]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - block/blk-mq.c
blk-mq: use the introduced blk_mq_unquiesce_queue()
[thirdparty/kernel/stable.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
105ab3d8 23#include <linux/sched/topology.h>
174cd4b1 24#include <linux/sched/signal.h>
320ae51f 25#include <linux/delay.h>
aedcd72f 26#include <linux/crash_dump.h>
88c7b2b7 27#include <linux/prefetch.h>
320ae51f
JA
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
9c1051aa 34#include "blk-mq-debugfs.h"
320ae51f 35#include "blk-mq-tag.h"
cf43e6be 36#include "blk-stat.h"
87760e5e 37#include "blk-wbt.h"
bd166ef1 38#include "blk-mq-sched.h"
320ae51f
JA
39
40static DEFINE_MUTEX(all_q_mutex);
41static LIST_HEAD(all_q_list);
42
34dbad5d
OS
43static void blk_mq_poll_stats_start(struct request_queue *q);
44static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
2719aa21 45static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync);
34dbad5d 46
720b8ccc
SB
47static int blk_mq_poll_stats_bkt(const struct request *rq)
48{
49 int ddir, bytes, bucket;
50
99c749a4 51 ddir = rq_data_dir(rq);
720b8ccc
SB
52 bytes = blk_rq_bytes(rq);
53
54 bucket = ddir + 2*(ilog2(bytes) - 9);
55
56 if (bucket < 0)
57 return -1;
58 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
59 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
60
61 return bucket;
62}
63
320ae51f
JA
64/*
65 * Check if any of the ctx's have pending work in this hardware queue
66 */
50e1dab8 67bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 68{
bd166ef1
JA
69 return sbitmap_any_bit_set(&hctx->ctx_map) ||
70 !list_empty_careful(&hctx->dispatch) ||
71 blk_mq_sched_has_work(hctx);
1429d7c9
JA
72}
73
320ae51f
JA
74/*
75 * Mark this ctx as having pending work in this hardware queue
76 */
77static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
78 struct blk_mq_ctx *ctx)
79{
88459642
OS
80 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
81 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
82}
83
84static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
85 struct blk_mq_ctx *ctx)
86{
88459642 87 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
88}
89
1671d522 90void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 91{
4ecd4fef 92 int freeze_depth;
cddd5d17 93
4ecd4fef
CH
94 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
95 if (freeze_depth == 1) {
3ef28e83 96 percpu_ref_kill(&q->q_usage_counter);
b94ec296 97 blk_mq_run_hw_queues(q, false);
cddd5d17 98 }
f3af020b 99}
1671d522 100EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 101
6bae363e 102void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 103{
3ef28e83 104 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 105}
6bae363e 106EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 107
f91328c4
KB
108int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
109 unsigned long timeout)
110{
111 return wait_event_timeout(q->mq_freeze_wq,
112 percpu_ref_is_zero(&q->q_usage_counter),
113 timeout);
114}
115EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 116
f3af020b
TH
117/*
118 * Guarantee no request is in use, so we can change any data structure of
119 * the queue afterward.
120 */
3ef28e83 121void blk_freeze_queue(struct request_queue *q)
f3af020b 122{
3ef28e83
DW
123 /*
124 * In the !blk_mq case we are only calling this to kill the
125 * q_usage_counter, otherwise this increases the freeze depth
126 * and waits for it to return to zero. For this reason there is
127 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
128 * exported to drivers as the only user for unfreeze is blk_mq.
129 */
1671d522 130 blk_freeze_queue_start(q);
f3af020b
TH
131 blk_mq_freeze_queue_wait(q);
132}
3ef28e83
DW
133
134void blk_mq_freeze_queue(struct request_queue *q)
135{
136 /*
137 * ...just an alias to keep freeze and unfreeze actions balanced
138 * in the blk_mq_* namespace
139 */
140 blk_freeze_queue(q);
141}
c761d96b 142EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 143
b4c6a028 144void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 145{
4ecd4fef 146 int freeze_depth;
320ae51f 147
4ecd4fef
CH
148 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
149 WARN_ON_ONCE(freeze_depth < 0);
150 if (!freeze_depth) {
3ef28e83 151 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 152 wake_up_all(&q->mq_freeze_wq);
add703fd 153 }
320ae51f 154}
b4c6a028 155EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 156
6a83e74d
BVA
157/**
158 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
159 * @q: request queue.
160 *
161 * Note: this function does not prevent that the struct request end_io()
162 * callback function is invoked. Additionally, it is not prevented that
163 * new queue_rq() calls occur unless the queue has been stopped first.
164 */
165void blk_mq_quiesce_queue(struct request_queue *q)
166{
167 struct blk_mq_hw_ctx *hctx;
168 unsigned int i;
169 bool rcu = false;
170
2719aa21 171 __blk_mq_stop_hw_queues(q, true);
6a83e74d
BVA
172
173 queue_for_each_hw_ctx(q, hctx, i) {
174 if (hctx->flags & BLK_MQ_F_BLOCKING)
175 synchronize_srcu(&hctx->queue_rq_srcu);
176 else
177 rcu = true;
178 }
179 if (rcu)
180 synchronize_rcu();
181}
182EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
183
e4e73913
ML
184/*
185 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
186 * @q: request queue.
187 *
188 * This function recovers queue into the state before quiescing
189 * which is done by blk_mq_quiesce_queue.
190 */
191void blk_mq_unquiesce_queue(struct request_queue *q)
192{
193 blk_mq_start_stopped_hw_queues(q, true);
194}
195EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
196
aed3ea94
JA
197void blk_mq_wake_waiters(struct request_queue *q)
198{
199 struct blk_mq_hw_ctx *hctx;
200 unsigned int i;
201
202 queue_for_each_hw_ctx(q, hctx, i)
203 if (blk_mq_hw_queue_mapped(hctx))
204 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
205
206 /*
207 * If we are called because the queue has now been marked as
208 * dying, we need to ensure that processes currently waiting on
209 * the queue are notified as well.
210 */
211 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
212}
213
320ae51f
JA
214bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
215{
216 return blk_mq_has_free_tags(hctx->tags);
217}
218EXPORT_SYMBOL(blk_mq_can_queue);
219
e4cdf1a1
CH
220static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
221 unsigned int tag, unsigned int op)
320ae51f 222{
e4cdf1a1
CH
223 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
224 struct request *rq = tags->static_rqs[tag];
225
226 if (data->flags & BLK_MQ_REQ_INTERNAL) {
227 rq->tag = -1;
228 rq->internal_tag = tag;
229 } else {
230 if (blk_mq_tag_busy(data->hctx)) {
231 rq->rq_flags = RQF_MQ_INFLIGHT;
232 atomic_inc(&data->hctx->nr_active);
233 }
234 rq->tag = tag;
235 rq->internal_tag = -1;
236 data->hctx->tags->rqs[rq->tag] = rq;
237 }
238
af76e555
CH
239 INIT_LIST_HEAD(&rq->queuelist);
240 /* csd/requeue_work/fifo_time is initialized before use */
e4cdf1a1
CH
241 rq->q = data->q;
242 rq->mq_ctx = data->ctx;
ef295ecf 243 rq->cmd_flags = op;
e4cdf1a1 244 if (blk_queue_io_stat(data->q))
e8064021 245 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
246 /* do not touch atomic flags, it needs atomic ops against the timer */
247 rq->cpu = -1;
af76e555
CH
248 INIT_HLIST_NODE(&rq->hash);
249 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
250 rq->rq_disk = NULL;
251 rq->part = NULL;
3ee32372 252 rq->start_time = jiffies;
af76e555
CH
253#ifdef CONFIG_BLK_CGROUP
254 rq->rl = NULL;
0fec08b4 255 set_start_time_ns(rq);
af76e555
CH
256 rq->io_start_time_ns = 0;
257#endif
258 rq->nr_phys_segments = 0;
259#if defined(CONFIG_BLK_DEV_INTEGRITY)
260 rq->nr_integrity_segments = 0;
261#endif
af76e555
CH
262 rq->special = NULL;
263 /* tag was already set */
af76e555 264 rq->extra_len = 0;
af76e555 265
af76e555 266 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
267 rq->timeout = 0;
268
af76e555
CH
269 rq->end_io = NULL;
270 rq->end_io_data = NULL;
271 rq->next_rq = NULL;
272
e4cdf1a1
CH
273 data->ctx->rq_dispatched[op_is_sync(op)]++;
274 return rq;
5dee8577
CH
275}
276
d2c0d383
CH
277static struct request *blk_mq_get_request(struct request_queue *q,
278 struct bio *bio, unsigned int op,
279 struct blk_mq_alloc_data *data)
280{
281 struct elevator_queue *e = q->elevator;
282 struct request *rq;
e4cdf1a1 283 unsigned int tag;
d2c0d383
CH
284
285 blk_queue_enter_live(q);
286 data->q = q;
287 if (likely(!data->ctx))
288 data->ctx = blk_mq_get_ctx(q);
289 if (likely(!data->hctx))
290 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
291
292 if (e) {
293 data->flags |= BLK_MQ_REQ_INTERNAL;
294
295 /*
296 * Flush requests are special and go directly to the
297 * dispatch list.
298 */
5bbf4e5a
CH
299 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
300 e->type->ops.mq.limit_depth(op, data);
d2c0d383
CH
301 }
302
e4cdf1a1
CH
303 tag = blk_mq_get_tag(data);
304 if (tag == BLK_MQ_TAG_FAIL) {
037cebb8
CH
305 blk_queue_exit(q);
306 return NULL;
d2c0d383
CH
307 }
308
e4cdf1a1 309 rq = blk_mq_rq_ctx_init(data, tag, op);
037cebb8
CH
310 if (!op_is_flush(op)) {
311 rq->elv.icq = NULL;
5bbf4e5a 312 if (e && e->type->ops.mq.prepare_request) {
44e8c2bf
CH
313 if (e->type->icq_cache && rq_ioc(bio))
314 blk_mq_sched_assign_ioc(rq, bio);
315
5bbf4e5a
CH
316 e->type->ops.mq.prepare_request(rq, bio);
317 rq->rq_flags |= RQF_ELVPRIV;
44e8c2bf 318 }
037cebb8
CH
319 }
320 data->hctx->queued++;
321 return rq;
d2c0d383
CH
322}
323
6f3b0e8b
CH
324struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
325 unsigned int flags)
320ae51f 326{
5a797e00 327 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 328 struct request *rq;
a492f075 329 int ret;
320ae51f 330
6f3b0e8b 331 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
a492f075
JL
332 if (ret)
333 return ERR_PTR(ret);
320ae51f 334
d2c0d383 335 rq = blk_mq_get_request(q, NULL, rw, &alloc_data);
841bac2c 336
bd166ef1
JA
337 blk_mq_put_ctx(alloc_data.ctx);
338 blk_queue_exit(q);
339
340 if (!rq)
a492f075 341 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3
CH
342
343 rq->__data_len = 0;
344 rq->__sector = (sector_t) -1;
345 rq->bio = rq->biotail = NULL;
320ae51f
JA
346 return rq;
347}
4bb659b1 348EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 349
1f5bd336
ML
350struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
351 unsigned int flags, unsigned int hctx_idx)
352{
6d2809d5 353 struct blk_mq_alloc_data alloc_data = { .flags = flags };
1f5bd336 354 struct request *rq;
6d2809d5 355 unsigned int cpu;
1f5bd336
ML
356 int ret;
357
358 /*
359 * If the tag allocator sleeps we could get an allocation for a
360 * different hardware context. No need to complicate the low level
361 * allocator for this for the rare use case of a command tied to
362 * a specific queue.
