]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - block/blk-mq.c
null_blk: use blk_complete_request and blk_mq_complete_request
[thirdparty/kernel/stable.git] / block / blk-mq.c
CommitLineData
320ae51f
JA
1#include <linux/kernel.h>
2#include <linux/module.h>
3#include <linux/backing-dev.h>
4#include <linux/bio.h>
5#include <linux/blkdev.h>
6#include <linux/mm.h>
7#include <linux/init.h>
8#include <linux/slab.h>
9#include <linux/workqueue.h>
10#include <linux/smp.h>
11#include <linux/llist.h>
12#include <linux/list_sort.h>
13#include <linux/cpu.h>
14#include <linux/cache.h>
15#include <linux/sched/sysctl.h>
16#include <linux/delay.h>
17
18#include <trace/events/block.h>
19
20#include <linux/blk-mq.h>
21#include "blk.h"
22#include "blk-mq.h"
23#include "blk-mq-tag.h"
24
25static DEFINE_MUTEX(all_q_mutex);
26static LIST_HEAD(all_q_list);
27
28static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
29
320ae51f
JA
30static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
31 unsigned int cpu)
32{
33 return per_cpu_ptr(q->queue_ctx, cpu);
34}
35
36/*
37 * This assumes per-cpu software queueing queues. They could be per-node
38 * as well, for instance. For now this is hardcoded as-is. Note that we don't
39 * care about preemption, since we know the ctx's are persistent. This does
40 * mean that we can't rely on ctx always matching the currently running CPU.
41 */
42static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
43{
44 return __blk_mq_get_ctx(q, get_cpu());
45}
46
47static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
48{
49 put_cpu();
50}
51
52/*
53 * Check if any of the ctx's have pending work in this hardware queue
54 */
55static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
56{
57 unsigned int i;
58
59 for (i = 0; i < hctx->nr_ctx_map; i++)
60 if (hctx->ctx_map[i])
61 return true;
62
63 return false;
64}
65
66/*
67 * Mark this ctx as having pending work in this hardware queue
68 */
69static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70 struct blk_mq_ctx *ctx)
71{
72 if (!test_bit(ctx->index_hw, hctx->ctx_map))
73 set_bit(ctx->index_hw, hctx->ctx_map);
74}
75
76static struct request *blk_mq_alloc_rq(struct blk_mq_hw_ctx *hctx, gfp_t gfp,
77 bool reserved)
78{
79 struct request *rq;
80 unsigned int tag;
81
82 tag = blk_mq_get_tag(hctx->tags, gfp, reserved);
83 if (tag != BLK_MQ_TAG_FAIL) {
84 rq = hctx->rqs[tag];
85 rq->tag = tag;
86
87 return rq;
88 }
89
90 return NULL;
91}
92
93static int blk_mq_queue_enter(struct request_queue *q)
94{
95 int ret;
96
97 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
98 smp_wmb();
99 /* we have problems to freeze the queue if it's initializing */
100 if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
101 return 0;
102
103 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
104
105 spin_lock_irq(q->queue_lock);
106 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
43a5e4e2
ML
107 !blk_queue_bypass(q) || blk_queue_dying(q),
108 *q->queue_lock);
320ae51f 109 /* inc usage with lock hold to avoid freeze_queue runs here */
43a5e4e2 110 if (!ret && !blk_queue_dying(q))
320ae51f 111 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
43a5e4e2
ML
112 else if (blk_queue_dying(q))
113 ret = -ENODEV;
320ae51f
JA
114 spin_unlock_irq(q->queue_lock);
115
116 return ret;
117}
118
119static void blk_mq_queue_exit(struct request_queue *q)
120{
121 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
122}
123
43a5e4e2
ML
124static void __blk_mq_drain_queue(struct request_queue *q)
125{
126 while (true) {
127 s64 count;
128
129 spin_lock_irq(q->queue_lock);
130 count = percpu_counter_sum(&q->mq_usage_counter);
131 spin_unlock_irq(q->queue_lock);
132
133 if (count == 0)
134 break;
135 blk_mq_run_queues(q, false);
136 msleep(10);
137 }
138}
139
320ae51f
JA
140/*
141 * Guarantee no request is in use, so we can change any data structure of
142 * the queue afterward.
143 */
144static void blk_mq_freeze_queue(struct request_queue *q)
145{
146 bool drain;
147
148 spin_lock_irq(q->queue_lock);
149 drain = !q->bypass_depth++;
150 queue_flag_set(QUEUE_FLAG_BYPASS, q);
151 spin_unlock_irq(q->queue_lock);
152
43a5e4e2
ML
153 if (drain)
154 __blk_mq_drain_queue(q);
155}
320ae51f 156
43a5e4e2
ML
157void blk_mq_drain_queue(struct request_queue *q)
158{
159 __blk_mq_drain_queue(q);
320ae51f
JA
160}
161
162static void blk_mq_unfreeze_queue(struct request_queue *q)
163{
164 bool wake = false;
165
166 spin_lock_irq(q->queue_lock);
167 if (!--q->bypass_depth) {
168 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
169 wake = true;
170 }
171 WARN_ON_ONCE(q->bypass_depth < 0);
172 spin_unlock_irq(q->queue_lock);
173 if (wake)
174 wake_up_all(&q->mq_freeze_wq);
175}
176
177bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
178{
179 return blk_mq_has_free_tags(hctx->tags);
180}
181EXPORT_SYMBOL(blk_mq_can_queue);
182
94eddfbe
JA
183static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
184 struct request *rq, unsigned int rw_flags)
320ae51f 185{
94eddfbe
JA
186 if (blk_queue_io_stat(q))
187 rw_flags |= REQ_IO_STAT;
188
320ae51f
JA
189 rq->mq_ctx = ctx;
190 rq->cmd_flags = rw_flags;
0fec08b4
ML
191 rq->start_time = jiffies;
192 set_start_time_ns(rq);
320ae51f
JA
