]> git.ipfire.org Git - people/ms/u-boot.git/blame - common/cmd_i2c.c
Merge branch 'master' of /home/wd/git/u-boot/custodians
[people/ms/u-boot.git] / common / cmd_i2c.c
CommitLineData
81a8824f
WD
1/*
2 * (C) Copyright 2001
3 * Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com.
4 *
5 * See file CREDITS for list of people who contributed to this
6 * project.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 * MA 02111-1307 USA
22 */
23
24/*
25 * I2C Functions similar to the standard memory functions.
26 *
27 * There are several parameters in many of the commands that bear further
28 * explanations:
29 *
30 * Two of the commands (imm and imw) take a byte/word/long modifier
31 * (e.g. imm.w specifies the word-length modifier). This was done to
32 * allow manipulating word-length registers. It was not done on any other
33 * commands because it was not deemed useful.
34 *
35 * {i2c_chip} is the I2C chip address (the first byte sent on the bus).
36 * Each I2C chip on the bus has a unique address. On the I2C data bus,
37 * the address is the upper seven bits and the LSB is the "read/write"
38 * bit. Note that the {i2c_chip} address specified on the command
39 * line is not shifted up: e.g. a typical EEPROM memory chip may have
40 * an I2C address of 0x50, but the data put on the bus will be 0xA0
41 * for write and 0xA1 for read. This "non shifted" address notation
42 * matches at least half of the data sheets :-/.
43 *
44 * {addr} is the address (or offset) within the chip. Small memory
45 * chips have 8 bit addresses. Large memory chips have 16 bit
46 * addresses. Other memory chips have 9, 10, or 11 bit addresses.
47 * Many non-memory chips have multiple registers and {addr} is used
48 * as the register index. Some non-memory chips have only one register
49 * and therefore don't need any {addr} parameter.
50 *
51 * The default {addr} parameter is one byte (.1) which works well for
52 * memories and registers with 8 bits of address space.
53 *
54 * You can specify the length of the {addr} field with the optional .0,
55 * .1, or .2 modifier (similar to the .b, .w, .l modifier). If you are
56 * manipulating a single register device which doesn't use an address
57 * field, use "0.0" for the address and the ".0" length field will
58 * suppress the address in the I2C data stream. This also works for
59 * successive reads using the I2C auto-incrementing memory pointer.
60 *
61 * If you are manipulating a large memory with 2-byte addresses, use
62 * the .2 address modifier, e.g. 210.2 addresses location 528 (decimal).
63 *
64 * Then there are the unfortunate memory chips that spill the most
65 * significant 1, 2, or 3 bits of address into the chip address byte.
66 * This effectively makes one chip (logically) look like 2, 4, or
67 * 8 chips. This is handled (awkwardly) by #defining
68 * CFG_I2C_EEPROM_ADDR_OVERFLOW and using the .1 modifier on the
69 * {addr} field (since .1 is the default, it doesn't actually have to
70 * be specified). Examples: given a memory chip at I2C chip address
71 * 0x50, the following would happen...
72 * imd 50 0 10 display 16 bytes starting at 0x000
73 * On the bus: <S> A0 00 <E> <S> A1 <rd> ... <rd>
74 * imd 50 100 10 display 16 bytes starting at 0x100
75 * On the bus: <S> A2 00 <E> <S> A3 <rd> ... <rd>
76 * imd 50 210 10 display 16 bytes starting at 0x210
77 * On the bus: <S> A4 10 <E> <S> A5 <rd> ... <rd>
78 * This is awfully ugly. It would be nice if someone would think up
79 * a better way of handling this.
80 *
81 * Adapted from cmd_mem.c which is copyright Wolfgang Denk (wd@denx.de).
82 */
83
84#include <common.h>
85#include <command.h>
81a8824f
WD
86#include <i2c.h>
87#include <asm/byteorder.h>
88
81a8824f
WD
89/* Display values from last command.
90 * Memory modify remembered values are different from display memory.
91 */
92static uchar i2c_dp_last_chip;
93static uint i2c_dp_last_addr;
94static uint i2c_dp_last_alen;
95static uint i2c_dp_last_length = 0x10;
96
97static uchar i2c_mm_last_chip;
98static uint i2c_mm_last_addr;
99static uint i2c_mm_last_alen;
100
bb99ad6d
BW
101/* If only one I2C bus is present, the list of devices to ignore when
102 * the probe command is issued is represented by a 1D array of addresses.
103 * When multiple buses are present, the list is an array of bus-address
104 * pairs. The following macros take care of this */
105
81a8824f 106#if defined(CFG_I2C_NOPROBES)
bb99ad6d
BW
107#if defined(CONFIG_I2C_MULTI_BUS)
108static struct
109{
110 uchar bus;
111 uchar addr;
112} i2c_no_probes[] = CFG_I2C_NOPROBES;
113#define GET_BUS_NUM i2c_get_bus_num()
114#define COMPARE_BUS(b,i) (i2c_no_probes[(i)].bus == (b))
115#define COMPARE_ADDR(a,i) (i2c_no_probes[(i)].addr == (a))
116#define NO_PROBE_ADDR(i) i2c_no_probes[(i)].addr
117#else /* single bus */
81a8824f 118static uchar i2c_no_probes[] = CFG_I2C_NOPROBES;
bb99ad6d
BW
119#define GET_BUS_NUM 0
120#define COMPARE_BUS(b,i) ((b) == 0) /* Make compiler happy */
121#define COMPARE_ADDR(a,i) (i2c_no_probes[(i)] == (a))
122#define NO_PROBE_ADDR(i) i2c_no_probes[(i)]
123#endif /* CONFIG_MULTI_BUS */
124
125#define NUM_ELEMENTS_NOPROBE (sizeof(i2c_no_probes)/sizeof(i2c_no_probes[0]))
81a8824f
WD
126#endif
127
128static int
129mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[]);
81a8824f
WD
130
131/*
132 * Syntax:
133 * imd {i2c_chip} {addr}{.0, .1, .2} {len}
134 */
135#define DISP_LINE_LEN 16
136
137int do_i2c_md ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
138{
139 u_char chip;
140 uint addr, alen, length;
141 int j, nbytes, linebytes;
142
143 /* We use the last specified parameters, unless new ones are
144 * entered.
