]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - block/blk-mq.c
blk-mq: rename blk_mq_end_io to blk_mq_end_request
[thirdparty/kernel/stable.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/mm.h>
13#include <linux/init.h>
14#include <linux/slab.h>
15#include <linux/workqueue.h>
16#include <linux/smp.h>
17#include <linux/llist.h>
18#include <linux/list_sort.h>
19#include <linux/cpu.h>
20#include <linux/cache.h>
21#include <linux/sched/sysctl.h>
22#include <linux/delay.h>
23
24#include <trace/events/block.h>
25
26#include <linux/blk-mq.h>
27#include "blk.h"
28#include "blk-mq.h"
29#include "blk-mq-tag.h"
30
31static DEFINE_MUTEX(all_q_mutex);
32static LIST_HEAD(all_q_list);
33
34static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
35
320ae51f
JA
36/*
37 * Check if any of the ctx's have pending work in this hardware queue
38 */
39static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
40{
41 unsigned int i;
42
1429d7c9
JA
43 for (i = 0; i < hctx->ctx_map.map_size; i++)
44 if (hctx->ctx_map.map[i].word)
320ae51f
JA
45 return true;
46
47 return false;
48}
49
1429d7c9
JA
50static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
51 struct blk_mq_ctx *ctx)
52{
53 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
54}
55
56#define CTX_TO_BIT(hctx, ctx) \
57 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
58
320ae51f
JA
59/*
60 * Mark this ctx as having pending work in this hardware queue
61 */
62static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
63 struct blk_mq_ctx *ctx)
64{
1429d7c9
JA
65 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
66
67 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
68 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
69}
70
71static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
72 struct blk_mq_ctx *ctx)
73{
74 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
75
76 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
320ae51f
JA
77}
78
320ae51f
JA
79static int blk_mq_queue_enter(struct request_queue *q)
80{
add703fd
TH
81 while (true) {
82 int ret;
320ae51f 83
add703fd
TH
84 if (percpu_ref_tryget_live(&q->mq_usage_counter))
85 return 0;
320ae51f 86
add703fd
TH
87 ret = wait_event_interruptible(q->mq_freeze_wq,
88 !q->mq_freeze_depth || blk_queue_dying(q));
89 if (blk_queue_dying(q))
90 return -ENODEV;
91 if (ret)
92 return ret;
93 }
320ae51f
JA
94}
95
96static void blk_mq_queue_exit(struct request_queue *q)
97{
add703fd
TH
98 percpu_ref_put(&q->mq_usage_counter);
99}
100
101static void blk_mq_usage_counter_release(struct percpu_ref *ref)
102{
103 struct request_queue *q =
104 container_of(ref, struct request_queue, mq_usage_counter);
105
106 wake_up_all(&q->mq_freeze_wq);
320ae51f
JA
107}
108
72d6f02a
TH
109/*
110 * Guarantee no request is in use, so we can change any data structure of
111 * the queue afterward.
112 */
113void blk_mq_freeze_queue(struct request_queue *q)
43a5e4e2 114{
cddd5d17
TH
115 bool freeze;
116
72d6f02a 117 spin_lock_irq(q->queue_lock);
cddd5d17 118 freeze = !q->mq_freeze_depth++;
72d6f02a
TH
119 spin_unlock_irq(q->queue_lock);
120
cddd5d17
TH
121 if (freeze) {
122 percpu_ref_kill(&q->mq_usage_counter);
123 blk_mq_run_queues(q, false);
124 }
add703fd 125 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
43a5e4e2
ML
126}
127
320ae51f
JA
128static void blk_mq_unfreeze_queue(struct request_queue *q)
129{
cddd5d17 130 bool wake;
320ae51f
JA
131
132 spin_lock_irq(q->queue_lock);
780db207
TH
133 wake = !--q->mq_freeze_depth;
134 WARN_ON_ONCE(q->mq_freeze_depth < 0);
320ae51f 135 spin_unlock_irq(q->queue_lock);
add703fd
TH
136 if (wake) {
137 percpu_ref_reinit(&q->mq_usage_counter);
320ae51f 138 wake_up_all(&q->mq_freeze_wq);
add703fd 139 }
320ae51f
JA
140}
141
142bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
143{
144 return blk_mq_has_free_tags(hctx->tags);
145}
146EXPORT_SYMBOL(blk_mq_can_queue);
147
94eddfbe
JA
148static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
149 struct request *rq, unsigned int rw_flags)
320ae51f 150{
94eddfbe
JA
151 if (blk_queue_io_stat(q))
152 rw_flags |= REQ_IO_STAT;
153
af76e555
CH
154 INIT_LIST_HEAD(&rq->queuelist);
155 /* csd/requeue_work/fifo_time is initialized before use */
156 rq->q = q;
320ae51f 157 rq->mq_ctx = ctx;
0d2602ca 158 rq->cmd_flags |= rw_flags;
af76e555
CH
159 /* do not touch atomic flags, it needs atomic ops against the timer */
160 rq->cpu = -1;
af76e555
CH
161 INIT_HLIST_NODE(&rq->hash);
162 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
163 rq->rq_disk = NULL;
164 rq->part = NULL;
3ee32372 165 rq->start_time = jiffies;
af76e555
CH
166#ifdef CONFIG_BLK_CGROUP
167 rq->rl = NULL;
0fec08b4 168 set_start_time_ns(rq);
af76e555
CH
169 rq->io_start_time_ns = 0;
170#endif
171 rq->nr_phys_segments = 0;
172#if defined(CONFIG_BLK_DEV_INTEGRITY)
173 rq->nr_integrity_segments = 0;
174#endif
af76e555
CH
175 rq->special = NULL;
176 /* tag was already set */
177 rq->errors = 0;
af76e555 178
6f4a1626
TB
179 rq->cmd = rq->__cmd;
180
af76e555
CH
181 rq->extra_len = 0;
182 rq->sense_len = 0;
183 rq->resid_len = 0;
184 rq->sense = NULL;
185
af76e555 186 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
187 rq->timeout = 0;
188
af76e555
CH
189 rq->end_io = NULL;
190 rq->end_io_data = NULL;
191 rq->next_rq = NULL;
192
320ae51f
JA
193 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
194}
195
5dee8577 196static struct request *
cb96a42c 197__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
5dee8577
CH
198{
199 struct request *rq;
200 unsigned int tag;
201
cb96a42c 202 tag = blk_mq_get_tag(data);
5dee8577 203 if (tag != BLK_MQ_TAG_FAIL) {
cb96a42c 204 rq = data->hctx->tags->rqs[tag];
5dee8577 205
cb96a42c 206 if (blk_mq_tag_busy(data->hctx)) {
5dee8577 207 rq->cmd_flags = REQ_MQ_INFLIGHT;
cb96a42c 208 atomic_inc(&data->hctx->nr_active);
5dee8577
CH
209 }
210
211 rq->tag = tag;
cb96a42c 212 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
5dee8577
CH
213 return rq;
214 }
215
216 return NULL;
217}
218
4ce01dd1
CH
219struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
220 bool reserved)
320ae51f 221{
d852564f
CH
222 struct blk_mq_ctx *ctx;
223 struct blk_mq_hw_ctx *hctx;
320ae51f 224 struct request *rq;
cb96a42c 225 struct blk_mq_alloc_data alloc_data;
a492f075 226 int ret;
320ae51f 227
a492f075
JL
228 ret = blk_mq_queue_enter(q);
229 if (ret)
230 return ERR_PTR(ret);
320ae51f 231
d852564f
CH
232 ctx = blk_mq_get_ctx(q);
233 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
234 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
235 reserved, ctx, hctx);
d852564f 236
cb96a42c 237 rq = __blk_mq_alloc_request(&alloc_data, rw);
d852564f
CH
238 if (!rq && (gfp & __GFP_WAIT)) {
239 __blk_mq_run_hw_queue(hctx);
240 blk_mq_put_ctx(ctx);
241
242 ctx = blk_mq_get_ctx(q);
243 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
244 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
245 hctx);
246 rq = __blk_mq_alloc_request(&alloc_data, rw);
247 ctx = alloc_data.ctx;
d852564f
CH
248 }
249 blk_mq_put_ctx(ctx);
a492f075
JL
250 if (!rq)
251 return ERR_PTR(-EWOULDBLOCK);
320ae51f
JA
252 return rq;
253}
4bb659b1 254EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 255
320ae51f
JA
256static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
257 struct blk_mq_ctx *ctx, struct request *rq)
258{
259 const int tag = rq->tag;
260 struct request_queue *q = rq->q;
261
0d2602ca
JA
262 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
263 atomic_dec(&hctx->nr_active);
683d0e12 264 rq->cmd_flags = 0;
0d2602ca 265
af76e555 266 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
0d2602ca 267 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
320ae51f
JA
268 blk_mq_queue_exit(q);
269}
270
271void blk_mq_free_request(struct request *rq)
272{
273 struct blk_mq_ctx *ctx = rq->mq_ctx;
274 struct blk_mq_hw_ctx *hctx;
275 struct request_queue *q = rq->q;
276
277 ctx->rq_completed[rq_is_sync(rq)]++;
278
279 hctx = q->mq_ops->map_queue(q, ctx->cpu);
280 __blk_mq_free_request(hctx, ctx, rq);
281}
282
8727af4b
CH
283/*
284 * Clone all relevant state from a request that has been put on hold in
285 * the flush state machine into the preallocated flush request that hangs
286 * off the request queue.