193 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
194}
195
196static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
f0276924
SL
197 gfp_t gfp, bool reserved,
198 int rw)
320ae51f 199{
f0276924
SL
200 struct request *req;
201 bool is_flush = false;
202 /*
203 * flush need allocate a request, leave at least one request for
204 * non-flush IO to avoid deadlock
205 */
206 if ((rw & REQ_FLUSH) && !(rw & REQ_FLUSH_SEQ)) {
207 if (atomic_inc_return(&hctx->pending_flush) >=
208 hctx->queue_depth - hctx->reserved_tags - 1) {
209 atomic_dec(&hctx->pending_flush);
210 return NULL;
211 }
212 is_flush = true;
213 }
214 req = blk_mq_alloc_rq(hctx, gfp, reserved);
215 if (!req && is_flush)
216 atomic_dec(&hctx->pending_flush);
217 return req;
320ae51f
JA
218}
219
220static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
221 int rw, gfp_t gfp,
222 bool reserved)
223{
224 struct request *rq;
225
226 do {
227 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
228 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
229
f0276924 230 rq = __blk_mq_alloc_request(hctx, gfp & ~__GFP_WAIT, reserved, rw);
320ae51f 231 if (rq) {
94eddfbe 232 blk_mq_rq_ctx_init(q, ctx, rq, rw);
320ae51f 233 break;
959a35f1 234 }
320ae51f
JA
235
236 blk_mq_put_ctx(ctx);
959a35f1
JM
237 if (!(gfp & __GFP_WAIT))
238 break;
239
320ae51f
JA
240 __blk_mq_run_hw_queue(hctx);
241 blk_mq_wait_for_tags(hctx->tags);
242 } while (1);
243
244 return rq;
245}
246
3228f48b
CH
247struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
248 gfp_t gfp, bool reserved)
320ae51f
JA
249{
250 struct request *rq;
251
252 if (blk_mq_queue_enter(q))
253 return NULL;
254
3228f48b 255 rq = blk_mq_alloc_request_pinned(q, rw, gfp, reserved);
959a35f1
JM
256 if (rq)
257 blk_mq_put_ctx(rq->mq_ctx);
320ae51f
JA
258 return rq;
259}
260
261struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
262 gfp_t gfp)
263{
264 struct request *rq;
265
266 if (blk_mq_queue_enter(q))
267 return NULL;
268
269 rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
959a35f1
JM
270 if (rq)
271 blk_mq_put_ctx(rq->mq_ctx);
320ae51f
JA
272 return rq;
273}
274EXPORT_SYMBOL(blk_mq_alloc_reserved_request);
275
276/*
277 * Re-init and set pdu, if we have it
278 */
279static void blk_mq_rq_init(struct blk_mq_hw_ctx *hctx, struct request *rq)
280{
281 blk_rq_init(hctx->queue, rq);
282
283 if (hctx->cmd_size)
284 rq->special = blk_mq_rq_to_pdu(rq);
285}
286
287static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
288 struct blk_mq_ctx *ctx, struct request *rq)
289{
290 const int tag = rq->tag;
291 struct request_queue *q = rq->q;
292
f0276924
SL
293 if ((rq->cmd_flags & REQ_FLUSH) && !(rq->cmd_flags & REQ_FLUSH_SEQ))
294 atomic_dec(&hctx->pending_flush);
295
320ae51f
JA
296 blk_mq_rq_init(hctx, rq);
297 blk_mq_put_tag(hctx->tags, tag);
298
299 blk_mq_queue_exit(q);
300}
301
302void blk_mq_free_request(struct request *rq)
303{
304 struct blk_mq_ctx *ctx = rq->mq_ctx;
305 struct blk_mq_hw_ctx *hctx;
306 struct request_queue *q = rq->q;
307
308 ctx->rq_completed[rq_is_sync(rq)]++;
309
310 hctx = q->mq_ops->map_queue(q, ctx->cpu);
311 __blk_mq_free_request(hctx, ctx, rq);
312}
313
314static void blk_mq_bio_endio(struct request *rq, struct bio *bio, int error)
315{
316 if (error)
317 clear_bit(BIO_UPTODATE, &bio->bi_flags);
318 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
319 error = -EIO;
320
321 if (unlikely(rq->cmd_flags & REQ_QUIET))
322 set_bit(BIO_QUIET, &bio->bi_flags);
323
324 /* don't actually finish bio if it's part of flush sequence */
325 if (!(rq->cmd_flags & REQ_FLUSH_SEQ))
326 bio_endio(bio, error);
327}
328
30a91cb4 329void blk_mq_end_io(struct request *rq, int error)
320ae51f
JA
330{
331 struct bio *bio = rq->bio;
332 unsigned int bytes = 0;
333
334 trace_block_rq_complete(rq->q, rq);
335
336 while (bio) {
337 struct bio *next = bio->bi_next;
338
339 bio->bi_next = NULL;
4f024f37 340 bytes += bio->bi_iter.bi_size;
320ae51f
JA
341 blk_mq_bio_endio(rq, bio, error);
342 bio = next;
343 }
344
345 blk_account_io_completion(rq, bytes);
346
0d11e6ac
ML
347 blk_account_io_done(rq);
348
320ae51f
JA
349 if (rq->end_io)
350 rq->end_io(rq, error);
351 else
352 blk_mq_free_request(rq);
320ae51f 353}
30a91cb4 354EXPORT_SYMBOL(blk_mq_end_io);
320ae51f 355
30a91cb4 356static void __blk_mq_complete_request_remote(void *data)
320ae51f 357{
3d6efbf6 358 struct request *rq = data;
320ae51f 359
30a91cb4 360 rq->q->softirq_done_fn(rq);
320ae51f 361}
320ae51f 362
30a91cb4 363void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
364{
365 struct blk_mq_ctx *ctx = rq->mq_ctx;
366 int cpu;
367
30a91cb4
CH
368 if (!ctx->ipi_redirect) {
369 rq->q->softirq_done_fn(rq);
370 return;
371 }
320ae51f
JA
372
373 cpu = get_cpu();
3d6efbf6 374 if (cpu != ctx->cpu && cpu_online(ctx->cpu)) {
30a91cb4 375 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
376 rq->csd.info = rq;
377 rq->csd.flags = 0;
378 __smp_call_function_single(ctx->cpu, &rq->csd, 0);
379 } else {
30a91cb4 380 rq->q->softirq_done_fn(rq);
3d6efbf6 381 }
320ae51f
JA
382 put_cpu();
383}
30a91cb4
CH
384
385/**
386 * blk_mq_complete_request - end I/O on a request
387 * @rq: the request being processed
388 *
389 * Description:
390 * Ends all I/O on a request. It does not handle partial completions.
