *data)
927{
928 struct dispatch_rq_data *dispatch_data = data;
929 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
930 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
931
932 spin_lock(&ctx->lock);
933 if (unlikely(!list_empty(&ctx->rq_list))) {
934 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
935 list_del_init(&dispatch_data->rq->queuelist);
936 if (list_empty(&ctx->rq_list))
937 sbitmap_clear_bit(sb, bitnr);
938 }
939 spin_unlock(&ctx->lock);
940
941 return !dispatch_data->rq;
942}
943
944struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
945 struct blk_mq_ctx *start)
946{
947 unsigned off = start ? start->index_hw : 0;
948 struct dispatch_rq_data data = {
949 .hctx = hctx,
950 .rq = NULL,
951 };
952
953 __sbitmap_for_each_set(&hctx->ctx_map, off,
954 dispatch_rq_from_ctx, &data);
955
956 return data.rq;
957}
958
703fd1c0
JA
959static inline unsigned int queued_to_index(unsigned int queued)
960{
961 if (!queued)
962 return 0;
1429d7c9 963
703fd1c0 964 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
965}
966
bd6737f1
JA
967bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
968 bool wait)
bd166ef1
JA
969{
970 struct blk_mq_alloc_data data = {
971 .q = rq->q,
bd166ef1
JA
972 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
973 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
974 };
975
5feeacdd
JA
976 might_sleep_if(wait);
977
81380ca1
OS
978 if (rq->tag != -1)
979 goto done;
bd166ef1 980
415b806d
SG
981 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
982 data.flags |= BLK_MQ_REQ_RESERVED;
983
bd166ef1
JA
984 rq->tag = blk_mq_get_tag(&data);
985 if (rq->tag >= 0) {
200e86b3
JA
986 if (blk_mq_tag_busy(data.hctx)) {
987 rq->rq_flags |= RQF_MQ_INFLIGHT;
988 atomic_inc(&data.hctx->nr_active);
989 }
bd166ef1 990 data.hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
991 }
992
81380ca1
OS
993done:
994 if (hctx)
995 *hctx = data.hctx;
996 return rq->tag != -1;
bd166ef1
JA
997}
998
113285b4
JA
999static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
1000 struct request *rq)
99cf1dc5 1001{
99cf1dc5
JA
1002 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
1003 rq->tag = -1;
1004
1005 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
1006 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
1007 atomic_dec(&hctx->nr_active);
1008 }
1009}
1010
113285b4
JA
1011static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
1012 struct request *rq)
1013{
1014 if (rq->tag == -1 || rq->internal_tag == -1)
1015 return;
1016
1017 __blk_mq_put_driver_tag(hctx, rq);
1018}
1019
1020static void blk_mq_put_driver_tag(struct request *rq)
1021{
1022 struct blk_mq_hw_ctx *hctx;
1023
1024 if (rq->tag == -1 || rq->internal_tag == -1)
1025 return;
1026
1027 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1028 __blk_mq_put_driver_tag(hctx, rq);
1029}
1030
bd166ef1
JA
1031/*
1032 * If we fail getting a driver tag because all the driver tags are already
1033 * assigned and on the dispatch list, BUT the first entry does not have a
1034 * tag, then we could deadlock. For that case, move entries with assigned
1035 * driver tags to the front, leaving the set of tagged requests in the
1036 * same order, and the untagged set in the same order.
1037 */
1038static bool reorder_tags_to_front(struct list_head *list)
1039{
1040 struct request *rq, *tmp, *first = NULL;
1041
1042 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
1043 if (rq == first)
1044 break;
1045 if (rq->tag != -1) {
1046 list_move(&rq->queuelist, list);
1047 if (!first)
1048 first = rq;
1049 }
1050 }
1051
1052 return first != NULL;
1053}
1054
ac6424b9 1055static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
da55f2cc
OS
1056 void *key)
1057{
1058 struct blk_mq_hw_ctx *hctx;
1059
1060 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1061
2055da97 1062 list_del(&wait->entry);
da55f2cc
OS
1063 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
1064 blk_mq_run_hw_queue(hctx, true);
1065 return 1;
1066}
1067
1068static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
1069{
1070 struct sbq_wait_state *ws;
1071
1072 /*
1073 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
1074 * The thread which wins the race to grab this bit adds the hardware
1075 * queue to the wait queue.
1076 */
1077 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
1078 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
1079 return false;
1080
1081 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
1082 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
1083
1084 /*
1085 * As soon as this returns, it's no longer safe to fiddle with
1086 * hctx->dispatch_wait, since a completion can wake up the wait queue
1087 * and unlock the bit.
1088 */
1089 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
1090 return true;
1091}
1092
de148297
ML
1093bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1094 bool got_budget)
320ae51f 1095{
81380ca1 1096 struct blk_mq_hw_ctx *hctx;
6d6f167c 1097 struct request *rq, *nxt;
fc17b653 1098 int errors, queued;
320ae51f 1099
81380ca1
OS
1100 if (list_empty(list))
1101 return false;
1102
de148297
ML
1103 WARN_ON(!list_is_singular(list) && got_budget);
1104
320ae51f
JA
1105 /*
1106 * Now process all the entries, sending them to the driver.
1107 */
93efe981 1108 errors = queued = 0;
81380ca1 1109 do {
74c45052 1110 struct blk_mq_queue_data bd;
fc17b653 1111 blk_status_t ret;
320ae51f 1112
f04c3df3 1113 rq = list_first_entry(list, struct request, queuelist);
bd166ef1
JA
1114 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1115 if (!queued && reorder_tags_to_front(list))
1116 continue;
3c782d67
JA
1117
1118 /*
da55f2cc
OS
1119 * The initial allocation attempt failed, so we need to
1120 * rerun the hardware queue when a tag is freed.
3c782d67 1121 */
de148297
ML
1122 if (!blk_mq_dispatch_wait_add(hctx)) {
1123 if (got_budget)
1124 blk_mq_put_dispatch_budget(hctx);
807b1041 1125 break;
de148297 1126 }
807b1041
OS
1127
1128 /*
1129 * It's possible that a tag was freed in the window
1130 * between the allocation failure and adding the
1131 * hardware queue to the wait queue.
1132 */
de148297
ML
1133 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1134 if (got_budget)
1135 blk_mq_put_dispatch_budget(hctx);
1136 break;
1137 }
1138 }
1139
88022d72
ML
1140 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1141 break;
da55f2cc 1142
320ae51f 1143 list_del_init(&rq->queuelist);
320ae51f 1144
74c45052 1145 bd.rq = rq;
113285b4
JA
1146
1147 /*
1148 * Flag last if we have no more requests, or if we have more
1149 * but can't assign a driver tag to it.
1150 */
1151 if (list_empty(list))
1152 bd.last = true;
1153 else {
113285b4
JA
1154 nxt = list_first_entry(list, struct request, queuelist);
1155 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1156 }
74c45052
JA
1157
1158 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653 1159 if (ret == BLK_STS_RESOURCE) {
6d6f167c
JW
1160 /*
1161 * If an I/O scheduler has been configured and we got a
1162 * driver tag for the next request already, free it again.
1163 */
1164 if (!list_empty(list)) {
1165 nxt = list_first_entry(list, struct request, queuelist);
1166 blk_mq_put_driver_tag(nxt);
1167 }
113285b4 1168 blk_mq_put_driver_tag_hctx(hctx, rq);
f04c3df3 1169 list_add(&rq->queuelist, list);
ed0791b2 1170 __blk_mq_requeue_request(rq);
320ae51f 1171 break;
fc17b653
CH
1172 }
1173
1174 if (unlikely(ret != BLK_STS_OK)) {
93efe981 1175 errors++;
2a842aca 1176 blk_mq_end_request(rq, BLK_STS_IOERR);
fc17b653 1177 continue;
320ae51f
JA
1178 }
1179
fc17b653 1180 queued++;
81380ca1 1181 } while (!list_empty(list));
320ae51f 1182
703fd1c0 1183 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1184
1185 /*
1186 * Any items that need requeuing? Stuff them into hctx->dispatch,
1187 * that is where we will continue on next queue run.
1188 */
f04c3df3 1189 if (!list_empty(list)) {
320ae51f 1190 spin_lock(&hctx->lock);
c13660a0 1191 list_splice_init(list, &hctx->dispatch);
320ae51f 1192 spin_unlock(&hctx->lock);
f04c3df3 1193
9ba52e58 1194 /*
710c785f
BVA
1195 * If SCHED_RESTART was set by the caller of this function and
1196 * it is no longer set that means that it was cleared by another
1197 * thread and hence that a queue rerun is needed.