287 *
288 * For a driver the flush request should be invisible, that's why we are
289 * impersonating the original request here.
290 */
291void blk_mq_clone_flush_request(struct request *flush_rq,
292 struct request *orig_rq)
293{
294 struct blk_mq_hw_ctx *hctx =
295 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
296
297 flush_rq->mq_ctx = orig_rq->mq_ctx;
298 flush_rq->tag = orig_rq->tag;
299 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
300 hctx->cmd_size);
301}
302
c8a446ad 303inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 304{
0d11e6ac
ML
305 blk_account_io_done(rq);
306
91b63639 307 if (rq->end_io) {
320ae51f 308 rq->end_io(rq, error);
91b63639
CH
309 } else {
310 if (unlikely(blk_bidi_rq(rq)))
311 blk_mq_free_request(rq->next_rq);
320ae51f 312 blk_mq_free_request(rq);
91b63639 313 }
320ae51f 314}
c8a446ad 315EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 316
c8a446ad 317void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
318{
319 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
320 BUG();
c8a446ad 321 __blk_mq_end_request(rq, error);
63151a44 322}
c8a446ad 323EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 324
30a91cb4 325static void __blk_mq_complete_request_remote(void *data)
320ae51f 326{
3d6efbf6 327 struct request *rq = data;
320ae51f 328
30a91cb4 329 rq->q->softirq_done_fn(rq);
320ae51f 330}
320ae51f 331
ed851860 332static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
333{
334 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 335 bool shared = false;
320ae51f
JA
336 int cpu;
337
38535201 338 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
339 rq->q->softirq_done_fn(rq);
340 return;
341 }
320ae51f
JA
342
343 cpu = get_cpu();
38535201
CH
344 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
345 shared = cpus_share_cache(cpu, ctx->cpu);
346
347 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 348 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
349 rq->csd.info = rq;
350 rq->csd.flags = 0;
c46fff2a 351 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 352 } else {
30a91cb4 353 rq->q->softirq_done_fn(rq);
3d6efbf6 354 }
320ae51f
JA
355 put_cpu();
356}
30a91cb4 357
ed851860
JA
358void __blk_mq_complete_request(struct request *rq)
359{
360 struct request_queue *q = rq->q;
361
362 if (!q->softirq_done_fn)
c8a446ad 363 blk_mq_end_request(rq, rq->errors);
ed851860
JA
364 else
365 blk_mq_ipi_complete_request(rq);
366}
367
30a91cb4
CH
368/**
369 * blk_mq_complete_request - end I/O on a request
370 * @rq: the request being processed
371 *
372 * Description:
373 * Ends all I/O on a request. It does not handle partial completions.
374 * The actual completion happens out-of-order, through a IPI handler.
375 **/
376void blk_mq_complete_request(struct request *rq)
377{
95f09684
JA
378 struct request_queue *q = rq->q;
379
380 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 381 return;
ed851860
JA
382 if (!blk_mark_rq_complete(rq))
383 __blk_mq_complete_request(rq);
30a91cb4
CH
384}
385EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 386
e2490073 387void blk_mq_start_request(struct request *rq)
320ae51f
JA
388{
389 struct request_queue *q = rq->q;
390
391 trace_block_rq_issue(q, rq);
392
742ee69b 393 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
394 if (unlikely(blk_bidi_rq(rq)))
395 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 396
2b8393b4 397 blk_add_timer(rq);
87ee7b11 398
538b7534
JA
399 /*
400 * Ensure that ->deadline is visible before set the started
401 * flag and clear the completed flag.
402 */
403 smp_mb__before_atomic();
404
87ee7b11
JA
405 /*
406 * Mark us as started and clear complete. Complete might have been
407 * set if requeue raced with timeout, which then marked it as
408 * complete. So be sure to clear complete again when we start
409 * the request, otherwise we'll ignore the completion event.
410 */
4b570521
JA
411 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
412 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
413 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
414 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
415
416 if (q->dma_drain_size && blk_rq_bytes(rq)) {
417 /*
418 * Make sure space for the drain appears. We know we can do
419 * this because max_hw_segments has been adjusted to be one
420 * fewer than the device can handle.
421 */
422 rq->nr_phys_segments++;
423 }
320ae51f 424}
e2490073 425EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 426
ed0791b2 427static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
428{
429 struct request_queue *q = rq->q;
430
431 trace_block_rq_requeue(q, rq);
49f5baa5 432
e2490073
CH
433 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
434 if (q->dma_drain_size && blk_rq_bytes(rq))
435 rq->nr_phys_segments--;
436 }
320ae51f
JA
437}
438
ed0791b2
CH
439void blk_mq_requeue_request(struct request *rq)
440{
ed0791b2
CH
441 __blk_mq_requeue_request(rq);
442 blk_clear_rq_complete(rq);
443
ed0791b2 444 BUG_ON(blk_queued_rq(rq));
6fca6a61 445 blk_mq_add_to_requeue_list(rq, true);
ed0791b2
CH
446}
447EXPORT_SYMBOL(blk_mq_requeue_request);
448
6fca6a61
CH
449static void blk_mq_requeue_work(struct work_struct *work)
450{
451 struct request_queue *q =
452 container_of(work, struct request_queue, requeue_work);
453 LIST_HEAD(rq_list);
454 struct request *rq, *next;
455 unsigned long flags;
456
457 spin_lock_irqsave(&q->requeue_lock, flags);
458 list_splice_init(&q->requeue_list, &rq_list);
459 spin_unlock_irqrestore(&q->requeue_lock, flags);
460
461 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
462 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
463 continue;
464
465 rq->cmd_flags &= ~REQ_SOFTBARRIER;
466 list_del_init(&rq->queuelist);
467 blk_mq_insert_request(rq, true, false, false);
468 }
469
470 while (!list_empty(&rq_list)) {
471 rq = list_entry(rq_list.next, struct request, queuelist);
472 list_del_init(&rq->queuelist);
473 blk_mq_insert_request(rq, false, false, false);
474 }
475
8b957415
JA
476 /*
477 * Use the start variant of queue running here, so that running
478 * the requeue work will kick stopped queues.
479 */
480 blk_mq_start_hw_queues(q);
6fca6a61
CH
481}
482
483void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
484{
485 struct request_queue *q = rq->q;
486 unsigned long flags;
487
488 /*
489 * We abuse this flag that is otherwise used by the I/O scheduler to
490 * request head insertation from the workqueue.
491 */
492 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
493
494 spin_lock_irqsave(&q->requeue_lock, flags);
495 if (at_head) {
496 rq->cmd_flags |= REQ_SOFTBARRIER;
497 list_add(&rq->queuelist, &q->requeue_list);
498 } else {
499 list_add_tail(&rq->queuelist, &q->requeue_list);
500 }
501 spin_unlock_irqrestore(&q->requeue_lock, flags);
502}
503EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
504
505void blk_mq_kick_requeue_list(struct request_queue *q)
506{
507 kblockd_schedule_work(&q->requeue_work);
508}
509EXPORT_SYMBOL(blk_mq_kick_requeue_list);
510
0e62f51f 511static inline bool is_flush_request(struct request *rq, unsigned int tag)
24d2f903 512{
0e62f51f
JA
513 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
514 rq->q->flush_rq->tag == tag);
515}
516
517struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
518{
519 struct request *rq = tags->rqs[tag];
22302375 520
0e62f51f
JA
521 if (!is_flush_request(rq, tag))
522 return rq;
22302375 523
0e62f51f 524 return rq->q->flush_rq;
24d2f903
CH
525}
526EXPORT_SYMBOL(blk_mq_tag_to_rq);
527
320ae51f
JA
528struct blk_mq_timeout_data {
529 struct blk_mq_hw_ctx *hctx;
530 unsigned long *next;
531 unsigned int *next_set;
532};
533
534static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
535{
536 struct blk_mq_timeout_data *data = __data;
537 struct blk_mq_hw_ctx *hctx = data->hctx;
538 unsigned int tag;
539
540 /* It may not be in flight yet (this is where
541 * the REQ_ATOMIC_STARTED flag comes in). The requests are
542 * statically allocated, so we know it's always safe to access the
543 * memory associated with a bit offset into ->rqs[].