391 * The actual completion happens out-of-order, through a IPI handler.
392 **/
393void blk_mq_complete_request(struct request *rq)
394{
395 if (unlikely(blk_should_fake_timeout(rq->q)))
396 return;
397 if (!blk_mark_rq_complete(rq))
398 __blk_mq_complete_request(rq);
399}
400EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f
JA
401
402static void blk_mq_start_request(struct request *rq)
403{
404 struct request_queue *q = rq->q;
405
406 trace_block_rq_issue(q, rq);
407
408 /*
409 * Just mark start time and set the started bit. Due to memory
410 * ordering, we know we'll see the correct deadline as long as
411 * REQ_ATOMIC_STARTED is seen.
412 */
413 rq->deadline = jiffies + q->rq_timeout;
414 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
415}
416
417static void blk_mq_requeue_request(struct request *rq)
418{
419 struct request_queue *q = rq->q;
420
421 trace_block_rq_requeue(q, rq);
422 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
423}
424
425struct blk_mq_timeout_data {
426 struct blk_mq_hw_ctx *hctx;
427 unsigned long *next;
428 unsigned int *next_set;
429};
430
431static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
432{
433 struct blk_mq_timeout_data *data = __data;
434 struct blk_mq_hw_ctx *hctx = data->hctx;
435 unsigned int tag;
436
437 /* It may not be in flight yet (this is where
438 * the REQ_ATOMIC_STARTED flag comes in). The requests are
439 * statically allocated, so we know it's always safe to access the
440 * memory associated with a bit offset into ->rqs[].
441 */
442 tag = 0;
443 do {
444 struct request *rq;
445
446 tag = find_next_zero_bit(free_tags, hctx->queue_depth, tag);
447 if (tag >= hctx->queue_depth)
448 break;
449
450 rq = hctx->rqs[tag++];
451
452 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
453 continue;
454
455 blk_rq_check_expired(rq, data->next, data->next_set);
456 } while (1);
457}
458
459static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
460 unsigned long *next,
461 unsigned int *next_set)
462{
463 struct blk_mq_timeout_data data = {
464 .hctx = hctx,
465 .next = next,
466 .next_set = next_set,
467 };
468
469 /*
470 * Ask the tagging code to iterate busy requests, so we can
471 * check them for timeout.
472 */
473 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
474}
475
476static void blk_mq_rq_timer(unsigned long data)
477{
478 struct request_queue *q = (struct request_queue *) data;
479 struct blk_mq_hw_ctx *hctx;
480 unsigned long next = 0;
481 int i, next_set = 0;
482
483 queue_for_each_hw_ctx(q, hctx, i)
484 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
485
486 if (next_set)
487 mod_timer(&q->timeout, round_jiffies_up(next));
488}
489
490/*
491 * Reverse check our software queue for entries that we could potentially
492 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
493 * too much time checking for merges.
494 */
495static bool blk_mq_attempt_merge(struct request_queue *q,
496 struct blk_mq_ctx *ctx, struct bio *bio)
497{
498 struct request *rq;
499 int checked = 8;
500
501 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
502 int el_ret;
503
504 if (!checked--)
505 break;
506
507 if (!blk_rq_merge_ok(rq, bio))
508 continue;
509
510 el_ret = blk_try_merge(rq, bio);
511 if (el_ret == ELEVATOR_BACK_MERGE) {
512 if (bio_attempt_back_merge(q, rq, bio)) {
513 ctx->rq_merged++;
514 return true;
515 }
516 break;
517 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
518 if (bio_attempt_front_merge(q, rq, bio)) {
519 ctx->rq_merged++;
520 return true;
521 }
522 break;
523 }
524 }
525
526 return false;
527}
528
529void blk_mq_add_timer(struct request *rq)
530{
531 __blk_add_timer(rq, NULL);
532}
533
534/*
535 * Run this hardware queue, pulling any software queues mapped to it in.
536 * Note that this function currently has various problems around ordering
537 * of IO. In particular, we'd like FIFO behaviour on handling existing
538 * items on the hctx->dispatch list. Ignore that for now.
539 */
540static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
541{
542 struct request_queue *q = hctx->queue;
543 struct blk_mq_ctx *ctx;
544 struct request *rq;
545 LIST_HEAD(rq_list);
546 int bit, queued;
547
548 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->flags)))
549 return;
550
551 hctx->run++;
552
553 /*
554 * Touch any software queue that has pending entries.
555 */
556 for_each_set_bit(bit, hctx->ctx_map, hctx->nr_ctx) {
557 clear_bit(bit, hctx->ctx_map);
558 ctx = hctx->ctxs[bit];
559 BUG_ON(bit != ctx->index_hw);
560
561 spin_lock(&ctx->lock);
562 list_splice_tail_init(&ctx->rq_list, &rq_list);
563 spin_unlock(&ctx->lock);
564 }
565
566 /*
567 * If we have previous entries on our dispatch list, grab them
568 * and stuff them at the front for more fair dispatch.
569 */
570 if (!list_empty_careful(&hctx->dispatch)) {
571 spin_lock(&hctx->lock);
572 if (!list_empty(&hctx->dispatch))
573 list_splice_init(&hctx->dispatch, &rq_list);
574 spin_unlock(&hctx->lock);
575 }
576
577 /*
578 * Delete and return all entries from our dispatch list
579 */
580 queued = 0;
581
582 /*
583 * Now process all the entries, sending them to the driver.
584 */
585 while (!list_empty(&rq_list)) {
586 int ret;
587
588 rq = list_first_entry(&rq_list, struct request, queuelist);
589 list_del_init(&rq->queuelist);
590 blk_mq_start_request(rq);
591
4f7f418c
CH
592 if (q->dma_drain_size && blk_rq_bytes(rq)) {
593 /*
594 * make sure space for the drain appears we
595 * know we can do this because max_hw_segments
596 * has been adjusted to be one fewer than the
597 * device can handle
598 */
599 rq->nr_phys_segments++;
600 }
601
320ae51f
JA
602 /*
603 * Last request in the series. Flag it as such, this
604 * enables drivers to know when IO should be kicked off,
605 * if they don't do it on a per-request basis.