363 */
364 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
365 return ERR_PTR(-EINVAL);
366
367 if (hctx_idx >= q->nr_hw_queues)
368 return ERR_PTR(-EIO);
369
370 ret = blk_queue_enter(q, true);
371 if (ret)
372 return ERR_PTR(ret);
373
c8712c6a
CH
374 /*
375 * Check if the hardware context is actually mapped to anything.
376 * If not tell the caller that it should skip this queue.
377 */
6d2809d5
OS
378 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
379 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
380 blk_queue_exit(q);
381 return ERR_PTR(-EXDEV);
c8712c6a 382 }
6d2809d5
OS
383 cpu = cpumask_first(alloc_data.hctx->cpumask);
384 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 385
d2c0d383 386 rq = blk_mq_get_request(q, NULL, rw, &alloc_data);
c8712c6a 387
c8712c6a 388 blk_queue_exit(q);
6d2809d5
OS
389
390 if (!rq)
391 return ERR_PTR(-EWOULDBLOCK);
392
393 return rq;
1f5bd336
ML
394}
395EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
396
6af54051 397void blk_mq_free_request(struct request *rq)
320ae51f 398{
320ae51f 399 struct request_queue *q = rq->q;
6af54051
CH
400 struct elevator_queue *e = q->elevator;
401 struct blk_mq_ctx *ctx = rq->mq_ctx;
402 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
403 const int sched_tag = rq->internal_tag;
404
5bbf4e5a 405 if (rq->rq_flags & RQF_ELVPRIV) {
6af54051
CH
406 if (e && e->type->ops.mq.finish_request)
407 e->type->ops.mq.finish_request(rq);
408 if (rq->elv.icq) {
409 put_io_context(rq->elv.icq->ioc);
410 rq->elv.icq = NULL;
411 }
412 }
320ae51f 413
6af54051 414 ctx->rq_completed[rq_is_sync(rq)]++;
e8064021 415 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 416 atomic_dec(&hctx->nr_active);
87760e5e
JA
417
418 wbt_done(q->rq_wb, &rq->issue_stat);
e8064021 419 rq->rq_flags = 0;
0d2602ca 420
af76e555 421 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 422 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
bd166ef1
JA
423 if (rq->tag != -1)
424 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
425 if (sched_tag != -1)
c05f8525 426 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
6d8c6c0f 427 blk_mq_sched_restart(hctx);
3ef28e83 428 blk_queue_exit(q);
320ae51f 429}
1a3b595a 430EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 431
2a842aca 432inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
320ae51f 433{
0d11e6ac
ML
434 blk_account_io_done(rq);
435
91b63639 436 if (rq->end_io) {
87760e5e 437 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 438 rq->end_io(rq, error);
91b63639
CH
439 } else {
440 if (unlikely(blk_bidi_rq(rq)))
441 blk_mq_free_request(rq->next_rq);
320ae51f 442 blk_mq_free_request(rq);
91b63639 443 }
320ae51f 444}
c8a446ad 445EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 446
2a842aca 447void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
448{
449 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
450 BUG();
c8a446ad 451 __blk_mq_end_request(rq, error);
63151a44 452}
c8a446ad 453EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 454
30a91cb4 455static void __blk_mq_complete_request_remote(void *data)
320ae51f 456{
3d6efbf6 457 struct request *rq = data;
320ae51f 458
30a91cb4 459 rq->q->softirq_done_fn(rq);
320ae51f 460}
320ae51f 461
453f8341 462static void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
463{
464 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 465 bool shared = false;
320ae51f
JA
466 int cpu;
467
453f8341
CH
468 if (rq->internal_tag != -1)
469 blk_mq_sched_completed_request(rq);
470 if (rq->rq_flags & RQF_STATS) {
471 blk_mq_poll_stats_start(rq->q);
472 blk_stat_add(rq);
473 }
474
38535201 475 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
476 rq->q->softirq_done_fn(rq);
477 return;
478 }
320ae51f
JA
479
480 cpu = get_cpu();
38535201
CH
481 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
482 shared = cpus_share_cache(cpu, ctx->cpu);
483
484 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 485 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
486 rq->csd.info = rq;
487 rq->csd.flags = 0;
c46fff2a 488 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 489 } else {
30a91cb4 490 rq->q->softirq_done_fn(rq);
3d6efbf6 491 }
320ae51f
JA
492 put_cpu();
493}
30a91cb4
CH
494
495/**
496 * blk_mq_complete_request - end I/O on a request
497 * @rq: the request being processed
498 *
499 * Description:
500 * Ends all I/O on a request. It does not handle partial completions.
501 * The actual completion happens out-of-order, through a IPI handler.
502 **/
08e0029a 503void blk_mq_complete_request(struct request *rq)
30a91cb4 504{
95f09684
JA
505 struct request_queue *q = rq->q;
506
507 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 508 return;
08e0029a 509 if (!blk_mark_rq_complete(rq))
ed851860 510 __blk_mq_complete_request(rq);
30a91cb4
CH
511}
512EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 513
973c0191
KB
514int blk_mq_request_started(struct request *rq)
515{
516 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
517}
518EXPORT_SYMBOL_GPL(blk_mq_request_started);
519
e2490073 520void blk_mq_start_request(struct request *rq)
320ae51f
JA
521{
522 struct request_queue *q = rq->q;
523
bd166ef1
JA
524 blk_mq_sched_started_request(rq);
525
320ae51f
JA
526 trace_block_rq_issue(q, rq);
527
cf43e6be 528 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
88eeca49 529 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
cf43e6be 530 rq->rq_flags |= RQF_STATS;
87760e5e 531 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
532 }
533
2b8393b4 534 blk_add_timer(rq);
87ee7b11 535
538b7534
JA
536 /*
537 * Ensure that ->deadline is visible before set the started
538 * flag and clear the completed flag.
539 */
540 smp_mb__before_atomic();
541
87ee7b11
JA
542 /*
543 * Mark us as started and clear complete. Complete might have been
544 * set if requeue raced with timeout, which then marked it as
545 * complete. So be sure to clear complete again when we start
546 * the request, otherwise we'll ignore the completion event.
547 */
4b570521
JA
548 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
549 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
550 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
551 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
552
553 if (q->dma_drain_size && blk_rq_bytes(rq)) {
554 /*
555 * Make sure space for the drain appears. We know we can do
556 * this because max_hw_segments has been adjusted to be one
557 * fewer than the device can handle.
558 */
559 rq->nr_phys_segments++;
560 }
320ae51f 561}
e2490073 562EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 563
d9d149a3
ML
564/*
565 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
48b99c9d 566 * flag isn't set yet, so there may be race with timeout handler,
d9d149a3
ML
567 * but given rq->deadline is just set in .queue_rq() under
568 * this situation, the race won't be possible in reality because
569 * rq->timeout should be set as big enough to cover the window
570 * between blk_mq_start_request() called from .queue_rq() and
571 * clearing REQ_ATOM_STARTED here.
572 */
ed0791b2 573static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
574{
575 struct request_queue *q = rq->q;
576
577 trace_block_rq_requeue(q, rq);
87760e5e 578 wbt_requeue(q->rq_wb, &rq->issue_stat);
bd166ef1 579 blk_mq_sched_requeue_request(rq);
49f5baa5 580
e2490073
CH
581 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
582 if (q->dma_drain_size && blk_rq_bytes(rq))
583 rq->nr_phys_segments--;
584 }
320ae51f
JA
585}
586
2b053aca 587void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 588{
ed0791b2 589 __blk_mq_requeue_request(rq);
ed0791b2 590
ed0791b2 591 BUG_ON(blk_queued_rq(rq));
2b053aca 592 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
593}
594EXPORT_SYMBOL(blk_mq_requeue_request);
595
6fca6a61
CH
596static void blk_mq_requeue_work(struct work_struct *work)
597{
598 struct request_queue *q =
2849450a 599 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
600 LIST_HEAD(rq_list);
601 struct request *rq, *next;
602 unsigned long flags;
603
604 spin_lock_irqsave(&q->requeue_lock, flags);
605 list_splice_init(&q->requeue_list, &rq_list);
606 spin_unlock_irqrestore(&q->requeue_lock, flags);
607
608 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 609 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
610 continue;
611
e8064021 612 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 613 list_del_init(&rq->queuelist);
bd6737f1 614 blk_mq_sched_insert_request(rq, true, false, false, true);
6fca6a61
CH
615 }
616
617 while (!list_empty(&rq_list)) {
618 rq = list_entry(rq_list.next, struct request, queuelist);
619 list_del_init(&rq->queuelist);
bd6737f1 620 blk_mq_sched_insert_request(rq, false, false, false, true);
6fca6a61
CH
621 }
622
52d7f1b5 623 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
624}
625
2b053aca
BVA
626void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
627 bool kick_requeue_list)
6fca6a61
CH
628{
629 struct request_queue *q = rq->q;
630 unsigned long flags;
631
632 /*
633 * We abuse this flag that is otherwise used by the I/O scheduler to
634 * request head insertation from the workqueue.
635 */
e8064021 636 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
637
638 spin_lock_irqsave(&q->requeue_lock, flags);
639 if (at_head) {
e8064021 640 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
641 list_add(&rq->queuelist, &q->requeue_list);
642 } else {
643 list_add_tail(&rq->queuelist, &q->requeue_list);
644 }
645 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
646
647 if (kick_requeue_list)
648 blk_mq_kick_requeue_list(q);
6fca6a61
CH
649}
650EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
651
652void blk_mq_kick_requeue_list(struct request_queue *q)
653{
2849450a 654 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
655}
656EXPORT_SYMBOL(blk_mq_kick_requeue_list);
657
2849450a
MS
658void blk_mq_delay_kick_requeue_list(struct request_queue *q,
659 unsigned long msecs)
660{
661 kblockd_schedule_delayed_work(&q->requeue_work,
662 msecs_to_jiffies(msecs));
663}
664EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
665
0e62f51f
JA
666struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
667{
88c7b2b7
JA
668 if (tag < tags->nr_tags) {
669 prefetch(tags->rqs[tag]);
4ee86bab 670 return tags->rqs[tag];
88c7b2b7 671 }
4ee86bab
HR
672
673 return NULL;
24d2f903
CH
674}
675EXPORT_SYMBOL(blk_mq_tag_to_rq);
676
320ae51f 677struct blk_mq_timeout_data {
46f92d42
CH
678 unsigned long next;
679 unsigned int next_set;
320ae51f
JA
680};
681
90415837 682void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 683{
f8a5b122 684 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 685 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
686
687 /*
688 * We know that complete is set at this point. If STARTED isn't set
689 * anymore, then the request isn't active and the "timeout" should
690 * just be ignored. This can happen due to the bitflag ordering.
691 * Timeout first checks if STARTED is set, and if it is, assumes
692 * the request is active. But if we race with completion, then
48b99c9d 693 * both flags will get cleared. So check here again, and ignore
87ee7b11
JA
694 * a timeout event with a request that isn't active.
695 */
46f92d42
CH
696 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
697 return;
87ee7b11 698
46f92d42 699 if (ops->timeout)
0152fb6b 700 ret = ops->timeout(req, reserved);
46f92d42
CH
701
702 switch (ret) {
703 case BLK_EH_HANDLED:
704 __blk_mq_complete_request(req);
705 break;
706 case BLK_EH_RESET_TIMER:
707 blk_add_timer(req);
708 blk_clear_rq_complete(req);
709 break;
710 case BLK_EH_NOT_HANDLED:
711 break;
712 default:
713 printk(KERN_ERR "block: bad eh return: %d\n", ret);
714 break;
715 }
87ee7b11 716}
5b3f25fc 717
81481eb4
CH
718static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
719 struct request *rq, void *priv, bool reserved)
720{
721 struct blk_mq_timeout_data *data = priv;
87ee7b11 722
95a49603 723 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
46f92d42 724 return;
87ee7b11 725
d9d149a3
ML
726 /*
727 * The rq being checked may have been freed and reallocated
728 * out already here, we avoid this race by checking rq->deadline
729 * and REQ_ATOM_COMPLETE flag together:
730 *
731 * - if rq->deadline is observed as new value because of
732 * reusing, the rq won't be timed out because of timing.