544 */
545 tag = 0;
546 do {
547 struct request *rq;
548
24d2f903
CH
549 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
550 if (tag >= hctx->tags->nr_tags)
320ae51f
JA
551 break;
552
0e62f51f 553 rq = blk_mq_tag_to_rq(hctx->tags, tag++);
24d2f903
CH
554 if (rq->q != hctx->queue)
555 continue;
320ae51f
JA
556 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
557 continue;
558
559 blk_rq_check_expired(rq, data->next, data->next_set);
560 } while (1);
561}
562
563static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
564 unsigned long *next,
565 unsigned int *next_set)
566{
567 struct blk_mq_timeout_data data = {
568 .hctx = hctx,
569 .next = next,
570 .next_set = next_set,
571 };
572
573 /*
574 * Ask the tagging code to iterate busy requests, so we can
575 * check them for timeout.
576 */
577 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
578}
579
87ee7b11
JA
580static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
581{
582 struct request_queue *q = rq->q;
583
584 /*
585 * We know that complete is set at this point. If STARTED isn't set
586 * anymore, then the request isn't active and the "timeout" should
587 * just be ignored. This can happen due to the bitflag ordering.
588 * Timeout first checks if STARTED is set, and if it is, assumes
589 * the request is active. But if we race with completion, then
590 * we both flags will get cleared. So check here again, and ignore
591 * a timeout event with a request that isn't active.
592 */
593 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
594 return BLK_EH_NOT_HANDLED;
595
596 if (!q->mq_ops->timeout)
597 return BLK_EH_RESET_TIMER;
598
599 return q->mq_ops->timeout(rq);
600}
601
320ae51f
JA
602static void blk_mq_rq_timer(unsigned long data)
603{
604 struct request_queue *q = (struct request_queue *) data;
605 struct blk_mq_hw_ctx *hctx;
606 unsigned long next = 0;
607 int i, next_set = 0;
608
484b4061
JA
609 queue_for_each_hw_ctx(q, hctx, i) {
610 /*
611 * If not software queues are currently mapped to this
612 * hardware queue, there's nothing to check
613 */
614 if (!hctx->nr_ctx || !hctx->tags)
615 continue;
616
320ae51f 617 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
484b4061 618 }
320ae51f 619
0d2602ca
JA
620 if (next_set) {
621 next = blk_rq_timeout(round_jiffies_up(next));
622 mod_timer(&q->timeout, next);
623 } else {
624 queue_for_each_hw_ctx(q, hctx, i)
625 blk_mq_tag_idle(hctx);
626 }
320ae51f
JA
627}
628
629/*
630 * Reverse check our software queue for entries that we could potentially
631 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
632 * too much time checking for merges.
633 */
634static bool blk_mq_attempt_merge(struct request_queue *q,
635 struct blk_mq_ctx *ctx, struct bio *bio)
636{
637 struct request *rq;
638 int checked = 8;
639
640 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
641 int el_ret;
642
643 if (!checked--)
644 break;
645
646 if (!blk_rq_merge_ok(rq, bio))
647 continue;
648
649 el_ret = blk_try_merge(rq, bio);
650 if (el_ret == ELEVATOR_BACK_MERGE) {
651 if (bio_attempt_back_merge(q, rq, bio)) {
652 ctx->rq_merged++;
653 return true;
654 }
655 break;
656 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
657 if (bio_attempt_front_merge(q, rq, bio)) {
658 ctx->rq_merged++;
659 return true;
660 }
661 break;
662 }
663 }
664
665 return false;
666}
667
1429d7c9
JA
668/*
669 * Process software queues that have been marked busy, splicing them
670 * to the for-dispatch
671 */
672static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
673{
674 struct blk_mq_ctx *ctx;
675 int i;
676
677 for (i = 0; i < hctx->ctx_map.map_size; i++) {
678 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
679 unsigned int off, bit;
680
681 if (!bm->word)
682 continue;
683
684 bit = 0;
685 off = i * hctx->ctx_map.bits_per_word;
686 do {
687 bit = find_next_bit(&bm->word, bm->depth, bit);
688 if (bit >= bm->depth)
689 break;
690
691 ctx = hctx->ctxs[bit + off];
692 clear_bit(bit, &bm->word);
693 spin_lock(&ctx->lock);
694 list_splice_tail_init(&ctx->rq_list, list);
695 spin_unlock(&ctx->lock);
696
697 bit++;
698 } while (1);
699 }
700}
701
320ae51f
JA
702/*
703 * Run this hardware queue, pulling any software queues mapped to it in.
704 * Note that this function currently has various problems around ordering
705 * of IO. In particular, we'd like FIFO behaviour on handling existing
706 * items on the hctx->dispatch list. Ignore that for now.
707 */
708static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
709{
710 struct request_queue *q = hctx->queue;
320ae51f
JA
711 struct request *rq;
712 LIST_HEAD(rq_list);
1429d7c9 713 int queued;
320ae51f 714
fd1270d5 715 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
e4043dcf 716
5d12f905 717 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
718 return;
719
720 hctx->run++;
721
722 /*
723 * Touch any software queue that has pending entries.
724 */
1429d7c9 725 flush_busy_ctxs(hctx, &rq_list);
320ae51f
JA
726
727 /*
728 * If we have previous entries on our dispatch list, grab them
729 * and stuff them at the front for more fair dispatch.
730 */
731 if (!list_empty_careful(&hctx->dispatch)) {
732 spin_lock(&hctx->lock);
733 if (!list_empty(&hctx->dispatch))
734 list_splice_init(&hctx->dispatch, &rq_list);
735 spin_unlock(&hctx->lock);
736 }
737
320ae51f
JA
738 /*
739 * Now process all the entries, sending them to the driver.
740 */
1429d7c9 741 queued = 0;
320ae51f
JA
742 while (!list_empty(&rq_list)) {
743 int ret;
744
745 rq = list_first_entry(&rq_list, struct request, queuelist);
746 list_del_init(&rq->queuelist);
320ae51f 747
bf572297 748 ret = q->mq_ops->queue_rq(hctx, rq, list_empty(&rq_list));
320ae51f
JA
749 switch (ret) {
750 case BLK_MQ_RQ_QUEUE_OK:
751 queued++;
752 continue;
753 case BLK_MQ_RQ_QUEUE_BUSY:
320ae51f 754 list_add(&rq->queuelist, &rq_list);
ed0791b2 755 __blk_mq_requeue_request(rq);
320ae51f
JA
756 break;
757 default:
758 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 759 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 760 rq->errors = -EIO;
c8a446ad 761 blk_mq_end_request(rq, rq->errors);
320ae51f
JA
762 break;
763 }
764
765 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
766 break;
767 }
768
769 if (!queued)
770 hctx->dispatched[0]++;
771 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
772 hctx->dispatched[ilog2(queued) + 1]++;
773
774 /*
775 * Any items that need requeuing? Stuff them into hctx->dispatch,
776 * that is where we will continue on next queue run.
777 */
778 if (!list_empty(&rq_list)) {
779 spin_lock(&hctx->lock);
780 list_splice(&rq_list, &hctx->dispatch);
781 spin_unlock(&hctx->lock);
782 }
783}
784
506e931f
JA
785/*
786 * It'd be great if the workqueue API had a way to pass
787 * in a mask and had some smarts for more clever placement.
788 * For now we just round-robin here, switching for every
789 * BLK_MQ_CPU_WORK_BATCH queued items.