9ba52e58 1198 *
710c785f
BVA
1199 * If TAG_WAITING is set that means that an I/O scheduler has
1200 * been configured and another thread is waiting for a driver
1201 * tag. To guarantee fairness, do not rerun this hardware queue
1202 * but let the other thread grab the driver tag.
bd166ef1 1203 *
710c785f
BVA
1204 * If no I/O scheduler has been configured it is possible that
1205 * the hardware queue got stopped and restarted before requests
1206 * were pushed back onto the dispatch list. Rerun the queue to
1207 * avoid starvation. Notes:
1208 * - blk_mq_run_hw_queue() checks whether or not a queue has
1209 * been stopped before rerunning a queue.
1210 * - Some but not all block drivers stop a queue before
fc17b653 1211 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1212 * and dm-rq.
bd166ef1 1213 */
da55f2cc
OS
1214 if (!blk_mq_sched_needs_restart(hctx) &&
1215 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
bd166ef1 1216 blk_mq_run_hw_queue(hctx, true);
320ae51f 1217 }
f04c3df3 1218
93efe981 1219 return (queued + errors) != 0;
f04c3df3
JA
1220}
1221
6a83e74d
BVA
1222static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1223{
1224 int srcu_idx;
1225
b7a71e66
JA
1226 /*
1227 * We should be running this queue from one of the CPUs that
1228 * are mapped to it.
1229 */
6a83e74d
BVA
1230 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1231 cpu_online(hctx->next_cpu));
1232
b7a71e66
JA
1233 /*
1234 * We can't run the queue inline with ints disabled. Ensure that
1235 * we catch bad users of this early.
1236 */
1237 WARN_ON_ONCE(in_interrupt());
1238
6a83e74d
BVA
1239 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1240 rcu_read_lock();
1f460b63 1241 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1242 rcu_read_unlock();
1243 } else {
bf4907c0
JA
1244 might_sleep();
1245
07319678 1246 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1f460b63 1247 blk_mq_sched_dispatch_requests(hctx);
07319678 1248 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
6a83e74d
BVA
1249 }
1250}
1251
506e931f
JA
1252/*
1253 * It'd be great if the workqueue API had a way to pass
1254 * in a mask and had some smarts for more clever placement.
1255 * For now we just round-robin here, switching for every
1256 * BLK_MQ_CPU_WORK_BATCH queued items.
1257 */
1258static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1259{
b657d7e6
CH
1260 if (hctx->queue->nr_hw_queues == 1)
1261 return WORK_CPU_UNBOUND;
506e931f
JA
1262
1263 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1264 int next_cpu;
506e931f
JA
1265
1266 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1267 if (next_cpu >= nr_cpu_ids)
1268 next_cpu = cpumask_first(hctx->cpumask);
1269
1270 hctx->next_cpu = next_cpu;
1271 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1272 }
1273
b657d7e6 1274 return hctx->next_cpu;
506e931f
JA
1275}
1276
7587a5ae
BVA
1277static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1278 unsigned long msecs)
320ae51f 1279{
5435c023
BVA
1280 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1281 return;
1282
1283 if (unlikely(blk_mq_hctx_stopped(hctx)))
320ae51f
JA
1284 return;
1285
1b792f2f 1286 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1287 int cpu = get_cpu();
1288 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1289 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1290 put_cpu();
398205b8
PB
1291 return;
1292 }
e4043dcf 1293
2a90d4aa 1294 put_cpu();
e4043dcf 1295 }
398205b8 1296
9f993737
JA
1297 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1298 &hctx->run_work,
1299 msecs_to_jiffies(msecs));
7587a5ae
BVA
1300}
1301
1302void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1303{
1304 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1305}
1306EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1307
1308void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1309{
1310 __blk_mq_delay_run_hw_queue(hctx, async, 0);
320ae51f 1311}
5b727272 1312EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 1313
b94ec296 1314void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1315{
1316 struct blk_mq_hw_ctx *hctx;
1317 int i;
1318
1319 queue_for_each_hw_ctx(q, hctx, i) {
bd166ef1 1320 if (!blk_mq_hctx_has_pending(hctx) ||
5d1b25c1 1321 blk_mq_hctx_stopped(hctx))
320ae51f
JA
1322 continue;
1323
b94ec296 1324 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1325 }
1326}
b94ec296 1327EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1328
fd001443
BVA
1329/**
1330 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1331 * @q: request queue.
1332 *
1333 * The caller is responsible for serializing this function against
1334 * blk_mq_{start,stop}_hw_queue().
1335 */
1336bool blk_mq_queue_stopped(struct request_queue *q)
1337{
1338 struct blk_mq_hw_ctx *hctx;
1339 int i;
1340
1341 queue_for_each_hw_ctx(q, hctx, i)
1342 if (blk_mq_hctx_stopped(hctx))
1343 return true;
1344
1345 return false;
1346}
1347EXPORT_SYMBOL(blk_mq_queue_stopped);
1348
39a70c76
ML
1349/*
1350 * This function is often used for pausing .queue_rq() by driver when
1351 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1352 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1353 *
1354 * We do not guarantee that dispatch can be drained or blocked
1355 * after blk_mq_stop_hw_queue() returns. Please use
1356 * blk_mq_quiesce_queue() for that requirement.
1357 */
2719aa21
JA
1358void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1359{
641a9ed6 1360 cancel_delayed_work(&hctx->run_work);
280d45f6 1361
641a9ed6 1362 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2719aa21 1363}
641a9ed6 1364EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2719aa21 1365
39a70c76
ML
1366/*
1367 * This function is often used for pausing .queue_rq() by driver when
1368 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1369 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1370 *
1371 * We do not guarantee that dispatch can be drained or blocked
1372 * after blk_mq_stop_hw_queues() returns. Please use
1373 * blk_mq_quiesce_queue() for that requirement.
1374 */
2719aa21
JA
1375void blk_mq_stop_hw_queues(struct request_queue *q)
1376{
641a9ed6
ML
1377 struct blk_mq_hw_ctx *hctx;
1378 int i;
1379
1380 queue_for_each_hw_ctx(q, hctx, i)
1381 blk_mq_stop_hw_queue(hctx);
280d45f6
CH
1382}
1383EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1384
320ae51f
JA
1385void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1386{
1387 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1388
0ffbce80 1389 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1390}
1391EXPORT_SYMBOL(blk_mq_start_hw_queue);
1392
2f268556
CH
1393void blk_mq_start_hw_queues(struct request_queue *q)
1394{
1395 struct blk_mq_hw_ctx *hctx;
1396 int i;
1397
1398 queue_for_each_hw_ctx(q, hctx, i)
1399 blk_mq_start_hw_queue(hctx);
1400}
1401EXPORT_SYMBOL(blk_mq_start_hw_queues);
1402
ae911c5e
JA
1403void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1404{
1405 if (!blk_mq_hctx_stopped(hctx))
1406 return;
1407
1408 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1409 blk_mq_run_hw_queue(hctx, async);
1410}
1411EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1412
1b4a3258 1413void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1414{
1415 struct blk_mq_hw_ctx *hctx;
1416 int i;
1417
ae911c5e
JA
1418 queue_for_each_hw_ctx(q, hctx, i)
1419 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1420}
1421EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1422
70f4db63 1423static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1424{
1425 struct blk_mq_hw_ctx *hctx;
1426
9f993737 1427 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 1428
21c6e939
JA
1429 /*
1430 * If we are stopped, don't run the queue. The exception is if
1431 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1432 * the STOPPED bit and run it.
1433 */
1434 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1435 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1436 return;
7587a5ae 1437
21c6e939
JA
1438 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1439 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1440 }
7587a5ae
BVA
1441
1442 __blk_mq_run_hw_queue(hctx);
1443}
1444
70f4db63
CH
1445
1446void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1447{
5435c023 1448 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
19c66e59 1449 return;
70f4db63 1450
21c6e939
JA
1451 /*
1452 * Stop the hw queue, then modify currently delayed work.
1453 * This should prevent us from running the queue prematurely.
1454 * Mark the queue as auto-clearing STOPPED when it runs.