145 */
146 chip = i2c_dp_last_chip;
147 addr = i2c_dp_last_addr;
148 alen = i2c_dp_last_alen;
149 length = i2c_dp_last_length;
150
151 if (argc < 3) {
152 printf ("Usage:\n%s\n", cmdtp->usage);
153 return 1;
154 }
155
156 if ((flag & CMD_FLAG_REPEAT) == 0) {
157 /*
158 * New command specified.
159 */
160 alen = 1;
161
162 /*
163 * I2C chip address
164 */
165 chip = simple_strtoul(argv[1], NULL, 16);
166
167 /*
168 * I2C data address within the chip. This can be 1 or
169 * 2 bytes long. Some day it might be 3 bytes long :-).
170 */
171 addr = simple_strtoul(argv[2], NULL, 16);
172 alen = 1;
e857a5bd 173 for (j = 0; j < 8; j++) {
81a8824f
WD
174 if (argv[2][j] == '.') {
175 alen = argv[2][j+1] - '0';
176 if (alen > 4) {
177 printf ("Usage:\n%s\n", cmdtp->usage);
178 return 1;
179 }
180 break;
e857a5bd 181 } else if (argv[2][j] == '\0')
81a8824f 182 break;
81a8824f
WD
183 }
184
185 /*
186 * If another parameter, it is the length to display.
187 * Length is the number of objects, not number of bytes.
188 */
189 if (argc > 3)
190 length = simple_strtoul(argv[3], NULL, 16);
191 }
192
193 /*
194 * Print the lines.
195 *
196 * We buffer all read data, so we can make sure data is read only
197 * once.
198 */
199 nbytes = length;
200 do {
201 unsigned char linebuf[DISP_LINE_LEN];
202 unsigned char *cp;
203
204 linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;
205
e857a5bd 206 if (i2c_read(chip, addr, alen, linebuf, linebytes) != 0)
4b9206ed 207 puts ("Error reading the chip.\n");
e857a5bd 208 else {
81a8824f
WD
209 printf("%04x:", addr);
210 cp = linebuf;
211 for (j=0; j<linebytes; j++) {
212 printf(" %02x", *cp++);
213 addr++;
214 }
4b9206ed 215 puts (" ");
81a8824f
WD
216 cp = linebuf;
217 for (j=0; j<linebytes; j++) {
218 if ((*cp < 0x20) || (*cp > 0x7e))
4b9206ed 219 puts (".");
81a8824f
WD
220 else
221 printf("%c", *cp);
222 cp++;
223 }
4b9206ed 224 putc ('\n');
81a8824f
WD
225 }
226 nbytes -= linebytes;
227 } while (nbytes > 0);
228
229 i2c_dp_last_chip = chip;
230 i2c_dp_last_addr = addr;
231 i2c_dp_last_alen = alen;
232 i2c_dp_last_length = length;
233
234 return 0;
235}
236
237int do_i2c_mm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
238{
239 return mod_i2c_mem (cmdtp, 1, flag, argc, argv);
240}
241
242
243int do_i2c_nm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
244{
245 return mod_i2c_mem (cmdtp, 0, flag, argc, argv);
246}
247
248/* Write (fill) memory
249 *
250 * Syntax:
251 * imw {i2c_chip} {addr}{.0, .1, .2} {data} [{count}]
252 */
253int do_i2c_mw ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
254{
255 uchar chip;
256 ulong addr;
257 uint alen;
258 uchar byte;
259 int count;
260 int j;
261
262 if ((argc < 4) || (argc > 5)) {
263 printf ("Usage:\n%s\n", cmdtp->usage);
264 return 1;
265 }
266
267 /*
53677ef1
WD
268 * Chip is always specified.
269 */
81a8824f
WD
270 chip = simple_strtoul(argv[1], NULL, 16);
271
272 /*
273 * Address is always specified.
274 */
275 addr = simple_strtoul(argv[2], NULL, 16);
276 alen = 1;
e857a5bd 277 for (j = 0; j < 8; j++) {
81a8824f
WD
278 if (argv[2][j] == '.') {
279 alen = argv[2][j+1] - '0';
e857a5bd 280 if (alen > 4) {
81a8824f
WD
281 printf ("Usage:\n%s\n", cmdtp->usage);
282 return 1;
283 }
284 break;
e857a5bd 285 } else if (argv[2][j] == '\0')
81a8824f 286 break;
81a8824f
WD
287 }
288
289 /*
290 * Value to write is always specified.
291 */
292 byte = simple_strtoul(argv[3], NULL, 16);
293
294 /*
295 * Optional count
296 */
e857a5bd 297 if (argc == 5)
81a8824f 298 count = simple_strtoul(argv[4], NULL, 16);
e857a5bd 299 else
81a8824f 300 count = 1;
81a8824f
WD
301
302 while (count-- > 0) {
e857a5bd 303 if (i2c_write(chip, addr++, alen, &byte, 1) != 0)
4b9206ed 304 puts ("Error writing the chip.\n");
81a8824f
WD
305 /*
306 * Wait for the write to complete. The write can take
307 * up to 10mSec (we allow a little more time).
308 *
309 * On some chips, while the write is in progress, the
310 * chip doesn't respond. This apparently isn't a
311 * universal feature so we don't take advantage of it.
312 */
d4f5c728 313/*
314 * No write delay with FRAM devices.
315 */
316#if !defined(CFG_I2C_FRAM)
81a8824f 317 udelay(11000);
d4f5c728 318#endif
319
81a8824f 320#if 0
e857a5bd 321 for (timeout = 0; timeout < 10; timeout++) {
81a8824f 322 udelay(2000);
e857a5bd 323 if (i2c_probe(chip) == 0)
81a8824f
WD
324 break;
325 }
326#endif
327 }
328
329 return (0);
330}
331
332
333/* Calculate a CRC on memory
334 *
335 * Syntax:
336 * icrc32 {i2c_chip} {addr}{.0, .1, .2} {count}
337 */
338int do_i2c_crc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
339{
340 uchar chip;
341 ulong addr;
342 uint alen;
343 int count;
344 uchar byte;
345 ulong crc;
346 ulong err;
347 int j;
348
349 if (argc < 4) {
350 printf ("Usage:\n%s\n", cmdtp->usage);
351 return 1;
352 }
353
354 /*
53677ef1
WD
355 * Chip is always specified.
