]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - block/blk-mq.c
blk-stat: don't use this_cpu_ptr() in a preemptable section
[thirdparty/kernel/stable.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
105ab3d8 23#include <linux/sched/topology.h>
174cd4b1 24#include <linux/sched/signal.h>
320ae51f 25#include <linux/delay.h>
aedcd72f 26#include <linux/crash_dump.h>
88c7b2b7 27#include <linux/prefetch.h>
320ae51f
JA
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
9c1051aa 34#include "blk-mq-debugfs.h"
320ae51f 35#include "blk-mq-tag.h"
cf43e6be 36#include "blk-stat.h"
87760e5e 37#include "blk-wbt.h"
bd166ef1 38#include "blk-mq-sched.h"
320ae51f
JA
39
40static DEFINE_MUTEX(all_q_mutex);
41static LIST_HEAD(all_q_list);
42
34dbad5d
OS
43static void blk_mq_poll_stats_start(struct request_queue *q);
44static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
2719aa21 45static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync);
34dbad5d 46
720b8ccc
SB
47static int blk_mq_poll_stats_bkt(const struct request *rq)
48{
49 int ddir, bytes, bucket;
50
99c749a4 51 ddir = rq_data_dir(rq);
720b8ccc
SB
52 bytes = blk_rq_bytes(rq);
53
54 bucket = ddir + 2*(ilog2(bytes) - 9);
55
56 if (bucket < 0)
57 return -1;
58 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
59 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
60
61 return bucket;
62}
63
320ae51f
JA
64/*
65 * Check if any of the ctx's have pending work in this hardware queue
66 */
50e1dab8 67bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 68{
bd166ef1
JA
69 return sbitmap_any_bit_set(&hctx->ctx_map) ||
70 !list_empty_careful(&hctx->dispatch) ||
71 blk_mq_sched_has_work(hctx);
1429d7c9
JA
72}
73
320ae51f
JA
74/*
75 * Mark this ctx as having pending work in this hardware queue
76 */
77static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
78 struct blk_mq_ctx *ctx)
79{
88459642
OS
80 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
81 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
82}
83
84static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
85 struct blk_mq_ctx *ctx)
86{
88459642 87 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
88}
89
1671d522 90void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 91{
4ecd4fef 92 int freeze_depth;
cddd5d17 93
4ecd4fef
CH
94 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
95 if (freeze_depth == 1) {
3ef28e83 96 percpu_ref_kill(&q->q_usage_counter);
b94ec296 97 blk_mq_run_hw_queues(q, false);
cddd5d17 98 }
f3af020b 99}
1671d522 100EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 101
6bae363e 102void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 103{
3ef28e83 104 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 105}
6bae363e 106EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 107
f91328c4
KB
108int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
109 unsigned long timeout)
110{
111 return wait_event_timeout(q->mq_freeze_wq,
112 percpu_ref_is_zero(&q->q_usage_counter),
113 timeout);
114}
115EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 116
f3af020b
TH
117/*
118 * Guarantee no request is in use, so we can change any data structure of
119 * the queue afterward.
120 */
3ef28e83 121void blk_freeze_queue(struct request_queue *q)
f3af020b 122{
3ef28e83
DW
123 /*
124 * In the !blk_mq case we are only calling this to kill the
125 * q_usage_counter, otherwise this increases the freeze depth
126 * and waits for it to return to zero. For this reason there is
127 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
128 * exported to drivers as the only user for unfreeze is blk_mq.
129 */
1671d522 130 blk_freeze_queue_start(q);
f3af020b
TH
131 blk_mq_freeze_queue_wait(q);
132}
3ef28e83
DW
133
134void blk_mq_freeze_queue(struct request_queue *q)
135{
136 /*
137 * ...just an alias to keep freeze and unfreeze actions balanced
138 * in the blk_mq_* namespace
139 */
140 blk_freeze_queue(q);
141}
c761d96b 142EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 143
b4c6a028 144void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 145{
4ecd4fef 146 int freeze_depth;
320ae51f 147
4ecd4fef
CH
148 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
149 WARN_ON_ONCE(freeze_depth < 0);
150 if (!freeze_depth) {
3ef28e83 151 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 152 wake_up_all(&q->mq_freeze_wq);
add703fd 153 }
320ae51f 154}
b4c6a028 155EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 156
6a83e74d
BVA
157/**
158 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
159 * @q: request queue.
160 *
161 * Note: this function does not prevent that the struct request end_io()
162 * callback function is invoked. Additionally, it is not prevented that
163 * new queue_rq() calls occur unless the queue has been stopped first.
164 */
165void blk_mq_quiesce_queue(struct request_queue *q)
166{
167 struct blk_mq_hw_ctx *hctx;
168 unsigned int i;
169 bool rcu = false;
170
2719aa21 171 __blk_mq_stop_hw_queues(q, true);
6a83e74d
BVA
172
173 queue_for_each_hw_ctx(q, hctx, i) {
174 if (hctx->flags & BLK_MQ_F_BLOCKING)
175 synchronize_srcu(&hctx->queue_rq_srcu);
176 else
177 rcu = true;
178 }
179 if (rcu)
180 synchronize_rcu();
181}
182EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
183
aed3ea94
JA
184void blk_mq_wake_waiters(struct request_queue *q)
185{
186 struct blk_mq_hw_ctx *hctx;
187 unsigned int i;
188
189 queue_for_each_hw_ctx(q, hctx, i)
190 if (blk_mq_hw_queue_mapped(hctx))
191 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
192
193 /*
194 * If we are called because the queue has now been marked as
195 * dying, we need to ensure that processes currently waiting on
196 * the queue are notified as well.
197 */
198 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
199}
200
320ae51f
JA
201bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
202{
203 return blk_mq_has_free_tags(hctx->tags);
204}
205EXPORT_SYMBOL(blk_mq_can_queue);
206
2c3ad667
JA
207void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
208 struct request *rq, unsigned int op)
320ae51f 209{
af76e555
CH
210 INIT_LIST_HEAD(&rq->queuelist);
211 /* csd/requeue_work/fifo_time is initialized before use */
212 rq->q = q;
320ae51f 213 rq->mq_ctx = ctx;
ef295ecf 214 rq->cmd_flags = op;
e8064021
CH
215 if (blk_queue_io_stat(q))
216 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
217 /* do not touch atomic flags, it needs atomic ops against the timer */
218 rq->cpu = -1;
af76e555
CH
219 INIT_HLIST_NODE(&rq->hash);
220 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
221 rq->rq_disk = NULL;
222 rq->part = NULL;
3ee32372 223 rq->start_time = jiffies;
af76e555
CH
224#ifdef CONFIG_BLK_CGROUP
225 rq->rl = NULL;
0fec08b4 226 set_start_time_ns(rq);
af76e555
CH
227 rq->io_start_time_ns = 0;
228#endif
229 rq->nr_phys_segments = 0;
230#if defined(CONFIG_BLK_DEV_INTEGRITY)
231 rq->nr_integrity_segments = 0;
232#endif
af76e555
CH
233 rq->special = NULL;
234 /* tag was already set */
af76e555 235 rq->extra_len = 0;
af76e555 236
af76e555 237 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
238 rq->timeout = 0;
239
af76e555
CH
240 rq->end_io = NULL;
241 rq->end_io_data = NULL;
242 rq->next_rq = NULL;
243
ef295ecf 244 ctx->rq_dispatched[op_is_sync(op)]++;
320ae51f 245}
2c3ad667 246EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
320ae51f 247
2c3ad667
JA
248struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
249 unsigned int op)
5dee8577
CH
250{
251 struct request *rq;
252 unsigned int tag;
253
cb96a42c 254 tag = blk_mq_get_tag(data);
5dee8577 255 if (tag != BLK_MQ_TAG_FAIL) {
bd166ef1
JA
256 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
257
258 rq = tags->static_rqs[tag];
5dee8577 259
bd166ef1
JA
260 if (data->flags & BLK_MQ_REQ_INTERNAL) {
261 rq->tag = -1;
262 rq->internal_tag = tag;
263 } else {
200e86b3
JA
264 if (blk_mq_tag_busy(data->hctx)) {
265 rq->rq_flags = RQF_MQ_INFLIGHT;
266 atomic_inc(&data->hctx->nr_active);
267 }
bd166ef1
JA
268 rq->tag = tag;
269 rq->internal_tag = -1;
562bef42 270 data->hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
271 }
272
ef295ecf 273 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
5dee8577
CH
274 return rq;
275 }
276
277 return NULL;
278}
2c3ad667 279EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
5dee8577 280
6f3b0e8b
CH
281struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
282 unsigned int flags)
320ae51f 283{
5a797e00 284 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 285 struct request *rq;
a492f075 286 int ret;
320ae51f 287
6f3b0e8b 288 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
a492f075
JL
289 if (ret)
290 return ERR_PTR(ret);
320ae51f 291
bd166ef1 292 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
841bac2c 293
bd166ef1
JA
294 blk_mq_put_ctx(alloc_data.ctx);
295 blk_queue_exit(q);
296
297 if (!rq)
a492f075 298 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3
CH
299
300 rq->__data_len = 0;
301 rq->__sector = (sector_t) -1;
302 rq->bio = rq->biotail = NULL;
320ae51f
JA
303 return rq;
304}
4bb659b1 305EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 306
1f5bd336
ML
307struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
308 unsigned int flags, unsigned int hctx_idx)
309{
6d2809d5 310 struct blk_mq_alloc_data alloc_data = { .flags = flags };
1f5bd336 311 struct request *rq;
6d2809d5 312 unsigned int cpu;
1f5bd336
ML
313 int ret;
314
315 /*
316 * If the tag allocator sleeps we could get an allocation for a
317 * different hardware context. No need to complicate the low level
318 * allocator for this for the rare use case of a command tied to
319 * a specific queue.
320 */
321 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
322 return ERR_PTR(-EINVAL);
323
324 if (hctx_idx >= q->nr_hw_queues)
325 return ERR_PTR(-EIO);
326
327 ret = blk_queue_enter(q, true);
328 if (ret)
329 return ERR_PTR(ret);
330
c8712c6a
CH
331 /*
332 * Check if the hardware context is actually mapped to anything.
333 * If not tell the caller that it should skip this queue.