1455 */
7e79dadc 1456 blk_mq_stop_hw_queue(hctx);
21c6e939
JA
1457 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1458 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1459 &hctx->run_work,
1460 msecs_to_jiffies(msecs));
70f4db63
CH
1461}
1462EXPORT_SYMBOL(blk_mq_delay_queue);
1463
cfd0c552 1464static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1465 struct request *rq,
1466 bool at_head)
320ae51f 1467{
e57690fe
JA
1468 struct blk_mq_ctx *ctx = rq->mq_ctx;
1469
7b607814
BVA
1470 lockdep_assert_held(&ctx->lock);
1471
01b983c9
JA
1472 trace_block_rq_insert(hctx->queue, rq);
1473
72a0a36e
CH
1474 if (at_head)
1475 list_add(&rq->queuelist, &ctx->rq_list);
1476 else
1477 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1478}
4bb659b1 1479
2c3ad667
JA
1480void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1481 bool at_head)
cfd0c552
ML
1482{
1483 struct blk_mq_ctx *ctx = rq->mq_ctx;
1484
7b607814
BVA
1485 lockdep_assert_held(&ctx->lock);
1486
e57690fe 1487 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1488 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1489}
1490
157f377b
JA
1491/*
1492 * Should only be used carefully, when the caller knows we want to
1493 * bypass a potential IO scheduler on the target device.
1494 */
1495void blk_mq_request_bypass_insert(struct request *rq)
1496{
1497 struct blk_mq_ctx *ctx = rq->mq_ctx;
1498 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1499
1500 spin_lock(&hctx->lock);
1501 list_add_tail(&rq->queuelist, &hctx->dispatch);
1502 spin_unlock(&hctx->lock);
1503
1504 blk_mq_run_hw_queue(hctx, false);
1505}
1506
bd166ef1
JA
1507void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1508 struct list_head *list)
320ae51f
JA
1509
1510{
320ae51f
JA
1511 /*
1512 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1513 * offline now
1514 */
1515 spin_lock(&ctx->lock);
1516 while (!list_empty(list)) {
1517 struct request *rq;
1518
1519 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1520 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1521 list_del_init(&rq->queuelist);
e57690fe 1522 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1523 }
cfd0c552 1524 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1525 spin_unlock(&ctx->lock);
320ae51f
JA
1526}
1527
1528static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1529{
1530 struct request *rqa = container_of(a, struct request, queuelist);
1531 struct request *rqb = container_of(b, struct request, queuelist);
1532
1533 return !(rqa->mq_ctx < rqb->mq_ctx ||
1534 (rqa->mq_ctx == rqb->mq_ctx &&
1535 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1536}
1537
1538void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1539{
1540 struct blk_mq_ctx *this_ctx;
1541 struct request_queue *this_q;
1542 struct request *rq;
1543 LIST_HEAD(list);
1544 LIST_HEAD(ctx_list);
1545 unsigned int depth;
1546
1547 list_splice_init(&plug->mq_list, &list);
1548
1549 list_sort(NULL, &list, plug_ctx_cmp);
1550
1551 this_q = NULL;
1552 this_ctx = NULL;
1553 depth = 0;
1554
1555 while (!list_empty(&list)) {
1556 rq = list_entry_rq(list.next);
1557 list_del_init(&rq->queuelist);
1558 BUG_ON(!rq->q);
1559 if (rq->mq_ctx != this_ctx) {
1560 if (this_ctx) {
bd166ef1
JA
1561 trace_block_unplug(this_q, depth, from_schedule);
1562 blk_mq_sched_insert_requests(this_q, this_ctx,
1563 &ctx_list,
1564 from_schedule);
320ae51f
JA
1565 }
1566
1567 this_ctx = rq->mq_ctx;
1568 this_q = rq->q;
1569 depth = 0;
1570 }
1571
1572 depth++;
1573 list_add_tail(&rq->queuelist, &ctx_list);
1574 }
1575
1576 /*
1577 * If 'this_ctx' is set, we know we have entries to complete
1578 * on 'ctx_list'. Do those.
1579 */
1580 if (this_ctx) {
bd166ef1
JA
1581 trace_block_unplug(this_q, depth, from_schedule);
1582 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1583 from_schedule);
320ae51f
JA
1584 }
1585}
1586
1587static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1588{
da8d7f07 1589 blk_init_request_from_bio(rq, bio);
4b570521 1590
85acb3ba
SL
1591 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1592
6e85eaf3 1593 blk_account_io_start(rq, true);
320ae51f
JA
1594}
1595
ab42f35d
ML
1596static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1597 struct blk_mq_ctx *ctx,
1598 struct request *rq)
1599{
1600 spin_lock(&ctx->lock);
1601 __blk_mq_insert_request(hctx, rq, false);
1602 spin_unlock(&ctx->lock);
07068d5b 1603}
14ec77f3 1604
fd2d3326
JA
1605static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1606{
bd166ef1
JA
1607 if (rq->tag != -1)
1608 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1609
1610 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1611}
1612
d964f04a
ML
1613static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1614 struct request *rq,
1615 blk_qc_t *cookie, bool may_sleep)
f984df1f 1616{
f984df1f 1617 struct request_queue *q = rq->q;
f984df1f
SL
1618 struct blk_mq_queue_data bd = {
1619 .rq = rq,
d945a365 1620 .last = true,
f984df1f 1621 };
bd166ef1 1622 blk_qc_t new_cookie;
f06345ad 1623 blk_status_t ret;
d964f04a
ML
1624 bool run_queue = true;
1625
f4560ffe
ML
1626 /* RCU or SRCU read lock is needed before checking quiesced flag */
1627 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
d964f04a
ML
1628 run_queue = false;
1629 goto insert;
1630 }
f984df1f 1631
bd166ef1 1632 if (q->elevator)
2253efc8
BVA
1633 goto insert;
1634
d964f04a 1635 if (!blk_mq_get_driver_tag(rq, NULL, false))
bd166ef1
JA
1636 goto insert;
1637
88022d72 1638 if (!blk_mq_get_dispatch_budget(hctx)) {
de148297
ML
1639 blk_mq_put_driver_tag(rq);
1640 goto insert;
88022d72 1641 }
de148297 1642
bd166ef1
JA
1643 new_cookie = request_to_qc_t(hctx, rq);
1644
f984df1f
SL
1645 /*
1646 * For OK queue, we are done. For error, kill it. Any other
1647 * error (busy), just add it to our list as we previously
1648 * would have done
1649 */
1650 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653
CH
1651 switch (ret) {
1652 case BLK_STS_OK:
7b371636 1653 *cookie = new_cookie;
2253efc8 1654 return;
fc17b653
CH
1655 case BLK_STS_RESOURCE:
1656 __blk_mq_requeue_request(rq);
1657 goto insert;
1658 default:
7b371636 1659 *cookie = BLK_QC_T_NONE;
fc17b653 1660 blk_mq_end_request(rq, ret);
2253efc8 1661 return;
f984df1f 1662 }
7b371636 1663
2253efc8 1664insert:
d964f04a 1665 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
f984df1f
SL
1666}
1667
5eb6126e
CH
1668static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1669 struct request *rq, blk_qc_t *cookie)
1670{
1671 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1672 rcu_read_lock();
d964f04a 1673 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
5eb6126e
CH
1674 rcu_read_unlock();
1675 } else {
bf4907c0
JA
1676 unsigned int srcu_idx;
1677
1678 might_sleep();
1679
07319678 1680 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
d964f04a 1681 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
07319678 1682 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
5eb6126e
CH
1683 }
1684}
1685
dece1635 1686static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1687{
ef295ecf 1688 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1689 const int is_flush_fua = op_is_flush(bio->bi_opf);
5a797e00 1690 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1691 struct request *rq;
5eb6126e 1692 unsigned int request_count = 0;
f984df1f 1693 struct blk_plug *plug;
5b3f341f 1694 struct request *same_queue_rq = NULL;
7b371636 1695 blk_qc_t cookie;
87760e5e 1696 unsigned int wb_acct;
07068d5b
JA
1697
1698 blk_queue_bounce(q, &bio);
1699
af67c31f 1700 blk_queue_split(q, &bio);
f36ea50c 1701
e23947bd 1702 if (!bio_integrity_prep(bio))
dece1635 1703 return BLK_QC_T_NONE;
07068d5b 1704
87c279e6
OS
1705 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1706 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1707 return BLK_QC_T_NONE;
f984df1f 1708
bd166ef1
JA
1709 if (blk_mq_sched_bio_merge(q, bio))
1710 return BLK_QC_T_NONE;
1711
87760e5e
JA
1712 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1713
bd166ef1
JA
1714 trace_block_getrq(q, bio, bio->bi_opf);
1715
d2c0d383 1716 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1717 if (unlikely(!rq)) {
1718 __wbt_done(q->rq_wb, wb_acct);
03a07c92
GR
1719 if (bio->bi_opf & REQ_NOWAIT)
1720 bio_wouldblock_error(bio);
dece1635 1721 return BLK_QC_T_NONE;
87760e5e
JA
1722 }
1723
1724 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1725
fd2d3326 1726 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 1727
f984df1f 1728 plug = current->plug;
07068d5b 1729 if (unlikely(is_flush_fua)) {
f984df1f 1730 blk_mq_put_ctx(data.ctx);
07068d5b 1731 blk_mq_bio_to_request(rq, bio);
a4d907b6
CH
1732 if (q->elevator) {
1733 blk_mq_sched_insert_request(rq, false, true, true,
1734 true);
6a83e74d 1735 } else {
a4d907b6
CH
1736 blk_insert_flush(rq);
1737 blk_mq_run_hw_queue(data.hctx, true);
6a83e74d 1738 }
a4d907b6 1739 } else if (plug && q->nr_hw_queues == 1) {
600271d9
SL
1740 struct request *last = NULL;
1741
b00c53e8 1742 blk_mq_put_ctx(data.ctx);
e6c4438b 1743 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1744
1745 /*
1746 * @request_count may become stale because of schedule
1747 * out, so check the list again.
