]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - block/blk-mq.c
blk-mq: provide internal in-flight variant
[thirdparty/kernel/stable.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
105ab3d8 23#include <linux/sched/topology.h>
174cd4b1 24#include <linux/sched/signal.h>
320ae51f 25#include <linux/delay.h>
aedcd72f 26#include <linux/crash_dump.h>
88c7b2b7 27#include <linux/prefetch.h>
320ae51f
JA
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
9c1051aa 34#include "blk-mq-debugfs.h"
320ae51f 35#include "blk-mq-tag.h"
cf43e6be 36#include "blk-stat.h"
87760e5e 37#include "blk-wbt.h"
bd166ef1 38#include "blk-mq-sched.h"
320ae51f 39
34dbad5d
OS
40static void blk_mq_poll_stats_start(struct request_queue *q);
41static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
42
720b8ccc
SB
43static int blk_mq_poll_stats_bkt(const struct request *rq)
44{
45 int ddir, bytes, bucket;
46
99c749a4 47 ddir = rq_data_dir(rq);
720b8ccc
SB
48 bytes = blk_rq_bytes(rq);
49
50 bucket = ddir + 2*(ilog2(bytes) - 9);
51
52 if (bucket < 0)
53 return -1;
54 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
55 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
56
57 return bucket;
58}
59
320ae51f
JA
60/*
61 * Check if any of the ctx's have pending work in this hardware queue
62 */
50e1dab8 63bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 64{
bd166ef1
JA
65 return sbitmap_any_bit_set(&hctx->ctx_map) ||
66 !list_empty_careful(&hctx->dispatch) ||
67 blk_mq_sched_has_work(hctx);
1429d7c9
JA
68}
69
320ae51f
JA
70/*
71 * Mark this ctx as having pending work in this hardware queue
72 */
73static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
74 struct blk_mq_ctx *ctx)
75{
88459642
OS
76 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
77 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
78}
79
80static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
81 struct blk_mq_ctx *ctx)
82{
88459642 83 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
84}
85
f299b7c7
JA
86struct mq_inflight {
87 struct hd_struct *part;
88 unsigned int *inflight;
89};
90
91static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
92 struct request *rq, void *priv,
93 bool reserved)
94{
95 struct mq_inflight *mi = priv;
96
97 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
98 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
99 /*
100 * Count as inflight if it either matches the partition we
101 * asked for, or if it's the root
102 */
103 if (rq->part == mi->part || mi->part->partno)
104 mi->inflight[0]++;
105 }
106}
107
108void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
109 unsigned int inflight[2])
110{
111 struct mq_inflight mi = { .part = part, .inflight = inflight, };
112
113 inflight[0] = 0;
114 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
115}
116
1671d522 117void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 118{
4ecd4fef 119 int freeze_depth;
cddd5d17 120
4ecd4fef
CH
121 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
122 if (freeze_depth == 1) {
3ef28e83 123 percpu_ref_kill(&q->q_usage_counter);
b94ec296 124 blk_mq_run_hw_queues(q, false);
cddd5d17 125 }
f3af020b 126}
1671d522 127EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 128
6bae363e 129void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 130{
3ef28e83 131 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 132}
6bae363e 133EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 134
f91328c4
KB
135int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
136 unsigned long timeout)
137{
138 return wait_event_timeout(q->mq_freeze_wq,
139 percpu_ref_is_zero(&q->q_usage_counter),
140 timeout);
141}
142EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 143
f3af020b
TH
144/*
145 * Guarantee no request is in use, so we can change any data structure of
146 * the queue afterward.
147 */
3ef28e83 148void blk_freeze_queue(struct request_queue *q)
f3af020b 149{
3ef28e83
DW
150 /*
151 * In the !blk_mq case we are only calling this to kill the
152 * q_usage_counter, otherwise this increases the freeze depth
153 * and waits for it to return to zero. For this reason there is
154 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
155 * exported to drivers as the only user for unfreeze is blk_mq.
156 */
1671d522 157 blk_freeze_queue_start(q);
f3af020b
TH
158 blk_mq_freeze_queue_wait(q);
159}
3ef28e83
DW
160
161void blk_mq_freeze_queue(struct request_queue *q)
162{
163 /*
164 * ...just an alias to keep freeze and unfreeze actions balanced
165 * in the blk_mq_* namespace
166 */
167 blk_freeze_queue(q);
168}
c761d96b 169EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 170
b4c6a028 171void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 172{
4ecd4fef 173 int freeze_depth;
320ae51f 174
4ecd4fef
CH
175 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
176 WARN_ON_ONCE(freeze_depth < 0);
177 if (!freeze_depth) {
3ef28e83 178 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 179 wake_up_all(&q->mq_freeze_wq);
add703fd 180 }
320ae51f 181}
b4c6a028 182EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 183
852ec809
BVA
184/*
185 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
186 * mpt3sas driver such that this function can be removed.
187 */
188void blk_mq_quiesce_queue_nowait(struct request_queue *q)
189{
190 unsigned long flags;
191
192 spin_lock_irqsave(q->queue_lock, flags);
193 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
194 spin_unlock_irqrestore(q->queue_lock, flags);
195}
196EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
197
6a83e74d 198/**
69e07c4a 199 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
6a83e74d
BVA
200 * @q: request queue.
201 *
202 * Note: this function does not prevent that the struct request end_io()
69e07c4a
ML
203 * callback function is invoked. Once this function is returned, we make
204 * sure no dispatch can happen until the queue is unquiesced via
205 * blk_mq_unquiesce_queue().
6a83e74d
BVA
206 */
207void blk_mq_quiesce_queue(struct request_queue *q)
208{
209 struct blk_mq_hw_ctx *hctx;
210 unsigned int i;
211 bool rcu = false;
212
1d9e9bc6 213 blk_mq_quiesce_queue_nowait(q);
f4560ffe 214
6a83e74d
BVA
215 queue_for_each_hw_ctx(q, hctx, i) {
216 if (hctx->flags & BLK_MQ_F_BLOCKING)
07319678 217 synchronize_srcu(hctx->queue_rq_srcu);
6a83e74d
BVA
218 else
219 rcu = true;
220 }
221 if (rcu)
222 synchronize_rcu();
223}
224EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
225
e4e73913
ML
226/*
227 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
228 * @q: request queue.
229 *
230 * This function recovers queue into the state before quiescing
231 * which is done by blk_mq_quiesce_queue.
232 */
233void blk_mq_unquiesce_queue(struct request_queue *q)
234{
852ec809
BVA
235 unsigned long flags;
236
237 spin_lock_irqsave(q->queue_lock, flags);
f4560ffe 238 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
852ec809 239 spin_unlock_irqrestore(q->queue_lock, flags);
f4560ffe 240
1d9e9bc6
ML
241 /* dispatch requests which are inserted during quiescing */
242 blk_mq_run_hw_queues(q, true);
e4e73913
ML
243}
244EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
245
aed3ea94
JA
246void blk_mq_wake_waiters(struct request_queue *q)
247{
248 struct blk_mq_hw_ctx *hctx;
249 unsigned int i;
250
251 queue_for_each_hw_ctx(q, hctx, i)
252 if (blk_mq_hw_queue_mapped(hctx))
253 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
254
255 /*
256 * If we are called because the queue has now been marked as
257 * dying, we need to ensure that processes currently waiting on
258 * the queue are notified as well.
259 */
260 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
261}
262
320ae51f
JA
263bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
264{
265 return blk_mq_has_free_tags(hctx->tags);
266}
267EXPORT_SYMBOL(blk_mq_can_queue);
268
e4cdf1a1
CH
269static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
270 unsigned int tag, unsigned int op)
320ae51f 271{
e4cdf1a1
CH
272 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
273 struct request *rq = tags->static_rqs[tag];
274
c3a148d2
BVA
275 rq->rq_flags = 0;
276
e4cdf1a1
CH
277 if (data->flags & BLK_MQ_REQ_INTERNAL) {
278 rq->tag = -1;
279 rq->internal_tag = tag;
280 } else {
281 if (blk_mq_tag_busy(data->hctx)) {
282 rq->rq_flags = RQF_MQ_INFLIGHT;
283 atomic_inc(&data->hctx->nr_active);
284 }
285 rq->tag = tag;
286 rq->internal_tag = -1;
287 data->hctx->tags->rqs[rq->tag] = rq;
288 }
289
af76e555
CH
290 INIT_LIST_HEAD(&rq->queuelist);
291 /* csd/requeue_work/fifo_time is initialized before use */
e4cdf1a1
CH
292 rq->q = data->q;
293 rq->mq_ctx = data->ctx;
ef295ecf 294 rq->cmd_flags = op;
e4cdf1a1 295 if (blk_queue_io_stat(data->q))
e8064021 296 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
297 /* do not touch atomic flags, it needs atomic ops against the timer */
298 rq->cpu = -1;
af76e555
CH
299 INIT_HLIST_NODE(&rq->hash);
300 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
301 rq->rq_disk = NULL;
302 rq->part = NULL;
3ee32372 303 rq->start_time = jiffies;
af76e555
CH
304#ifdef CONFIG_BLK_CGROUP
305 rq->rl = NULL;
0fec08b4 306 set_start_time_ns(rq);
af76e555
CH
307 rq->io_start_time_ns = 0;
308#endif
309 rq->nr_phys_segments = 0;
310#if defined(CONFIG_BLK_DEV_INTEGRITY)
311 rq->nr_integrity_segments = 0;
312#endif
af76e555
CH
313 rq->special = NULL;
314 /* tag was already set */
af76e555 315 rq->extra_len = 0;
af76e555 316
af76e555 317 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
318 rq->timeout = 0;
319
af76e555
CH
320 rq->end_io = NULL;
321 rq->end_io_data = NULL;
322 rq->next_rq = NULL;
323
e4cdf1a1
CH
324 data->ctx->rq_dispatched[op_is_sync(op)]++;
325 return rq;
5dee8577
CH
326}
327
d2c0d383
CH
328static struct request *blk_mq_get_request(struct request_queue *q,
329 struct bio *bio, unsigned int op,
330 struct blk_mq_alloc_data *data)
331{
332 struct elevator_queue *e = q->elevator;
333 struct request *rq;
e4cdf1a1 334 unsigned int tag;
d2c0d383
CH
335
336 blk_queue_enter_live(q);
337 data->q = q;
338 if (likely(!data->ctx))
339 data->ctx = blk_mq_get_ctx(q);
340 if (likely(!data->hctx))
341 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
03a07c92
GR
342 if (op & REQ_NOWAIT)
343 data->flags |= BLK_MQ_REQ_NOWAIT;
d2c0d383
CH
344
345 if (e) {
346 data->flags |= BLK_MQ_REQ_INTERNAL;
347
348 /*
349 * Flush requests are special and go directly to the
350 * dispatch list.