334 */
6d2809d5
OS
335 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
336 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
337 blk_queue_exit(q);
338 return ERR_PTR(-EXDEV);
c8712c6a 339 }
6d2809d5
OS
340 cpu = cpumask_first(alloc_data.hctx->cpumask);
341 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 342
6d2809d5 343 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
c8712c6a 344
c8712c6a 345 blk_queue_exit(q);
6d2809d5
OS
346
347 if (!rq)
348 return ERR_PTR(-EWOULDBLOCK);
349
350 return rq;
1f5bd336
ML
351}
352EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
353
bd166ef1
JA
354void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
355 struct request *rq)
320ae51f 356{
bd166ef1 357 const int sched_tag = rq->internal_tag;
320ae51f
JA
358 struct request_queue *q = rq->q;
359
e8064021 360 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 361 atomic_dec(&hctx->nr_active);
87760e5e
JA
362
363 wbt_done(q->rq_wb, &rq->issue_stat);
e8064021 364 rq->rq_flags = 0;
0d2602ca 365
af76e555 366 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 367 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
bd166ef1
JA
368 if (rq->tag != -1)
369 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
370 if (sched_tag != -1)
c05f8525 371 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
6d8c6c0f 372 blk_mq_sched_restart(hctx);
3ef28e83 373 blk_queue_exit(q);
320ae51f
JA
374}
375
bd166ef1 376static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
16a3c2a7 377 struct request *rq)
320ae51f
JA
378{
379 struct blk_mq_ctx *ctx = rq->mq_ctx;
320ae51f
JA
380
381 ctx->rq_completed[rq_is_sync(rq)]++;
bd166ef1
JA
382 __blk_mq_finish_request(hctx, ctx, rq);
383}
384
385void blk_mq_finish_request(struct request *rq)
386{
387 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
7c7f2f2b 388}
5b727272 389EXPORT_SYMBOL_GPL(blk_mq_finish_request);
7c7f2f2b
JA
390
391void blk_mq_free_request(struct request *rq)
392{
bd166ef1 393 blk_mq_sched_put_request(rq);
320ae51f 394}
1a3b595a 395EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 396
c8a446ad 397inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 398{
0d11e6ac
ML
399 blk_account_io_done(rq);
400
91b63639 401 if (rq->end_io) {
87760e5e 402 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 403 rq->end_io(rq, error);
91b63639
CH
404 } else {
405 if (unlikely(blk_bidi_rq(rq)))
406 blk_mq_free_request(rq->next_rq);
320ae51f 407 blk_mq_free_request(rq);
91b63639 408 }
320ae51f 409}
c8a446ad 410EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 411
c8a446ad 412void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
413{
414 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
415 BUG();
c8a446ad 416 __blk_mq_end_request(rq, error);
63151a44 417}
c8a446ad 418EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 419
30a91cb4 420static void __blk_mq_complete_request_remote(void *data)
320ae51f 421{
3d6efbf6 422 struct request *rq = data;
320ae51f 423
30a91cb4 424 rq->q->softirq_done_fn(rq);
320ae51f 425}
320ae51f 426
453f8341 427static void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
428{
429 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 430 bool shared = false;
320ae51f
JA
431 int cpu;
432
453f8341
CH
433 if (rq->internal_tag != -1)
434 blk_mq_sched_completed_request(rq);
435 if (rq->rq_flags & RQF_STATS) {
436 blk_mq_poll_stats_start(rq->q);
437 blk_stat_add(rq);
438 }
439
38535201 440 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
441 rq->q->softirq_done_fn(rq);
442 return;
443 }
320ae51f
JA
444
445 cpu = get_cpu();
38535201
CH
446 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
447 shared = cpus_share_cache(cpu, ctx->cpu);
448
449 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 450 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
451 rq->csd.info = rq;
452 rq->csd.flags = 0;
c46fff2a 453 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 454 } else {
30a91cb4 455 rq->q->softirq_done_fn(rq);
3d6efbf6 456 }
320ae51f
JA
457 put_cpu();
458}
30a91cb4
CH
459
460/**
461 * blk_mq_complete_request - end I/O on a request
462 * @rq: the request being processed
463 *
464 * Description:
465 * Ends all I/O on a request. It does not handle partial completions.
466 * The actual completion happens out-of-order, through a IPI handler.
467 **/
08e0029a 468void blk_mq_complete_request(struct request *rq)
30a91cb4 469{
95f09684
JA
470 struct request_queue *q = rq->q;
471
472 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 473 return;
08e0029a 474 if (!blk_mark_rq_complete(rq))
ed851860 475 __blk_mq_complete_request(rq);
30a91cb4
CH
476}
477EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 478
973c0191
KB
479int blk_mq_request_started(struct request *rq)
480{
481 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
482}
483EXPORT_SYMBOL_GPL(blk_mq_request_started);
484
e2490073 485void blk_mq_start_request(struct request *rq)
320ae51f
JA
486{
487 struct request_queue *q = rq->q;
488
bd166ef1
JA
489 blk_mq_sched_started_request(rq);
490
320ae51f
JA
491 trace_block_rq_issue(q, rq);
492
cf43e6be 493 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
88eeca49 494 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
cf43e6be 495 rq->rq_flags |= RQF_STATS;
87760e5e 496 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
497 }
498
2b8393b4 499 blk_add_timer(rq);
87ee7b11 500
538b7534
JA
501 /*
502 * Ensure that ->deadline is visible before set the started
503 * flag and clear the completed flag.
504 */
505 smp_mb__before_atomic();
506
87ee7b11
JA
507 /*
508 * Mark us as started and clear complete. Complete might have been
509 * set if requeue raced with timeout, which then marked it as
510 * complete. So be sure to clear complete again when we start
511 * the request, otherwise we'll ignore the completion event.
512 */
4b570521
JA
513 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
514 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
515 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
516 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
517
518 if (q->dma_drain_size && blk_rq_bytes(rq)) {
519 /*
520 * Make sure space for the drain appears. We know we can do
521 * this because max_hw_segments has been adjusted to be one
522 * fewer than the device can handle.
523 */
524 rq->nr_phys_segments++;
525 }
320ae51f 526}
e2490073 527EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 528
d9d149a3
ML
529/*
530 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
48b99c9d 531 * flag isn't set yet, so there may be race with timeout handler,
d9d149a3
ML
532 * but given rq->deadline is just set in .queue_rq() under
533 * this situation, the race won't be possible in reality because
534 * rq->timeout should be set as big enough to cover the window
535 * between blk_mq_start_request() called from .queue_rq() and
536 * clearing REQ_ATOM_STARTED here.
537 */
ed0791b2 538static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
539{
540 struct request_queue *q = rq->q;
541
542 trace_block_rq_requeue(q, rq);
87760e5e 543 wbt_requeue(q->rq_wb, &rq->issue_stat);
bd166ef1 544 blk_mq_sched_requeue_request(rq);
49f5baa5 545
e2490073
CH
546 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
547 if (q->dma_drain_size && blk_rq_bytes(rq))
548 rq->nr_phys_segments--;
549 }
320ae51f
JA
550}
551
2b053aca 552void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 553{
ed0791b2 554 __blk_mq_requeue_request(rq);
ed0791b2 555
ed0791b2 556 BUG_ON(blk_queued_rq(rq));
2b053aca 557 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
558}
559EXPORT_SYMBOL(blk_mq_requeue_request);
560
6fca6a61
CH
561static void blk_mq_requeue_work(struct work_struct *work)
562{
563 struct request_queue *q =
2849450a 564 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
565 LIST_HEAD(rq_list);
566 struct request *rq, *next;
567 unsigned long flags;
568
569 spin_lock_irqsave(&q->requeue_lock, flags);
570 list_splice_init(&q->requeue_list, &rq_list);
571 spin_unlock_irqrestore(&q->requeue_lock, flags);
572
573 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 574 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
575 continue;
576
e8064021 577 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 578 list_del_init(&rq->queuelist);
bd6737f1 579 blk_mq_sched_insert_request(rq, true, false, false, true);
6fca6a61
CH
580 }
581
582 while (!list_empty(&rq_list)) {
583 rq = list_entry(rq_list.next, struct request, queuelist);
584 list_del_init(&rq->queuelist);
bd6737f1 585 blk_mq_sched_insert_request(rq, false, false, false, true);
6fca6a61
CH
586 }
587
52d7f1b5 588 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
589}
590
2b053aca
BVA
591void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
592 bool kick_requeue_list)
6fca6a61
CH
593{
594 struct request_queue *q = rq->q;
595 unsigned long flags;
596
597 /*
598 * We abuse this flag that is otherwise used by the I/O scheduler to
599 * request head insertation from the workqueue.
600 */
e8064021 601 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
602
603 spin_lock_irqsave(&q->requeue_lock, flags);
604 if (at_head) {
e8064021 605 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
606 list_add(&rq->queuelist, &q->requeue_list);
607 } else {
608 list_add_tail(&rq->queuelist, &q->requeue_list);
609 }
610 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
611
612 if (kick_requeue_list)
613 blk_mq_kick_requeue_list(q);
6fca6a61
CH
614}
615EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
616
617void blk_mq_kick_requeue_list(struct request_queue *q)
618{
2849450a 619 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
620}
621EXPORT_SYMBOL(blk_mq_kick_requeue_list);
622
2849450a
MS
623void blk_mq_delay_kick_requeue_list(struct request_queue *q,
624 unsigned long msecs)
625{
626 kblockd_schedule_delayed_work(&q->requeue_work,
627 msecs_to_jiffies(msecs));
628}
629EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
630
1885b24d
JA
631void blk_mq_abort_requeue_list(struct request_queue *q)
632{
633 unsigned long flags;
634 LIST_HEAD(rq_list);
635
636 spin_lock_irqsave(&q->requeue_lock, flags);
637 list_splice_init(&q->requeue_list, &rq_list);
638 spin_unlock_irqrestore(&q->requeue_lock, flags);
639
640 while (!list_empty(&rq_list)) {
641 struct request *rq;
642
643 rq = list_first_entry(&rq_list, struct request, queuelist);
644 list_del_init(&rq->queuelist);
caf7df12 645 blk_mq_end_request(rq, -EIO);
1885b24d
JA
646 }
647}
648EXPORT_SYMBOL(blk_mq_abort_requeue_list);
649
0e62f51f
JA
650struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
651{
88c7b2b7
JA
652 if (tag < tags->nr_tags) {
653 prefetch(tags->rqs[tag]);
4ee86bab 654 return tags->rqs[tag];
88c7b2b7 655 }
4ee86bab
HR
656
657 return NULL;
24d2f903
CH
658}
659EXPORT_SYMBOL(blk_mq_tag_to_rq);
660
320ae51f 661struct blk_mq_timeout_data {
46f92d42
CH
662 unsigned long next;
663 unsigned int next_set;
320ae51f
JA
664};
665
90415837 666void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 667{
f8a5b122 668 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 669 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
670
671 /*
672 * We know that complete is set at this point. If STARTED isn't set
673 * anymore, then the request isn't active and the "timeout" should
674 * just be ignored. This can happen due to the bitflag ordering.
675 * Timeout first checks if STARTED is set, and if it is, assumes
676 * the request is active. But if we race with completion, then
48b99c9d 677 * both flags will get cleared. So check here again, and ignore
87ee7b11
JA
678 * a timeout event with a request that isn't active.
679 */
46f92d42
CH
680 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
681 return;
87ee7b11 682
46f92d42 683 if (ops->timeout)
0152fb6b 684 ret = ops->timeout(req, reserved);
46f92d42
CH
685
686 switch (ret) {
687 case BLK_EH_HANDLED:
688 __blk_mq_complete_request(req);
689 break;
690 case BLK_EH_RESET_TIMER:
691 blk_add_timer(req);
692 blk_clear_rq_complete(req);
693 break;
694 case BLK_EH_NOT_HANDLED:
695 break;
696 default:
697 printk(KERN_ERR "block: bad eh return: %d\n", ret);
698 break;
699 }
87ee7b11 700}
5b3f25fc 701
81481eb4
CH
702static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
703 struct request *rq, void *priv, bool reserved)
704{
705 struct blk_mq_timeout_data *data = priv;
87ee7b11 706
95a49603 707 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
46f92d42 708 return;
87ee7b11 709
d9d149a3
ML
710 /*
711 * The rq being checked may have been freed and reallocated
712 * out already here, we avoid this race by checking rq->deadline
713 * and REQ_ATOM_COMPLETE flag together:
714 *
715 * - if rq->deadline is observed as new value because of
716 * reusing, the rq won't be timed out because of timing.
717 * - if rq->deadline is observed as previous value,
718 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
719 * because we put a barrier between setting rq->deadline
720 * and clearing the flag in blk_mq_start_request(), so
721 * this rq won't be timed out too.
722 */
46f92d42
CH
723 if (time_after_eq(jiffies, rq->deadline)) {
724 if (!blk_mark_rq_complete(rq))
0152fb6b 725 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
726 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
727 data->next = rq->deadline;
728 data->next_set = 1;
729 }
87ee7b11
JA
730}
731
287922eb 732static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 733{
287922eb
CH
734 struct request_queue *q =
735 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
736 struct blk_mq_timeout_data data = {
737 .next = 0,
738 .next_set = 0,
739 };
81481eb4 740 int i;
320ae51f 741
71f79fb3
GKB
742 /* A deadlock might occur if a request is stuck requiring a
743 * timeout at the same time a queue freeze is waiting
744 * completion, since the timeout code would not be able to
745 * acquire the queue reference here.