1748 */
1749 if (list_empty(&plug->mq_list))
1750 request_count = 0;
254d259d
CH
1751 else if (blk_queue_nomerges(q))
1752 request_count = blk_plug_queued_count(q);
1753
676d0607 1754 if (!request_count)
e6c4438b 1755 trace_block_plug(q);
600271d9
SL
1756 else
1757 last = list_entry_rq(plug->mq_list.prev);
b094f89c 1758
600271d9
SL
1759 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1760 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1761 blk_flush_plug_list(plug, false);
1762 trace_block_plug(q);
320ae51f 1763 }
b094f89c 1764
e6c4438b 1765 list_add_tail(&rq->queuelist, &plug->mq_list);
2299722c 1766 } else if (plug && !blk_queue_nomerges(q)) {
bd166ef1 1767 blk_mq_bio_to_request(rq, bio);
07068d5b 1768
07068d5b 1769 /*
6a83e74d 1770 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1771 * Otherwise the existing request in the plug list will be
1772 * issued. So the plug list will have one request at most
2299722c
CH
1773 * The plug list might get flushed before this. If that happens,
1774 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 1775 */
2299722c
CH
1776 if (list_empty(&plug->mq_list))
1777 same_queue_rq = NULL;
1778 if (same_queue_rq)
1779 list_del_init(&same_queue_rq->queuelist);
1780 list_add_tail(&rq->queuelist, &plug->mq_list);
1781
bf4907c0
JA
1782 blk_mq_put_ctx(data.ctx);
1783
dad7a3be
ML
1784 if (same_queue_rq) {
1785 data.hctx = blk_mq_map_queue(q,
1786 same_queue_rq->mq_ctx->cpu);
2299722c
CH
1787 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1788 &cookie);
dad7a3be 1789 }
a4d907b6 1790 } else if (q->nr_hw_queues > 1 && is_sync) {
bf4907c0 1791 blk_mq_put_ctx(data.ctx);
2299722c 1792 blk_mq_bio_to_request(rq, bio);
2299722c 1793 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
a4d907b6 1794 } else if (q->elevator) {
b00c53e8 1795 blk_mq_put_ctx(data.ctx);
bd166ef1 1796 blk_mq_bio_to_request(rq, bio);
a4d907b6 1797 blk_mq_sched_insert_request(rq, false, true, true, true);
ab42f35d 1798 } else {
b00c53e8 1799 blk_mq_put_ctx(data.ctx);
ab42f35d
ML
1800 blk_mq_bio_to_request(rq, bio);
1801 blk_mq_queue_io(data.hctx, data.ctx, rq);
a4d907b6 1802 blk_mq_run_hw_queue(data.hctx, true);
ab42f35d 1803 }
320ae51f 1804
7b371636 1805 return cookie;
320ae51f
JA
1806}
1807
cc71a6f4
JA
1808void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1809 unsigned int hctx_idx)
95363efd 1810{
e9b267d9 1811 struct page *page;
320ae51f 1812
24d2f903 1813 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1814 int i;
320ae51f 1815
24d2f903 1816 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1817 struct request *rq = tags->static_rqs[i];
1818
1819 if (!rq)
e9b267d9 1820 continue;
d6296d39 1821 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 1822 tags->static_rqs[i] = NULL;
e9b267d9 1823 }
320ae51f 1824 }
320ae51f 1825
24d2f903
CH
1826 while (!list_empty(&tags->page_list)) {
1827 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1828 list_del_init(&page->lru);
f75782e4
CM
1829 /*
1830 * Remove kmemleak object previously allocated in
1831 * blk_mq_init_rq_map().
1832 */
1833 kmemleak_free(page_address(page));
320ae51f
JA
1834 __free_pages(page, page->private);
1835 }
cc71a6f4 1836}
320ae51f 1837
cc71a6f4
JA
1838void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1839{
24d2f903 1840 kfree(tags->rqs);
cc71a6f4 1841 tags->rqs = NULL;
2af8cbe3
JA
1842 kfree(tags->static_rqs);
1843 tags->static_rqs = NULL;
320ae51f 1844
24d2f903 1845 blk_mq_free_tags(tags);
320ae51f
JA
1846}
1847
cc71a6f4
JA
1848struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1849 unsigned int hctx_idx,
1850 unsigned int nr_tags,
1851 unsigned int reserved_tags)
320ae51f 1852{
24d2f903 1853 struct blk_mq_tags *tags;
59f082e4 1854 int node;
320ae51f 1855
59f082e4
SL
1856 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1857 if (node == NUMA_NO_NODE)
1858 node = set->numa_node;
1859
1860 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 1861 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1862 if (!tags)
1863 return NULL;
320ae51f 1864
cc71a6f4 1865 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1866 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1867 node);
24d2f903
CH
1868 if (!tags->rqs) {
1869 blk_mq_free_tags(tags);
1870 return NULL;
1871 }
320ae51f 1872
2af8cbe3
JA
1873 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1874 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1875 node);
2af8cbe3
JA
1876 if (!tags->static_rqs) {
1877 kfree(tags->rqs);
1878 blk_mq_free_tags(tags);
1879 return NULL;
1880 }
1881
cc71a6f4
JA
1882 return tags;
1883}
1884
1885static size_t order_to_size(unsigned int order)
1886{
1887 return (size_t)PAGE_SIZE << order;
1888}
1889
1890int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1891 unsigned int hctx_idx, unsigned int depth)
1892{
1893 unsigned int i, j, entries_per_page, max_order = 4;
1894 size_t rq_size, left;
59f082e4
SL
1895 int node;
1896
1897 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1898 if (node == NUMA_NO_NODE)
1899 node = set->numa_node;
cc71a6f4
JA
1900
1901 INIT_LIST_HEAD(&tags->page_list);
1902
320ae51f
JA
1903 /*
1904 * rq_size is the size of the request plus driver payload, rounded
1905 * to the cacheline size
1906 */
24d2f903 1907 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1908 cache_line_size());
cc71a6f4 1909 left = rq_size * depth;
320ae51f 1910
cc71a6f4 1911 for (i = 0; i < depth; ) {
320ae51f
JA
1912 int this_order = max_order;
1913 struct page *page;
1914 int to_do;
1915 void *p;
1916
b3a834b1 1917 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1918 this_order--;
1919
1920 do {
59f082e4 1921 page = alloc_pages_node(node,
36e1f3d1 1922 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1923 this_order);
320ae51f
JA
1924 if (page)
1925 break;
1926 if (!this_order--)
1927 break;
1928 if (order_to_size(this_order) < rq_size)
1929 break;
1930 } while (1);
1931
1932 if (!page)
24d2f903 1933 goto fail;
320ae51f
JA
1934
1935 page->private = this_order;
24d2f903 1936 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1937
1938 p = page_address(page);
f75782e4
CM
1939 /*
1940 * Allow kmemleak to scan these pages as they contain pointers
1941 * to additional allocations like via ops->init_request().
1942 */
36e1f3d1 1943 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 1944 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 1945 to_do = min(entries_per_page, depth - i);
320ae51f
JA
1946 left -= to_do * rq_size;
1947 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
1948 struct request *rq = p;
1949
1950 tags->static_rqs[i] = rq;
24d2f903 1951 if (set->ops->init_request) {
d6296d39 1952 if (set->ops->init_request(set, rq, hctx_idx,
59f082e4 1953 node)) {
2af8cbe3 1954 tags->static_rqs[i] = NULL;
24d2f903 1955 goto fail;
a5164405 1956 }
e9b267d9
CH
1957 }
1958
320ae51f
JA
1959 p += rq_size;
1960 i++;
1961 }
1962 }
cc71a6f4 1963 return 0;
320ae51f 1964
24d2f903 1965fail:
cc71a6f4
JA
1966 blk_mq_free_rqs(set, tags, hctx_idx);
1967 return -ENOMEM;
320ae51f
JA
1968}
1969
e57690fe
JA
1970/*
1971 * 'cpu' is going away. splice any existing rq_list entries from this
1972 * software queue to the hw queue dispatch list, and ensure that it
1973 * gets run.