790 */
791static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
792{
793 int cpu = hctx->next_cpu;
794
795 if (--hctx->next_cpu_batch <= 0) {
796 int next_cpu;
797
798 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
799 if (next_cpu >= nr_cpu_ids)
800 next_cpu = cpumask_first(hctx->cpumask);
801
802 hctx->next_cpu = next_cpu;
803 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
804 }
805
806 return cpu;
807}
808
320ae51f
JA
809void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
810{
5d12f905 811 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
812 return;
813
e4043dcf 814 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
320ae51f 815 __blk_mq_run_hw_queue(hctx);
e4043dcf 816 else if (hctx->queue->nr_hw_queues == 1)
70f4db63 817 kblockd_schedule_delayed_work(&hctx->run_work, 0);
e4043dcf
JA
818 else {
819 unsigned int cpu;
820
506e931f 821 cpu = blk_mq_hctx_next_cpu(hctx);
70f4db63 822 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
e4043dcf 823 }
320ae51f
JA
824}
825
826void blk_mq_run_queues(struct request_queue *q, bool async)
827{
828 struct blk_mq_hw_ctx *hctx;
829 int i;
830
831 queue_for_each_hw_ctx(q, hctx, i) {
832 if ((!blk_mq_hctx_has_pending(hctx) &&
833 list_empty_careful(&hctx->dispatch)) ||
5d12f905 834 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
320ae51f
JA
835 continue;
836
e4043dcf 837 preempt_disable();
320ae51f 838 blk_mq_run_hw_queue(hctx, async);
e4043dcf 839 preempt_enable();
320ae51f
JA
840 }
841}
842EXPORT_SYMBOL(blk_mq_run_queues);
843
844void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
845{
70f4db63
CH
846 cancel_delayed_work(&hctx->run_work);
847 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
848 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
849}
850EXPORT_SYMBOL(blk_mq_stop_hw_queue);
851
280d45f6
CH
852void blk_mq_stop_hw_queues(struct request_queue *q)
853{
854 struct blk_mq_hw_ctx *hctx;
855 int i;
856
857 queue_for_each_hw_ctx(q, hctx, i)
858 blk_mq_stop_hw_queue(hctx);
859}
860EXPORT_SYMBOL(blk_mq_stop_hw_queues);
861
320ae51f
JA
862void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
863{
864 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf
JA
865
866 preempt_disable();
0ffbce80 867 blk_mq_run_hw_queue(hctx, false);
e4043dcf 868 preempt_enable();
320ae51f
JA
869}
870EXPORT_SYMBOL(blk_mq_start_hw_queue);
871
2f268556
CH
872void blk_mq_start_hw_queues(struct request_queue *q)
873{
874 struct blk_mq_hw_ctx *hctx;
875 int i;
876
877 queue_for_each_hw_ctx(q, hctx, i)
878 blk_mq_start_hw_queue(hctx);
879}
880EXPORT_SYMBOL(blk_mq_start_hw_queues);
881
882
1b4a3258 883void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
884{
885 struct blk_mq_hw_ctx *hctx;
886 int i;
887
888 queue_for_each_hw_ctx(q, hctx, i) {
889 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
890 continue;
891
892 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 893 preempt_disable();
1b4a3258 894 blk_mq_run_hw_queue(hctx, async);
e4043dcf 895 preempt_enable();
320ae51f
JA
896 }
897}
898EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
899
70f4db63 900static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
901{
902 struct blk_mq_hw_ctx *hctx;
903
70f4db63 904 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
e4043dcf 905
320ae51f
JA
906 __blk_mq_run_hw_queue(hctx);
907}
908
70f4db63
CH
909static void blk_mq_delay_work_fn(struct work_struct *work)
910{
911 struct blk_mq_hw_ctx *hctx;
912
913 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
914
915 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
916 __blk_mq_run_hw_queue(hctx);
917}
918
919void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
920{
921 unsigned long tmo = msecs_to_jiffies(msecs);
922
923 if (hctx->queue->nr_hw_queues == 1)
924 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
925 else {
926 unsigned int cpu;
927
506e931f 928 cpu = blk_mq_hctx_next_cpu(hctx);
70f4db63
CH
929 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
930 }
931}
932EXPORT_SYMBOL(blk_mq_delay_queue);
933
320ae51f 934static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
72a0a36e 935 struct request *rq, bool at_head)
320ae51f
JA
936{
937 struct blk_mq_ctx *ctx = rq->mq_ctx;
938
01b983c9
JA
939 trace_block_rq_insert(hctx->queue, rq);
940
72a0a36e
CH
941 if (at_head)
942 list_add(&rq->queuelist, &ctx->rq_list);
943 else
944 list_add_tail(&rq->queuelist, &ctx->rq_list);
4bb659b1 945
320ae51f 946 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
947}
948
eeabc850
CH
949void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
950 bool async)
320ae51f 951{
eeabc850 952 struct request_queue *q = rq->q;
320ae51f 953 struct blk_mq_hw_ctx *hctx;
eeabc850
CH
954 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
955
956 current_ctx = blk_mq_get_ctx(q);
957 if (!cpu_online(ctx->cpu))
958 rq->mq_ctx = ctx = current_ctx;
320ae51f 959
320ae51f
JA
960 hctx = q->mq_ops->map_queue(q, ctx->cpu);
961
a57a178a
CH
962 spin_lock(&ctx->lock);
963 __blk_mq_insert_request(hctx, rq, at_head);
964 spin_unlock(&ctx->lock);
320ae51f 965
320ae51f
JA
966 if (run_queue)
967 blk_mq_run_hw_queue(hctx, async);
e4043dcf
JA
968
969 blk_mq_put_ctx(current_ctx);
320ae51f
JA
970}
971
972static void blk_mq_insert_requests(struct request_queue *q,
973 struct blk_mq_ctx *ctx,
974 struct list_head *list,
975 int depth,
976 bool from_schedule)
977
978{
979 struct blk_mq_hw_ctx *hctx;
980 struct blk_mq_ctx *current_ctx;
981
982 trace_block_unplug(q, depth, !from_schedule);
983
984 current_ctx = blk_mq_get_ctx(q);
985
986 if (!cpu_online(ctx->cpu))
987 ctx = current_ctx;
988 hctx = q->mq_ops->map_queue(q, ctx->cpu);
989
990 /*
991 * preemption doesn't flush plug list, so it's possible ctx->cpu is
992 * offline now
993 */
994 spin_lock(&ctx->lock);
995 while (!list_empty(list)) {
996 struct request *rq;
997
998 rq = list_first_entry(list, struct request, queuelist);
999 list_del_init(&rq->queuelist);
1000 rq->mq_ctx = ctx;
72a0a36e 1001 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
1002 }
1003 spin_unlock(&ctx->lock);
1004
320ae51f 1005 blk_mq_run_hw_queue(hctx, from_schedule);
e4043dcf 1006 blk_mq_put_ctx(current_ctx);
320ae51f
JA
1007}
1008
1009static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1010{
1011 struct request *rqa = container_of(a, struct request, queuelist);
1012 struct request *rqb = container_of(b, struct request, queuelist);
1013
1014 return !(rqa->mq_ctx < rqb->mq_ctx ||
1015 (rqa->mq_ctx == rqb->mq_ctx &&
1016 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1017}
1018
1019void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1020{
1021 struct blk_mq_ctx *this_ctx;
1022 struct request_queue *this_q;
1023 struct request *rq;
1024 LIST_HEAD(list);
1025 LIST_HEAD(ctx_list);
1026 unsigned int depth;
1027
1028 list_splice_init(&plug->mq_list, &list);
1029
1030 list_sort(NULL, &list, plug_ctx_cmp);
1031
1032 this_q = NULL;
1033 this_ctx = NULL;
1034 depth = 0;
1035
1036 while (!list_empty(&list)) {
1037 rq = list_entry_rq(list.next);
1038 list_del_init(&rq->queuelist);
1039 BUG_ON(!rq->q);
1040 if (rq->mq_ctx != this_ctx) {
1041 if (this_ctx) {
1042 blk_mq_insert_requests(this_q, this_ctx,
1043 &ctx_list, depth,
1044 from_schedule);
1045 }
1046
1047 this_ctx = rq->mq_ctx;
1048 this_q = rq->q;
1049 depth = 0;
1050 }
1051
1052 depth++;
1053 list_add_tail(&rq->queuelist, &ctx_list);
1054 }
1055
1056 /*
1057 * If 'this_ctx' is set, we know we have entries to complete
1058 * on 'ctx_list'. Do those.
