]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - block/blk-mq.c
blk-mq: remap queues when adding/removing hardware queues
[thirdparty/kernel/stable.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
105ab3d8 23#include <linux/sched/topology.h>
174cd4b1 24#include <linux/sched/signal.h>
320ae51f 25#include <linux/delay.h>
aedcd72f 26#include <linux/crash_dump.h>
88c7b2b7 27#include <linux/prefetch.h>
320ae51f
JA
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
34#include "blk-mq-tag.h"
cf43e6be 35#include "blk-stat.h"
87760e5e 36#include "blk-wbt.h"
bd166ef1 37#include "blk-mq-sched.h"
320ae51f
JA
38
39static DEFINE_MUTEX(all_q_mutex);
40static LIST_HEAD(all_q_list);
41
320ae51f
JA
42/*
43 * Check if any of the ctx's have pending work in this hardware queue
44 */
50e1dab8 45bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 46{
bd166ef1
JA
47 return sbitmap_any_bit_set(&hctx->ctx_map) ||
48 !list_empty_careful(&hctx->dispatch) ||
49 blk_mq_sched_has_work(hctx);
1429d7c9
JA
50}
51
320ae51f
JA
52/*
53 * Mark this ctx as having pending work in this hardware queue
54 */
55static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
56 struct blk_mq_ctx *ctx)
57{
88459642
OS
58 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
59 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
60}
61
62static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
63 struct blk_mq_ctx *ctx)
64{
88459642 65 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
66}
67
b4c6a028 68void blk_mq_freeze_queue_start(struct request_queue *q)
43a5e4e2 69{
4ecd4fef 70 int freeze_depth;
cddd5d17 71
4ecd4fef
CH
72 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
73 if (freeze_depth == 1) {
3ef28e83 74 percpu_ref_kill(&q->q_usage_counter);
b94ec296 75 blk_mq_run_hw_queues(q, false);
cddd5d17 76 }
f3af020b 77}
b4c6a028 78EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
f3af020b 79
6bae363e 80void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 81{
3ef28e83 82 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 83}
6bae363e 84EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 85
f91328c4
KB
86int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
87 unsigned long timeout)
88{
89 return wait_event_timeout(q->mq_freeze_wq,
90 percpu_ref_is_zero(&q->q_usage_counter),
91 timeout);
92}
93EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 94
f3af020b
TH
95/*
96 * Guarantee no request is in use, so we can change any data structure of
97 * the queue afterward.
98 */
3ef28e83 99void blk_freeze_queue(struct request_queue *q)
f3af020b 100{
3ef28e83
DW
101 /*
102 * In the !blk_mq case we are only calling this to kill the
103 * q_usage_counter, otherwise this increases the freeze depth
104 * and waits for it to return to zero. For this reason there is
105 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
106 * exported to drivers as the only user for unfreeze is blk_mq.
107 */
f3af020b
TH
108 blk_mq_freeze_queue_start(q);
109 blk_mq_freeze_queue_wait(q);
110}
3ef28e83
DW
111
112void blk_mq_freeze_queue(struct request_queue *q)
113{
114 /*
115 * ...just an alias to keep freeze and unfreeze actions balanced
116 * in the blk_mq_* namespace
117 */
118 blk_freeze_queue(q);
119}
c761d96b 120EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 121
b4c6a028 122void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 123{
4ecd4fef 124 int freeze_depth;
320ae51f 125
4ecd4fef
CH
126 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
127 WARN_ON_ONCE(freeze_depth < 0);
128 if (!freeze_depth) {
3ef28e83 129 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 130 wake_up_all(&q->mq_freeze_wq);
add703fd 131 }
320ae51f 132}
b4c6a028 133EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 134
6a83e74d
BVA
135/**
136 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
137 * @q: request queue.
138 *
139 * Note: this function does not prevent that the struct request end_io()
140 * callback function is invoked. Additionally, it is not prevented that
141 * new queue_rq() calls occur unless the queue has been stopped first.
142 */
143void blk_mq_quiesce_queue(struct request_queue *q)
144{
145 struct blk_mq_hw_ctx *hctx;
146 unsigned int i;
147 bool rcu = false;
148
149 blk_mq_stop_hw_queues(q);
150
151 queue_for_each_hw_ctx(q, hctx, i) {
152 if (hctx->flags & BLK_MQ_F_BLOCKING)
153 synchronize_srcu(&hctx->queue_rq_srcu);
154 else
155 rcu = true;
156 }
157 if (rcu)
158 synchronize_rcu();
159}
160EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
161
aed3ea94
JA
162void blk_mq_wake_waiters(struct request_queue *q)
163{
164 struct blk_mq_hw_ctx *hctx;
165 unsigned int i;
166
167 queue_for_each_hw_ctx(q, hctx, i)
168 if (blk_mq_hw_queue_mapped(hctx))
169 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
170
171 /*
172 * If we are called because the queue has now been marked as
173 * dying, we need to ensure that processes currently waiting on
174 * the queue are notified as well.
175 */
176 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
177}
178
320ae51f
JA
179bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
180{
181 return blk_mq_has_free_tags(hctx->tags);
182}
183EXPORT_SYMBOL(blk_mq_can_queue);
184
2c3ad667
JA
185void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
186 struct request *rq, unsigned int op)
320ae51f 187{
af76e555
CH
188 INIT_LIST_HEAD(&rq->queuelist);
189 /* csd/requeue_work/fifo_time is initialized before use */
190 rq->q = q;
320ae51f 191 rq->mq_ctx = ctx;
ef295ecf 192 rq->cmd_flags = op;
e8064021
CH
193 if (blk_queue_io_stat(q))
194 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
195 /* do not touch atomic flags, it needs atomic ops against the timer */
196 rq->cpu = -1;
af76e555
CH
197 INIT_HLIST_NODE(&rq->hash);
198 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
199 rq->rq_disk = NULL;
200 rq->part = NULL;
3ee32372 201 rq->start_time = jiffies;
af76e555
CH
202#ifdef CONFIG_BLK_CGROUP
203 rq->rl = NULL;
0fec08b4 204 set_start_time_ns(rq);
af76e555
CH
205 rq->io_start_time_ns = 0;
206#endif
207 rq->nr_phys_segments = 0;
208#if defined(CONFIG_BLK_DEV_INTEGRITY)
209 rq->nr_integrity_segments = 0;
210#endif
af76e555
CH
211 rq->special = NULL;
212 /* tag was already set */
213 rq->errors = 0;
af76e555 214 rq->extra_len = 0;
af76e555 215
af76e555 216 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
217 rq->timeout = 0;
218
af76e555
CH
219 rq->end_io = NULL;
220 rq->end_io_data = NULL;
221 rq->next_rq = NULL;
222
ef295ecf 223 ctx->rq_dispatched[op_is_sync(op)]++;
320ae51f 224}
2c3ad667 225EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
320ae51f 226
2c3ad667
JA
227struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
228 unsigned int op)
5dee8577
CH
229{
230 struct request *rq;
231 unsigned int tag;
232
cb96a42c 233 tag = blk_mq_get_tag(data);
5dee8577 234 if (tag != BLK_MQ_TAG_FAIL) {
bd166ef1
JA
235 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
236
237 rq = tags->static_rqs[tag];
5dee8577 238
bd166ef1
JA
239 if (data->flags & BLK_MQ_REQ_INTERNAL) {
240 rq->tag = -1;
241 rq->internal_tag = tag;
242 } else {
200e86b3
JA
243 if (blk_mq_tag_busy(data->hctx)) {
244 rq->rq_flags = RQF_MQ_INFLIGHT;
245 atomic_inc(&data->hctx->nr_active);
246 }
bd166ef1
JA
247 rq->tag = tag;
248 rq->internal_tag = -1;
562bef42 249 data->hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
250 }
251
ef295ecf 252 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
5dee8577
CH
253 return rq;
254 }
255
256 return NULL;
257}
2c3ad667 258EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
5dee8577 259
6f3b0e8b
CH
260struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
261 unsigned int flags)
320ae51f 262{
5a797e00 263 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 264 struct request *rq;
a492f075 265 int ret;
320ae51f 266
6f3b0e8b 267 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
a492f075
JL
268 if (ret)
269 return ERR_PTR(ret);
320ae51f 270
bd166ef1 271 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
841bac2c 272
bd166ef1
JA
273 blk_mq_put_ctx(alloc_data.ctx);
274 blk_queue_exit(q);
275
276 if (!rq)
a492f075 277 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3
CH
278
279 rq->__data_len = 0;
280 rq->__sector = (sector_t) -1;
281 rq->bio = rq->biotail = NULL;
320ae51f
JA
282 return rq;
283}
4bb659b1 284EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 285
1f5bd336
ML
286struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
287 unsigned int flags, unsigned int hctx_idx)
288{
6d2809d5 289 struct blk_mq_alloc_data alloc_data = { .flags = flags };
1f5bd336 290 struct request *rq;
6d2809d5 291 unsigned int cpu;
1f5bd336
ML
292 int ret;
293
294 /*
295 * If the tag allocator sleeps we could get an allocation for a
296 * different hardware context. No need to complicate the low level
297 * allocator for this for the rare use case of a command tied to
298 * a specific queue.
299 */
300 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
301 return ERR_PTR(-EINVAL);
302
303 if (hctx_idx >= q->nr_hw_queues)
304 return ERR_PTR(-EIO);
305
306 ret = blk_queue_enter(q, true);
307 if (ret)
308 return ERR_PTR(ret);
309
c8712c6a
CH
310 /*
311 * Check if the hardware context is actually mapped to anything.
312 * If not tell the caller that it should skip this queue.
313 */
6d2809d5
OS
314 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
315 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
316 blk_queue_exit(q);
317 return ERR_PTR(-EXDEV);
c8712c6a 318 }
6d2809d5
OS
319 cpu = cpumask_first(alloc_data.hctx->cpumask);
320 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 321
6d2809d5 322 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
c8712c6a 323
c8712c6a 324 blk_queue_exit(q);
6d2809d5
OS
325
326 if (!rq)
327 return ERR_PTR(-EWOULDBLOCK);
328
329 return rq;
1f5bd336
ML
330}
331EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
332
bd166ef1
JA
333void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
334 struct request *rq)
320ae51f 335{
bd166ef1 336 const int sched_tag = rq->internal_tag;
320ae51f
JA
337 struct request_queue *q = rq->q;
338
e8064021 339 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 340 atomic_dec(&hctx->nr_active);
87760e5e
JA
341
342 wbt_done(q->rq_wb, &rq->issue_stat);
e8064021 343 rq->rq_flags = 0;
0d2602ca 344
af76e555 345 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 346 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
bd166ef1
JA
347 if (rq->tag != -1)
348 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
349 if (sched_tag != -1)
350 blk_mq_sched_completed_request(hctx, rq);
50e1dab8 351 blk_mq_sched_restart_queues(hctx);
3ef28e83 352 blk_queue_exit(q);
320ae51f
JA
353}
354
bd166ef1 355static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
16a3c2a7 356 struct request *rq)
320ae51f
JA
357{
358 struct blk_mq_ctx *ctx = rq->mq_ctx;
320ae51f
JA
359
360 ctx->rq_completed[rq_is_sync(rq)]++;
bd166ef1
JA
361 __blk_mq_finish_request(hctx, ctx, rq);
362}
363
364void blk_mq_finish_request(struct request *rq)
365{
366 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
7c7f2f2b 367}
7c7f2f2b
JA
368
369void blk_mq_free_request(struct request *rq)
370{
bd166ef1 371 blk_mq_sched_put_request(rq);
320ae51f 372}
1a3b595a 373EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 374
c8a446ad 375inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 376{
0d11e6ac
ML
377 blk_account_io_done(rq);
378
91b63639 379 if (rq->end_io) {
87760e5e 380 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 381 rq->end_io(rq, error);
91b63639
CH
382 } else {
383 if (unlikely(blk_bidi_rq(rq)))
384 blk_mq_free_request(rq->next_rq);
320ae51f 385 blk_mq_free_request(rq);
91b63639 386 }
320ae51f 387}
c8a446ad 388EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 389
c8a446ad 390void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
391{
392 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
393 BUG();
c8a446ad 394 __blk_mq_end_request(rq, error);
63151a44 395}
c8a446ad 396EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 397
30a91cb4 398static void __blk_mq_complete_request_remote(void *data)
320ae51f 399{
3d6efbf6 400 struct request *rq = data;
320ae51f 401
30a91cb4 402 rq->q->softirq_done_fn(rq);
320ae51f 403}
320ae51f 404
ed851860 405static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
406{
407 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 408 bool shared = false;
320ae51f
JA
409 int cpu;
410
38535201 411 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
412 rq->q->softirq_done_fn(rq);
413 return;
414 }
320ae51f
JA
415
416 cpu = get_cpu();
38535201
CH
417 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
418 shared = cpus_share_cache(cpu, ctx->cpu);
419
420 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 421 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
422 rq->csd.info = rq;
423 rq->csd.flags = 0;
c46fff2a 424 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 425 } else {
30a91cb4 426 rq->q->softirq_done_fn(rq);
3d6efbf6 427 }
320ae51f
JA
428 put_cpu();
429}
30a91cb4 430
cf43e6be
JA
431static void blk_mq_stat_add(struct request *rq)
432{
433 if (rq->rq_flags & RQF_STATS) {
434 /*
435 * We could rq->mq_ctx here, but there's less of a risk
436 * of races if we have the completion event add the stats
437 * to the local software queue.