351 */
5bbf4e5a
CH
352 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
353 e->type->ops.mq.limit_depth(op, data);
d2c0d383
CH
354 }
355
e4cdf1a1
CH
356 tag = blk_mq_get_tag(data);
357 if (tag == BLK_MQ_TAG_FAIL) {
037cebb8
CH
358 blk_queue_exit(q);
359 return NULL;
d2c0d383
CH
360 }
361
e4cdf1a1 362 rq = blk_mq_rq_ctx_init(data, tag, op);
037cebb8
CH
363 if (!op_is_flush(op)) {
364 rq->elv.icq = NULL;
5bbf4e5a 365 if (e && e->type->ops.mq.prepare_request) {
44e8c2bf
CH
366 if (e->type->icq_cache && rq_ioc(bio))
367 blk_mq_sched_assign_ioc(rq, bio);
368
5bbf4e5a
CH
369 e->type->ops.mq.prepare_request(rq, bio);
370 rq->rq_flags |= RQF_ELVPRIV;
44e8c2bf 371 }
037cebb8
CH
372 }
373 data->hctx->queued++;
374 return rq;
d2c0d383
CH
375}
376
cd6ce148 377struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
6f3b0e8b 378 unsigned int flags)
320ae51f 379{
5a797e00 380 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 381 struct request *rq;
a492f075 382 int ret;
320ae51f 383
6f3b0e8b 384 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
a492f075
JL
385 if (ret)
386 return ERR_PTR(ret);
320ae51f 387
cd6ce148 388 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
841bac2c 389
bd166ef1
JA
390 blk_mq_put_ctx(alloc_data.ctx);
391 blk_queue_exit(q);
392
393 if (!rq)
a492f075 394 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3
CH
395
396 rq->__data_len = 0;
397 rq->__sector = (sector_t) -1;
398 rq->bio = rq->biotail = NULL;
320ae51f
JA
399 return rq;
400}
4bb659b1 401EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 402
cd6ce148
BVA
403struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
404 unsigned int op, unsigned int flags, unsigned int hctx_idx)
1f5bd336 405{
6d2809d5 406 struct blk_mq_alloc_data alloc_data = { .flags = flags };
1f5bd336 407 struct request *rq;
6d2809d5 408 unsigned int cpu;
1f5bd336
ML
409 int ret;
410
411 /*
412 * If the tag allocator sleeps we could get an allocation for a
413 * different hardware context. No need to complicate the low level
414 * allocator for this for the rare use case of a command tied to
415 * a specific queue.
416 */
417 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
418 return ERR_PTR(-EINVAL);
419
420 if (hctx_idx >= q->nr_hw_queues)
421 return ERR_PTR(-EIO);
422
423 ret = blk_queue_enter(q, true);
424 if (ret)
425 return ERR_PTR(ret);
426
c8712c6a
CH
427 /*
428 * Check if the hardware context is actually mapped to anything.
429 * If not tell the caller that it should skip this queue.
430 */
6d2809d5
OS
431 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
432 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
433 blk_queue_exit(q);
434 return ERR_PTR(-EXDEV);
c8712c6a 435 }
6d2809d5
OS
436 cpu = cpumask_first(alloc_data.hctx->cpumask);
437 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 438
cd6ce148 439 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
c8712c6a 440
c8712c6a 441 blk_queue_exit(q);
6d2809d5
OS
442
443 if (!rq)
444 return ERR_PTR(-EWOULDBLOCK);
445
446 return rq;
1f5bd336
ML
447}
448EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
449
6af54051 450void blk_mq_free_request(struct request *rq)
320ae51f 451{
320ae51f 452 struct request_queue *q = rq->q;
6af54051
CH
453 struct elevator_queue *e = q->elevator;
454 struct blk_mq_ctx *ctx = rq->mq_ctx;
455 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
456 const int sched_tag = rq->internal_tag;
457
5bbf4e5a 458 if (rq->rq_flags & RQF_ELVPRIV) {
6af54051
CH
459 if (e && e->type->ops.mq.finish_request)
460 e->type->ops.mq.finish_request(rq);
461 if (rq->elv.icq) {
462 put_io_context(rq->elv.icq->ioc);
463 rq->elv.icq = NULL;
464 }
465 }
320ae51f 466
6af54051 467 ctx->rq_completed[rq_is_sync(rq)]++;
e8064021 468 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 469 atomic_dec(&hctx->nr_active);
87760e5e
JA
470
471 wbt_done(q->rq_wb, &rq->issue_stat);
0d2602ca 472
af76e555 473 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 474 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
bd166ef1
JA
475 if (rq->tag != -1)
476 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
477 if (sched_tag != -1)
c05f8525 478 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
6d8c6c0f 479 blk_mq_sched_restart(hctx);
3ef28e83 480 blk_queue_exit(q);
320ae51f 481}
1a3b595a 482EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 483
2a842aca 484inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
320ae51f 485{
0d11e6ac
ML
486 blk_account_io_done(rq);
487
91b63639 488 if (rq->end_io) {
87760e5e 489 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 490 rq->end_io(rq, error);
91b63639
CH
491 } else {
492 if (unlikely(blk_bidi_rq(rq)))
493 blk_mq_free_request(rq->next_rq);
320ae51f 494 blk_mq_free_request(rq);
91b63639 495 }
320ae51f 496}
c8a446ad 497EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 498
2a842aca 499void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
500{
501 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
502 BUG();
c8a446ad 503 __blk_mq_end_request(rq, error);
63151a44 504}
c8a446ad 505EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 506
30a91cb4 507static void __blk_mq_complete_request_remote(void *data)
320ae51f 508{
3d6efbf6 509 struct request *rq = data;
320ae51f 510
30a91cb4 511 rq->q->softirq_done_fn(rq);
320ae51f 512}
320ae51f 513
453f8341 514static void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
515{
516 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 517 bool shared = false;
320ae51f
JA
518 int cpu;
519
453f8341
CH
520 if (rq->internal_tag != -1)
521 blk_mq_sched_completed_request(rq);
522 if (rq->rq_flags & RQF_STATS) {
523 blk_mq_poll_stats_start(rq->q);
524 blk_stat_add(rq);
525 }
526
38535201 527 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
528 rq->q->softirq_done_fn(rq);
529 return;
530 }
320ae51f
JA
531
532 cpu = get_cpu();
38535201
CH
533 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
534 shared = cpus_share_cache(cpu, ctx->cpu);
535
536 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 537 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
538 rq->csd.info = rq;
539 rq->csd.flags = 0;
c46fff2a 540 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 541 } else {
30a91cb4 542 rq->q->softirq_done_fn(rq);
3d6efbf6 543 }
320ae51f
JA
544 put_cpu();
545}
30a91cb4
CH
546
547/**
548 * blk_mq_complete_request - end I/O on a request
549 * @rq: the request being processed
550 *
551 * Description:
552 * Ends all I/O on a request. It does not handle partial completions.
553 * The actual completion happens out-of-order, through a IPI handler.
554 **/
08e0029a 555void blk_mq_complete_request(struct request *rq)
30a91cb4 556{
95f09684
JA
557 struct request_queue *q = rq->q;
558
559 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 560 return;
08e0029a 561 if (!blk_mark_rq_complete(rq))
ed851860 562 __blk_mq_complete_request(rq);
30a91cb4
CH
563}
564EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 565
973c0191
KB
566int blk_mq_request_started(struct request *rq)
567{
568 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
569}
570EXPORT_SYMBOL_GPL(blk_mq_request_started);
571
e2490073 572void blk_mq_start_request(struct request *rq)
320ae51f
JA
573{
574 struct request_queue *q = rq->q;
575
bd166ef1
JA
576 blk_mq_sched_started_request(rq);
577
320ae51f
JA
578 trace_block_rq_issue(q, rq);
579
cf43e6be 580 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
88eeca49 581 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
cf43e6be 582 rq->rq_flags |= RQF_STATS;
87760e5e 583 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
584 }
585
2b8393b4 586 blk_add_timer(rq);
87ee7b11 587
538b7534
JA
588 /*
589 * Ensure that ->deadline is visible before set the started
590 * flag and clear the completed flag.
591 */
592 smp_mb__before_atomic();
593
87ee7b11
JA
594 /*
595 * Mark us as started and clear complete. Complete might have been
596 * set if requeue raced with timeout, which then marked it as
597 * complete. So be sure to clear complete again when we start
598 * the request, otherwise we'll ignore the completion event.
599 */
4b570521
JA
600 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
601 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
602 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
603 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
604
605 if (q->dma_drain_size && blk_rq_bytes(rq)) {
606 /*
607 * Make sure space for the drain appears. We know we can do
608 * this because max_hw_segments has been adjusted to be one
609 * fewer than the device can handle.
610 */
611 rq->nr_phys_segments++;
612 }
320ae51f 613}
e2490073 614EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 615
d9d149a3
ML
616/*
617 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
48b99c9d 618 * flag isn't set yet, so there may be race with timeout handler,
d9d149a3
ML
619 * but given rq->deadline is just set in .queue_rq() under
620 * this situation, the race won't be possible in reality because
621 * rq->timeout should be set as big enough to cover the window
622 * between blk_mq_start_request() called from .queue_rq() and
623 * clearing REQ_ATOM_STARTED here.
624 */
ed0791b2 625static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
626{
627 struct request_queue *q = rq->q;
628
629 trace_block_rq_requeue(q, rq);
87760e5e 630 wbt_requeue(q->rq_wb, &rq->issue_stat);
bd166ef1 631 blk_mq_sched_requeue_request(rq);
49f5baa5 632
e2490073
CH
633 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
634 if (q->dma_drain_size && blk_rq_bytes(rq))
635 rq->nr_phys_segments--;
636 }
320ae51f
JA
637}
638
2b053aca 639void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 640{
ed0791b2 641 __blk_mq_requeue_request(rq);
ed0791b2 642
ed0791b2 643 BUG_ON(blk_queued_rq(rq));
2b053aca 644 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
645}
646EXPORT_SYMBOL(blk_mq_requeue_request);
647
6fca6a61
CH
648static void blk_mq_requeue_work(struct work_struct *work)
649{
650 struct request_queue *q =
2849450a 651 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
652 LIST_HEAD(rq_list);
653 struct request *rq, *next;
6fca6a61 654
18e9781d 655 spin_lock_irq(&q->requeue_lock);
6fca6a61 656 list_splice_init(&q->requeue_list, &rq_list);
18e9781d 657 spin_unlock_irq(&q->requeue_lock);
6fca6a61
CH
658
659 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 660 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
661 continue;
662
e8064021 663 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 664 list_del_init(&rq->queuelist);
bd6737f1 665 blk_mq_sched_insert_request(rq, true, false, false, true);
6fca6a61
CH
666 }
667
668 while (!list_empty(&rq_list)) {
669 rq = list_entry(rq_list.next, struct request, queuelist);
670 list_del_init(&rq->queuelist);
bd6737f1 671 blk_mq_sched_insert_request(rq, false, false, false, true);
6fca6a61
CH
672 }
673
52d7f1b5 674 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
675}
676
2b053aca
BVA
677void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
678 bool kick_requeue_list)
6fca6a61
CH
679{
680 struct request_queue *q = rq->q;
681 unsigned long flags;
682
683 /*
684 * We abuse this flag that is otherwise used by the I/O scheduler to
685 * request head insertation from the workqueue.
686 */
e8064021 687 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
688
689 spin_lock_irqsave(&q->requeue_lock, flags);
690 if (at_head) {
e8064021 691 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
692 list_add(&rq->queuelist, &q->requeue_list);
693 } else {
694 list_add_tail(&rq->queuelist, &q->requeue_list);
695 }
696 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
697
698 if (kick_requeue_list)
699 blk_mq_kick_requeue_list(q);
6fca6a61
CH
700}
701EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
702
703void blk_mq_kick_requeue_list(struct request_queue *q)
704{
2849450a 705 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
706}
707EXPORT_SYMBOL(blk_mq_kick_requeue_list);
708
2849450a
MS
709void blk_mq_delay_kick_requeue_list(struct request_queue *q,
710 unsigned long msecs)
711{
712 kblockd_schedule_delayed_work(&q->requeue_work,
713 msecs_to_jiffies(msecs));
714}
715EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
716
0e62f51f
JA
717struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
718{
88c7b2b7
JA
719 if (tag < tags->nr_tags) {
720 prefetch(tags->rqs[tag]);
4ee86bab 721 return tags->rqs[tag];
88c7b2b7 722 }
4ee86bab
HR
723
724 return NULL;
24d2f903
CH
725}
726EXPORT_SYMBOL(blk_mq_tag_to_rq);
727
320ae51f 728struct blk_mq_timeout_data {
46f92d42
CH
729 unsigned long next;
730 unsigned int next_set;
320ae51f
JA
731};
732
90415837 733void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 734{
f8a5b122 735 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 736 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
737
738 /*
739 * We know that complete is set at this point. If STARTED isn't set
740 * anymore, then the request isn't active and the "timeout" should
741 * just be ignored. This can happen due to the bitflag ordering.