606 *
607 * Note: the flag isn't the only condition drivers
608 * should do kick off. If drive is busy, the last
609 * request might not have the bit set.
610 */
611 if (list_empty(&rq_list))
612 rq->cmd_flags |= REQ_END;
613
614 ret = q->mq_ops->queue_rq(hctx, rq);
615 switch (ret) {
616 case BLK_MQ_RQ_QUEUE_OK:
617 queued++;
618 continue;
619 case BLK_MQ_RQ_QUEUE_BUSY:
620 /*
621 * FIXME: we should have a mechanism to stop the queue
622 * like blk_stop_queue, otherwise we will waste cpu
623 * time
624 */
625 list_add(&rq->queuelist, &rq_list);
626 blk_mq_requeue_request(rq);
627 break;
628 default:
629 pr_err("blk-mq: bad return on queue: %d\n", ret);
630 rq->errors = -EIO;
631 case BLK_MQ_RQ_QUEUE_ERROR:
632 blk_mq_end_io(rq, rq->errors);
633 break;
634 }
635
636 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
637 break;
638 }
639
640 if (!queued)
641 hctx->dispatched[0]++;
642 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
643 hctx->dispatched[ilog2(queued) + 1]++;
644
645 /*
646 * Any items that need requeuing? Stuff them into hctx->dispatch,
647 * that is where we will continue on next queue run.
648 */
649 if (!list_empty(&rq_list)) {
650 spin_lock(&hctx->lock);
651 list_splice(&rq_list, &hctx->dispatch);
652 spin_unlock(&hctx->lock);
653 }
654}
655
656void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
657{
658 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->flags)))
659 return;
660
661 if (!async)
662 __blk_mq_run_hw_queue(hctx);
663 else {
664 struct request_queue *q = hctx->queue;
665
666 kblockd_schedule_delayed_work(q, &hctx->delayed_work, 0);
667 }
668}
669
670void blk_mq_run_queues(struct request_queue *q, bool async)
671{
672 struct blk_mq_hw_ctx *hctx;
673 int i;
674
675 queue_for_each_hw_ctx(q, hctx, i) {
676 if ((!blk_mq_hctx_has_pending(hctx) &&
677 list_empty_careful(&hctx->dispatch)) ||
678 test_bit(BLK_MQ_S_STOPPED, &hctx->flags))
679 continue;
680
681 blk_mq_run_hw_queue(hctx, async);
682 }
683}
684EXPORT_SYMBOL(blk_mq_run_queues);
685
686void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
687{
688 cancel_delayed_work(&hctx->delayed_work);
689 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
690}
691EXPORT_SYMBOL(blk_mq_stop_hw_queue);
692
280d45f6
CH
693void blk_mq_stop_hw_queues(struct request_queue *q)
694{
695 struct blk_mq_hw_ctx *hctx;
696 int i;
697
698 queue_for_each_hw_ctx(q, hctx, i)
699 blk_mq_stop_hw_queue(hctx);
700}
701EXPORT_SYMBOL(blk_mq_stop_hw_queues);
702
320ae51f
JA
703void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
704{
705 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
706 __blk_mq_run_hw_queue(hctx);
707}
708EXPORT_SYMBOL(blk_mq_start_hw_queue);
709
710void blk_mq_start_stopped_hw_queues(struct request_queue *q)
711{
712 struct blk_mq_hw_ctx *hctx;
713 int i;
714
715 queue_for_each_hw_ctx(q, hctx, i) {
716 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
717 continue;
718
719 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
720 blk_mq_run_hw_queue(hctx, true);
721 }
722}
723EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
724
725static void blk_mq_work_fn(struct work_struct *work)
726{
727 struct blk_mq_hw_ctx *hctx;
728
729 hctx = container_of(work, struct blk_mq_hw_ctx, delayed_work.work);
730 __blk_mq_run_hw_queue(hctx);
731}
732
733static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
72a0a36e 734 struct request *rq, bool at_head)
320ae51f
JA
735{
736 struct blk_mq_ctx *ctx = rq->mq_ctx;
737
01b983c9
JA
738 trace_block_rq_insert(hctx->queue, rq);
739
72a0a36e
CH
740 if (at_head)
741 list_add(&rq->queuelist, &ctx->rq_list);
742 else
743 list_add_tail(&rq->queuelist, &ctx->rq_list);
320ae51f
JA
744 blk_mq_hctx_mark_pending(hctx, ctx);
745
746 /*
747 * We do this early, to ensure we are on the right CPU.
748 */
749 blk_mq_add_timer(rq);
750}
751
752void blk_mq_insert_request(struct request_queue *q, struct request *rq,
72a0a36e 753 bool at_head, bool run_queue)
320ae51f
JA
754{
755 struct blk_mq_hw_ctx *hctx;
756 struct blk_mq_ctx *ctx, *current_ctx;
757
758 ctx = rq->mq_ctx;
759 hctx = q->mq_ops->map_queue(q, ctx->cpu);
760
761 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) {
762 blk_insert_flush(rq);
763 } else {
764 current_ctx = blk_mq_get_ctx(q);
765
766 if (!cpu_online(ctx->cpu)) {
767 ctx = current_ctx;
768 hctx = q->mq_ops->map_queue(q, ctx->cpu);
769 rq->mq_ctx = ctx;
770 }
771 spin_lock(&ctx->lock);
72a0a36e 772 __blk_mq_insert_request(hctx, rq, at_head);
320ae51f
JA
773 spin_unlock(&ctx->lock);
774
775 blk_mq_put_ctx(current_ctx);
776 }
777
778 if (run_queue)
779 __blk_mq_run_hw_queue(hctx);
780}
781EXPORT_SYMBOL(blk_mq_insert_request);
782
783/*
784 * This is a special version of blk_mq_insert_request to bypass FLUSH request
785 * check. Should only be used internally.