438 */
439 struct blk_mq_ctx *ctx;
440
441 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
442 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
443 }
444}
445
1fa8cc52 446static void __blk_mq_complete_request(struct request *rq)
ed851860
JA
447{
448 struct request_queue *q = rq->q;
449
cf43e6be
JA
450 blk_mq_stat_add(rq);
451
ed851860 452 if (!q->softirq_done_fn)
c8a446ad 453 blk_mq_end_request(rq, rq->errors);
ed851860
JA
454 else
455 blk_mq_ipi_complete_request(rq);
456}
457
30a91cb4
CH
458/**
459 * blk_mq_complete_request - end I/O on a request
460 * @rq: the request being processed
461 *
462 * Description:
463 * Ends all I/O on a request. It does not handle partial completions.
464 * The actual completion happens out-of-order, through a IPI handler.
465 **/
f4829a9b 466void blk_mq_complete_request(struct request *rq, int error)
30a91cb4 467{
95f09684
JA
468 struct request_queue *q = rq->q;
469
470 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 471 return;
f4829a9b
CH
472 if (!blk_mark_rq_complete(rq)) {
473 rq->errors = error;
ed851860 474 __blk_mq_complete_request(rq);
f4829a9b 475 }
30a91cb4
CH
476}
477EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 478
973c0191
KB
479int blk_mq_request_started(struct request *rq)
480{
481 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
482}
483EXPORT_SYMBOL_GPL(blk_mq_request_started);
484
e2490073 485void blk_mq_start_request(struct request *rq)
320ae51f
JA
486{
487 struct request_queue *q = rq->q;
488
bd166ef1
JA
489 blk_mq_sched_started_request(rq);
490
320ae51f
JA
491 trace_block_rq_issue(q, rq);
492
cf43e6be
JA
493 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
494 blk_stat_set_issue_time(&rq->issue_stat);
495 rq->rq_flags |= RQF_STATS;
87760e5e 496 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
497 }
498
2b8393b4 499 blk_add_timer(rq);
87ee7b11 500
538b7534
JA
501 /*
502 * Ensure that ->deadline is visible before set the started
503 * flag and clear the completed flag.
504 */
505 smp_mb__before_atomic();
506
87ee7b11
JA
507 /*
508 * Mark us as started and clear complete. Complete might have been
509 * set if requeue raced with timeout, which then marked it as
510 * complete. So be sure to clear complete again when we start
511 * the request, otherwise we'll ignore the completion event.
512 */
4b570521
JA
513 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
514 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
515 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
516 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
517
518 if (q->dma_drain_size && blk_rq_bytes(rq)) {
519 /*
520 * Make sure space for the drain appears. We know we can do
521 * this because max_hw_segments has been adjusted to be one
522 * fewer than the device can handle.
523 */
524 rq->nr_phys_segments++;
525 }
320ae51f 526}
e2490073 527EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 528
ed0791b2 529static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
530{
531 struct request_queue *q = rq->q;
532
533 trace_block_rq_requeue(q, rq);
87760e5e 534 wbt_requeue(q->rq_wb, &rq->issue_stat);
bd166ef1 535 blk_mq_sched_requeue_request(rq);
49f5baa5 536
e2490073
CH
537 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
538 if (q->dma_drain_size && blk_rq_bytes(rq))
539 rq->nr_phys_segments--;
540 }
320ae51f
JA
541}
542
2b053aca 543void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 544{
ed0791b2 545 __blk_mq_requeue_request(rq);
ed0791b2 546
ed0791b2 547 BUG_ON(blk_queued_rq(rq));
2b053aca 548 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
549}
550EXPORT_SYMBOL(blk_mq_requeue_request);
551
6fca6a61
CH
552static void blk_mq_requeue_work(struct work_struct *work)
553{
554 struct request_queue *q =
2849450a 555 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
556 LIST_HEAD(rq_list);
557 struct request *rq, *next;
558 unsigned long flags;
559
560 spin_lock_irqsave(&q->requeue_lock, flags);
561 list_splice_init(&q->requeue_list, &rq_list);
562 spin_unlock_irqrestore(&q->requeue_lock, flags);
563
564 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 565 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
566 continue;
567
e8064021 568 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 569 list_del_init(&rq->queuelist);
bd6737f1 570 blk_mq_sched_insert_request(rq, true, false, false, true);
6fca6a61
CH
571 }
572
573 while (!list_empty(&rq_list)) {
574 rq = list_entry(rq_list.next, struct request, queuelist);
575 list_del_init(&rq->queuelist);
bd6737f1 576 blk_mq_sched_insert_request(rq, false, false, false, true);
6fca6a61
CH
577 }
578
52d7f1b5 579 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
580}
581
2b053aca
BVA
582void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
583 bool kick_requeue_list)
6fca6a61
CH
584{
585 struct request_queue *q = rq->q;
586 unsigned long flags;
587
588 /*
589 * We abuse this flag that is otherwise used by the I/O scheduler to
590 * request head insertation from the workqueue.
591 */
e8064021 592 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
593
594 spin_lock_irqsave(&q->requeue_lock, flags);
595 if (at_head) {
e8064021 596 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
597 list_add(&rq->queuelist, &q->requeue_list);
598 } else {
599 list_add_tail(&rq->queuelist, &q->requeue_list);
600 }
601 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
602
603 if (kick_requeue_list)
604 blk_mq_kick_requeue_list(q);
6fca6a61
CH
605}
606EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
607
608void blk_mq_kick_requeue_list(struct request_queue *q)
609{
2849450a 610 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
611}
612EXPORT_SYMBOL(blk_mq_kick_requeue_list);
613
2849450a
MS
614void blk_mq_delay_kick_requeue_list(struct request_queue *q,
615 unsigned long msecs)
616{
617 kblockd_schedule_delayed_work(&q->requeue_work,
618 msecs_to_jiffies(msecs));
619}
620EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
621
1885b24d
JA
622void blk_mq_abort_requeue_list(struct request_queue *q)
623{
624 unsigned long flags;
625 LIST_HEAD(rq_list);
626
627 spin_lock_irqsave(&q->requeue_lock, flags);
628 list_splice_init(&q->requeue_list, &rq_list);
629 spin_unlock_irqrestore(&q->requeue_lock, flags);
630
631 while (!list_empty(&rq_list)) {
632 struct request *rq;
633
634 rq = list_first_entry(&rq_list, struct request, queuelist);
635 list_del_init(&rq->queuelist);
636 rq->errors = -EIO;
637 blk_mq_end_request(rq, rq->errors);
638 }
639}
640EXPORT_SYMBOL(blk_mq_abort_requeue_list);
641
0e62f51f
JA
642struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
643{
88c7b2b7
JA
644 if (tag < tags->nr_tags) {
645 prefetch(tags->rqs[tag]);
4ee86bab 646 return tags->rqs[tag];
88c7b2b7 647 }
4ee86bab
HR
648
649 return NULL;
24d2f903
CH
650}
651EXPORT_SYMBOL(blk_mq_tag_to_rq);
652
320ae51f 653struct blk_mq_timeout_data {
46f92d42
CH
654 unsigned long next;
655 unsigned int next_set;
320ae51f
JA
656};
657
90415837 658void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 659{
f8a5b122 660 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 661 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
662
663 /*
664 * We know that complete is set at this point. If STARTED isn't set
665 * anymore, then the request isn't active and the "timeout" should
666 * just be ignored. This can happen due to the bitflag ordering.
667 * Timeout first checks if STARTED is set, and if it is, assumes
668 * the request is active. But if we race with completion, then
669 * we both flags will get cleared. So check here again, and ignore
670 * a timeout event with a request that isn't active.
671 */
46f92d42
CH
672 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
673 return;
87ee7b11 674
46f92d42 675 if (ops->timeout)
0152fb6b 676 ret = ops->timeout(req, reserved);
46f92d42
CH
677
678 switch (ret) {
679 case BLK_EH_HANDLED:
680 __blk_mq_complete_request(req);
681 break;
682 case BLK_EH_RESET_TIMER:
683 blk_add_timer(req);
684 blk_clear_rq_complete(req);
685 break;
686 case BLK_EH_NOT_HANDLED:
687 break;
688 default:
689 printk(KERN_ERR "block: bad eh return: %d\n", ret);
690 break;
691 }
87ee7b11 692}
5b3f25fc 693
81481eb4
CH
694static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
695 struct request *rq, void *priv, bool reserved)
696{
697 struct blk_mq_timeout_data *data = priv;
87ee7b11 698
95a49603 699 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
46f92d42 700 return;
87ee7b11 701
46f92d42
CH
702 if (time_after_eq(jiffies, rq->deadline)) {
703 if (!blk_mark_rq_complete(rq))
0152fb6b 704 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
705 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
706 data->next = rq->deadline;
707 data->next_set = 1;
708 }
87ee7b11
JA
709}
710
287922eb 711static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 712{
287922eb
CH
713 struct request_queue *q =
714 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
715 struct blk_mq_timeout_data data = {
716 .next = 0,
717 .next_set = 0,
718 };
81481eb4 719 int i;
320ae51f 720
71f79fb3
GKB
721 /* A deadlock might occur if a request is stuck requiring a
722 * timeout at the same time a queue freeze is waiting
723 * completion, since the timeout code would not be able to
724 * acquire the queue reference here.
725 *
726 * That's why we don't use blk_queue_enter here; instead, we use
727 * percpu_ref_tryget directly, because we need to be able to
728 * obtain a reference even in the short window between the queue
729 * starting to freeze, by dropping the first reference in
730 * blk_mq_freeze_queue_start, and the moment the last request is
731 * consumed, marked by the instant q_usage_counter reaches
732 * zero.
733 */
734 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
735 return;
736
0bf6cd5b 737 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 738
81481eb4
CH
739 if (data.next_set) {
740 data.next = blk_rq_timeout(round_jiffies_up(data.next));
741 mod_timer(&q->timeout, data.next);
0d2602ca 742 } else {
0bf6cd5b
CH
743 struct blk_mq_hw_ctx *hctx;
744
f054b56c
ML
745 queue_for_each_hw_ctx(q, hctx, i) {
746 /* the hctx may be unmapped, so check it here */
747 if (blk_mq_hw_queue_mapped(hctx))
748 blk_mq_tag_idle(hctx);
749 }
0d2602ca 750 }
287922eb 751 blk_queue_exit(q);
320ae51f
JA
752}
753
754/*
755 * Reverse check our software queue for entries that we could potentially
756 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
757 * too much time checking for merges.