1974 */
9467f859 1975static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 1976{
9467f859 1977 struct blk_mq_hw_ctx *hctx;
484b4061
JA
1978 struct blk_mq_ctx *ctx;
1979 LIST_HEAD(tmp);
1980
9467f859 1981 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 1982 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1983
1984 spin_lock(&ctx->lock);
1985 if (!list_empty(&ctx->rq_list)) {
1986 list_splice_init(&ctx->rq_list, &tmp);
1987 blk_mq_hctx_clear_pending(hctx, ctx);
1988 }
1989 spin_unlock(&ctx->lock);
1990
1991 if (list_empty(&tmp))
9467f859 1992 return 0;
484b4061 1993
e57690fe
JA
1994 spin_lock(&hctx->lock);
1995 list_splice_tail_init(&tmp, &hctx->dispatch);
1996 spin_unlock(&hctx->lock);
484b4061
JA
1997
1998 blk_mq_run_hw_queue(hctx, true);
9467f859 1999 return 0;
484b4061
JA
2000}
2001
9467f859 2002static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 2003{
9467f859
TG
2004 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2005 &hctx->cpuhp_dead);
484b4061
JA
2006}
2007
c3b4afca 2008/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
2009static void blk_mq_exit_hctx(struct request_queue *q,
2010 struct blk_mq_tag_set *set,
2011 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2012{
9c1051aa
OS
2013 blk_mq_debugfs_unregister_hctx(hctx);
2014
08e98fc6
ML
2015 blk_mq_tag_idle(hctx);
2016
f70ced09 2017 if (set->ops->exit_request)
d6296d39 2018 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
f70ced09 2019
93252632
OS
2020 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2021
08e98fc6
ML
2022 if (set->ops->exit_hctx)
2023 set->ops->exit_hctx(hctx, hctx_idx);
2024
6a83e74d 2025 if (hctx->flags & BLK_MQ_F_BLOCKING)
07319678 2026 cleanup_srcu_struct(hctx->queue_rq_srcu);
6a83e74d 2027
9467f859 2028 blk_mq_remove_cpuhp(hctx);
f70ced09 2029 blk_free_flush_queue(hctx->fq);
88459642 2030 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2031}
2032
624dbe47
ML
2033static void blk_mq_exit_hw_queues(struct request_queue *q,
2034 struct blk_mq_tag_set *set, int nr_queue)
2035{
2036 struct blk_mq_hw_ctx *hctx;
2037 unsigned int i;
2038
2039 queue_for_each_hw_ctx(q, hctx, i) {
2040 if (i == nr_queue)
2041 break;
08e98fc6 2042 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 2043 }
624dbe47
ML
2044}
2045
08e98fc6
ML
2046static int blk_mq_init_hctx(struct request_queue *q,
2047 struct blk_mq_tag_set *set,
2048 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 2049{
08e98fc6
ML
2050 int node;
2051
2052 node = hctx->numa_node;
2053 if (node == NUMA_NO_NODE)
2054 node = hctx->numa_node = set->numa_node;
2055
9f993737 2056 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
2057 spin_lock_init(&hctx->lock);
2058 INIT_LIST_HEAD(&hctx->dispatch);
2059 hctx->queue = q;
2404e607 2060 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 2061
9467f859 2062 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
2063
2064 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
2065
2066 /*
08e98fc6
ML
2067 * Allocate space for all possible cpus to avoid allocation at
2068 * runtime
320ae51f 2069 */
08e98fc6
ML
2070 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
2071 GFP_KERNEL, node);
2072 if (!hctx->ctxs)
2073 goto unregister_cpu_notifier;
320ae51f 2074
88459642
OS
2075 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2076 node))
08e98fc6 2077 goto free_ctxs;
320ae51f 2078
08e98fc6 2079 hctx->nr_ctx = 0;
320ae51f 2080
08e98fc6
ML
2081 if (set->ops->init_hctx &&
2082 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2083 goto free_bitmap;
320ae51f 2084
93252632
OS
2085 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2086 goto exit_hctx;
2087
f70ced09
ML
2088 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2089 if (!hctx->fq)
93252632 2090 goto sched_exit_hctx;
320ae51f 2091
f70ced09 2092 if (set->ops->init_request &&
d6296d39
CH
2093 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2094 node))
f70ced09 2095 goto free_fq;
320ae51f 2096
6a83e74d 2097 if (hctx->flags & BLK_MQ_F_BLOCKING)
07319678 2098 init_srcu_struct(hctx->queue_rq_srcu);
6a83e74d 2099
9c1051aa
OS
2100 blk_mq_debugfs_register_hctx(q, hctx);
2101
08e98fc6 2102 return 0;
320ae51f 2103
f70ced09
ML
2104 free_fq:
2105 kfree(hctx->fq);
93252632
OS
2106 sched_exit_hctx:
2107 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
f70ced09
ML
2108 exit_hctx:
2109 if (set->ops->exit_hctx)
2110 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 2111 free_bitmap:
88459642 2112 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2113 free_ctxs:
2114 kfree(hctx->ctxs);
2115 unregister_cpu_notifier:
9467f859 2116 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
2117 return -1;
2118}
320ae51f 2119
320ae51f
JA
2120static void blk_mq_init_cpu_queues(struct request_queue *q,
2121 unsigned int nr_hw_queues)
2122{
2123 unsigned int i;
2124
2125 for_each_possible_cpu(i) {
2126 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2127 struct blk_mq_hw_ctx *hctx;
2128
320ae51f
JA
2129 __ctx->cpu = i;
2130 spin_lock_init(&__ctx->lock);
2131 INIT_LIST_HEAD(&__ctx->rq_list);
2132 __ctx->queue = q;
2133
4b855ad3
CH
2134 /* If the cpu isn't present, the cpu is mapped to first hctx */
2135 if (!cpu_present(i))
320ae51f
JA
2136 continue;
2137
7d7e0f90 2138 hctx = blk_mq_map_queue(q, i);
e4043dcf 2139
320ae51f
JA
2140 /*
2141 * Set local node, IFF we have more than one hw queue. If
2142 * not, we remain on the home node of the device
2143 */
2144 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 2145 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
2146 }
2147}
2148
cc71a6f4
JA
2149static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2150{
2151 int ret = 0;
2152
2153 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2154 set->queue_depth, set->reserved_tags);
2155 if (!set->tags[hctx_idx])
2156 return false;
2157
2158 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2159 set->queue_depth);
2160 if (!ret)
2161 return true;
2162
2163 blk_mq_free_rq_map(set->tags[hctx_idx]);
2164 set->tags[hctx_idx] = NULL;
2165 return false;
2166}
2167
2168static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2169 unsigned int hctx_idx)
2170{
bd166ef1
JA
2171 if (set->tags[hctx_idx]) {
2172 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2173 blk_mq_free_rq_map(set->tags[hctx_idx]);
2174 set->tags[hctx_idx] = NULL;
2175 }
cc71a6f4
JA
2176}
2177
4b855ad3 2178static void blk_mq_map_swqueue(struct request_queue *q)
320ae51f 2179{
d1b1cea1 2180 unsigned int i, hctx_idx;
320ae51f
JA
2181 struct blk_mq_hw_ctx *hctx;
2182 struct blk_mq_ctx *ctx;
2a34c087 2183 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2184
60de074b
AM
2185 /*
2186 * Avoid others reading imcomplete hctx->cpumask through sysfs
2187 */
2188 mutex_lock(&q->sysfs_lock);
2189
320ae51f 2190 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2191 cpumask_clear(hctx->cpumask);
320ae51f
JA
2192 hctx->nr_ctx = 0;
2193 }
2194
2195 /*
4b855ad3
CH
2196 * Map software to hardware queues.
2197 *
2198 * If the cpu isn't present, the cpu is mapped to first hctx.