746 *
747 * That's why we don't use blk_queue_enter here; instead, we use
748 * percpu_ref_tryget directly, because we need to be able to
749 * obtain a reference even in the short window between the queue
750 * starting to freeze, by dropping the first reference in
1671d522 751 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
752 * consumed, marked by the instant q_usage_counter reaches
753 * zero.
754 */
755 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
756 return;
757
0bf6cd5b 758 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 759
81481eb4
CH
760 if (data.next_set) {
761 data.next = blk_rq_timeout(round_jiffies_up(data.next));
762 mod_timer(&q->timeout, data.next);
0d2602ca 763 } else {
0bf6cd5b
CH
764 struct blk_mq_hw_ctx *hctx;
765
f054b56c
ML
766 queue_for_each_hw_ctx(q, hctx, i) {
767 /* the hctx may be unmapped, so check it here */
768 if (blk_mq_hw_queue_mapped(hctx))
769 blk_mq_tag_idle(hctx);
770 }
0d2602ca 771 }
287922eb 772 blk_queue_exit(q);
320ae51f
JA
773}
774
775/*
776 * Reverse check our software queue for entries that we could potentially
777 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
778 * too much time checking for merges.
779 */
780static bool blk_mq_attempt_merge(struct request_queue *q,
781 struct blk_mq_ctx *ctx, struct bio *bio)
782{
783 struct request *rq;
784 int checked = 8;
785
786 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
34fe7c05 787 bool merged = false;
320ae51f
JA
788
789 if (!checked--)
790 break;
791
792 if (!blk_rq_merge_ok(rq, bio))
793 continue;
794
34fe7c05
CH
795 switch (blk_try_merge(rq, bio)) {
796 case ELEVATOR_BACK_MERGE:
797 if (blk_mq_sched_allow_merge(q, rq, bio))
798 merged = bio_attempt_back_merge(q, rq, bio);
bd166ef1 799 break;
34fe7c05
CH
800 case ELEVATOR_FRONT_MERGE:
801 if (blk_mq_sched_allow_merge(q, rq, bio))
802 merged = bio_attempt_front_merge(q, rq, bio);
320ae51f 803 break;
1e739730
CH
804 case ELEVATOR_DISCARD_MERGE:
805 merged = bio_attempt_discard_merge(q, rq, bio);
320ae51f 806 break;
34fe7c05
CH
807 default:
808 continue;
320ae51f 809 }
34fe7c05
CH
810
811 if (merged)
812 ctx->rq_merged++;
813 return merged;
320ae51f
JA
814 }
815
816 return false;
817}
818
88459642
OS
819struct flush_busy_ctx_data {
820 struct blk_mq_hw_ctx *hctx;
821 struct list_head *list;
822};
823
824static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
825{
826 struct flush_busy_ctx_data *flush_data = data;
827 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
828 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
829
830 sbitmap_clear_bit(sb, bitnr);
831 spin_lock(&ctx->lock);
832 list_splice_tail_init(&ctx->rq_list, flush_data->list);
833 spin_unlock(&ctx->lock);
834 return true;
835}
836
1429d7c9
JA
837/*
838 * Process software queues that have been marked busy, splicing them
839 * to the for-dispatch
840 */
2c3ad667 841void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 842{
88459642
OS
843 struct flush_busy_ctx_data data = {
844 .hctx = hctx,
845 .list = list,
846 };
1429d7c9 847
88459642 848 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 849}
2c3ad667 850EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 851
703fd1c0
JA
852static inline unsigned int queued_to_index(unsigned int queued)
853{
854 if (!queued)
855 return 0;
1429d7c9 856
703fd1c0 857 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
858}
859
bd6737f1
JA
860bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
861 bool wait)
bd166ef1
JA
862{
863 struct blk_mq_alloc_data data = {
864 .q = rq->q,
bd166ef1
JA
865 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
866 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
867 };
868
5feeacdd
JA
869 might_sleep_if(wait);
870
81380ca1
OS
871 if (rq->tag != -1)
872 goto done;
bd166ef1 873
415b806d
SG
874 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
875 data.flags |= BLK_MQ_REQ_RESERVED;
876
bd166ef1
JA
877 rq->tag = blk_mq_get_tag(&data);
878 if (rq->tag >= 0) {
200e86b3
JA
879 if (blk_mq_tag_busy(data.hctx)) {
880 rq->rq_flags |= RQF_MQ_INFLIGHT;
881 atomic_inc(&data.hctx->nr_active);
882 }
bd166ef1 883 data.hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
884 }
885
81380ca1
OS
886done:
887 if (hctx)
888 *hctx = data.hctx;
889 return rq->tag != -1;
bd166ef1
JA
890}
891
113285b4
JA
892static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
893 struct request *rq)
99cf1dc5 894{
99cf1dc5
JA
895 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
896 rq->tag = -1;
897
898 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
899 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
900 atomic_dec(&hctx->nr_active);
901 }
902}
903
113285b4
JA
904static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
905 struct request *rq)
906{
907 if (rq->tag == -1 || rq->internal_tag == -1)
908 return;
909
910 __blk_mq_put_driver_tag(hctx, rq);
911}
912
913static void blk_mq_put_driver_tag(struct request *rq)
914{
915 struct blk_mq_hw_ctx *hctx;
916
917 if (rq->tag == -1 || rq->internal_tag == -1)
918 return;
919
920 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
921 __blk_mq_put_driver_tag(hctx, rq);
922}
923
bd166ef1
JA
924/*
925 * If we fail getting a driver tag because all the driver tags are already
926 * assigned and on the dispatch list, BUT the first entry does not have a
927 * tag, then we could deadlock. For that case, move entries with assigned
928 * driver tags to the front, leaving the set of tagged requests in the
929 * same order, and the untagged set in the same order.
930 */
931static bool reorder_tags_to_front(struct list_head *list)
932{
933 struct request *rq, *tmp, *first = NULL;
934
935 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
936 if (rq == first)
937 break;
938 if (rq->tag != -1) {
939 list_move(&rq->queuelist, list);
940 if (!first)
941 first = rq;
942 }
943 }
944
945 return first != NULL;
946}
947
da55f2cc
OS
948static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
949 void *key)
950{
951 struct blk_mq_hw_ctx *hctx;
952
953 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
954
955 list_del(&wait->task_list);
956 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
957 blk_mq_run_hw_queue(hctx, true);
958 return 1;
959}
960
961static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
962{
963 struct sbq_wait_state *ws;
964
965 /*
966 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
967 * The thread which wins the race to grab this bit adds the hardware
968 * queue to the wait queue.
969 */
970 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
971 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
972 return false;
973
974 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
975 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
976
977 /*
978 * As soon as this returns, it's no longer safe to fiddle with
979 * hctx->dispatch_wait, since a completion can wake up the wait queue
980 * and unlock the bit.
981 */
982 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
983 return true;
984}
985
81380ca1 986bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
320ae51f 987{
81380ca1 988 struct blk_mq_hw_ctx *hctx;
320ae51f 989 struct request *rq;
93efe981 990 int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
320ae51f 991
81380ca1
OS
992 if (list_empty(list))
993 return false;
994
320ae51f
JA
995 /*
996 * Now process all the entries, sending them to the driver.
997 */
93efe981 998 errors = queued = 0;
81380ca1 999 do {
74c45052 1000 struct blk_mq_queue_data bd;
320ae51f 1001
f04c3df3 1002 rq = list_first_entry(list, struct request, queuelist);
bd166ef1
JA
1003 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1004 if (!queued && reorder_tags_to_front(list))
1005 continue;
3c782d67
JA
1006
1007 /*
da55f2cc
OS
1008 * The initial allocation attempt failed, so we need to
1009 * rerun the hardware queue when a tag is freed.
3c782d67 1010 */
807b1041
OS
1011 if (!blk_mq_dispatch_wait_add(hctx))
1012 break;
1013
1014 /*
1015 * It's possible that a tag was freed in the window
1016 * between the allocation failure and adding the
1017 * hardware queue to the wait queue.
1018 */
1019 if (!blk_mq_get_driver_tag(rq, &hctx, false))
3c782d67 1020 break;
bd166ef1 1021 }
da55f2cc 1022
320ae51f 1023 list_del_init(&rq->queuelist);
320ae51f 1024
74c45052 1025 bd.rq = rq;
113285b4
JA
1026
1027 /*
1028 * Flag last if we have no more requests, or if we have more
1029 * but can't assign a driver tag to it.
1030 */
1031 if (list_empty(list))
1032 bd.last = true;
1033 else {
1034 struct request *nxt;
1035
1036 nxt = list_first_entry(list, struct request, queuelist);
1037 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1038 }
74c45052
JA
1039
1040 ret = q->mq_ops->queue_rq(hctx, &bd);
320ae51f
JA
1041 switch (ret) {
1042 case BLK_MQ_RQ_QUEUE_OK:
1043 queued++;
52b9c330 1044 break;
320ae51f 1045 case BLK_MQ_RQ_QUEUE_BUSY:
113285b4 1046 blk_mq_put_driver_tag_hctx(hctx, rq);
f04c3df3 1047 list_add(&rq->queuelist, list);
ed0791b2 1048 __blk_mq_requeue_request(rq);
320ae51f
JA
1049 break;
1050 default:
1051 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 1052 case BLK_MQ_RQ_QUEUE_ERROR:
93efe981 1053 errors++;
caf7df12 1054 blk_mq_end_request(rq, -EIO);
320ae51f
JA
1055 break;
1056 }
1057
1058 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1059 break;
81380ca1 1060 } while (!list_empty(list));
320ae51f 1061
703fd1c0 1062 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1063
1064 /*
1065 * Any items that need requeuing? Stuff them into hctx->dispatch,
1066 * that is where we will continue on next queue run.
1067 */
f04c3df3 1068 if (!list_empty(list)) {
113285b4 1069 /*
710c785f
BVA
1070 * If an I/O scheduler has been configured and we got a driver
1071 * tag for the next request already, free it again.
113285b4
JA
1072 */
1073 rq = list_first_entry(list, struct request, queuelist);
1074 blk_mq_put_driver_tag(rq);
1075
320ae51f 1076 spin_lock(&hctx->lock);
c13660a0 1077 list_splice_init(list, &hctx->dispatch);
320ae51f 1078 spin_unlock(&hctx->lock);
f04c3df3 1079
9ba52e58 1080 /*
710c785f
BVA
1081 * If SCHED_RESTART was set by the caller of this function and
1082 * it is no longer set that means that it was cleared by another
1083 * thread and hence that a queue rerun is needed.
9ba52e58 1084 *
710c785f
BVA
1085 * If TAG_WAITING is set that means that an I/O scheduler has
1086 * been configured and another thread is waiting for a driver
1087 * tag. To guarantee fairness, do not rerun this hardware queue
1088 * but let the other thread grab the driver tag.
bd166ef1 1089 *
710c785f
BVA
1090 * If no I/O scheduler has been configured it is possible that
1091 * the hardware queue got stopped and restarted before requests
1092 * were pushed back onto the dispatch list. Rerun the queue to
1093 * avoid starvation. Notes:
1094 * - blk_mq_run_hw_queue() checks whether or not a queue has
1095 * been stopped before rerunning a queue.
