]> git.ipfire.org Git - thirdparty/linux.git/blame - block/blk-throttle.c
Merge tag 'docs-6.9-2' of git://git.lwn.net/linux
[thirdparty/linux.git] / block / blk-throttle.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
e43473b7
VG
2/*
3 * Interface for controlling IO bandwidth on a request queue
4 *
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6 */
7
8#include <linux/module.h>
9#include <linux/slab.h>
10#include <linux/blkdev.h>
11#include <linux/bio.h>
12#include <linux/blktrace_api.h>
bc9fcbf9 13#include "blk.h"
1d156646 14#include "blk-cgroup-rwstat.h"
e4a19f72 15#include "blk-stat.h"
a7b36ee6 16#include "blk-throttle.h"
e43473b7
VG
17
18/* Max dispatch from a group in 1 round */
e675df2a 19#define THROTL_GRP_QUANTUM 8
e43473b7
VG
20
21/* Total max dispatch from all groups in one round */
e675df2a 22#define THROTL_QUANTUM 32
e43473b7 23
d61fcfa4
SL
24/* Throttling is performed over a slice and after that slice is renewed */
25#define DFL_THROTL_SLICE_HD (HZ / 10)
26#define DFL_THROTL_SLICE_SSD (HZ / 50)
297e3d85 27#define MAX_THROTL_SLICE (HZ)
9e234eea 28#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
9bb67aeb
SL
29#define MIN_THROTL_BPS (320 * 1024)
30#define MIN_THROTL_IOPS (10)
b4f428ef
SL
31#define DFL_LATENCY_TARGET (-1L)
32#define DFL_IDLE_THRESHOLD (0)
6679a90c
SL
33#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
34#define LATENCY_FILTERED_SSD (0)
35/*
36 * For HD, very small latency comes from sequential IO. Such IO is helpless to
37 * help determine if its IO is impacted by others, hence we ignore the IO
38 */
39#define LATENCY_FILTERED_HD (1000L) /* 1ms */
e43473b7 40
450adcbe
VG
41/* A workqueue to queue throttle related work */
42static struct workqueue_struct *kthrotld_workqueue;
450adcbe 43
e43473b7
VG
44#define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
45
b9147dd1
SL
46/* We measure latency for request size from <= 4k to >= 1M */
47#define LATENCY_BUCKET_SIZE 9
48
49struct latency_bucket {
50 unsigned long total_latency; /* ns / 1024 */
51 int samples;
52};
53
54struct avg_latency_bucket {
55 unsigned long latency; /* ns / 1024 */
56 bool valid;
57};
58
e43473b7
VG
59struct throtl_data
60{
e43473b7 61 /* service tree for active throtl groups */
c9e0332e 62 struct throtl_service_queue service_queue;
e43473b7 63
e43473b7
VG
64 struct request_queue *queue;
65
66 /* Total Number of queued bios on READ and WRITE lists */
67 unsigned int nr_queued[2];
68
297e3d85
SL
69 unsigned int throtl_slice;
70
e43473b7 71 /* Work for dispatching throttled bios */
69df0ab0 72 struct work_struct dispatch_work;
9f626e37
SL
73 unsigned int limit_index;
74 bool limit_valid[LIMIT_CNT];
3f0abd80
SL
75
76 unsigned long low_upgrade_time;
77 unsigned long low_downgrade_time;
7394e31f
SL
78
79 unsigned int scale;
b9147dd1 80
b889bf66
JQ
81 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
82 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
83 struct latency_bucket __percpu *latency_buckets[2];
b9147dd1 84 unsigned long last_calculate_time;
6679a90c 85 unsigned long filtered_latency;
b9147dd1
SL
86
87 bool track_bio_latency;
e43473b7
VG
88};
89
e99e88a9 90static void throtl_pending_timer_fn(struct timer_list *t);
69df0ab0 91
3c798398 92static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
0381411e 93{
f95a04af 94 return pd_to_blkg(&tg->pd);
0381411e
TH
95}
96
fda6f272
TH
97/**
98 * sq_to_tg - return the throl_grp the specified service queue belongs to
99 * @sq: the throtl_service_queue of interest
100 *
101 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
102 * embedded in throtl_data, %NULL is returned.
103 */
104static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
105{
106 if (sq && sq->parent_sq)
107 return container_of(sq, struct throtl_grp, service_queue);
108 else
109 return NULL;
110}
111
112/**
113 * sq_to_td - return throtl_data the specified service queue belongs to
114 * @sq: the throtl_service_queue of interest
115 *
b43daedc 116 * A service_queue can be embedded in either a throtl_grp or throtl_data.
fda6f272
TH
117 * Determine the associated throtl_data accordingly and return it.
118 */
119static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
120{
121 struct throtl_grp *tg = sq_to_tg(sq);
122
123 if (tg)
124 return tg->td;
125 else
126 return container_of(sq, struct throtl_data, service_queue);
127}
128
7394e31f
SL
129/*
130 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
131 * make the IO dispatch more smooth.
009df341 132 * Scale up: linearly scale up according to elapsed time since upgrade. For
7394e31f
SL
133 * every throtl_slice, the limit scales up 1/2 .low limit till the
134 * limit hits .max limit
135 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
136 */
137static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
138{
139 /* arbitrary value to avoid too big scale */
140 if (td->scale < 4096 && time_after_eq(jiffies,
141 td->low_upgrade_time + td->scale * td->throtl_slice))
142 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
143
144 return low + (low >> 1) * td->scale;
145}
146
9f626e37
SL
147static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
148{
b22c417c 149 struct blkcg_gq *blkg = tg_to_blkg(tg);
7394e31f 150 struct throtl_data *td;
b22c417c
SL
151 uint64_t ret;
152
153 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
154 return U64_MAX;
7394e31f
SL
155
156 td = tg->td;
157 ret = tg->bps[rw][td->limit_index];
9bb67aeb
SL
158 if (ret == 0 && td->limit_index == LIMIT_LOW) {
159 /* intermediate node or iops isn't 0 */
160 if (!list_empty(&blkg->blkcg->css.children) ||
161 tg->iops[rw][td->limit_index])
162 return U64_MAX;
163 else
164 return MIN_THROTL_BPS;
165 }
7394e31f
SL
166
167 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
168 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
169 uint64_t adjusted;
170
171 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
172 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
173 }
b22c417c 174 return ret;
9f626e37
SL
175}
176
177static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
178{
b22c417c 179 struct blkcg_gq *blkg = tg_to_blkg(tg);
7394e31f 180 struct throtl_data *td;
b22c417c
SL
181 unsigned int ret;
182
183 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
184 return UINT_MAX;
9bb67aeb 185
7394e31f
SL
186 td = tg->td;
187 ret = tg->iops[rw][td->limit_index];
9bb67aeb
SL
188 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
189 /* intermediate node or bps isn't 0 */
190 if (!list_empty(&blkg->blkcg->css.children) ||
191 tg->bps[rw][td->limit_index])
192 return UINT_MAX;
193 else
194 return MIN_THROTL_IOPS;
195 }
7394e31f
SL
196
197 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
198 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
199 uint64_t adjusted;
200
201 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
202 if (adjusted > UINT_MAX)
203 adjusted = UINT_MAX;
204 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
205 }
b22c417c 206 return ret;
9f626e37
SL
207}
208
b9147dd1
SL
209#define request_bucket_index(sectors) \
210 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
211
fda6f272
TH
212/**
213 * throtl_log - log debug message via blktrace
214 * @sq: the service_queue being reported
215 * @fmt: printf format string
216 * @args: printf args
217 *
218 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
219 * throtl_grp; otherwise, just "throtl".
fda6f272
TH
220 */
221#define throtl_log(sq, fmt, args...) do { \
222 struct throtl_grp *__tg = sq_to_tg((sq)); \
223 struct throtl_data *__td = sq_to_td((sq)); \
224 \
225 (void)__td; \
59fa0224
SL
226 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
227 break; \
fda6f272 228 if ((__tg)) { \
35fe6d76 229 blk_add_cgroup_trace_msg(__td->queue, \
f4a6a61c 230 &tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\
fda6f272
TH
231 } else { \
232 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
233 } \
54e7ed12 234} while (0)
e43473b7 235
ea0ea2bc
SL
236static inline unsigned int throtl_bio_data_size(struct bio *bio)
237{
238 /* assume it's one sector */
239 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
240 return 512;
241 return bio->bi_iter.bi_size;
242}
243
c5cc2070
TH
244static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
245{
246 INIT_LIST_HEAD(&qn->node);
247 bio_list_init(&qn->bios);
248 qn->tg = tg;
249}
250
251/**
252 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
253 * @bio: bio being added
254 * @qn: qnode to add bio to
255 * @queued: the service_queue->queued[] list @qn belongs to
256 *
257 * Add @bio to @qn and put @qn on @queued if it's not already on.
258 * @qn->tg's reference count is bumped when @qn is activated. See the
259 * comment on top of throtl_qnode definition for details.
260 */
261static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
262 struct list_head *queued)
263{
264 bio_list_add(&qn->bios, bio);
265 if (list_empty(&qn->node)) {
266 list_add_tail(&qn->node, queued);
267 blkg_get(tg_to_blkg(qn->tg));
268 }
269}
270
271/**
272 * throtl_peek_queued - peek the first bio on a qnode list
273 * @queued: the qnode list to peek
274 */
275static struct bio *throtl_peek_queued(struct list_head *queued)
276{
b7b609de 277 struct throtl_qnode *qn;
c5cc2070
TH
278 struct bio *bio;
279
280 if (list_empty(queued))
281 return NULL;
282
b7b609de 283 qn = list_first_entry(queued, struct throtl_qnode, node);
c5cc2070
TH
284 bio = bio_list_peek(&qn->bios);
285 WARN_ON_ONCE(!bio);
286 return bio;
287}
288
289/**
290 * throtl_pop_queued - pop the first bio form a qnode list
291 * @queued: the qnode list to pop a bio from
292 * @tg_to_put: optional out argument for throtl_grp to put
293 *
294 * Pop the first bio from the qnode list @queued. After popping, the first
295 * qnode is removed from @queued if empty or moved to the end of @queued so
296 * that the popping order is round-robin.
297 *
298 * When the first qnode is removed, its associated throtl_grp should be put
299 * too. If @tg_to_put is NULL, this function automatically puts it;
300 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
301 * responsible for putting it.