758 */
759static bool blk_mq_attempt_merge(struct request_queue *q,
760 struct blk_mq_ctx *ctx, struct bio *bio)
761{
762 struct request *rq;
763 int checked = 8;
764
765 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
34fe7c05 766 bool merged = false;
320ae51f
JA
767
768 if (!checked--)
769 break;
770
771 if (!blk_rq_merge_ok(rq, bio))
772 continue;
773
34fe7c05
CH
774 switch (blk_try_merge(rq, bio)) {
775 case ELEVATOR_BACK_MERGE:
776 if (blk_mq_sched_allow_merge(q, rq, bio))
777 merged = bio_attempt_back_merge(q, rq, bio);
bd166ef1 778 break;
34fe7c05
CH
779 case ELEVATOR_FRONT_MERGE:
780 if (blk_mq_sched_allow_merge(q, rq, bio))
781 merged = bio_attempt_front_merge(q, rq, bio);
320ae51f 782 break;
1e739730
CH
783 case ELEVATOR_DISCARD_MERGE:
784 merged = bio_attempt_discard_merge(q, rq, bio);
320ae51f 785 break;
34fe7c05
CH
786 default:
787 continue;
320ae51f 788 }
34fe7c05
CH
789
790 if (merged)
791 ctx->rq_merged++;
792 return merged;
320ae51f
JA
793 }
794
795 return false;
796}
797
88459642
OS
798struct flush_busy_ctx_data {
799 struct blk_mq_hw_ctx *hctx;
800 struct list_head *list;
801};
802
803static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
804{
805 struct flush_busy_ctx_data *flush_data = data;
806 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
807 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
808
809 sbitmap_clear_bit(sb, bitnr);
810 spin_lock(&ctx->lock);
811 list_splice_tail_init(&ctx->rq_list, flush_data->list);
812 spin_unlock(&ctx->lock);
813 return true;
814}
815
1429d7c9
JA
816/*
817 * Process software queues that have been marked busy, splicing them
818 * to the for-dispatch
819 */
2c3ad667 820void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 821{
88459642
OS
822 struct flush_busy_ctx_data data = {
823 .hctx = hctx,
824 .list = list,
825 };
1429d7c9 826
88459642 827 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 828}
2c3ad667 829EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 830
703fd1c0
JA
831static inline unsigned int queued_to_index(unsigned int queued)
832{
833 if (!queued)
834 return 0;
1429d7c9 835
703fd1c0 836 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
837}
838
bd6737f1
JA
839bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
840 bool wait)
bd166ef1
JA
841{
842 struct blk_mq_alloc_data data = {
843 .q = rq->q,
bd166ef1
JA
844 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
845 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
846 };
847
81380ca1
OS
848 if (rq->tag != -1)
849 goto done;
bd166ef1 850
415b806d
SG
851 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
852 data.flags |= BLK_MQ_REQ_RESERVED;
853
bd166ef1
JA
854 rq->tag = blk_mq_get_tag(&data);
855 if (rq->tag >= 0) {
200e86b3
JA
856 if (blk_mq_tag_busy(data.hctx)) {
857 rq->rq_flags |= RQF_MQ_INFLIGHT;
858 atomic_inc(&data.hctx->nr_active);
859 }
bd166ef1 860 data.hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
861 }
862
81380ca1
OS
863done:
864 if (hctx)
865 *hctx = data.hctx;
866 return rq->tag != -1;
bd166ef1
JA
867}
868
113285b4
JA
869static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
870 struct request *rq)
99cf1dc5 871{
99cf1dc5
JA
872 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
873 rq->tag = -1;
874
875 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
876 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
877 atomic_dec(&hctx->nr_active);
878 }
879}
880
113285b4
JA
881static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
882 struct request *rq)
883{
884 if (rq->tag == -1 || rq->internal_tag == -1)
885 return;
886
887 __blk_mq_put_driver_tag(hctx, rq);
888}
889
890static void blk_mq_put_driver_tag(struct request *rq)
891{
892 struct blk_mq_hw_ctx *hctx;
893
894 if (rq->tag == -1 || rq->internal_tag == -1)
895 return;
896
897 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
898 __blk_mq_put_driver_tag(hctx, rq);
899}
900
bd166ef1
JA
901/*
902 * If we fail getting a driver tag because all the driver tags are already
903 * assigned and on the dispatch list, BUT the first entry does not have a
904 * tag, then we could deadlock. For that case, move entries with assigned
905 * driver tags to the front, leaving the set of tagged requests in the
906 * same order, and the untagged set in the same order.
907 */
908static bool reorder_tags_to_front(struct list_head *list)
909{
910 struct request *rq, *tmp, *first = NULL;
911
912 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
913 if (rq == first)
914 break;
915 if (rq->tag != -1) {
916 list_move(&rq->queuelist, list);
917 if (!first)
918 first = rq;
919 }
920 }
921
922 return first != NULL;
923}
924
da55f2cc
OS
925static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
926 void *key)
927{
928 struct blk_mq_hw_ctx *hctx;
929
930 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
931
932 list_del(&wait->task_list);
933 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
934 blk_mq_run_hw_queue(hctx, true);
935 return 1;
936}
937
938static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
939{
940 struct sbq_wait_state *ws;
941
942 /*
943 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
944 * The thread which wins the race to grab this bit adds the hardware
945 * queue to the wait queue.
946 */
947 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
948 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
949 return false;
950
951 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
952 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
953
954 /*
955 * As soon as this returns, it's no longer safe to fiddle with
956 * hctx->dispatch_wait, since a completion can wake up the wait queue
957 * and unlock the bit.
958 */
959 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
960 return true;
961}
962
81380ca1 963bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
320ae51f 964{
81380ca1 965 struct blk_mq_hw_ctx *hctx;
320ae51f 966 struct request *rq;
74c45052
JA
967 LIST_HEAD(driver_list);
968 struct list_head *dptr;
93efe981 969 int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
320ae51f 970
81380ca1
OS
971 if (list_empty(list))
972 return false;
973
74c45052
JA
974 /*
975 * Start off with dptr being NULL, so we start the first request
976 * immediately, even if we have more pending.
977 */
978 dptr = NULL;
979
320ae51f
JA
980 /*
981 * Now process all the entries, sending them to the driver.
982 */
93efe981 983 errors = queued = 0;
81380ca1 984 do {
74c45052 985 struct blk_mq_queue_data bd;
320ae51f 986
f04c3df3 987 rq = list_first_entry(list, struct request, queuelist);
bd166ef1
JA
988 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
989 if (!queued && reorder_tags_to_front(list))
990 continue;
3c782d67
JA
991
992 /*
da55f2cc
OS
993 * The initial allocation attempt failed, so we need to
994 * rerun the hardware queue when a tag is freed.
3c782d67 995 */
da55f2cc
OS
996 if (blk_mq_dispatch_wait_add(hctx)) {
997 /*
998 * It's possible that a tag was freed in the
999 * window between the allocation failure and
1000 * adding the hardware queue to the wait queue.
1001 */
1002 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1003 break;
1004 } else {
3c782d67 1005 break;
da55f2cc 1006 }
bd166ef1 1007 }
da55f2cc 1008
320ae51f 1009 list_del_init(&rq->queuelist);
320ae51f 1010
74c45052
JA
1011 bd.rq = rq;
1012 bd.list = dptr;
113285b4
JA
1013
1014 /*
1015 * Flag last if we have no more requests, or if we have more
1016 * but can't assign a driver tag to it.
1017 */
1018 if (list_empty(list))
1019 bd.last = true;
1020 else {
1021 struct request *nxt;
1022
1023 nxt = list_first_entry(list, struct request, queuelist);
1024 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1025 }
74c45052
JA
1026
1027 ret = q->mq_ops->queue_rq(hctx, &bd);
320ae51f
JA
1028 switch (ret) {
1029 case BLK_MQ_RQ_QUEUE_OK:
1030 queued++;
52b9c330 1031 break;
320ae51f 1032 case BLK_MQ_RQ_QUEUE_BUSY:
113285b4 1033 blk_mq_put_driver_tag_hctx(hctx, rq);
f04c3df3 1034 list_add(&rq->queuelist, list);
ed0791b2 1035 __blk_mq_requeue_request(rq);
320ae51f
JA
1036 break;
1037 default:
1038 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 1039 case BLK_MQ_RQ_QUEUE_ERROR:
93efe981 1040 errors++;
1e93b8c2 1041 rq->errors = -EIO;
c8a446ad 1042 blk_mq_end_request(rq, rq->errors);
320ae51f
JA
1043 break;
1044 }
1045
1046 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1047 break;
74c45052
JA
1048
1049 /*
1050 * We've done the first request. If we have more than 1
1051 * left in the list, set dptr to defer issue.
1052 */
f04c3df3 1053 if (!dptr && list->next != list->prev)
74c45052 1054 dptr = &driver_list;
81380ca1 1055 } while (!list_empty(list));
320ae51f 1056
703fd1c0 1057 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1058
1059 /*
1060 * Any items that need requeuing? Stuff them into hctx->dispatch,
1061 * that is where we will continue on next queue run.
1062 */
f04c3df3 1063 if (!list_empty(list)) {
113285b4
JA
1064 /*
1065 * If we got a driver tag for the next request already,
1066 * free it again.
1067 */
1068 rq = list_first_entry(list, struct request, queuelist);
1069 blk_mq_put_driver_tag(rq);
1070
320ae51f 1071 spin_lock(&hctx->lock);
c13660a0 1072 list_splice_init(list, &hctx->dispatch);
320ae51f 1073 spin_unlock(&hctx->lock);
f04c3df3 1074
9ba52e58
SL
1075 /*
1076 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1077 * it's possible the queue is stopped and restarted again
1078 * before this. Queue restart will dispatch requests. And since
1079 * requests in rq_list aren't added into hctx->dispatch yet,
1080 * the requests in rq_list might get lost.
1081 *
1082 * blk_mq_run_hw_queue() already checks the STOPPED bit
bd166ef1 1083 *
da55f2cc
OS
1084 * If RESTART or TAG_WAITING is set, then let completion restart
1085 * the queue instead of potentially looping here.
bd166ef1 1086 */
da55f2cc
OS
1087 if (!blk_mq_sched_needs_restart(hctx) &&
1088 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
bd166ef1 1089 blk_mq_run_hw_queue(hctx, true);
320ae51f 1090 }
f04c3df3 1091
93efe981 1092 return (queued + errors) != 0;
f04c3df3
JA
1093}
1094
6a83e74d
BVA
1095static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1096{
1097 int srcu_idx;
1098
1099 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1100 cpu_online(hctx->next_cpu));
1101
1102 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1103 rcu_read_lock();
bd166ef1 1104 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1105 rcu_read_unlock();
1106 } else {
1107 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
bd166ef1 1108 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1109 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1110 }
1111}
1112
506e931f
JA
1113/*
1114 * It'd be great if the workqueue API had a way to pass
1115 * in a mask and had some smarts for more clever placement.
1116 * For now we just round-robin here, switching for every
1117 * BLK_MQ_CPU_WORK_BATCH queued items.