1059 */
1060 if (this_ctx) {
1061 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1062 from_schedule);
1063 }
1064}
1065
1066static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1067{
1068 init_request_from_bio(rq, bio);
4b570521 1069
3ee32372 1070 if (blk_do_io_stat(rq))
4b570521 1071 blk_account_io_start(rq, 1);
320ae51f
JA
1072}
1073
274a5843
JA
1074static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1075{
1076 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1077 !blk_queue_nomerges(hctx->queue);
1078}
1079
07068d5b
JA
1080static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1081 struct blk_mq_ctx *ctx,
1082 struct request *rq, struct bio *bio)
320ae51f 1083{
274a5843 1084 if (!hctx_allow_merges(hctx)) {
07068d5b
JA
1085 blk_mq_bio_to_request(rq, bio);
1086 spin_lock(&ctx->lock);
1087insert_rq:
1088 __blk_mq_insert_request(hctx, rq, false);
1089 spin_unlock(&ctx->lock);
1090 return false;
1091 } else {
274a5843
JA
1092 struct request_queue *q = hctx->queue;
1093
07068d5b
JA
1094 spin_lock(&ctx->lock);
1095 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1096 blk_mq_bio_to_request(rq, bio);
1097 goto insert_rq;
1098 }
320ae51f 1099
07068d5b
JA
1100 spin_unlock(&ctx->lock);
1101 __blk_mq_free_request(hctx, ctx, rq);
1102 return true;
14ec77f3 1103 }
07068d5b 1104}
14ec77f3 1105
07068d5b
JA
1106struct blk_map_ctx {
1107 struct blk_mq_hw_ctx *hctx;
1108 struct blk_mq_ctx *ctx;
1109};
1110
1111static struct request *blk_mq_map_request(struct request_queue *q,
1112 struct bio *bio,
1113 struct blk_map_ctx *data)
1114{
1115 struct blk_mq_hw_ctx *hctx;
1116 struct blk_mq_ctx *ctx;
1117 struct request *rq;
1118 int rw = bio_data_dir(bio);
cb96a42c 1119 struct blk_mq_alloc_data alloc_data;
320ae51f 1120
07068d5b 1121 if (unlikely(blk_mq_queue_enter(q))) {
320ae51f 1122 bio_endio(bio, -EIO);
07068d5b 1123 return NULL;
320ae51f
JA
1124 }
1125
1126 ctx = blk_mq_get_ctx(q);
1127 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1128
07068d5b 1129 if (rw_is_sync(bio->bi_rw))
27fbf4e8 1130 rw |= REQ_SYNC;
07068d5b 1131
320ae51f 1132 trace_block_getrq(q, bio, rw);
cb96a42c
ML
1133 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1134 hctx);
1135 rq = __blk_mq_alloc_request(&alloc_data, rw);
5dee8577 1136 if (unlikely(!rq)) {
793597a6 1137 __blk_mq_run_hw_queue(hctx);
320ae51f
JA
1138 blk_mq_put_ctx(ctx);
1139 trace_block_sleeprq(q, bio, rw);
793597a6
CH
1140
1141 ctx = blk_mq_get_ctx(q);
320ae51f 1142 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
1143 blk_mq_set_alloc_data(&alloc_data, q,
1144 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1145 rq = __blk_mq_alloc_request(&alloc_data, rw);
1146 ctx = alloc_data.ctx;
1147 hctx = alloc_data.hctx;
320ae51f
JA
1148 }
1149
1150 hctx->queued++;
07068d5b
JA
1151 data->hctx = hctx;
1152 data->ctx = ctx;
1153 return rq;
1154}
1155
1156/*
1157 * Multiple hardware queue variant. This will not use per-process plugs,
1158 * but will attempt to bypass the hctx queueing if we can go straight to
1159 * hardware for SYNC IO.
1160 */
1161static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1162{
1163 const int is_sync = rw_is_sync(bio->bi_rw);
1164 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1165 struct blk_map_ctx data;
1166 struct request *rq;
1167
1168 blk_queue_bounce(q, &bio);
1169
1170 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1171 bio_endio(bio, -EIO);
1172 return;
1173 }
1174
1175 rq = blk_mq_map_request(q, bio, &data);
1176 if (unlikely(!rq))
1177 return;
1178
1179 if (unlikely(is_flush_fua)) {
1180 blk_mq_bio_to_request(rq, bio);
1181 blk_insert_flush(rq);
1182 goto run_queue;
1183 }
1184
1185 if (is_sync) {
1186 int ret;
1187
1188 blk_mq_bio_to_request(rq, bio);
07068d5b
JA
1189
1190 /*
1191 * For OK queue, we are done. For error, kill it. Any other
1192 * error (busy), just add it to our list as we previously
1193 * would have done
1194 */
bf572297 1195 ret = q->mq_ops->queue_rq(data.hctx, rq, true);
07068d5b
JA
1196 if (ret == BLK_MQ_RQ_QUEUE_OK)
1197 goto done;
1198 else {
1199 __blk_mq_requeue_request(rq);
1200
1201 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1202 rq->errors = -EIO;
c8a446ad 1203 blk_mq_end_request(rq, rq->errors);
07068d5b
JA
1204 goto done;
1205 }
1206 }
1207 }
1208
1209 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1210 /*
1211 * For a SYNC request, send it to the hardware immediately. For
1212 * an ASYNC request, just ensure that we run it later on. The
1213 * latter allows for merging opportunities and more efficient
1214 * dispatching.
1215 */
1216run_queue:
1217 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1218 }
1219done:
1220 blk_mq_put_ctx(data.ctx);
1221}
1222
1223/*
1224 * Single hardware queue variant. This will attempt to use any per-process
1225 * plug for merging and IO deferral.
1226 */
1227static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1228{
1229 const int is_sync = rw_is_sync(bio->bi_rw);
1230 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1231 unsigned int use_plug, request_count = 0;
1232 struct blk_map_ctx data;
1233 struct request *rq;
1234
1235 /*
1236 * If we have multiple hardware queues, just go directly to
1237 * one of those for sync IO.
1238 */
1239 use_plug = !is_flush_fua && !is_sync;
1240
1241 blk_queue_bounce(q, &bio);
1242
1243 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1244 bio_endio(bio, -EIO);
1245 return;
1246 }
1247
1248 if (use_plug && !blk_queue_nomerges(q) &&
1249 blk_attempt_plug_merge(q, bio, &request_count))
1250 return;
1251
1252 rq = blk_mq_map_request(q, bio, &data);
ff87bcec
JA
1253 if (unlikely(!rq))
1254 return;
320ae51f
JA
1255
1256 if (unlikely(is_flush_fua)) {
1257 blk_mq_bio_to_request(rq, bio);
320ae51f
JA
1258 blk_insert_flush(rq);
1259 goto run_queue;
1260 }
1261
1262 /*
1263 * A task plug currently exists. Since this is completely lockless,
1264 * utilize that to temporarily store requests until the task is
1265 * either done or scheduled away.
1266 */
1267 if (use_plug) {
1268 struct blk_plug *plug = current->plug;
1269
1270 if (plug) {
1271 blk_mq_bio_to_request(rq, bio);
92f399c7 1272 if (list_empty(&plug->mq_list))
320ae51f
JA
1273 trace_block_plug(q);
1274 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1275 blk_flush_plug_list(plug, false);
1276 trace_block_plug(q);
1277 }
1278 list_add_tail(&rq->queuelist, &plug->mq_list);
07068d5b 1279 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1280 return;
1281 }
1282 }
1283
07068d5b
JA
1284 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1285 /*
1286 * For a SYNC request, send it to the hardware immediately. For
1287 * an ASYNC request, just ensure that we run it later on. The
1288 * latter allows for merging opportunities and more efficient
1289 * dispatching.
1290 */
1291run_queue:
1292 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1293 }
1294
07068d5b 1295 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1296}
1297
1298/*
1299 * Default mapping to a software queue, since we use one per CPU.