733 * - if rq->deadline is observed as previous value,
734 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
735 * because we put a barrier between setting rq->deadline
736 * and clearing the flag in blk_mq_start_request(), so
737 * this rq won't be timed out too.
738 */
46f92d42
CH
739 if (time_after_eq(jiffies, rq->deadline)) {
740 if (!blk_mark_rq_complete(rq))
0152fb6b 741 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
742 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
743 data->next = rq->deadline;
744 data->next_set = 1;
745 }
87ee7b11
JA
746}
747
287922eb 748static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 749{
287922eb
CH
750 struct request_queue *q =
751 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
752 struct blk_mq_timeout_data data = {
753 .next = 0,
754 .next_set = 0,
755 };
81481eb4 756 int i;
320ae51f 757
71f79fb3
GKB
758 /* A deadlock might occur if a request is stuck requiring a
759 * timeout at the same time a queue freeze is waiting
760 * completion, since the timeout code would not be able to
761 * acquire the queue reference here.
762 *
763 * That's why we don't use blk_queue_enter here; instead, we use
764 * percpu_ref_tryget directly, because we need to be able to
765 * obtain a reference even in the short window between the queue
766 * starting to freeze, by dropping the first reference in
1671d522 767 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
768 * consumed, marked by the instant q_usage_counter reaches
769 * zero.
770 */
771 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
772 return;
773
0bf6cd5b 774 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 775
81481eb4
CH
776 if (data.next_set) {
777 data.next = blk_rq_timeout(round_jiffies_up(data.next));
778 mod_timer(&q->timeout, data.next);
0d2602ca 779 } else {
0bf6cd5b
CH
780 struct blk_mq_hw_ctx *hctx;
781
f054b56c
ML
782 queue_for_each_hw_ctx(q, hctx, i) {
783 /* the hctx may be unmapped, so check it here */
784 if (blk_mq_hw_queue_mapped(hctx))
785 blk_mq_tag_idle(hctx);
786 }
0d2602ca 787 }
287922eb 788 blk_queue_exit(q);
320ae51f
JA
789}
790
88459642
OS
791struct flush_busy_ctx_data {
792 struct blk_mq_hw_ctx *hctx;
793 struct list_head *list;
794};
795
796static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
797{
798 struct flush_busy_ctx_data *flush_data = data;
799 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
800 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
801
802 sbitmap_clear_bit(sb, bitnr);
803 spin_lock(&ctx->lock);
804 list_splice_tail_init(&ctx->rq_list, flush_data->list);
805 spin_unlock(&ctx->lock);
806 return true;
807}
808
1429d7c9
JA
809/*
810 * Process software queues that have been marked busy, splicing them
811 * to the for-dispatch
812 */
2c3ad667 813void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 814{
88459642
OS
815 struct flush_busy_ctx_data data = {
816 .hctx = hctx,
817 .list = list,
818 };
1429d7c9 819
88459642 820 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 821}
2c3ad667 822EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 823
703fd1c0
JA
824static inline unsigned int queued_to_index(unsigned int queued)
825{
826 if (!queued)
827 return 0;
1429d7c9 828
703fd1c0 829 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
830}
831
bd6737f1
JA
832bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
833 bool wait)
bd166ef1
JA
834{
835 struct blk_mq_alloc_data data = {
836 .q = rq->q,
bd166ef1
JA
837 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
838 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
839 };
840
5feeacdd
JA
841 might_sleep_if(wait);
842
81380ca1
OS
843 if (rq->tag != -1)
844 goto done;
bd166ef1 845
415b806d
SG
846 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
847 data.flags |= BLK_MQ_REQ_RESERVED;
848
bd166ef1
JA
849 rq->tag = blk_mq_get_tag(&data);
850 if (rq->tag >= 0) {
200e86b3
JA
851 if (blk_mq_tag_busy(data.hctx)) {
852 rq->rq_flags |= RQF_MQ_INFLIGHT;
853 atomic_inc(&data.hctx->nr_active);
854 }
bd166ef1 855 data.hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
856 }
857
81380ca1
OS
858done:
859 if (hctx)
860 *hctx = data.hctx;
861 return rq->tag != -1;
bd166ef1
JA
862}
863
113285b4
JA
864static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
865 struct request *rq)
99cf1dc5 866{
99cf1dc5
JA
867 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
868 rq->tag = -1;
869
870 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
871 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
872 atomic_dec(&hctx->nr_active);
873 }
874}
875
113285b4
JA
876static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
877 struct request *rq)
878{
879 if (rq->tag == -1 || rq->internal_tag == -1)
880 return;
881
882 __blk_mq_put_driver_tag(hctx, rq);
883}
884
885static void blk_mq_put_driver_tag(struct request *rq)
886{
887 struct blk_mq_hw_ctx *hctx;
888
889 if (rq->tag == -1 || rq->internal_tag == -1)
890 return;
891
892 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
893 __blk_mq_put_driver_tag(hctx, rq);
894}
895
bd166ef1
JA
896/*
897 * If we fail getting a driver tag because all the driver tags are already
898 * assigned and on the dispatch list, BUT the first entry does not have a
899 * tag, then we could deadlock. For that case, move entries with assigned
900 * driver tags to the front, leaving the set of tagged requests in the
901 * same order, and the untagged set in the same order.
902 */
903static bool reorder_tags_to_front(struct list_head *list)
904{
905 struct request *rq, *tmp, *first = NULL;
906
907 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
908 if (rq == first)
909 break;
910 if (rq->tag != -1) {
911 list_move(&rq->queuelist, list);
912 if (!first)
913 first = rq;
914 }
915 }
916
917 return first != NULL;
918}
919
da55f2cc
OS
920static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
921 void *key)
922{
923 struct blk_mq_hw_ctx *hctx;
924
925 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
926
927 list_del(&wait->task_list);
928 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
929 blk_mq_run_hw_queue(hctx, true);
930 return 1;
931}
932
933static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
934{
935 struct sbq_wait_state *ws;
936
937 /*
938 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
939 * The thread which wins the race to grab this bit adds the hardware
940 * queue to the wait queue.
941 */
942 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
943 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
944 return false;
945
946 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
947 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
948
949 /*
950 * As soon as this returns, it's no longer safe to fiddle with
951 * hctx->dispatch_wait, since a completion can wake up the wait queue
952 * and unlock the bit.
953 */
954 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
955 return true;
956}
957
81380ca1 958bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
320ae51f 959{
81380ca1 960 struct blk_mq_hw_ctx *hctx;
320ae51f 961 struct request *rq;
fc17b653 962 int errors, queued;
320ae51f 963
81380ca1
OS
964 if (list_empty(list))
965 return false;
966
320ae51f
JA
967 /*
968 * Now process all the entries, sending them to the driver.
969 */
93efe981 970 errors = queued = 0;
81380ca1 971 do {
74c45052 972 struct blk_mq_queue_data bd;
fc17b653 973 blk_status_t ret;
320ae51f 974
f04c3df3 975 rq = list_first_entry(list, struct request, queuelist);
bd166ef1
JA
976 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
977 if (!queued && reorder_tags_to_front(list))
978 continue;
3c782d67
JA
979
980 /*
da55f2cc
OS
981 * The initial allocation attempt failed, so we need to
982 * rerun the hardware queue when a tag is freed.
3c782d67 983 */
807b1041
OS
984 if (!blk_mq_dispatch_wait_add(hctx))
985 break;
986
987 /*
988 * It's possible that a tag was freed in the window
989 * between the allocation failure and adding the
990 * hardware queue to the wait queue.
991 */
992 if (!blk_mq_get_driver_tag(rq, &hctx, false))
3c782d67 993 break;
bd166ef1 994 }
da55f2cc 995
320ae51f 996 list_del_init(&rq->queuelist);
320ae51f 997
74c45052 998 bd.rq = rq;
113285b4
JA
999
1000 /*
1001 * Flag last if we have no more requests, or if we have more
1002 * but can't assign a driver tag to it.
1003 */
1004 if (list_empty(list))
1005 bd.last = true;
1006 else {
1007 struct request *nxt;
1008
1009 nxt = list_first_entry(list, struct request, queuelist);
1010 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1011 }
74c45052
JA
1012
1013 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653 1014 if (ret == BLK_STS_RESOURCE) {
113285b4 1015 blk_mq_put_driver_tag_hctx(hctx, rq);
f04c3df3 1016 list_add(&rq->queuelist, list);
ed0791b2 1017 __blk_mq_requeue_request(rq);
320ae51f 1018 break;
fc17b653
CH
1019 }
1020
1021 if (unlikely(ret != BLK_STS_OK)) {
93efe981 1022 errors++;
2a842aca 1023 blk_mq_end_request(rq, BLK_STS_IOERR);
fc17b653 1024 continue;
320ae51f
JA
1025 }
1026
fc17b653 1027 queued++;
81380ca1 1028 } while (!list_empty(list));
320ae51f 1029
703fd1c0 1030 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1031
1032 /*
1033 * Any items that need requeuing? Stuff them into hctx->dispatch,
1034 * that is where we will continue on next queue run.
1035 */
f04c3df3 1036 if (!list_empty(list)) {
113285b4 1037 /*
710c785f
BVA
1038 * If an I/O scheduler has been configured and we got a driver
1039 * tag for the next request already, free it again.
113285b4
JA
1040 */
1041 rq = list_first_entry(list, struct request, queuelist);
1042 blk_mq_put_driver_tag(rq);
1043
320ae51f 1044 spin_lock(&hctx->lock);
c13660a0 1045 list_splice_init(list, &hctx->dispatch);
320ae51f 1046 spin_unlock(&hctx->lock);
f04c3df3 1047
9ba52e58 1048 /*
710c785f
BVA
1049 * If SCHED_RESTART was set by the caller of this function and
1050 * it is no longer set that means that it was cleared by another
1051 * thread and hence that a queue rerun is needed.
9ba52e58 1052 *
710c785f
BVA
1053 * If TAG_WAITING is set that means that an I/O scheduler has
1054 * been configured and another thread is waiting for a driver
1055 * tag. To guarantee fairness, do not rerun this hardware queue
1056 * but let the other thread grab the driver tag.
bd166ef1 1057 *
710c785f
BVA
1058 * If no I/O scheduler has been configured it is possible that
1059 * the hardware queue got stopped and restarted before requests
1060 * were pushed back onto the dispatch list. Rerun the queue to
1061 * avoid starvation. Notes:
1062 * - blk_mq_run_hw_queue() checks whether or not a queue has
1063 * been stopped before rerunning a queue.
1064 * - Some but not all block drivers stop a queue before
fc17b653 1065 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1066 * and dm-rq.
bd166ef1 1067 */
da55f2cc
OS
1068 if (!blk_mq_sched_needs_restart(hctx) &&
1069 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
bd166ef1 1070 blk_mq_run_hw_queue(hctx, true);
320ae51f 1071 }
f04c3df3 1072
93efe981 1073 return (queued + errors) != 0;
f04c3df3
JA
1074}
1075
6a83e74d
BVA
1076static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1077{
1078 int srcu_idx;
1079
1080 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1081 cpu_online(hctx->next_cpu));
1082
1083 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1084 rcu_read_lock();
bd166ef1 1085 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1086 rcu_read_unlock();
1087 } else {
bf4907c0
JA
1088 might_sleep();
1089
6a83e74d 1090 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
bd166ef1 1091 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1092 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1093 }
1094}
1095
506e931f
JA
1096/*
1097 * It'd be great if the workqueue API had a way to pass
1098 * in a mask and had some smarts for more clever placement.