320ae51f 2199 */
4b855ad3 2200 for_each_present_cpu(i) {
d1b1cea1
GKB
2201 hctx_idx = q->mq_map[i];
2202 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2203 if (!set->tags[hctx_idx] &&
2204 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2205 /*
2206 * If tags initialization fail for some hctx,
2207 * that hctx won't be brought online. In this
2208 * case, remap the current ctx to hctx[0] which
2209 * is guaranteed to always have tags allocated
2210 */
cc71a6f4 2211 q->mq_map[i] = 0;
d1b1cea1
GKB
2212 }
2213
897bb0c7 2214 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2215 hctx = blk_mq_map_queue(q, i);
868f2f0b 2216
e4043dcf 2217 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2218 ctx->index_hw = hctx->nr_ctx;
2219 hctx->ctxs[hctx->nr_ctx++] = ctx;
2220 }
506e931f 2221
60de074b
AM
2222 mutex_unlock(&q->sysfs_lock);
2223
506e931f 2224 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2225 /*
a68aafa5
JA
2226 * If no software queues are mapped to this hardware queue,
2227 * disable it and free the request entries.
484b4061
JA
2228 */
2229 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2230 /* Never unmap queue 0. We need it as a
2231 * fallback in case of a new remap fails
2232 * allocation
2233 */
cc71a6f4
JA
2234 if (i && set->tags[i])
2235 blk_mq_free_map_and_requests(set, i);
2236
2a34c087 2237 hctx->tags = NULL;
484b4061
JA
2238 continue;
2239 }
2240
2a34c087
ML
2241 hctx->tags = set->tags[i];
2242 WARN_ON(!hctx->tags);
2243
889fa31f
CY
2244 /*
2245 * Set the map size to the number of mapped software queues.
2246 * This is more accurate and more efficient than looping
2247 * over all possibly mapped software queues.
2248 */
88459642 2249 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2250
484b4061
JA
2251 /*
2252 * Initialize batch roundrobin counts
2253 */
506e931f
JA
2254 hctx->next_cpu = cpumask_first(hctx->cpumask);
2255 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2256 }
320ae51f
JA
2257}
2258
8e8320c9
JA
2259/*
2260 * Caller needs to ensure that we're either frozen/quiesced, or that
2261 * the queue isn't live yet.
2262 */
2404e607 2263static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2264{
2265 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2266 int i;
2267
2404e607 2268 queue_for_each_hw_ctx(q, hctx, i) {
8e8320c9
JA
2269 if (shared) {
2270 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2271 atomic_inc(&q->shared_hctx_restart);
2404e607 2272 hctx->flags |= BLK_MQ_F_TAG_SHARED;
8e8320c9
JA
2273 } else {
2274 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2275 atomic_dec(&q->shared_hctx_restart);
2404e607 2276 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
8e8320c9 2277 }
2404e607
JM
2278 }
2279}
2280
8e8320c9
JA
2281static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2282 bool shared)
2404e607
JM
2283{
2284 struct request_queue *q;
0d2602ca 2285
705cda97
BVA
2286 lockdep_assert_held(&set->tag_list_lock);
2287
0d2602ca
JA
2288 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2289 blk_mq_freeze_queue(q);
2404e607 2290 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2291 blk_mq_unfreeze_queue(q);
2292 }
2293}
2294
2295static void blk_mq_del_queue_tag_set(struct request_queue *q)
2296{
2297 struct blk_mq_tag_set *set = q->tag_set;
2298
0d2602ca 2299 mutex_lock(&set->tag_list_lock);
705cda97
BVA
2300 list_del_rcu(&q->tag_set_list);
2301 INIT_LIST_HEAD(&q->tag_set_list);
2404e607
JM
2302 if (list_is_singular(&set->tag_list)) {
2303 /* just transitioned to unshared */
2304 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2305 /* update existing queue */
2306 blk_mq_update_tag_set_depth(set, false);
2307 }
0d2602ca 2308 mutex_unlock(&set->tag_list_lock);
705cda97
BVA
2309
2310 synchronize_rcu();
0d2602ca
JA
2311}
2312
2313static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2314 struct request_queue *q)
2315{
2316 q->tag_set = set;
2317
2318 mutex_lock(&set->tag_list_lock);
2404e607
JM
2319
2320 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2321 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2322 set->flags |= BLK_MQ_F_TAG_SHARED;
2323 /* update existing queue */
2324 blk_mq_update_tag_set_depth(set, true);
2325 }
2326 if (set->flags & BLK_MQ_F_TAG_SHARED)
2327 queue_set_hctx_shared(q, true);
705cda97 2328 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2404e607 2329
0d2602ca
JA
2330 mutex_unlock(&set->tag_list_lock);
2331}
2332
e09aae7e
ML
2333/*
2334 * It is the actual release handler for mq, but we do it from
2335 * request queue's release handler for avoiding use-after-free
2336 * and headache because q->mq_kobj shouldn't have been introduced,
2337 * but we can't group ctx/kctx kobj without it.
2338 */
2339void blk_mq_release(struct request_queue *q)
2340{
2341 struct blk_mq_hw_ctx *hctx;
2342 unsigned int i;
2343
2344 /* hctx kobj stays in hctx */
c3b4afca
ML
2345 queue_for_each_hw_ctx(q, hctx, i) {
2346 if (!hctx)
2347 continue;
6c8b232e 2348 kobject_put(&hctx->kobj);
c3b4afca 2349 }
e09aae7e 2350
a723bab3
AM
2351 q->mq_map = NULL;
2352
e09aae7e
ML
2353 kfree(q->queue_hw_ctx);
2354
7ea5fe31
ML
2355 /*
2356 * release .mq_kobj and sw queue's kobject now because
2357 * both share lifetime with request queue.
2358 */
2359 blk_mq_sysfs_deinit(q);
2360
e09aae7e
ML
2361 free_percpu(q->queue_ctx);
2362}
2363
24d2f903 2364struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2365{
2366 struct request_queue *uninit_q, *q;
2367
2368 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2369 if (!uninit_q)
2370 return ERR_PTR(-ENOMEM);
2371
2372 q = blk_mq_init_allocated_queue(set, uninit_q);
2373 if (IS_ERR(q))
2374 blk_cleanup_queue(uninit_q);
2375
2376 return q;
2377}
2378EXPORT_SYMBOL(blk_mq_init_queue);
2379
07319678
BVA
2380static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2381{
2382 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2383
2384 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2385 __alignof__(struct blk_mq_hw_ctx)) !=
2386 sizeof(struct blk_mq_hw_ctx));
2387
2388 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2389 hw_ctx_size += sizeof(struct srcu_struct);
2390
2391 return hw_ctx_size;
2392}
2393
868f2f0b
KB
2394static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2395 struct request_queue *q)
320ae51f 2396{
868f2f0b
KB
2397 int i, j;
2398 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2399
868f2f0b 2400 blk_mq_sysfs_unregister(q);
24d2f903 2401 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2402 int node;
f14bbe77 2403
868f2f0b
KB
2404 if (hctxs[i])
2405 continue;
2406
2407 node = blk_mq_hw_queue_to_node(q->mq_map, i);
07319678 2408 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
cdef54dd 2409 GFP_KERNEL, node);
320ae51f 2410 if (!hctxs[i])
868f2f0b 2411 break;
320ae51f 2412
a86073e4 2413 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2414 node)) {
2415 kfree(hctxs[i]);
2416 hctxs[i] = NULL;
2417 break;
2418 }
e4043dcf 2419
0d2602ca 2420 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2421 hctxs[i]->numa_node = node;
320ae51f 2422 hctxs[i]->queue_num = i;
868f2f0b
KB
2423
2424 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2425 free_cpumask_var(hctxs[i]->cpumask);
2426 kfree(hctxs[i]);
2427 hctxs[i] = NULL;
2428 break;
2429 }
2430 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2431 }
868f2f0b
KB
2432 for (j = i; j < q->nr_hw_queues; j++) {
2433 struct blk_mq_hw_ctx *hctx = hctxs[j];
2434
2435 if (hctx) {
cc71a6f4
JA
2436 if (hctx->tags)
2437 blk_mq_free_map_and_requests(set, j);
868f2f0b 2438 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2439 kobject_put(&hctx->kobj);
868f2f0b
KB
2440 hctxs[j] = NULL;
2441
2442 }
2443 }
2444 q->nr_hw_queues = i;
2445 blk_mq_sysfs_register(q);
2446}
2447
2448struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2449 struct request_queue *q)
2450{
66841672
ML
2451 /* mark the queue as mq asap */
2452 q->mq_ops = set->ops;
2453
34dbad5d 2454 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
2455 blk_mq_poll_stats_bkt,
2456 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
2457 if (!q->poll_cb)
2458 goto err_exit;
2459
868f2f0b
KB
2460 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2461 if (!q->queue_ctx)
c7de5726 2462 goto err_exit;
868f2f0b 2463
737f98cf
ML
2464 /* init q->mq_kobj and sw queues' kobjects */
2465 blk_mq_sysfs_init(q);
2466
868f2f0b
KB
2467 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2468 GFP_KERNEL, set->numa_node);
2469 if (!q->queue_hw_ctx)
2470 goto err_percpu;
2471
bdd17e75 2472 q->mq_map = set->mq_map;
868f2f0b
KB
2473
2474 blk_mq_realloc_hw_ctxs(set, q);
2475 if (!q->nr_hw_queues)
2476 goto err_hctxs;
320ae51f 2477
287922eb 2478 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2479 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2480
2481 q->nr_queues = nr_cpu_ids;
320ae51f 2482
94eddfbe 2483 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2484
05f1dd53
JA
2485 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2486 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2487
1be036e9
CH
2488 q->sg_reserved_size = INT_MAX;
2489
2849450a 2490 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2491 INIT_LIST_HEAD(&q->requeue_list);
2492 spin_lock_init(&q->requeue_lock);
2493
254d259d 2494 blk_queue_make_request(q, blk_mq_make_request);
ea435e1b
CH
2495 if (q->mq_ops->poll)
2496 q->poll_fn = blk_mq_poll;
07068d5b 2497
eba71768
JA
2498 /*
2499 * Do this after blk_queue_make_request() overrides it...