742 * Timeout first checks if STARTED is set, and if it is, assumes
743 * the request is active. But if we race with completion, then
48b99c9d 744 * both flags will get cleared. So check here again, and ignore
87ee7b11
JA
745 * a timeout event with a request that isn't active.
746 */
46f92d42
CH
747 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
748 return;
87ee7b11 749
46f92d42 750 if (ops->timeout)
0152fb6b 751 ret = ops->timeout(req, reserved);
46f92d42
CH
752
753 switch (ret) {
754 case BLK_EH_HANDLED:
755 __blk_mq_complete_request(req);
756 break;
757 case BLK_EH_RESET_TIMER:
758 blk_add_timer(req);
759 blk_clear_rq_complete(req);
760 break;
761 case BLK_EH_NOT_HANDLED:
762 break;
763 default:
764 printk(KERN_ERR "block: bad eh return: %d\n", ret);
765 break;
766 }
87ee7b11 767}
5b3f25fc 768
81481eb4
CH
769static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
770 struct request *rq, void *priv, bool reserved)
771{
772 struct blk_mq_timeout_data *data = priv;
87ee7b11 773
95a49603 774 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
46f92d42 775 return;
87ee7b11 776
d9d149a3
ML
777 /*
778 * The rq being checked may have been freed and reallocated
779 * out already here, we avoid this race by checking rq->deadline
780 * and REQ_ATOM_COMPLETE flag together:
781 *
782 * - if rq->deadline is observed as new value because of
783 * reusing, the rq won't be timed out because of timing.
784 * - if rq->deadline is observed as previous value,
785 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
786 * because we put a barrier between setting rq->deadline
787 * and clearing the flag in blk_mq_start_request(), so
788 * this rq won't be timed out too.
789 */
46f92d42
CH
790 if (time_after_eq(jiffies, rq->deadline)) {
791 if (!blk_mark_rq_complete(rq))
0152fb6b 792 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
793 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
794 data->next = rq->deadline;
795 data->next_set = 1;
796 }
87ee7b11
JA
797}
798
287922eb 799static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 800{
287922eb
CH
801 struct request_queue *q =
802 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
803 struct blk_mq_timeout_data data = {
804 .next = 0,
805 .next_set = 0,
806 };
81481eb4 807 int i;
320ae51f 808
71f79fb3
GKB
809 /* A deadlock might occur if a request is stuck requiring a
810 * timeout at the same time a queue freeze is waiting
811 * completion, since the timeout code would not be able to
812 * acquire the queue reference here.
813 *
814 * That's why we don't use blk_queue_enter here; instead, we use
815 * percpu_ref_tryget directly, because we need to be able to
816 * obtain a reference even in the short window between the queue
817 * starting to freeze, by dropping the first reference in
1671d522 818 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
819 * consumed, marked by the instant q_usage_counter reaches
820 * zero.
821 */
822 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
823 return;
824
0bf6cd5b 825 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 826
81481eb4
CH
827 if (data.next_set) {
828 data.next = blk_rq_timeout(round_jiffies_up(data.next));
829 mod_timer(&q->timeout, data.next);
0d2602ca 830 } else {
0bf6cd5b
CH
831 struct blk_mq_hw_ctx *hctx;
832
f054b56c
ML
833 queue_for_each_hw_ctx(q, hctx, i) {
834 /* the hctx may be unmapped, so check it here */
835 if (blk_mq_hw_queue_mapped(hctx))
836 blk_mq_tag_idle(hctx);
837 }
0d2602ca 838 }
287922eb 839 blk_queue_exit(q);
320ae51f
JA
840}
841
88459642
OS
842struct flush_busy_ctx_data {
843 struct blk_mq_hw_ctx *hctx;
844 struct list_head *list;
845};
846
847static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
848{
849 struct flush_busy_ctx_data *flush_data = data;
850 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
851 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
852
853 sbitmap_clear_bit(sb, bitnr);
854 spin_lock(&ctx->lock);
855 list_splice_tail_init(&ctx->rq_list, flush_data->list);
856 spin_unlock(&ctx->lock);
857 return true;
858}
859
1429d7c9
JA
860/*
861 * Process software queues that have been marked busy, splicing them
862 * to the for-dispatch
863 */
2c3ad667 864void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 865{
88459642
OS
866 struct flush_busy_ctx_data data = {
867 .hctx = hctx,
868 .list = list,
869 };
1429d7c9 870
88459642 871 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 872}
2c3ad667 873EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 874
703fd1c0
JA
875static inline unsigned int queued_to_index(unsigned int queued)
876{
877 if (!queued)
878 return 0;
1429d7c9 879
703fd1c0 880 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
881}
882
bd6737f1
JA
883bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
884 bool wait)
bd166ef1
JA
885{
886 struct blk_mq_alloc_data data = {
887 .q = rq->q,
bd166ef1
JA
888 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
889 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
890 };
891
5feeacdd
JA
892 might_sleep_if(wait);
893
81380ca1
OS
894 if (rq->tag != -1)
895 goto done;
bd166ef1 896
415b806d
SG
897 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
898 data.flags |= BLK_MQ_REQ_RESERVED;
899
bd166ef1
JA
900 rq->tag = blk_mq_get_tag(&data);
901 if (rq->tag >= 0) {
200e86b3
JA
902 if (blk_mq_tag_busy(data.hctx)) {
903 rq->rq_flags |= RQF_MQ_INFLIGHT;
904 atomic_inc(&data.hctx->nr_active);
905 }
bd166ef1 906 data.hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
907 }
908
81380ca1
OS
909done:
910 if (hctx)
911 *hctx = data.hctx;
912 return rq->tag != -1;
bd166ef1
JA
913}
914
113285b4
JA
915static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
916 struct request *rq)
99cf1dc5 917{
99cf1dc5
JA
918 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
919 rq->tag = -1;
920
921 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
922 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
923 atomic_dec(&hctx->nr_active);
924 }
925}
926
113285b4
JA
927static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
928 struct request *rq)
929{
930 if (rq->tag == -1 || rq->internal_tag == -1)
931 return;
932
933 __blk_mq_put_driver_tag(hctx, rq);
934}
935
936static void blk_mq_put_driver_tag(struct request *rq)
937{
938 struct blk_mq_hw_ctx *hctx;
939
940 if (rq->tag == -1 || rq->internal_tag == -1)
941 return;
942
943 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
944 __blk_mq_put_driver_tag(hctx, rq);
945}
946
bd166ef1
JA
947/*
948 * If we fail getting a driver tag because all the driver tags are already
949 * assigned and on the dispatch list, BUT the first entry does not have a
950 * tag, then we could deadlock. For that case, move entries with assigned
951 * driver tags to the front, leaving the set of tagged requests in the
952 * same order, and the untagged set in the same order.
953 */
954static bool reorder_tags_to_front(struct list_head *list)
955{
956 struct request *rq, *tmp, *first = NULL;
957
958 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
959 if (rq == first)
960 break;
961 if (rq->tag != -1) {
962 list_move(&rq->queuelist, list);
963 if (!first)
964 first = rq;
965 }
966 }
967
968 return first != NULL;
969}
970
ac6424b9 971static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
da55f2cc
OS
972 void *key)
973{
974 struct blk_mq_hw_ctx *hctx;
975
976 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
977
2055da97 978 list_del(&wait->entry);
da55f2cc
OS
979 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
980 blk_mq_run_hw_queue(hctx, true);
981 return 1;
982}
983
984static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
985{
986 struct sbq_wait_state *ws;
987
988 /*
989 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
990 * The thread which wins the race to grab this bit adds the hardware
991 * queue to the wait queue.
992 */
993 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
994 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
995 return false;
996
997 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
998 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
999
1000 /*
1001 * As soon as this returns, it's no longer safe to fiddle with
1002 * hctx->dispatch_wait, since a completion can wake up the wait queue
1003 * and unlock the bit.
1004 */
1005 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
1006 return true;
1007}
1008
81380ca1 1009bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
320ae51f 1010{
81380ca1 1011 struct blk_mq_hw_ctx *hctx;
320ae51f 1012 struct request *rq;
fc17b653 1013 int errors, queued;
320ae51f 1014
81380ca1
OS
1015 if (list_empty(list))
1016 return false;
1017
320ae51f
JA
1018 /*
1019 * Now process all the entries, sending them to the driver.
1020 */
93efe981 1021 errors = queued = 0;
81380ca1 1022 do {
74c45052 1023 struct blk_mq_queue_data bd;
fc17b653 1024 blk_status_t ret;
320ae51f 1025
f04c3df3 1026 rq = list_first_entry(list, struct request, queuelist);
bd166ef1
JA
1027 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1028 if (!queued && reorder_tags_to_front(list))
1029 continue;
3c782d67
JA
1030
1031 /*
da55f2cc
OS
1032 * The initial allocation attempt failed, so we need to
1033 * rerun the hardware queue when a tag is freed.
3c782d67 1034 */
807b1041
OS
1035 if (!blk_mq_dispatch_wait_add(hctx))
1036 break;
1037
1038 /*
1039 * It's possible that a tag was freed in the window
1040 * between the allocation failure and adding the
1041 * hardware queue to the wait queue.
1042 */
1043 if (!blk_mq_get_driver_tag(rq, &hctx, false))
3c782d67 1044 break;
bd166ef1 1045 }
da55f2cc 1046
320ae51f 1047 list_del_init(&rq->queuelist);
320ae51f 1048
74c45052 1049 bd.rq = rq;
113285b4
JA
1050
1051 /*
1052 * Flag last if we have no more requests, or if we have more
1053 * but can't assign a driver tag to it.
1054 */
1055 if (list_empty(list))
1056 bd.last = true;
1057 else {
1058 struct request *nxt;
1059
1060 nxt = list_first_entry(list, struct request, queuelist);
1061 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1062 }
74c45052
JA
1063
1064 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653 1065 if (ret == BLK_STS_RESOURCE) {
113285b4 1066 blk_mq_put_driver_tag_hctx(hctx, rq);
f04c3df3 1067 list_add(&rq->queuelist, list);
ed0791b2 1068 __blk_mq_requeue_request(rq);
320ae51f 1069 break;
fc17b653
CH
1070 }
1071
1072 if (unlikely(ret != BLK_STS_OK)) {
93efe981 1073 errors++;
2a842aca 1074 blk_mq_end_request(rq, BLK_STS_IOERR);
fc17b653 1075 continue;
320ae51f
JA
1076 }
1077
fc17b653 1078 queued++;
81380ca1 1079 } while (!list_empty(list));
320ae51f 1080
703fd1c0 1081 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1082
1083 /*
1084 * Any items that need requeuing? Stuff them into hctx->dispatch,
1085 * that is where we will continue on next queue run.
1086 */
f04c3df3 1087 if (!list_empty(list)) {
113285b4 1088 /*
710c785f
BVA
1089 * If an I/O scheduler has been configured and we got a driver
1090 * tag for the next request already, free it again.
113285b4
JA
1091 */
1092 rq = list_first_entry(list, struct request, queuelist);
1093 blk_mq_put_driver_tag(rq);
1094
320ae51f 1095 spin_lock(&hctx->lock);
c13660a0 1096 list_splice_init(list, &hctx->dispatch);
320ae51f 1097 spin_unlock(&hctx->lock);
f04c3df3 1098
9ba52e58 1099 /*
710c785f
BVA
1100 * If SCHED_RESTART was set by the caller of this function and
1101 * it is no longer set that means that it was cleared by another
1102 * thread and hence that a queue rerun is needed.