1096 * - Some but not all block drivers stop a queue before
1097 * returning BLK_MQ_RQ_QUEUE_BUSY. Two exceptions are scsi-mq
1098 * and dm-rq.
bd166ef1 1099 */
da55f2cc
OS
1100 if (!blk_mq_sched_needs_restart(hctx) &&
1101 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
bd166ef1 1102 blk_mq_run_hw_queue(hctx, true);
320ae51f 1103 }
f04c3df3 1104
93efe981 1105 return (queued + errors) != 0;
f04c3df3
JA
1106}
1107
6a83e74d
BVA
1108static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1109{
1110 int srcu_idx;
1111
1112 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1113 cpu_online(hctx->next_cpu));
1114
1115 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1116 rcu_read_lock();
bd166ef1 1117 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1118 rcu_read_unlock();
1119 } else {
bf4907c0
JA
1120 might_sleep();
1121
6a83e74d 1122 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
bd166ef1 1123 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1124 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1125 }
1126}
1127
506e931f
JA
1128/*
1129 * It'd be great if the workqueue API had a way to pass
1130 * in a mask and had some smarts for more clever placement.
1131 * For now we just round-robin here, switching for every
1132 * BLK_MQ_CPU_WORK_BATCH queued items.
1133 */
1134static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1135{
b657d7e6
CH
1136 if (hctx->queue->nr_hw_queues == 1)
1137 return WORK_CPU_UNBOUND;
506e931f
JA
1138
1139 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1140 int next_cpu;
506e931f
JA
1141
1142 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1143 if (next_cpu >= nr_cpu_ids)
1144 next_cpu = cpumask_first(hctx->cpumask);
1145
1146 hctx->next_cpu = next_cpu;
1147 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1148 }
1149
b657d7e6 1150 return hctx->next_cpu;
506e931f
JA
1151}
1152
7587a5ae
BVA
1153static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1154 unsigned long msecs)
320ae51f 1155{
5d1b25c1
BVA
1156 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1157 !blk_mq_hw_queue_mapped(hctx)))
320ae51f
JA
1158 return;
1159
1b792f2f 1160 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1161 int cpu = get_cpu();
1162 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1163 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1164 put_cpu();
398205b8
PB
1165 return;
1166 }
e4043dcf 1167
2a90d4aa 1168 put_cpu();
e4043dcf 1169 }
398205b8 1170
9f993737
JA
1171 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1172 &hctx->run_work,
1173 msecs_to_jiffies(msecs));
7587a5ae
BVA
1174}
1175
1176void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1177{
1178 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1179}
1180EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1181
1182void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1183{
1184 __blk_mq_delay_run_hw_queue(hctx, async, 0);
320ae51f 1185}
5b727272 1186EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 1187
b94ec296 1188void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1189{
1190 struct blk_mq_hw_ctx *hctx;
1191 int i;
1192
1193 queue_for_each_hw_ctx(q, hctx, i) {
bd166ef1 1194 if (!blk_mq_hctx_has_pending(hctx) ||
5d1b25c1 1195 blk_mq_hctx_stopped(hctx))
320ae51f
JA
1196 continue;
1197
b94ec296 1198 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1199 }
1200}
b94ec296 1201EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1202
fd001443
BVA
1203/**
1204 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1205 * @q: request queue.
1206 *
1207 * The caller is responsible for serializing this function against
1208 * blk_mq_{start,stop}_hw_queue().
1209 */
1210bool blk_mq_queue_stopped(struct request_queue *q)
1211{
1212 struct blk_mq_hw_ctx *hctx;
1213 int i;
1214
1215 queue_for_each_hw_ctx(q, hctx, i)
1216 if (blk_mq_hctx_stopped(hctx))
1217 return true;
1218
1219 return false;
1220}
1221EXPORT_SYMBOL(blk_mq_queue_stopped);
1222
2719aa21 1223static void __blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx, bool sync)
320ae51f 1224{
2719aa21
JA
1225 if (sync)
1226 cancel_delayed_work_sync(&hctx->run_work);
1227 else
1228 cancel_delayed_work(&hctx->run_work);
1229
320ae51f
JA
1230 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1231}
2719aa21
JA
1232
1233void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1234{
1235 __blk_mq_stop_hw_queue(hctx, false);
1236}
320ae51f
JA
1237EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1238
ebd76857 1239static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync)
280d45f6
CH
1240{
1241 struct blk_mq_hw_ctx *hctx;
1242 int i;
1243
1244 queue_for_each_hw_ctx(q, hctx, i)
2719aa21
JA
1245 __blk_mq_stop_hw_queue(hctx, sync);
1246}
1247
1248void blk_mq_stop_hw_queues(struct request_queue *q)
1249{
1250 __blk_mq_stop_hw_queues(q, false);
280d45f6
CH
1251}
1252EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1253
320ae51f
JA
1254void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1255{
1256 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1257
0ffbce80 1258 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1259}
1260EXPORT_SYMBOL(blk_mq_start_hw_queue);
1261
2f268556
CH
1262void blk_mq_start_hw_queues(struct request_queue *q)
1263{
1264 struct blk_mq_hw_ctx *hctx;
1265 int i;
1266
1267 queue_for_each_hw_ctx(q, hctx, i)
1268 blk_mq_start_hw_queue(hctx);
1269}
1270EXPORT_SYMBOL(blk_mq_start_hw_queues);
1271
ae911c5e
JA
1272void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1273{
1274 if (!blk_mq_hctx_stopped(hctx))
1275 return;
1276
1277 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1278 blk_mq_run_hw_queue(hctx, async);
1279}
1280EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1281
1b4a3258 1282void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1283{
1284 struct blk_mq_hw_ctx *hctx;
1285 int i;
1286
ae911c5e
JA
1287 queue_for_each_hw_ctx(q, hctx, i)
1288 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1289}
1290EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1291
70f4db63 1292static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1293{
1294 struct blk_mq_hw_ctx *hctx;
1295
9f993737 1296 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 1297
21c6e939
JA
1298 /*
1299 * If we are stopped, don't run the queue. The exception is if
1300 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1301 * the STOPPED bit and run it.
1302 */
1303 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1304 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1305 return;
7587a5ae 1306
21c6e939
JA
1307 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1308 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1309 }
7587a5ae
BVA
1310
1311 __blk_mq_run_hw_queue(hctx);
1312}
1313
70f4db63
CH
1314
1315void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1316{
19c66e59
ML
1317 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1318 return;
70f4db63 1319
21c6e939
JA
1320 /*
1321 * Stop the hw queue, then modify currently delayed work.
1322 * This should prevent us from running the queue prematurely.
1323 * Mark the queue as auto-clearing STOPPED when it runs.
1324 */
7e79dadc 1325 blk_mq_stop_hw_queue(hctx);
21c6e939
JA
1326 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1327 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1328 &hctx->run_work,
1329 msecs_to_jiffies(msecs));
70f4db63
CH
1330}
1331EXPORT_SYMBOL(blk_mq_delay_queue);
1332
cfd0c552 1333static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1334 struct request *rq,
1335 bool at_head)
320ae51f 1336{
e57690fe
JA
1337 struct blk_mq_ctx *ctx = rq->mq_ctx;
1338
01b983c9
JA
1339 trace_block_rq_insert(hctx->queue, rq);
1340
72a0a36e
CH
1341 if (at_head)
1342 list_add(&rq->queuelist, &ctx->rq_list);
1343 else
1344 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1345}
4bb659b1 1346
2c3ad667
JA
1347void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1348 bool at_head)
cfd0c552
ML
1349{
1350 struct blk_mq_ctx *ctx = rq->mq_ctx;
1351
e57690fe 1352 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1353 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1354}
1355
bd166ef1
JA
1356void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1357 struct list_head *list)
320ae51f
JA
1358
1359{
320ae51f
JA
1360 /*
1361 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1362 * offline now
1363 */
1364 spin_lock(&ctx->lock);
1365 while (!list_empty(list)) {
1366 struct request *rq;
1367
1368 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1369 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1370 list_del_init(&rq->queuelist);
e57690fe 1371 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1372 }
cfd0c552 1373 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1374 spin_unlock(&ctx->lock);
320ae51f
JA
1375}
1376
1377static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1378{
1379 struct request *rqa = container_of(a, struct request, queuelist);
1380 struct request *rqb = container_of(b, struct request, queuelist);
1381
1382 return !(rqa->mq_ctx < rqb->mq_ctx ||
1383 (rqa->mq_ctx == rqb->mq_ctx &&
1384 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1385}
1386
1387void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1388{
1389 struct blk_mq_ctx *this_ctx;
1390 struct request_queue *this_q;
1391 struct request *rq;
1392 LIST_HEAD(list);
1393 LIST_HEAD(ctx_list);
1394 unsigned int depth;
1395
1396 list_splice_init(&plug->mq_list, &list);
1397
1398 list_sort(NULL, &list, plug_ctx_cmp);
1399
1400 this_q = NULL;
1401 this_ctx = NULL;
1402 depth = 0;
1403
1404 while (!list_empty(&list)) {
1405 rq = list_entry_rq(list.next);
1406 list_del_init(&rq->queuelist);
1407 BUG_ON(!rq->q);
1408 if (rq->mq_ctx != this_ctx) {
1409 if (this_ctx) {
bd166ef1
JA
1410 trace_block_unplug(this_q, depth, from_schedule);
1411 blk_mq_sched_insert_requests(this_q, this_ctx,
1412 &ctx_list,
1413 from_schedule);
320ae51f
JA
1414 }
1415
1416 this_ctx = rq->mq_ctx;
1417 this_q = rq->q;
1418 depth = 0;
1419 }
1420
1421 depth++;
1422 list_add_tail(&rq->queuelist, &ctx_list);
1423 }
1424
1425 /*
1426 * If 'this_ctx' is set, we know we have entries to complete
1427 * on 'ctx_list'. Do those.