356 */
81a8824f
WD
357 chip = simple_strtoul(argv[1], NULL, 16);
358
359 /*
360 * Address is always specified.
361 */
362 addr = simple_strtoul(argv[2], NULL, 16);
363 alen = 1;
e857a5bd 364 for (j = 0; j < 8; j++) {
81a8824f
WD
365 if (argv[2][j] == '.') {
366 alen = argv[2][j+1] - '0';
e857a5bd 367 if (alen > 4) {
81a8824f
WD
368 printf ("Usage:\n%s\n", cmdtp->usage);
369 return 1;
370 }
371 break;
e857a5bd 372 } else if (argv[2][j] == '\0')
81a8824f 373 break;
81a8824f
WD
374 }
375
376 /*
377 * Count is always specified
378 */
379 count = simple_strtoul(argv[3], NULL, 16);
380
381 printf ("CRC32 for %08lx ... %08lx ==> ", addr, addr + count - 1);
382 /*
383 * CRC a byte at a time. This is going to be slooow, but hey, the
384 * memories are small and slow too so hopefully nobody notices.
385 */
386 crc = 0;
387 err = 0;
e857a5bd
TT
388 while (count-- > 0) {
389 if (i2c_read(chip, addr, alen, &byte, 1) != 0)
81a8824f 390 err++;
81a8824f
WD
391 crc = crc32 (crc, &byte, 1);
392 addr++;
393 }
e857a5bd 394 if (err > 0)
4b9206ed 395 puts ("Error reading the chip,\n");
e857a5bd 396 else
81a8824f 397 printf ("%08lx\n", crc);
81a8824f
WD
398
399 return 0;
400}
401
402
403/* Modify memory.
404 *
405 * Syntax:
406 * imm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
407 * inm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
408 */
409
410static int
411mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[])
412{
413 uchar chip;
414 ulong addr;
415 uint alen;
416 ulong data;
417 int size = 1;
418 int nbytes;
419 int j;
420 extern char console_buffer[];
421
422 if (argc != 3) {
423 printf ("Usage:\n%s\n", cmdtp->usage);
424 return 1;
425 }
426
427#ifdef CONFIG_BOOT_RETRY_TIME
428 reset_cmd_timeout(); /* got a good command to get here */
429#endif
430 /*
431 * We use the last specified parameters, unless new ones are
432 * entered.
433 */
434 chip = i2c_mm_last_chip;
435 addr = i2c_mm_last_addr;
436 alen = i2c_mm_last_alen;
437
438 if ((flag & CMD_FLAG_REPEAT) == 0) {
439 /*
440 * New command specified. Check for a size specification.
441 * Defaults to byte if no or incorrect specification.
442 */
443 size = cmd_get_data_size(argv[0], 1);
444
445 /*
53677ef1
WD
446 * Chip is always specified.
447 */
81a8824f
WD
448 chip = simple_strtoul(argv[1], NULL, 16);
449
450 /*
451 * Address is always specified.
452 */
453 addr = simple_strtoul(argv[2], NULL, 16);
454 alen = 1;
e857a5bd 455 for (j = 0; j < 8; j++) {
81a8824f
WD
456 if (argv[2][j] == '.') {
457 alen = argv[2][j+1] - '0';
e857a5bd 458 if (alen > 4) {
81a8824f
WD
459 printf ("Usage:\n%s\n", cmdtp->usage);
460 return 1;
461 }
462 break;
e857a5bd 463 } else if (argv[2][j] == '\0')
81a8824f 464 break;
81a8824f
WD
465 }
466 }
467
468 /*
469 * Print the address, followed by value. Then accept input for
470 * the next value. A non-converted value exits.
471 */
472 do {
473 printf("%08lx:", addr);
e857a5bd 474 if (i2c_read(chip, addr, alen, (uchar *)&data, size) != 0)
4b9206ed 475 puts ("\nError reading the chip,\n");
e857a5bd 476 else {
81a8824f 477 data = cpu_to_be32(data);
e857a5bd 478 if (size == 1)
81a8824f 479 printf(" %02lx", (data >> 24) & 0x000000FF);
e857a5bd 480 else if (size == 2)
81a8824f 481 printf(" %04lx", (data >> 16) & 0x0000FFFF);
e857a5bd 482 else
81a8824f 483 printf(" %08lx", data);
81a8824f
WD
484 }
485
486 nbytes = readline (" ? ");
487 if (nbytes == 0) {
488 /*
489 * <CR> pressed as only input, don't modify current
490 * location and move to next.