786 */
787void blk_mq_run_request(struct request *rq, bool run_queue, bool async)
788{
789 struct request_queue *q = rq->q;
790 struct blk_mq_hw_ctx *hctx;
791 struct blk_mq_ctx *ctx, *current_ctx;
792
793 current_ctx = blk_mq_get_ctx(q);
794
795 ctx = rq->mq_ctx;
796 if (!cpu_online(ctx->cpu)) {
797 ctx = current_ctx;
798 rq->mq_ctx = ctx;
799 }
800 hctx = q->mq_ops->map_queue(q, ctx->cpu);
801
802 /* ctx->cpu might be offline */
803 spin_lock(&ctx->lock);
72a0a36e 804 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
805 spin_unlock(&ctx->lock);
806
807 blk_mq_put_ctx(current_ctx);
808
809 if (run_queue)
810 blk_mq_run_hw_queue(hctx, async);
811}
812
813static void blk_mq_insert_requests(struct request_queue *q,
814 struct blk_mq_ctx *ctx,
815 struct list_head *list,
816 int depth,
817 bool from_schedule)
818
819{
820 struct blk_mq_hw_ctx *hctx;
821 struct blk_mq_ctx *current_ctx;
822
823 trace_block_unplug(q, depth, !from_schedule);
824
825 current_ctx = blk_mq_get_ctx(q);
826
827 if (!cpu_online(ctx->cpu))
828 ctx = current_ctx;
829 hctx = q->mq_ops->map_queue(q, ctx->cpu);
830
831 /*
832 * preemption doesn't flush plug list, so it's possible ctx->cpu is
833 * offline now
834 */
835 spin_lock(&ctx->lock);
836 while (!list_empty(list)) {
837 struct request *rq;
838
839 rq = list_first_entry(list, struct request, queuelist);
840 list_del_init(&rq->queuelist);
841 rq->mq_ctx = ctx;
72a0a36e 842 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
843 }
844 spin_unlock(&ctx->lock);
845
846 blk_mq_put_ctx(current_ctx);
847
848 blk_mq_run_hw_queue(hctx, from_schedule);
849}
850
851static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
852{
853 struct request *rqa = container_of(a, struct request, queuelist);
854 struct request *rqb = container_of(b, struct request, queuelist);
855
856 return !(rqa->mq_ctx < rqb->mq_ctx ||
857 (rqa->mq_ctx == rqb->mq_ctx &&
858 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
859}
860
861void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
862{
863 struct blk_mq_ctx *this_ctx;
864 struct request_queue *this_q;
865 struct request *rq;
866 LIST_HEAD(list);
867 LIST_HEAD(ctx_list);
868 unsigned int depth;
869
870 list_splice_init(&plug->mq_list, &list);
871
872 list_sort(NULL, &list, plug_ctx_cmp);
873
874 this_q = NULL;
875 this_ctx = NULL;
876 depth = 0;
877
878 while (!list_empty(&list)) {
879 rq = list_entry_rq(list.next);
880 list_del_init(&rq->queuelist);
881 BUG_ON(!rq->q);
882 if (rq->mq_ctx != this_ctx) {
883 if (this_ctx) {
884 blk_mq_insert_requests(this_q, this_ctx,
885 &ctx_list, depth,
886 from_schedule);
887 }
888
889 this_ctx = rq->mq_ctx;
890 this_q = rq->q;
891 depth = 0;
892 }
893
894 depth++;
895 list_add_tail(&rq->queuelist, &ctx_list);
896 }
897
898 /*
899 * If 'this_ctx' is set, we know we have entries to complete
900 * on 'ctx_list'. Do those.
901 */
902 if (this_ctx) {
903 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
904 from_schedule);
905 }
906}
907
908static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
909{
910 init_request_from_bio(rq, bio);
911 blk_account_io_start(rq, 1);
912}
913
914static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
915{
916 struct blk_mq_hw_ctx *hctx;
917 struct blk_mq_ctx *ctx;
918 const int is_sync = rw_is_sync(bio->bi_rw);
919 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
920 int rw = bio_data_dir(bio);
921 struct request *rq;
922 unsigned int use_plug, request_count = 0;
923
924 /*
925 * If we have multiple hardware queues, just go directly to
926 * one of those for sync IO.
927 */
928 use_plug = !is_flush_fua && ((q->nr_hw_queues == 1) || !is_sync);
929
930 blk_queue_bounce(q, &bio);
931
14ec77f3
NB
932 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
933 bio_endio(bio, -EIO);
934 return;
935 }
936
320ae51f
JA
937 if (use_plug && blk_attempt_plug_merge(q, bio, &request_count))
938 return;
939
940 if (blk_mq_queue_enter(q)) {
941 bio_endio(bio, -EIO);
942 return;
943 }
944
945 ctx = blk_mq_get_ctx(q);
946 hctx = q->mq_ops->map_queue(q, ctx->cpu);
947
948 trace_block_getrq(q, bio, rw);
f0276924 949 rq = __blk_mq_alloc_request(hctx, GFP_ATOMIC, false, bio->bi_rw);
320ae51f 950 if (likely(rq))
f0276924 951 blk_mq_rq_ctx_init(q, ctx, rq, bio->bi_rw);
320ae51f
JA
952 else {
953 blk_mq_put_ctx(ctx);
954 trace_block_sleeprq(q, bio, rw);
f0276924
SL
955 rq = blk_mq_alloc_request_pinned(q, bio->bi_rw,
956 __GFP_WAIT|GFP_ATOMIC, false);
320ae51f
JA
957 ctx = rq->mq_ctx;
958 hctx = q->mq_ops->map_queue(q, ctx->cpu);
959 }
960
961 hctx->queued++;
962
963 if (unlikely(is_flush_fua)) {
964 blk_mq_bio_to_request(rq, bio);
965 blk_mq_put_ctx(ctx);
966 blk_insert_flush(rq);
967 goto run_queue;
968 }
969
970 /*
971 * A task plug currently exists. Since this is completely lockless,
972 * utilize that to temporarily store requests until the task is
973 * either done or scheduled away.