1300 */
1301struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1302{
1303 return q->queue_hw_ctx[q->mq_map[cpu]];
1304}
1305EXPORT_SYMBOL(blk_mq_map_queue);
1306
24d2f903
CH
1307static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1308 struct blk_mq_tags *tags, unsigned int hctx_idx)
95363efd 1309{
e9b267d9 1310 struct page *page;
320ae51f 1311
24d2f903 1312 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1313 int i;
320ae51f 1314
24d2f903
CH
1315 for (i = 0; i < tags->nr_tags; i++) {
1316 if (!tags->rqs[i])
e9b267d9 1317 continue;
24d2f903
CH
1318 set->ops->exit_request(set->driver_data, tags->rqs[i],
1319 hctx_idx, i);
a5164405 1320 tags->rqs[i] = NULL;
e9b267d9 1321 }
320ae51f 1322 }
320ae51f 1323
24d2f903
CH
1324 while (!list_empty(&tags->page_list)) {
1325 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1326 list_del_init(&page->lru);
320ae51f
JA
1327 __free_pages(page, page->private);
1328 }
1329
24d2f903 1330 kfree(tags->rqs);
320ae51f 1331
24d2f903 1332 blk_mq_free_tags(tags);
320ae51f
JA
1333}
1334
1335static size_t order_to_size(unsigned int order)
1336{
4ca08500 1337 return (size_t)PAGE_SIZE << order;
320ae51f
JA
1338}
1339
24d2f903
CH
1340static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1341 unsigned int hctx_idx)
320ae51f 1342{
24d2f903 1343 struct blk_mq_tags *tags;
320ae51f
JA
1344 unsigned int i, j, entries_per_page, max_order = 4;
1345 size_t rq_size, left;
1346
24d2f903
CH
1347 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1348 set->numa_node);
1349 if (!tags)
1350 return NULL;
320ae51f 1351
24d2f903
CH
1352 INIT_LIST_HEAD(&tags->page_list);
1353
a5164405
JA
1354 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1355 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1356 set->numa_node);
24d2f903
CH
1357 if (!tags->rqs) {
1358 blk_mq_free_tags(tags);
1359 return NULL;
1360 }
320ae51f
JA
1361
1362 /*
1363 * rq_size is the size of the request plus driver payload, rounded
1364 * to the cacheline size
1365 */
24d2f903 1366 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1367 cache_line_size());
24d2f903 1368 left = rq_size * set->queue_depth;
320ae51f 1369
24d2f903 1370 for (i = 0; i < set->queue_depth; ) {
320ae51f
JA
1371 int this_order = max_order;
1372 struct page *page;
1373 int to_do;
1374 void *p;
1375
1376 while (left < order_to_size(this_order - 1) && this_order)
1377 this_order--;
1378
1379 do {
a5164405
JA
1380 page = alloc_pages_node(set->numa_node,
1381 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1382 this_order);
320ae51f
JA
1383 if (page)
1384 break;
1385 if (!this_order--)
1386 break;
1387 if (order_to_size(this_order) < rq_size)
1388 break;
1389 } while (1);
1390
1391 if (!page)
24d2f903 1392 goto fail;
320ae51f
JA
1393
1394 page->private = this_order;
24d2f903 1395 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1396
1397 p = page_address(page);
1398 entries_per_page = order_to_size(this_order) / rq_size;
24d2f903 1399 to_do = min(entries_per_page, set->queue_depth - i);
320ae51f
JA
1400 left -= to_do * rq_size;
1401 for (j = 0; j < to_do; j++) {
24d2f903 1402 tags->rqs[i] = p;
683d0e12
DH
1403 tags->rqs[i]->atomic_flags = 0;
1404 tags->rqs[i]->cmd_flags = 0;
24d2f903
CH
1405 if (set->ops->init_request) {
1406 if (set->ops->init_request(set->driver_data,
1407 tags->rqs[i], hctx_idx, i,
a5164405
JA
1408 set->numa_node)) {
1409 tags->rqs[i] = NULL;
24d2f903 1410 goto fail;
a5164405 1411 }
e9b267d9
CH
1412 }
1413
320ae51f
JA
1414 p += rq_size;
1415 i++;
1416 }
1417 }
1418
24d2f903 1419 return tags;
320ae51f 1420
24d2f903 1421fail:
24d2f903
CH
1422 blk_mq_free_rq_map(set, tags, hctx_idx);
1423 return NULL;
320ae51f
JA
1424}
1425
1429d7c9
JA
1426static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1427{
1428 kfree(bitmap->map);
1429}
1430
1431static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1432{
1433 unsigned int bpw = 8, total, num_maps, i;
1434
1435 bitmap->bits_per_word = bpw;
1436
1437 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1438 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1439 GFP_KERNEL, node);
1440 if (!bitmap->map)
1441 return -ENOMEM;
1442
1443 bitmap->map_size = num_maps;
1444
1445 total = nr_cpu_ids;
1446 for (i = 0; i < num_maps; i++) {
1447 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1448 total -= bitmap->map[i].depth;
1449 }
1450
1451 return 0;
1452}
1453
484b4061
JA
1454static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1455{
1456 struct request_queue *q = hctx->queue;
1457 struct blk_mq_ctx *ctx;
1458 LIST_HEAD(tmp);
1459
1460 /*
1461 * Move ctx entries to new CPU, if this one is going away.
1462 */
1463 ctx = __blk_mq_get_ctx(q, cpu);
1464
1465 spin_lock(&ctx->lock);
1466 if (!list_empty(&ctx->rq_list)) {
1467 list_splice_init(&ctx->rq_list, &tmp);
1468 blk_mq_hctx_clear_pending(hctx, ctx);
1469 }
1470 spin_unlock(&ctx->lock);
1471
1472 if (list_empty(&tmp))
1473 return NOTIFY_OK;
1474
1475 ctx = blk_mq_get_ctx(q);
1476 spin_lock(&ctx->lock);
1477
1478 while (!list_empty(&tmp)) {
1479 struct request *rq;
1480
1481 rq = list_first_entry(&tmp, struct request, queuelist);
1482 rq->mq_ctx = ctx;
1483 list_move_tail(&rq->queuelist, &ctx->rq_list);
1484 }
1485
1486 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1487 blk_mq_hctx_mark_pending(hctx, ctx);
1488
1489 spin_unlock(&ctx->lock);
1490
1491 blk_mq_run_hw_queue(hctx, true);
1492 blk_mq_put_ctx(ctx);
1493 return NOTIFY_OK;
1494}
1495
1496static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1497{
1498 struct request_queue *q = hctx->queue;
1499 struct blk_mq_tag_set *set = q->tag_set;
1500
1501 if (set->tags[hctx->queue_num])
1502 return NOTIFY_OK;
1503
1504 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1505 if (!set->tags[hctx->queue_num])
1506 return NOTIFY_STOP;
1507
1508 hctx->tags = set->tags[hctx->queue_num];
1509 return NOTIFY_OK;
1510}
1511
1512static int blk_mq_hctx_notify(void *data, unsigned long action,
1513 unsigned int cpu)
1514{
1515 struct blk_mq_hw_ctx *hctx = data;
1516
1517 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1518 return blk_mq_hctx_cpu_offline(hctx, cpu);
1519 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1520 return blk_mq_hctx_cpu_online(hctx, cpu);
1521
1522 return NOTIFY_OK;
1523}
1524
624dbe47
ML
1525static void blk_mq_exit_hw_queues(struct request_queue *q,
1526 struct blk_mq_tag_set *set, int nr_queue)
1527{
1528 struct blk_mq_hw_ctx *hctx;
1529 unsigned int i;
1530
1531 queue_for_each_hw_ctx(q, hctx, i) {
1532 if (i == nr_queue)
1533 break;
1534
f899fed4
JA
1535 blk_mq_tag_idle(hctx);
1536
624dbe47
ML
1537 if (set->ops->exit_hctx)
1538 set->ops->exit_hctx(hctx, i);
1539
1540 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1541 kfree(hctx->ctxs);
1542 blk_mq_free_bitmap(&hctx->ctx_map);
1543 }
1544
1545}
1546
1547static void blk_mq_free_hw_queues(struct request_queue *q,
1548 struct blk_mq_tag_set *set)
1549{
1550 struct blk_mq_hw_ctx *hctx;
1551 unsigned int i;
1552
1553 queue_for_each_hw_ctx(q, hctx, i) {
1554 free_cpumask_var(hctx->cpumask);
cdef54dd 1555 kfree(hctx);
624dbe47
ML
1556 }
1557}
1558
320ae51f 1559static int blk_mq_init_hw_queues(struct request_queue *q,
24d2f903 1560 struct blk_mq_tag_set *set)
320ae51f
JA
1561{
1562 struct blk_mq_hw_ctx *hctx;
624dbe47 1563 unsigned int i;
320ae51f
JA
1564
1565 /*
1566 * Initialize hardware queues
1567 */
1568 queue_for_each_hw_ctx(q, hctx, i) {
320ae51f
JA
1569 int node;