9ba52e58 1103 *
710c785f
BVA
1104 * If TAG_WAITING is set that means that an I/O scheduler has
1105 * been configured and another thread is waiting for a driver
1106 * tag. To guarantee fairness, do not rerun this hardware queue
1107 * but let the other thread grab the driver tag.
bd166ef1 1108 *
710c785f
BVA
1109 * If no I/O scheduler has been configured it is possible that
1110 * the hardware queue got stopped and restarted before requests
1111 * were pushed back onto the dispatch list. Rerun the queue to
1112 * avoid starvation. Notes:
1113 * - blk_mq_run_hw_queue() checks whether or not a queue has
1114 * been stopped before rerunning a queue.
1115 * - Some but not all block drivers stop a queue before
fc17b653 1116 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1117 * and dm-rq.
bd166ef1 1118 */
da55f2cc
OS
1119 if (!blk_mq_sched_needs_restart(hctx) &&
1120 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
bd166ef1 1121 blk_mq_run_hw_queue(hctx, true);
320ae51f 1122 }
f04c3df3 1123
93efe981 1124 return (queued + errors) != 0;
f04c3df3
JA
1125}
1126
6a83e74d
BVA
1127static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1128{
1129 int srcu_idx;
1130
b7a71e66
JA
1131 /*
1132 * We should be running this queue from one of the CPUs that
1133 * are mapped to it.
1134 */
6a83e74d
BVA
1135 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1136 cpu_online(hctx->next_cpu));
1137
b7a71e66
JA
1138 /*
1139 * We can't run the queue inline with ints disabled. Ensure that
1140 * we catch bad users of this early.
1141 */
1142 WARN_ON_ONCE(in_interrupt());
1143
6a83e74d
BVA
1144 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1145 rcu_read_lock();
bd166ef1 1146 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1147 rcu_read_unlock();
1148 } else {
bf4907c0
JA
1149 might_sleep();
1150
07319678 1151 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
bd166ef1 1152 blk_mq_sched_dispatch_requests(hctx);
07319678 1153 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
6a83e74d
BVA
1154 }
1155}
1156
506e931f
JA
1157/*
1158 * It'd be great if the workqueue API had a way to pass
1159 * in a mask and had some smarts for more clever placement.
1160 * For now we just round-robin here, switching for every
1161 * BLK_MQ_CPU_WORK_BATCH queued items.
1162 */
1163static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1164{
b657d7e6
CH
1165 if (hctx->queue->nr_hw_queues == 1)
1166 return WORK_CPU_UNBOUND;
506e931f
JA
1167
1168 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1169 int next_cpu;
506e931f
JA
1170
1171 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1172 if (next_cpu >= nr_cpu_ids)
1173 next_cpu = cpumask_first(hctx->cpumask);
1174
1175 hctx->next_cpu = next_cpu;
1176 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1177 }
1178
b657d7e6 1179 return hctx->next_cpu;
506e931f
JA
1180}
1181
7587a5ae
BVA
1182static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1183 unsigned long msecs)
320ae51f 1184{
5435c023
BVA
1185 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1186 return;
1187
1188 if (unlikely(blk_mq_hctx_stopped(hctx)))
320ae51f
JA
1189 return;
1190
1b792f2f 1191 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1192 int cpu = get_cpu();
1193 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1194 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1195 put_cpu();
398205b8
PB
1196 return;
1197 }
e4043dcf 1198
2a90d4aa 1199 put_cpu();
e4043dcf 1200 }
398205b8 1201
9f993737
JA
1202 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1203 &hctx->run_work,
1204 msecs_to_jiffies(msecs));
7587a5ae
BVA
1205}
1206
1207void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1208{
1209 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1210}
1211EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1212
1213void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1214{
1215 __blk_mq_delay_run_hw_queue(hctx, async, 0);
320ae51f 1216}
5b727272 1217EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 1218
b94ec296 1219void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1220{
1221 struct blk_mq_hw_ctx *hctx;
1222 int i;
1223
1224 queue_for_each_hw_ctx(q, hctx, i) {
bd166ef1 1225 if (!blk_mq_hctx_has_pending(hctx) ||
5d1b25c1 1226 blk_mq_hctx_stopped(hctx))
320ae51f
JA
1227 continue;
1228
b94ec296 1229 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1230 }
1231}
b94ec296 1232EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1233
fd001443
BVA
1234/**
1235 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1236 * @q: request queue.
1237 *
1238 * The caller is responsible for serializing this function against
1239 * blk_mq_{start,stop}_hw_queue().
1240 */
1241bool blk_mq_queue_stopped(struct request_queue *q)
1242{
1243 struct blk_mq_hw_ctx *hctx;
1244 int i;
1245
1246 queue_for_each_hw_ctx(q, hctx, i)
1247 if (blk_mq_hctx_stopped(hctx))
1248 return true;
1249
1250 return false;
1251}
1252EXPORT_SYMBOL(blk_mq_queue_stopped);
1253
39a70c76
ML
1254/*
1255 * This function is often used for pausing .queue_rq() by driver when
1256 * there isn't enough resource or some conditions aren't satisfied, and
1257 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1258 *
1259 * We do not guarantee that dispatch can be drained or blocked
1260 * after blk_mq_stop_hw_queue() returns. Please use
1261 * blk_mq_quiesce_queue() for that requirement.
1262 */
2719aa21
JA
1263void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1264{
641a9ed6 1265 cancel_delayed_work(&hctx->run_work);
280d45f6 1266
641a9ed6 1267 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2719aa21 1268}
641a9ed6 1269EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2719aa21 1270
39a70c76
ML
1271/*
1272 * This function is often used for pausing .queue_rq() by driver when
1273 * there isn't enough resource or some conditions aren't satisfied, and
1274 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1275 *
1276 * We do not guarantee that dispatch can be drained or blocked
1277 * after blk_mq_stop_hw_queues() returns. Please use
1278 * blk_mq_quiesce_queue() for that requirement.
1279 */
2719aa21
JA
1280void blk_mq_stop_hw_queues(struct request_queue *q)
1281{
641a9ed6
ML
1282 struct blk_mq_hw_ctx *hctx;
1283 int i;
1284
1285 queue_for_each_hw_ctx(q, hctx, i)
1286 blk_mq_stop_hw_queue(hctx);
280d45f6
CH
1287}
1288EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1289
320ae51f
JA
1290void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1291{
1292 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1293
0ffbce80 1294 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1295}
1296EXPORT_SYMBOL(blk_mq_start_hw_queue);
1297
2f268556
CH
1298void blk_mq_start_hw_queues(struct request_queue *q)
1299{
1300 struct blk_mq_hw_ctx *hctx;
1301 int i;
1302
1303 queue_for_each_hw_ctx(q, hctx, i)
1304 blk_mq_start_hw_queue(hctx);
1305}
1306EXPORT_SYMBOL(blk_mq_start_hw_queues);
1307
ae911c5e
JA
1308void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1309{
1310 if (!blk_mq_hctx_stopped(hctx))
1311 return;
1312
1313 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1314 blk_mq_run_hw_queue(hctx, async);
1315}
1316EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1317
1b4a3258 1318void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1319{
1320 struct blk_mq_hw_ctx *hctx;
1321 int i;
1322
ae911c5e
JA
1323 queue_for_each_hw_ctx(q, hctx, i)
1324 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1325}
1326EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1327
70f4db63 1328static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1329{
1330 struct blk_mq_hw_ctx *hctx;
1331
9f993737 1332 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 1333
21c6e939
JA
1334 /*
1335 * If we are stopped, don't run the queue. The exception is if
1336 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1337 * the STOPPED bit and run it.
1338 */
1339 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1340 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1341 return;
7587a5ae 1342
21c6e939
JA
1343 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1344 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1345 }
7587a5ae
BVA
1346
1347 __blk_mq_run_hw_queue(hctx);
1348}
1349
70f4db63
CH
1350
1351void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1352{
5435c023 1353 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
19c66e59 1354 return;
70f4db63 1355
21c6e939
JA
1356 /*
1357 * Stop the hw queue, then modify currently delayed work.
1358 * This should prevent us from running the queue prematurely.
1359 * Mark the queue as auto-clearing STOPPED when it runs.
1360 */
7e79dadc 1361 blk_mq_stop_hw_queue(hctx);
21c6e939
JA
1362 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1363 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1364 &hctx->run_work,
1365 msecs_to_jiffies(msecs));
70f4db63
CH
1366}
1367EXPORT_SYMBOL(blk_mq_delay_queue);
1368
cfd0c552 1369static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1370 struct request *rq,
1371 bool at_head)
320ae51f 1372{
e57690fe
JA
1373 struct blk_mq_ctx *ctx = rq->mq_ctx;
1374
7b607814
BVA
1375 lockdep_assert_held(&ctx->lock);
1376
01b983c9
JA
1377 trace_block_rq_insert(hctx->queue, rq);
1378
72a0a36e
CH
1379 if (at_head)
1380 list_add(&rq->queuelist, &ctx->rq_list);
1381 else
1382 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1383}
4bb659b1 1384
2c3ad667
JA
1385void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1386 bool at_head)
cfd0c552
ML
1387{
1388 struct blk_mq_ctx *ctx = rq->mq_ctx;
1389
7b607814
BVA
1390 lockdep_assert_held(&ctx->lock);
1391
e57690fe 1392 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1393 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1394}
1395
bd166ef1
JA
1396void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1397 struct list_head *list)
320ae51f
JA
1398
1399{
320ae51f
JA
1400 /*
1401 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1402 * offline now
1403 */
1404 spin_lock(&ctx->lock);
1405 while (!list_empty(list)) {
1406 struct request *rq;
1407
1408 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1409 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1410 list_del_init(&rq->queuelist);
e57690fe 1411 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1412 }
cfd0c552 1413 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1414 spin_unlock(&ctx->lock);
320ae51f
JA
1415}
1416
1417static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1418{
1419 struct request *rqa = container_of(a, struct request, queuelist);
1420 struct request *rqb = container_of(b, struct request, queuelist);
1421
1422 return !(rqa->mq_ctx < rqb->mq_ctx ||
1423 (rqa->mq_ctx == rqb->mq_ctx &&
1424 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1425}
1426
1427void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1428{
1429 struct blk_mq_ctx *this_ctx;
1430 struct request_queue *this_q;
1431 struct request *rq;
1432 LIST_HEAD(list);
1433 LIST_HEAD(ctx_list);
1434 unsigned int depth;
1435
1436 list_splice_init(&plug->mq_list, &list);
1437
1438 list_sort(NULL, &list, plug_ctx_cmp);
1439
1440 this_q = NULL;
1441 this_ctx = NULL;
1442 depth = 0;
1443
1444 while (!list_empty(&list)) {
1445 rq = list_entry_rq(list.next);
1446 list_del_init(&rq->queuelist);
1447 BUG_ON(!rq->q);
1448 if (rq->mq_ctx != this_ctx) {
1449 if (this_ctx) {
bd166ef1
JA
1450 trace_block_unplug(this_q, depth, from_schedule);
1451 blk_mq_sched_insert_requests(this_q, this_ctx,
1452 &ctx_list,
1453 from_schedule);
320ae51f
JA
1454 }
1455
1456 this_ctx = rq->mq_ctx;
1457 this_q = rq->q;
1458 depth = 0;
1459 }
1460
1461 depth++;
1462 list_add_tail(&rq->queuelist, &ctx_list);
1463 }
1464
1465 /*
1466 * If 'this_ctx' is set, we know we have entries to complete
1467 * on 'ctx_list'. Do those.