1099 * For now we just round-robin here, switching for every
1100 * BLK_MQ_CPU_WORK_BATCH queued items.
1101 */
1102static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1103{
b657d7e6
CH
1104 if (hctx->queue->nr_hw_queues == 1)
1105 return WORK_CPU_UNBOUND;
506e931f
JA
1106
1107 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1108 int next_cpu;
506e931f
JA
1109
1110 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1111 if (next_cpu >= nr_cpu_ids)
1112 next_cpu = cpumask_first(hctx->cpumask);
1113
1114 hctx->next_cpu = next_cpu;
1115 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1116 }
1117
b657d7e6 1118 return hctx->next_cpu;
506e931f
JA
1119}
1120
7587a5ae
BVA
1121static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1122 unsigned long msecs)
320ae51f 1123{
5d1b25c1
BVA
1124 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1125 !blk_mq_hw_queue_mapped(hctx)))
320ae51f
JA
1126 return;
1127
1b792f2f 1128 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1129 int cpu = get_cpu();
1130 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1131 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1132 put_cpu();
398205b8
PB
1133 return;
1134 }
e4043dcf 1135
2a90d4aa 1136 put_cpu();
e4043dcf 1137 }
398205b8 1138
9f993737
JA
1139 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1140 &hctx->run_work,
1141 msecs_to_jiffies(msecs));
7587a5ae
BVA
1142}
1143
1144void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1145{
1146 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1147}
1148EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1149
1150void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1151{
1152 __blk_mq_delay_run_hw_queue(hctx, async, 0);
320ae51f 1153}
5b727272 1154EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 1155
b94ec296 1156void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1157{
1158 struct blk_mq_hw_ctx *hctx;
1159 int i;
1160
1161 queue_for_each_hw_ctx(q, hctx, i) {
bd166ef1 1162 if (!blk_mq_hctx_has_pending(hctx) ||
5d1b25c1 1163 blk_mq_hctx_stopped(hctx))
320ae51f
JA
1164 continue;
1165
b94ec296 1166 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1167 }
1168}
b94ec296 1169EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1170
fd001443
BVA
1171/**
1172 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1173 * @q: request queue.
1174 *
1175 * The caller is responsible for serializing this function against
1176 * blk_mq_{start,stop}_hw_queue().
1177 */
1178bool blk_mq_queue_stopped(struct request_queue *q)
1179{
1180 struct blk_mq_hw_ctx *hctx;
1181 int i;
1182
1183 queue_for_each_hw_ctx(q, hctx, i)
1184 if (blk_mq_hctx_stopped(hctx))
1185 return true;
1186
1187 return false;
1188}
1189EXPORT_SYMBOL(blk_mq_queue_stopped);
1190
2719aa21 1191static void __blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx, bool sync)
320ae51f 1192{
2719aa21
JA
1193 if (sync)
1194 cancel_delayed_work_sync(&hctx->run_work);
1195 else
1196 cancel_delayed_work(&hctx->run_work);
1197
320ae51f
JA
1198 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1199}
2719aa21
JA
1200
1201void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1202{
1203 __blk_mq_stop_hw_queue(hctx, false);
1204}
320ae51f
JA
1205EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1206
ebd76857 1207static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync)
280d45f6
CH
1208{
1209 struct blk_mq_hw_ctx *hctx;
1210 int i;
1211
1212 queue_for_each_hw_ctx(q, hctx, i)
2719aa21
JA
1213 __blk_mq_stop_hw_queue(hctx, sync);
1214}
1215
1216void blk_mq_stop_hw_queues(struct request_queue *q)
1217{
1218 __blk_mq_stop_hw_queues(q, false);
280d45f6
CH
1219}
1220EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1221
320ae51f
JA
1222void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1223{
1224 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1225
0ffbce80 1226 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1227}
1228EXPORT_SYMBOL(blk_mq_start_hw_queue);
1229
2f268556
CH
1230void blk_mq_start_hw_queues(struct request_queue *q)
1231{
1232 struct blk_mq_hw_ctx *hctx;
1233 int i;
1234
1235 queue_for_each_hw_ctx(q, hctx, i)
1236 blk_mq_start_hw_queue(hctx);
1237}
1238EXPORT_SYMBOL(blk_mq_start_hw_queues);
1239
ae911c5e
JA
1240void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1241{
1242 if (!blk_mq_hctx_stopped(hctx))
1243 return;
1244
1245 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1246 blk_mq_run_hw_queue(hctx, async);
1247}
1248EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1249
1b4a3258 1250void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1251{
1252 struct blk_mq_hw_ctx *hctx;
1253 int i;
1254
ae911c5e
JA
1255 queue_for_each_hw_ctx(q, hctx, i)
1256 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1257}
1258EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1259
70f4db63 1260static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1261{
1262 struct blk_mq_hw_ctx *hctx;
1263
9f993737 1264 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 1265
21c6e939
JA
1266 /*
1267 * If we are stopped, don't run the queue. The exception is if
1268 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1269 * the STOPPED bit and run it.
1270 */
1271 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1272 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1273 return;
7587a5ae 1274
21c6e939
JA
1275 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1276 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1277 }
7587a5ae
BVA
1278
1279 __blk_mq_run_hw_queue(hctx);
1280}
1281
70f4db63
CH
1282
1283void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1284{
19c66e59
ML
1285 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1286 return;
70f4db63 1287
21c6e939
JA
1288 /*
1289 * Stop the hw queue, then modify currently delayed work.
1290 * This should prevent us from running the queue prematurely.
1291 * Mark the queue as auto-clearing STOPPED when it runs.
1292 */
7e79dadc 1293 blk_mq_stop_hw_queue(hctx);
21c6e939
JA
1294 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1295 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1296 &hctx->run_work,
1297 msecs_to_jiffies(msecs));
70f4db63
CH
1298}
1299EXPORT_SYMBOL(blk_mq_delay_queue);
1300
cfd0c552 1301static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1302 struct request *rq,
1303 bool at_head)
320ae51f 1304{
e57690fe
JA
1305 struct blk_mq_ctx *ctx = rq->mq_ctx;
1306
01b983c9
JA
1307 trace_block_rq_insert(hctx->queue, rq);
1308
72a0a36e
CH
1309 if (at_head)
1310 list_add(&rq->queuelist, &ctx->rq_list);
1311 else
1312 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1313}
4bb659b1 1314
2c3ad667
JA
1315void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1316 bool at_head)
cfd0c552
ML
1317{
1318 struct blk_mq_ctx *ctx = rq->mq_ctx;
1319
e57690fe 1320 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1321 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1322}
1323
bd166ef1
JA
1324void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1325 struct list_head *list)
320ae51f
JA
1326
1327{
320ae51f
JA
1328 /*
1329 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1330 * offline now
1331 */
1332 spin_lock(&ctx->lock);
1333 while (!list_empty(list)) {
1334 struct request *rq;
1335
1336 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1337 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1338 list_del_init(&rq->queuelist);
e57690fe 1339 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1340 }
cfd0c552 1341 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1342 spin_unlock(&ctx->lock);
320ae51f
JA
1343}
1344
1345static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1346{
1347 struct request *rqa = container_of(a, struct request, queuelist);
1348 struct request *rqb = container_of(b, struct request, queuelist);
1349
1350 return !(rqa->mq_ctx < rqb->mq_ctx ||
1351 (rqa->mq_ctx == rqb->mq_ctx &&
1352 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1353}
1354
1355void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1356{
1357 struct blk_mq_ctx *this_ctx;
1358 struct request_queue *this_q;
1359 struct request *rq;
1360 LIST_HEAD(list);
1361 LIST_HEAD(ctx_list);
1362 unsigned int depth;
1363
1364 list_splice_init(&plug->mq_list, &list);
1365
1366 list_sort(NULL, &list, plug_ctx_cmp);
1367
1368 this_q = NULL;
1369 this_ctx = NULL;
1370 depth = 0;
1371
1372 while (!list_empty(&list)) {
1373 rq = list_entry_rq(list.next);
1374 list_del_init(&rq->queuelist);
1375 BUG_ON(!rq->q);
1376 if (rq->mq_ctx != this_ctx) {
1377 if (this_ctx) {
bd166ef1
JA
1378 trace_block_unplug(this_q, depth, from_schedule);
1379 blk_mq_sched_insert_requests(this_q, this_ctx,
1380 &ctx_list,
1381 from_schedule);
320ae51f
JA
1382 }
1383
1384 this_ctx = rq->mq_ctx;
1385 this_q = rq->q;
1386 depth = 0;
1387 }
1388
1389 depth++;
1390 list_add_tail(&rq->queuelist, &ctx_list);
1391 }
1392
1393 /*
1394 * If 'this_ctx' is set, we know we have entries to complete
1395 * on 'ctx_list'. Do those.