302 */
303static struct bio *throtl_pop_queued(struct list_head *queued,
304 struct throtl_grp **tg_to_put)
305{
b7b609de 306 struct throtl_qnode *qn;
c5cc2070
TH
307 struct bio *bio;
308
309 if (list_empty(queued))
310 return NULL;
311
b7b609de 312 qn = list_first_entry(queued, struct throtl_qnode, node);
c5cc2070
TH
313 bio = bio_list_pop(&qn->bios);
314 WARN_ON_ONCE(!bio);
315
316 if (bio_list_empty(&qn->bios)) {
317 list_del_init(&qn->node);
318 if (tg_to_put)
319 *tg_to_put = qn->tg;
320 else
321 blkg_put(tg_to_blkg(qn->tg));
322 } else {
323 list_move_tail(&qn->node, queued);
324 }
325
326 return bio;
327}
328
49a2f1e3 329/* init a service_queue, assumes the caller zeroed it */
b2ce2643 330static void throtl_service_queue_init(struct throtl_service_queue *sq)
49a2f1e3 331{
7e9c5c54
YK
332 INIT_LIST_HEAD(&sq->queued[READ]);
333 INIT_LIST_HEAD(&sq->queued[WRITE]);
9ff01255 334 sq->pending_tree = RB_ROOT_CACHED;
e99e88a9 335 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
69df0ab0
TH
336}
337
0a0b4f79
CH
338static struct blkg_policy_data *throtl_pd_alloc(struct gendisk *disk,
339 struct blkcg *blkcg, gfp_t gfp)
001bea73 340{
4fb72036 341 struct throtl_grp *tg;
24bdb8ef 342 int rw;
4fb72036 343
0a0b4f79 344 tg = kzalloc_node(sizeof(*tg), gfp, disk->node_id);
4fb72036 345 if (!tg)
77ea7338 346 return NULL;
4fb72036 347
7ca46438
TH
348 if (blkg_rwstat_init(&tg->stat_bytes, gfp))
349 goto err_free_tg;
350
351 if (blkg_rwstat_init(&tg->stat_ios, gfp))
352 goto err_exit_stat_bytes;
353
b2ce2643
TH
354 throtl_service_queue_init(&tg->service_queue);
355
356 for (rw = READ; rw <= WRITE; rw++) {
357 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
358 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
359 }
360
361 RB_CLEAR_NODE(&tg->rb_node);
9f626e37
SL
362 tg->bps[READ][LIMIT_MAX] = U64_MAX;
363 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
364 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
365 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
cd5ab1b0
SL
366 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
367 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
368 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
369 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
370 /* LIMIT_LOW will have default value 0 */
b2ce2643 371
ec80991d 372 tg->latency_target = DFL_LATENCY_TARGET;
5b81fc3c 373 tg->latency_target_conf = DFL_LATENCY_TARGET;
b4f428ef
SL
374 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
375 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
ec80991d 376
4fb72036 377 return &tg->pd;
7ca46438
TH
378
379err_exit_stat_bytes:
380 blkg_rwstat_exit(&tg->stat_bytes);
381err_free_tg:
382 kfree(tg);
383 return NULL;
001bea73
TH
384}
385
a9520cd6 386static void throtl_pd_init(struct blkg_policy_data *pd)
a29a171e 387{
a9520cd6
TH
388 struct throtl_grp *tg = pd_to_tg(pd);
389 struct blkcg_gq *blkg = tg_to_blkg(tg);
a06377c5 390 struct throtl_data *td = blkg->q->td;
b2ce2643 391 struct throtl_service_queue *sq = &tg->service_queue;
cd1604fa 392
9138125b 393 /*
aa6ec29b 394 * If on the default hierarchy, we switch to properly hierarchical
9138125b
TH
395 * behavior where limits on a given throtl_grp are applied to the
396 * whole subtree rather than just the group itself. e.g. If 16M
f56019ae
KS
397 * read_bps limit is set on a parent group, summary bps of
398 * parent group and its subtree groups can't exceed 16M for the
399 * device.
9138125b 400 *
aa6ec29b 401 * If not on the default hierarchy, the broken flat hierarchy
9138125b
TH
402 * behavior is retained where all throtl_grps are treated as if
403 * they're all separate root groups right below throtl_data.
404 * Limits of a group don't interact with limits of other groups
405 * regardless of the position of the group in the hierarchy.
406 */
b2ce2643 407 sq->parent_sq = &td->service_queue;
9e10a130 408 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
b2ce2643 409 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
77216b04 410 tg->td = td;
8a3d2615
TH
411}
412
693e751e
TH
413/*
414 * Set has_rules[] if @tg or any of its parents have limits configured.
415 * This doesn't require walking up to the top of the hierarchy as the
416 * parent's has_rules[] is guaranteed to be correct.
417 */
418static void tg_update_has_rules(struct throtl_grp *tg)
419{
420 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
9f626e37 421 struct throtl_data *td = tg->td;
693e751e
TH
422 int rw;
423
81c7a63a
YK
424 for (rw = READ; rw <= WRITE; rw++) {
425 tg->has_rules_iops[rw] =
426 (parent_tg && parent_tg->has_rules_iops[rw]) ||
427 (td->limit_valid[td->limit_index] &&
428 tg_iops_limit(tg, rw) != UINT_MAX);
429 tg->has_rules_bps[rw] =
430 (parent_tg && parent_tg->has_rules_bps[rw]) ||
9f626e37 431 (td->limit_valid[td->limit_index] &&
81c7a63a
YK
432 (tg_bps_limit(tg, rw) != U64_MAX));
433 }
693e751e
TH
434}
435
a9520cd6 436static void throtl_pd_online(struct blkg_policy_data *pd)
693e751e 437{
aec24246 438 struct throtl_grp *tg = pd_to_tg(pd);
693e751e
TH
439 /*
440 * We don't want new groups to escape the limits of its ancestors.
441 * Update has_rules[] after a new group is brought online.
442 */
aec24246 443 tg_update_has_rules(tg);
693e751e
TH
444}
445
acaf523a 446#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
cd5ab1b0
SL
447static void blk_throtl_update_limit_valid(struct throtl_data *td)
448{
449 struct cgroup_subsys_state *pos_css;
450 struct blkcg_gq *blkg;
451 bool low_valid = false;
452
453 rcu_read_lock();
1231039d 454 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
cd5ab1b0
SL
455 struct throtl_grp *tg = blkg_to_tg(blkg);
456
457 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
43ada787 458 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
cd5ab1b0 459 low_valid = true;
43ada787
LB
460 break;
461 }
cd5ab1b0
SL
462 }
463 rcu_read_unlock();
464
465 td->limit_valid[LIMIT_LOW] = low_valid;
466}
acaf523a
YK
467#else
468static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
469{
470}
471#endif
cd5ab1b0 472
c79892c5 473static void throtl_upgrade_state(struct throtl_data *td);
cd5ab1b0
SL
474static void throtl_pd_offline(struct blkg_policy_data *pd)
475{
476 struct throtl_grp *tg = pd_to_tg(pd);
477
478 tg->bps[READ][LIMIT_LOW] = 0;
479 tg->bps[WRITE][LIMIT_LOW] = 0;
480 tg->iops[READ][LIMIT_LOW] = 0;
481 tg->iops[WRITE][LIMIT_LOW] = 0;
482
483 blk_throtl_update_limit_valid(tg->td);
484
c79892c5
SL
485 if (!tg->td->limit_valid[tg->td->limit_index])
486 throtl_upgrade_state(tg->td);
cd5ab1b0
SL
487}
488
001bea73
TH
489static void throtl_pd_free(struct blkg_policy_data *pd)
490{
4fb72036
TH
491 struct throtl_grp *tg = pd_to_tg(pd);
492
b2ce2643 493 del_timer_sync(&tg->service_queue.pending_timer);
7ca46438
TH
494 blkg_rwstat_exit(&tg->stat_bytes);
495 blkg_rwstat_exit(&tg->stat_ios);
4fb72036 496 kfree(tg);
001bea73
TH
497}
498
0049af73
TH
499static struct throtl_grp *
500throtl_rb_first(struct throtl_service_queue *parent_sq)
e43473b7 501{
9ff01255 502 struct rb_node *n;
e43473b7 503
9ff01255
LB
504 n = rb_first_cached(&parent_sq->pending_tree);
505 WARN_ON_ONCE(!n);
506 if (!n)
507 return NULL;
508 return rb_entry_tg(n);
e43473b7
VG
509}
510
0049af73
TH
511static void throtl_rb_erase(struct rb_node *n,
512 struct throtl_service_queue *parent_sq)
e43473b7 513{
9ff01255
LB
514 rb_erase_cached(n, &parent_sq->pending_tree);
515 RB_CLEAR_NODE(n);
e43473b7
VG
516}
517
0049af73 518static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
e43473b7
VG
519{
520 struct throtl_grp *tg;
521
0049af73 522 tg = throtl_rb_first(parent_sq);
e43473b7
VG
523 if (!tg)
524 return;
525
0049af73 526 parent_sq->first_pending_disptime = tg->disptime;
e43473b7
VG
527}
528
77216b04 529static void tg_service_queue_add(struct throtl_grp *tg)
e43473b7 530{
77216b04 531 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
9ff01255 532 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
e43473b7
VG
533 struct rb_node *parent = NULL;
534 struct throtl_grp *__tg;
535 unsigned long key = tg->disptime;
9ff01255 536 bool leftmost = true;
e43473b7
VG
537
538 while (*node != NULL) {
539 parent = *node;
540 __tg = rb_entry_tg(parent);
541
542 if (time_before(key, __tg->disptime))
543 node = &parent->rb_left;
544 else {
545 node = &parent->rb_right;
9ff01255 546 leftmost = false;
e43473b7
VG
547 }
548 }
549
e43473b7 550 rb_link_node(&tg->rb_node, parent, node);
9ff01255
LB
551 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
552 leftmost);
e43473b7
VG
553}
554
77216b04 555static void throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 556{
29379674
BW
557 if (!(tg->flags & THROTL_TG_PENDING)) {
558 tg_service_queue_add(tg);
559 tg->flags |= THROTL_TG_PENDING;
560 tg->service_queue.parent_sq->nr_pending++;
561 }
e43473b7
VG
562}
563
77216b04 564static void throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 565{
29379674 566 if (tg->flags & THROTL_TG_PENDING) {
c013710e
YK
567 struct throtl_service_queue *parent_sq =
568 tg->service_queue.parent_sq;
569
570 throtl_rb_erase(&tg->rb_node, parent_sq);
571 --parent_sq->nr_pending;
29379674
BW
572 tg->flags &= ~THROTL_TG_PENDING;
573 }
e43473b7
VG
574}
575
a9131a27 576/* Call with queue lock held */
69df0ab0
TH
577static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
578 unsigned long expires)
a9131a27 579{
a41b816c 580 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
06cceedc
SL
581
582 /*
583 * Since we are adjusting the throttle limit dynamically, the sleep
584 * time calculated according to previous limit might be invalid. It's
585 * possible the cgroup sleep time is very long and no other cgroups
586 * have IO running so notify the limit changes. Make sure the cgroup
587 * doesn't sleep too long to avoid the missed notification.
588 */
589 if (time_after(expires, max_expire))
590 expires = max_expire;
69df0ab0
TH
591 mod_timer(&sq->pending_timer, expires);
592 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
593 expires - jiffies, jiffies);
a9131a27
TH
594}
595
7f52f98c
TH
596/**
597 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
598 * @sq: the service_queue to schedule dispatch for
599 * @force: force scheduling
600 *
601 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
602 * dispatch time of the first pending child. Returns %true if either timer
603 * is armed or there's no pending child left. %false if the current
604 * dispatch window is still open and the caller should continue
605 * dispatching.
606 *
607 * If @force is %true, the dispatch timer is always scheduled and this
608 * function is guaranteed to return %true. This is to be used when the
609 * caller can't dispatch itself and needs to invoke pending_timer
610 * unconditionally. Note that forced scheduling is likely to induce short
611 * delay before dispatch starts even if @sq->first_pending_disptime is not
612 * in the future and thus shouldn't be used in hot paths.
613 */
614static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
615 bool force)
e43473b7 616{
6a525600 617 /* any pending children left? */
c9e0332e 618 if (!sq->nr_pending)
7f52f98c 619 return true;
e43473b7 620
c9e0332e 621 update_min_dispatch_time(sq);
e43473b7 622
69df0ab0 623 /* is the next dispatch time in the future? */
7f52f98c 624 if (force || time_after(sq->first_pending_disptime, jiffies)) {
69df0ab0 625 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
7f52f98c 626 return true;
69df0ab0
TH
627 }
628
7f52f98c
TH
629 /* tell the caller to continue dispatching */
630 return false;
e43473b7
VG
631}
632
32ee5bc4
VG
633static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
634 bool rw, unsigned long start)
635{
636 tg->bytes_disp[rw] = 0;
637 tg->io_disp[rw] = 0;
a880ae93
YK
638 tg->carryover_bytes[rw] = 0;
639 tg->carryover_ios[rw] = 0;
32ee5bc4
VG
640
641 /*
642 * Previous slice has expired. We must have trimmed it after last
643 * bio dispatch. That means since start of last slice, we never used
644 * that bandwidth. Do try to make use of that bandwidth while giving
645 * credit.