1428 */
1429 if (this_ctx) {
bd166ef1
JA
1430 trace_block_unplug(this_q, depth, from_schedule);
1431 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1432 from_schedule);
320ae51f
JA
1433 }
1434}
1435
1436static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1437{
da8d7f07 1438 blk_init_request_from_bio(rq, bio);
4b570521 1439
6e85eaf3 1440 blk_account_io_start(rq, true);
320ae51f
JA
1441}
1442
274a5843
JA
1443static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1444{
1445 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1446 !blk_queue_nomerges(hctx->queue);
1447}
1448
07068d5b
JA
1449static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1450 struct blk_mq_ctx *ctx,
1451 struct request *rq, struct bio *bio)
320ae51f 1452{
e18378a6 1453 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
07068d5b
JA
1454 blk_mq_bio_to_request(rq, bio);
1455 spin_lock(&ctx->lock);
1456insert_rq:
1457 __blk_mq_insert_request(hctx, rq, false);
1458 spin_unlock(&ctx->lock);
1459 return false;
1460 } else {
274a5843
JA
1461 struct request_queue *q = hctx->queue;
1462
07068d5b
JA
1463 spin_lock(&ctx->lock);
1464 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1465 blk_mq_bio_to_request(rq, bio);
1466 goto insert_rq;
1467 }
320ae51f 1468
07068d5b 1469 spin_unlock(&ctx->lock);
bd166ef1 1470 __blk_mq_finish_request(hctx, ctx, rq);
07068d5b 1471 return true;
14ec77f3 1472 }
07068d5b 1473}
14ec77f3 1474
fd2d3326
JA
1475static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1476{
bd166ef1
JA
1477 if (rq->tag != -1)
1478 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1479
1480 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1481}
1482
5eb6126e 1483static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
9c621104 1484 bool may_sleep)
f984df1f 1485{
f984df1f 1486 struct request_queue *q = rq->q;
f984df1f
SL
1487 struct blk_mq_queue_data bd = {
1488 .rq = rq,
d945a365 1489 .last = true,
f984df1f 1490 };
bd166ef1
JA
1491 struct blk_mq_hw_ctx *hctx;
1492 blk_qc_t new_cookie;
1493 int ret;
f984df1f 1494
bd166ef1 1495 if (q->elevator)
2253efc8
BVA
1496 goto insert;
1497
bd166ef1
JA
1498 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1499 goto insert;
1500
1501 new_cookie = request_to_qc_t(hctx, rq);
1502
f984df1f
SL
1503 /*
1504 * For OK queue, we are done. For error, kill it. Any other
1505 * error (busy), just add it to our list as we previously
1506 * would have done
1507 */
1508 ret = q->mq_ops->queue_rq(hctx, &bd);
7b371636
JA
1509 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1510 *cookie = new_cookie;
2253efc8 1511 return;
7b371636 1512 }
f984df1f 1513
7b371636
JA
1514 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1515 *cookie = BLK_QC_T_NONE;
caf7df12 1516 blk_mq_end_request(rq, -EIO);
2253efc8 1517 return;
f984df1f 1518 }
7b371636 1519
b58e1769 1520 __blk_mq_requeue_request(rq);
2253efc8 1521insert:
9c621104 1522 blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
f984df1f
SL
1523}
1524
5eb6126e
CH
1525static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1526 struct request *rq, blk_qc_t *cookie)
1527{
1528 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1529 rcu_read_lock();
1530 __blk_mq_try_issue_directly(rq, cookie, false);
1531 rcu_read_unlock();
1532 } else {
bf4907c0
JA
1533 unsigned int srcu_idx;
1534
1535 might_sleep();
1536
1537 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
5eb6126e
CH
1538 __blk_mq_try_issue_directly(rq, cookie, true);
1539 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1540 }
1541}
1542
dece1635 1543static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1544{
ef295ecf 1545 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1546 const int is_flush_fua = op_is_flush(bio->bi_opf);
5a797e00 1547 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1548 struct request *rq;
5eb6126e 1549 unsigned int request_count = 0;
f984df1f 1550 struct blk_plug *plug;
5b3f341f 1551 struct request *same_queue_rq = NULL;
7b371636 1552 blk_qc_t cookie;
87760e5e 1553 unsigned int wb_acct;
07068d5b
JA
1554
1555 blk_queue_bounce(q, &bio);
1556
1557 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1558 bio_io_error(bio);
dece1635 1559 return BLK_QC_T_NONE;
07068d5b
JA
1560 }
1561
54efd50b
KO
1562 blk_queue_split(q, &bio, q->bio_split);
1563
87c279e6
OS
1564 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1565 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1566 return BLK_QC_T_NONE;
f984df1f 1567
bd166ef1
JA
1568 if (blk_mq_sched_bio_merge(q, bio))
1569 return BLK_QC_T_NONE;
1570
87760e5e
JA
1571 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1572
bd166ef1
JA
1573 trace_block_getrq(q, bio, bio->bi_opf);
1574
1575 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1576 if (unlikely(!rq)) {
1577 __wbt_done(q->rq_wb, wb_acct);
dece1635 1578 return BLK_QC_T_NONE;
87760e5e
JA
1579 }
1580
1581 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1582
fd2d3326 1583 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 1584
f984df1f 1585 plug = current->plug;
07068d5b 1586 if (unlikely(is_flush_fua)) {
f984df1f 1587 blk_mq_put_ctx(data.ctx);
07068d5b 1588 blk_mq_bio_to_request(rq, bio);
a4d907b6
CH
1589 if (q->elevator) {
1590 blk_mq_sched_insert_request(rq, false, true, true,
1591 true);
6a83e74d 1592 } else {
a4d907b6
CH
1593 blk_insert_flush(rq);
1594 blk_mq_run_hw_queue(data.hctx, true);
6a83e74d 1595 }
a4d907b6 1596 } else if (plug && q->nr_hw_queues == 1) {
600271d9
SL
1597 struct request *last = NULL;
1598
b00c53e8 1599 blk_mq_put_ctx(data.ctx);
e6c4438b 1600 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1601
1602 /*
1603 * @request_count may become stale because of schedule
1604 * out, so check the list again.
1605 */
1606 if (list_empty(&plug->mq_list))
1607 request_count = 0;
254d259d
CH
1608 else if (blk_queue_nomerges(q))
1609 request_count = blk_plug_queued_count(q);
1610
676d0607 1611 if (!request_count)
e6c4438b 1612 trace_block_plug(q);
600271d9
SL
1613 else
1614 last = list_entry_rq(plug->mq_list.prev);
b094f89c 1615
600271d9
SL
1616 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1617 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1618 blk_flush_plug_list(plug, false);
1619 trace_block_plug(q);
320ae51f 1620 }
b094f89c 1621
e6c4438b 1622 list_add_tail(&rq->queuelist, &plug->mq_list);
2299722c 1623 } else if (plug && !blk_queue_nomerges(q)) {
bd166ef1 1624 blk_mq_bio_to_request(rq, bio);
07068d5b 1625
07068d5b 1626 /*
6a83e74d 1627 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1628 * Otherwise the existing request in the plug list will be
1629 * issued. So the plug list will have one request at most
2299722c
CH
1630 * The plug list might get flushed before this. If that happens,
1631 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 1632 */
2299722c
CH
1633 if (list_empty(&plug->mq_list))
1634 same_queue_rq = NULL;
1635 if (same_queue_rq)
1636 list_del_init(&same_queue_rq->queuelist);
1637 list_add_tail(&rq->queuelist, &plug->mq_list);
1638
bf4907c0
JA
1639 blk_mq_put_ctx(data.ctx);
1640
2299722c
CH
1641 if (same_queue_rq)
1642 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1643 &cookie);
a4d907b6 1644 } else if (q->nr_hw_queues > 1 && is_sync) {
bf4907c0 1645 blk_mq_put_ctx(data.ctx);
2299722c 1646 blk_mq_bio_to_request(rq, bio);
2299722c 1647 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
a4d907b6 1648 } else if (q->elevator) {
b00c53e8 1649 blk_mq_put_ctx(data.ctx);
bd166ef1 1650 blk_mq_bio_to_request(rq, bio);
a4d907b6 1651 blk_mq_sched_insert_request(rq, false, true, true, true);
b00c53e8
JA
1652 } else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1653 blk_mq_put_ctx(data.ctx);
a4d907b6 1654 blk_mq_run_hw_queue(data.hctx, true);
abc25a69
BVA
1655 } else
1656 blk_mq_put_ctx(data.ctx);
320ae51f 1657
7b371636 1658 return cookie;
320ae51f
JA
1659}
1660
cc71a6f4
JA
1661void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1662 unsigned int hctx_idx)
95363efd 1663{
e9b267d9 1664 struct page *page;
320ae51f 1665
24d2f903 1666 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1667 int i;
320ae51f 1668
24d2f903 1669 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1670 struct request *rq = tags->static_rqs[i];
1671
1672 if (!rq)
e9b267d9 1673 continue;
d6296d39 1674 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 1675 tags->static_rqs[i] = NULL;
e9b267d9 1676 }
320ae51f 1677 }
320ae51f 1678
24d2f903
CH
1679 while (!list_empty(&tags->page_list)) {
1680 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1681 list_del_init(&page->lru);
f75782e4
CM
1682 /*
1683 * Remove kmemleak object previously allocated in
1684 * blk_mq_init_rq_map().
1685 */
1686 kmemleak_free(page_address(page));
320ae51f
JA
1687 __free_pages(page, page->private);
1688 }
cc71a6f4 1689}
320ae51f 1690
cc71a6f4
JA
1691void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1692{
24d2f903 1693 kfree(tags->rqs);
cc71a6f4 1694 tags->rqs = NULL;
2af8cbe3
JA
1695 kfree(tags->static_rqs);
1696 tags->static_rqs = NULL;
320ae51f 1697
24d2f903 1698 blk_mq_free_tags(tags);
320ae51f
JA
1699}
1700
cc71a6f4
JA
1701struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1702 unsigned int hctx_idx,
1703 unsigned int nr_tags,
1704 unsigned int reserved_tags)
320ae51f 1705{
24d2f903 1706 struct blk_mq_tags *tags;
59f082e4 1707 int node;
320ae51f 1708
59f082e4
SL
1709 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1710 if (node == NUMA_NO_NODE)
1711 node = set->numa_node;
1712
1713 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 1714 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1715 if (!tags)
1716 return NULL;
320ae51f 1717
cc71a6f4 1718 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1719 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1720 node);
24d2f903
CH
1721 if (!tags->rqs) {
1722 blk_mq_free_tags(tags);
1723 return NULL;
1724 }
320ae51f 1725
2af8cbe3
JA
1726 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1727 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1728 node);
2af8cbe3
JA
1729 if (!tags->static_rqs) {
1730 kfree(tags->rqs);
1731 blk_mq_free_tags(tags);
1732 return NULL;
1733 }
1734
cc71a6f4
JA
1735 return tags;
1736}
1737
1738static size_t order_to_size(unsigned int order)
1739{
1740 return (size_t)PAGE_SIZE << order;
1741}
1742
1743int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1744 unsigned int hctx_idx, unsigned int depth)
1745{
1746 unsigned int i, j, entries_per_page, max_order = 4;
1747 size_t rq_size, left;
59f082e4
SL
1748 int node;
1749
1750 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1751 if (node == NUMA_NO_NODE)
1752 node = set->numa_node;
cc71a6f4
JA
1753
1754 INIT_LIST_HEAD(&tags->page_list);
1755
320ae51f
JA
1756 /*
1757 * rq_size is the size of the request plus driver payload, rounded
1758 * to the cacheline size
1759 */
24d2f903 1760 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1761 cache_line_size());
cc71a6f4 1762 left = rq_size * depth;
320ae51f 1763
cc71a6f4 1764 for (i = 0; i < depth; ) {
320ae51f
JA
1765 int this_order = max_order;
1766 struct page *page;
1767 int to_do;
1768 void *p;
1769
b3a834b1 1770 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1771 this_order--;
1772
1773 do {
59f082e4 1774 page = alloc_pages_node(node,
36e1f3d1 1775 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1776 this_order);
320ae51f
JA
1777 if (page)
1778 break;
1779 if (!this_order--)
1780 break;
1781 if (order_to_size(this_order) < rq_size)
1782 break;
1783 } while (1);
1784
1785 if (!page)
24d2f903 1786 goto fail;
320ae51f
JA
1787
1788 page->private = this_order;
24d2f903 1789 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1790
1791 p = page_address(page);
f75782e4
CM
1792 /*
1793 * Allow kmemleak to scan these pages as they contain pointers
1794 * to additional allocations like via ops->init_request().
1795 */
36e1f3d1 1796 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 1797 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 1798 to_do = min(entries_per_page, depth - i);
320ae51f
JA
1799 left -= to_do * rq_size;
1800 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
1801 struct request *rq = p;
1802
1803 tags->static_rqs[i] = rq;
24d2f903 1804 if (set->ops->init_request) {
d6296d39 1805 if (set->ops->init_request(set, rq, hctx_idx,
59f082e4 1806 node)) {
2af8cbe3 1807 tags->static_rqs[i] = NULL;
24d2f903 1808 goto fail;
a5164405 1809 }
e9b267d9
CH
1810 }
1811
320ae51f
JA
1812 p += rq_size;
1813 i++;
1814 }
1815 }
cc71a6f4 1816 return 0;
320ae51f 1817
24d2f903 1818fail:
cc71a6f4
JA
1819 blk_mq_free_rqs(set, tags, hctx_idx);
1820 return -ENOMEM;
320ae51f
JA
1821}
1822
e57690fe
JA
1823/*
1824 * 'cpu' is going away. splice any existing rq_list entries from this
1825 * software queue to the hw queue dispatch list, and ensure that it
1826 * gets run.