1468 */
1469 if (this_ctx) {
bd166ef1
JA
1470 trace_block_unplug(this_q, depth, from_schedule);
1471 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1472 from_schedule);
320ae51f
JA
1473 }
1474}
1475
1476static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1477{
da8d7f07 1478 blk_init_request_from_bio(rq, bio);
4b570521 1479
6e85eaf3 1480 blk_account_io_start(rq, true);
320ae51f
JA
1481}
1482
274a5843
JA
1483static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1484{
1485 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1486 !blk_queue_nomerges(hctx->queue);
1487}
1488
ab42f35d
ML
1489static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1490 struct blk_mq_ctx *ctx,
1491 struct request *rq)
1492{
1493 spin_lock(&ctx->lock);
1494 __blk_mq_insert_request(hctx, rq, false);
1495 spin_unlock(&ctx->lock);
07068d5b 1496}
14ec77f3 1497
fd2d3326
JA
1498static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1499{
bd166ef1
JA
1500 if (rq->tag != -1)
1501 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1502
1503 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1504}
1505
d964f04a
ML
1506static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1507 struct request *rq,
1508 blk_qc_t *cookie, bool may_sleep)
f984df1f 1509{
f984df1f 1510 struct request_queue *q = rq->q;
f984df1f
SL
1511 struct blk_mq_queue_data bd = {
1512 .rq = rq,
d945a365 1513 .last = true,
f984df1f 1514 };
bd166ef1 1515 blk_qc_t new_cookie;
f06345ad 1516 blk_status_t ret;
d964f04a
ML
1517 bool run_queue = true;
1518
f4560ffe
ML
1519 /* RCU or SRCU read lock is needed before checking quiesced flag */
1520 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
d964f04a
ML
1521 run_queue = false;
1522 goto insert;
1523 }
f984df1f 1524
bd166ef1 1525 if (q->elevator)
2253efc8
BVA
1526 goto insert;
1527
d964f04a 1528 if (!blk_mq_get_driver_tag(rq, NULL, false))
bd166ef1
JA
1529 goto insert;
1530
1531 new_cookie = request_to_qc_t(hctx, rq);
1532
f984df1f
SL
1533 /*
1534 * For OK queue, we are done. For error, kill it. Any other
1535 * error (busy), just add it to our list as we previously
1536 * would have done
1537 */
1538 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653
CH
1539 switch (ret) {
1540 case BLK_STS_OK:
7b371636 1541 *cookie = new_cookie;
2253efc8 1542 return;
fc17b653
CH
1543 case BLK_STS_RESOURCE:
1544 __blk_mq_requeue_request(rq);
1545 goto insert;
1546 default:
7b371636 1547 *cookie = BLK_QC_T_NONE;
fc17b653 1548 blk_mq_end_request(rq, ret);
2253efc8 1549 return;
f984df1f 1550 }
7b371636 1551
2253efc8 1552insert:
d964f04a 1553 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
f984df1f
SL
1554}
1555
5eb6126e
CH
1556static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1557 struct request *rq, blk_qc_t *cookie)
1558{
1559 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1560 rcu_read_lock();
d964f04a 1561 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
5eb6126e
CH
1562 rcu_read_unlock();
1563 } else {
bf4907c0
JA
1564 unsigned int srcu_idx;
1565
1566 might_sleep();
1567
07319678 1568 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
d964f04a 1569 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
07319678 1570 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
5eb6126e
CH
1571 }
1572}
1573
dece1635 1574static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1575{
ef295ecf 1576 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1577 const int is_flush_fua = op_is_flush(bio->bi_opf);
5a797e00 1578 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1579 struct request *rq;
5eb6126e 1580 unsigned int request_count = 0;
f984df1f 1581 struct blk_plug *plug;
5b3f341f 1582 struct request *same_queue_rq = NULL;
7b371636 1583 blk_qc_t cookie;
87760e5e 1584 unsigned int wb_acct;
07068d5b
JA
1585
1586 blk_queue_bounce(q, &bio);
1587
af67c31f 1588 blk_queue_split(q, &bio);
f36ea50c 1589
e23947bd 1590 if (!bio_integrity_prep(bio))
dece1635 1591 return BLK_QC_T_NONE;
07068d5b 1592
87c279e6
OS
1593 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1594 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1595 return BLK_QC_T_NONE;
f984df1f 1596
bd166ef1
JA
1597 if (blk_mq_sched_bio_merge(q, bio))
1598 return BLK_QC_T_NONE;
1599
87760e5e
JA
1600 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1601
bd166ef1
JA
1602 trace_block_getrq(q, bio, bio->bi_opf);
1603
d2c0d383 1604 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1605 if (unlikely(!rq)) {
1606 __wbt_done(q->rq_wb, wb_acct);
03a07c92
GR
1607 if (bio->bi_opf & REQ_NOWAIT)
1608 bio_wouldblock_error(bio);
dece1635 1609 return BLK_QC_T_NONE;
87760e5e
JA
1610 }
1611
1612 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1613
fd2d3326 1614 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 1615
f984df1f 1616 plug = current->plug;
07068d5b 1617 if (unlikely(is_flush_fua)) {
f984df1f 1618 blk_mq_put_ctx(data.ctx);
07068d5b 1619 blk_mq_bio_to_request(rq, bio);
a4d907b6
CH
1620 if (q->elevator) {
1621 blk_mq_sched_insert_request(rq, false, true, true,
1622 true);
6a83e74d 1623 } else {
a4d907b6
CH
1624 blk_insert_flush(rq);
1625 blk_mq_run_hw_queue(data.hctx, true);
6a83e74d 1626 }
a4d907b6 1627 } else if (plug && q->nr_hw_queues == 1) {
600271d9
SL
1628 struct request *last = NULL;
1629
b00c53e8 1630 blk_mq_put_ctx(data.ctx);
e6c4438b 1631 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1632
1633 /*
1634 * @request_count may become stale because of schedule
1635 * out, so check the list again.
1636 */
1637 if (list_empty(&plug->mq_list))
1638 request_count = 0;
254d259d
CH
1639 else if (blk_queue_nomerges(q))
1640 request_count = blk_plug_queued_count(q);
1641
676d0607 1642 if (!request_count)
e6c4438b 1643 trace_block_plug(q);
600271d9
SL
1644 else
1645 last = list_entry_rq(plug->mq_list.prev);
b094f89c 1646
600271d9
SL
1647 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1648 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1649 blk_flush_plug_list(plug, false);
1650 trace_block_plug(q);
320ae51f 1651 }
b094f89c 1652
e6c4438b 1653 list_add_tail(&rq->queuelist, &plug->mq_list);
2299722c 1654 } else if (plug && !blk_queue_nomerges(q)) {
bd166ef1 1655 blk_mq_bio_to_request(rq, bio);
07068d5b 1656
07068d5b 1657 /*
6a83e74d 1658 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1659 * Otherwise the existing request in the plug list will be
1660 * issued. So the plug list will have one request at most
2299722c
CH
1661 * The plug list might get flushed before this. If that happens,
1662 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 1663 */
2299722c
CH
1664 if (list_empty(&plug->mq_list))
1665 same_queue_rq = NULL;
1666 if (same_queue_rq)
1667 list_del_init(&same_queue_rq->queuelist);
1668 list_add_tail(&rq->queuelist, &plug->mq_list);
1669
bf4907c0
JA
1670 blk_mq_put_ctx(data.ctx);
1671
dad7a3be
ML
1672 if (same_queue_rq) {
1673 data.hctx = blk_mq_map_queue(q,
1674 same_queue_rq->mq_ctx->cpu);
2299722c
CH
1675 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1676 &cookie);
dad7a3be 1677 }
a4d907b6 1678 } else if (q->nr_hw_queues > 1 && is_sync) {
bf4907c0 1679 blk_mq_put_ctx(data.ctx);
2299722c 1680 blk_mq_bio_to_request(rq, bio);
2299722c 1681 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
a4d907b6 1682 } else if (q->elevator) {
b00c53e8 1683 blk_mq_put_ctx(data.ctx);
bd166ef1 1684 blk_mq_bio_to_request(rq, bio);
a4d907b6 1685 blk_mq_sched_insert_request(rq, false, true, true, true);
ab42f35d 1686 } else {
b00c53e8 1687 blk_mq_put_ctx(data.ctx);
ab42f35d
ML
1688 blk_mq_bio_to_request(rq, bio);
1689 blk_mq_queue_io(data.hctx, data.ctx, rq);
a4d907b6 1690 blk_mq_run_hw_queue(data.hctx, true);
ab42f35d 1691 }
320ae51f 1692
7b371636 1693 return cookie;
320ae51f
JA
1694}
1695
cc71a6f4
JA
1696void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1697 unsigned int hctx_idx)
95363efd 1698{
e9b267d9 1699 struct page *page;
320ae51f 1700
24d2f903 1701 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1702 int i;
320ae51f 1703
24d2f903 1704 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1705 struct request *rq = tags->static_rqs[i];
1706
1707 if (!rq)
e9b267d9 1708 continue;
d6296d39 1709 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 1710 tags->static_rqs[i] = NULL;
e9b267d9 1711 }
320ae51f 1712 }
320ae51f 1713
24d2f903
CH
1714 while (!list_empty(&tags->page_list)) {
1715 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1716 list_del_init(&page->lru);
f75782e4
CM
1717 /*
1718 * Remove kmemleak object previously allocated in
1719 * blk_mq_init_rq_map().
1720 */
1721 kmemleak_free(page_address(page));
320ae51f
JA
1722 __free_pages(page, page->private);
1723 }
cc71a6f4 1724}
320ae51f 1725
cc71a6f4
JA
1726void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1727{
24d2f903 1728 kfree(tags->rqs);
cc71a6f4 1729 tags->rqs = NULL;
2af8cbe3
JA
1730 kfree(tags->static_rqs);
1731 tags->static_rqs = NULL;
320ae51f 1732
24d2f903 1733 blk_mq_free_tags(tags);
320ae51f
JA
1734}
1735
cc71a6f4
JA
1736struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1737 unsigned int hctx_idx,
1738 unsigned int nr_tags,
1739 unsigned int reserved_tags)
320ae51f 1740{
24d2f903 1741 struct blk_mq_tags *tags;
59f082e4 1742 int node;
320ae51f 1743
59f082e4
SL
1744 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1745 if (node == NUMA_NO_NODE)
1746 node = set->numa_node;
1747
1748 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 1749 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1750 if (!tags)
1751 return NULL;
320ae51f 1752
cc71a6f4 1753 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1754 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1755 node);
24d2f903
CH
1756 if (!tags->rqs) {
1757 blk_mq_free_tags(tags);
1758 return NULL;
1759 }
320ae51f 1760
2af8cbe3
JA
1761 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1762 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1763 node);
2af8cbe3
JA
1764 if (!tags->static_rqs) {
1765 kfree(tags->rqs);
1766 blk_mq_free_tags(tags);
1767 return NULL;
1768 }
1769
cc71a6f4
JA
1770 return tags;
1771}
1772
1773static size_t order_to_size(unsigned int order)
1774{
1775 return (size_t)PAGE_SIZE << order;
1776}
1777
1778int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1779 unsigned int hctx_idx, unsigned int depth)
1780{
1781 unsigned int i, j, entries_per_page, max_order = 4;
1782 size_t rq_size, left;
59f082e4
SL
1783 int node;
1784
1785 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1786 if (node == NUMA_NO_NODE)
1787 node = set->numa_node;
cc71a6f4
JA
1788
1789 INIT_LIST_HEAD(&tags->page_list);
1790
320ae51f
JA
1791 /*
1792 * rq_size is the size of the request plus driver payload, rounded
1793 * to the cacheline size
1794 */
24d2f903 1795 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1796 cache_line_size());
cc71a6f4 1797 left = rq_size * depth;
320ae51f 1798
cc71a6f4 1799 for (i = 0; i < depth; ) {
320ae51f
JA
1800 int this_order = max_order;
1801 struct page *page;
1802 int to_do;
1803 void *p;
1804
b3a834b1 1805 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1806 this_order--;
1807
1808 do {
59f082e4 1809 page = alloc_pages_node(node,
36e1f3d1 1810 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1811 this_order);
320ae51f
JA
1812 if (page)
1813 break;
1814 if (!this_order--)
1815 break;
1816 if (order_to_size(this_order) < rq_size)
1817 break;
1818 } while (1);
1819
1820 if (!page)
24d2f903 1821 goto fail;
320ae51f
JA
1822
1823 page->private = this_order;
24d2f903 1824 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1825
1826 p = page_address(page);
f75782e4
CM
1827 /*
1828 * Allow kmemleak to scan these pages as they contain pointers
1829 * to additional allocations like via ops->init_request().