1118 */
1119static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1120{
b657d7e6
CH
1121 if (hctx->queue->nr_hw_queues == 1)
1122 return WORK_CPU_UNBOUND;
506e931f
JA
1123
1124 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1125 int next_cpu;
506e931f
JA
1126
1127 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1128 if (next_cpu >= nr_cpu_ids)
1129 next_cpu = cpumask_first(hctx->cpumask);
1130
1131 hctx->next_cpu = next_cpu;
1132 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1133 }
1134
b657d7e6 1135 return hctx->next_cpu;
506e931f
JA
1136}
1137
320ae51f
JA
1138void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1139{
5d1b25c1
BVA
1140 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1141 !blk_mq_hw_queue_mapped(hctx)))
320ae51f
JA
1142 return;
1143
1b792f2f 1144 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1145 int cpu = get_cpu();
1146 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1147 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1148 put_cpu();
398205b8
PB
1149 return;
1150 }
e4043dcf 1151
2a90d4aa 1152 put_cpu();
e4043dcf 1153 }
398205b8 1154
27489a3c 1155 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
320ae51f
JA
1156}
1157
b94ec296 1158void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1159{
1160 struct blk_mq_hw_ctx *hctx;
1161 int i;
1162
1163 queue_for_each_hw_ctx(q, hctx, i) {
bd166ef1 1164 if (!blk_mq_hctx_has_pending(hctx) ||
5d1b25c1 1165 blk_mq_hctx_stopped(hctx))
320ae51f
JA
1166 continue;
1167
b94ec296 1168 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1169 }
1170}
b94ec296 1171EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1172
fd001443
BVA
1173/**
1174 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1175 * @q: request queue.
1176 *
1177 * The caller is responsible for serializing this function against
1178 * blk_mq_{start,stop}_hw_queue().
1179 */
1180bool blk_mq_queue_stopped(struct request_queue *q)
1181{
1182 struct blk_mq_hw_ctx *hctx;
1183 int i;
1184
1185 queue_for_each_hw_ctx(q, hctx, i)
1186 if (blk_mq_hctx_stopped(hctx))
1187 return true;
1188
1189 return false;
1190}
1191EXPORT_SYMBOL(blk_mq_queue_stopped);
1192
320ae51f
JA
1193void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1194{
27489a3c 1195 cancel_work(&hctx->run_work);
70f4db63 1196 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
1197 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1198}
1199EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1200
280d45f6
CH
1201void blk_mq_stop_hw_queues(struct request_queue *q)
1202{
1203 struct blk_mq_hw_ctx *hctx;
1204 int i;
1205
1206 queue_for_each_hw_ctx(q, hctx, i)
1207 blk_mq_stop_hw_queue(hctx);
1208}
1209EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1210
320ae51f
JA
1211void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1212{
1213 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1214
0ffbce80 1215 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1216}
1217EXPORT_SYMBOL(blk_mq_start_hw_queue);
1218
2f268556
CH
1219void blk_mq_start_hw_queues(struct request_queue *q)
1220{
1221 struct blk_mq_hw_ctx *hctx;
1222 int i;
1223
1224 queue_for_each_hw_ctx(q, hctx, i)
1225 blk_mq_start_hw_queue(hctx);
1226}
1227EXPORT_SYMBOL(blk_mq_start_hw_queues);
1228
ae911c5e
JA
1229void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1230{
1231 if (!blk_mq_hctx_stopped(hctx))
1232 return;
1233
1234 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1235 blk_mq_run_hw_queue(hctx, async);
1236}
1237EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1238
1b4a3258 1239void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1240{
1241 struct blk_mq_hw_ctx *hctx;
1242 int i;
1243
ae911c5e
JA
1244 queue_for_each_hw_ctx(q, hctx, i)
1245 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1246}
1247EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1248
70f4db63 1249static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1250{
1251 struct blk_mq_hw_ctx *hctx;
1252
27489a3c 1253 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
e4043dcf 1254
320ae51f
JA
1255 __blk_mq_run_hw_queue(hctx);
1256}
1257
70f4db63
CH
1258static void blk_mq_delay_work_fn(struct work_struct *work)
1259{
1260 struct blk_mq_hw_ctx *hctx;
1261
1262 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1263
1264 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1265 __blk_mq_run_hw_queue(hctx);
1266}
1267
1268void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1269{
19c66e59
ML
1270 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1271 return;
70f4db63 1272
7e79dadc 1273 blk_mq_stop_hw_queue(hctx);
b657d7e6
CH
1274 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1275 &hctx->delay_work, msecs_to_jiffies(msecs));
70f4db63
CH
1276}
1277EXPORT_SYMBOL(blk_mq_delay_queue);
1278
cfd0c552 1279static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1280 struct request *rq,
1281 bool at_head)
320ae51f 1282{
e57690fe
JA
1283 struct blk_mq_ctx *ctx = rq->mq_ctx;
1284
01b983c9
JA
1285 trace_block_rq_insert(hctx->queue, rq);
1286
72a0a36e
CH
1287 if (at_head)
1288 list_add(&rq->queuelist, &ctx->rq_list);
1289 else
1290 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1291}
4bb659b1 1292
2c3ad667
JA
1293void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1294 bool at_head)
cfd0c552
ML
1295{
1296 struct blk_mq_ctx *ctx = rq->mq_ctx;
1297
e57690fe 1298 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1299 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1300}
1301
bd166ef1
JA
1302void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1303 struct list_head *list)
320ae51f
JA
1304
1305{
320ae51f
JA
1306 /*
1307 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1308 * offline now
1309 */
1310 spin_lock(&ctx->lock);
1311 while (!list_empty(list)) {
1312 struct request *rq;
1313
1314 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1315 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1316 list_del_init(&rq->queuelist);
e57690fe 1317 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1318 }
cfd0c552 1319 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1320 spin_unlock(&ctx->lock);
320ae51f
JA
1321}
1322
1323static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1324{
1325 struct request *rqa = container_of(a, struct request, queuelist);
1326 struct request *rqb = container_of(b, struct request, queuelist);
1327
1328 return !(rqa->mq_ctx < rqb->mq_ctx ||
1329 (rqa->mq_ctx == rqb->mq_ctx &&
1330 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1331}
1332
1333void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1334{
1335 struct blk_mq_ctx *this_ctx;
1336 struct request_queue *this_q;
1337 struct request *rq;
1338 LIST_HEAD(list);
1339 LIST_HEAD(ctx_list);
1340 unsigned int depth;
1341
1342 list_splice_init(&plug->mq_list, &list);
1343
1344 list_sort(NULL, &list, plug_ctx_cmp);
1345
1346 this_q = NULL;
1347 this_ctx = NULL;
1348 depth = 0;
1349
1350 while (!list_empty(&list)) {
1351 rq = list_entry_rq(list.next);
1352 list_del_init(&rq->queuelist);
1353 BUG_ON(!rq->q);
1354 if (rq->mq_ctx != this_ctx) {
1355 if (this_ctx) {
bd166ef1
JA
1356 trace_block_unplug(this_q, depth, from_schedule);
1357 blk_mq_sched_insert_requests(this_q, this_ctx,
1358 &ctx_list,
1359 from_schedule);
320ae51f
JA
1360 }
1361
1362 this_ctx = rq->mq_ctx;
1363 this_q = rq->q;
1364 depth = 0;
1365 }
1366
1367 depth++;
1368 list_add_tail(&rq->queuelist, &ctx_list);
1369 }
1370
1371 /*
1372 * If 'this_ctx' is set, we know we have entries to complete
1373 * on 'ctx_list'. Do those.
1374 */
1375 if (this_ctx) {
bd166ef1
JA
1376 trace_block_unplug(this_q, depth, from_schedule);
1377 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1378 from_schedule);
320ae51f
JA
1379 }
1380}
1381
1382static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1383{
1384 init_request_from_bio(rq, bio);
4b570521 1385
6e85eaf3 1386 blk_account_io_start(rq, true);
320ae51f
JA
1387}
1388
274a5843
JA
1389static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1390{
1391 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1392 !blk_queue_nomerges(hctx->queue);
1393}
1394
07068d5b
JA
1395static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1396 struct blk_mq_ctx *ctx,
1397 struct request *rq, struct bio *bio)
320ae51f 1398{
e18378a6 1399 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
07068d5b
JA
1400 blk_mq_bio_to_request(rq, bio);
1401 spin_lock(&ctx->lock);
1402insert_rq:
1403 __blk_mq_insert_request(hctx, rq, false);
1404 spin_unlock(&ctx->lock);
1405 return false;
1406 } else {
274a5843
JA
1407 struct request_queue *q = hctx->queue;
1408
07068d5b
JA
1409 spin_lock(&ctx->lock);
1410 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1411 blk_mq_bio_to_request(rq, bio);
1412 goto insert_rq;
1413 }
320ae51f 1414
07068d5b 1415 spin_unlock(&ctx->lock);
bd166ef1 1416 __blk_mq_finish_request(hctx, ctx, rq);
07068d5b 1417 return true;
14ec77f3 1418 }
07068d5b 1419}
14ec77f3 1420
fd2d3326
JA
1421static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1422{
bd166ef1
JA
1423 if (rq->tag != -1)
1424 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1425
1426 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1427}
1428
9c621104
JA
1429static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1430 bool may_sleep)
f984df1f 1431{
f984df1f 1432 struct request_queue *q = rq->q;
f984df1f
SL
1433 struct blk_mq_queue_data bd = {
1434 .rq = rq,
1435 .list = NULL,
1436 .last = 1
1437 };
bd166ef1
JA
1438 struct blk_mq_hw_ctx *hctx;
1439 blk_qc_t new_cookie;
1440 int ret;
f984df1f 1441
bd166ef1 1442 if (q->elevator)
2253efc8
BVA
1443 goto insert;
1444
bd166ef1
JA
1445 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1446 goto insert;
1447
1448 new_cookie = request_to_qc_t(hctx, rq);
1449
f984df1f
SL
1450 /*
1451 * For OK queue, we are done. For error, kill it. Any other
1452 * error (busy), just add it to our list as we previously
1453 * would have done
1454 */
1455 ret = q->mq_ops->queue_rq(hctx, &bd);
7b371636
JA
1456 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1457 *cookie = new_cookie;
2253efc8 1458 return;
7b371636 1459 }
f984df1f 1460
7b371636
JA
1461 __blk_mq_requeue_request(rq);
1462
1463 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1464 *cookie = BLK_QC_T_NONE;
1465 rq->errors = -EIO;
1466 blk_mq_end_request(rq, rq->errors);
2253efc8 1467 return;
f984df1f 1468 }
7b371636 1469
2253efc8 1470insert:
9c621104 1471 blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
f984df1f
SL
1472}
1473
07068d5b
JA
1474/*
1475 * Multiple hardware queue variant. This will not use per-process plugs,
1476 * but will attempt to bypass the hctx queueing if we can go straight to
1477 * hardware for SYNC IO.
1478 */
dece1635 1479static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1480{
ef295ecf 1481 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1482 const int is_flush_fua = op_is_flush(bio->bi_opf);
5a797e00 1483 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1484 struct request *rq;
6a83e74d 1485 unsigned int request_count = 0, srcu_idx;
f984df1f 1486 struct blk_plug *plug;
5b3f341f 1487 struct request *same_queue_rq = NULL;
7b371636 1488 blk_qc_t cookie;
87760e5e 1489 unsigned int wb_acct;
07068d5b
JA
1490
1491 blk_queue_bounce(q, &bio);
1492
1493 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1494 bio_io_error(bio);
dece1635 1495 return BLK_QC_T_NONE;
07068d5b
JA
1496 }
1497
54efd50b
KO
1498 blk_queue_split(q, &bio, q->bio_split);
1499
87c279e6
OS
1500 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1501 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1502 return BLK_QC_T_NONE;
f984df1f 1503
bd166ef1
JA
1504 if (blk_mq_sched_bio_merge(q, bio))
1505 return BLK_QC_T_NONE;
1506
87760e5e
JA
1507 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1508
bd166ef1
JA
1509 trace_block_getrq(q, bio, bio->bi_opf);
1510
1511 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1512 if (unlikely(!rq)) {
1513 __wbt_done(q->rq_wb, wb_acct);
dece1635 1514 return BLK_QC_T_NONE;
87760e5e
JA
1515 }
1516
1517 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1518
fd2d3326 1519 cookie = request_to_qc_t(data.hctx, rq);
07068d5b
JA
1520
1521 if (unlikely(is_flush_fua)) {
0c2a6fe4
JA
1522 if (q->elevator)
1523 goto elv_insert;
07068d5b
JA
1524 blk_mq_bio_to_request(rq, bio);
1525 blk_insert_flush(rq);
0c2a6fe4 1526 goto run_queue;
07068d5b
JA
1527 }
1528
f984df1f 1529 plug = current->plug;
e167dfb5
JA
1530 /*
1531 * If the driver supports defer issued based on 'last', then
1532 * queue it up like normal since we can potentially save some
1533 * CPU this way.