1827 */
9467f859 1828static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 1829{
9467f859 1830 struct blk_mq_hw_ctx *hctx;
484b4061
JA
1831 struct blk_mq_ctx *ctx;
1832 LIST_HEAD(tmp);
1833
9467f859 1834 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 1835 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1836
1837 spin_lock(&ctx->lock);
1838 if (!list_empty(&ctx->rq_list)) {
1839 list_splice_init(&ctx->rq_list, &tmp);
1840 blk_mq_hctx_clear_pending(hctx, ctx);
1841 }
1842 spin_unlock(&ctx->lock);
1843
1844 if (list_empty(&tmp))
9467f859 1845 return 0;
484b4061 1846
e57690fe
JA
1847 spin_lock(&hctx->lock);
1848 list_splice_tail_init(&tmp, &hctx->dispatch);
1849 spin_unlock(&hctx->lock);
484b4061
JA
1850
1851 blk_mq_run_hw_queue(hctx, true);
9467f859 1852 return 0;
484b4061
JA
1853}
1854
9467f859 1855static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 1856{
9467f859
TG
1857 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1858 &hctx->cpuhp_dead);
484b4061
JA
1859}
1860
c3b4afca 1861/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1862static void blk_mq_exit_hctx(struct request_queue *q,
1863 struct blk_mq_tag_set *set,
1864 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1865{
9c1051aa
OS
1866 blk_mq_debugfs_unregister_hctx(hctx);
1867
08e98fc6
ML
1868 blk_mq_tag_idle(hctx);
1869
f70ced09 1870 if (set->ops->exit_request)
d6296d39 1871 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
f70ced09 1872
93252632
OS
1873 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1874
08e98fc6
ML
1875 if (set->ops->exit_hctx)
1876 set->ops->exit_hctx(hctx, hctx_idx);
1877
6a83e74d
BVA
1878 if (hctx->flags & BLK_MQ_F_BLOCKING)
1879 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1880
9467f859 1881 blk_mq_remove_cpuhp(hctx);
f70ced09 1882 blk_free_flush_queue(hctx->fq);
88459642 1883 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1884}
1885
624dbe47
ML
1886static void blk_mq_exit_hw_queues(struct request_queue *q,
1887 struct blk_mq_tag_set *set, int nr_queue)
1888{
1889 struct blk_mq_hw_ctx *hctx;
1890 unsigned int i;
1891
1892 queue_for_each_hw_ctx(q, hctx, i) {
1893 if (i == nr_queue)
1894 break;
08e98fc6 1895 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1896 }
624dbe47
ML
1897}
1898
08e98fc6
ML
1899static int blk_mq_init_hctx(struct request_queue *q,
1900 struct blk_mq_tag_set *set,
1901 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1902{
08e98fc6
ML
1903 int node;
1904
1905 node = hctx->numa_node;
1906 if (node == NUMA_NO_NODE)
1907 node = hctx->numa_node = set->numa_node;
1908
9f993737 1909 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
1910 spin_lock_init(&hctx->lock);
1911 INIT_LIST_HEAD(&hctx->dispatch);
1912 hctx->queue = q;
1913 hctx->queue_num = hctx_idx;
2404e607 1914 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 1915
9467f859 1916 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
1917
1918 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1919
1920 /*
08e98fc6
ML
1921 * Allocate space for all possible cpus to avoid allocation at
1922 * runtime
320ae51f 1923 */
08e98fc6
ML
1924 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1925 GFP_KERNEL, node);
1926 if (!hctx->ctxs)
1927 goto unregister_cpu_notifier;
320ae51f 1928
88459642
OS
1929 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1930 node))
08e98fc6 1931 goto free_ctxs;
320ae51f 1932
08e98fc6 1933 hctx->nr_ctx = 0;
320ae51f 1934
08e98fc6
ML
1935 if (set->ops->init_hctx &&
1936 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1937 goto free_bitmap;
320ae51f 1938
93252632
OS
1939 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1940 goto exit_hctx;
1941
f70ced09
ML
1942 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1943 if (!hctx->fq)
93252632 1944 goto sched_exit_hctx;
320ae51f 1945
f70ced09 1946 if (set->ops->init_request &&
d6296d39
CH
1947 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
1948 node))
f70ced09 1949 goto free_fq;
320ae51f 1950
6a83e74d
BVA
1951 if (hctx->flags & BLK_MQ_F_BLOCKING)
1952 init_srcu_struct(&hctx->queue_rq_srcu);
1953
9c1051aa
OS
1954 blk_mq_debugfs_register_hctx(q, hctx);
1955
08e98fc6 1956 return 0;
320ae51f 1957
f70ced09
ML
1958 free_fq:
1959 kfree(hctx->fq);
93252632
OS
1960 sched_exit_hctx:
1961 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
f70ced09
ML
1962 exit_hctx:
1963 if (set->ops->exit_hctx)
1964 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 1965 free_bitmap:
88459642 1966 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1967 free_ctxs:
1968 kfree(hctx->ctxs);
1969 unregister_cpu_notifier:
9467f859 1970 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
1971 return -1;
1972}
320ae51f 1973
320ae51f
JA
1974static void blk_mq_init_cpu_queues(struct request_queue *q,
1975 unsigned int nr_hw_queues)
1976{
1977 unsigned int i;
1978
1979 for_each_possible_cpu(i) {
1980 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1981 struct blk_mq_hw_ctx *hctx;
1982
320ae51f
JA
1983 __ctx->cpu = i;
1984 spin_lock_init(&__ctx->lock);
1985 INIT_LIST_HEAD(&__ctx->rq_list);
1986 __ctx->queue = q;
1987
1988 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1989 if (!cpu_online(i))
1990 continue;
1991
7d7e0f90 1992 hctx = blk_mq_map_queue(q, i);
e4043dcf 1993
320ae51f
JA
1994 /*
1995 * Set local node, IFF we have more than one hw queue. If
1996 * not, we remain on the home node of the device
1997 */
1998 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 1999 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
2000 }
2001}
2002
cc71a6f4
JA
2003static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2004{
2005 int ret = 0;
2006
2007 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2008 set->queue_depth, set->reserved_tags);
2009 if (!set->tags[hctx_idx])
2010 return false;
2011
2012 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2013 set->queue_depth);
2014 if (!ret)
2015 return true;
2016
2017 blk_mq_free_rq_map(set->tags[hctx_idx]);
2018 set->tags[hctx_idx] = NULL;
2019 return false;
2020}
2021
2022static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2023 unsigned int hctx_idx)
2024{
bd166ef1
JA
2025 if (set->tags[hctx_idx]) {
2026 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2027 blk_mq_free_rq_map(set->tags[hctx_idx]);
2028 set->tags[hctx_idx] = NULL;
2029 }
cc71a6f4
JA
2030}
2031
5778322e
AM
2032static void blk_mq_map_swqueue(struct request_queue *q,
2033 const struct cpumask *online_mask)
320ae51f 2034{
d1b1cea1 2035 unsigned int i, hctx_idx;
320ae51f
JA
2036 struct blk_mq_hw_ctx *hctx;
2037 struct blk_mq_ctx *ctx;
2a34c087 2038 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2039
60de074b
AM
2040 /*
2041 * Avoid others reading imcomplete hctx->cpumask through sysfs
2042 */
2043 mutex_lock(&q->sysfs_lock);
2044
320ae51f 2045 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2046 cpumask_clear(hctx->cpumask);
320ae51f
JA
2047 hctx->nr_ctx = 0;
2048 }
2049
2050 /*
2051 * Map software to hardware queues
2052 */
897bb0c7 2053 for_each_possible_cpu(i) {
320ae51f 2054 /* If the cpu isn't online, the cpu is mapped to first hctx */
5778322e 2055 if (!cpumask_test_cpu(i, online_mask))
e4043dcf
JA
2056 continue;
2057
d1b1cea1
GKB
2058 hctx_idx = q->mq_map[i];
2059 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2060 if (!set->tags[hctx_idx] &&
2061 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2062 /*
2063 * If tags initialization fail for some hctx,
2064 * that hctx won't be brought online. In this
2065 * case, remap the current ctx to hctx[0] which
2066 * is guaranteed to always have tags allocated
2067 */
cc71a6f4 2068 q->mq_map[i] = 0;
d1b1cea1
GKB
2069 }
2070
897bb0c7 2071 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2072 hctx = blk_mq_map_queue(q, i);
868f2f0b 2073
e4043dcf 2074 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2075 ctx->index_hw = hctx->nr_ctx;
2076 hctx->ctxs[hctx->nr_ctx++] = ctx;
2077 }
506e931f 2078
60de074b
AM
2079 mutex_unlock(&q->sysfs_lock);
2080
506e931f 2081 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2082 /*
a68aafa5
JA
2083 * If no software queues are mapped to this hardware queue,
2084 * disable it and free the request entries.
484b4061
JA
2085 */
2086 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2087 /* Never unmap queue 0. We need it as a
2088 * fallback in case of a new remap fails
2089 * allocation
2090 */
cc71a6f4
JA
2091 if (i && set->tags[i])
2092 blk_mq_free_map_and_requests(set, i);
2093
2a34c087 2094 hctx->tags = NULL;
484b4061
JA
2095 continue;
2096 }
2097
2a34c087
ML
2098 hctx->tags = set->tags[i];
2099 WARN_ON(!hctx->tags);
2100
889fa31f
CY
2101 /*
2102 * Set the map size to the number of mapped software queues.
2103 * This is more accurate and more efficient than looping
2104 * over all possibly mapped software queues.
2105 */
88459642 2106 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2107
484b4061
JA
2108 /*
2109 * Initialize batch roundrobin counts
2110 */
506e931f
JA
2111 hctx->next_cpu = cpumask_first(hctx->cpumask);
2112 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2113 }
320ae51f
JA
2114}
2115
2404e607 2116static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2117{
2118 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2119 int i;
2120
2404e607
JM
2121 queue_for_each_hw_ctx(q, hctx, i) {
2122 if (shared)
2123 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2124 else
2125 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2126 }
2127}
2128
2129static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2130{
2131 struct request_queue *q;
0d2602ca 2132
705cda97
BVA
2133 lockdep_assert_held(&set->tag_list_lock);
2134
0d2602ca
JA
2135 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2136 blk_mq_freeze_queue(q);
2404e607 2137 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2138 blk_mq_unfreeze_queue(q);
2139 }
2140}
2141
2142static void blk_mq_del_queue_tag_set(struct request_queue *q)
2143{
2144 struct blk_mq_tag_set *set = q->tag_set;
2145
0d2602ca 2146 mutex_lock(&set->tag_list_lock);
705cda97
BVA
2147 list_del_rcu(&q->tag_set_list);
2148 INIT_LIST_HEAD(&q->tag_set_list);
2404e607
JM
2149 if (list_is_singular(&set->tag_list)) {
2150 /* just transitioned to unshared */
2151 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2152 /* update existing queue */
2153 blk_mq_update_tag_set_depth(set, false);
2154 }
0d2602ca 2155 mutex_unlock(&set->tag_list_lock);
705cda97
BVA
2156
2157 synchronize_rcu();
0d2602ca
JA
2158}
2159
2160static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2161 struct request_queue *q)
2162{
2163 q->tag_set = set;
2164
2165 mutex_lock(&set->tag_list_lock);
2404e607
JM
2166
2167 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2168 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2169 set->flags |= BLK_MQ_F_TAG_SHARED;
2170 /* update existing queue */
2171 blk_mq_update_tag_set_depth(set, true);
2172 }
2173 if (set->flags & BLK_MQ_F_TAG_SHARED)
2174 queue_set_hctx_shared(q, true);
705cda97 2175 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2404e607 2176
0d2602ca
JA
2177 mutex_unlock(&set->tag_list_lock);
2178}
2179
e09aae7e
ML
2180/*
2181 * It is the actual release handler for mq, but we do it from
2182 * request queue's release handler for avoiding use-after-free
2183 * and headache because q->mq_kobj shouldn't have been introduced,
2184 * but we can't group ctx/kctx kobj without it.