1570
1571 node = hctx->numa_node;
1572 if (node == NUMA_NO_NODE)
24d2f903 1573 node = hctx->numa_node = set->numa_node;
320ae51f 1574
70f4db63
CH
1575 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1576 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
320ae51f
JA
1577 spin_lock_init(&hctx->lock);
1578 INIT_LIST_HEAD(&hctx->dispatch);
1579 hctx->queue = q;
1580 hctx->queue_num = i;
24d2f903
CH
1581 hctx->flags = set->flags;
1582 hctx->cmd_size = set->cmd_size;
320ae51f
JA
1583
1584 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1585 blk_mq_hctx_notify, hctx);
1586 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1587
24d2f903 1588 hctx->tags = set->tags[i];
320ae51f
JA
1589
1590 /*
a68aafa5 1591 * Allocate space for all possible cpus to avoid allocation at
320ae51f
JA
1592 * runtime
1593 */
1594 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1595 GFP_KERNEL, node);
1596 if (!hctx->ctxs)
1597 break;
1598
1429d7c9 1599 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
320ae51f
JA
1600 break;
1601
320ae51f
JA
1602 hctx->nr_ctx = 0;
1603
24d2f903
CH
1604 if (set->ops->init_hctx &&
1605 set->ops->init_hctx(hctx, set->driver_data, i))
320ae51f
JA
1606 break;
1607 }
1608
1609 if (i == q->nr_hw_queues)
1610 return 0;
1611
1612 /*
1613 * Init failed
1614 */
624dbe47 1615 blk_mq_exit_hw_queues(q, set, i);
320ae51f
JA
1616
1617 return 1;
1618}
1619
1620static void blk_mq_init_cpu_queues(struct request_queue *q,
1621 unsigned int nr_hw_queues)
1622{
1623 unsigned int i;
1624
1625 for_each_possible_cpu(i) {
1626 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1627 struct blk_mq_hw_ctx *hctx;
1628
1629 memset(__ctx, 0, sizeof(*__ctx));
1630 __ctx->cpu = i;
1631 spin_lock_init(&__ctx->lock);
1632 INIT_LIST_HEAD(&__ctx->rq_list);
1633 __ctx->queue = q;
1634
1635 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1636 if (!cpu_online(i))
1637 continue;
1638
e4043dcf
JA
1639 hctx = q->mq_ops->map_queue(q, i);
1640 cpumask_set_cpu(i, hctx->cpumask);
1641 hctx->nr_ctx++;
1642
320ae51f
JA
1643 /*
1644 * Set local node, IFF we have more than one hw queue. If
1645 * not, we remain on the home node of the device
1646 */
1647 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1648 hctx->numa_node = cpu_to_node(i);
1649 }
1650}
1651
1652static void blk_mq_map_swqueue(struct request_queue *q)
1653{
1654 unsigned int i;
1655 struct blk_mq_hw_ctx *hctx;
1656 struct blk_mq_ctx *ctx;
1657
1658 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1659 cpumask_clear(hctx->cpumask);
320ae51f
JA
1660 hctx->nr_ctx = 0;
1661 }
1662
1663 /*
1664 * Map software to hardware queues
1665 */
1666 queue_for_each_ctx(q, ctx, i) {
1667 /* If the cpu isn't online, the cpu is mapped to first hctx */
e4043dcf
JA
1668 if (!cpu_online(i))
1669 continue;
1670
320ae51f 1671 hctx = q->mq_ops->map_queue(q, i);
e4043dcf 1672 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
1673 ctx->index_hw = hctx->nr_ctx;
1674 hctx->ctxs[hctx->nr_ctx++] = ctx;
1675 }
506e931f
JA
1676
1677 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 1678 /*
a68aafa5
JA
1679 * If no software queues are mapped to this hardware queue,
1680 * disable it and free the request entries.
484b4061
JA
1681 */
1682 if (!hctx->nr_ctx) {
1683 struct blk_mq_tag_set *set = q->tag_set;
1684
1685 if (set->tags[i]) {
1686 blk_mq_free_rq_map(set, set->tags[i], i);
1687 set->tags[i] = NULL;
1688 hctx->tags = NULL;
1689 }
1690 continue;
1691 }
1692
1693 /*
1694 * Initialize batch roundrobin counts
1695 */
506e931f
JA
1696 hctx->next_cpu = cpumask_first(hctx->cpumask);
1697 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1698 }
320ae51f
JA
1699}
1700
0d2602ca
JA
1701static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1702{
1703 struct blk_mq_hw_ctx *hctx;
1704 struct request_queue *q;
1705 bool shared;
1706 int i;
1707
1708 if (set->tag_list.next == set->tag_list.prev)
1709 shared = false;
1710 else
1711 shared = true;
1712
1713 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1714 blk_mq_freeze_queue(q);
1715
1716 queue_for_each_hw_ctx(q, hctx, i) {
1717 if (shared)
1718 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1719 else
1720 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1721 }
1722 blk_mq_unfreeze_queue(q);
1723 }
1724}
1725
1726static void blk_mq_del_queue_tag_set(struct request_queue *q)
1727{
1728 struct blk_mq_tag_set *set = q->tag_set;
1729
0d2602ca
JA
1730 mutex_lock(&set->tag_list_lock);
1731 list_del_init(&q->tag_set_list);
1732 blk_mq_update_tag_set_depth(set);
1733 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
1734}
1735
1736static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1737 struct request_queue *q)
1738{
1739 q->tag_set = set;
1740
1741 mutex_lock(&set->tag_list_lock);
1742 list_add_tail(&q->tag_set_list, &set->tag_list);
1743 blk_mq_update_tag_set_depth(set);
1744 mutex_unlock(&set->tag_list_lock);
1745}
1746
24d2f903 1747struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
320ae51f
JA
1748{
1749 struct blk_mq_hw_ctx **hctxs;
e6cdb092 1750 struct blk_mq_ctx __percpu *ctx;
320ae51f 1751 struct request_queue *q;
f14bbe77 1752 unsigned int *map;
320ae51f
JA
1753 int i;
1754
320ae51f
JA
1755 ctx = alloc_percpu(struct blk_mq_ctx);
1756 if (!ctx)
1757 return ERR_PTR(-ENOMEM);
1758
24d2f903
CH
1759 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1760 set->numa_node);
320ae51f
JA
1761
1762 if (!hctxs)
1763 goto err_percpu;
1764
f14bbe77
JA
1765 map = blk_mq_make_queue_map(set);
1766 if (!map)
1767 goto err_map;
1768
24d2f903 1769 for (i = 0; i < set->nr_hw_queues; i++) {
f14bbe77
JA
1770 int node = blk_mq_hw_queue_to_node(map, i);
1771
cdef54dd
CH
1772 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1773 GFP_KERNEL, node);
320ae51f
JA
1774 if (!hctxs[i])
1775 goto err_hctxs;
1776
e4043dcf
JA
1777 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1778 goto err_hctxs;
1779
0d2602ca 1780 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 1781 hctxs[i]->numa_node = node;
320ae51f
JA
1782 hctxs[i]->queue_num = i;
1783 }
1784
24d2f903 1785 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
320ae51f
JA
1786 if (!q)
1787 goto err_hctxs;
1788
add703fd 1789 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release))
3d2936f4
ML
1790 goto err_map;
1791
320ae51f
JA
1792 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1793 blk_queue_rq_timeout(q, 30000);
1794
1795 q->nr_queues = nr_cpu_ids;
24d2f903 1796 q->nr_hw_queues = set->nr_hw_queues;
f14bbe77 1797 q->mq_map = map;
320ae51f
JA
1798
1799 q->queue_ctx = ctx;
1800 q->queue_hw_ctx = hctxs;
1801
24d2f903 1802 q->mq_ops = set->ops;
94eddfbe 1803 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 1804
05f1dd53
JA
1805 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1806 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1807
1be036e9
CH
1808 q->sg_reserved_size = INT_MAX;
1809
6fca6a61
CH
1810 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1811 INIT_LIST_HEAD(&q->requeue_list);
1812 spin_lock_init(&q->requeue_lock);
1813
07068d5b
JA
1814 if (q->nr_hw_queues > 1)
1815 blk_queue_make_request(q, blk_mq_make_request);
1816 else
1817 blk_queue_make_request(q, blk_sq_make_request);
1818
87ee7b11 1819 blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
24d2f903
CH
1820 if (set->timeout)
1821 blk_queue_rq_timeout(q, set->timeout);
320ae51f 1822
eba71768
JA
1823 /*
1824 * Do this after blk_queue_make_request() overrides it...