1534 */
f984df1f
SL
1535 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1536 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1537 struct request *old_rq = NULL;
07068d5b
JA
1538
1539 blk_mq_bio_to_request(rq, bio);
07068d5b
JA
1540
1541 /*
6a83e74d 1542 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1543 * Otherwise the existing request in the plug list will be
1544 * issued. So the plug list will have one request at most
07068d5b 1545 */
f984df1f 1546 if (plug) {
5b3f341f
SL
1547 /*
1548 * The plug list might get flushed before this. If that
b094f89c
JA
1549 * happens, same_queue_rq is invalid and plug list is
1550 * empty
1551 */
5b3f341f
SL
1552 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1553 old_rq = same_queue_rq;
f984df1f 1554 list_del_init(&old_rq->queuelist);
07068d5b 1555 }
f984df1f
SL
1556 list_add_tail(&rq->queuelist, &plug->mq_list);
1557 } else /* is_sync */
1558 old_rq = rq;
1559 blk_mq_put_ctx(data.ctx);
1560 if (!old_rq)
7b371636 1561 goto done;
6a83e74d
BVA
1562
1563 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1564 rcu_read_lock();
9c621104 1565 blk_mq_try_issue_directly(old_rq, &cookie, false);
6a83e74d
BVA
1566 rcu_read_unlock();
1567 } else {
1568 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
9c621104 1569 blk_mq_try_issue_directly(old_rq, &cookie, true);
6a83e74d
BVA
1570 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1571 }
7b371636 1572 goto done;
07068d5b
JA
1573 }
1574
bd166ef1 1575 if (q->elevator) {
0c2a6fe4 1576elv_insert:
bd166ef1
JA
1577 blk_mq_put_ctx(data.ctx);
1578 blk_mq_bio_to_request(rq, bio);
0abad774 1579 blk_mq_sched_insert_request(rq, false, true,
bd6737f1 1580 !is_sync || is_flush_fua, true);
bd166ef1
JA
1581 goto done;
1582 }
07068d5b
JA
1583 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1584 /*
1585 * For a SYNC request, send it to the hardware immediately. For
1586 * an ASYNC request, just ensure that we run it later on. The
1587 * latter allows for merging opportunities and more efficient
1588 * dispatching.
1589 */
0c2a6fe4 1590run_queue:
07068d5b
JA
1591 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1592 }
07068d5b 1593 blk_mq_put_ctx(data.ctx);
7b371636
JA
1594done:
1595 return cookie;
07068d5b
JA
1596}
1597
1598/*
1599 * Single hardware queue variant. This will attempt to use any per-process
1600 * plug for merging and IO deferral.
1601 */
dece1635 1602static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1603{
ef295ecf 1604 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1605 const int is_flush_fua = op_is_flush(bio->bi_opf);
e6c4438b
JM
1606 struct blk_plug *plug;
1607 unsigned int request_count = 0;
5a797e00 1608 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1609 struct request *rq;
7b371636 1610 blk_qc_t cookie;
87760e5e 1611 unsigned int wb_acct;
07068d5b 1612
07068d5b
JA
1613 blk_queue_bounce(q, &bio);
1614
1615 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1616 bio_io_error(bio);
dece1635 1617 return BLK_QC_T_NONE;
07068d5b
JA
1618 }
1619
54efd50b
KO
1620 blk_queue_split(q, &bio, q->bio_split);
1621
87c279e6
OS
1622 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1623 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1624 return BLK_QC_T_NONE;
1625 } else
1626 request_count = blk_plug_queued_count(q);
07068d5b 1627
bd166ef1
JA
1628 if (blk_mq_sched_bio_merge(q, bio))
1629 return BLK_QC_T_NONE;
1630
87760e5e
JA
1631 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1632
bd166ef1
JA
1633 trace_block_getrq(q, bio, bio->bi_opf);
1634
1635 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1636 if (unlikely(!rq)) {
1637 __wbt_done(q->rq_wb, wb_acct);
dece1635 1638 return BLK_QC_T_NONE;
87760e5e
JA
1639 }
1640
1641 wbt_track(&rq->issue_stat, wb_acct);
320ae51f 1642
fd2d3326 1643 cookie = request_to_qc_t(data.hctx, rq);
320ae51f
JA
1644
1645 if (unlikely(is_flush_fua)) {
0c2a6fe4
JA
1646 if (q->elevator)
1647 goto elv_insert;
320ae51f 1648 blk_mq_bio_to_request(rq, bio);
320ae51f 1649 blk_insert_flush(rq);
0c2a6fe4 1650 goto run_queue;
320ae51f
JA
1651 }
1652
1653 /*
1654 * A task plug currently exists. Since this is completely lockless,
1655 * utilize that to temporarily store requests until the task is
1656 * either done or scheduled away.
1657 */
e6c4438b
JM
1658 plug = current->plug;
1659 if (plug) {
600271d9
SL
1660 struct request *last = NULL;
1661
e6c4438b 1662 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1663
1664 /*
1665 * @request_count may become stale because of schedule
1666 * out, so check the list again.
1667 */
1668 if (list_empty(&plug->mq_list))
1669 request_count = 0;
676d0607 1670 if (!request_count)
e6c4438b 1671 trace_block_plug(q);
600271d9
SL
1672 else
1673 last = list_entry_rq(plug->mq_list.prev);
b094f89c
JA
1674
1675 blk_mq_put_ctx(data.ctx);
1676
600271d9
SL
1677 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1678 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1679 blk_flush_plug_list(plug, false);
1680 trace_block_plug(q);
320ae51f 1681 }
b094f89c 1682
e6c4438b 1683 list_add_tail(&rq->queuelist, &plug->mq_list);
7b371636 1684 return cookie;
320ae51f
JA
1685 }
1686
bd166ef1 1687 if (q->elevator) {
0c2a6fe4 1688elv_insert:
bd166ef1
JA
1689 blk_mq_put_ctx(data.ctx);
1690 blk_mq_bio_to_request(rq, bio);
0abad774 1691 blk_mq_sched_insert_request(rq, false, true,
bd6737f1 1692 !is_sync || is_flush_fua, true);
bd166ef1
JA
1693 goto done;
1694 }
07068d5b
JA
1695 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1696 /*
1697 * For a SYNC request, send it to the hardware immediately. For
1698 * an ASYNC request, just ensure that we run it later on. The
1699 * latter allows for merging opportunities and more efficient
1700 * dispatching.
1701 */
0c2a6fe4 1702run_queue:
07068d5b 1703 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1704 }
1705
07068d5b 1706 blk_mq_put_ctx(data.ctx);
bd166ef1 1707done:
7b371636 1708 return cookie;
320ae51f
JA
1709}
1710
cc71a6f4
JA
1711void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1712 unsigned int hctx_idx)
95363efd 1713{
e9b267d9 1714 struct page *page;
320ae51f 1715
24d2f903 1716 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1717 int i;
320ae51f 1718
24d2f903 1719 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1720 struct request *rq = tags->static_rqs[i];
1721
1722 if (!rq)
e9b267d9 1723 continue;
2af8cbe3 1724 set->ops->exit_request(set->driver_data, rq,
24d2f903 1725 hctx_idx, i);
2af8cbe3 1726 tags->static_rqs[i] = NULL;
e9b267d9 1727 }
320ae51f 1728 }
320ae51f 1729
24d2f903
CH
1730 while (!list_empty(&tags->page_list)) {
1731 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1732 list_del_init(&page->lru);
f75782e4
CM
1733 /*
1734 * Remove kmemleak object previously allocated in
1735 * blk_mq_init_rq_map().
1736 */
1737 kmemleak_free(page_address(page));
320ae51f
JA
1738 __free_pages(page, page->private);
1739 }
cc71a6f4 1740}
320ae51f 1741
cc71a6f4
JA
1742void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1743{
24d2f903 1744 kfree(tags->rqs);
cc71a6f4 1745 tags->rqs = NULL;
2af8cbe3
JA
1746 kfree(tags->static_rqs);
1747 tags->static_rqs = NULL;
320ae51f 1748
24d2f903 1749 blk_mq_free_tags(tags);
320ae51f
JA
1750}
1751
cc71a6f4
JA
1752struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1753 unsigned int hctx_idx,
1754 unsigned int nr_tags,
1755 unsigned int reserved_tags)
320ae51f 1756{
24d2f903 1757 struct blk_mq_tags *tags;
59f082e4 1758 int node;
320ae51f 1759
59f082e4
SL
1760 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1761 if (node == NUMA_NO_NODE)
1762 node = set->numa_node;
1763
1764 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 1765 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1766 if (!tags)
1767 return NULL;
320ae51f 1768
cc71a6f4 1769 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1770 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1771 node);
24d2f903
CH
1772 if (!tags->rqs) {
1773 blk_mq_free_tags(tags);
1774 return NULL;
1775 }
320ae51f 1776
2af8cbe3
JA
1777 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1778 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1779 node);
2af8cbe3
JA
1780 if (!tags->static_rqs) {
1781 kfree(tags->rqs);
1782 blk_mq_free_tags(tags);
1783 return NULL;
1784 }
1785
cc71a6f4
JA
1786 return tags;
1787}
1788
1789static size_t order_to_size(unsigned int order)
1790{
1791 return (size_t)PAGE_SIZE << order;
1792}
1793
1794int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1795 unsigned int hctx_idx, unsigned int depth)
1796{
1797 unsigned int i, j, entries_per_page, max_order = 4;
1798 size_t rq_size, left;
59f082e4
SL
1799 int node;
1800
1801 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1802 if (node == NUMA_NO_NODE)
1803 node = set->numa_node;
cc71a6f4
JA
1804
1805 INIT_LIST_HEAD(&tags->page_list);
1806
320ae51f
JA
1807 /*
1808 * rq_size is the size of the request plus driver payload, rounded
1809 * to the cacheline size
1810 */
24d2f903 1811 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1812 cache_line_size());
cc71a6f4 1813 left = rq_size * depth;
320ae51f 1814
cc71a6f4 1815 for (i = 0; i < depth; ) {
320ae51f
JA
1816 int this_order = max_order;
1817 struct page *page;
1818 int to_do;
1819 void *p;
1820
b3a834b1 1821 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1822 this_order--;
1823
1824 do {
59f082e4 1825 page = alloc_pages_node(node,
36e1f3d1 1826 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1827 this_order);
320ae51f
JA
1828 if (page)
1829 break;
1830 if (!this_order--)
1831 break;
1832 if (order_to_size(this_order) < rq_size)
1833 break;
1834 } while (1);
1835
1836 if (!page)
24d2f903 1837 goto fail;
320ae51f
JA
1838
1839 page->private = this_order;
24d2f903 1840 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1841
1842 p = page_address(page);
f75782e4
CM
1843 /*
1844 * Allow kmemleak to scan these pages as they contain pointers
1845 * to additional allocations like via ops->init_request().