2185 */
2186void blk_mq_release(struct request_queue *q)
2187{
2188 struct blk_mq_hw_ctx *hctx;
2189 unsigned int i;
2190
2191 /* hctx kobj stays in hctx */
c3b4afca
ML
2192 queue_for_each_hw_ctx(q, hctx, i) {
2193 if (!hctx)
2194 continue;
6c8b232e 2195 kobject_put(&hctx->kobj);
c3b4afca 2196 }
e09aae7e 2197
a723bab3
AM
2198 q->mq_map = NULL;
2199
e09aae7e
ML
2200 kfree(q->queue_hw_ctx);
2201
7ea5fe31
ML
2202 /*
2203 * release .mq_kobj and sw queue's kobject now because
2204 * both share lifetime with request queue.
2205 */
2206 blk_mq_sysfs_deinit(q);
2207
e09aae7e
ML
2208 free_percpu(q->queue_ctx);
2209}
2210
24d2f903 2211struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2212{
2213 struct request_queue *uninit_q, *q;
2214
2215 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2216 if (!uninit_q)
2217 return ERR_PTR(-ENOMEM);
2218
2219 q = blk_mq_init_allocated_queue(set, uninit_q);
2220 if (IS_ERR(q))
2221 blk_cleanup_queue(uninit_q);
2222
2223 return q;
2224}
2225EXPORT_SYMBOL(blk_mq_init_queue);
2226
868f2f0b
KB
2227static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2228 struct request_queue *q)
320ae51f 2229{
868f2f0b
KB
2230 int i, j;
2231 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2232
868f2f0b 2233 blk_mq_sysfs_unregister(q);
24d2f903 2234 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2235 int node;
f14bbe77 2236
868f2f0b
KB
2237 if (hctxs[i])
2238 continue;
2239
2240 node = blk_mq_hw_queue_to_node(q->mq_map, i);
cdef54dd
CH
2241 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2242 GFP_KERNEL, node);
320ae51f 2243 if (!hctxs[i])
868f2f0b 2244 break;
320ae51f 2245
a86073e4 2246 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2247 node)) {
2248 kfree(hctxs[i]);
2249 hctxs[i] = NULL;
2250 break;
2251 }
e4043dcf 2252
0d2602ca 2253 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2254 hctxs[i]->numa_node = node;
320ae51f 2255 hctxs[i]->queue_num = i;
868f2f0b
KB
2256
2257 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2258 free_cpumask_var(hctxs[i]->cpumask);
2259 kfree(hctxs[i]);
2260 hctxs[i] = NULL;
2261 break;
2262 }
2263 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2264 }
868f2f0b
KB
2265 for (j = i; j < q->nr_hw_queues; j++) {
2266 struct blk_mq_hw_ctx *hctx = hctxs[j];
2267
2268 if (hctx) {
cc71a6f4
JA
2269 if (hctx->tags)
2270 blk_mq_free_map_and_requests(set, j);
868f2f0b 2271 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2272 kobject_put(&hctx->kobj);
868f2f0b
KB
2273 hctxs[j] = NULL;
2274
2275 }
2276 }
2277 q->nr_hw_queues = i;
2278 blk_mq_sysfs_register(q);
2279}
2280
2281struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2282 struct request_queue *q)
2283{
66841672
ML
2284 /* mark the queue as mq asap */
2285 q->mq_ops = set->ops;
2286
34dbad5d 2287 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
2288 blk_mq_poll_stats_bkt,
2289 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
2290 if (!q->poll_cb)
2291 goto err_exit;
2292
868f2f0b
KB
2293 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2294 if (!q->queue_ctx)
c7de5726 2295 goto err_exit;
868f2f0b 2296
737f98cf
ML
2297 /* init q->mq_kobj and sw queues' kobjects */
2298 blk_mq_sysfs_init(q);
2299
868f2f0b
KB
2300 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2301 GFP_KERNEL, set->numa_node);
2302 if (!q->queue_hw_ctx)
2303 goto err_percpu;
2304
bdd17e75 2305 q->mq_map = set->mq_map;
868f2f0b
KB
2306
2307 blk_mq_realloc_hw_ctxs(set, q);
2308 if (!q->nr_hw_queues)
2309 goto err_hctxs;
320ae51f 2310
287922eb 2311 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2312 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2313
2314 q->nr_queues = nr_cpu_ids;
320ae51f 2315
94eddfbe 2316 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2317
05f1dd53
JA
2318 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2319 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2320
1be036e9
CH
2321 q->sg_reserved_size = INT_MAX;
2322
2849450a 2323 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2324 INIT_LIST_HEAD(&q->requeue_list);
2325 spin_lock_init(&q->requeue_lock);
2326
254d259d 2327 blk_queue_make_request(q, blk_mq_make_request);
07068d5b 2328
eba71768
JA
2329 /*
2330 * Do this after blk_queue_make_request() overrides it...
2331 */
2332 q->nr_requests = set->queue_depth;
2333
64f1c21e
JA
2334 /*
2335 * Default to classic polling
2336 */
2337 q->poll_nsec = -1;
2338
24d2f903
CH
2339 if (set->ops->complete)
2340 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2341
24d2f903 2342 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 2343
eabe0659 2344 get_online_cpus();
51d638b1 2345 mutex_lock(&all_q_mutex);
320ae51f 2346
4593fdbe 2347 list_add_tail(&q->all_q_node, &all_q_list);
0d2602ca 2348 blk_mq_add_queue_tag_set(set, q);
5778322e 2349 blk_mq_map_swqueue(q, cpu_online_mask);
484b4061 2350
eabe0659 2351 mutex_unlock(&all_q_mutex);
51d638b1 2352 put_online_cpus();
4593fdbe 2353
d3484991
JA
2354 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2355 int ret;
2356
2357 ret = blk_mq_sched_init(q);
2358 if (ret)
2359 return ERR_PTR(ret);
2360 }
2361
320ae51f 2362 return q;
18741986 2363
320ae51f 2364err_hctxs:
868f2f0b 2365 kfree(q->queue_hw_ctx);
320ae51f 2366err_percpu:
868f2f0b 2367 free_percpu(q->queue_ctx);
c7de5726
ML
2368err_exit:
2369 q->mq_ops = NULL;
320ae51f
JA
2370 return ERR_PTR(-ENOMEM);
2371}
b62c21b7 2372EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2373
2374void blk_mq_free_queue(struct request_queue *q)
2375{
624dbe47 2376 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2377
0e626368
AM
2378 mutex_lock(&all_q_mutex);
2379 list_del_init(&q->all_q_node);
2380 mutex_unlock(&all_q_mutex);
2381
0d2602ca
JA
2382 blk_mq_del_queue_tag_set(q);
2383
624dbe47 2384 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2385}
320ae51f
JA
2386
2387/* Basically redo blk_mq_init_queue with queue frozen */
5778322e
AM
2388static void blk_mq_queue_reinit(struct request_queue *q,
2389 const struct cpumask *online_mask)
320ae51f 2390{
4ecd4fef 2391 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2392
9c1051aa 2393 blk_mq_debugfs_unregister_hctxs(q);
67aec14c
JA
2394 blk_mq_sysfs_unregister(q);
2395
320ae51f
JA
2396 /*
2397 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2398 * we should change hctx numa_node according to new topology (this
2399 * involves free and re-allocate memory, worthy doing?)
2400 */
2401
5778322e 2402 blk_mq_map_swqueue(q, online_mask);
320ae51f 2403
67aec14c 2404 blk_mq_sysfs_register(q);
9c1051aa 2405 blk_mq_debugfs_register_hctxs(q);
320ae51f
JA
2406}
2407
65d5291e
SAS
2408/*
2409 * New online cpumask which is going to be set in this hotplug event.
2410 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2411 * one-by-one and dynamically allocating this could result in a failure.
2412 */
2413static struct cpumask cpuhp_online_new;
2414
2415static void blk_mq_queue_reinit_work(void)
320ae51f
JA
2416{
2417 struct request_queue *q;
320ae51f
JA
2418
2419 mutex_lock(&all_q_mutex);
f3af020b
TH
2420 /*
2421 * We need to freeze and reinit all existing queues. Freezing
2422 * involves synchronous wait for an RCU grace period and doing it
2423 * one by one may take a long time. Start freezing all queues in
2424 * one swoop and then wait for the completions so that freezing can
2425 * take place in parallel.
2426 */
2427 list_for_each_entry(q, &all_q_list, all_q_node)
1671d522 2428 blk_freeze_queue_start(q);
415d3dab 2429 list_for_each_entry(q, &all_q_list, all_q_node)
f3af020b
TH
2430 blk_mq_freeze_queue_wait(q);
2431
320ae51f 2432 list_for_each_entry(q, &all_q_list, all_q_node)
65d5291e 2433 blk_mq_queue_reinit(q, &cpuhp_online_new);
f3af020b
TH
2434
2435 list_for_each_entry(q, &all_q_list, all_q_node)
2436 blk_mq_unfreeze_queue(q);
2437
320ae51f 2438 mutex_unlock(&all_q_mutex);
65d5291e
SAS
2439}
2440
2441static int blk_mq_queue_reinit_dead(unsigned int cpu)
2442{
97a32864 2443 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
65d5291e
SAS
2444 blk_mq_queue_reinit_work();
2445 return 0;
2446}
2447
2448/*
2449 * Before hotadded cpu starts handling requests, new mappings must be
2450 * established. Otherwise, these requests in hw queue might never be
2451 * dispatched.
2452 *
2453 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2454 * for CPU0, and ctx1 for CPU1).
2455 *
2456 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2457 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2458 *
2c3ad667
JA
2459 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2460 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2461 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2462 * ignored.
65d5291e
SAS
2463 */
2464static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2465{
2466 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2467 cpumask_set_cpu(cpu, &cpuhp_online_new);
2468 blk_mq_queue_reinit_work();
2469 return 0;
320ae51f
JA
2470}
2471
a5164405
JA
2472static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2473{
2474 int i;
2475
cc71a6f4
JA
2476 for (i = 0; i < set->nr_hw_queues; i++)
2477 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2478 goto out_unwind;
a5164405
JA
2479
2480 return 0;
2481
2482out_unwind:
2483 while (--i >= 0)
cc71a6f4 2484 blk_mq_free_rq_map(set->tags[i]);
a5164405 2485
a5164405
JA
2486 return -ENOMEM;
2487}
2488
2489/*
2490 * Allocate the request maps associated with this tag_set. Note that this
2491 * may reduce the depth asked for, if memory is tight. set->queue_depth
2492 * will be updated to reflect the allocated depth.
2493 */
2494static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2495{
2496 unsigned int depth;
2497 int err;
2498
2499 depth = set->queue_depth;
2500 do {
2501 err = __blk_mq_alloc_rq_maps(set);
2502 if (!err)
2503 break;
2504
2505 set->queue_depth >>= 1;
2506 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2507 err = -ENOMEM;
2508 break;
2509 }
2510 } while (set->queue_depth);
2511
2512 if (!set->queue_depth || err) {
2513 pr_err("blk-mq: failed to allocate request map\n");
2514 return -ENOMEM;
2515 }
2516
2517 if (depth != set->queue_depth)
2518 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2519 depth, set->queue_depth);
2520
2521 return 0;
2522}
2523
ebe8bddb
OS
2524static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2525{
2526 if (set->ops->map_queues)
2527 return set->ops->map_queues(set);
2528 else
2529 return blk_mq_map_queues(set);
2530}
2531
a4391c64
JA
2532/*
2533 * Alloc a tag set to be associated with one or more request queues.
2534 * May fail with EINVAL for various error conditions. May adjust the
2535 * requested depth down, if if it too large. In that case, the set
2536 * value will be stored in set->queue_depth.