491 */
492 if (incrflag)
493 addr += size;
494 nbytes = size;
495#ifdef CONFIG_BOOT_RETRY_TIME
496 reset_cmd_timeout(); /* good enough to not time out */
497#endif
498 }
499#ifdef CONFIG_BOOT_RETRY_TIME
e857a5bd 500 else if (nbytes == -2)
81a8824f 501 break; /* timed out, exit the command */
81a8824f
WD
502#endif
503 else {
504 char *endp;
505
506 data = simple_strtoul(console_buffer, &endp, 16);
e857a5bd 507 if (size == 1)
81a8824f 508 data = data << 24;
e857a5bd 509 else if (size == 2)
81a8824f 510 data = data << 16;
81a8824f
WD
511 data = be32_to_cpu(data);
512 nbytes = endp - console_buffer;
513 if (nbytes) {
514#ifdef CONFIG_BOOT_RETRY_TIME
515 /*
516 * good enough to not time out
517 */
518 reset_cmd_timeout();
519#endif
e857a5bd 520 if (i2c_write(chip, addr, alen, (uchar *)&data, size) != 0)
4b9206ed 521 puts ("Error writing the chip.\n");
2535d602
WD
522#ifdef CFG_EEPROM_PAGE_WRITE_DELAY_MS
523 udelay(CFG_EEPROM_PAGE_WRITE_DELAY_MS * 1000);
524#endif
81a8824f
WD
525 if (incrflag)
526 addr += size;
527 }
528 }
529 } while (nbytes);
530
0800707b
PT
531 i2c_mm_last_chip = chip;
532 i2c_mm_last_addr = addr;
533 i2c_mm_last_alen = alen;
81a8824f
WD
534
535 return 0;
536}
537
538/*
539 * Syntax:
540 * iprobe {addr}{.0, .1, .2}
541 */
542int do_i2c_probe (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
543{
544 int j;
545#if defined(CFG_I2C_NOPROBES)
546 int k, skip;
bb99ad6d
BW
547 uchar bus = GET_BUS_NUM;
548#endif /* NOPROBES */
81a8824f 549
4b9206ed 550 puts ("Valid chip addresses:");
e857a5bd 551 for (j = 0; j < 128; j++) {
81a8824f
WD
552#if defined(CFG_I2C_NOPROBES)
553 skip = 0;
e857a5bd
TT
554 for (k=0; k < NUM_ELEMENTS_NOPROBE; k++) {
555 if (COMPARE_BUS(bus, k) && COMPARE_ADDR(j, k)) {
81a8824f
WD
556 skip = 1;
557 break;
558 }
559 }
560 if (skip)
561 continue;
562#endif
e857a5bd 563 if (i2c_probe(j) == 0)
81a8824f 564 printf(" %02X", j);
81a8824f 565 }
4b9206ed 566 putc ('\n');
81a8824f
WD
567
568#if defined(CFG_I2C_NOPROBES)
569 puts ("Excluded chip addresses:");
e857a5bd
TT
570 for (k=0; k < NUM_ELEMENTS_NOPROBE; k++) {
571 if (COMPARE_BUS(bus,k))
bb99ad6d
BW
572 printf(" %02X", NO_PROBE_ADDR(k));
573 }
4b9206ed 574 putc ('\n');
81a8824f
WD
575#endif
576
577 return 0;
578}
579
580
581/*
582 * Syntax:
583 * iloop {i2c_chip} {addr}{.0, .1, .2} [{length}] [{delay}]
584 * {length} - Number of bytes to read
585 * {delay} - A DECIMAL number and defaults to 1000 uSec
586 */
587int do_i2c_loop(cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
588{
589 u_char chip;
590 ulong alen;
591 uint addr;
592 uint length;
593 u_char bytes[16];
594 int delay;
595 int j;
596
597 if (argc < 3) {
598 printf ("Usage:\n%s\n", cmdtp->usage);
599 return 1;
600 }
601
602 /*
603 * Chip is always specified.
604 */
605 chip = simple_strtoul(argv[1], NULL, 16);
606
607 /*
608 * Address is always specified.
609 */
610 addr = simple_strtoul(argv[2], NULL, 16);
611 alen = 1;
e857a5bd 612 for (j = 0; j < 8; j++) {
81a8824f
WD
613 if (argv[2][j] == '.') {
614 alen = argv[2][j+1] - '0';
615 if (alen > 4) {
616 printf ("Usage:\n%s\n", cmdtp->usage);
617 return 1;
618 }
619 break;
e857a5bd 620 } else if (argv[2][j] == '\0')
81a8824f 621 break;
81a8824f
WD
622 }
623
624 /*
625 * Length is the number of objects, not number of bytes.
626 */
627 length = 1;
628 length = simple_strtoul(argv[3], NULL, 16);
e857a5bd 629 if (length > sizeof(bytes))
81a8824f 630 length = sizeof(bytes);
81a8824f
WD
631
632 /*
633 * The delay time (uSec) is optional.
634 */
635 delay = 1000;
e857a5bd 636 if (argc > 3)
81a8824f 637 delay = simple_strtoul(argv[4], NULL, 10);
81a8824f
WD
638 /*
639 * Run the loop...
640 */
e857a5bd
TT
641 while (1) {
642 if (i2c_read(chip, addr, alen, bytes, length) != 0)
4b9206ed 643 puts ("Error reading the chip.\n");
81a8824f
WD
644 udelay(delay);
645 }
646
647 /* NOTREACHED */
648 return 0;
649}
650
651
652/*
653 * The SDRAM command is separately configured because many
654 * (most?) embedded boards don't use SDRAM DIMMs.
655 */
c76fe474 656#if defined(CONFIG_CMD_SDRAM)
632de067
LJ
657static void print_ddr2_tcyc (u_char const b)
658{
659 printf ("%d.", (b >> 4) & 0x0F);
660 switch (b & 0x0F) {
661 case 0x0:
662 case 0x1:
663 case 0x2:
664 case 0x3:
665 case 0x4:
666 case 0x5:
667 case 0x6:
668 case 0x7:
669 case 0x8:
670 case 0x9:
671 printf ("%d ns\n", b & 0x0F);
672 break;
673 case 0xA:
674 puts ("25 ns\n");
675 break;
676 case 0xB:
677 puts ("33 ns\n");
678 break;
679 case 0xC:
680 puts ("66 ns\n");
681 break;
682 case 0xD:
683 puts ("75 ns\n");
684 break;
685 default:
686 puts ("?? ns\n");
687 break;
688 }
689}
690
691static void decode_bits (u_char const b, char const *str[], int const do_once)
692{
693 u_char mask;
694
695 for (mask = 0x80; mask != 0x00; mask >>= 1, ++str) {
696 if (b & mask) {
697 puts (*str);
698 if (do_once)
699 return;
700 }
701 }
702}
81a8824f
WD
703
704/*
705 * Syntax:
706 * sdram {i2c_chip}
707 */
632de067 708int do_sdram (cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
81a8824f 709{
632de067
LJ
710 enum { unknown, EDO, SDRAM, DDR2 } type;
711
81a8824f
WD
712 u_char chip;
713 u_char data[128];
714 u_char cksum;
715 int j;
716
632de067
LJ
717 static const char *decode_CAS_DDR2[] = {
718 " TBD", " 6", " 5", " 4", " 3", " 2", " TBD", " TBD"
719 };
720
721 static const char *decode_CAS_default[] = {
722 " TBD", " 7", " 6", " 5", " 4", " 3", " 2", " 1"
723 };
724
725 static const char *decode_CS_WE_default[] = {
726 " TBD", " 6", " 5", " 4", " 3", " 2", " 1", " 0"
727 };
728
729 static const char *decode_byte21_default[] = {
730 " TBD (bit 7)\n",
731 " Redundant row address\n",
732 " Differential clock input\n",
733 " Registerd DQMB inputs\n",
734 " Buffered DQMB inputs\n",
735 " On-card PLL\n",
736 " Registered address/control lines\n",
737 " Buffered address/control lines\n"
738 };
739
740 static const char *decode_byte22_DDR2[] = {
741 " TBD (bit 7)\n",
742 " TBD (bit 6)\n",
743 " TBD (bit 5)\n",
744 " TBD (bit 4)\n",
745 " TBD (bit 3)\n",
746 " Supports partial array self refresh\n",
747 " Supports 50 ohm ODT\n",
748 " Supports weak driver\n"
749 };
750
751 static const char *decode_row_density_DDR2[] = {
752 "512 MiB", "256 MiB", "128 MiB", "16 GiB",
753 "8 GiB", "4 GiB", "2 GiB", "1 GiB"
754 };
755
756 static const char *decode_row_density_default[] = {
757 "512 MiB", "256 MiB", "128 MiB", "64 MiB",
758 "32 MiB", "16 MiB", "8 MiB", "4 MiB"
759 };
760
81a8824f
WD
761 if (argc < 2) {
762 printf ("Usage:\n%s\n", cmdtp->usage);
763 return 1;
764 }
765 /*
766 * Chip is always specified.