646 */
eea3e8b7 647 if (time_after(start, tg->slice_start[rw]))
32ee5bc4
VG
648 tg->slice_start[rw] = start;
649
297e3d85 650 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
32ee5bc4
VG
651 throtl_log(&tg->service_queue,
652 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
653 rw == READ ? 'R' : 'W', tg->slice_start[rw],
654 tg->slice_end[rw], jiffies);
655}
656
a880ae93
YK
657static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw,
658 bool clear_carryover)
e43473b7
VG
659{
660 tg->bytes_disp[rw] = 0;
8e89d13f 661 tg->io_disp[rw] = 0;
e43473b7 662 tg->slice_start[rw] = jiffies;
297e3d85 663 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
a880ae93
YK
664 if (clear_carryover) {
665 tg->carryover_bytes[rw] = 0;
666 tg->carryover_ios[rw] = 0;
667 }
4f1e9630 668
fda6f272
TH
669 throtl_log(&tg->service_queue,
670 "[%c] new slice start=%lu end=%lu jiffies=%lu",
671 rw == READ ? 'R' : 'W', tg->slice_start[rw],
672 tg->slice_end[rw], jiffies);
e43473b7
VG
673}
674
0f3457f6
TH
675static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
676 unsigned long jiffy_end)
d1ae8ffd 677{
297e3d85 678 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
d1ae8ffd
VG
679}
680
0f3457f6
TH
681static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
682 unsigned long jiffy_end)
e43473b7 683{
1da30f95 684 throtl_set_slice_end(tg, rw, jiffy_end);
fda6f272
TH
685 throtl_log(&tg->service_queue,
686 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
687 rw == READ ? 'R' : 'W', tg->slice_start[rw],
688 tg->slice_end[rw], jiffies);
e43473b7
VG
689}
690
691/* Determine if previously allocated or extended slice is complete or not */
0f3457f6 692static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
e43473b7
VG
693{
694 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
5cf8c227 695 return false;
e43473b7 696
0b6bad7d 697 return true;
e43473b7
VG
698}
699
e8368b57
YK
700static unsigned int calculate_io_allowed(u32 iops_limit,
701 unsigned long jiffy_elapsed)
702{
703 unsigned int io_allowed;
704 u64 tmp;
705
706 /*
707 * jiffy_elapsed should not be a big value as minimum iops can be
708 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
709 * will allow dispatch after 1 second and after that slice should
710 * have been trimmed.
711 */
712
713 tmp = (u64)iops_limit * jiffy_elapsed;
714 do_div(tmp, HZ);
715
716 if (tmp > UINT_MAX)
717 io_allowed = UINT_MAX;
718 else
719 io_allowed = tmp;
720
721 return io_allowed;
722}
723
724static u64 calculate_bytes_allowed(u64 bps_limit, unsigned long jiffy_elapsed)
725{
2dd710d4
KK
726 /*
727 * Can result be wider than 64 bits?
728 * We check against 62, not 64, due to ilog2 truncation.
729 */
730 if (ilog2(bps_limit) + ilog2(jiffy_elapsed) - ilog2(HZ) > 62)
731 return U64_MAX;
e8368b57
YK
732 return mul_u64_u64_div_u64(bps_limit, (u64)jiffy_elapsed, (u64)HZ);
733}
734
e43473b7 735/* Trim the used slices and adjust slice start accordingly */
0f3457f6 736static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
e43473b7 737{
eead0056
YK
738 unsigned long time_elapsed;
739 long long bytes_trim;
740 int io_trim;
e43473b7
VG
741
742 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
743
744 /*
745 * If bps are unlimited (-1), then time slice don't get
746 * renewed. Don't try to trim the slice if slice is used. A new
747 * slice will start when appropriate.
748 */
0f3457f6 749 if (throtl_slice_used(tg, rw))
e43473b7
VG
750 return;
751
d1ae8ffd
VG
752 /*
753 * A bio has been dispatched. Also adjust slice_end. It might happen
754 * that initially cgroup limit was very low resulting in high
b53b072c 755 * slice_end, but later limit was bumped up and bio was dispatched
d1ae8ffd
VG
756 * sooner, then we need to reduce slice_end. A high bogus slice_end
757 * is bad because it does not allow new slice to start.
758 */
759
297e3d85 760 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
d1ae8ffd 761
e8368b57
YK
762 time_elapsed = rounddown(jiffies - tg->slice_start[rw],
763 tg->td->throtl_slice);
764 if (!time_elapsed)
e43473b7 765 return;
e43473b7 766
e8368b57 767 bytes_trim = calculate_bytes_allowed(tg_bps_limit(tg, rw),
eead0056
YK
768 time_elapsed) +
769 tg->carryover_bytes[rw];
770 io_trim = calculate_io_allowed(tg_iops_limit(tg, rw), time_elapsed) +
771 tg->carryover_ios[rw];
772 if (bytes_trim <= 0 && io_trim <= 0)
e43473b7
VG
773 return;
774
eead0056
YK
775 tg->carryover_bytes[rw] = 0;
776 if ((long long)tg->bytes_disp[rw] >= bytes_trim)
e43473b7
VG
777 tg->bytes_disp[rw] -= bytes_trim;
778 else
779 tg->bytes_disp[rw] = 0;
780
eead0056
YK
781 tg->carryover_ios[rw] = 0;
782 if ((int)tg->io_disp[rw] >= io_trim)
8e89d13f
VG
783 tg->io_disp[rw] -= io_trim;
784 else
785 tg->io_disp[rw] = 0;
786
e8368b57 787 tg->slice_start[rw] += time_elapsed;
e43473b7 788
fda6f272 789 throtl_log(&tg->service_queue,
eead0056 790 "[%c] trim slice nr=%lu bytes=%lld io=%d start=%lu end=%lu jiffies=%lu",
e8368b57
YK
791 rw == READ ? 'R' : 'W', time_elapsed / tg->td->throtl_slice,
792 bytes_trim, io_trim, tg->slice_start[rw], tg->slice_end[rw],
793 jiffies);
681cd46f
YK
794}
795
a880ae93
YK
796static void __tg_update_carryover(struct throtl_grp *tg, bool rw)
797{
798 unsigned long jiffy_elapsed = jiffies - tg->slice_start[rw];
799 u64 bps_limit = tg_bps_limit(tg, rw);
800 u32 iops_limit = tg_iops_limit(tg, rw);
801
802 /*
803 * If config is updated while bios are still throttled, calculate and
804 * accumulate how many bytes/ios are waited across changes. And
805 * carryover_bytes/ios will be used to calculate new wait time under new
806 * configuration.
807 */
808 if (bps_limit != U64_MAX)
809 tg->carryover_bytes[rw] +=
810 calculate_bytes_allowed(bps_limit, jiffy_elapsed) -
811 tg->bytes_disp[rw];
812 if (iops_limit != UINT_MAX)
813 tg->carryover_ios[rw] +=
814 calculate_io_allowed(iops_limit, jiffy_elapsed) -
815 tg->io_disp[rw];
816}
817
818static void tg_update_carryover(struct throtl_grp *tg)
819{
820 if (tg->service_queue.nr_queued[READ])
821 __tg_update_carryover(tg, READ);
822 if (tg->service_queue.nr_queued[WRITE])
823 __tg_update_carryover(tg, WRITE);
824
825 /* see comments in struct throtl_grp for meaning of these fields. */
ef100397 826 throtl_log(&tg->service_queue, "%s: %lld %lld %d %d\n", __func__,
a880ae93
YK
827 tg->carryover_bytes[READ], tg->carryover_bytes[WRITE],
828 tg->carryover_ios[READ], tg->carryover_ios[WRITE]);
829}
830
183daeb1
KS
831static unsigned long tg_within_iops_limit(struct throtl_grp *tg, struct bio *bio,
832 u32 iops_limit)
681cd46f
YK
833{
834 bool rw = bio_data_dir(bio);
bb8d5587 835 int io_allowed;
681cd46f
YK
836 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
837
838 if (iops_limit == UINT_MAX) {
183daeb1 839 return 0;
681cd46f
YK
840 }
841
842 jiffy_elapsed = jiffies - tg->slice_start[rw];
843
844 /* Round up to the next throttle slice, wait time must be nonzero */
845 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
a880ae93
YK
846 io_allowed = calculate_io_allowed(iops_limit, jiffy_elapsed_rnd) +
847 tg->carryover_ios[rw];
bb8d5587 848 if (io_allowed > 0 && tg->io_disp[rw] + 1 <= io_allowed)
183daeb1 849 return 0;
e43473b7 850
8e89d13f 851 /* Calc approx time to dispatch */
991f61fe 852 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
183daeb1 853 return jiffy_wait;
8e89d13f
VG
854}
855
183daeb1
KS
856static unsigned long tg_within_bps_limit(struct throtl_grp *tg, struct bio *bio,
857 u64 bps_limit)
8e89d13f
VG
858{
859 bool rw = bio_data_dir(bio);
bb8d5587
YK
860 long long bytes_allowed;
861 u64 extra_bytes;
8e89d13f 862 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
ea0ea2bc 863 unsigned int bio_size = throtl_bio_data_size(bio);
e43473b7 864
9f5ede3c 865 /* no need to throttle if this bio's bytes have been accounted */
320fb0f9 866 if (bps_limit == U64_MAX || bio_flagged(bio, BIO_BPS_THROTTLED)) {
183daeb1 867 return 0;
87fbeb88
BW
868 }
869
e43473b7
VG
870 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
871
872 /* Slice has just started. Consider one slice interval */
873 if (!jiffy_elapsed)
297e3d85 874 jiffy_elapsed_rnd = tg->td->throtl_slice;
e43473b7 875
297e3d85 876 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
a880ae93
YK
877 bytes_allowed = calculate_bytes_allowed(bps_limit, jiffy_elapsed_rnd) +
878 tg->carryover_bytes[rw];
bb8d5587 879 if (bytes_allowed > 0 && tg->bytes_disp[rw] + bio_size <= bytes_allowed)
183daeb1 880 return 0;
e43473b7
VG
881
882 /* Calc approx time to dispatch */
ea0ea2bc 883 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
4599ea49 884 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
e43473b7
VG
885
886 if (!jiffy_wait)
887 jiffy_wait = 1;
888
889 /*
890 * This wait time is without taking into consideration the rounding
891 * up we did. Add that time also.
892 */
893 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
183daeb1 894 return jiffy_wait;
8e89d13f
VG
895}
896
897/*
898 * Returns whether one can dispatch a bio or not. Also returns approx number
899 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
900 */
0f3457f6
TH
901static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
902 unsigned long *wait)
8e89d13f
VG
903{
904 bool rw = bio_data_dir(bio);
905 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
4599ea49
BW
906 u64 bps_limit = tg_bps_limit(tg, rw);
907 u32 iops_limit = tg_iops_limit(tg, rw);
8e89d13f
VG
908
909 /*
910 * Currently whole state machine of group depends on first bio
911 * queued in the group bio list. So one should not be calling
912 * this function with a different bio if there are other bios
913 * queued.
914 */
73f0d49a 915 BUG_ON(tg->service_queue.nr_queued[rw] &&
c5cc2070 916 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
e43473b7 917
8e89d13f 918 /* If tg->bps = -1, then BW is unlimited */
8f9e7b65
YK
919 if ((bps_limit == U64_MAX && iops_limit == UINT_MAX) ||
920 tg->flags & THROTL_TG_CANCELING) {
8e89d13f
VG
921 if (wait)
922 *wait = 0;
5cf8c227 923 return true;
8e89d13f
VG
924 }
925
926 /*
927 * If previous slice expired, start a new one otherwise renew/extend
928 * existing slice to make sure it is at least throtl_slice interval
164c80ed
VG
929 * long since now. New slice is started only for empty throttle group.
930 * If there is queued bio, that means there should be an active
931 * slice and it should be extended instead.
8e89d13f 932 */
164c80ed 933 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
a880ae93 934 throtl_start_new_slice(tg, rw, true);
8e89d13f 935 else {
297e3d85
SL
936 if (time_before(tg->slice_end[rw],
937 jiffies + tg->td->throtl_slice))
938 throtl_extend_slice(tg, rw,
939 jiffies + tg->td->throtl_slice);
8e89d13f
VG
940 }
941
183daeb1
KS
942 bps_wait = tg_within_bps_limit(tg, bio, bps_limit);
943 iops_wait = tg_within_iops_limit(tg, bio, iops_limit);
944 if (bps_wait + iops_wait == 0) {
8e89d13f
VG
945 if (wait)
946 *wait = 0;
0b6bad7d 947 return true;
8e89d13f
VG
948 }
949
950 max_wait = max(bps_wait, iops_wait);
951
952 if (wait)
953 *wait = max_wait;
954
955 if (time_before(tg->slice_end[rw], jiffies + max_wait))
0f3457f6 956 throtl_extend_slice(tg, rw, jiffies + max_wait);
e43473b7 957
0b6bad7d 958 return false;
e43473b7
VG
959}
960
961static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
962{
963 bool rw = bio_data_dir(bio);
ea0ea2bc 964 unsigned int bio_size = throtl_bio_data_size(bio);
e43473b7
VG
965
966 /* Charge the bio to the group */
320fb0f9 967 if (!bio_flagged(bio, BIO_BPS_THROTTLED)) {
9f5ede3c
ML
968 tg->bytes_disp[rw] += bio_size;
969 tg->last_bytes_disp[rw] += bio_size;
970 }
971
8e89d13f 972 tg->io_disp[rw]++;
3f0abd80 973 tg->last_io_disp[rw]++;
e43473b7
VG
974}
975
c5cc2070
TH
976/**
977 * throtl_add_bio_tg - add a bio to the specified throtl_grp
978 * @bio: bio to add
979 * @qn: qnode to use
980 * @tg: the target throtl_grp
981 *
982 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
983 * tg->qnode_on_self[] is used.