974 */
975 if (use_plug) {
976 struct blk_plug *plug = current->plug;
977
978 if (plug) {
979 blk_mq_bio_to_request(rq, bio);
92f399c7 980 if (list_empty(&plug->mq_list))
320ae51f
JA
981 trace_block_plug(q);
982 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
983 blk_flush_plug_list(plug, false);
984 trace_block_plug(q);
985 }
986 list_add_tail(&rq->queuelist, &plug->mq_list);
987 blk_mq_put_ctx(ctx);
988 return;
989 }
990 }
991
992 spin_lock(&ctx->lock);
993
994 if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
995 blk_mq_attempt_merge(q, ctx, bio))
996 __blk_mq_free_request(hctx, ctx, rq);
997 else {
998 blk_mq_bio_to_request(rq, bio);
72a0a36e 999 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
1000 }
1001
1002 spin_unlock(&ctx->lock);
1003 blk_mq_put_ctx(ctx);
1004
1005 /*
1006 * For a SYNC request, send it to the hardware immediately. For an
1007 * ASYNC request, just ensure that we run it later on. The latter
1008 * allows for merging opportunities and more efficient dispatching.
1009 */
1010run_queue:
1011 blk_mq_run_hw_queue(hctx, !is_sync || is_flush_fua);
1012}
1013
1014/*
1015 * Default mapping to a software queue, since we use one per CPU.
1016 */
1017struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1018{
1019 return q->queue_hw_ctx[q->mq_map[cpu]];
1020}
1021EXPORT_SYMBOL(blk_mq_map_queue);
1022
1023struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_reg *reg,
1024 unsigned int hctx_index)
1025{
1026 return kmalloc_node(sizeof(struct blk_mq_hw_ctx),
1027 GFP_KERNEL | __GFP_ZERO, reg->numa_node);
1028}
1029EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);
1030
1031void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
1032 unsigned int hctx_index)
1033{
1034 kfree(hctx);
1035}
1036EXPORT_SYMBOL(blk_mq_free_single_hw_queue);
1037
1038static void blk_mq_hctx_notify(void *data, unsigned long action,
1039 unsigned int cpu)
1040{
1041 struct blk_mq_hw_ctx *hctx = data;
1042 struct blk_mq_ctx *ctx;
1043 LIST_HEAD(tmp);
1044
1045 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1046 return;
1047
1048 /*
1049 * Move ctx entries to new CPU, if this one is going away.
1050 */
1051 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1052
1053 spin_lock(&ctx->lock);
1054 if (!list_empty(&ctx->rq_list)) {
1055 list_splice_init(&ctx->rq_list, &tmp);
1056 clear_bit(ctx->index_hw, hctx->ctx_map);
1057 }
1058 spin_unlock(&ctx->lock);
1059
1060 if (list_empty(&tmp))
1061 return;
1062
1063 ctx = blk_mq_get_ctx(hctx->queue);
1064 spin_lock(&ctx->lock);
1065
1066 while (!list_empty(&tmp)) {
1067 struct request *rq;
1068
1069 rq = list_first_entry(&tmp, struct request, queuelist);
1070 rq->mq_ctx = ctx;
1071 list_move_tail(&rq->queuelist, &ctx->rq_list);
1072 }
1073
1074 blk_mq_hctx_mark_pending(hctx, ctx);
1075
1076 spin_unlock(&ctx->lock);
1077 blk_mq_put_ctx(ctx);
1078}
1079
1080static void blk_mq_init_hw_commands(struct blk_mq_hw_ctx *hctx,
1081 void (*init)(void *, struct blk_mq_hw_ctx *,
1082 struct request *, unsigned int),
1083 void *data)
1084{
1085 unsigned int i;
1086
1087 for (i = 0; i < hctx->queue_depth; i++) {
1088 struct request *rq = hctx->rqs[i];
1089
1090 init(data, hctx, rq, i);
1091 }
1092}
1093
1094void blk_mq_init_commands(struct request_queue *q,
1095 void (*init)(void *, struct blk_mq_hw_ctx *,
1096 struct request *, unsigned int),
1097 void *data)
1098{
1099 struct blk_mq_hw_ctx *hctx;
1100 unsigned int i;
1101
1102 queue_for_each_hw_ctx(q, hctx, i)
1103 blk_mq_init_hw_commands(hctx, init, data);
1104}
1105EXPORT_SYMBOL(blk_mq_init_commands);
1106
1107static void blk_mq_free_rq_map(struct blk_mq_hw_ctx *hctx)
1108{
1109 struct page *page;
1110
1111 while (!list_empty(&hctx->page_list)) {
6753471c
DH
1112 page = list_first_entry(&hctx->page_list, struct page, lru);
1113 list_del_init(&page->lru);
320ae51f
JA
1114 __free_pages(page, page->private);
1115 }
1116
1117 kfree(hctx->rqs);
1118
1119 if (hctx->tags)
1120 blk_mq_free_tags(hctx->tags);
1121}
1122
1123static size_t order_to_size(unsigned int order)
1124{
1125 size_t ret = PAGE_SIZE;
1126
1127 while (order--)
1128 ret *= 2;
1129
1130 return ret;
1131}
1132
1133static int blk_mq_init_rq_map(struct blk_mq_hw_ctx *hctx,
1134 unsigned int reserved_tags, int node)
1135{
1136 unsigned int i, j, entries_per_page, max_order = 4;
1137 size_t rq_size, left;
1138
1139 INIT_LIST_HEAD(&hctx->page_list);
1140
1141 hctx->rqs = kmalloc_node(hctx->queue_depth * sizeof(struct request *),
1142 GFP_KERNEL, node);
1143 if (!hctx->rqs)
1144 return -ENOMEM;
1145
1146 /*
1147 * rq_size is the size of the request plus driver payload, rounded
1148 * to the cacheline size
1149 */
1150 rq_size = round_up(sizeof(struct request) + hctx->cmd_size,
1151 cache_line_size());
1152 left = rq_size * hctx->queue_depth;
1153
1154 for (i = 0; i < hctx->queue_depth;) {
1155 int this_order = max_order;