632de067
LJ
767 */
768 chip = simple_strtoul (argv[1], NULL, 16);
81a8824f 769
632de067 770 if (i2c_read (chip, 0, 1, data, sizeof (data)) != 0) {
4b9206ed 771 puts ("No SDRAM Serial Presence Detect found.\n");
81a8824f
WD
772 return 1;
773 }
774
775 cksum = 0;
776 for (j = 0; j < 63; j++) {
777 cksum += data[j];
778 }
e857a5bd 779 if (cksum != data[63]) {
81a8824f 780 printf ("WARNING: Configuration data checksum failure:\n"
632de067 781 " is 0x%02x, calculated 0x%02x\n", data[63], cksum);
81a8824f 782 }
632de067 783 printf ("SPD data revision %d.%d\n",
81a8824f 784 (data[62] >> 4) & 0x0F, data[62] & 0x0F);
632de067
LJ
785 printf ("Bytes used 0x%02X\n", data[0]);
786 printf ("Serial memory size 0x%02X\n", 1 << data[1]);
787
4b9206ed 788 puts ("Memory type ");
632de067 789 switch (data[2]) {
0df6b844
LJ
790 case 2:
791 type = EDO;
792 puts ("EDO\n");
793 break;
794 case 4:
795 type = SDRAM;
796 puts ("SDRAM\n");
797 break;
798 case 8:
799 type = DDR2;
800 puts ("DDR2\n");
801 break;
802 default:
803 type = unknown;
804 puts ("unknown\n");
805 break;
81a8824f 806 }
632de067 807
4b9206ed 808 puts ("Row address bits ");
e857a5bd 809 if ((data[3] & 0x00F0) == 0)
632de067 810 printf ("%d\n", data[3] & 0x0F);
e857a5bd 811 else
632de067
LJ
812 printf ("%d/%d\n", data[3] & 0x0F, (data[3] >> 4) & 0x0F);
813
4b9206ed 814 puts ("Column address bits ");
e857a5bd 815 if ((data[4] & 0x00F0) == 0)
632de067 816 printf ("%d\n", data[4] & 0x0F);
e857a5bd 817 else
632de067 818 printf ("%d/%d\n", data[4] & 0x0F, (data[4] >> 4) & 0x0F);
0df6b844
LJ
819
820 switch (type) {
821 case DDR2:
632de067
LJ
822 printf ("Number of ranks %d\n",
823 (data[5] & 0x07) + 1);
0df6b844
LJ
824 break;
825 default:
632de067 826 printf ("Module rows %d\n", data[5]);
0df6b844
LJ
827 break;
828 }
829
830 switch (type) {
831 case DDR2:
632de067 832 printf ("Module data width %d bits\n", data[6]);
0df6b844
LJ
833 break;
834 default:
632de067
LJ
835 printf ("Module data width %d bits\n",
836 (data[7] << 8) | data[6]);
0df6b844
LJ
837 break;
838 }
839
4b9206ed 840 puts ("Interface signal levels ");
81a8824f 841 switch(data[8]) {
0df6b844 842 case 0: puts ("TTL 5.0 V\n"); break;
4b9206ed 843 case 1: puts ("LVTTL\n"); break;
0df6b844
LJ
844 case 2: puts ("HSTL 1.5 V\n"); break;
845 case 3: puts ("SSTL 3.3 V\n"); break;
846 case 4: puts ("SSTL 2.5 V\n"); break;
847 case 5: puts ("SSTL 1.8 V\n"); break;
4b9206ed 848 default: puts ("unknown\n"); break;
81a8824f 849 }
0df6b844
LJ
850
851 switch (type) {
852 case DDR2:
632de067
LJ
853 printf ("SDRAM cycle time ");
854 print_ddr2_tcyc (data[9]);
0df6b844
LJ
855 break;
856 default:
632de067
LJ
857 printf ("SDRAM cycle time %d.%d ns\n",
858 (data[9] >> 4) & 0x0F, data[9] & 0x0F);
0df6b844
LJ
859 break;
860 }
861
862 switch (type) {
863 case DDR2:
632de067
LJ
864 printf ("SDRAM access time 0.%d%d ns\n",
865 (data[10] >> 4) & 0x0F, data[10] & 0x0F);
0df6b844
LJ
866 break;
867 default:
632de067
LJ
868 printf ("SDRAM access time %d.%d ns\n",
869 (data[10] >> 4) & 0x0F, data[10] & 0x0F);
0df6b844
LJ
870 break;
871 }
872
4b9206ed 873 puts ("EDC configuration ");
632de067 874 switch (data[11]) {
4b9206ed
WD
875 case 0: puts ("None\n"); break;
876 case 1: puts ("Parity\n"); break;
877 case 2: puts ("ECC\n"); break;
878 default: puts ("unknown\n"); break;
81a8824f 879 }
632de067 880
e857a5bd 881 if ((data[12] & 0x80) == 0)
4b9206ed 882 puts ("No self refresh, rate ");
e857a5bd 883 else
4b9206ed 884 puts ("Self refresh, rate ");
632de067 885
81a8824f 886 switch(data[12] & 0x7F) {
632de067
LJ
887 case 0: puts ("15.625 us\n"); break;
888 case 1: puts ("3.9 us\n"); break;
889 case 2: puts ("7.8 us\n"); break;
890 case 3: puts ("31.3 us\n"); break;
891 case 4: puts ("62.5 us\n"); break;
892 case 5: puts ("125 us\n"); break;
4b9206ed 893 default: puts ("unknown\n"); break;
81a8824f 894 }
0df6b844
LJ