1396 */
1397 if (this_ctx) {
bd166ef1
JA
1398 trace_block_unplug(this_q, depth, from_schedule);
1399 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1400 from_schedule);
320ae51f
JA
1401 }
1402}
1403
1404static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1405{
da8d7f07 1406 blk_init_request_from_bio(rq, bio);
4b570521 1407
6e85eaf3 1408 blk_account_io_start(rq, true);
320ae51f
JA
1409}
1410
274a5843
JA
1411static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1412{
1413 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1414 !blk_queue_nomerges(hctx->queue);
1415}
1416
ab42f35d
ML
1417static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1418 struct blk_mq_ctx *ctx,
1419 struct request *rq)
1420{
1421 spin_lock(&ctx->lock);
1422 __blk_mq_insert_request(hctx, rq, false);
1423 spin_unlock(&ctx->lock);
07068d5b 1424}
14ec77f3 1425
fd2d3326
JA
1426static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1427{
bd166ef1
JA
1428 if (rq->tag != -1)
1429 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1430
1431 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1432}
1433
d964f04a
ML
1434static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1435 struct request *rq,
1436 blk_qc_t *cookie, bool may_sleep)
f984df1f 1437{
f984df1f 1438 struct request_queue *q = rq->q;
f984df1f
SL
1439 struct blk_mq_queue_data bd = {
1440 .rq = rq,
d945a365 1441 .last = true,
f984df1f 1442 };
bd166ef1 1443 blk_qc_t new_cookie;
f06345ad 1444 blk_status_t ret;
d964f04a
ML
1445 bool run_queue = true;
1446
1447 if (blk_mq_hctx_stopped(hctx)) {
1448 run_queue = false;
1449 goto insert;
1450 }
f984df1f 1451
bd166ef1 1452 if (q->elevator)
2253efc8
BVA
1453 goto insert;
1454
d964f04a 1455 if (!blk_mq_get_driver_tag(rq, NULL, false))
bd166ef1
JA
1456 goto insert;
1457
1458 new_cookie = request_to_qc_t(hctx, rq);
1459
f984df1f
SL
1460 /*
1461 * For OK queue, we are done. For error, kill it. Any other
1462 * error (busy), just add it to our list as we previously
1463 * would have done
1464 */
1465 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653
CH
1466 switch (ret) {
1467 case BLK_STS_OK:
7b371636 1468 *cookie = new_cookie;
2253efc8 1469 return;
fc17b653
CH
1470 case BLK_STS_RESOURCE:
1471 __blk_mq_requeue_request(rq);
1472 goto insert;
1473 default:
7b371636 1474 *cookie = BLK_QC_T_NONE;
fc17b653 1475 blk_mq_end_request(rq, ret);
2253efc8 1476 return;
f984df1f 1477 }
7b371636 1478
2253efc8 1479insert:
d964f04a 1480 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
f984df1f
SL
1481}
1482
5eb6126e
CH
1483static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1484 struct request *rq, blk_qc_t *cookie)
1485{
1486 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1487 rcu_read_lock();
d964f04a 1488 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
5eb6126e
CH
1489 rcu_read_unlock();
1490 } else {
bf4907c0
JA
1491 unsigned int srcu_idx;
1492
1493 might_sleep();
1494
1495 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
d964f04a 1496 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
5eb6126e
CH
1497 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1498 }
1499}
1500
dece1635 1501static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1502{
ef295ecf 1503 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1504 const int is_flush_fua = op_is_flush(bio->bi_opf);
5a797e00 1505 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1506 struct request *rq;
5eb6126e 1507 unsigned int request_count = 0;
f984df1f 1508 struct blk_plug *plug;
5b3f341f 1509 struct request *same_queue_rq = NULL;
7b371636 1510 blk_qc_t cookie;
87760e5e 1511 unsigned int wb_acct;
07068d5b
JA
1512
1513 blk_queue_bounce(q, &bio);
1514
af67c31f 1515 blk_queue_split(q, &bio);
f36ea50c 1516
07068d5b 1517 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1518 bio_io_error(bio);
dece1635 1519 return BLK_QC_T_NONE;
07068d5b
JA
1520 }
1521
87c279e6
OS
1522 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1523 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1524 return BLK_QC_T_NONE;
f984df1f 1525
bd166ef1
JA
1526 if (blk_mq_sched_bio_merge(q, bio))
1527 return BLK_QC_T_NONE;
1528
87760e5e
JA
1529 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1530
bd166ef1
JA
1531 trace_block_getrq(q, bio, bio->bi_opf);
1532
d2c0d383 1533 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1534 if (unlikely(!rq)) {
1535 __wbt_done(q->rq_wb, wb_acct);
dece1635 1536 return BLK_QC_T_NONE;
87760e5e
JA
1537 }
1538
1539 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1540
fd2d3326 1541 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 1542
f984df1f 1543 plug = current->plug;
07068d5b 1544 if (unlikely(is_flush_fua)) {
f984df1f 1545 blk_mq_put_ctx(data.ctx);
07068d5b 1546 blk_mq_bio_to_request(rq, bio);
a4d907b6
CH
1547 if (q->elevator) {
1548 blk_mq_sched_insert_request(rq, false, true, true,
1549 true);
6a83e74d 1550 } else {
a4d907b6
CH
1551 blk_insert_flush(rq);
1552 blk_mq_run_hw_queue(data.hctx, true);
6a83e74d 1553 }
a4d907b6 1554 } else if (plug && q->nr_hw_queues == 1) {
600271d9
SL
1555 struct request *last = NULL;
1556
b00c53e8 1557 blk_mq_put_ctx(data.ctx);
e6c4438b 1558 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1559
1560 /*
1561 * @request_count may become stale because of schedule
1562 * out, so check the list again.
1563 */
1564 if (list_empty(&plug->mq_list))
1565 request_count = 0;
254d259d
CH
1566 else if (blk_queue_nomerges(q))
1567 request_count = blk_plug_queued_count(q);
1568
676d0607 1569 if (!request_count)
e6c4438b 1570 trace_block_plug(q);
600271d9
SL
1571 else
1572 last = list_entry_rq(plug->mq_list.prev);
b094f89c 1573
600271d9
SL
1574 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1575 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1576 blk_flush_plug_list(plug, false);
1577 trace_block_plug(q);
320ae51f 1578 }
b094f89c 1579
e6c4438b 1580 list_add_tail(&rq->queuelist, &plug->mq_list);
2299722c 1581 } else if (plug && !blk_queue_nomerges(q)) {
bd166ef1 1582 blk_mq_bio_to_request(rq, bio);
07068d5b 1583
07068d5b 1584 /*
6a83e74d 1585 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1586 * Otherwise the existing request in the plug list will be
1587 * issued. So the plug list will have one request at most
2299722c
CH
1588 * The plug list might get flushed before this. If that happens,
1589 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 1590 */
2299722c
CH
1591 if (list_empty(&plug->mq_list))
1592 same_queue_rq = NULL;
1593 if (same_queue_rq)
1594 list_del_init(&same_queue_rq->queuelist);
1595 list_add_tail(&rq->queuelist, &plug->mq_list);
1596
bf4907c0
JA
1597 blk_mq_put_ctx(data.ctx);
1598
dad7a3be
ML
1599 if (same_queue_rq) {
1600 data.hctx = blk_mq_map_queue(q,
1601 same_queue_rq->mq_ctx->cpu);
2299722c
CH
1602 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1603 &cookie);
dad7a3be 1604 }
a4d907b6 1605 } else if (q->nr_hw_queues > 1 && is_sync) {
bf4907c0 1606 blk_mq_put_ctx(data.ctx);
2299722c 1607 blk_mq_bio_to_request(rq, bio);
2299722c 1608 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
a4d907b6 1609 } else if (q->elevator) {
b00c53e8 1610 blk_mq_put_ctx(data.ctx);
bd166ef1 1611 blk_mq_bio_to_request(rq, bio);
a4d907b6 1612 blk_mq_sched_insert_request(rq, false, true, true, true);
ab42f35d 1613 } else {
b00c53e8 1614 blk_mq_put_ctx(data.ctx);
ab42f35d
ML
1615 blk_mq_bio_to_request(rq, bio);
1616 blk_mq_queue_io(data.hctx, data.ctx, rq);
a4d907b6 1617 blk_mq_run_hw_queue(data.hctx, true);
ab42f35d 1618 }
320ae51f 1619
7b371636 1620 return cookie;
320ae51f
JA
1621}
1622
cc71a6f4
JA
1623void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1624 unsigned int hctx_idx)
95363efd 1625{
e9b267d9 1626 struct page *page;
320ae51f 1627
24d2f903 1628 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1629 int i;
320ae51f 1630
24d2f903 1631 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1632 struct request *rq = tags->static_rqs[i];
1633
1634 if (!rq)
e9b267d9 1635 continue;
d6296d39 1636 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 1637 tags->static_rqs[i] = NULL;
e9b267d9 1638 }
320ae51f 1639 }
320ae51f 1640
24d2f903
CH
1641 while (!list_empty(&tags->page_list)) {
1642 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1643 list_del_init(&page->lru);
f75782e4
CM
1644 /*
1645 * Remove kmemleak object previously allocated in
1646 * blk_mq_init_rq_map().
1647 */
1648 kmemleak_free(page_address(page));
320ae51f
JA
1649 __free_pages(page, page->private);
1650 }
cc71a6f4 1651}
320ae51f 1652
cc71a6f4
JA
1653void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1654{
24d2f903 1655 kfree(tags->rqs);
cc71a6f4 1656 tags->rqs = NULL;
2af8cbe3
JA
1657 kfree(tags->static_rqs);
1658 tags->static_rqs = NULL;
320ae51f 1659
24d2f903 1660 blk_mq_free_tags(tags);
320ae51f
JA
1661}
1662
cc71a6f4
JA
1663struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1664 unsigned int hctx_idx,
1665 unsigned int nr_tags,
1666 unsigned int reserved_tags)
320ae51f 1667{
24d2f903 1668 struct blk_mq_tags *tags;
59f082e4 1669 int node;
320ae51f 1670
59f082e4
SL
1671 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1672 if (node == NUMA_NO_NODE)
1673 node = set->numa_node;
1674
1675 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 1676 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1677 if (!tags)
1678 return NULL;
320ae51f 1679
cc71a6f4 1680 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1681 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1682 node);
24d2f903
CH
1683 if (!tags->rqs) {
1684 blk_mq_free_tags(tags);
1685 return NULL;
1686 }
320ae51f 1687
2af8cbe3
JA
1688 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1689 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1690 node);
2af8cbe3
JA
1691 if (!tags->static_rqs) {
1692 kfree(tags->rqs);
1693 blk_mq_free_tags(tags);
1694 return NULL;
1695 }
1696
cc71a6f4
JA
1697 return tags;
1698}
1699
1700static size_t order_to_size(unsigned int order)
1701{
1702 return (size_t)PAGE_SIZE << order;
1703}
1704
1705int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1706 unsigned int hctx_idx, unsigned int depth)
1707{
1708 unsigned int i, j, entries_per_page, max_order = 4;
1709 size_t rq_size, left;
59f082e4
SL
1710 int node;
1711
1712 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1713 if (node == NUMA_NO_NODE)
1714 node = set->numa_node;
cc71a6f4
JA
1715
1716 INIT_LIST_HEAD(&tags->page_list);
1717
320ae51f
JA
1718 /*
1719 * rq_size is the size of the request plus driver payload, rounded
1720 * to the cacheline size
1721 */
24d2f903 1722 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1723 cache_line_size());
cc71a6f4 1724 left = rq_size * depth;
320ae51f 1725
cc71a6f4 1726 for (i = 0; i < depth; ) {
320ae51f
JA
1727 int this_order = max_order;
1728 struct page *page;
1729 int to_do;
1730 void *p;
1731
b3a834b1 1732 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1733 this_order--;
1734
1735 do {
59f082e4 1736 page = alloc_pages_node(node,
36e1f3d1 1737 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1738 this_order);
320ae51f
JA
1739 if (page)
1740 break;
1741 if (!this_order--)
1742 break;
1743 if (order_to_size(this_order) < rq_size)
1744 break;
1745 } while (1);
1746
1747 if (!page)
24d2f903 1748 goto fail;
320ae51f
JA
1749
1750 page->private = this_order;
24d2f903 1751 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1752
1753 p = page_address(page);
f75782e4
CM
1754 /*
1755 * Allow kmemleak to scan these pages as they contain pointers
1756 * to additional allocations like via ops->init_request().
1757 */
36e1f3d1 1758 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 1759 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 1760 to_do = min(entries_per_page, depth - i);
320ae51f
JA
1761 left -= to_do * rq_size;
1762 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
1763 struct request *rq = p;
1764
1765 tags->static_rqs[i] = rq;
24d2f903 1766 if (set->ops->init_request) {
d6296d39 1767 if (set->ops->init_request(set, rq, hctx_idx,
59f082e4 1768 node)) {
2af8cbe3 1769 tags->static_rqs[i] = NULL;
24d2f903 1770 goto fail;
a5164405 1771 }
e9b267d9
CH
1772 }
1773
320ae51f
JA
1774 p += rq_size;
1775 i++;
1776 }
1777 }
cc71a6f4 1778 return 0;
320ae51f 1779
24d2f903 1780fail:
cc71a6f4
JA
1781 blk_mq_free_rqs(set, tags, hctx_idx);
1782 return -ENOMEM;
320ae51f
JA
1783}
1784
e57690fe
JA
1785/*
1786 * 'cpu' is going away. splice any existing rq_list entries from this
1787 * software queue to the hw queue dispatch list, and ensure that it
1788 * gets run.