1830 */
36e1f3d1 1831 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 1832 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 1833 to_do = min(entries_per_page, depth - i);
320ae51f
JA
1834 left -= to_do * rq_size;
1835 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
1836 struct request *rq = p;
1837
1838 tags->static_rqs[i] = rq;
24d2f903 1839 if (set->ops->init_request) {
d6296d39 1840 if (set->ops->init_request(set, rq, hctx_idx,
59f082e4 1841 node)) {
2af8cbe3 1842 tags->static_rqs[i] = NULL;
24d2f903 1843 goto fail;
a5164405 1844 }
e9b267d9
CH
1845 }
1846
320ae51f
JA
1847 p += rq_size;
1848 i++;
1849 }
1850 }
cc71a6f4 1851 return 0;
320ae51f 1852
24d2f903 1853fail:
cc71a6f4
JA
1854 blk_mq_free_rqs(set, tags, hctx_idx);
1855 return -ENOMEM;
320ae51f
JA
1856}
1857
e57690fe
JA
1858/*
1859 * 'cpu' is going away. splice any existing rq_list entries from this
1860 * software queue to the hw queue dispatch list, and ensure that it
1861 * gets run.
1862 */
9467f859 1863static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 1864{
9467f859 1865 struct blk_mq_hw_ctx *hctx;
484b4061
JA
1866 struct blk_mq_ctx *ctx;
1867 LIST_HEAD(tmp);
1868
9467f859 1869 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 1870 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1871
1872 spin_lock(&ctx->lock);
1873 if (!list_empty(&ctx->rq_list)) {
1874 list_splice_init(&ctx->rq_list, &tmp);
1875 blk_mq_hctx_clear_pending(hctx, ctx);
1876 }
1877 spin_unlock(&ctx->lock);
1878
1879 if (list_empty(&tmp))
9467f859 1880 return 0;
484b4061 1881
e57690fe
JA
1882 spin_lock(&hctx->lock);
1883 list_splice_tail_init(&tmp, &hctx->dispatch);
1884 spin_unlock(&hctx->lock);
484b4061
JA
1885
1886 blk_mq_run_hw_queue(hctx, true);
9467f859 1887 return 0;
484b4061
JA
1888}
1889
9467f859 1890static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 1891{
9467f859
TG
1892 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1893 &hctx->cpuhp_dead);
484b4061
JA
1894}
1895
c3b4afca 1896/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1897static void blk_mq_exit_hctx(struct request_queue *q,
1898 struct blk_mq_tag_set *set,
1899 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1900{
9c1051aa
OS
1901 blk_mq_debugfs_unregister_hctx(hctx);
1902
08e98fc6
ML
1903 blk_mq_tag_idle(hctx);
1904
f70ced09 1905 if (set->ops->exit_request)
d6296d39 1906 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
f70ced09 1907
93252632
OS
1908 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1909
08e98fc6
ML
1910 if (set->ops->exit_hctx)
1911 set->ops->exit_hctx(hctx, hctx_idx);
1912
6a83e74d 1913 if (hctx->flags & BLK_MQ_F_BLOCKING)
07319678 1914 cleanup_srcu_struct(hctx->queue_rq_srcu);
6a83e74d 1915
9467f859 1916 blk_mq_remove_cpuhp(hctx);
f70ced09 1917 blk_free_flush_queue(hctx->fq);
88459642 1918 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1919}
1920
624dbe47
ML
1921static void blk_mq_exit_hw_queues(struct request_queue *q,
1922 struct blk_mq_tag_set *set, int nr_queue)
1923{
1924 struct blk_mq_hw_ctx *hctx;
1925 unsigned int i;
1926
1927 queue_for_each_hw_ctx(q, hctx, i) {
1928 if (i == nr_queue)
1929 break;
08e98fc6 1930 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1931 }
624dbe47
ML
1932}
1933
08e98fc6
ML
1934static int blk_mq_init_hctx(struct request_queue *q,
1935 struct blk_mq_tag_set *set,
1936 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1937{
08e98fc6
ML
1938 int node;
1939
1940 node = hctx->numa_node;
1941 if (node == NUMA_NO_NODE)
1942 node = hctx->numa_node = set->numa_node;
1943
9f993737 1944 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
1945 spin_lock_init(&hctx->lock);
1946 INIT_LIST_HEAD(&hctx->dispatch);
1947 hctx->queue = q;
2404e607 1948 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 1949
9467f859 1950 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
1951
1952 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1953
1954 /*
08e98fc6
ML
1955 * Allocate space for all possible cpus to avoid allocation at
1956 * runtime
320ae51f 1957 */
08e98fc6
ML
1958 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1959 GFP_KERNEL, node);
1960 if (!hctx->ctxs)
1961 goto unregister_cpu_notifier;
320ae51f 1962
88459642
OS
1963 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1964 node))
08e98fc6 1965 goto free_ctxs;
320ae51f 1966
08e98fc6 1967 hctx->nr_ctx = 0;
320ae51f 1968
08e98fc6
ML
1969 if (set->ops->init_hctx &&
1970 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1971 goto free_bitmap;
320ae51f 1972
93252632
OS
1973 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1974 goto exit_hctx;
1975
f70ced09
ML
1976 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1977 if (!hctx->fq)
93252632 1978 goto sched_exit_hctx;
320ae51f 1979
f70ced09 1980 if (set->ops->init_request &&
d6296d39
CH
1981 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
1982 node))
f70ced09 1983 goto free_fq;
320ae51f 1984
6a83e74d 1985 if (hctx->flags & BLK_MQ_F_BLOCKING)
07319678 1986 init_srcu_struct(hctx->queue_rq_srcu);
6a83e74d 1987
9c1051aa
OS
1988 blk_mq_debugfs_register_hctx(q, hctx);
1989
08e98fc6 1990 return 0;
320ae51f 1991
f70ced09
ML
1992 free_fq:
1993 kfree(hctx->fq);
93252632
OS
1994 sched_exit_hctx:
1995 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
f70ced09
ML
1996 exit_hctx:
1997 if (set->ops->exit_hctx)
1998 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 1999 free_bitmap:
88459642 2000 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2001 free_ctxs:
2002 kfree(hctx->ctxs);
2003 unregister_cpu_notifier:
9467f859 2004 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
2005 return -1;
2006}
320ae51f 2007
320ae51f
JA
2008static void blk_mq_init_cpu_queues(struct request_queue *q,
2009 unsigned int nr_hw_queues)
2010{
2011 unsigned int i;
2012
2013 for_each_possible_cpu(i) {
2014 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2015 struct blk_mq_hw_ctx *hctx;
2016
320ae51f
JA
2017 __ctx->cpu = i;
2018 spin_lock_init(&__ctx->lock);
2019 INIT_LIST_HEAD(&__ctx->rq_list);
2020 __ctx->queue = q;
2021
4b855ad3
CH
2022 /* If the cpu isn't present, the cpu is mapped to first hctx */
2023 if (!cpu_present(i))
320ae51f
JA
2024 continue;
2025
7d7e0f90 2026 hctx = blk_mq_map_queue(q, i);
e4043dcf 2027
320ae51f
JA
2028 /*
2029 * Set local node, IFF we have more than one hw queue. If
2030 * not, we remain on the home node of the device
2031 */
2032 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 2033 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
2034 }
2035}
2036
cc71a6f4
JA
2037static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2038{
2039 int ret = 0;
2040
2041 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2042 set->queue_depth, set->reserved_tags);
2043 if (!set->tags[hctx_idx])
2044 return false;
2045
2046 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2047 set->queue_depth);
2048 if (!ret)
2049 return true;
2050
2051 blk_mq_free_rq_map(set->tags[hctx_idx]);
2052 set->tags[hctx_idx] = NULL;
2053 return false;
2054}
2055
2056static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2057 unsigned int hctx_idx)
2058{
bd166ef1
JA
2059 if (set->tags[hctx_idx]) {
2060 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2061 blk_mq_free_rq_map(set->tags[hctx_idx]);
2062 set->tags[hctx_idx] = NULL;
2063 }
cc71a6f4
JA
2064}
2065
4b855ad3 2066static void blk_mq_map_swqueue(struct request_queue *q)
320ae51f 2067{
d1b1cea1 2068 unsigned int i, hctx_idx;
320ae51f
JA
2069 struct blk_mq_hw_ctx *hctx;
2070 struct blk_mq_ctx *ctx;
2a34c087 2071 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2072
60de074b
AM
2073 /*
2074 * Avoid others reading imcomplete hctx->cpumask through sysfs
2075 */
2076 mutex_lock(&q->sysfs_lock);
2077
320ae51f 2078 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2079 cpumask_clear(hctx->cpumask);
320ae51f
JA
2080 hctx->nr_ctx = 0;
2081 }
2082
2083 /*
4b855ad3
CH
2084 * Map software to hardware queues.
2085 *
2086 * If the cpu isn't present, the cpu is mapped to first hctx.
320ae51f 2087 */
4b855ad3 2088 for_each_present_cpu(i) {
d1b1cea1
GKB
2089 hctx_idx = q->mq_map[i];
2090 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2091 if (!set->tags[hctx_idx] &&
2092 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2093 /*
2094 * If tags initialization fail for some hctx,
2095 * that hctx won't be brought online. In this
2096 * case, remap the current ctx to hctx[0] which
2097 * is guaranteed to always have tags allocated
2098 */
cc71a6f4 2099 q->mq_map[i] = 0;
d1b1cea1
GKB
2100 }
2101
897bb0c7 2102 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2103 hctx = blk_mq_map_queue(q, i);
868f2f0b 2104
e4043dcf 2105 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2106 ctx->index_hw = hctx->nr_ctx;
2107 hctx->ctxs[hctx->nr_ctx++] = ctx;
2108 }
506e931f 2109
60de074b
AM
2110 mutex_unlock(&q->sysfs_lock);
2111
506e931f 2112 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2113 /*
a68aafa5
JA
2114 * If no software queues are mapped to this hardware queue,
2115 * disable it and free the request entries.
484b4061
JA
2116 */
2117 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2118 /* Never unmap queue 0. We need it as a
2119 * fallback in case of a new remap fails
2120 * allocation
2121 */
cc71a6f4
JA
2122 if (i && set->tags[i])
2123 blk_mq_free_map_and_requests(set, i);
2124
2a34c087 2125 hctx->tags = NULL;
484b4061
JA
2126 continue;
2127 }
2128
2a34c087
ML
2129 hctx->tags = set->tags[i];
2130 WARN_ON(!hctx->tags);
2131
889fa31f
CY
2132 /*
2133 * Set the map size to the number of mapped software queues.
2134 * This is more accurate and more efficient than looping
2135 * over all possibly mapped software queues.
2136 */
88459642 2137 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2138
484b4061
JA
2139 /*
2140 * Initialize batch roundrobin counts
2141 */
506e931f
JA
2142 hctx->next_cpu = cpumask_first(hctx->cpumask);
2143 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2144 }
320ae51f
JA
2145}
2146
8e8320c9
JA
2147/*
2148 * Caller needs to ensure that we're either frozen/quiesced, or that
2149 * the queue isn't live yet.