895
896 switch (type) {
897 case DDR2:
632de067 898 printf ("SDRAM width (primary) %d\n", data[13]);
0df6b844
LJ
899 break;
900 default:
632de067 901 printf ("SDRAM width (primary) %d\n", data[13] & 0x7F);
0df6b844 902 if ((data[13] & 0x80) != 0) {
632de067
LJ
903 printf (" (second bank) %d\n",
904 2 * (data[13] & 0x7F));
0df6b844
LJ
905 }
906 break;
907 }
908
909 switch (type) {
910 case DDR2:
911 if (data[14] != 0)
632de067 912 printf ("EDC width %d\n", data[14]);
0df6b844
LJ
913 break;
914 default:
915 if (data[14] != 0) {
632de067
LJ
916 printf ("EDC width %d\n",
917 data[14] & 0x7F);
0df6b844
LJ
918
919 if ((data[14] & 0x80) != 0) {
632de067
LJ
920 printf (" (second bank) %d\n",
921 2 * (data[14] & 0x7F));
0df6b844
LJ
922 }
923 }
924 break;
81a8824f 925 }
0df6b844 926
632de067
LJ
927 if (DDR2 != type) {
928 printf ("Min clock delay, back-to-back random column addresses "
929 "%d\n", data[15]);
0df6b844
LJ
930 }
931
4b9206ed
WD
932 puts ("Burst length(s) ");
933 if (data[16] & 0x80) puts (" Page");
934 if (data[16] & 0x08) puts (" 8");
935 if (data[16] & 0x04) puts (" 4");
936 if (data[16] & 0x02) puts (" 2");
937 if (data[16] & 0x01) puts (" 1");
938 putc ('\n');
632de067 939 printf ("Number of banks %d\n", data[17]);
0df6b844
LJ
940
941 switch (type) {
942 case DDR2:
943 puts ("CAS latency(s) ");
632de067 944 decode_bits (data[18], decode_CAS_DDR2, 0);
0df6b844
LJ
945 putc ('\n');
946 break;
947 default:
948 puts ("CAS latency(s) ");
632de067 949 decode_bits (data[18], decode_CAS_default, 0);
0df6b844
LJ
950 putc ('\n');
951 break;
952 }
953
954 if (DDR2 != type) {
955 puts ("CS latency(s) ");
632de067 956 decode_bits (data[19], decode_CS_WE_default, 0);
0df6b844
LJ
957 putc ('\n');
958 }
959
960 if (DDR2 != type) {
961 puts ("WE latency(s) ");
632de067 962 decode_bits (data[20], decode_CS_WE_default, 0);
0df6b844
LJ
963 putc ('\n');
964 }
965
966 switch (type) {
967 case DDR2:
968 puts ("Module attributes:\n");
969 if (data[21] & 0x80)
970 puts (" TBD (bit 7)\n");
971 if (data[21] & 0x40)
972 puts (" Analysis probe installed\n");
973 if (data[21] & 0x20)
974 puts (" TBD (bit 5)\n");
975 if (data[21] & 0x10)
976 puts (" FET switch external enable\n");
632de067 977 printf (" %d PLLs on DIMM\n", (data[21] >> 2) & 0x03);
0df6b844 978 if (data[20] & 0x11) {
632de067
LJ
979 printf (" %d active registers on DIMM\n",
980 (data[21] & 0x03) + 1);
0df6b844
LJ
981 }
982 break;
983 default:
984 puts ("Module attributes:\n");
985 if (!data[21])
986 puts (" (none)\n");
632de067
LJ
987 else
988 decode_bits (data[21], decode_byte21_default, 0);
0df6b844
LJ
989 break;
990 }
991
992 switch (type) {
993 case DDR2:
632de067 994 decode_bits (data[22], decode_byte22_DDR2, 0);
0df6b844
LJ
995 break;
996 default:
997 puts ("Device attributes:\n");
998 if (data[22] & 0x80) puts (" TBD (bit 7)\n");
999 if (data[22] & 0x40) puts (" TBD (bit 6)\n");
1000 if (data[22] & 0x20) puts (" Upper Vcc tolerance 5%\n");
1001 else puts (" Upper Vcc tolerance 10%\n");
1002 if (data[22] & 0x10) puts (" Lower Vcc tolerance 5%\n");
1003 else puts (" Lower Vcc tolerance 10%\n");
1004 if (data[22] & 0x08) puts (" Supports write1/read burst\n");
1005 if (data[22] & 0x04) puts (" Supports precharge all\n");
1006 if (data[22] & 0x02) puts (" Supports auto precharge\n");
1007 if (data[22] & 0x01) puts (" Supports early RAS# precharge\n");
1008 break;
1009 }
1010
1011 switch (type) {
1012 case DDR2:
632de067
LJ
1013 printf ("SDRAM cycle time (2nd highest CAS latency) ");
1014 print_ddr2_tcyc (data[23]);
0df6b844
LJ
1015 break;
1016 default:
632de067
LJ
1017 printf ("SDRAM cycle time (2nd highest CAS latency) %d."
1018 "%d ns\n", (data[23] >> 4) & 0x0F, data[23] & 0x0F);
0df6b844
LJ
1019 break;
1020 }
1021
1022 switch (type) {
1023 case DDR2:
632de067
LJ
1024 printf ("SDRAM access from clock (2nd highest CAS latency) 0."