2537 */
24d2f903
CH
2538int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2539{
da695ba2
CH
2540 int ret;
2541
205fb5f5
BVA
2542 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2543
24d2f903
CH
2544 if (!set->nr_hw_queues)
2545 return -EINVAL;
a4391c64 2546 if (!set->queue_depth)
24d2f903
CH
2547 return -EINVAL;
2548 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2549 return -EINVAL;
2550
7d7e0f90 2551 if (!set->ops->queue_rq)
24d2f903
CH
2552 return -EINVAL;
2553
a4391c64
JA
2554 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2555 pr_info("blk-mq: reduced tag depth to %u\n",
2556 BLK_MQ_MAX_DEPTH);
2557 set->queue_depth = BLK_MQ_MAX_DEPTH;
2558 }
24d2f903 2559
6637fadf
SL
2560 /*
2561 * If a crashdump is active, then we are potentially in a very
2562 * memory constrained environment. Limit us to 1 queue and
2563 * 64 tags to prevent using too much memory.
2564 */
2565 if (is_kdump_kernel()) {
2566 set->nr_hw_queues = 1;
2567 set->queue_depth = min(64U, set->queue_depth);
2568 }
868f2f0b
KB
2569 /*
2570 * There is no use for more h/w queues than cpus.
2571 */
2572 if (set->nr_hw_queues > nr_cpu_ids)
2573 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2574
868f2f0b 2575 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2576 GFP_KERNEL, set->numa_node);
2577 if (!set->tags)
a5164405 2578 return -ENOMEM;
24d2f903 2579
da695ba2
CH
2580 ret = -ENOMEM;
2581 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2582 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2583 if (!set->mq_map)
2584 goto out_free_tags;
2585
ebe8bddb 2586 ret = blk_mq_update_queue_map(set);
da695ba2
CH
2587 if (ret)
2588 goto out_free_mq_map;
2589
2590 ret = blk_mq_alloc_rq_maps(set);
2591 if (ret)
bdd17e75 2592 goto out_free_mq_map;
24d2f903 2593
0d2602ca
JA
2594 mutex_init(&set->tag_list_lock);
2595 INIT_LIST_HEAD(&set->tag_list);
2596
24d2f903 2597 return 0;
bdd17e75
CH
2598
2599out_free_mq_map:
2600 kfree(set->mq_map);
2601 set->mq_map = NULL;
2602out_free_tags:
5676e7b6
RE
2603 kfree(set->tags);
2604 set->tags = NULL;
da695ba2 2605 return ret;
24d2f903
CH
2606}
2607EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2608
2609void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2610{
2611 int i;
2612
cc71a6f4
JA
2613 for (i = 0; i < nr_cpu_ids; i++)
2614 blk_mq_free_map_and_requests(set, i);
484b4061 2615
bdd17e75
CH
2616 kfree(set->mq_map);
2617 set->mq_map = NULL;
2618
981bd189 2619 kfree(set->tags);
5676e7b6 2620 set->tags = NULL;
24d2f903
CH
2621}
2622EXPORT_SYMBOL(blk_mq_free_tag_set);
2623
e3a2b3f9
JA
2624int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2625{
2626 struct blk_mq_tag_set *set = q->tag_set;
2627 struct blk_mq_hw_ctx *hctx;
2628 int i, ret;
2629
bd166ef1 2630 if (!set)
e3a2b3f9
JA
2631 return -EINVAL;
2632
70f36b60 2633 blk_mq_freeze_queue(q);
70f36b60 2634
e3a2b3f9
JA
2635 ret = 0;
2636 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2637 if (!hctx->tags)
2638 continue;
bd166ef1
JA
2639 /*
2640 * If we're using an MQ scheduler, just update the scheduler
2641 * queue depth. This is similar to what the old code would do.
2642 */
70f36b60
JA
2643 if (!hctx->sched_tags) {
2644 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2645 min(nr, set->queue_depth),
2646 false);
2647 } else {
2648 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2649 nr, true);
2650 }
e3a2b3f9
JA
2651 if (ret)
2652 break;
2653 }
2654
2655 if (!ret)
2656 q->nr_requests = nr;
2657
70f36b60 2658 blk_mq_unfreeze_queue(q);
70f36b60 2659
e3a2b3f9
JA
2660 return ret;
2661}
2662
868f2f0b
KB
2663void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2664{
2665 struct request_queue *q;
2666
705cda97
BVA
2667 lockdep_assert_held(&set->tag_list_lock);
2668
868f2f0b
KB
2669 if (nr_hw_queues > nr_cpu_ids)
2670 nr_hw_queues = nr_cpu_ids;
2671 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2672 return;
2673
2674 list_for_each_entry(q, &set->tag_list, tag_set_list)
2675 blk_mq_freeze_queue(q);
2676
2677 set->nr_hw_queues = nr_hw_queues;
ebe8bddb 2678 blk_mq_update_queue_map(set);
868f2f0b
KB
2679 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2680 blk_mq_realloc_hw_ctxs(set, q);
868f2f0b
KB
2681 blk_mq_queue_reinit(q, cpu_online_mask);
2682 }
2683
2684 list_for_each_entry(q, &set->tag_list, tag_set_list)
2685 blk_mq_unfreeze_queue(q);
2686}
2687EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2688
34dbad5d
OS
2689/* Enable polling stats and return whether they were already enabled. */
2690static bool blk_poll_stats_enable(struct request_queue *q)
2691{
2692 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2693 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2694 return true;
2695 blk_stat_add_callback(q, q->poll_cb);
2696 return false;
2697}
2698
2699static void blk_mq_poll_stats_start(struct request_queue *q)
2700{
2701 /*
2702 * We don't arm the callback if polling stats are not enabled or the
2703 * callback is already active.
2704 */
2705 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2706 blk_stat_is_active(q->poll_cb))
2707 return;
2708
2709 blk_stat_activate_msecs(q->poll_cb, 100);
2710}
2711
2712static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2713{
2714 struct request_queue *q = cb->data;
720b8ccc 2715 int bucket;
34dbad5d 2716
720b8ccc
SB
2717 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2718 if (cb->stat[bucket].nr_samples)
2719 q->poll_stat[bucket] = cb->stat[bucket];
2720 }
34dbad5d
OS
2721}
2722
64f1c21e
JA
2723static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2724 struct blk_mq_hw_ctx *hctx,
2725 struct request *rq)
2726{
64f1c21e 2727 unsigned long ret = 0;
720b8ccc 2728 int bucket;
64f1c21e
JA
2729
2730 /*
2731 * If stats collection isn't on, don't sleep but turn it on for
2732 * future users
2733 */
34dbad5d 2734 if (!blk_poll_stats_enable(q))
64f1c21e
JA
2735 return 0;
2736
64f1c21e
JA
2737 /*
2738 * As an optimistic guess, use half of the mean service time
2739 * for this type of request. We can (and should) make this smarter.
2740 * For instance, if the completion latencies are tight, we can
2741 * get closer than just half the mean. This is especially
2742 * important on devices where the completion latencies are longer
720b8ccc
SB
2743 * than ~10 usec. We do use the stats for the relevant IO size
2744 * if available which does lead to better estimates.
64f1c21e 2745 */
720b8ccc
SB
2746 bucket = blk_mq_poll_stats_bkt(rq);
2747 if (bucket < 0)
2748 return ret;
2749
2750 if (q->poll_stat[bucket].nr_samples)
2751 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
2752
2753 return ret;
2754}
2755
06426adf 2756static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2757 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2758 struct request *rq)
2759{
2760 struct hrtimer_sleeper hs;
2761 enum hrtimer_mode mode;
64f1c21e 2762 unsigned int nsecs;
06426adf
JA
2763 ktime_t kt;
2764
64f1c21e
JA
2765 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2766 return false;
2767
2768 /*
2769 * poll_nsec can be:
2770 *
2771 * -1: don't ever hybrid sleep
2772 * 0: use half of prev avg
2773 * >0: use this specific value
2774 */
2775 if (q->poll_nsec == -1)
2776 return false;
2777 else if (q->poll_nsec > 0)
2778 nsecs = q->poll_nsec;
2779 else
2780 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2781
2782 if (!nsecs)
06426adf
JA
2783 return false;
2784
2785 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2786
2787 /*
2788 * This will be replaced with the stats tracking code, using
2789 * 'avg_completion_time / 2' as the pre-sleep target.
2790 */
8b0e1953 2791 kt = nsecs;
06426adf
JA
2792
2793 mode = HRTIMER_MODE_REL;
2794 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2795 hrtimer_set_expires(&hs.timer, kt);
2796
2797 hrtimer_init_sleeper(&hs, current);
2798 do {
2799 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2800 break;
2801 set_current_state(TASK_UNINTERRUPTIBLE);
2802 hrtimer_start_expires(&hs.timer, mode);
2803 if (hs.task)
2804 io_schedule();
2805 hrtimer_cancel(&hs.timer);
2806 mode = HRTIMER_MODE_ABS;
2807 } while (hs.task && !signal_pending(current));
2808
2809 __set_current_state(TASK_RUNNING);
2810 destroy_hrtimer_on_stack(&hs.timer);
2811 return true;
2812}
2813
bbd7bb70
JA
2814static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2815{
2816 struct request_queue *q = hctx->queue;
2817 long state;
2818
06426adf
JA
2819 /*
2820 * If we sleep, have the caller restart the poll loop to reset
2821 * the state. Like for the other success return cases, the
2822 * caller is responsible for checking if the IO completed. If
2823 * the IO isn't complete, we'll get called again and will go
2824 * straight to the busy poll loop.
2825 */
64f1c21e 2826 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
2827 return true;
2828
bbd7bb70
JA
2829 hctx->poll_considered++;
2830
2831 state = current->state;
2832 while (!need_resched()) {
2833 int ret;
2834
2835 hctx->poll_invoked++;
2836
2837 ret = q->mq_ops->poll(hctx, rq->tag);
2838 if (ret > 0) {
2839 hctx->poll_success++;
2840 set_current_state(TASK_RUNNING);
2841 return true;
2842 }
2843
2844 if (signal_pending_state(state, current))
2845 set_current_state(TASK_RUNNING);
2846
2847 if (current->state == TASK_RUNNING)
2848 return true;
2849 if (ret < 0)
2850 break;
2851 cpu_relax();
2852 }
2853
2854 return false;
2855}
2856
2857bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2858{
2859 struct blk_mq_hw_ctx *hctx;
2860 struct blk_plug *plug;
2861 struct request *rq;
2862
2863 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2864 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2865 return false;
2866
2867 plug = current->plug;
2868 if (plug)
2869 blk_flush_plug_list(plug, false);
2870
2871 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
2872 if (!blk_qc_t_is_internal(cookie))
2873 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3a07bb1d 2874 else {
bd166ef1 2875 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3a07bb1d
JA
2876 /*
2877 * With scheduling, if the request has completed, we'll
2878 * get a NULL return here, as we clear the sched tag when
2879 * that happens. The request still remains valid, like always,
2880 * so we should be safe with just the NULL check.
2881 */
2882 if (!rq)
2883 return false;
2884 }
bbd7bb70
JA
2885
2886 return __blk_mq_poll(hctx, rq);
2887}
2888EXPORT_SYMBOL_GPL(blk_mq_poll);
2889
676141e4
JA
2890void blk_mq_disable_hotplug(void)
2891{
2892 mutex_lock(&all_q_mutex);
2893}
2894
2895void blk_mq_enable_hotplug(void)
2896{
2897 mutex_unlock(&all_q_mutex);
2898}
2899
320ae51f
JA
2900static int __init blk_mq_init(void)
2901{
9467f859
TG
2902 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2903 blk_mq_hctx_notify_dead);
320ae51f 2904
65d5291e
SAS
2905 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2906 blk_mq_queue_reinit_prepare,
2907 blk_mq_queue_reinit_dead);
320ae51f
JA
2908 return 0;
2909}
2910subsys_initcall(blk_mq_init);