2150 */
2404e607 2151static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2152{
2153 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2154 int i;
2155
2404e607 2156 queue_for_each_hw_ctx(q, hctx, i) {
8e8320c9
JA
2157 if (shared) {
2158 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2159 atomic_inc(&q->shared_hctx_restart);
2404e607 2160 hctx->flags |= BLK_MQ_F_TAG_SHARED;
8e8320c9
JA
2161 } else {
2162 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2163 atomic_dec(&q->shared_hctx_restart);
2404e607 2164 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
8e8320c9 2165 }
2404e607
JM
2166 }
2167}
2168
8e8320c9
JA
2169static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2170 bool shared)
2404e607
JM
2171{
2172 struct request_queue *q;
0d2602ca 2173
705cda97
BVA
2174 lockdep_assert_held(&set->tag_list_lock);
2175
0d2602ca
JA
2176 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2177 blk_mq_freeze_queue(q);
2404e607 2178 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2179 blk_mq_unfreeze_queue(q);
2180 }
2181}
2182
2183static void blk_mq_del_queue_tag_set(struct request_queue *q)
2184{
2185 struct blk_mq_tag_set *set = q->tag_set;
2186
0d2602ca 2187 mutex_lock(&set->tag_list_lock);
705cda97
BVA
2188 list_del_rcu(&q->tag_set_list);
2189 INIT_LIST_HEAD(&q->tag_set_list);
2404e607
JM
2190 if (list_is_singular(&set->tag_list)) {
2191 /* just transitioned to unshared */
2192 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2193 /* update existing queue */
2194 blk_mq_update_tag_set_depth(set, false);
2195 }
0d2602ca 2196 mutex_unlock(&set->tag_list_lock);
705cda97
BVA
2197
2198 synchronize_rcu();
0d2602ca
JA
2199}
2200
2201static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2202 struct request_queue *q)
2203{
2204 q->tag_set = set;
2205
2206 mutex_lock(&set->tag_list_lock);
2404e607
JM
2207
2208 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2209 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2210 set->flags |= BLK_MQ_F_TAG_SHARED;
2211 /* update existing queue */
2212 blk_mq_update_tag_set_depth(set, true);
2213 }
2214 if (set->flags & BLK_MQ_F_TAG_SHARED)
2215 queue_set_hctx_shared(q, true);
705cda97 2216 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2404e607 2217
0d2602ca
JA
2218 mutex_unlock(&set->tag_list_lock);
2219}
2220
e09aae7e
ML
2221/*
2222 * It is the actual release handler for mq, but we do it from
2223 * request queue's release handler for avoiding use-after-free
2224 * and headache because q->mq_kobj shouldn't have been introduced,
2225 * but we can't group ctx/kctx kobj without it.
2226 */
2227void blk_mq_release(struct request_queue *q)
2228{
2229 struct blk_mq_hw_ctx *hctx;
2230 unsigned int i;
2231
2232 /* hctx kobj stays in hctx */
c3b4afca
ML
2233 queue_for_each_hw_ctx(q, hctx, i) {
2234 if (!hctx)
2235 continue;
6c8b232e 2236 kobject_put(&hctx->kobj);
c3b4afca 2237 }
e09aae7e 2238
a723bab3
AM
2239 q->mq_map = NULL;
2240
e09aae7e
ML
2241 kfree(q->queue_hw_ctx);
2242
7ea5fe31
ML
2243 /*
2244 * release .mq_kobj and sw queue's kobject now because
2245 * both share lifetime with request queue.
2246 */
2247 blk_mq_sysfs_deinit(q);
2248
e09aae7e
ML
2249 free_percpu(q->queue_ctx);
2250}
2251
24d2f903 2252struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2253{
2254 struct request_queue *uninit_q, *q;
2255
2256 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2257 if (!uninit_q)
2258 return ERR_PTR(-ENOMEM);
2259
2260 q = blk_mq_init_allocated_queue(set, uninit_q);
2261 if (IS_ERR(q))
2262 blk_cleanup_queue(uninit_q);
2263
2264 return q;
2265}
2266EXPORT_SYMBOL(blk_mq_init_queue);
2267
07319678
BVA
2268static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2269{
2270 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2271
2272 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2273 __alignof__(struct blk_mq_hw_ctx)) !=
2274 sizeof(struct blk_mq_hw_ctx));
2275
2276 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2277 hw_ctx_size += sizeof(struct srcu_struct);
2278
2279 return hw_ctx_size;
2280}
2281
868f2f0b
KB
2282static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2283 struct request_queue *q)
320ae51f 2284{
868f2f0b
KB
2285 int i, j;
2286 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2287
868f2f0b 2288 blk_mq_sysfs_unregister(q);
24d2f903 2289 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2290 int node;
f14bbe77 2291
868f2f0b
KB
2292 if (hctxs[i])
2293 continue;
2294
2295 node = blk_mq_hw_queue_to_node(q->mq_map, i);
07319678 2296 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
cdef54dd 2297 GFP_KERNEL, node);
320ae51f 2298 if (!hctxs[i])
868f2f0b 2299 break;
320ae51f 2300
a86073e4 2301 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2302 node)) {
2303 kfree(hctxs[i]);
2304 hctxs[i] = NULL;
2305 break;
2306 }
e4043dcf 2307
0d2602ca 2308 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2309 hctxs[i]->numa_node = node;
320ae51f 2310 hctxs[i]->queue_num = i;
868f2f0b
KB
2311
2312 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2313 free_cpumask_var(hctxs[i]->cpumask);
2314 kfree(hctxs[i]);
2315 hctxs[i] = NULL;
2316 break;
2317 }
2318 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2319 }
868f2f0b
KB
2320 for (j = i; j < q->nr_hw_queues; j++) {
2321 struct blk_mq_hw_ctx *hctx = hctxs[j];
2322
2323 if (hctx) {
cc71a6f4
JA
2324 if (hctx->tags)
2325 blk_mq_free_map_and_requests(set, j);
868f2f0b 2326 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2327 kobject_put(&hctx->kobj);
868f2f0b
KB
2328 hctxs[j] = NULL;
2329
2330 }
2331 }
2332 q->nr_hw_queues = i;
2333 blk_mq_sysfs_register(q);
2334}
2335
2336struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2337 struct request_queue *q)
2338{
66841672
ML
2339 /* mark the queue as mq asap */
2340 q->mq_ops = set->ops;
2341
34dbad5d 2342 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
2343 blk_mq_poll_stats_bkt,
2344 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
2345 if (!q->poll_cb)
2346 goto err_exit;
2347
868f2f0b
KB
2348 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2349 if (!q->queue_ctx)
c7de5726 2350 goto err_exit;
868f2f0b 2351
737f98cf
ML
2352 /* init q->mq_kobj and sw queues' kobjects */
2353 blk_mq_sysfs_init(q);
2354
868f2f0b
KB
2355 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2356 GFP_KERNEL, set->numa_node);
2357 if (!q->queue_hw_ctx)
2358 goto err_percpu;
2359
bdd17e75 2360 q->mq_map = set->mq_map;
868f2f0b
KB
2361
2362 blk_mq_realloc_hw_ctxs(set, q);
2363 if (!q->nr_hw_queues)
2364 goto err_hctxs;
320ae51f 2365
287922eb 2366 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2367 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2368
2369 q->nr_queues = nr_cpu_ids;
320ae51f 2370
94eddfbe 2371 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2372
05f1dd53
JA
2373 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2374 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2375
1be036e9
CH
2376 q->sg_reserved_size = INT_MAX;
2377
2849450a 2378 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2379 INIT_LIST_HEAD(&q->requeue_list);
2380 spin_lock_init(&q->requeue_lock);
2381
254d259d 2382 blk_queue_make_request(q, blk_mq_make_request);
07068d5b 2383
eba71768
JA
2384 /*
2385 * Do this after blk_queue_make_request() overrides it...
2386 */
2387 q->nr_requests = set->queue_depth;
2388
64f1c21e
JA
2389 /*
2390 * Default to classic polling
2391 */
2392 q->poll_nsec = -1;
2393
24d2f903
CH
2394 if (set->ops->complete)
2395 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2396
24d2f903 2397 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
0d2602ca 2398 blk_mq_add_queue_tag_set(set, q);
4b855ad3 2399 blk_mq_map_swqueue(q);
4593fdbe 2400
d3484991
JA
2401 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2402 int ret;
2403
2404 ret = blk_mq_sched_init(q);
2405 if (ret)
2406 return ERR_PTR(ret);
2407 }
2408
320ae51f 2409 return q;
18741986 2410
320ae51f 2411err_hctxs:
868f2f0b 2412 kfree(q->queue_hw_ctx);
320ae51f 2413err_percpu:
868f2f0b 2414 free_percpu(q->queue_ctx);
c7de5726
ML
2415err_exit:
2416 q->mq_ops = NULL;
320ae51f
JA
2417 return ERR_PTR(-ENOMEM);
2418}
b62c21b7 2419EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2420
2421void blk_mq_free_queue(struct request_queue *q)
2422{
624dbe47 2423 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2424
0d2602ca 2425 blk_mq_del_queue_tag_set(q);
624dbe47 2426 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2427}
320ae51f
JA
2428
2429/* Basically redo blk_mq_init_queue with queue frozen */
4b855ad3 2430static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f 2431{
4ecd4fef 2432 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2433
9c1051aa 2434 blk_mq_debugfs_unregister_hctxs(q);
67aec14c
JA
2435 blk_mq_sysfs_unregister(q);
2436
320ae51f
JA
2437 /*
2438 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2439 * we should change hctx numa_node according to new topology (this
2440 * involves free and re-allocate memory, worthy doing?)
2441 */
2442
4b855ad3 2443 blk_mq_map_swqueue(q);
320ae51f 2444
67aec14c 2445 blk_mq_sysfs_register(q);
9c1051aa 2446 blk_mq_debugfs_register_hctxs(q);
320ae51f
JA
2447}
2448
a5164405
JA
2449static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2450{
2451 int i;
2452
cc71a6f4
JA
2453 for (i = 0; i < set->nr_hw_queues; i++)
2454 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2455 goto out_unwind;
a5164405
JA
2456
2457 return 0;
2458
2459out_unwind:
2460 while (--i >= 0)
cc71a6f4 2461 blk_mq_free_rq_map(set->tags[i]);
a5164405 2462
a5164405
JA
2463 return -ENOMEM;
2464}
2465
2466/*
2467 * Allocate the request maps associated with this tag_set. Note that this
2468 * may reduce the depth asked for, if memory is tight. set->queue_depth
2469 * will be updated to reflect the allocated depth.
2470 */
2471static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2472{
2473 unsigned int depth;
2474 int err;
2475
2476 depth = set->queue_depth;
2477 do {
2478 err = __blk_mq_alloc_rq_maps(set);
2479 if (!err)
2480 break;
2481
2482 set->queue_depth >>= 1;
2483 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2484 err = -ENOMEM;
2485 break;
2486 }
2487 } while (set->queue_depth);
2488
2489 if (!set->queue_depth || err) {
2490 pr_err("blk-mq: failed to allocate request map\n");
2491 return -ENOMEM;
2492 }
2493
2494 if (depth != set->queue_depth)
2495 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2496 depth, set->queue_depth);
2497
2498 return 0;
2499}
2500
ebe8bddb
OS
2501static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2502{
2503 if (set->ops->map_queues)
2504 return set->ops->map_queues(set);
2505 else
2506 return blk_mq_map_queues(set);
2507}
2508
a4391c64
JA
2509/*
2510 * Alloc a tag set to be associated with one or more request queues.
2511 * May fail with EINVAL for various error conditions. May adjust the
2512 * requested depth down, if if it too large. In that case, the set
2513 * value will be stored in set->queue_depth.