1025 "%d%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
0df6b844
LJ
1026 break;
1027 default:
632de067
LJ
1028 printf ("SDRAM access from clock (2nd highest CAS latency) %d."
1029 "%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
0df6b844
LJ
1030 break;
1031 }
1032
1033 switch (type) {
1034 case DDR2:
632de067
LJ
1035 printf ("SDRAM cycle time (3rd highest CAS latency) ");
1036 print_ddr2_tcyc (data[25]);
0df6b844
LJ
1037 break;
1038 default:
632de067
LJ
1039 printf ("SDRAM cycle time (3rd highest CAS latency) %d."
1040 "%d ns\n", (data[25] >> 4) & 0x0F, data[25] & 0x0F);
0df6b844
LJ
1041 break;
1042 }
1043
1044 switch (type) {
1045 case DDR2:
632de067
LJ
1046 printf ("SDRAM access from clock (3rd highest CAS latency) 0."
1047 "%d%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
0df6b844
LJ
1048 break;
1049 default:
632de067
LJ
1050 printf ("SDRAM access from clock (3rd highest CAS latency) %d."
1051 "%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
0df6b844
LJ
1052 break;
1053 }
1054
1055 switch (type) {
1056 case DDR2:
632de067
LJ
1057 printf ("Minimum row precharge %d.%02d ns\n",
1058 (data[27] >> 2) & 0x3F, 25 * (data[27] & 0x03));
0df6b844
LJ
1059 break;
1060 default:
632de067 1061 printf ("Minimum row precharge %d ns\n", data[27]);
0df6b844
LJ
1062 break;
1063 }
1064
1065 switch (type) {
1066 case DDR2:
632de067
LJ
1067 printf ("Row active to row active min %d.%02d ns\n",
1068 (data[28] >> 2) & 0x3F, 25 * (data[28] & 0x03));
0df6b844
LJ
1069 break;
1070 default:
632de067 1071 printf ("Row active to row active min %d ns\n", data[28]);
0df6b844
LJ
1072 break;
1073 }
1074
1075 switch (type) {
1076 case DDR2:
632de067
LJ
1077 printf ("RAS to CAS delay min %d.%02d ns\n",
1078 (data[29] >> 2) & 0x3F, 25 * (data[29] & 0x03));
0df6b844
LJ
1079 break;
1080 default:
632de067 1081 printf ("RAS to CAS delay min %d ns\n", data[29]);
0df6b844
LJ
1082 break;
1083 }
1084
632de067 1085 printf ("Minimum RAS pulse width %d ns\n", data[30]);
0df6b844
LJ
1086
1087 switch (type) {
1088 case DDR2:
632de067
LJ
1089 puts ("Density of each row ");
1090 decode_bits (data[31], decode_row_density_DDR2, 1);
1091 putc ('\n');
0df6b844
LJ
1092 break;
1093 default:
632de067
LJ
1094 puts ("Density of each row ");
1095 decode_bits (data[31], decode_row_density_default, 1);
1096 putc ('\n');
0df6b844
LJ
1097 break;
1098 }
1099
1100 switch (type) {
1101 case DDR2:
632de067 1102 puts ("Command and Address setup ");
0df6b844 1103 if (data[32] >= 0xA0) {
632de067
LJ
1104 printf ("1.%d%d ns\n",
1105 ((data[32] >> 4) & 0x0F) - 10, data[32] & 0x0F);
0df6b844 1106 } else {
632de067
LJ
1107 printf ("0.%d%d ns\n",
1108 ((data[32] >> 4) & 0x0F), data[32] & 0x0F);
0df6b844
LJ
1109 }
1110 break;
1111 default:
632de067
LJ
1112 printf ("Command and Address setup %c%d.%d ns\n",
1113 (data[32] & 0x80) ? '-' : '+',
1114 (data[32] >> 4) & 0x07, data[32] & 0x0F);
0df6b844
LJ
1115 break;
1116 }
1117
1118 switch (type) {
1119 case DDR2:
632de067 1120 puts ("Command and Address hold ");
0df6b844 1121 if (data[33] >= 0xA0) {
632de067
LJ
1122 printf ("1.%d%d ns\n",
1123 ((data[33] >> 4) & 0x0F) - 10, data[33] & 0x0F);
0df6b844 1124 } else {
632de067
LJ
1125 printf ("0.%d%d ns\n",
1126 ((data[33] >> 4) & 0x0F), data[33] & 0x0F);
0df6b844
LJ
1127 }
1128 break;
1129 default:
632de067
LJ
1130 printf ("Command and Address hold %c%d.%d ns\n",
1131 (data[33] & 0x80) ? '-' : '+',
1132 (data[33] >> 4) & 0x07, data[33] & 0x0F);
0df6b844
LJ
1133 break;
1134 }
1135
1136 switch (type) {
1137 case DDR2:
632de067
LJ
1138 printf ("Data signal input setup 0.%d%d ns\n",
1139 (data[34] >> 4) & 0x0F, data[34] & 0x0F);
0df6b844
LJ
1140 break;
1141 default:
632de067
LJ
1142 printf ("Data signal input setup %c%d.%d ns\n",
1143 (data[34] & 0x80) ? '-' : '+',
1144 (data[34] >> 4) & 0x07, data[34] & 0x0F);
0df6b844
LJ
1145 break;
1146 }
1147
1148 switch (type) {
1149 case DDR2:
632de067
LJ
1150 printf ("Data signal input hold 0.%d%d ns\n",
1151 (data[35] >> 4) & 0x0F, data[35] & 0x0F);
0df6b844
LJ
1152 break;
1153 default:
632de067
LJ
1154 printf ("Data signal input hold %c%d.%d ns\n",
1155 (data[35] & 0x80) ? '-' : '+',
1156 (data[35] >> 4) & 0x07, data[35] & 0x0F);
0df6b844
LJ
1157 break;
1158 }
1159
4b9206ed 1160 puts ("Manufacturer's JEDEC ID ");
e857a5bd 1161 for (j = 64; j <= 71; j++)
632de067 1162 printf ("%02X ", data[j]);
4b9206ed 1163 putc ('\n');