1846 */
36e1f3d1 1847 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 1848 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 1849 to_do = min(entries_per_page, depth - i);
320ae51f
JA
1850 left -= to_do * rq_size;
1851 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
1852 struct request *rq = p;
1853
1854 tags->static_rqs[i] = rq;
24d2f903
CH
1855 if (set->ops->init_request) {
1856 if (set->ops->init_request(set->driver_data,
2af8cbe3 1857 rq, hctx_idx, i,
59f082e4 1858 node)) {
2af8cbe3 1859 tags->static_rqs[i] = NULL;
24d2f903 1860 goto fail;
a5164405 1861 }
e9b267d9
CH
1862 }
1863
320ae51f
JA
1864 p += rq_size;
1865 i++;
1866 }
1867 }
cc71a6f4 1868 return 0;
320ae51f 1869
24d2f903 1870fail:
cc71a6f4
JA
1871 blk_mq_free_rqs(set, tags, hctx_idx);
1872 return -ENOMEM;
320ae51f
JA
1873}
1874
e57690fe
JA
1875/*
1876 * 'cpu' is going away. splice any existing rq_list entries from this
1877 * software queue to the hw queue dispatch list, and ensure that it
1878 * gets run.
1879 */
9467f859 1880static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 1881{
9467f859 1882 struct blk_mq_hw_ctx *hctx;
484b4061
JA
1883 struct blk_mq_ctx *ctx;
1884 LIST_HEAD(tmp);
1885
9467f859 1886 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 1887 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1888
1889 spin_lock(&ctx->lock);
1890 if (!list_empty(&ctx->rq_list)) {
1891 list_splice_init(&ctx->rq_list, &tmp);
1892 blk_mq_hctx_clear_pending(hctx, ctx);
1893 }
1894 spin_unlock(&ctx->lock);
1895
1896 if (list_empty(&tmp))
9467f859 1897 return 0;
484b4061 1898
e57690fe
JA
1899 spin_lock(&hctx->lock);
1900 list_splice_tail_init(&tmp, &hctx->dispatch);
1901 spin_unlock(&hctx->lock);
484b4061
JA
1902
1903 blk_mq_run_hw_queue(hctx, true);
9467f859 1904 return 0;
484b4061
JA
1905}
1906
9467f859 1907static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 1908{
9467f859
TG
1909 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1910 &hctx->cpuhp_dead);
484b4061
JA
1911}
1912
c3b4afca 1913/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1914static void blk_mq_exit_hctx(struct request_queue *q,
1915 struct blk_mq_tag_set *set,
1916 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1917{
f70ced09
ML
1918 unsigned flush_start_tag = set->queue_depth;
1919
08e98fc6
ML
1920 blk_mq_tag_idle(hctx);
1921
f70ced09
ML
1922 if (set->ops->exit_request)
1923 set->ops->exit_request(set->driver_data,
1924 hctx->fq->flush_rq, hctx_idx,
1925 flush_start_tag + hctx_idx);
1926
93252632
OS
1927 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1928
08e98fc6
ML
1929 if (set->ops->exit_hctx)
1930 set->ops->exit_hctx(hctx, hctx_idx);
1931
6a83e74d
BVA
1932 if (hctx->flags & BLK_MQ_F_BLOCKING)
1933 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1934
9467f859 1935 blk_mq_remove_cpuhp(hctx);
f70ced09 1936 blk_free_flush_queue(hctx->fq);
88459642 1937 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1938}
1939
624dbe47
ML
1940static void blk_mq_exit_hw_queues(struct request_queue *q,
1941 struct blk_mq_tag_set *set, int nr_queue)
1942{
1943 struct blk_mq_hw_ctx *hctx;
1944 unsigned int i;
1945
1946 queue_for_each_hw_ctx(q, hctx, i) {
1947 if (i == nr_queue)
1948 break;
08e98fc6 1949 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1950 }
624dbe47
ML
1951}
1952
08e98fc6
ML
1953static int blk_mq_init_hctx(struct request_queue *q,
1954 struct blk_mq_tag_set *set,
1955 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1956{
08e98fc6 1957 int node;
f70ced09 1958 unsigned flush_start_tag = set->queue_depth;
08e98fc6
ML
1959
1960 node = hctx->numa_node;
1961 if (node == NUMA_NO_NODE)
1962 node = hctx->numa_node = set->numa_node;
1963
27489a3c 1964 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
1965 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1966 spin_lock_init(&hctx->lock);
1967 INIT_LIST_HEAD(&hctx->dispatch);
1968 hctx->queue = q;
1969 hctx->queue_num = hctx_idx;
2404e607 1970 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 1971
9467f859 1972 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
1973
1974 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1975
1976 /*
08e98fc6
ML
1977 * Allocate space for all possible cpus to avoid allocation at
1978 * runtime
320ae51f 1979 */
08e98fc6
ML
1980 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1981 GFP_KERNEL, node);
1982 if (!hctx->ctxs)
1983 goto unregister_cpu_notifier;
320ae51f 1984
88459642
OS
1985 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1986 node))
08e98fc6 1987 goto free_ctxs;
320ae51f 1988
08e98fc6 1989 hctx->nr_ctx = 0;
320ae51f 1990
08e98fc6
ML
1991 if (set->ops->init_hctx &&
1992 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1993 goto free_bitmap;
320ae51f 1994
93252632
OS
1995 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1996 goto exit_hctx;
1997
f70ced09
ML
1998 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1999 if (!hctx->fq)
93252632 2000 goto sched_exit_hctx;
320ae51f 2001
f70ced09
ML
2002 if (set->ops->init_request &&
2003 set->ops->init_request(set->driver_data,
2004 hctx->fq->flush_rq, hctx_idx,
2005 flush_start_tag + hctx_idx, node))
2006 goto free_fq;
320ae51f 2007
6a83e74d
BVA
2008 if (hctx->flags & BLK_MQ_F_BLOCKING)
2009 init_srcu_struct(&hctx->queue_rq_srcu);
2010
08e98fc6 2011 return 0;
320ae51f 2012
f70ced09
ML
2013 free_fq:
2014 kfree(hctx->fq);
93252632
OS
2015 sched_exit_hctx:
2016 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
f70ced09
ML
2017 exit_hctx:
2018 if (set->ops->exit_hctx)
2019 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 2020 free_bitmap:
88459642 2021 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2022 free_ctxs:
2023 kfree(hctx->ctxs);
2024 unregister_cpu_notifier:
9467f859 2025 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
2026 return -1;
2027}
320ae51f 2028
320ae51f
JA
2029static void blk_mq_init_cpu_queues(struct request_queue *q,
2030 unsigned int nr_hw_queues)
2031{
2032 unsigned int i;
2033
2034 for_each_possible_cpu(i) {
2035 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2036 struct blk_mq_hw_ctx *hctx;
2037
320ae51f
JA
2038 __ctx->cpu = i;
2039 spin_lock_init(&__ctx->lock);
2040 INIT_LIST_HEAD(&__ctx->rq_list);
2041 __ctx->queue = q;
cf43e6be
JA
2042 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
2043 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
320ae51f
JA
2044
2045 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
2046 if (!cpu_online(i))
2047 continue;
2048
7d7e0f90 2049 hctx = blk_mq_map_queue(q, i);
e4043dcf 2050
320ae51f
JA
2051 /*
2052 * Set local node, IFF we have more than one hw queue. If
2053 * not, we remain on the home node of the device
2054 */
2055 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 2056 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
2057 }
2058}
2059
cc71a6f4
JA
2060static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2061{
2062 int ret = 0;
2063
2064 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2065 set->queue_depth, set->reserved_tags);
2066 if (!set->tags[hctx_idx])
2067 return false;
2068
2069 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2070 set->queue_depth);
2071 if (!ret)
2072 return true;
2073
2074 blk_mq_free_rq_map(set->tags[hctx_idx]);
2075 set->tags[hctx_idx] = NULL;
2076 return false;
2077}
2078
2079static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2080 unsigned int hctx_idx)
2081{
bd166ef1
JA
2082 if (set->tags[hctx_idx]) {
2083 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2084 blk_mq_free_rq_map(set->tags[hctx_idx]);
2085 set->tags[hctx_idx] = NULL;
2086 }
cc71a6f4
JA
2087}
2088
5778322e
AM
2089static void blk_mq_map_swqueue(struct request_queue *q,
2090 const struct cpumask *online_mask)
320ae51f 2091{
d1b1cea1 2092 unsigned int i, hctx_idx;
320ae51f
JA
2093 struct blk_mq_hw_ctx *hctx;
2094 struct blk_mq_ctx *ctx;
2a34c087 2095 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2096
60de074b
AM
2097 /*
2098 * Avoid others reading imcomplete hctx->cpumask through sysfs
2099 */
2100 mutex_lock(&q->sysfs_lock);
2101
320ae51f 2102 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2103 cpumask_clear(hctx->cpumask);
320ae51f
JA
2104 hctx->nr_ctx = 0;
2105 }
2106
2107 /*
2108 * Map software to hardware queues
2109 */
897bb0c7 2110 for_each_possible_cpu(i) {
320ae51f 2111 /* If the cpu isn't online, the cpu is mapped to first hctx */
5778322e 2112 if (!cpumask_test_cpu(i, online_mask))
e4043dcf
JA
2113 continue;
2114
d1b1cea1
GKB
2115 hctx_idx = q->mq_map[i];
2116 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2117 if (!set->tags[hctx_idx] &&
2118 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2119 /*
2120 * If tags initialization fail for some hctx,
2121 * that hctx won't be brought online. In this
2122 * case, remap the current ctx to hctx[0] which
2123 * is guaranteed to always have tags allocated
2124 */
cc71a6f4 2125 q->mq_map[i] = 0;
d1b1cea1
GKB
2126 }
2127
897bb0c7 2128 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2129 hctx = blk_mq_map_queue(q, i);
868f2f0b 2130
e4043dcf 2131 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2132 ctx->index_hw = hctx->nr_ctx;
2133 hctx->ctxs[hctx->nr_ctx++] = ctx;
2134 }
506e931f 2135
60de074b
AM
2136 mutex_unlock(&q->sysfs_lock);
2137
506e931f 2138 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2139 /*
a68aafa5
JA
2140 * If no software queues are mapped to this hardware queue,
2141 * disable it and free the request entries.
484b4061
JA
2142 */
2143 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2144 /* Never unmap queue 0. We need it as a
2145 * fallback in case of a new remap fails
2146 * allocation
2147 */
cc71a6f4
JA
2148 if (i && set->tags[i])
2149 blk_mq_free_map_and_requests(set, i);
2150
2a34c087 2151 hctx->tags = NULL;
484b4061
JA
2152 continue;
2153 }
2154
2a34c087
ML
2155 hctx->tags = set->tags[i];
2156 WARN_ON(!hctx->tags);
2157
889fa31f
CY
2158 /*
2159 * Set the map size to the number of mapped software queues.
2160 * This is more accurate and more efficient than looping
2161 * over all possibly mapped software queues.