1789 */
9467f859 1790static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 1791{
9467f859 1792 struct blk_mq_hw_ctx *hctx;
484b4061
JA
1793 struct blk_mq_ctx *ctx;
1794 LIST_HEAD(tmp);
1795
9467f859 1796 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 1797 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1798
1799 spin_lock(&ctx->lock);
1800 if (!list_empty(&ctx->rq_list)) {
1801 list_splice_init(&ctx->rq_list, &tmp);
1802 blk_mq_hctx_clear_pending(hctx, ctx);
1803 }
1804 spin_unlock(&ctx->lock);
1805
1806 if (list_empty(&tmp))
9467f859 1807 return 0;
484b4061 1808
e57690fe
JA
1809 spin_lock(&hctx->lock);
1810 list_splice_tail_init(&tmp, &hctx->dispatch);
1811 spin_unlock(&hctx->lock);
484b4061
JA
1812
1813 blk_mq_run_hw_queue(hctx, true);
9467f859 1814 return 0;
484b4061
JA
1815}
1816
9467f859 1817static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 1818{
9467f859
TG
1819 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1820 &hctx->cpuhp_dead);
484b4061
JA
1821}
1822
c3b4afca 1823/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1824static void blk_mq_exit_hctx(struct request_queue *q,
1825 struct blk_mq_tag_set *set,
1826 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1827{
9c1051aa
OS
1828 blk_mq_debugfs_unregister_hctx(hctx);
1829
08e98fc6
ML
1830 blk_mq_tag_idle(hctx);
1831
f70ced09 1832 if (set->ops->exit_request)
d6296d39 1833 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
f70ced09 1834
93252632
OS
1835 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1836
08e98fc6
ML
1837 if (set->ops->exit_hctx)
1838 set->ops->exit_hctx(hctx, hctx_idx);
1839
6a83e74d
BVA
1840 if (hctx->flags & BLK_MQ_F_BLOCKING)
1841 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1842
9467f859 1843 blk_mq_remove_cpuhp(hctx);
f70ced09 1844 blk_free_flush_queue(hctx->fq);
88459642 1845 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1846}
1847
624dbe47
ML
1848static void blk_mq_exit_hw_queues(struct request_queue *q,
1849 struct blk_mq_tag_set *set, int nr_queue)
1850{
1851 struct blk_mq_hw_ctx *hctx;
1852 unsigned int i;
1853
1854 queue_for_each_hw_ctx(q, hctx, i) {
1855 if (i == nr_queue)
1856 break;
08e98fc6 1857 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1858 }
624dbe47
ML
1859}
1860
08e98fc6
ML
1861static int blk_mq_init_hctx(struct request_queue *q,
1862 struct blk_mq_tag_set *set,
1863 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1864{
08e98fc6
ML
1865 int node;
1866
1867 node = hctx->numa_node;
1868 if (node == NUMA_NO_NODE)
1869 node = hctx->numa_node = set->numa_node;
1870
9f993737 1871 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
1872 spin_lock_init(&hctx->lock);
1873 INIT_LIST_HEAD(&hctx->dispatch);
1874 hctx->queue = q;
1875 hctx->queue_num = hctx_idx;
2404e607 1876 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 1877
9467f859 1878 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
1879
1880 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1881
1882 /*
08e98fc6
ML
1883 * Allocate space for all possible cpus to avoid allocation at
1884 * runtime
320ae51f 1885 */
08e98fc6
ML
1886 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1887 GFP_KERNEL, node);
1888 if (!hctx->ctxs)
1889 goto unregister_cpu_notifier;
320ae51f 1890
88459642
OS
1891 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1892 node))
08e98fc6 1893 goto free_ctxs;
320ae51f 1894
08e98fc6 1895 hctx->nr_ctx = 0;
320ae51f 1896
08e98fc6
ML
1897 if (set->ops->init_hctx &&
1898 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1899 goto free_bitmap;
320ae51f 1900
93252632
OS
1901 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1902 goto exit_hctx;
1903
f70ced09
ML
1904 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1905 if (!hctx->fq)
93252632 1906 goto sched_exit_hctx;
320ae51f 1907
f70ced09 1908 if (set->ops->init_request &&
d6296d39
CH
1909 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
1910 node))
f70ced09 1911 goto free_fq;
320ae51f 1912
6a83e74d
BVA
1913 if (hctx->flags & BLK_MQ_F_BLOCKING)
1914 init_srcu_struct(&hctx->queue_rq_srcu);
1915
9c1051aa
OS
1916 blk_mq_debugfs_register_hctx(q, hctx);
1917
08e98fc6 1918 return 0;
320ae51f 1919
f70ced09
ML
1920 free_fq:
1921 kfree(hctx->fq);
93252632
OS
1922 sched_exit_hctx:
1923 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
f70ced09
ML
1924 exit_hctx:
1925 if (set->ops->exit_hctx)
1926 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 1927 free_bitmap:
88459642 1928 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1929 free_ctxs:
1930 kfree(hctx->ctxs);
1931 unregister_cpu_notifier:
9467f859 1932 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
1933 return -1;
1934}
320ae51f 1935
320ae51f
JA
1936static void blk_mq_init_cpu_queues(struct request_queue *q,
1937 unsigned int nr_hw_queues)
1938{
1939 unsigned int i;
1940
1941 for_each_possible_cpu(i) {
1942 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1943 struct blk_mq_hw_ctx *hctx;
1944
320ae51f
JA
1945 __ctx->cpu = i;
1946 spin_lock_init(&__ctx->lock);
1947 INIT_LIST_HEAD(&__ctx->rq_list);
1948 __ctx->queue = q;
1949
1950 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1951 if (!cpu_online(i))
1952 continue;
1953
7d7e0f90 1954 hctx = blk_mq_map_queue(q, i);
e4043dcf 1955
320ae51f
JA
1956 /*
1957 * Set local node, IFF we have more than one hw queue. If
1958 * not, we remain on the home node of the device
1959 */
1960 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 1961 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
1962 }
1963}
1964
cc71a6f4
JA
1965static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1966{
1967 int ret = 0;
1968
1969 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1970 set->queue_depth, set->reserved_tags);
1971 if (!set->tags[hctx_idx])
1972 return false;
1973
1974 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1975 set->queue_depth);
1976 if (!ret)
1977 return true;
1978
1979 blk_mq_free_rq_map(set->tags[hctx_idx]);
1980 set->tags[hctx_idx] = NULL;
1981 return false;
1982}
1983
1984static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1985 unsigned int hctx_idx)
1986{
bd166ef1
JA
1987 if (set->tags[hctx_idx]) {
1988 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
1989 blk_mq_free_rq_map(set->tags[hctx_idx]);
1990 set->tags[hctx_idx] = NULL;
1991 }
cc71a6f4
JA
1992}
1993
5778322e
AM
1994static void blk_mq_map_swqueue(struct request_queue *q,
1995 const struct cpumask *online_mask)
320ae51f 1996{
d1b1cea1 1997 unsigned int i, hctx_idx;
320ae51f
JA
1998 struct blk_mq_hw_ctx *hctx;
1999 struct blk_mq_ctx *ctx;
2a34c087 2000 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2001
60de074b
AM
2002 /*
2003 * Avoid others reading imcomplete hctx->cpumask through sysfs
2004 */
2005 mutex_lock(&q->sysfs_lock);
2006
320ae51f 2007 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2008 cpumask_clear(hctx->cpumask);
320ae51f
JA
2009 hctx->nr_ctx = 0;
2010 }
2011
2012 /*
2013 * Map software to hardware queues
2014 */
897bb0c7 2015 for_each_possible_cpu(i) {
320ae51f 2016 /* If the cpu isn't online, the cpu is mapped to first hctx */
5778322e 2017 if (!cpumask_test_cpu(i, online_mask))
e4043dcf
JA
2018 continue;
2019
d1b1cea1
GKB
2020 hctx_idx = q->mq_map[i];
2021 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2022 if (!set->tags[hctx_idx] &&
2023 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2024 /*
2025 * If tags initialization fail for some hctx,
2026 * that hctx won't be brought online. In this
2027 * case, remap the current ctx to hctx[0] which
2028 * is guaranteed to always have tags allocated
2029 */
cc71a6f4 2030 q->mq_map[i] = 0;
d1b1cea1
GKB
2031 }
2032
897bb0c7 2033 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2034 hctx = blk_mq_map_queue(q, i);
868f2f0b 2035
e4043dcf 2036 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2037 ctx->index_hw = hctx->nr_ctx;
2038 hctx->ctxs[hctx->nr_ctx++] = ctx;
2039 }
506e931f 2040
60de074b
AM
2041 mutex_unlock(&q->sysfs_lock);
2042
506e931f 2043 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2044 /*
a68aafa5
JA
2045 * If no software queues are mapped to this hardware queue,
2046 * disable it and free the request entries.
484b4061
JA
2047 */
2048 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2049 /* Never unmap queue 0. We need it as a
2050 * fallback in case of a new remap fails
2051 * allocation
2052 */
cc71a6f4
JA
2053 if (i && set->tags[i])
2054 blk_mq_free_map_and_requests(set, i);
2055
2a34c087 2056 hctx->tags = NULL;
484b4061
JA
2057 continue;
2058 }
2059
2a34c087
ML
2060 hctx->tags = set->tags[i];
2061 WARN_ON(!hctx->tags);
2062
889fa31f
CY
2063 /*
2064 * Set the map size to the number of mapped software queues.
2065 * This is more accurate and more efficient than looping
2066 * over all possibly mapped software queues.
2067 */
88459642 2068 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2069
484b4061
JA
2070 /*
2071 * Initialize batch roundrobin counts
2072 */
506e931f
JA
2073 hctx->next_cpu = cpumask_first(hctx->cpumask);
2074 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2075 }
320ae51f
JA
2076}
2077
2404e607 2078static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2079{
2080 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2081 int i;
2082
2404e607
JM
2083 queue_for_each_hw_ctx(q, hctx, i) {
2084 if (shared)
2085 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2086 else
2087 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2088 }
2089}
2090
2091static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2092{
2093 struct request_queue *q;
0d2602ca 2094
705cda97
BVA
2095 lockdep_assert_held(&set->tag_list_lock);
2096
0d2602ca
JA
2097 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2098 blk_mq_freeze_queue(q);
2404e607 2099 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2100 blk_mq_unfreeze_queue(q);
2101 }
2102}
2103
2104static void blk_mq_del_queue_tag_set(struct request_queue *q)
2105{
2106 struct blk_mq_tag_set *set = q->tag_set;
2107
0d2602ca 2108 mutex_lock(&set->tag_list_lock);
705cda97
BVA
2109 list_del_rcu(&q->tag_set_list);
2110 INIT_LIST_HEAD(&q->tag_set_list);
2404e607
JM
2111 if (list_is_singular(&set->tag_list)) {
2112 /* just transitioned to unshared */
2113 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2114 /* update existing queue */
2115 blk_mq_update_tag_set_depth(set, false);
2116 }
0d2602ca 2117 mutex_unlock(&set->tag_list_lock);
705cda97
BVA
2118
2119 synchronize_rcu();
0d2602ca
JA
2120}
2121
2122static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2123 struct request_queue *q)
2124{
2125 q->tag_set = set;
2126
2127 mutex_lock(&set->tag_list_lock);
2404e607
JM
2128
2129 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2130 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2131 set->flags |= BLK_MQ_F_TAG_SHARED;
2132 /* update existing queue */
2133 blk_mq_update_tag_set_depth(set, true);
2134 }
2135 if (set->flags & BLK_MQ_F_TAG_SHARED)
2136 queue_set_hctx_shared(q, true);
705cda97 2137 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2404e607 2138
0d2602ca
JA
2139 mutex_unlock(&set->tag_list_lock);
2140}
2141
e09aae7e
ML
2142/*
2143 * It is the actual release handler for mq, but we do it from
2144 * request queue's release handler for avoiding use-after-free
2145 * and headache because q->mq_kobj shouldn't have been introduced,
2146 * but we can't group ctx/kctx kobj without it.
2147 */
2148void blk_mq_release(struct request_queue *q)
2149{
2150 struct blk_mq_hw_ctx *hctx;
2151 unsigned int i;
2152
2153 /* hctx kobj stays in hctx */
c3b4afca
ML
2154 queue_for_each_hw_ctx(q, hctx, i) {
2155 if (!hctx)
2156 continue;
6c8b232e 2157 kobject_put(&hctx->kobj);
c3b4afca 2158 }
e09aae7e 2159
a723bab3
AM
2160 q->mq_map = NULL;
2161
e09aae7e
ML
2162 kfree(q->queue_hw_ctx);
2163
7ea5fe31
ML
2164 /*
2165 * release .mq_kobj and sw queue's kobject now because
2166 * both share lifetime with request queue.