2514 */
24d2f903
CH
2515int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2516{
da695ba2
CH
2517 int ret;
2518
205fb5f5
BVA
2519 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2520
24d2f903
CH
2521 if (!set->nr_hw_queues)
2522 return -EINVAL;
a4391c64 2523 if (!set->queue_depth)
24d2f903
CH
2524 return -EINVAL;
2525 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2526 return -EINVAL;
2527
7d7e0f90 2528 if (!set->ops->queue_rq)
24d2f903
CH
2529 return -EINVAL;
2530
a4391c64
JA
2531 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2532 pr_info("blk-mq: reduced tag depth to %u\n",
2533 BLK_MQ_MAX_DEPTH);
2534 set->queue_depth = BLK_MQ_MAX_DEPTH;
2535 }
24d2f903 2536
6637fadf
SL
2537 /*
2538 * If a crashdump is active, then we are potentially in a very
2539 * memory constrained environment. Limit us to 1 queue and
2540 * 64 tags to prevent using too much memory.
2541 */
2542 if (is_kdump_kernel()) {
2543 set->nr_hw_queues = 1;
2544 set->queue_depth = min(64U, set->queue_depth);
2545 }
868f2f0b
KB
2546 /*
2547 * There is no use for more h/w queues than cpus.
2548 */
2549 if (set->nr_hw_queues > nr_cpu_ids)
2550 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2551
868f2f0b 2552 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2553 GFP_KERNEL, set->numa_node);
2554 if (!set->tags)
a5164405 2555 return -ENOMEM;
24d2f903 2556
da695ba2
CH
2557 ret = -ENOMEM;
2558 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2559 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2560 if (!set->mq_map)
2561 goto out_free_tags;
2562
ebe8bddb 2563 ret = blk_mq_update_queue_map(set);
da695ba2
CH
2564 if (ret)
2565 goto out_free_mq_map;
2566
2567 ret = blk_mq_alloc_rq_maps(set);
2568 if (ret)
bdd17e75 2569 goto out_free_mq_map;
24d2f903 2570
0d2602ca
JA
2571 mutex_init(&set->tag_list_lock);
2572 INIT_LIST_HEAD(&set->tag_list);
2573
24d2f903 2574 return 0;
bdd17e75
CH
2575
2576out_free_mq_map:
2577 kfree(set->mq_map);
2578 set->mq_map = NULL;
2579out_free_tags:
5676e7b6
RE
2580 kfree(set->tags);
2581 set->tags = NULL;
da695ba2 2582 return ret;
24d2f903
CH
2583}
2584EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2585
2586void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2587{
2588 int i;
2589
cc71a6f4
JA
2590 for (i = 0; i < nr_cpu_ids; i++)
2591 blk_mq_free_map_and_requests(set, i);
484b4061 2592
bdd17e75
CH
2593 kfree(set->mq_map);
2594 set->mq_map = NULL;
2595
981bd189 2596 kfree(set->tags);
5676e7b6 2597 set->tags = NULL;
24d2f903
CH
2598}
2599EXPORT_SYMBOL(blk_mq_free_tag_set);
2600
e3a2b3f9
JA
2601int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2602{
2603 struct blk_mq_tag_set *set = q->tag_set;
2604 struct blk_mq_hw_ctx *hctx;
2605 int i, ret;
2606
bd166ef1 2607 if (!set)
e3a2b3f9
JA
2608 return -EINVAL;
2609
70f36b60 2610 blk_mq_freeze_queue(q);
70f36b60 2611
e3a2b3f9
JA
2612 ret = 0;
2613 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2614 if (!hctx->tags)
2615 continue;
bd166ef1
JA
2616 /*
2617 * If we're using an MQ scheduler, just update the scheduler
2618 * queue depth. This is similar to what the old code would do.
2619 */
70f36b60
JA
2620 if (!hctx->sched_tags) {
2621 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2622 min(nr, set->queue_depth),
2623 false);
2624 } else {
2625 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2626 nr, true);
2627 }
e3a2b3f9
JA
2628 if (ret)
2629 break;
2630 }
2631
2632 if (!ret)
2633 q->nr_requests = nr;
2634
70f36b60 2635 blk_mq_unfreeze_queue(q);
70f36b60 2636
e3a2b3f9
JA
2637 return ret;
2638}
2639
e4dc2b32
KB
2640static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2641 int nr_hw_queues)
868f2f0b
KB
2642{
2643 struct request_queue *q;
2644
705cda97
BVA
2645 lockdep_assert_held(&set->tag_list_lock);
2646
868f2f0b
KB
2647 if (nr_hw_queues > nr_cpu_ids)
2648 nr_hw_queues = nr_cpu_ids;
2649 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2650 return;
2651
2652 list_for_each_entry(q, &set->tag_list, tag_set_list)
2653 blk_mq_freeze_queue(q);
2654
2655 set->nr_hw_queues = nr_hw_queues;
ebe8bddb 2656 blk_mq_update_queue_map(set);
868f2f0b
KB
2657 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2658 blk_mq_realloc_hw_ctxs(set, q);
4b855ad3 2659 blk_mq_queue_reinit(q);
868f2f0b
KB
2660 }
2661
2662 list_for_each_entry(q, &set->tag_list, tag_set_list)
2663 blk_mq_unfreeze_queue(q);
2664}
e4dc2b32
KB
2665
2666void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2667{
2668 mutex_lock(&set->tag_list_lock);
2669 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2670 mutex_unlock(&set->tag_list_lock);
2671}
868f2f0b
KB
2672EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2673
34dbad5d
OS
2674/* Enable polling stats and return whether they were already enabled. */
2675static bool blk_poll_stats_enable(struct request_queue *q)
2676{
2677 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2678 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2679 return true;
2680 blk_stat_add_callback(q, q->poll_cb);
2681 return false;
2682}
2683
2684static void blk_mq_poll_stats_start(struct request_queue *q)
2685{
2686 /*
2687 * We don't arm the callback if polling stats are not enabled or the
2688 * callback is already active.
2689 */
2690 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2691 blk_stat_is_active(q->poll_cb))
2692 return;
2693
2694 blk_stat_activate_msecs(q->poll_cb, 100);
2695}
2696
2697static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2698{
2699 struct request_queue *q = cb->data;
720b8ccc 2700 int bucket;
34dbad5d 2701
720b8ccc
SB
2702 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2703 if (cb->stat[bucket].nr_samples)
2704 q->poll_stat[bucket] = cb->stat[bucket];
2705 }
34dbad5d
OS
2706}
2707
64f1c21e
JA
2708static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2709 struct blk_mq_hw_ctx *hctx,
2710 struct request *rq)
2711{
64f1c21e 2712 unsigned long ret = 0;
720b8ccc 2713 int bucket;
64f1c21e
JA
2714
2715 /*
2716 * If stats collection isn't on, don't sleep but turn it on for
2717 * future users
2718 */
34dbad5d 2719 if (!blk_poll_stats_enable(q))
64f1c21e
JA
2720 return 0;
2721
64f1c21e
JA
2722 /*
2723 * As an optimistic guess, use half of the mean service time
2724 * for this type of request. We can (and should) make this smarter.
2725 * For instance, if the completion latencies are tight, we can
2726 * get closer than just half the mean. This is especially
2727 * important on devices where the completion latencies are longer
720b8ccc
SB
2728 * than ~10 usec. We do use the stats for the relevant IO size
2729 * if available which does lead to better estimates.
64f1c21e 2730 */
720b8ccc
SB
2731 bucket = blk_mq_poll_stats_bkt(rq);
2732 if (bucket < 0)
2733 return ret;
2734
2735 if (q->poll_stat[bucket].nr_samples)
2736 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
2737
2738 return ret;
2739}
2740
06426adf 2741static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2742 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2743 struct request *rq)
2744{
2745 struct hrtimer_sleeper hs;
2746 enum hrtimer_mode mode;
64f1c21e 2747 unsigned int nsecs;
06426adf
JA
2748 ktime_t kt;
2749
64f1c21e
JA
2750 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2751 return false;
2752
2753 /*
2754 * poll_nsec can be:
2755 *
2756 * -1: don't ever hybrid sleep
2757 * 0: use half of prev avg
2758 * >0: use this specific value
2759 */
2760 if (q->poll_nsec == -1)
2761 return false;
2762 else if (q->poll_nsec > 0)
2763 nsecs = q->poll_nsec;
2764 else
2765 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2766
2767 if (!nsecs)
06426adf
JA
2768 return false;
2769
2770 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2771
2772 /*
2773 * This will be replaced with the stats tracking code, using
2774 * 'avg_completion_time / 2' as the pre-sleep target.
2775 */
8b0e1953 2776 kt = nsecs;
06426adf
JA
2777
2778 mode = HRTIMER_MODE_REL;
2779 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2780 hrtimer_set_expires(&hs.timer, kt);
2781
2782 hrtimer_init_sleeper(&hs, current);
2783 do {
2784 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2785 break;
2786 set_current_state(TASK_UNINTERRUPTIBLE);
2787 hrtimer_start_expires(&hs.timer, mode);
2788 if (hs.task)
2789 io_schedule();
2790 hrtimer_cancel(&hs.timer);
2791 mode = HRTIMER_MODE_ABS;
2792 } while (hs.task && !signal_pending(current));
2793
2794 __set_current_state(TASK_RUNNING);
2795 destroy_hrtimer_on_stack(&hs.timer);
2796 return true;
2797}
2798
bbd7bb70
JA
2799static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2800{
2801 struct request_queue *q = hctx->queue;
2802 long state;
2803
06426adf
JA
2804 /*
2805 * If we sleep, have the caller restart the poll loop to reset
2806 * the state. Like for the other success return cases, the
2807 * caller is responsible for checking if the IO completed. If
2808 * the IO isn't complete, we'll get called again and will go
2809 * straight to the busy poll loop.
2810 */
64f1c21e 2811 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
2812 return true;
2813
bbd7bb70
JA
2814 hctx->poll_considered++;
2815
2816 state = current->state;
2817 while (!need_resched()) {
2818 int ret;
2819
2820 hctx->poll_invoked++;
2821
2822 ret = q->mq_ops->poll(hctx, rq->tag);
2823 if (ret > 0) {
2824 hctx->poll_success++;
2825 set_current_state(TASK_RUNNING);
2826 return true;
2827 }
2828
2829 if (signal_pending_state(state, current))
2830 set_current_state(TASK_RUNNING);
2831
2832 if (current->state == TASK_RUNNING)
2833 return true;
2834 if (ret < 0)
2835 break;
2836 cpu_relax();
2837 }
2838
2839 return false;
2840}
2841
2842bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2843{
2844 struct blk_mq_hw_ctx *hctx;
2845 struct blk_plug *plug;
2846 struct request *rq;
2847
2848 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2849 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2850 return false;
2851
2852 plug = current->plug;
2853 if (plug)
2854 blk_flush_plug_list(plug, false);
2855
2856 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
2857 if (!blk_qc_t_is_internal(cookie))
2858 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3a07bb1d 2859 else {
bd166ef1 2860 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3a07bb1d
JA
2861 /*
2862 * With scheduling, if the request has completed, we'll
2863 * get a NULL return here, as we clear the sched tag when
2864 * that happens. The request still remains valid, like always,
2865 * so we should be safe with just the NULL check.
2866 */
2867 if (!rq)
2868 return false;
2869 }
bbd7bb70
JA
2870
2871 return __blk_mq_poll(hctx, rq);
2872}
2873EXPORT_SYMBOL_GPL(blk_mq_poll);
2874
320ae51f
JA
2875static int __init blk_mq_init(void)
2876{
9467f859
TG
2877 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2878 blk_mq_hctx_notify_dead);
320ae51f
JA
2879 return 0;
2880}
2881subsys_initcall(blk_mq_init);