2500 */
2501 q->nr_requests = set->queue_depth;
2502
64f1c21e
JA
2503 /*
2504 * Default to classic polling
2505 */
2506 q->poll_nsec = -1;
2507
24d2f903
CH
2508 if (set->ops->complete)
2509 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2510
24d2f903 2511 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
0d2602ca 2512 blk_mq_add_queue_tag_set(set, q);
4b855ad3 2513 blk_mq_map_swqueue(q);
4593fdbe 2514
d3484991
JA
2515 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2516 int ret;
2517
2518 ret = blk_mq_sched_init(q);
2519 if (ret)
2520 return ERR_PTR(ret);
2521 }
2522
320ae51f 2523 return q;
18741986 2524
320ae51f 2525err_hctxs:
868f2f0b 2526 kfree(q->queue_hw_ctx);
320ae51f 2527err_percpu:
868f2f0b 2528 free_percpu(q->queue_ctx);
c7de5726
ML
2529err_exit:
2530 q->mq_ops = NULL;
320ae51f
JA
2531 return ERR_PTR(-ENOMEM);
2532}
b62c21b7 2533EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2534
2535void blk_mq_free_queue(struct request_queue *q)
2536{
624dbe47 2537 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2538
0d2602ca 2539 blk_mq_del_queue_tag_set(q);
624dbe47 2540 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2541}
320ae51f
JA
2542
2543/* Basically redo blk_mq_init_queue with queue frozen */
4b855ad3 2544static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f 2545{
4ecd4fef 2546 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2547
9c1051aa 2548 blk_mq_debugfs_unregister_hctxs(q);
67aec14c
JA
2549 blk_mq_sysfs_unregister(q);
2550
320ae51f
JA
2551 /*
2552 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2553 * we should change hctx numa_node according to new topology (this
2554 * involves free and re-allocate memory, worthy doing?)
2555 */
2556
4b855ad3 2557 blk_mq_map_swqueue(q);
320ae51f 2558
67aec14c 2559 blk_mq_sysfs_register(q);
9c1051aa 2560 blk_mq_debugfs_register_hctxs(q);
320ae51f
JA
2561}
2562
a5164405
JA
2563static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2564{
2565 int i;
2566
cc71a6f4
JA
2567 for (i = 0; i < set->nr_hw_queues; i++)
2568 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2569 goto out_unwind;
a5164405
JA
2570
2571 return 0;
2572
2573out_unwind:
2574 while (--i >= 0)
cc71a6f4 2575 blk_mq_free_rq_map(set->tags[i]);
a5164405 2576
a5164405
JA
2577 return -ENOMEM;
2578}
2579
2580/*
2581 * Allocate the request maps associated with this tag_set. Note that this
2582 * may reduce the depth asked for, if memory is tight. set->queue_depth
2583 * will be updated to reflect the allocated depth.
2584 */
2585static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2586{
2587 unsigned int depth;
2588 int err;
2589
2590 depth = set->queue_depth;
2591 do {
2592 err = __blk_mq_alloc_rq_maps(set);
2593 if (!err)
2594 break;
2595
2596 set->queue_depth >>= 1;
2597 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2598 err = -ENOMEM;
2599 break;
2600 }
2601 } while (set->queue_depth);
2602
2603 if (!set->queue_depth || err) {
2604 pr_err("blk-mq: failed to allocate request map\n");
2605 return -ENOMEM;
2606 }
2607
2608 if (depth != set->queue_depth)
2609 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2610 depth, set->queue_depth);
2611
2612 return 0;
2613}
2614
ebe8bddb
OS
2615static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2616{
2617 if (set->ops->map_queues)
2618 return set->ops->map_queues(set);
2619 else
2620 return blk_mq_map_queues(set);
2621}
2622
a4391c64
JA
2623/*
2624 * Alloc a tag set to be associated with one or more request queues.
2625 * May fail with EINVAL for various error conditions. May adjust the
2626 * requested depth down, if if it too large. In that case, the set
2627 * value will be stored in set->queue_depth.
2628 */
24d2f903
CH
2629int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2630{
da695ba2
CH
2631 int ret;
2632
205fb5f5
BVA
2633 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2634
24d2f903
CH
2635 if (!set->nr_hw_queues)
2636 return -EINVAL;
a4391c64 2637 if (!set->queue_depth)
24d2f903
CH
2638 return -EINVAL;
2639 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2640 return -EINVAL;
2641
7d7e0f90 2642 if (!set->ops->queue_rq)
24d2f903
CH
2643 return -EINVAL;
2644
de148297
ML
2645 if (!set->ops->get_budget ^ !set->ops->put_budget)
2646 return -EINVAL;
2647
a4391c64
JA
2648 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2649 pr_info("blk-mq: reduced tag depth to %u\n",
2650 BLK_MQ_MAX_DEPTH);
2651 set->queue_depth = BLK_MQ_MAX_DEPTH;
2652 }
24d2f903 2653
6637fadf
SL
2654 /*
2655 * If a crashdump is active, then we are potentially in a very
2656 * memory constrained environment. Limit us to 1 queue and
2657 * 64 tags to prevent using too much memory.
2658 */
2659 if (is_kdump_kernel()) {
2660 set->nr_hw_queues = 1;
2661 set->queue_depth = min(64U, set->queue_depth);
2662 }
868f2f0b
KB
2663 /*
2664 * There is no use for more h/w queues than cpus.
2665 */
2666 if (set->nr_hw_queues > nr_cpu_ids)
2667 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2668
868f2f0b 2669 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2670 GFP_KERNEL, set->numa_node);
2671 if (!set->tags)
a5164405 2672 return -ENOMEM;
24d2f903 2673
da695ba2
CH
2674 ret = -ENOMEM;
2675 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2676 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2677 if (!set->mq_map)
2678 goto out_free_tags;
2679
ebe8bddb 2680 ret = blk_mq_update_queue_map(set);
da695ba2
CH
2681 if (ret)
2682 goto out_free_mq_map;
2683
2684 ret = blk_mq_alloc_rq_maps(set);
2685 if (ret)
bdd17e75 2686 goto out_free_mq_map;
24d2f903 2687
0d2602ca
JA
2688 mutex_init(&set->tag_list_lock);
2689 INIT_LIST_HEAD(&set->tag_list);
2690
24d2f903 2691 return 0;
bdd17e75
CH
2692
2693out_free_mq_map:
2694 kfree(set->mq_map);
2695 set->mq_map = NULL;
2696out_free_tags:
5676e7b6
RE
2697 kfree(set->tags);
2698 set->tags = NULL;
da695ba2 2699 return ret;
24d2f903
CH
2700}
2701EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2702
2703void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2704{
2705 int i;
2706
cc71a6f4
JA
2707 for (i = 0; i < nr_cpu_ids; i++)
2708 blk_mq_free_map_and_requests(set, i);
484b4061 2709
bdd17e75
CH
2710 kfree(set->mq_map);
2711 set->mq_map = NULL;
2712
981bd189 2713 kfree(set->tags);
5676e7b6 2714 set->tags = NULL;
24d2f903
CH
2715}
2716EXPORT_SYMBOL(blk_mq_free_tag_set);
2717
e3a2b3f9
JA
2718int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2719{
2720 struct blk_mq_tag_set *set = q->tag_set;
2721 struct blk_mq_hw_ctx *hctx;
2722 int i, ret;
2723
bd166ef1 2724 if (!set)
e3a2b3f9
JA
2725 return -EINVAL;
2726
70f36b60 2727 blk_mq_freeze_queue(q);
70f36b60 2728
e3a2b3f9
JA
2729 ret = 0;
2730 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2731 if (!hctx->tags)
2732 continue;
bd166ef1
JA
2733 /*
2734 * If we're using an MQ scheduler, just update the scheduler
2735 * queue depth. This is similar to what the old code would do.