984 */
985static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
986 struct throtl_grp *tg)
e43473b7 987{
73f0d49a 988 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
989 bool rw = bio_data_dir(bio);
990
c5cc2070
TH
991 if (!qn)
992 qn = &tg->qnode_on_self[rw];
993
0e9f4164
TH
994 /*
995 * If @tg doesn't currently have any bios queued in the same
996 * direction, queueing @bio can change when @tg should be
997 * dispatched. Mark that @tg was empty. This is automatically
b53b072c 998 * cleared on the next tg_update_disptime().
0e9f4164
TH
999 */
1000 if (!sq->nr_queued[rw])
1001 tg->flags |= THROTL_TG_WAS_EMPTY;
1002
c5cc2070
TH
1003 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1004
73f0d49a 1005 sq->nr_queued[rw]++;
77216b04 1006 throtl_enqueue_tg(tg);
e43473b7
VG
1007}
1008
77216b04 1009static void tg_update_disptime(struct throtl_grp *tg)
e43473b7 1010{
73f0d49a 1011 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1012 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1013 struct bio *bio;
1014
d609af3a
ME
1015 bio = throtl_peek_queued(&sq->queued[READ]);
1016 if (bio)
0f3457f6 1017 tg_may_dispatch(tg, bio, &read_wait);
e43473b7 1018
d609af3a
ME
1019 bio = throtl_peek_queued(&sq->queued[WRITE]);
1020 if (bio)
0f3457f6 1021 tg_may_dispatch(tg, bio, &write_wait);
e43473b7
VG
1022
1023 min_wait = min(read_wait, write_wait);
1024 disptime = jiffies + min_wait;
1025
e43473b7 1026 /* Update dispatch time */
c013710e 1027 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
e43473b7 1028 tg->disptime = disptime;
c013710e 1029 tg_service_queue_add(tg);
0e9f4164
TH
1030
1031 /* see throtl_add_bio_tg() */
1032 tg->flags &= ~THROTL_TG_WAS_EMPTY;
e43473b7
VG
1033}
1034
32ee5bc4
VG
1035static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1036 struct throtl_grp *parent_tg, bool rw)
1037{
1038 if (throtl_slice_used(parent_tg, rw)) {
1039 throtl_start_new_slice_with_credit(parent_tg, rw,
1040 child_tg->slice_start[rw]);
1041 }
1042
1043}
1044
77216b04 1045static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
e43473b7 1046{
73f0d49a 1047 struct throtl_service_queue *sq = &tg->service_queue;
6bc9c2b4
TH
1048 struct throtl_service_queue *parent_sq = sq->parent_sq;
1049 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
c5cc2070 1050 struct throtl_grp *tg_to_put = NULL;
e43473b7
VG
1051 struct bio *bio;
1052
c5cc2070
TH
1053 /*
1054 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1055 * from @tg may put its reference and @parent_sq might end up
1056 * getting released prematurely. Remember the tg to put and put it
1057 * after @bio is transferred to @parent_sq.
1058 */
1059 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
73f0d49a 1060 sq->nr_queued[rw]--;
e43473b7
VG
1061
1062 throtl_charge_bio(tg, bio);
6bc9c2b4
TH
1063
1064 /*
1065 * If our parent is another tg, we just need to transfer @bio to
1066 * the parent using throtl_add_bio_tg(). If our parent is
1067 * @td->service_queue, @bio is ready to be issued. Put it on its
1068 * bio_lists[] and decrease total number queued. The caller is
1069 * responsible for issuing these bios.
1070 */
1071 if (parent_tg) {
c5cc2070 1072 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
32ee5bc4 1073 start_parent_slice_with_credit(tg, parent_tg, rw);
6bc9c2b4 1074 } else {
84aca0a7 1075 bio_set_flag(bio, BIO_BPS_THROTTLED);
c5cc2070
TH
1076 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1077 &parent_sq->queued[rw]);
6bc9c2b4
TH
1078 BUG_ON(tg->td->nr_queued[rw] <= 0);
1079 tg->td->nr_queued[rw]--;
1080 }
e43473b7 1081
0f3457f6 1082 throtl_trim_slice(tg, rw);
6bc9c2b4 1083
c5cc2070
TH
1084 if (tg_to_put)
1085 blkg_put(tg_to_blkg(tg_to_put));
e43473b7
VG
1086}
1087
77216b04 1088static int throtl_dispatch_tg(struct throtl_grp *tg)
e43473b7 1089{
73f0d49a 1090 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7 1091 unsigned int nr_reads = 0, nr_writes = 0;
e675df2a
BW
1092 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1093 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
e43473b7
VG
1094 struct bio *bio;
1095
1096 /* Try to dispatch 75% READS and 25% WRITES */
1097
c5cc2070 1098 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
0f3457f6 1099 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1100
3bca7640 1101 tg_dispatch_one_bio(tg, READ);
e43473b7
VG
1102 nr_reads++;
1103
1104 if (nr_reads >= max_nr_reads)
1105 break;
1106 }
1107
c5cc2070 1108 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
0f3457f6 1109 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1110
3bca7640 1111 tg_dispatch_one_bio(tg, WRITE);
e43473b7
VG
1112 nr_writes++;
1113
1114 if (nr_writes >= max_nr_writes)
1115 break;
1116 }
1117
1118 return nr_reads + nr_writes;
1119}
1120
651930bc 1121static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
e43473b7
VG
1122{
1123 unsigned int nr_disp = 0;
e43473b7
VG
1124
1125 while (1) {
2397611a 1126 struct throtl_grp *tg;
2ab74cd2 1127 struct throtl_service_queue *sq;
e43473b7 1128
2397611a
BW
1129 if (!parent_sq->nr_pending)
1130 break;
1131
1132 tg = throtl_rb_first(parent_sq);
e43473b7
VG
1133 if (!tg)
1134 break;
1135
1136 if (time_before(jiffies, tg->disptime))
1137 break;
1138
77216b04 1139 nr_disp += throtl_dispatch_tg(tg);
e43473b7 1140
2ab74cd2 1141 sq = &tg->service_queue;
7e9c5c54 1142 if (sq->nr_queued[READ] || sq->nr_queued[WRITE])
77216b04 1143 tg_update_disptime(tg);
8c25ed0c
YK
1144 else
1145 throtl_dequeue_tg(tg);
e43473b7 1146
e675df2a 1147 if (nr_disp >= THROTL_QUANTUM)
e43473b7
VG
1148 break;
1149 }
1150
1151 return nr_disp;
1152}
1153
c79892c5
SL
1154static bool throtl_can_upgrade(struct throtl_data *td,
1155 struct throtl_grp *this_tg);
6e1a5704
TH
1156/**
1157 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
216382dc 1158 * @t: the pending_timer member of the throtl_service_queue being serviced
6e1a5704
TH
1159 *
1160 * This timer is armed when a child throtl_grp with active bio's become
1161 * pending and queued on the service_queue's pending_tree and expires when
1162 * the first child throtl_grp should be dispatched. This function
2e48a530
TH
1163 * dispatches bio's from the children throtl_grps to the parent
1164 * service_queue.
1165 *
1166 * If the parent's parent is another throtl_grp, dispatching is propagated
1167 * by either arming its pending_timer or repeating dispatch directly. If
1168 * the top-level service_tree is reached, throtl_data->dispatch_work is
1169 * kicked so that the ready bio's are issued.
6e1a5704 1170 */
e99e88a9 1171static void throtl_pending_timer_fn(struct timer_list *t)
69df0ab0 1172{
e99e88a9 1173 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
2e48a530 1174 struct throtl_grp *tg = sq_to_tg(sq);
69df0ab0 1175 struct throtl_data *td = sq_to_td(sq);
2e48a530 1176 struct throtl_service_queue *parent_sq;
ee37eddb 1177 struct request_queue *q;
2e48a530 1178 bool dispatched;
6e1a5704 1179 int ret;
e43473b7 1180
ee37eddb
ML
1181 /* throtl_data may be gone, so figure out request queue by blkg */
1182 if (tg)
a06377c5 1183 q = tg->pd.blkg->q;
ee37eddb
ML
1184 else
1185 q = td->queue;
1186
0d945c1f 1187 spin_lock_irq(&q->queue_lock);
ee37eddb 1188
1231039d 1189 if (!q->root_blkg)
ee37eddb
ML
1190 goto out_unlock;
1191
c79892c5
SL
1192 if (throtl_can_upgrade(td, NULL))
1193 throtl_upgrade_state(td);
1194
2e48a530
TH
1195again:
1196 parent_sq = sq->parent_sq;
1197 dispatched = false;
e43473b7 1198
7f52f98c
TH
1199 while (true) {
1200 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
2e48a530
TH
1201 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1202 sq->nr_queued[READ], sq->nr_queued[WRITE]);
7f52f98c
TH
1203
1204 ret = throtl_select_dispatch(sq);
1205 if (ret) {
7f52f98c
TH
1206 throtl_log(sq, "bios disp=%u", ret);
1207 dispatched = true;
1208 }
e43473b7 1209
7f52f98c
TH
1210 if (throtl_schedule_next_dispatch(sq, false))
1211 break;
e43473b7 1212
7f52f98c 1213 /* this dispatch windows is still open, relax and repeat */
0d945c1f 1214 spin_unlock_irq(&q->queue_lock);
7f52f98c 1215 cpu_relax();
0d945c1f 1216 spin_lock_irq(&q->queue_lock);
651930bc 1217 }
e43473b7 1218
2e48a530
TH
1219 if (!dispatched)
1220 goto out_unlock;
6e1a5704 1221
2e48a530
TH
1222 if (parent_sq) {
1223 /* @parent_sq is another throl_grp, propagate dispatch */
1224 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1225 tg_update_disptime(tg);
1226 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1227 /* window is already open, repeat dispatching */
1228 sq = parent_sq;
1229 tg = sq_to_tg(sq);
1230 goto again;
1231 }
1232 }
1233 } else {
b53b072c 1234 /* reached the top-level, queue issuing */
2e48a530
TH
1235 queue_work(kthrotld_workqueue, &td->dispatch_work);
1236 }
1237out_unlock:
0d945c1f 1238 spin_unlock_irq(&q->queue_lock);
6e1a5704 1239}
e43473b7 1240
6e1a5704
TH
1241/**
1242 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1243 * @work: work item being executed
1244 *
b53b072c
BW
1245 * This function is queued for execution when bios reach the bio_lists[]
1246 * of throtl_data->service_queue. Those bios are ready and issued by this
6e1a5704
TH
1247 * function.