1156 struct page *page;
1157 int to_do;
1158 void *p;
1159
1160 while (left < order_to_size(this_order - 1) && this_order)
1161 this_order--;
1162
1163 do {
1164 page = alloc_pages_node(node, GFP_KERNEL, this_order);
1165 if (page)
1166 break;
1167 if (!this_order--)
1168 break;
1169 if (order_to_size(this_order) < rq_size)
1170 break;
1171 } while (1);
1172
1173 if (!page)
1174 break;
1175
1176 page->private = this_order;
6753471c 1177 list_add_tail(&page->lru, &hctx->page_list);
320ae51f
JA
1178
1179 p = page_address(page);
1180 entries_per_page = order_to_size(this_order) / rq_size;
1181 to_do = min(entries_per_page, hctx->queue_depth - i);
1182 left -= to_do * rq_size;
1183 for (j = 0; j < to_do; j++) {
1184 hctx->rqs[i] = p;
1185 blk_mq_rq_init(hctx, hctx->rqs[i]);
1186 p += rq_size;
1187 i++;
1188 }
1189 }
1190
1191 if (i < (reserved_tags + BLK_MQ_TAG_MIN))
1192 goto err_rq_map;
1193 else if (i != hctx->queue_depth) {
1194 hctx->queue_depth = i;
1195 pr_warn("%s: queue depth set to %u because of low memory\n",
1196 __func__, i);
1197 }
1198
1199 hctx->tags = blk_mq_init_tags(hctx->queue_depth, reserved_tags, node);
1200 if (!hctx->tags) {
1201err_rq_map:
1202 blk_mq_free_rq_map(hctx);
1203 return -ENOMEM;
1204 }
1205
1206 return 0;
1207}
1208
1209static int blk_mq_init_hw_queues(struct request_queue *q,
1210 struct blk_mq_reg *reg, void *driver_data)
1211{
1212 struct blk_mq_hw_ctx *hctx;
1213 unsigned int i, j;
1214
1215 /*
1216 * Initialize hardware queues
1217 */
1218 queue_for_each_hw_ctx(q, hctx, i) {
1219 unsigned int num_maps;
1220 int node;
1221
1222 node = hctx->numa_node;
1223 if (node == NUMA_NO_NODE)
1224 node = hctx->numa_node = reg->numa_node;
1225
1226 INIT_DELAYED_WORK(&hctx->delayed_work, blk_mq_work_fn);
1227 spin_lock_init(&hctx->lock);
1228 INIT_LIST_HEAD(&hctx->dispatch);
1229 hctx->queue = q;
1230 hctx->queue_num = i;
1231 hctx->flags = reg->flags;
1232 hctx->queue_depth = reg->queue_depth;
f0276924 1233 hctx->reserved_tags = reg->reserved_tags;
320ae51f 1234 hctx->cmd_size = reg->cmd_size;
f0276924 1235 atomic_set(&hctx->pending_flush, 0);
320ae51f
JA
1236
1237 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1238 blk_mq_hctx_notify, hctx);
1239 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1240
1241 if (blk_mq_init_rq_map(hctx, reg->reserved_tags, node))
1242 break;
1243
1244 /*
1245 * Allocate space for all possible cpus to avoid allocation in
1246 * runtime
1247 */
1248 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1249 GFP_KERNEL, node);
1250 if (!hctx->ctxs)
1251 break;
1252
1253 num_maps = ALIGN(nr_cpu_ids, BITS_PER_LONG) / BITS_PER_LONG;
1254 hctx->ctx_map = kzalloc_node(num_maps * sizeof(unsigned long),
1255 GFP_KERNEL, node);
1256 if (!hctx->ctx_map)
1257 break;
1258
1259 hctx->nr_ctx_map = num_maps;
1260 hctx->nr_ctx = 0;
1261
1262 if (reg->ops->init_hctx &&
1263 reg->ops->init_hctx(hctx, driver_data, i))
1264 break;
1265 }
1266
1267 if (i == q->nr_hw_queues)
1268 return 0;
1269
1270 /*
1271 * Init failed
1272 */
1273 queue_for_each_hw_ctx(q, hctx, j) {
1274 if (i == j)
1275 break;
1276
1277 if (reg->ops->exit_hctx)
1278 reg->ops->exit_hctx(hctx, j);
1279
1280 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1281 blk_mq_free_rq_map(hctx);
1282 kfree(hctx->ctxs);
1283 }
1284
1285 return 1;
1286}
1287
1288static void blk_mq_init_cpu_queues(struct request_queue *q,
1289 unsigned int nr_hw_queues)
1290{
1291 unsigned int i;
1292
1293 for_each_possible_cpu(i) {
1294 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1295 struct blk_mq_hw_ctx *hctx;
1296
1297 memset(__ctx, 0, sizeof(*__ctx));
1298 __ctx->cpu = i;
1299 spin_lock_init(&__ctx->lock);
1300 INIT_LIST_HEAD(&__ctx->rq_list);
1301 __ctx->queue = q;
1302
1303 /* If the cpu isn't online, the cpu is mapped to first hctx */
1304 hctx = q->mq_ops->map_queue(q, i);
1305 hctx->nr_ctx++;
1306
1307 if (!cpu_online(i))
1308 continue;
1309
1310 /*
1311 * Set local node, IFF we have more than one hw queue. If
1312 * not, we remain on the home node of the device
1313 */
1314 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1315 hctx->numa_node = cpu_to_node(i);
1316 }
1317}
1318
1319static void blk_mq_map_swqueue(struct request_queue *q)
1320{
1321 unsigned int i;
1322 struct blk_mq_hw_ctx *hctx;
1323 struct blk_mq_ctx *ctx;
1324
1325 queue_for_each_hw_ctx(q, hctx, i) {
1326 hctx->nr_ctx = 0;
1327 }
1328
1329 /*
1330 * Map software to hardware queues
1331 */
1332 queue_for_each_ctx(q, ctx, i) {
1333 /* If the cpu isn't online, the cpu is mapped to first hctx */
1334 hctx = q->mq_ops->map_queue(q, i);
1335 ctx->index_hw = hctx->nr_ctx;
1336 hctx->ctxs[hctx->nr_ctx++] = ctx;
1337 }
1338}
1339
1340struct request_queue *blk_mq_init_queue(struct blk_mq_reg *reg,
1341 void *driver_data)
1342{
1343 struct blk_mq_hw_ctx **hctxs;
1344 struct blk_mq_ctx *ctx;