2167 */
2168 blk_mq_sysfs_deinit(q);
2169
e09aae7e
ML
2170 free_percpu(q->queue_ctx);
2171}
2172
24d2f903 2173struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2174{
2175 struct request_queue *uninit_q, *q;
2176
2177 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2178 if (!uninit_q)
2179 return ERR_PTR(-ENOMEM);
2180
2181 q = blk_mq_init_allocated_queue(set, uninit_q);
2182 if (IS_ERR(q))
2183 blk_cleanup_queue(uninit_q);
2184
2185 return q;
2186}
2187EXPORT_SYMBOL(blk_mq_init_queue);
2188
868f2f0b
KB
2189static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2190 struct request_queue *q)
320ae51f 2191{
868f2f0b
KB
2192 int i, j;
2193 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2194
868f2f0b 2195 blk_mq_sysfs_unregister(q);
24d2f903 2196 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2197 int node;
f14bbe77 2198
868f2f0b
KB
2199 if (hctxs[i])
2200 continue;
2201
2202 node = blk_mq_hw_queue_to_node(q->mq_map, i);
cdef54dd
CH
2203 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2204 GFP_KERNEL, node);
320ae51f 2205 if (!hctxs[i])
868f2f0b 2206 break;
320ae51f 2207
a86073e4 2208 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2209 node)) {
2210 kfree(hctxs[i]);
2211 hctxs[i] = NULL;
2212 break;
2213 }
e4043dcf 2214
0d2602ca 2215 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2216 hctxs[i]->numa_node = node;
320ae51f 2217 hctxs[i]->queue_num = i;
868f2f0b
KB
2218
2219 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2220 free_cpumask_var(hctxs[i]->cpumask);
2221 kfree(hctxs[i]);
2222 hctxs[i] = NULL;
2223 break;
2224 }
2225 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2226 }
868f2f0b
KB
2227 for (j = i; j < q->nr_hw_queues; j++) {
2228 struct blk_mq_hw_ctx *hctx = hctxs[j];
2229
2230 if (hctx) {
cc71a6f4
JA
2231 if (hctx->tags)
2232 blk_mq_free_map_and_requests(set, j);
868f2f0b 2233 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2234 kobject_put(&hctx->kobj);
868f2f0b
KB
2235 hctxs[j] = NULL;
2236
2237 }
2238 }
2239 q->nr_hw_queues = i;
2240 blk_mq_sysfs_register(q);
2241}
2242
2243struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2244 struct request_queue *q)
2245{
66841672
ML
2246 /* mark the queue as mq asap */
2247 q->mq_ops = set->ops;
2248
34dbad5d 2249 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
2250 blk_mq_poll_stats_bkt,
2251 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
2252 if (!q->poll_cb)
2253 goto err_exit;
2254
868f2f0b
KB
2255 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2256 if (!q->queue_ctx)
c7de5726 2257 goto err_exit;
868f2f0b 2258
737f98cf
ML
2259 /* init q->mq_kobj and sw queues' kobjects */
2260 blk_mq_sysfs_init(q);
2261
868f2f0b
KB
2262 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2263 GFP_KERNEL, set->numa_node);
2264 if (!q->queue_hw_ctx)
2265 goto err_percpu;
2266
bdd17e75 2267 q->mq_map = set->mq_map;
868f2f0b
KB
2268
2269 blk_mq_realloc_hw_ctxs(set, q);
2270 if (!q->nr_hw_queues)
2271 goto err_hctxs;
320ae51f 2272
287922eb 2273 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2274 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2275
2276 q->nr_queues = nr_cpu_ids;
320ae51f 2277
94eddfbe 2278 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2279
05f1dd53
JA
2280 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2281 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2282
1be036e9
CH
2283 q->sg_reserved_size = INT_MAX;
2284
2849450a 2285 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2286 INIT_LIST_HEAD(&q->requeue_list);
2287 spin_lock_init(&q->requeue_lock);
2288
254d259d 2289 blk_queue_make_request(q, blk_mq_make_request);
07068d5b 2290
eba71768
JA
2291 /*
2292 * Do this after blk_queue_make_request() overrides it...
2293 */
2294 q->nr_requests = set->queue_depth;
2295
64f1c21e
JA
2296 /*
2297 * Default to classic polling
2298 */
2299 q->poll_nsec = -1;
2300
24d2f903
CH
2301 if (set->ops->complete)
2302 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2303
24d2f903 2304 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 2305
eabe0659 2306 get_online_cpus();
51d638b1 2307 mutex_lock(&all_q_mutex);
320ae51f 2308
4593fdbe 2309 list_add_tail(&q->all_q_node, &all_q_list);
0d2602ca 2310 blk_mq_add_queue_tag_set(set, q);
5778322e 2311 blk_mq_map_swqueue(q, cpu_online_mask);
484b4061 2312
eabe0659 2313 mutex_unlock(&all_q_mutex);
51d638b1 2314 put_online_cpus();
4593fdbe 2315
d3484991
JA
2316 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2317 int ret;
2318
2319 ret = blk_mq_sched_init(q);
2320 if (ret)
2321 return ERR_PTR(ret);
2322 }
2323
320ae51f 2324 return q;
18741986 2325
320ae51f 2326err_hctxs:
868f2f0b 2327 kfree(q->queue_hw_ctx);
320ae51f 2328err_percpu:
868f2f0b 2329 free_percpu(q->queue_ctx);
c7de5726
ML
2330err_exit:
2331 q->mq_ops = NULL;
320ae51f
JA
2332 return ERR_PTR(-ENOMEM);
2333}
b62c21b7 2334EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2335
2336void blk_mq_free_queue(struct request_queue *q)
2337{
624dbe47 2338 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2339
0e626368
AM
2340 mutex_lock(&all_q_mutex);
2341 list_del_init(&q->all_q_node);
2342 mutex_unlock(&all_q_mutex);
2343
0d2602ca
JA
2344 blk_mq_del_queue_tag_set(q);
2345
624dbe47 2346 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2347}
320ae51f
JA
2348
2349/* Basically redo blk_mq_init_queue with queue frozen */
5778322e
AM
2350static void blk_mq_queue_reinit(struct request_queue *q,
2351 const struct cpumask *online_mask)
320ae51f 2352{
4ecd4fef 2353 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2354
9c1051aa 2355 blk_mq_debugfs_unregister_hctxs(q);
67aec14c
JA
2356 blk_mq_sysfs_unregister(q);
2357
320ae51f
JA
2358 /*
2359 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2360 * we should change hctx numa_node according to new topology (this
2361 * involves free and re-allocate memory, worthy doing?)
2362 */
2363
5778322e 2364 blk_mq_map_swqueue(q, online_mask);
320ae51f 2365
67aec14c 2366 blk_mq_sysfs_register(q);
9c1051aa 2367 blk_mq_debugfs_register_hctxs(q);
320ae51f
JA
2368}
2369
65d5291e
SAS
2370/*
2371 * New online cpumask which is going to be set in this hotplug event.
2372 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2373 * one-by-one and dynamically allocating this could result in a failure.
2374 */
2375static struct cpumask cpuhp_online_new;
2376
2377static void blk_mq_queue_reinit_work(void)
320ae51f
JA
2378{
2379 struct request_queue *q;
320ae51f
JA
2380
2381 mutex_lock(&all_q_mutex);
f3af020b
TH
2382 /*
2383 * We need to freeze and reinit all existing queues. Freezing
2384 * involves synchronous wait for an RCU grace period and doing it
2385 * one by one may take a long time. Start freezing all queues in
2386 * one swoop and then wait for the completions so that freezing can
2387 * take place in parallel.
2388 */
2389 list_for_each_entry(q, &all_q_list, all_q_node)
1671d522 2390 blk_freeze_queue_start(q);
415d3dab 2391 list_for_each_entry(q, &all_q_list, all_q_node)
f3af020b
TH
2392 blk_mq_freeze_queue_wait(q);
2393
320ae51f 2394 list_for_each_entry(q, &all_q_list, all_q_node)
65d5291e 2395 blk_mq_queue_reinit(q, &cpuhp_online_new);
f3af020b
TH
2396
2397 list_for_each_entry(q, &all_q_list, all_q_node)
2398 blk_mq_unfreeze_queue(q);
2399
320ae51f 2400 mutex_unlock(&all_q_mutex);
65d5291e
SAS
2401}
2402
2403static int blk_mq_queue_reinit_dead(unsigned int cpu)
2404{
97a32864 2405 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
65d5291e
SAS
2406 blk_mq_queue_reinit_work();
2407 return 0;
2408}
2409
2410/*
2411 * Before hotadded cpu starts handling requests, new mappings must be
2412 * established. Otherwise, these requests in hw queue might never be
2413 * dispatched.
2414 *
2415 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2416 * for CPU0, and ctx1 for CPU1).
2417 *
2418 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2419 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2420 *
2c3ad667
JA
2421 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2422 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2423 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2424 * ignored.
65d5291e
SAS
2425 */
2426static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2427{
2428 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2429 cpumask_set_cpu(cpu, &cpuhp_online_new);
2430 blk_mq_queue_reinit_work();
2431 return 0;
320ae51f
JA
2432}
2433
a5164405
JA
2434static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2435{
2436 int i;
2437
cc71a6f4
JA
2438 for (i = 0; i < set->nr_hw_queues; i++)
2439 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2440 goto out_unwind;
a5164405
JA
2441
2442 return 0;
2443
2444out_unwind:
2445 while (--i >= 0)
cc71a6f4 2446 blk_mq_free_rq_map(set->tags[i]);
a5164405 2447
a5164405
JA
2448 return -ENOMEM;
2449}
2450
2451/*
2452 * Allocate the request maps associated with this tag_set. Note that this
2453 * may reduce the depth asked for, if memory is tight. set->queue_depth
2454 * will be updated to reflect the allocated depth.
2455 */
2456static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2457{
2458 unsigned int depth;
2459 int err;
2460
2461 depth = set->queue_depth;
2462 do {
2463 err = __blk_mq_alloc_rq_maps(set);
2464 if (!err)
2465 break;
2466
2467 set->queue_depth >>= 1;
2468 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2469 err = -ENOMEM;
2470 break;
2471 }
2472 } while (set->queue_depth);
2473
2474 if (!set->queue_depth || err) {
2475 pr_err("blk-mq: failed to allocate request map\n");
2476 return -ENOMEM;
2477 }
2478
2479 if (depth != set->queue_depth)
2480 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2481 depth, set->queue_depth);
2482
2483 return 0;
2484}
2485
ebe8bddb
OS
2486static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2487{
2488 if (set->ops->map_queues)
2489 return set->ops->map_queues(set);
2490 else
2491 return blk_mq_map_queues(set);
2492}
2493
a4391c64
JA
2494/*
2495 * Alloc a tag set to be associated with one or more request queues.
2496 * May fail with EINVAL for various error conditions. May adjust the
2497 * requested depth down, if if it too large. In that case, the set
2498 * value will be stored in set->queue_depth.
2499 */
24d2f903
CH
2500int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2501{
da695ba2
CH
2502 int ret;
2503
205fb5f5
BVA
2504 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2505
24d2f903
CH
2506 if (!set->nr_hw_queues)
2507 return -EINVAL;
a4391c64 2508 if (!set->queue_depth)
24d2f903
CH
2509 return -EINVAL;
2510 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2511 return -EINVAL;
2512
7d7e0f90 2513 if (!set->ops->queue_rq)
24d2f903
CH
2514 return -EINVAL;
2515
a4391c64
JA
2516 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2517 pr_info("blk-mq: reduced tag depth to %u\n",
2518 BLK_MQ_MAX_DEPTH);
2519 set->queue_depth = BLK_MQ_MAX_DEPTH;
2520 }
24d2f903 2521
6637fadf
SL
2522 /*
2523 * If a crashdump is active, then we are potentially in a very
2524 * memory constrained environment. Limit us to 1 queue and
2525 * 64 tags to prevent using too much memory.