1248 */
8876e140 1249static void blk_throtl_dispatch_work_fn(struct work_struct *work)
6e1a5704
TH
1250{
1251 struct throtl_data *td = container_of(work, struct throtl_data,
1252 dispatch_work);
1253 struct throtl_service_queue *td_sq = &td->service_queue;
1254 struct request_queue *q = td->queue;
1255 struct bio_list bio_list_on_stack;
1256 struct bio *bio;
1257 struct blk_plug plug;
1258 int rw;
1259
1260 bio_list_init(&bio_list_on_stack);
1261
0d945c1f 1262 spin_lock_irq(&q->queue_lock);
c5cc2070
TH
1263 for (rw = READ; rw <= WRITE; rw++)
1264 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1265 bio_list_add(&bio_list_on_stack, bio);
0d945c1f 1266 spin_unlock_irq(&q->queue_lock);
6e1a5704
TH
1267
1268 if (!bio_list_empty(&bio_list_on_stack)) {
69d60eb9 1269 blk_start_plug(&plug);
ed00aabd 1270 while ((bio = bio_list_pop(&bio_list_on_stack)))
3f98c753 1271 submit_bio_noacct_nocheck(bio);
69d60eb9 1272 blk_finish_plug(&plug);
e43473b7 1273 }
e43473b7
VG
1274}
1275
f95a04af
TH
1276static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1277 int off)
60c2bc2d 1278{
f95a04af
TH
1279 struct throtl_grp *tg = pd_to_tg(pd);
1280 u64 v = *(u64 *)((void *)tg + off);
60c2bc2d 1281
2ab5492d 1282 if (v == U64_MAX)
60c2bc2d 1283 return 0;
f95a04af 1284 return __blkg_prfill_u64(sf, pd, v);
60c2bc2d
TH
1285}
1286
f95a04af
TH
1287static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1288 int off)
e43473b7 1289{
f95a04af
TH
1290 struct throtl_grp *tg = pd_to_tg(pd);
1291 unsigned int v = *(unsigned int *)((void *)tg + off);
fe071437 1292
2ab5492d 1293 if (v == UINT_MAX)
af133ceb 1294 return 0;
f95a04af 1295 return __blkg_prfill_u64(sf, pd, v);
e43473b7
VG
1296}
1297
2da8ca82 1298static int tg_print_conf_u64(struct seq_file *sf, void *v)
8e89d13f 1299{
2da8ca82
TH
1300 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1301 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1302 return 0;
8e89d13f
VG
1303}
1304
2da8ca82 1305static int tg_print_conf_uint(struct seq_file *sf, void *v)
8e89d13f 1306{
2da8ca82
TH
1307 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1308 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1309 return 0;
60c2bc2d
TH
1310}
1311
9bb67aeb 1312static void tg_conf_updated(struct throtl_grp *tg, bool global)
60c2bc2d 1313{
69948b07 1314 struct throtl_service_queue *sq = &tg->service_queue;
492eb21b 1315 struct cgroup_subsys_state *pos_css;
69948b07 1316 struct blkcg_gq *blkg;
af133ceb 1317
fda6f272
TH
1318 throtl_log(&tg->service_queue,
1319 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
9f626e37
SL
1320 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1321 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
632b4493 1322
27b13e20 1323 rcu_read_lock();
693e751e
TH
1324 /*
1325 * Update has_rules[] flags for the updated tg's subtree. A tg is
1326 * considered to have rules if either the tg itself or any of its
1327 * ancestors has rules. This identifies groups without any
1328 * restrictions in the whole hierarchy and allows them to bypass
1329 * blk-throttle.
1330 */
9bb67aeb 1331 blkg_for_each_descendant_pre(blkg, pos_css,
1231039d 1332 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
5b81fc3c
SL
1333 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1334 struct throtl_grp *parent_tg;
1335
1336 tg_update_has_rules(this_tg);
1337 /* ignore root/second level */
1338 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1339 !blkg->parent->parent)
1340 continue;
1341 parent_tg = blkg_to_tg(blkg->parent);
1342 /*
1343 * make sure all children has lower idle time threshold and
1344 * higher latency target
1345 */
1346 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1347 parent_tg->idletime_threshold);
1348 this_tg->latency_target = max(this_tg->latency_target,
1349 parent_tg->latency_target);
1350 }
27b13e20 1351 rcu_read_unlock();
693e751e 1352
632b4493
TH
1353 /*
1354 * We're already holding queue_lock and know @tg is valid. Let's
1355 * apply the new config directly.
1356 *
1357 * Restart the slices for both READ and WRITES. It might happen
1358 * that a group's limit are dropped suddenly and we don't want to
1359 * account recently dispatched IO with new low rate.
1360 */
a880ae93
YK
1361 throtl_start_new_slice(tg, READ, false);
1362 throtl_start_new_slice(tg, WRITE, false);
632b4493 1363
5b2c16aa 1364 if (tg->flags & THROTL_TG_PENDING) {
77216b04 1365 tg_update_disptime(tg);
7f52f98c 1366 throtl_schedule_next_dispatch(sq->parent_sq, true);
632b4493 1367 }
69948b07
TH
1368}
1369
1370static ssize_t tg_set_conf(struct kernfs_open_file *of,
1371 char *buf, size_t nbytes, loff_t off, bool is_u64)
1372{
1373 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1374 struct blkg_conf_ctx ctx;
1375 struct throtl_grp *tg;
1376 int ret;
1377 u64 v;
1378
faffaab2
TH
1379 blkg_conf_init(&ctx, buf);
1380
1381 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx);
69948b07 1382 if (ret)
faffaab2 1383 goto out_finish;
69948b07
TH
1384
1385 ret = -EINVAL;
1386 if (sscanf(ctx.body, "%llu", &v) != 1)
1387 goto out_finish;
1388 if (!v)
2ab5492d 1389 v = U64_MAX;
69948b07
TH
1390
1391 tg = blkg_to_tg(ctx.blkg);
a880ae93 1392 tg_update_carryover(tg);
69948b07
TH
1393
1394 if (is_u64)
1395 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1396 else
1397 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
60c2bc2d 1398
9bb67aeb 1399 tg_conf_updated(tg, false);
36aa9e5f
TH
1400 ret = 0;
1401out_finish:
faffaab2 1402 blkg_conf_exit(&ctx);
36aa9e5f 1403 return ret ?: nbytes;
8e89d13f
VG
1404}
1405
451af504
TH
1406static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1407 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1408{
451af504 1409 return tg_set_conf(of, buf, nbytes, off, true);
60c2bc2d
TH
1410}
1411
451af504
TH
1412static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1413 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1414{
451af504 1415 return tg_set_conf(of, buf, nbytes, off, false);
60c2bc2d
TH
1416}
1417
7ca46438
TH
1418static int tg_print_rwstat(struct seq_file *sf, void *v)
1419{
1420 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1421 blkg_prfill_rwstat, &blkcg_policy_throtl,
1422 seq_cft(sf)->private, true);
1423 return 0;
1424}
1425
1426static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1427 struct blkg_policy_data *pd, int off)
1428{
1429 struct blkg_rwstat_sample sum;
1430
1431 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1432 &sum);
1433 return __blkg_prfill_rwstat(sf, pd, &sum);
1434}
1435
1436static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1437{
1438 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1439 tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1440 seq_cft(sf)->private, true);
1441 return 0;
1442}
1443
880f50e2 1444static struct cftype throtl_legacy_files[] = {
60c2bc2d
TH
1445 {
1446 .name = "throttle.read_bps_device",
9f626e37 1447 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
2da8ca82 1448 .seq_show = tg_print_conf_u64,
451af504 1449 .write = tg_set_conf_u64,
60c2bc2d
TH
1450 },
1451 {
1452 .name = "throttle.write_bps_device",
9f626e37 1453 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
2da8ca82 1454 .seq_show = tg_print_conf_u64,
451af504 1455 .write = tg_set_conf_u64,
60c2bc2d
TH
1456 },
1457 {
1458 .name = "throttle.read_iops_device",
9f626e37 1459 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
2da8ca82 1460 .seq_show = tg_print_conf_uint,
451af504 1461 .write = tg_set_conf_uint,
60c2bc2d
TH
1462 },
1463 {
1464 .name = "throttle.write_iops_device",
9f626e37 1465 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
2da8ca82 1466 .seq_show = tg_print_conf_uint,
451af504 1467 .write = tg_set_conf_uint,
60c2bc2d
TH
1468 },
1469 {
1470 .name = "throttle.io_service_bytes",
7ca46438
TH
1471 .private = offsetof(struct throtl_grp, stat_bytes),
1472 .seq_show = tg_print_rwstat,
60c2bc2d 1473 },
17534c6f 1474 {
1475 .name = "throttle.io_service_bytes_recursive",
7ca46438
TH
1476 .private = offsetof(struct throtl_grp, stat_bytes),
1477 .seq_show = tg_print_rwstat_recursive,
17534c6f 1478 },
60c2bc2d
TH
1479 {
1480 .name = "throttle.io_serviced",
7ca46438
TH
1481 .private = offsetof(struct throtl_grp, stat_ios),
1482 .seq_show = tg_print_rwstat,
60c2bc2d 1483 },
17534c6f 1484 {
1485 .name = "throttle.io_serviced_recursive",
7ca46438
TH
1486 .private = offsetof(struct throtl_grp, stat_ios),
1487 .seq_show = tg_print_rwstat_recursive,
17534c6f 1488 },
60c2bc2d
TH
1489 { } /* terminate */
1490};
1491
cd5ab1b0 1492static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
2ee867dc
TH
1493 int off)
1494{
1495 struct throtl_grp *tg = pd_to_tg(pd);
1496 const char *dname = blkg_dev_name(pd->blkg);
1497 char bufs[4][21] = { "max", "max", "max", "max" };
cd5ab1b0
SL
1498 u64 bps_dft;
1499 unsigned int iops_dft;
ada75b6e 1500 char idle_time[26] = "";
ec80991d 1501 char latency_time[26] = "";
2ee867dc
TH
1502
1503 if (!dname)
1504 return 0;
9f626e37 1505
cd5ab1b0
SL
1506 if (off == LIMIT_LOW) {
1507 bps_dft = 0;
1508 iops_dft = 0;
1509 } else {
1510 bps_dft = U64_MAX;
1511 iops_dft = UINT_MAX;
1512 }
1513
1514 if (tg->bps_conf[READ][off] == bps_dft &&
1515 tg->bps_conf[WRITE][off] == bps_dft &&
1516 tg->iops_conf[READ][off] == iops_dft &&
ada75b6e 1517 tg->iops_conf[WRITE][off] == iops_dft &&
ec80991d 1518 (off != LIMIT_LOW ||
b4f428ef 1519 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
5b81fc3c 1520 tg->latency_target_conf == DFL_LATENCY_TARGET)))
2ee867dc
TH
1521 return 0;
1522
9bb67aeb 1523 if (tg->bps_conf[READ][off] != U64_MAX)
9f626e37 1524 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
cd5ab1b0 1525 tg->bps_conf[READ][off]);
9bb67aeb 1526 if (tg->bps_conf[WRITE][off] != U64_MAX)
9f626e37 1527 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
cd5ab1b0 1528 tg->bps_conf[WRITE][off]);
9bb67aeb 1529 if (tg->iops_conf[READ][off] != UINT_MAX)
9f626e37 1530 snprintf(bufs[2], sizeof(bufs[2]), "%u",
cd5ab1b0 1531 tg->iops_conf[READ][off]);
9bb67aeb 1532 if (tg->iops_conf[WRITE][off] != UINT_MAX)
9f626e37 1533 snprintf(bufs[3], sizeof(bufs[3]), "%u",
cd5ab1b0 1534 tg->iops_conf[WRITE][off]);
ada75b6e 1535 if (off == LIMIT_LOW) {
5b81fc3c 1536 if (tg->idletime_threshold_conf == ULONG_MAX)
ada75b6e
SL
1537 strcpy(idle_time, " idle=max");
1538 else
1539 snprintf(idle_time, sizeof(idle_time), " idle=%lu",