2736 */
70f36b60 2737 if (!hctx->sched_tags) {
c2e82a23 2738 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
70f36b60
JA
2739 false);
2740 } else {
2741 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2742 nr, true);
2743 }
e3a2b3f9
JA
2744 if (ret)
2745 break;
2746 }
2747
2748 if (!ret)
2749 q->nr_requests = nr;
2750
70f36b60 2751 blk_mq_unfreeze_queue(q);
70f36b60 2752
e3a2b3f9
JA
2753 return ret;
2754}
2755
e4dc2b32
KB
2756static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2757 int nr_hw_queues)
868f2f0b
KB
2758{
2759 struct request_queue *q;
2760
705cda97
BVA
2761 lockdep_assert_held(&set->tag_list_lock);
2762
868f2f0b
KB
2763 if (nr_hw_queues > nr_cpu_ids)
2764 nr_hw_queues = nr_cpu_ids;
2765 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2766 return;
2767
2768 list_for_each_entry(q, &set->tag_list, tag_set_list)
2769 blk_mq_freeze_queue(q);
2770
2771 set->nr_hw_queues = nr_hw_queues;
ebe8bddb 2772 blk_mq_update_queue_map(set);
868f2f0b
KB
2773 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2774 blk_mq_realloc_hw_ctxs(set, q);
4b855ad3 2775 blk_mq_queue_reinit(q);
868f2f0b
KB
2776 }
2777
2778 list_for_each_entry(q, &set->tag_list, tag_set_list)
2779 blk_mq_unfreeze_queue(q);
2780}
e4dc2b32
KB
2781
2782void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2783{
2784 mutex_lock(&set->tag_list_lock);
2785 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2786 mutex_unlock(&set->tag_list_lock);
2787}
868f2f0b
KB
2788EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2789
34dbad5d
OS
2790/* Enable polling stats and return whether they were already enabled. */
2791static bool blk_poll_stats_enable(struct request_queue *q)
2792{
2793 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2794 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2795 return true;
2796 blk_stat_add_callback(q, q->poll_cb);
2797 return false;
2798}
2799
2800static void blk_mq_poll_stats_start(struct request_queue *q)
2801{
2802 /*
2803 * We don't arm the callback if polling stats are not enabled or the
2804 * callback is already active.
2805 */
2806 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2807 blk_stat_is_active(q->poll_cb))
2808 return;
2809
2810 blk_stat_activate_msecs(q->poll_cb, 100);
2811}
2812
2813static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2814{
2815 struct request_queue *q = cb->data;
720b8ccc 2816 int bucket;
34dbad5d 2817
720b8ccc
SB
2818 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2819 if (cb->stat[bucket].nr_samples)
2820 q->poll_stat[bucket] = cb->stat[bucket];
2821 }
34dbad5d
OS
2822}
2823
64f1c21e
JA
2824static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2825 struct blk_mq_hw_ctx *hctx,
2826 struct request *rq)
2827{
64f1c21e 2828 unsigned long ret = 0;
720b8ccc 2829 int bucket;
64f1c21e
JA
2830
2831 /*
2832 * If stats collection isn't on, don't sleep but turn it on for
2833 * future users
2834 */
34dbad5d 2835 if (!blk_poll_stats_enable(q))
64f1c21e
JA
2836 return 0;
2837
64f1c21e
JA
2838 /*
2839 * As an optimistic guess, use half of the mean service time
2840 * for this type of request. We can (and should) make this smarter.
2841 * For instance, if the completion latencies are tight, we can
2842 * get closer than just half the mean. This is especially
2843 * important on devices where the completion latencies are longer
720b8ccc
SB
2844 * than ~10 usec. We do use the stats for the relevant IO size
2845 * if available which does lead to better estimates.
64f1c21e 2846 */
720b8ccc
SB
2847 bucket = blk_mq_poll_stats_bkt(rq);
2848 if (bucket < 0)
2849 return ret;
2850
2851 if (q->poll_stat[bucket].nr_samples)
2852 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
2853
2854 return ret;
2855}
2856
06426adf 2857static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2858 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2859 struct request *rq)
2860{
2861 struct hrtimer_sleeper hs;
2862 enum hrtimer_mode mode;
64f1c21e 2863 unsigned int nsecs;
06426adf
JA
2864 ktime_t kt;
2865
64f1c21e
JA
2866 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2867 return false;
2868
2869 /*
2870 * poll_nsec can be:
2871 *
2872 * -1: don't ever hybrid sleep
2873 * 0: use half of prev avg
2874 * >0: use this specific value
2875 */
2876 if (q->poll_nsec == -1)
2877 return false;
2878 else if (q->poll_nsec > 0)
2879 nsecs = q->poll_nsec;
2880 else
2881 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2882
2883 if (!nsecs)
06426adf
JA
2884 return false;
2885
2886 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2887
2888 /*
2889 * This will be replaced with the stats tracking code, using
2890 * 'avg_completion_time / 2' as the pre-sleep target.
2891 */
8b0e1953 2892 kt = nsecs;
06426adf
JA
2893
2894 mode = HRTIMER_MODE_REL;
2895 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2896 hrtimer_set_expires(&hs.timer, kt);
2897
2898 hrtimer_init_sleeper(&hs, current);
2899 do {
2900 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2901 break;
2902 set_current_state(TASK_UNINTERRUPTIBLE);
2903 hrtimer_start_expires(&hs.timer, mode);
2904 if (hs.task)
2905 io_schedule();
2906 hrtimer_cancel(&hs.timer);
2907 mode = HRTIMER_MODE_ABS;
2908 } while (hs.task && !signal_pending(current));
2909
2910 __set_current_state(TASK_RUNNING);
2911 destroy_hrtimer_on_stack(&hs.timer);
2912 return true;
2913}
2914
bbd7bb70
JA
2915static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2916{
2917 struct request_queue *q = hctx->queue;
2918 long state;
2919
06426adf
JA
2920 /*
2921 * If we sleep, have the caller restart the poll loop to reset
2922 * the state. Like for the other success return cases, the
2923 * caller is responsible for checking if the IO completed. If
2924 * the IO isn't complete, we'll get called again and will go
2925 * straight to the busy poll loop.
2926 */
64f1c21e 2927 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
2928 return true;
2929
bbd7bb70
JA
2930 hctx->poll_considered++;
2931
2932 state = current->state;
2933 while (!need_resched()) {
2934 int ret;
2935
2936 hctx->poll_invoked++;
2937
2938 ret = q->mq_ops->poll(hctx, rq->tag);
2939 if (ret > 0) {
2940 hctx->poll_success++;
2941 set_current_state(TASK_RUNNING);
2942 return true;
2943 }
2944
2945 if (signal_pending_state(state, current))
2946 set_current_state(TASK_RUNNING);
2947
2948 if (current->state == TASK_RUNNING)
2949 return true;
2950 if (ret < 0)
2951 break;
2952 cpu_relax();
2953 }
2954
2955 return false;
2956}
2957
ea435e1b 2958static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
bbd7bb70
JA
2959{
2960 struct blk_mq_hw_ctx *hctx;
bbd7bb70
JA
2961 struct request *rq;
2962
ea435e1b 2963 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
bbd7bb70
JA
2964 return false;
2965
bbd7bb70 2966 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
2967 if (!blk_qc_t_is_internal(cookie))
2968 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3a07bb1d 2969 else {
bd166ef1 2970 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3a07bb1d
JA
2971 /*
2972 * With scheduling, if the request has completed, we'll
2973 * get a NULL return here, as we clear the sched tag when
2974 * that happens. The request still remains valid, like always,
2975 * so we should be safe with just the NULL check.
2976 */
2977 if (!rq)
2978 return false;
2979 }
bbd7bb70
JA
2980
2981 return __blk_mq_poll(hctx, rq);
2982}
bbd7bb70 2983
320ae51f
JA
2984static int __init blk_mq_init(void)
2985{
fc13457f
JA
2986 /*
2987 * See comment in block/blk.h rq_atomic_flags enum
2988 */
2989 BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
2990 (REQ_ATOM_COMPLETE / BITS_PER_BYTE));
2991
9467f859
TG
2992 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2993 blk_mq_hctx_notify_dead);
320ae51f
JA
2994 return 0;
2995}
2996subsys_initcall(blk_mq_init);