2526 */
2527 if (is_kdump_kernel()) {
2528 set->nr_hw_queues = 1;
2529 set->queue_depth = min(64U, set->queue_depth);
2530 }
868f2f0b
KB
2531 /*
2532 * There is no use for more h/w queues than cpus.
2533 */
2534 if (set->nr_hw_queues > nr_cpu_ids)
2535 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2536
868f2f0b 2537 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2538 GFP_KERNEL, set->numa_node);
2539 if (!set->tags)
a5164405 2540 return -ENOMEM;
24d2f903 2541
da695ba2
CH
2542 ret = -ENOMEM;
2543 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2544 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2545 if (!set->mq_map)
2546 goto out_free_tags;
2547
ebe8bddb 2548 ret = blk_mq_update_queue_map(set);
da695ba2
CH
2549 if (ret)
2550 goto out_free_mq_map;
2551
2552 ret = blk_mq_alloc_rq_maps(set);
2553 if (ret)
bdd17e75 2554 goto out_free_mq_map;
24d2f903 2555
0d2602ca
JA
2556 mutex_init(&set->tag_list_lock);
2557 INIT_LIST_HEAD(&set->tag_list);
2558
24d2f903 2559 return 0;
bdd17e75
CH
2560
2561out_free_mq_map:
2562 kfree(set->mq_map);
2563 set->mq_map = NULL;
2564out_free_tags:
5676e7b6
RE
2565 kfree(set->tags);
2566 set->tags = NULL;
da695ba2 2567 return ret;
24d2f903
CH
2568}
2569EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2570
2571void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2572{
2573 int i;
2574
cc71a6f4
JA
2575 for (i = 0; i < nr_cpu_ids; i++)
2576 blk_mq_free_map_and_requests(set, i);
484b4061 2577
bdd17e75
CH
2578 kfree(set->mq_map);
2579 set->mq_map = NULL;
2580
981bd189 2581 kfree(set->tags);
5676e7b6 2582 set->tags = NULL;
24d2f903
CH
2583}
2584EXPORT_SYMBOL(blk_mq_free_tag_set);
2585
e3a2b3f9
JA
2586int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2587{
2588 struct blk_mq_tag_set *set = q->tag_set;
2589 struct blk_mq_hw_ctx *hctx;
2590 int i, ret;
2591
bd166ef1 2592 if (!set)
e3a2b3f9
JA
2593 return -EINVAL;
2594
70f36b60 2595 blk_mq_freeze_queue(q);
70f36b60 2596
e3a2b3f9
JA
2597 ret = 0;
2598 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2599 if (!hctx->tags)
2600 continue;
bd166ef1
JA
2601 /*
2602 * If we're using an MQ scheduler, just update the scheduler
2603 * queue depth. This is similar to what the old code would do.
2604 */
70f36b60
JA
2605 if (!hctx->sched_tags) {
2606 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2607 min(nr, set->queue_depth),
2608 false);
2609 } else {
2610 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2611 nr, true);
2612 }
e3a2b3f9
JA
2613 if (ret)
2614 break;
2615 }
2616
2617 if (!ret)
2618 q->nr_requests = nr;
2619
70f36b60 2620 blk_mq_unfreeze_queue(q);
70f36b60 2621
e3a2b3f9
JA
2622 return ret;
2623}
2624
e4dc2b32
KB
2625static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2626 int nr_hw_queues)
868f2f0b
KB
2627{
2628 struct request_queue *q;
2629
705cda97
BVA
2630 lockdep_assert_held(&set->tag_list_lock);
2631
868f2f0b
KB
2632 if (nr_hw_queues > nr_cpu_ids)
2633 nr_hw_queues = nr_cpu_ids;
2634 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2635 return;
2636
2637 list_for_each_entry(q, &set->tag_list, tag_set_list)
2638 blk_mq_freeze_queue(q);
2639
2640 set->nr_hw_queues = nr_hw_queues;
ebe8bddb 2641 blk_mq_update_queue_map(set);
868f2f0b
KB
2642 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2643 blk_mq_realloc_hw_ctxs(set, q);
868f2f0b
KB
2644 blk_mq_queue_reinit(q, cpu_online_mask);
2645 }
2646
2647 list_for_each_entry(q, &set->tag_list, tag_set_list)
2648 blk_mq_unfreeze_queue(q);
2649}
e4dc2b32
KB
2650
2651void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2652{
2653 mutex_lock(&set->tag_list_lock);
2654 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2655 mutex_unlock(&set->tag_list_lock);
2656}
868f2f0b
KB
2657EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2658
34dbad5d
OS
2659/* Enable polling stats and return whether they were already enabled. */
2660static bool blk_poll_stats_enable(struct request_queue *q)
2661{
2662 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2663 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2664 return true;
2665 blk_stat_add_callback(q, q->poll_cb);
2666 return false;
2667}
2668
2669static void blk_mq_poll_stats_start(struct request_queue *q)
2670{
2671 /*
2672 * We don't arm the callback if polling stats are not enabled or the
2673 * callback is already active.
2674 */
2675 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2676 blk_stat_is_active(q->poll_cb))
2677 return;
2678
2679 blk_stat_activate_msecs(q->poll_cb, 100);
2680}
2681
2682static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2683{
2684 struct request_queue *q = cb->data;
720b8ccc 2685 int bucket;
34dbad5d 2686
720b8ccc
SB
2687 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2688 if (cb->stat[bucket].nr_samples)
2689 q->poll_stat[bucket] = cb->stat[bucket];
2690 }
34dbad5d
OS
2691}
2692
64f1c21e
JA
2693static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2694 struct blk_mq_hw_ctx *hctx,
2695 struct request *rq)
2696{
64f1c21e 2697 unsigned long ret = 0;
720b8ccc 2698 int bucket;
64f1c21e
JA
2699
2700 /*
2701 * If stats collection isn't on, don't sleep but turn it on for
2702 * future users
2703 */
34dbad5d 2704 if (!blk_poll_stats_enable(q))
64f1c21e
JA
2705 return 0;
2706
64f1c21e
JA
2707 /*
2708 * As an optimistic guess, use half of the mean service time
2709 * for this type of request. We can (and should) make this smarter.
2710 * For instance, if the completion latencies are tight, we can
2711 * get closer than just half the mean. This is especially
2712 * important on devices where the completion latencies are longer
720b8ccc
SB
2713 * than ~10 usec. We do use the stats for the relevant IO size
2714 * if available which does lead to better estimates.
64f1c21e 2715 */
720b8ccc
SB
2716 bucket = blk_mq_poll_stats_bkt(rq);
2717 if (bucket < 0)
2718 return ret;
2719
2720 if (q->poll_stat[bucket].nr_samples)
2721 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
2722
2723 return ret;
2724}
2725
06426adf 2726static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2727 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2728 struct request *rq)
2729{
2730 struct hrtimer_sleeper hs;
2731 enum hrtimer_mode mode;
64f1c21e 2732 unsigned int nsecs;
06426adf
JA
2733 ktime_t kt;
2734
64f1c21e
JA
2735 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2736 return false;
2737
2738 /*
2739 * poll_nsec can be:
2740 *
2741 * -1: don't ever hybrid sleep
2742 * 0: use half of prev avg
2743 * >0: use this specific value
2744 */
2745 if (q->poll_nsec == -1)
2746 return false;
2747 else if (q->poll_nsec > 0)
2748 nsecs = q->poll_nsec;
2749 else
2750 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2751
2752 if (!nsecs)
06426adf
JA
2753 return false;
2754
2755 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2756
2757 /*
2758 * This will be replaced with the stats tracking code, using
2759 * 'avg_completion_time / 2' as the pre-sleep target.
2760 */
8b0e1953 2761 kt = nsecs;
06426adf
JA
2762
2763 mode = HRTIMER_MODE_REL;
2764 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2765 hrtimer_set_expires(&hs.timer, kt);
2766
2767 hrtimer_init_sleeper(&hs, current);
2768 do {
2769 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2770 break;
2771 set_current_state(TASK_UNINTERRUPTIBLE);
2772 hrtimer_start_expires(&hs.timer, mode);
2773 if (hs.task)
2774 io_schedule();
2775 hrtimer_cancel(&hs.timer);
2776 mode = HRTIMER_MODE_ABS;
2777 } while (hs.task && !signal_pending(current));
2778
2779 __set_current_state(TASK_RUNNING);
2780 destroy_hrtimer_on_stack(&hs.timer);
2781 return true;
2782}
2783
bbd7bb70
JA
2784static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2785{
2786 struct request_queue *q = hctx->queue;
2787 long state;
2788
06426adf
JA
2789 /*
2790 * If we sleep, have the caller restart the poll loop to reset
2791 * the state. Like for the other success return cases, the
2792 * caller is responsible for checking if the IO completed. If
2793 * the IO isn't complete, we'll get called again and will go
2794 * straight to the busy poll loop.
2795 */
64f1c21e 2796 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
2797 return true;
2798
bbd7bb70
JA
2799 hctx->poll_considered++;
2800
2801 state = current->state;
2802 while (!need_resched()) {
2803 int ret;
2804
2805 hctx->poll_invoked++;
2806
2807 ret = q->mq_ops->poll(hctx, rq->tag);
2808 if (ret > 0) {
2809 hctx->poll_success++;
2810 set_current_state(TASK_RUNNING);
2811 return true;
2812 }
2813
2814 if (signal_pending_state(state, current))
2815 set_current_state(TASK_RUNNING);
2816
2817 if (current->state == TASK_RUNNING)
2818 return true;
2819 if (ret < 0)
2820 break;
2821 cpu_relax();
2822 }
2823
2824 return false;
2825}
2826
2827bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2828{
2829 struct blk_mq_hw_ctx *hctx;
2830 struct blk_plug *plug;
2831 struct request *rq;
2832
2833 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2834 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2835 return false;
2836
2837 plug = current->plug;
2838 if (plug)
2839 blk_flush_plug_list(plug, false);
2840
2841 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
2842 if (!blk_qc_t_is_internal(cookie))
2843 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3a07bb1d 2844 else {
bd166ef1 2845 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3a07bb1d
JA
2846 /*
2847 * With scheduling, if the request has completed, we'll
2848 * get a NULL return here, as we clear the sched tag when
2849 * that happens. The request still remains valid, like always,
2850 * so we should be safe with just the NULL check.
2851 */
2852 if (!rq)
2853 return false;
2854 }
bbd7bb70
JA
2855
2856 return __blk_mq_poll(hctx, rq);
2857}
2858EXPORT_SYMBOL_GPL(blk_mq_poll);
2859
676141e4
JA
2860void blk_mq_disable_hotplug(void)
2861{
2862 mutex_lock(&all_q_mutex);
2863}
2864
2865void blk_mq_enable_hotplug(void)
2866{
2867 mutex_unlock(&all_q_mutex);
2868}
2869
320ae51f
JA
2870static int __init blk_mq_init(void)
2871{
9467f859
TG
2872 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2873 blk_mq_hctx_notify_dead);
320ae51f 2874
65d5291e
SAS
2875 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2876 blk_mq_queue_reinit_prepare,
2877 blk_mq_queue_reinit_dead);
320ae51f
JA
2878 return 0;
2879}
2880subsys_initcall(blk_mq_init);