5b81fc3c 1540 tg->idletime_threshold_conf);
ec80991d 1541
5b81fc3c 1542 if (tg->latency_target_conf == ULONG_MAX)
ec80991d
SL
1543 strcpy(latency_time, " latency=max");
1544 else
1545 snprintf(latency_time, sizeof(latency_time),
5b81fc3c 1546 " latency=%lu", tg->latency_target_conf);
ada75b6e 1547 }
2ee867dc 1548
ec80991d
SL
1549 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1550 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1551 latency_time);
2ee867dc
TH
1552 return 0;
1553}
1554
cd5ab1b0 1555static int tg_print_limit(struct seq_file *sf, void *v)
2ee867dc 1556{
cd5ab1b0 1557 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
2ee867dc
TH
1558 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1559 return 0;
1560}
1561
cd5ab1b0 1562static ssize_t tg_set_limit(struct kernfs_open_file *of,
2ee867dc
TH
1563 char *buf, size_t nbytes, loff_t off)
1564{
1565 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1566 struct blkg_conf_ctx ctx;
1567 struct throtl_grp *tg;
1568 u64 v[4];
ada75b6e 1569 unsigned long idle_time;
ec80991d 1570 unsigned long latency_time;
2ee867dc 1571 int ret;
cd5ab1b0 1572 int index = of_cft(of)->private;
2ee867dc 1573
faffaab2
TH
1574 blkg_conf_init(&ctx, buf);
1575
1576 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx);
2ee867dc 1577 if (ret)
faffaab2 1578 goto out_finish;
2ee867dc
TH
1579
1580 tg = blkg_to_tg(ctx.blkg);
a880ae93 1581 tg_update_carryover(tg);
2ee867dc 1582
cd5ab1b0
SL
1583 v[0] = tg->bps_conf[READ][index];
1584 v[1] = tg->bps_conf[WRITE][index];
1585 v[2] = tg->iops_conf[READ][index];
1586 v[3] = tg->iops_conf[WRITE][index];
2ee867dc 1587
5b81fc3c
SL
1588 idle_time = tg->idletime_threshold_conf;
1589 latency_time = tg->latency_target_conf;
2ee867dc
TH
1590 while (true) {
1591 char tok[27]; /* wiops=18446744073709551616 */
1592 char *p;
2ab5492d 1593 u64 val = U64_MAX;
2ee867dc
TH
1594 int len;
1595
1596 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1597 break;
1598 if (tok[0] == '\0')
1599 break;
1600 ctx.body += len;
1601
1602 ret = -EINVAL;
1603 p = tok;
1604 strsep(&p, "=");
1605 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1606 goto out_finish;
1607
1608 ret = -ERANGE;
1609 if (!val)
1610 goto out_finish;
1611
1612 ret = -EINVAL;
5b7048b8 1613 if (!strcmp(tok, "rbps") && val > 1)
2ee867dc 1614 v[0] = val;
5b7048b8 1615 else if (!strcmp(tok, "wbps") && val > 1)
2ee867dc 1616 v[1] = val;
5b7048b8 1617 else if (!strcmp(tok, "riops") && val > 1)
2ee867dc 1618 v[2] = min_t(u64, val, UINT_MAX);
5b7048b8 1619 else if (!strcmp(tok, "wiops") && val > 1)
2ee867dc 1620 v[3] = min_t(u64, val, UINT_MAX);
ada75b6e
SL
1621 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1622 idle_time = val;
ec80991d
SL
1623 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1624 latency_time = val;
2ee867dc
TH
1625 else
1626 goto out_finish;
1627 }
1628
cd5ab1b0
SL
1629 tg->bps_conf[READ][index] = v[0];
1630 tg->bps_conf[WRITE][index] = v[1];
1631 tg->iops_conf[READ][index] = v[2];
1632 tg->iops_conf[WRITE][index] = v[3];
2ee867dc 1633
cd5ab1b0
SL
1634 if (index == LIMIT_MAX) {
1635 tg->bps[READ][index] = v[0];
1636 tg->bps[WRITE][index] = v[1];
1637 tg->iops[READ][index] = v[2];
1638 tg->iops[WRITE][index] = v[3];
1639 }
1640 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1641 tg->bps_conf[READ][LIMIT_MAX]);
1642 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1643 tg->bps_conf[WRITE][LIMIT_MAX]);
1644 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1645 tg->iops_conf[READ][LIMIT_MAX]);
1646 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1647 tg->iops_conf[WRITE][LIMIT_MAX]);
b4f428ef
SL
1648 tg->idletime_threshold_conf = idle_time;
1649 tg->latency_target_conf = latency_time;
1650
1651 /* force user to configure all settings for low limit */
1652 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1653 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1654 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1655 tg->latency_target_conf == DFL_LATENCY_TARGET) {
1656 tg->bps[READ][LIMIT_LOW] = 0;
1657 tg->bps[WRITE][LIMIT_LOW] = 0;
1658 tg->iops[READ][LIMIT_LOW] = 0;
1659 tg->iops[WRITE][LIMIT_LOW] = 0;
1660 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1661 tg->latency_target = DFL_LATENCY_TARGET;
1662 } else if (index == LIMIT_LOW) {
5b81fc3c 1663 tg->idletime_threshold = tg->idletime_threshold_conf;
5b81fc3c 1664 tg->latency_target = tg->latency_target_conf;
cd5ab1b0 1665 }
b4f428ef
SL
1666
1667 blk_throtl_update_limit_valid(tg->td);
1668 if (tg->td->limit_valid[LIMIT_LOW]) {
1669 if (index == LIMIT_LOW)
1670 tg->td->limit_index = LIMIT_LOW;
1671 } else
1672 tg->td->limit_index = LIMIT_MAX;
9bb67aeb
SL
1673 tg_conf_updated(tg, index == LIMIT_LOW &&
1674 tg->td->limit_valid[LIMIT_LOW]);
2ee867dc
TH
1675 ret = 0;
1676out_finish:
faffaab2 1677 blkg_conf_exit(&ctx);
2ee867dc
TH
1678 return ret ?: nbytes;
1679}
1680
1681static struct cftype throtl_files[] = {
cd5ab1b0
SL
1682#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1683 {
1684 .name = "low",
1685 .flags = CFTYPE_NOT_ON_ROOT,
1686 .seq_show = tg_print_limit,
1687 .write = tg_set_limit,
1688 .private = LIMIT_LOW,
1689 },
1690#endif
2ee867dc
TH
1691 {
1692 .name = "max",
1693 .flags = CFTYPE_NOT_ON_ROOT,
cd5ab1b0
SL
1694 .seq_show = tg_print_limit,
1695 .write = tg_set_limit,
1696 .private = LIMIT_MAX,
2ee867dc
TH
1697 },
1698 { } /* terminate */
1699};
1700
da527770 1701static void throtl_shutdown_wq(struct request_queue *q)
e43473b7
VG
1702{
1703 struct throtl_data *td = q->td;
1704
69df0ab0 1705 cancel_work_sync(&td->dispatch_work);
e43473b7
VG
1706}
1707
a7b36ee6 1708struct blkcg_policy blkcg_policy_throtl = {
2ee867dc 1709 .dfl_cftypes = throtl_files,
880f50e2 1710 .legacy_cftypes = throtl_legacy_files,
f9fcc2d3 1711
001bea73 1712 .pd_alloc_fn = throtl_pd_alloc,
f9fcc2d3 1713 .pd_init_fn = throtl_pd_init,
693e751e 1714 .pd_online_fn = throtl_pd_online,
cd5ab1b0 1715 .pd_offline_fn = throtl_pd_offline,
001bea73 1716 .pd_free_fn = throtl_pd_free,
e43473b7
VG
1717};
1718
cad9266a 1719void blk_throtl_cancel_bios(struct gendisk *disk)
2d8f7a3b 1720{
cad9266a 1721 struct request_queue *q = disk->queue;
2d8f7a3b
YK
1722 struct cgroup_subsys_state *pos_css;
1723 struct blkcg_gq *blkg;
1724
1725 spin_lock_irq(&q->queue_lock);
1726 /*
1727 * queue_lock is held, rcu lock is not needed here technically.
1728 * However, rcu lock is still held to emphasize that following
1729 * path need RCU protection and to prevent warning from lockdep.
1730 */
1731 rcu_read_lock();
1231039d 1732 blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
2d8f7a3b
YK
1733 struct throtl_grp *tg = blkg_to_tg(blkg);
1734 struct throtl_service_queue *sq = &tg->service_queue;
1735
1736 /*
1737 * Set the flag to make sure throtl_pending_timer_fn() won't
1738 * stop until all throttled bios are dispatched.
1739 */
eb184791
KS
1740 tg->flags |= THROTL_TG_CANCELING;
1741
1742 /*
1743 * Do not dispatch cgroup without THROTL_TG_PENDING or cgroup
1744 * will be inserted to service queue without THROTL_TG_PENDING
1745 * set in tg_update_disptime below. Then IO dispatched from
1746 * child in tg_dispatch_one_bio will trigger double insertion
1747 * and corrupt the tree.
1748 */
1749 if (!(tg->flags & THROTL_TG_PENDING))
1750 continue;
1751
2d8f7a3b
YK
1752 /*
1753 * Update disptime after setting the above flag to make sure
1754 * throtl_select_dispatch() won't exit without dispatching.
1755 */
1756 tg_update_disptime(tg);
1757
1758 throtl_schedule_pending_timer(sq, jiffies + 1);
1759 }
1760 rcu_read_unlock();
1761 spin_unlock_irq(&q->queue_lock);
1762}
1763
1764#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
3f0abd80
SL
1765static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1766{
1767 unsigned long rtime = jiffies, wtime = jiffies;
1768
1769 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1770 rtime = tg->last_low_overflow_time[READ];
1771 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1772 wtime = tg->last_low_overflow_time[WRITE];
1773 return min(rtime, wtime);
1774}
1775
3f0abd80
SL
1776static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1777{
1778 struct throtl_service_queue *parent_sq;
1779 struct throtl_grp *parent = tg;
1780 unsigned long ret = __tg_last_low_overflow_time(tg);
1781
1782 while (true) {
1783 parent_sq = parent->service_queue.parent_sq;
1784 parent = sq_to_tg(parent_sq);
1785 if (!parent)
1786 break;
1787
1788 /*
1789 * The parent doesn't have low limit, it always reaches low
1790 * limit. Its overflow time is useless for children
1791 */
1792 if (!parent->bps[READ][LIMIT_LOW] &&
1793 !parent->iops[READ][LIMIT_LOW] &&
1794 !parent->bps[WRITE][LIMIT_LOW] &&
1795 !parent->iops[WRITE][LIMIT_LOW])
1796 continue;
1797 if (time_after(__tg_last_low_overflow_time(parent), ret))
1798 ret = __tg_last_low_overflow_time(parent);
1799 }
1800 return ret;
1801}
1802
9e234eea
SL
1803static bool throtl_tg_is_idle(struct throtl_grp *tg)
1804{
1805 /*
1806 * cgroup is idle if:
1807 * - single idle is too long, longer than a fixed value (in case user
b4f428ef 1808 * configure a too big threshold) or 4 times of idletime threshold
9e234eea 1809 * - average think time is more than threshold
53696b8d 1810 * - IO latency is largely below threshold
9e234eea 1811 */
b4f428ef 1812 unsigned long time;
4cff729f 1813 bool ret;
9e234eea 1814
b4f428ef
SL
1815 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1816 ret = tg->latency_target == DFL_LATENCY_TARGET ||
1817 tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
08420cf7 1818 (blk_time_get_ns() >> 10) - tg->last_finish_time > time ||
b4f428ef
SL
1819 tg->avg_idletime > tg->idletime_threshold ||
1820 (tg->latency_target && tg->bio_cnt &&
53696b8d 1821 tg->bad_bio_cnt * 5 < tg->bio_cnt);
4cff729f
SL
1822 throtl_log(&tg->service_queue,
1823 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1824 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1825 tg->bio_cnt, ret, tg->td->scale);
1826 return ret;
9e234eea
SL
1827}
1828
a4d508e3 1829static bool throtl_low_limit_reached(struct throtl_grp *tg, int rw)
c79892c5
SL
1830{
1831 struct throtl_service_queue *sq = &tg->service_queue;
a4d508e3 1832 bool limit = tg->bps[rw][LIMIT_LOW] || tg->iops[rw][LIMIT_LOW];
c79892c5
SL
1833
1834 /*
a4d508e3
KS
1835 * if low limit is zero, low limit is always reached.