2162 */
88459642 2163 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2164
484b4061
JA
2165 /*
2166 * Initialize batch roundrobin counts
2167 */
506e931f
JA
2168 hctx->next_cpu = cpumask_first(hctx->cpumask);
2169 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2170 }
320ae51f
JA
2171}
2172
2404e607 2173static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2174{
2175 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2176 int i;
2177
2404e607
JM
2178 queue_for_each_hw_ctx(q, hctx, i) {
2179 if (shared)
2180 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2181 else
2182 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2183 }
2184}
2185
2186static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2187{
2188 struct request_queue *q;
0d2602ca
JA
2189
2190 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2191 blk_mq_freeze_queue(q);
2404e607 2192 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2193 blk_mq_unfreeze_queue(q);
2194 }
2195}
2196
2197static void blk_mq_del_queue_tag_set(struct request_queue *q)
2198{
2199 struct blk_mq_tag_set *set = q->tag_set;
2200
0d2602ca
JA
2201 mutex_lock(&set->tag_list_lock);
2202 list_del_init(&q->tag_set_list);
2404e607
JM
2203 if (list_is_singular(&set->tag_list)) {
2204 /* just transitioned to unshared */
2205 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2206 /* update existing queue */
2207 blk_mq_update_tag_set_depth(set, false);
2208 }
0d2602ca 2209 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
2210}
2211
2212static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2213 struct request_queue *q)
2214{
2215 q->tag_set = set;
2216
2217 mutex_lock(&set->tag_list_lock);
2404e607
JM
2218
2219 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2220 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2221 set->flags |= BLK_MQ_F_TAG_SHARED;
2222 /* update existing queue */
2223 blk_mq_update_tag_set_depth(set, true);
2224 }
2225 if (set->flags & BLK_MQ_F_TAG_SHARED)
2226 queue_set_hctx_shared(q, true);
0d2602ca 2227 list_add_tail(&q->tag_set_list, &set->tag_list);
2404e607 2228
0d2602ca
JA
2229 mutex_unlock(&set->tag_list_lock);
2230}
2231
e09aae7e
ML
2232/*
2233 * It is the actual release handler for mq, but we do it from
2234 * request queue's release handler for avoiding use-after-free
2235 * and headache because q->mq_kobj shouldn't have been introduced,
2236 * but we can't group ctx/kctx kobj without it.
2237 */
2238void blk_mq_release(struct request_queue *q)
2239{
2240 struct blk_mq_hw_ctx *hctx;
2241 unsigned int i;
2242
2243 /* hctx kobj stays in hctx */
c3b4afca
ML
2244 queue_for_each_hw_ctx(q, hctx, i) {
2245 if (!hctx)
2246 continue;
6c8b232e 2247 kobject_put(&hctx->kobj);
c3b4afca 2248 }
e09aae7e 2249
a723bab3
AM
2250 q->mq_map = NULL;
2251
e09aae7e
ML
2252 kfree(q->queue_hw_ctx);
2253
7ea5fe31
ML
2254 /*
2255 * release .mq_kobj and sw queue's kobject now because
2256 * both share lifetime with request queue.
2257 */
2258 blk_mq_sysfs_deinit(q);
2259
e09aae7e
ML
2260 free_percpu(q->queue_ctx);
2261}
2262
24d2f903 2263struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2264{
2265 struct request_queue *uninit_q, *q;
2266
2267 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2268 if (!uninit_q)
2269 return ERR_PTR(-ENOMEM);
2270
2271 q = blk_mq_init_allocated_queue(set, uninit_q);
2272 if (IS_ERR(q))
2273 blk_cleanup_queue(uninit_q);
2274
2275 return q;
2276}
2277EXPORT_SYMBOL(blk_mq_init_queue);
2278
868f2f0b
KB
2279static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2280 struct request_queue *q)
320ae51f 2281{
868f2f0b
KB
2282 int i, j;
2283 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2284
868f2f0b 2285 blk_mq_sysfs_unregister(q);
24d2f903 2286 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2287 int node;
f14bbe77 2288
868f2f0b
KB
2289 if (hctxs[i])
2290 continue;
2291
2292 node = blk_mq_hw_queue_to_node(q->mq_map, i);
cdef54dd
CH
2293 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2294 GFP_KERNEL, node);
320ae51f 2295 if (!hctxs[i])
868f2f0b 2296 break;
320ae51f 2297
a86073e4 2298 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2299 node)) {
2300 kfree(hctxs[i]);
2301 hctxs[i] = NULL;
2302 break;
2303 }
e4043dcf 2304
0d2602ca 2305 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2306 hctxs[i]->numa_node = node;
320ae51f 2307 hctxs[i]->queue_num = i;
868f2f0b
KB
2308
2309 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2310 free_cpumask_var(hctxs[i]->cpumask);
2311 kfree(hctxs[i]);
2312 hctxs[i] = NULL;
2313 break;
2314 }
2315 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2316 }
868f2f0b
KB
2317 for (j = i; j < q->nr_hw_queues; j++) {
2318 struct blk_mq_hw_ctx *hctx = hctxs[j];
2319
2320 if (hctx) {
cc71a6f4
JA
2321 if (hctx->tags)
2322 blk_mq_free_map_and_requests(set, j);
868f2f0b 2323 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2324 kobject_put(&hctx->kobj);
868f2f0b
KB
2325 hctxs[j] = NULL;
2326
2327 }
2328 }
2329 q->nr_hw_queues = i;
2330 blk_mq_sysfs_register(q);
2331}
2332
2333struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2334 struct request_queue *q)
2335{
66841672
ML
2336 /* mark the queue as mq asap */
2337 q->mq_ops = set->ops;
2338
868f2f0b
KB
2339 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2340 if (!q->queue_ctx)
c7de5726 2341 goto err_exit;
868f2f0b 2342
737f98cf
ML
2343 /* init q->mq_kobj and sw queues' kobjects */
2344 blk_mq_sysfs_init(q);
2345
868f2f0b
KB
2346 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2347 GFP_KERNEL, set->numa_node);
2348 if (!q->queue_hw_ctx)
2349 goto err_percpu;
2350
bdd17e75 2351 q->mq_map = set->mq_map;
868f2f0b
KB
2352
2353 blk_mq_realloc_hw_ctxs(set, q);
2354 if (!q->nr_hw_queues)
2355 goto err_hctxs;
320ae51f 2356
287922eb 2357 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2358 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2359
2360 q->nr_queues = nr_cpu_ids;
320ae51f 2361
94eddfbe 2362 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2363
05f1dd53
JA
2364 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2365 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2366
1be036e9
CH
2367 q->sg_reserved_size = INT_MAX;
2368
2849450a 2369 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2370 INIT_LIST_HEAD(&q->requeue_list);
2371 spin_lock_init(&q->requeue_lock);
2372
07068d5b
JA
2373 if (q->nr_hw_queues > 1)
2374 blk_queue_make_request(q, blk_mq_make_request);
2375 else
2376 blk_queue_make_request(q, blk_sq_make_request);
2377
eba71768
JA
2378 /*
2379 * Do this after blk_queue_make_request() overrides it...
2380 */
2381 q->nr_requests = set->queue_depth;
2382
64f1c21e
JA
2383 /*
2384 * Default to classic polling
2385 */
2386 q->poll_nsec = -1;
2387
24d2f903
CH
2388 if (set->ops->complete)
2389 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2390
24d2f903 2391 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 2392
5778322e 2393 get_online_cpus();
320ae51f 2394 mutex_lock(&all_q_mutex);
320ae51f 2395
4593fdbe 2396 list_add_tail(&q->all_q_node, &all_q_list);
0d2602ca 2397 blk_mq_add_queue_tag_set(set, q);
5778322e 2398 blk_mq_map_swqueue(q, cpu_online_mask);
484b4061 2399
4593fdbe 2400 mutex_unlock(&all_q_mutex);
5778322e 2401 put_online_cpus();
4593fdbe 2402
d3484991
JA
2403 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2404 int ret;
2405
2406 ret = blk_mq_sched_init(q);
2407 if (ret)
2408 return ERR_PTR(ret);
2409 }
2410
320ae51f 2411 return q;
18741986 2412
320ae51f 2413err_hctxs:
868f2f0b 2414 kfree(q->queue_hw_ctx);
320ae51f 2415err_percpu:
868f2f0b 2416 free_percpu(q->queue_ctx);
c7de5726
ML
2417err_exit:
2418 q->mq_ops = NULL;
320ae51f
JA
2419 return ERR_PTR(-ENOMEM);
2420}
b62c21b7 2421EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2422
2423void blk_mq_free_queue(struct request_queue *q)
2424{
624dbe47 2425 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2426
0e626368
AM
2427 mutex_lock(&all_q_mutex);
2428 list_del_init(&q->all_q_node);
2429 mutex_unlock(&all_q_mutex);
2430
87760e5e
JA
2431 wbt_exit(q);
2432
0d2602ca
JA
2433 blk_mq_del_queue_tag_set(q);
2434
624dbe47 2435 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2436}
320ae51f
JA
2437
2438/* Basically redo blk_mq_init_queue with queue frozen */
5778322e
AM
2439static void blk_mq_queue_reinit(struct request_queue *q,
2440 const struct cpumask *online_mask)
320ae51f 2441{
4ecd4fef 2442 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2443
67aec14c
JA
2444 blk_mq_sysfs_unregister(q);
2445
320ae51f
JA
2446 /*
2447 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2448 * we should change hctx numa_node according to new topology (this
2449 * involves free and re-allocate memory, worthy doing?)
2450 */
2451
5778322e 2452 blk_mq_map_swqueue(q, online_mask);
320ae51f 2453
67aec14c 2454 blk_mq_sysfs_register(q);
320ae51f
JA
2455}
2456
65d5291e
SAS
2457/*
2458 * New online cpumask which is going to be set in this hotplug event.
2459 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2460 * one-by-one and dynamically allocating this could result in a failure.
2461 */
2462static struct cpumask cpuhp_online_new;
2463
2464static void blk_mq_queue_reinit_work(void)
320ae51f
JA
2465{
2466 struct request_queue *q;
320ae51f
JA
2467
2468 mutex_lock(&all_q_mutex);
f3af020b
TH
2469 /*
2470 * We need to freeze and reinit all existing queues. Freezing
2471 * involves synchronous wait for an RCU grace period and doing it
2472 * one by one may take a long time. Start freezing all queues in
2473 * one swoop and then wait for the completions so that freezing can
2474 * take place in parallel.
2475 */
2476 list_for_each_entry(q, &all_q_list, all_q_node)
2477 blk_mq_freeze_queue_start(q);
415d3dab 2478 list_for_each_entry(q, &all_q_list, all_q_node)
f3af020b
TH
2479 blk_mq_freeze_queue_wait(q);
2480
320ae51f 2481 list_for_each_entry(q, &all_q_list, all_q_node)
65d5291e 2482 blk_mq_queue_reinit(q, &cpuhp_online_new);
f3af020b
TH
2483
2484 list_for_each_entry(q, &all_q_list, all_q_node)
2485 blk_mq_unfreeze_queue(q);
2486
320ae51f 2487 mutex_unlock(&all_q_mutex);
65d5291e
SAS
2488}
2489
2490static int blk_mq_queue_reinit_dead(unsigned int cpu)
2491{
97a32864 2492 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
65d5291e
SAS
2493 blk_mq_queue_reinit_work();
2494 return 0;
2495}
2496
2497/*
2498 * Before hotadded cpu starts handling requests, new mappings must be
2499 * established. Otherwise, these requests in hw queue might never be
2500 * dispatched.
2501 *
2502 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2503 * for CPU0, and ctx1 for CPU1).
2504 *
2505 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2506 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2507 *
2c3ad667
JA
2508 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2509 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2510 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2511 * ignored.
65d5291e
SAS
2512 */
2513static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2514{
2515 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2516 cpumask_set_cpu(cpu, &cpuhp_online_new);
2517 blk_mq_queue_reinit_work();
2518 return 0;
320ae51f
JA
2519}
2520
a5164405
JA
2521static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2522{
2523 int i;
2524
cc71a6f4
JA
2525 for (i = 0; i < set->nr_hw_queues; i++)
2526 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2527 goto out_unwind;
a5164405
JA
2528
2529 return 0;
2530
2531out_unwind:
2532 while (--i >= 0)
cc71a6f4 2533 blk_mq_free_rq_map(set->tags[i]);
a5164405 2534
a5164405
JA
2535 return -ENOMEM;
2536}
2537
2538/*
2539 * Allocate the request maps associated with this tag_set. Note that this
2540 * may reduce the depth asked for, if memory is tight. set->queue_depth
2541 * will be updated to reflect the allocated depth.