1825 */
1826 q->nr_requests = set->queue_depth;
1827
24d2f903
CH
1828 if (set->ops->complete)
1829 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 1830
320ae51f 1831 blk_mq_init_flush(q);
24d2f903 1832 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 1833
24d2f903
CH
1834 q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1835 set->cmd_size, cache_line_size()),
1836 GFP_KERNEL);
18741986 1837 if (!q->flush_rq)
320ae51f
JA
1838 goto err_hw;
1839
24d2f903 1840 if (blk_mq_init_hw_queues(q, set))
18741986
CH
1841 goto err_flush_rq;
1842
320ae51f
JA
1843 mutex_lock(&all_q_mutex);
1844 list_add_tail(&q->all_q_node, &all_q_list);
1845 mutex_unlock(&all_q_mutex);
1846
0d2602ca
JA
1847 blk_mq_add_queue_tag_set(set, q);
1848
484b4061
JA
1849 blk_mq_map_swqueue(q);
1850
320ae51f 1851 return q;
18741986
CH
1852
1853err_flush_rq:
1854 kfree(q->flush_rq);
320ae51f 1855err_hw:
320ae51f
JA
1856 blk_cleanup_queue(q);
1857err_hctxs:
f14bbe77 1858 kfree(map);
24d2f903 1859 for (i = 0; i < set->nr_hw_queues; i++) {
320ae51f
JA
1860 if (!hctxs[i])
1861 break;
e4043dcf 1862 free_cpumask_var(hctxs[i]->cpumask);
cdef54dd 1863 kfree(hctxs[i]);
320ae51f 1864 }
f14bbe77 1865err_map:
320ae51f
JA
1866 kfree(hctxs);
1867err_percpu:
1868 free_percpu(ctx);
1869 return ERR_PTR(-ENOMEM);
1870}
1871EXPORT_SYMBOL(blk_mq_init_queue);
1872
1873void blk_mq_free_queue(struct request_queue *q)
1874{
624dbe47 1875 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 1876
0d2602ca
JA
1877 blk_mq_del_queue_tag_set(q);
1878
624dbe47
ML
1879 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1880 blk_mq_free_hw_queues(q, set);
320ae51f 1881
add703fd 1882 percpu_ref_exit(&q->mq_usage_counter);
3d2936f4 1883
320ae51f
JA
1884 free_percpu(q->queue_ctx);
1885 kfree(q->queue_hw_ctx);
1886 kfree(q->mq_map);
1887
1888 q->queue_ctx = NULL;
1889 q->queue_hw_ctx = NULL;
1890 q->mq_map = NULL;
1891
1892 mutex_lock(&all_q_mutex);
1893 list_del_init(&q->all_q_node);
1894 mutex_unlock(&all_q_mutex);
1895}
320ae51f
JA
1896
1897/* Basically redo blk_mq_init_queue with queue frozen */
f618ef7c 1898static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f
JA
1899{
1900 blk_mq_freeze_queue(q);
1901
67aec14c
JA
1902 blk_mq_sysfs_unregister(q);
1903
320ae51f
JA
1904 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1905
1906 /*
1907 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1908 * we should change hctx numa_node according to new topology (this
1909 * involves free and re-allocate memory, worthy doing?)
1910 */
1911
1912 blk_mq_map_swqueue(q);
1913
67aec14c
JA
1914 blk_mq_sysfs_register(q);
1915
320ae51f
JA
1916 blk_mq_unfreeze_queue(q);
1917}
1918
f618ef7c
PG
1919static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1920 unsigned long action, void *hcpu)
320ae51f
JA
1921{
1922 struct request_queue *q;
1923
1924 /*
9fccfed8
JA
1925 * Before new mappings are established, hotadded cpu might already
1926 * start handling requests. This doesn't break anything as we map
1927 * offline CPUs to first hardware queue. We will re-init the queue
1928 * below to get optimal settings.
320ae51f
JA
1929 */
1930 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1931 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1932 return NOTIFY_OK;
1933
1934 mutex_lock(&all_q_mutex);
1935 list_for_each_entry(q, &all_q_list, all_q_node)
1936 blk_mq_queue_reinit(q);
1937 mutex_unlock(&all_q_mutex);
1938 return NOTIFY_OK;
1939}
1940
a5164405
JA
1941static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
1942{
1943 int i;
1944
1945 for (i = 0; i < set->nr_hw_queues; i++) {
1946 set->tags[i] = blk_mq_init_rq_map(set, i);
1947 if (!set->tags[i])
1948 goto out_unwind;
1949 }
1950
1951 return 0;
1952
1953out_unwind:
1954 while (--i >= 0)
1955 blk_mq_free_rq_map(set, set->tags[i], i);
1956
a5164405
JA
1957 return -ENOMEM;
1958}
1959
1960/*
1961 * Allocate the request maps associated with this tag_set. Note that this
1962 * may reduce the depth asked for, if memory is tight. set->queue_depth
1963 * will be updated to reflect the allocated depth.
1964 */
1965static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
1966{
1967 unsigned int depth;
1968 int err;
1969
1970 depth = set->queue_depth;
1971 do {
1972 err = __blk_mq_alloc_rq_maps(set);
1973 if (!err)
1974 break;
1975
1976 set->queue_depth >>= 1;
1977 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
1978 err = -ENOMEM;
1979 break;
1980 }
1981 } while (set->queue_depth);
1982
1983 if (!set->queue_depth || err) {
1984 pr_err("blk-mq: failed to allocate request map\n");
1985 return -ENOMEM;
1986 }
1987
1988 if (depth != set->queue_depth)
1989 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
1990 depth, set->queue_depth);
1991
1992 return 0;
1993}
1994
a4391c64
JA
1995/*
1996 * Alloc a tag set to be associated with one or more request queues.
1997 * May fail with EINVAL for various error conditions. May adjust the
1998 * requested depth down, if if it too large. In that case, the set
1999 * value will be stored in set->queue_depth.
2000 */
24d2f903
CH
2001int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2002{
24d2f903
CH
2003 if (!set->nr_hw_queues)
2004 return -EINVAL;
a4391c64 2005 if (!set->queue_depth)
24d2f903
CH
2006 return -EINVAL;
2007 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2008 return -EINVAL;
2009
cdef54dd 2010 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
24d2f903
CH
2011 return -EINVAL;
2012
a4391c64
JA
2013 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2014 pr_info("blk-mq: reduced tag depth to %u\n",
2015 BLK_MQ_MAX_DEPTH);
2016 set->queue_depth = BLK_MQ_MAX_DEPTH;
2017 }
24d2f903 2018
48479005
ML
2019 set->tags = kmalloc_node(set->nr_hw_queues *
2020 sizeof(struct blk_mq_tags *),
24d2f903
CH
2021 GFP_KERNEL, set->numa_node);
2022 if (!set->tags)
a5164405 2023 return -ENOMEM;
24d2f903 2024
a5164405
JA
2025 if (blk_mq_alloc_rq_maps(set))
2026 goto enomem;
24d2f903 2027
0d2602ca
JA
2028 mutex_init(&set->tag_list_lock);
2029 INIT_LIST_HEAD(&set->tag_list);
2030
24d2f903 2031 return 0;
a5164405 2032enomem:
5676e7b6
RE
2033 kfree(set->tags);
2034 set->tags = NULL;
24d2f903
CH
2035 return -ENOMEM;
2036}
2037EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2038
2039void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2040{
2041 int i;
2042
484b4061
JA
2043 for (i = 0; i < set->nr_hw_queues; i++) {
2044 if (set->tags[i])
2045 blk_mq_free_rq_map(set, set->tags[i], i);
2046 }
2047
981bd189 2048 kfree(set->tags);
5676e7b6 2049 set->tags = NULL;
24d2f903
CH
2050}
2051EXPORT_SYMBOL(blk_mq_free_tag_set);
2052
e3a2b3f9
JA
2053int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2054{
2055 struct blk_mq_tag_set *set = q->tag_set;
2056 struct blk_mq_hw_ctx *hctx;
2057 int i, ret;
2058
2059 if (!set || nr > set->queue_depth)
2060 return -EINVAL;
2061
2062 ret = 0;
2063 queue_for_each_hw_ctx(q, hctx, i) {
2064 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2065 if (ret)
2066 break;
2067 }
2068
2069 if (!ret)
2070 q->nr_requests = nr;
2071
2072 return ret;
2073}
2074
676141e4
JA
2075void blk_mq_disable_hotplug(void)
2076{
2077 mutex_lock(&all_q_mutex);
2078}
2079
2080void blk_mq_enable_hotplug(void)
2081{
2082 mutex_unlock(&all_q_mutex);
2083}
2084
320ae51f
JA
2085static int __init blk_mq_init(void)
2086{
320ae51f
JA
2087 blk_mq_cpu_init();
2088
add703fd 2089 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
320ae51f
JA
2090
2091 return 0;
2092}
2093subsys_initcall(blk_mq_init);