1836 * if low limit is non-zero, we can check if there is any request
1837 * is queued to determine if low limit is reached as we throttle
1838 * request according to limit.
c79892c5 1839 */
a4d508e3
KS
1840 return !limit || sq->nr_queued[rw];
1841}
1842
1843static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1844{
1845 /*
1846 * cgroup reaches low limit when low limit of READ and WRITE are
1847 * both reached, it's ok to upgrade to next limit if cgroup reaches
1848 * low limit
1849 */
1850 if (throtl_low_limit_reached(tg, READ) &&
1851 throtl_low_limit_reached(tg, WRITE))
c79892c5 1852 return true;
aec24246
SL
1853
1854 if (time_after_eq(jiffies,
fa6fb5aa
SL
1855 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1856 throtl_tg_is_idle(tg))
aec24246 1857 return true;
c79892c5
SL
1858 return false;
1859}
1860
1861static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1862{
1863 while (true) {
1864 if (throtl_tg_can_upgrade(tg))
1865 return true;
1866 tg = sq_to_tg(tg->service_queue.parent_sq);
1867 if (!tg || !tg_to_blkg(tg)->parent)
1868 return false;
1869 }
1870 return false;
1871}
1872
1873static bool throtl_can_upgrade(struct throtl_data *td,
1874 struct throtl_grp *this_tg)
1875{
1876 struct cgroup_subsys_state *pos_css;
1877 struct blkcg_gq *blkg;
1878
1879 if (td->limit_index != LIMIT_LOW)
1880 return false;
1881
297e3d85 1882 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
3f0abd80
SL
1883 return false;
1884
c79892c5 1885 rcu_read_lock();
1231039d 1886 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
c79892c5
SL
1887 struct throtl_grp *tg = blkg_to_tg(blkg);
1888
1889 if (tg == this_tg)
1890 continue;
1891 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1892 continue;
1893 if (!throtl_hierarchy_can_upgrade(tg)) {
1894 rcu_read_unlock();
1895 return false;
1896 }
1897 }
1898 rcu_read_unlock();
1899 return true;
1900}
1901
fa6fb5aa
SL
1902static void throtl_upgrade_check(struct throtl_grp *tg)
1903{
1904 unsigned long now = jiffies;
1905
1906 if (tg->td->limit_index != LIMIT_LOW)
1907 return;
1908
1909 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1910 return;
1911
1912 tg->last_check_time = now;
1913
1914 if (!time_after_eq(now,
1915 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1916 return;
1917
1918 if (throtl_can_upgrade(tg->td, NULL))
1919 throtl_upgrade_state(tg->td);
1920}
1921
c79892c5
SL
1922static void throtl_upgrade_state(struct throtl_data *td)
1923{
1924 struct cgroup_subsys_state *pos_css;
1925 struct blkcg_gq *blkg;
1926
4cff729f 1927 throtl_log(&td->service_queue, "upgrade to max");
c79892c5 1928 td->limit_index = LIMIT_MAX;
3f0abd80 1929 td->low_upgrade_time = jiffies;
7394e31f 1930 td->scale = 0;
c79892c5 1931 rcu_read_lock();
1231039d 1932 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
c79892c5
SL
1933 struct throtl_grp *tg = blkg_to_tg(blkg);
1934 struct throtl_service_queue *sq = &tg->service_queue;
1935
1936 tg->disptime = jiffies - 1;
1937 throtl_select_dispatch(sq);
4f02fb76 1938 throtl_schedule_next_dispatch(sq, true);
c79892c5
SL
1939 }
1940 rcu_read_unlock();
1941 throtl_select_dispatch(&td->service_queue);
4f02fb76 1942 throtl_schedule_next_dispatch(&td->service_queue, true);
c79892c5
SL
1943 queue_work(kthrotld_workqueue, &td->dispatch_work);
1944}
1945
4247d9c8 1946static void throtl_downgrade_state(struct throtl_data *td)
3f0abd80 1947{
7394e31f
SL
1948 td->scale /= 2;
1949
4cff729f 1950 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
7394e31f
SL
1951 if (td->scale) {
1952 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1953 return;
1954 }
1955
4247d9c8 1956 td->limit_index = LIMIT_LOW;
3f0abd80
SL
1957 td->low_downgrade_time = jiffies;
1958}
1959
1960static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1961{
1962 struct throtl_data *td = tg->td;
1963 unsigned long now = jiffies;
1964
1965 /*
1966 * If cgroup is below low limit, consider downgrade and throttle other
1967 * cgroups
1968 */
9c9f209d 1969 if (time_after_eq(now, tg_last_low_overflow_time(tg) +
fa6fb5aa
SL
1970 td->throtl_slice) &&
1971 (!throtl_tg_is_idle(tg) ||
1972 !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
3f0abd80
SL
1973 return true;
1974 return false;
1975}
1976
1977static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1978{
9c9f209d
KS
1979 struct throtl_data *td = tg->td;
1980
1981 if (time_before(jiffies, td->low_upgrade_time + td->throtl_slice))
1982 return false;
1983
3f0abd80
SL
1984 while (true) {
1985 if (!throtl_tg_can_downgrade(tg))
1986 return false;
1987 tg = sq_to_tg(tg->service_queue.parent_sq);
1988 if (!tg || !tg_to_blkg(tg)->parent)
1989 break;
1990 }
1991 return true;
1992}
1993
1994static void throtl_downgrade_check(struct throtl_grp *tg)
1995{
1996 uint64_t bps;
1997 unsigned int iops;
1998 unsigned long elapsed_time;
1999 unsigned long now = jiffies;
2000
2001 if (tg->td->limit_index != LIMIT_MAX ||
2002 !tg->td->limit_valid[LIMIT_LOW])
2003 return;
2004 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
2005 return;
297e3d85 2006 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
3f0abd80
SL
2007 return;
2008
2009 elapsed_time = now - tg->last_check_time;
2010 tg->last_check_time = now;
2011
297e3d85
SL
2012 if (time_before(now, tg_last_low_overflow_time(tg) +
2013 tg->td->throtl_slice))
3f0abd80
SL
2014 return;
2015
2016 if (tg->bps[READ][LIMIT_LOW]) {
2017 bps = tg->last_bytes_disp[READ] * HZ;
2018 do_div(bps, elapsed_time);
2019 if (bps >= tg->bps[READ][LIMIT_LOW])
2020 tg->last_low_overflow_time[READ] = now;
2021 }
2022
2023 if (tg->bps[WRITE][LIMIT_LOW]) {
2024 bps = tg->last_bytes_disp[WRITE] * HZ;
2025 do_div(bps, elapsed_time);
2026 if (bps >= tg->bps[WRITE][LIMIT_LOW])
2027 tg->last_low_overflow_time[WRITE] = now;
2028 }
2029
2030 if (tg->iops[READ][LIMIT_LOW]) {
2031 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2032 if (iops >= tg->iops[READ][LIMIT_LOW])
2033 tg->last_low_overflow_time[READ] = now;
2034 }
2035
2036 if (tg->iops[WRITE][LIMIT_LOW]) {
2037 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2038 if (iops >= tg->iops[WRITE][LIMIT_LOW])
2039 tg->last_low_overflow_time[WRITE] = now;
2040 }
2041
2042 /*
2043 * If cgroup is below low limit, consider downgrade and throttle other
2044 * cgroups
2045 */
2046 if (throtl_hierarchy_can_downgrade(tg))
4247d9c8 2047 throtl_downgrade_state(tg->td);
3f0abd80
SL
2048
2049 tg->last_bytes_disp[READ] = 0;
2050 tg->last_bytes_disp[WRITE] = 0;
2051 tg->last_io_disp[READ] = 0;
2052 tg->last_io_disp[WRITE] = 0;
2053}
2054
9e234eea
SL
2055static void blk_throtl_update_idletime(struct throtl_grp *tg)
2056{
7901601a 2057 unsigned long now;
9e234eea
SL
2058 unsigned long last_finish_time = tg->last_finish_time;
2059
7901601a
BW
2060 if (last_finish_time == 0)
2061 return;
2062
08420cf7 2063 now = blk_time_get_ns() >> 10;
7901601a 2064 if (now <= last_finish_time ||
9e234eea
SL
2065 last_finish_time == tg->checked_last_finish_time)
2066 return;
2067
2068 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2069 tg->checked_last_finish_time = last_finish_time;
2070}
2071
b9147dd1
SL
2072static void throtl_update_latency_buckets(struct throtl_data *td)
2073{
b889bf66
JQ
2074 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2075 int i, cpu, rw;
2076 unsigned long last_latency[2] = { 0 };
2077 unsigned long latency[2];
b9147dd1 2078
b185efa7 2079 if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
b9147dd1
SL
2080 return;
2081 if (time_before(jiffies, td->last_calculate_time + HZ))
2082 return;
2083 td->last_calculate_time = jiffies;
2084
2085 memset(avg_latency, 0, sizeof(avg_latency));
b889bf66
JQ
2086 for (rw = READ; rw <= WRITE; rw++) {
2087 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2088 struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2089
2090 for_each_possible_cpu(cpu) {
2091 struct latency_bucket *bucket;
2092
2093 /* this isn't race free, but ok in practice */
2094 bucket = per_cpu_ptr(td->latency_buckets[rw],
2095 cpu);
2096 tmp->total_latency += bucket[i].total_latency;
2097 tmp->samples += bucket[i].samples;
2098 bucket[i].total_latency = 0;
2099 bucket[i].samples = 0;
2100 }
b9147dd1 2101
b889bf66
JQ
2102 if (tmp->samples >= 32) {
2103 int samples = tmp->samples;
b9147dd1 2104
b889bf66 2105 latency[rw] = tmp->total_latency;
b9147dd1 2106
b889bf66
JQ
2107 tmp->total_latency = 0;
2108 tmp->samples = 0;
2109 latency[rw] /= samples;
2110 if (latency[rw] == 0)
2111 continue;
2112 avg_latency[rw][i].latency = latency[rw];
2113 }
b9147dd1
SL
2114 }
2115 }
2116
b889bf66
JQ
2117 for (rw = READ; rw <= WRITE; rw++) {
2118 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2119 if (!avg_latency[rw][i].latency) {
2120 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2121 td->avg_buckets[rw][i].latency =
2122 last_latency[rw];
2123 continue;
2124 }
b9147dd1 2125
b889bf66
JQ
2126 if (!td->avg_buckets[rw][i].valid)
2127 latency[rw] = avg_latency[rw][i].latency;
2128 else
2129 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2130 avg_latency[rw][i].latency) >> 3;
b9147dd1 2131
b889bf66
JQ
2132 td->avg_buckets[rw][i].latency = max(latency[rw],
2133 last_latency[rw]);
2134 td->avg_buckets[rw][i].valid = true;
2135 last_latency[rw] = td->avg_buckets[rw][i].latency;
2136 }
b9147dd1 2137 }
4cff729f
SL
2138
2139 for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2140 throtl_log(&td->service_queue,
b889bf66
JQ
2141 "Latency bucket %d: read latency=%ld, read valid=%d, "
2142 "write latency=%ld, write valid=%d", i,
2143 td->avg_buckets[READ][i].latency,
2144 td->avg_buckets[READ][i].valid,
2145 td->avg_buckets[WRITE][i].latency,
2146 td->avg_buckets[WRITE][i].valid);
b9147dd1
SL
2147}
2148#else
2149static inline void throtl_update_latency_buckets(struct throtl_data *td)
2150{
2151}
2d8f7a3b
YK
2152
2153static void blk_throtl_update_idletime(struct throtl_grp *tg)
2154{
2155}
2156
2157static void throtl_downgrade_check(struct throtl_grp *tg)
2158{
2159}
2160
2161static void throtl_upgrade_check(struct throtl_grp *tg)
2162{
2163}
2164
2165static bool throtl_can_upgrade(struct throtl_data *td,
2166 struct throtl_grp *this_tg)
2167{
2168 return false;
2169}
2170
2171static void throtl_upgrade_state(struct throtl_data *td)
2172{
2173}
b9147dd1
SL
2174#endif
2175
a7b36ee6 2176bool __blk_throtl_bio(struct bio *bio)
e43473b7 2177{
ed6cddef 2178 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
db18a53e 2179 struct blkcg_gq *blkg = bio->bi_blkg;
c5cc2070 2180 struct throtl_qnode *qn = NULL;
a2e83ef9 2181 struct throtl_grp *tg = blkg_to_tg(blkg);
73f0d49a 2182 struct throtl_service_queue *sq;
0e9f4164 2183 bool rw = bio_data_dir(bio);
bc16a4f9 2184 bool throttled = false;
b9147dd1 2185 struct throtl_data *td = tg->td;
e43473b7 2186
93b80638 2187 rcu_read_lock();
ae118896 2188
0d945c1f 2189 spin_lock_irq(&q->queue_lock);
c9589f03 2190
b9147dd1
SL
2191 throtl_update_latency_buckets(td);
2192
9e234eea
SL
2193 blk_throtl_update_idletime(tg);
2194
73f0d49a
TH
2195 sq = &tg->service_queue;
2196
c79892c5 2197again:
9e660acf 2198 while (true) {
3f0abd80
SL
2199 if (tg->last_low_overflow_time[rw] == 0)
2200 tg->last_low_overflow_time[rw] = jiffies;
2201 throtl_downgrade_check(tg);
fa6fb5aa 2202 throtl_upgrade_check(tg);
9e660acf
TH
2203 /* throtl is FIFO - if bios are already queued, should queue */
2204 if (sq->nr_queued[rw])
2205 break;
de701c74 2206
9e660acf 2207 /* if above limits, break to queue */
c79892c5 2208 if (!tg_may_dispatch(tg, bio, NULL)) {
3f0abd80 2209 tg->last_low_overflow_time[rw] = jiffies;
b9147dd1
SL
2210 if (throtl_can_upgrade(td, tg)) {
2211 throtl_upgrade_state(td);
c79892c5
SL
2212 goto again;
2213 }
9e660acf 2214 break;
c79892c5 2215 }
9e660acf
TH
2216
2217 /* within limits, let's charge and dispatch directly */
e43473b7 2218 throtl_charge_bio(tg, bio);
04521db0
VG
2219
2220 /*
2221 * We need to trim slice even when bios are not being queued
2222 * otherwise it might happen that a bio is not queued for
2223 * a long time and slice keeps on extending and trim is not
2224 * called for a long time. Now if limits are reduced suddenly
2225 * we take into account all the IO dispatched so far at new
2226 * low rate and * newly queued IO gets a really long dispatch
2227 * time.