1345 struct request_queue *q;
1346 int i;
1347
1348 if (!reg->nr_hw_queues ||
1349 !reg->ops->queue_rq || !reg->ops->map_queue ||
1350 !reg->ops->alloc_hctx || !reg->ops->free_hctx)
1351 return ERR_PTR(-EINVAL);
1352
1353 if (!reg->queue_depth)
1354 reg->queue_depth = BLK_MQ_MAX_DEPTH;
1355 else if (reg->queue_depth > BLK_MQ_MAX_DEPTH) {
1356 pr_err("blk-mq: queuedepth too large (%u)\n", reg->queue_depth);
1357 reg->queue_depth = BLK_MQ_MAX_DEPTH;
1358 }
1359
1360 if (reg->queue_depth < (reg->reserved_tags + BLK_MQ_TAG_MIN))
1361 return ERR_PTR(-EINVAL);
1362
1363 ctx = alloc_percpu(struct blk_mq_ctx);
1364 if (!ctx)
1365 return ERR_PTR(-ENOMEM);
1366
1367 hctxs = kmalloc_node(reg->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1368 reg->numa_node);
1369
1370 if (!hctxs)
1371 goto err_percpu;
1372
1373 for (i = 0; i < reg->nr_hw_queues; i++) {
1374 hctxs[i] = reg->ops->alloc_hctx(reg, i);
1375 if (!hctxs[i])
1376 goto err_hctxs;
1377
1378 hctxs[i]->numa_node = NUMA_NO_NODE;
1379 hctxs[i]->queue_num = i;
1380 }
1381
1382 q = blk_alloc_queue_node(GFP_KERNEL, reg->numa_node);
1383 if (!q)
1384 goto err_hctxs;
1385
1386 q->mq_map = blk_mq_make_queue_map(reg);
1387 if (!q->mq_map)
1388 goto err_map;
1389
1390 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1391 blk_queue_rq_timeout(q, 30000);
1392
1393 q->nr_queues = nr_cpu_ids;
1394 q->nr_hw_queues = reg->nr_hw_queues;
1395
1396 q->queue_ctx = ctx;
1397 q->queue_hw_ctx = hctxs;
1398
1399 q->mq_ops = reg->ops;
94eddfbe 1400 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 1401
1be036e9
CH
1402 q->sg_reserved_size = INT_MAX;
1403
320ae51f
JA
1404 blk_queue_make_request(q, blk_mq_make_request);
1405 blk_queue_rq_timed_out(q, reg->ops->timeout);
1406 if (reg->timeout)
1407 blk_queue_rq_timeout(q, reg->timeout);
1408
30a91cb4
CH
1409 if (reg->ops->complete)
1410 blk_queue_softirq_done(q, reg->ops->complete);
1411
320ae51f
JA
1412 blk_mq_init_flush(q);
1413 blk_mq_init_cpu_queues(q, reg->nr_hw_queues);
1414
1415 if (blk_mq_init_hw_queues(q, reg, driver_data))
1416 goto err_hw;
1417
1418 blk_mq_map_swqueue(q);
1419
1420 mutex_lock(&all_q_mutex);
1421 list_add_tail(&q->all_q_node, &all_q_list);
1422 mutex_unlock(&all_q_mutex);
1423
1424 return q;
1425err_hw:
1426 kfree(q->mq_map);
1427err_map:
1428 blk_cleanup_queue(q);
1429err_hctxs:
1430 for (i = 0; i < reg->nr_hw_queues; i++) {
1431 if (!hctxs[i])
1432 break;
1433 reg->ops->free_hctx(hctxs[i], i);
1434 }
1435 kfree(hctxs);
1436err_percpu:
1437 free_percpu(ctx);
1438 return ERR_PTR(-ENOMEM);
1439}
1440EXPORT_SYMBOL(blk_mq_init_queue);
1441
1442void blk_mq_free_queue(struct request_queue *q)
1443{
1444 struct blk_mq_hw_ctx *hctx;
1445 int i;
1446
1447 queue_for_each_hw_ctx(q, hctx, i) {
320ae51f
JA
1448 kfree(hctx->ctx_map);
1449 kfree(hctx->ctxs);
1450 blk_mq_free_rq_map(hctx);
1451 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1452 if (q->mq_ops->exit_hctx)
1453 q->mq_ops->exit_hctx(hctx, i);
1454 q->mq_ops->free_hctx(hctx, i);
1455 }
1456
1457 free_percpu(q->queue_ctx);
1458 kfree(q->queue_hw_ctx);
1459 kfree(q->mq_map);
1460
1461 q->queue_ctx = NULL;
1462 q->queue_hw_ctx = NULL;
1463 q->mq_map = NULL;
1464
1465 mutex_lock(&all_q_mutex);
1466 list_del_init(&q->all_q_node);
1467 mutex_unlock(&all_q_mutex);
1468}
320ae51f
JA
1469
1470/* Basically redo blk_mq_init_queue with queue frozen */
f618ef7c 1471static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f
JA
1472{
1473 blk_mq_freeze_queue(q);
1474
1475 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1476
1477 /*
1478 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1479 * we should change hctx numa_node according to new topology (this
1480 * involves free and re-allocate memory, worthy doing?)
1481 */
1482
1483 blk_mq_map_swqueue(q);
1484
1485 blk_mq_unfreeze_queue(q);
1486}
1487
f618ef7c
PG
1488static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1489 unsigned long action, void *hcpu)
320ae51f
JA
1490{
1491 struct request_queue *q;
1492
1493 /*
1494 * Before new mapping is established, hotadded cpu might already start
1495 * handling requests. This doesn't break anything as we map offline
1496 * CPUs to first hardware queue. We will re-init queue below to get
1497 * optimal settings.
1498 */
1499 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1500 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1501 return NOTIFY_OK;
1502
1503 mutex_lock(&all_q_mutex);
1504 list_for_each_entry(q, &all_q_list, all_q_node)
1505 blk_mq_queue_reinit(q);
1506 mutex_unlock(&all_q_mutex);
1507 return NOTIFY_OK;
1508}
1509
1510static int __init blk_mq_init(void)
1511{
320ae51f
JA
1512 blk_mq_cpu_init();
1513
1514 /* Must be called after percpu_counter_hotcpu_callback() */
1515 hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
1516
1517 return 0;
1518}
1519subsys_initcall(blk_mq_init);