2542 */
2543static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2544{
2545 unsigned int depth;
2546 int err;
2547
2548 depth = set->queue_depth;
2549 do {
2550 err = __blk_mq_alloc_rq_maps(set);
2551 if (!err)
2552 break;
2553
2554 set->queue_depth >>= 1;
2555 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2556 err = -ENOMEM;
2557 break;
2558 }
2559 } while (set->queue_depth);
2560
2561 if (!set->queue_depth || err) {
2562 pr_err("blk-mq: failed to allocate request map\n");
2563 return -ENOMEM;
2564 }
2565
2566 if (depth != set->queue_depth)
2567 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2568 depth, set->queue_depth);
2569
2570 return 0;
2571}
2572
ebe8bddb
OS
2573static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2574{
2575 if (set->ops->map_queues)
2576 return set->ops->map_queues(set);
2577 else
2578 return blk_mq_map_queues(set);
2579}
2580
a4391c64
JA
2581/*
2582 * Alloc a tag set to be associated with one or more request queues.
2583 * May fail with EINVAL for various error conditions. May adjust the
2584 * requested depth down, if if it too large. In that case, the set
2585 * value will be stored in set->queue_depth.
2586 */
24d2f903
CH
2587int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2588{
da695ba2
CH
2589 int ret;
2590
205fb5f5
BVA
2591 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2592
24d2f903
CH
2593 if (!set->nr_hw_queues)
2594 return -EINVAL;
a4391c64 2595 if (!set->queue_depth)
24d2f903
CH
2596 return -EINVAL;
2597 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2598 return -EINVAL;
2599
7d7e0f90 2600 if (!set->ops->queue_rq)
24d2f903
CH
2601 return -EINVAL;
2602
a4391c64
JA
2603 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2604 pr_info("blk-mq: reduced tag depth to %u\n",
2605 BLK_MQ_MAX_DEPTH);
2606 set->queue_depth = BLK_MQ_MAX_DEPTH;
2607 }
24d2f903 2608
6637fadf
SL
2609 /*
2610 * If a crashdump is active, then we are potentially in a very
2611 * memory constrained environment. Limit us to 1 queue and
2612 * 64 tags to prevent using too much memory.
2613 */
2614 if (is_kdump_kernel()) {
2615 set->nr_hw_queues = 1;
2616 set->queue_depth = min(64U, set->queue_depth);
2617 }
868f2f0b
KB
2618 /*
2619 * There is no use for more h/w queues than cpus.
2620 */
2621 if (set->nr_hw_queues > nr_cpu_ids)
2622 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2623
868f2f0b 2624 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2625 GFP_KERNEL, set->numa_node);
2626 if (!set->tags)
a5164405 2627 return -ENOMEM;
24d2f903 2628
da695ba2
CH
2629 ret = -ENOMEM;
2630 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2631 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2632 if (!set->mq_map)
2633 goto out_free_tags;
2634
ebe8bddb 2635 ret = blk_mq_update_queue_map(set);
da695ba2
CH
2636 if (ret)
2637 goto out_free_mq_map;
2638
2639 ret = blk_mq_alloc_rq_maps(set);
2640 if (ret)
bdd17e75 2641 goto out_free_mq_map;
24d2f903 2642
0d2602ca
JA
2643 mutex_init(&set->tag_list_lock);
2644 INIT_LIST_HEAD(&set->tag_list);
2645
24d2f903 2646 return 0;
bdd17e75
CH
2647
2648out_free_mq_map:
2649 kfree(set->mq_map);
2650 set->mq_map = NULL;
2651out_free_tags:
5676e7b6
RE
2652 kfree(set->tags);
2653 set->tags = NULL;
da695ba2 2654 return ret;
24d2f903
CH
2655}
2656EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2657
2658void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2659{
2660 int i;
2661
cc71a6f4
JA
2662 for (i = 0; i < nr_cpu_ids; i++)
2663 blk_mq_free_map_and_requests(set, i);
484b4061 2664
bdd17e75
CH
2665 kfree(set->mq_map);
2666 set->mq_map = NULL;
2667
981bd189 2668 kfree(set->tags);
5676e7b6 2669 set->tags = NULL;
24d2f903
CH
2670}
2671EXPORT_SYMBOL(blk_mq_free_tag_set);
2672
e3a2b3f9
JA
2673int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2674{
2675 struct blk_mq_tag_set *set = q->tag_set;
2676 struct blk_mq_hw_ctx *hctx;
2677 int i, ret;
2678
bd166ef1 2679 if (!set)
e3a2b3f9
JA
2680 return -EINVAL;
2681
70f36b60
JA
2682 blk_mq_freeze_queue(q);
2683 blk_mq_quiesce_queue(q);
2684
e3a2b3f9
JA
2685 ret = 0;
2686 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2687 if (!hctx->tags)
2688 continue;
bd166ef1
JA
2689 /*
2690 * If we're using an MQ scheduler, just update the scheduler
2691 * queue depth. This is similar to what the old code would do.
2692 */
70f36b60
JA
2693 if (!hctx->sched_tags) {
2694 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2695 min(nr, set->queue_depth),
2696 false);
2697 } else {
2698 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2699 nr, true);
2700 }
e3a2b3f9
JA
2701 if (ret)
2702 break;
2703 }
2704
2705 if (!ret)
2706 q->nr_requests = nr;
2707
70f36b60
JA
2708 blk_mq_unfreeze_queue(q);
2709 blk_mq_start_stopped_hw_queues(q, true);
2710
e3a2b3f9
JA
2711 return ret;
2712}
2713
868f2f0b
KB
2714void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2715{
2716 struct request_queue *q;
2717
2718 if (nr_hw_queues > nr_cpu_ids)
2719 nr_hw_queues = nr_cpu_ids;
2720 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2721 return;
2722
2723 list_for_each_entry(q, &set->tag_list, tag_set_list)
2724 blk_mq_freeze_queue(q);
2725
2726 set->nr_hw_queues = nr_hw_queues;
ebe8bddb 2727 blk_mq_update_queue_map(set);
868f2f0b
KB
2728 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2729 blk_mq_realloc_hw_ctxs(set, q);
2730
f6f94300
JB
2731 /*
2732 * Manually set the make_request_fn as blk_queue_make_request
2733 * resets a lot of the queue settings.
2734 */
868f2f0b 2735 if (q->nr_hw_queues > 1)
f6f94300 2736 q->make_request_fn = blk_mq_make_request;
868f2f0b 2737 else
f6f94300 2738 q->make_request_fn = blk_sq_make_request;
868f2f0b
KB
2739
2740 blk_mq_queue_reinit(q, cpu_online_mask);
2741 }
2742
2743 list_for_each_entry(q, &set->tag_list, tag_set_list)
2744 blk_mq_unfreeze_queue(q);
2745}
2746EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2747
64f1c21e
JA
2748static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2749 struct blk_mq_hw_ctx *hctx,
2750 struct request *rq)
2751{
2752 struct blk_rq_stat stat[2];
2753 unsigned long ret = 0;
2754
2755 /*
2756 * If stats collection isn't on, don't sleep but turn it on for
2757 * future users
2758 */
2759 if (!blk_stat_enable(q))
2760 return 0;
2761
2762 /*
2763 * We don't have to do this once per IO, should optimize this
2764 * to just use the current window of stats until it changes
2765 */
2766 memset(&stat, 0, sizeof(stat));
2767 blk_hctx_stat_get(hctx, stat);
2768
2769 /*
2770 * As an optimistic guess, use half of the mean service time
2771 * for this type of request. We can (and should) make this smarter.
2772 * For instance, if the completion latencies are tight, we can
2773 * get closer than just half the mean. This is especially
2774 * important on devices where the completion latencies are longer
2775 * than ~10 usec.
2776 */
2777 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2778 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2779 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2780 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2781
2782 return ret;
2783}
2784
06426adf 2785static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2786 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2787 struct request *rq)
2788{
2789 struct hrtimer_sleeper hs;
2790 enum hrtimer_mode mode;
64f1c21e 2791 unsigned int nsecs;
06426adf
JA
2792 ktime_t kt;
2793
64f1c21e
JA
2794 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2795 return false;
2796
2797 /*
2798 * poll_nsec can be:
2799 *
2800 * -1: don't ever hybrid sleep
2801 * 0: use half of prev avg
2802 * >0: use this specific value
2803 */
2804 if (q->poll_nsec == -1)
2805 return false;
2806 else if (q->poll_nsec > 0)
2807 nsecs = q->poll_nsec;
2808 else
2809 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2810
2811 if (!nsecs)
06426adf
JA
2812 return false;
2813
2814 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2815
2816 /*
2817 * This will be replaced with the stats tracking code, using
2818 * 'avg_completion_time / 2' as the pre-sleep target.
2819 */
8b0e1953 2820 kt = nsecs;
06426adf
JA
2821
2822 mode = HRTIMER_MODE_REL;
2823 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2824 hrtimer_set_expires(&hs.timer, kt);
2825
2826 hrtimer_init_sleeper(&hs, current);
2827 do {
2828 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2829 break;
2830 set_current_state(TASK_UNINTERRUPTIBLE);
2831 hrtimer_start_expires(&hs.timer, mode);
2832 if (hs.task)
2833 io_schedule();
2834 hrtimer_cancel(&hs.timer);
2835 mode = HRTIMER_MODE_ABS;
2836 } while (hs.task && !signal_pending(current));
2837
2838 __set_current_state(TASK_RUNNING);
2839 destroy_hrtimer_on_stack(&hs.timer);
2840 return true;
2841}
2842
bbd7bb70
JA
2843static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2844{
2845 struct request_queue *q = hctx->queue;
2846 long state;
2847
06426adf
JA
2848 /*
2849 * If we sleep, have the caller restart the poll loop to reset
2850 * the state. Like for the other success return cases, the
2851 * caller is responsible for checking if the IO completed. If
2852 * the IO isn't complete, we'll get called again and will go
2853 * straight to the busy poll loop.
2854 */
64f1c21e 2855 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
2856 return true;
2857
bbd7bb70
JA
2858 hctx->poll_considered++;
2859
2860 state = current->state;
2861 while (!need_resched()) {
2862 int ret;
2863
2864 hctx->poll_invoked++;
2865
2866 ret = q->mq_ops->poll(hctx, rq->tag);
2867 if (ret > 0) {
2868 hctx->poll_success++;
2869 set_current_state(TASK_RUNNING);
2870 return true;
2871 }
2872
2873 if (signal_pending_state(state, current))
2874 set_current_state(TASK_RUNNING);
2875
2876 if (current->state == TASK_RUNNING)
2877 return true;
2878 if (ret < 0)
2879 break;
2880 cpu_relax();
2881 }
2882
2883 return false;
2884}
2885
2886bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2887{
2888 struct blk_mq_hw_ctx *hctx;
2889 struct blk_plug *plug;
2890 struct request *rq;
2891
2892 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2893 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2894 return false;
2895
2896 plug = current->plug;
2897 if (plug)
2898 blk_flush_plug_list(plug, false);
2899
2900 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
2901 if (!blk_qc_t_is_internal(cookie))
2902 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2903 else
2904 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
bbd7bb70
JA
2905
2906 return __blk_mq_poll(hctx, rq);
2907}
2908EXPORT_SYMBOL_GPL(blk_mq_poll);
2909
676141e4
JA
2910void blk_mq_disable_hotplug(void)
2911{
2912 mutex_lock(&all_q_mutex);
2913}
2914
2915void blk_mq_enable_hotplug(void)
2916{
2917 mutex_unlock(&all_q_mutex);
2918}
2919
320ae51f
JA
2920static int __init blk_mq_init(void)
2921{
9467f859
TG
2922 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2923 blk_mq_hctx_notify_dead);
320ae51f 2924
65d5291e
SAS
2925 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2926 blk_mq_queue_reinit_prepare,
2927 blk_mq_queue_reinit_dead);
320ae51f
JA
2928 return 0;
2929}
2930subsys_initcall(blk_mq_init);