2228 *
2229 * So keep on trimming slice even if bio is not queued.
2230 */
0f3457f6 2231 throtl_trim_slice(tg, rw);
9e660acf
TH
2232
2233 /*
2234 * @bio passed through this layer without being throttled.
b53b072c 2235 * Climb up the ladder. If we're already at the top, it
9e660acf
TH
2236 * can be executed directly.
2237 */
c5cc2070 2238 qn = &tg->qnode_on_parent[rw];
9e660acf
TH
2239 sq = sq->parent_sq;
2240 tg = sq_to_tg(sq);
320fb0f9
YK
2241 if (!tg) {
2242 bio_set_flag(bio, BIO_BPS_THROTTLED);
9e660acf 2243 goto out_unlock;
320fb0f9 2244 }
e43473b7
VG
2245 }
2246
9e660acf 2247 /* out-of-limit, queue to @tg */
fda6f272
TH
2248 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2249 rw == READ ? 'R' : 'W',
9f626e37
SL
2250 tg->bytes_disp[rw], bio->bi_iter.bi_size,
2251 tg_bps_limit(tg, rw),
2252 tg->io_disp[rw], tg_iops_limit(tg, rw),
fda6f272 2253 sq->nr_queued[READ], sq->nr_queued[WRITE]);
e43473b7 2254
3f0abd80
SL
2255 tg->last_low_overflow_time[rw] = jiffies;
2256
b9147dd1 2257 td->nr_queued[rw]++;
c5cc2070 2258 throtl_add_bio_tg(bio, qn, tg);
bc16a4f9 2259 throttled = true;
e43473b7 2260
7f52f98c
TH
2261 /*
2262 * Update @tg's dispatch time and force schedule dispatch if @tg
2263 * was empty before @bio. The forced scheduling isn't likely to
2264 * cause undue delay as @bio is likely to be dispatched directly if
2265 * its @tg's disptime is not in the future.
2266 */
0e9f4164 2267 if (tg->flags & THROTL_TG_WAS_EMPTY) {
77216b04 2268 tg_update_disptime(tg);
7f52f98c 2269 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
e43473b7
VG
2270 }
2271
bc16a4f9 2272out_unlock:
b9147dd1
SL
2273#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2274 if (throttled || !td->track_bio_latency)
5238dcf4 2275 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
b9147dd1 2276#endif
5a011f88
LQ
2277 spin_unlock_irq(&q->queue_lock);
2278
93b80638 2279 rcu_read_unlock();
bc16a4f9 2280 return throttled;
e43473b7
VG
2281}
2282
9e234eea 2283#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
b9147dd1 2284static void throtl_track_latency(struct throtl_data *td, sector_t size,
77e7ffd7 2285 enum req_op op, unsigned long time)
b9147dd1 2286{
77e7ffd7 2287 const bool rw = op_is_write(op);
b9147dd1
SL
2288 struct latency_bucket *latency;
2289 int index;
2290
b889bf66
JQ
2291 if (!td || td->limit_index != LIMIT_LOW ||
2292 !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
b9147dd1
SL
2293 !blk_queue_nonrot(td->queue))
2294 return;
2295
2296 index = request_bucket_index(size);
2297
77e7ffd7 2298 latency = get_cpu_ptr(td->latency_buckets[rw]);
b9147dd1
SL
2299 latency[index].total_latency += time;
2300 latency[index].samples++;
77e7ffd7 2301 put_cpu_ptr(td->latency_buckets[rw]);
b9147dd1
SL
2302}
2303
2304void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2305{
2306 struct request_queue *q = rq->q;
2307 struct throtl_data *td = q->td;
2308
3d244306
HT
2309 throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2310 time_ns >> 10);
b9147dd1
SL
2311}
2312
9e234eea
SL
2313void blk_throtl_bio_endio(struct bio *bio)
2314{
08e18eab 2315 struct blkcg_gq *blkg;
9e234eea 2316 struct throtl_grp *tg;
b9147dd1
SL
2317 u64 finish_time_ns;
2318 unsigned long finish_time;
2319 unsigned long start_time;
2320 unsigned long lat;
b889bf66 2321 int rw = bio_data_dir(bio);
9e234eea 2322
08e18eab
JB
2323 blkg = bio->bi_blkg;
2324 if (!blkg)
9e234eea 2325 return;
08e18eab 2326 tg = blkg_to_tg(blkg);
b185efa7
BW
2327 if (!tg->td->limit_valid[LIMIT_LOW])
2328 return;
9e234eea 2329
08420cf7 2330 finish_time_ns = blk_time_get_ns();
b9147dd1
SL
2331 tg->last_finish_time = finish_time_ns >> 10;
2332
5238dcf4
OS
2333 start_time = bio_issue_time(&bio->bi_issue) >> 10;
2334 finish_time = __bio_issue_time(finish_time_ns) >> 10;
08e18eab 2335 if (!start_time || finish_time <= start_time)
53696b8d
SL
2336 return;
2337
2338 lat = finish_time - start_time;
b9147dd1 2339 /* this is only for bio based driver */
5238dcf4
OS
2340 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2341 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2342 bio_op(bio), lat);
53696b8d 2343
6679a90c 2344 if (tg->latency_target && lat >= tg->td->filtered_latency) {
53696b8d
SL
2345 int bucket;
2346 unsigned int threshold;
2347
5238dcf4 2348 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
b889bf66 2349 threshold = tg->td->avg_buckets[rw][bucket].latency +
53696b8d
SL
2350 tg->latency_target;
2351 if (lat > threshold)
2352 tg->bad_bio_cnt++;
2353 /*
2354 * Not race free, could get wrong count, which means cgroups
2355 * will be throttled
2356 */
2357 tg->bio_cnt++;
2358 }
2359
2360 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2361 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2362 tg->bio_cnt /= 2;
2363 tg->bad_bio_cnt /= 2;
b9147dd1 2364 }
9e234eea
SL
2365}
2366#endif
2367
e13793ba 2368int blk_throtl_init(struct gendisk *disk)
e43473b7 2369{
e13793ba 2370 struct request_queue *q = disk->queue;
e43473b7 2371 struct throtl_data *td;
a2b1693b 2372 int ret;
e43473b7
VG
2373
2374 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2375 if (!td)
2376 return -ENOMEM;
b889bf66 2377 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
b9147dd1 2378 LATENCY_BUCKET_SIZE, __alignof__(u64));
b889bf66
JQ
2379 if (!td->latency_buckets[READ]) {
2380 kfree(td);
2381 return -ENOMEM;
2382 }
2383 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
b9147dd1 2384 LATENCY_BUCKET_SIZE, __alignof__(u64));
b889bf66
JQ
2385 if (!td->latency_buckets[WRITE]) {
2386 free_percpu(td->latency_buckets[READ]);
b9147dd1
SL
2387 kfree(td);
2388 return -ENOMEM;
2389 }
e43473b7 2390
69df0ab0 2391 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
b2ce2643 2392 throtl_service_queue_init(&td->service_queue);
e43473b7 2393
cd1604fa 2394 q->td = td;
29b12589 2395 td->queue = q;
02977e4a 2396
9f626e37 2397 td->limit_valid[LIMIT_MAX] = true;
cd5ab1b0 2398 td->limit_index = LIMIT_MAX;
3f0abd80
SL
2399 td->low_upgrade_time = jiffies;
2400 td->low_downgrade_time = jiffies;
9e234eea 2401
a2b1693b 2402 /* activate policy */
40e4996e 2403 ret = blkcg_activate_policy(disk, &blkcg_policy_throtl);
b9147dd1 2404 if (ret) {
b889bf66
JQ
2405 free_percpu(td->latency_buckets[READ]);
2406 free_percpu(td->latency_buckets[WRITE]);
f51b802c 2407 kfree(td);
b9147dd1 2408 }
a2b1693b 2409 return ret;
e43473b7
VG
2410}
2411
e13793ba 2412void blk_throtl_exit(struct gendisk *disk)
e43473b7 2413{
e13793ba
CH
2414 struct request_queue *q = disk->queue;
2415
b4e94f9c 2416 BUG_ON(!q->td);
884f0e84 2417 del_timer_sync(&q->td->service_queue.pending_timer);
da527770 2418 throtl_shutdown_wq(q);
40e4996e 2419 blkcg_deactivate_policy(disk, &blkcg_policy_throtl);
b889bf66
JQ
2420 free_percpu(q->td->latency_buckets[READ]);
2421 free_percpu(q->td->latency_buckets[WRITE]);
c9a929dd 2422 kfree(q->td);
e43473b7
VG
2423}
2424
5f6dc752 2425void blk_throtl_register(struct gendisk *disk)
d61fcfa4 2426{
5f6dc752 2427 struct request_queue *q = disk->queue;
d61fcfa4 2428 struct throtl_data *td;
6679a90c 2429 int i;
d61fcfa4
SL
2430
2431 td = q->td;
2432 BUG_ON(!td);
2433
6679a90c 2434 if (blk_queue_nonrot(q)) {
d61fcfa4 2435 td->throtl_slice = DFL_THROTL_SLICE_SSD;
6679a90c
SL
2436 td->filtered_latency = LATENCY_FILTERED_SSD;
2437 } else {
d61fcfa4 2438 td->throtl_slice = DFL_THROTL_SLICE_HD;
6679a90c 2439 td->filtered_latency = LATENCY_FILTERED_HD;
b889bf66
JQ
2440 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2441 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2442 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2443 }
6679a90c 2444 }
d61fcfa4
SL
2445#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2446 /* if no low limit, use previous default */
2447 td->throtl_slice = DFL_THROTL_SLICE_HD;
9e234eea 2448
8e15dfbd 2449#else
344e9ffc 2450 td->track_bio_latency = !queue_is_mq(q);
b9147dd1
SL
2451 if (!td->track_bio_latency)
2452 blk_stat_enable_accounting(q);
8e15dfbd 2453#endif
d61fcfa4
SL
2454}
2455
297e3d85
SL
2456#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2457ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2458{
2459 if (!q->td)
2460 return -EINVAL;
2461 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2462}
2463
2464ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2465 const char *page, size_t count)
2466{
2467 unsigned long v;
2468 unsigned long t;
2469
2470 if (!q->td)
2471 return -EINVAL;
2472 if (kstrtoul(page, 10, &v))
2473 return -EINVAL;
2474 t = msecs_to_jiffies(v);
2475 if (t == 0 || t > MAX_THROTL_SLICE)
2476 return -EINVAL;
2477 q->td->throtl_slice = t;
2478 return count;
2479}
2480#endif
2481
e43473b7
VG
2482static int __init throtl_init(void)
2483{
450adcbe
VG
2484 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2485 if (!kthrotld_workqueue)
2486 panic("Failed to create kthrotld\n");
2487
3c798398 2488 return blkcg_policy_register(&blkcg_policy_throtl);
e43473b7
VG
2489}
2490
2491module_init(throtl_init);