632de067 1164 printf ("Manufacturing Location %02X\n", data[72]);
4b9206ed 1165 puts ("Manufacturer's Part Number ");
e857a5bd 1166 for (j = 73; j <= 90; j++)
632de067 1167 printf ("%02X ", data[j]);
4b9206ed 1168 putc ('\n');
632de067
LJ
1169 printf ("Revision Code %02X %02X\n", data[91], data[92]);
1170 printf ("Manufacturing Date %02X %02X\n", data[93], data[94]);
4b9206ed 1171 puts ("Assembly Serial Number ");
e857a5bd 1172 for (j = 95; j <= 98; j++)
632de067 1173 printf ("%02X ", data[j]);
4b9206ed 1174 putc ('\n');
81a8824f 1175
0df6b844 1176 if (DDR2 != type) {
632de067
LJ
1177 printf ("Speed rating PC%d\n",
1178 data[126] == 0x66 ? 66 : data[126]);
0df6b844 1179 }
81a8824f
WD
1180 return 0;
1181}
90253178 1182#endif
81a8824f 1183
bb99ad6d
BW
1184#if defined(CONFIG_I2C_CMD_TREE)
1185#if defined(CONFIG_I2C_MULTI_BUS)
1186int do_i2c_bus_num(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
1187{
1188 int bus_idx, ret=0;
1189
e857a5bd
TT
1190 if (argc == 1)
1191 /* querying current setting */
bb99ad6d 1192 printf("Current bus is %d\n", i2c_get_bus_num());
e857a5bd 1193 else {
bb99ad6d
BW
1194 bus_idx = simple_strtoul(argv[1], NULL, 10);
1195 printf("Setting bus to %d\n", bus_idx);
1196 ret = i2c_set_bus_num(bus_idx);
e857a5bd 1197 if (ret)
bb99ad6d 1198 printf("Failure changing bus number (%d)\n", ret);
bb99ad6d
BW
1199 }
1200 return ret;
1201}
1202#endif /* CONFIG_I2C_MULTI_BUS */
1203
1204int do_i2c_bus_speed(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
1205{
1206 int speed, ret=0;
1207
e857a5bd
TT
1208 if (argc == 1)
1209 /* querying current speed */
bb99ad6d 1210 printf("Current bus speed=%d\n", i2c_get_bus_speed());
e857a5bd 1211 else {
bb99ad6d
BW
1212 speed = simple_strtoul(argv[1], NULL, 10);
1213 printf("Setting bus speed to %d Hz\n", speed);
1214 ret = i2c_set_bus_speed(speed);
e857a5bd 1215 if (ret)
bb99ad6d 1216 printf("Failure changing bus speed (%d)\n", ret);
bb99ad6d
BW
1217 }
1218 return ret;
1219}
1220
1221int do_i2c(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
1222{
1223#if defined(CONFIG_I2C_MULTI_BUS)
e857a5bd 1224 if (!strncmp(argv[1], "de", 2))
bb99ad6d 1225 return do_i2c_bus_num(cmdtp, flag, --argc, ++argv);
bb99ad6d 1226#endif /* CONFIG_I2C_MULTI_BUS */
e857a5bd 1227 if (!strncmp(argv[1], "sp", 2))
bb99ad6d 1228 return do_i2c_bus_speed(cmdtp, flag, --argc, ++argv);
e857a5bd 1229 if (!strncmp(argv[1], "md", 2))
bb99ad6d 1230 return do_i2c_md(cmdtp, flag, --argc, ++argv);
e857a5bd 1231 if (!strncmp(argv[1], "mm", 2))
bb99ad6d 1232 return do_i2c_mm(cmdtp, flag, --argc, ++argv);
e857a5bd 1233 if (!strncmp(argv[1], "mw", 2))
bb99ad6d 1234 return do_i2c_mw(cmdtp, flag, --argc, ++argv);
e857a5bd 1235 if (!strncmp(argv[1], "nm", 2))
bb99ad6d 1236 return do_i2c_nm(cmdtp, flag, --argc, ++argv);
e857a5bd 1237 if (!strncmp(argv[1], "cr", 2))
bb99ad6d 1238 return do_i2c_crc(cmdtp, flag, --argc, ++argv);
e857a5bd 1239 if (!strncmp(argv[1], "pr", 2))
bb99ad6d 1240 return do_i2c_probe(cmdtp, flag, --argc, ++argv);
e857a5bd 1241 if (!strncmp(argv[1], "lo", 2))
bb99ad6d 1242 return do_i2c_loop(cmdtp, flag, --argc, ++argv);
c76fe474 1243#if defined(CONFIG_CMD_SDRAM)
e857a5bd 1244 if (!strncmp(argv[1], "sd", 2))
bb99ad6d 1245 return do_sdram(cmdtp, flag, --argc, ++argv);
90253178 1246#endif
bb99ad6d 1247 else
bb99ad6d 1248 printf ("Usage:\n%s\n", cmdtp->usage);
bb99ad6d
BW
1249 return 0;
1250}
1251#endif /* CONFIG_I2C_CMD_TREE */
8bde7f77
WD
1252
1253/***************************************************/
1254
d9fc7032
MF
1255#if defined(CONFIG_I2C_CMD_TREE)
1256U_BOOT_CMD(
1257 i2c, 6, 1, do_i2c,
53677ef1 1258 "i2c - I2C sub-system\n",
d9fc7032
MF
1259#if defined(CONFIG_I2C_MULTI_BUS)
1260 "dev [dev] - show or set current I2C bus\n"
1261#endif /* CONFIG_I2C_MULTI_BUS */
1262 "i2c speed [speed] - show or set I2C bus speed\n"
1263 "i2c md chip address[.0, .1, .2] [# of objects] - read from I2C device\n"
1264 "i2c mm chip address[.0, .1, .2] - write to I2C device (auto-incrementing)\n"
1265 "i2c mw chip address[.0, .1, .2] value [count] - write to I2C device (fill)\n"
1266 "i2c nm chip address[.0, .1, .2] - write to I2C device (constant address)\n"
1267 "i2c crc32 chip address[.0, .1, .2] count - compute CRC32 checksum\n"
1268 "i2c probe - show devices on the I2C bus\n"
1269 "i2c loop chip address[.0, .1, .2] [# of objects] - looping read of device\n"
c76fe474 1270#if defined(CONFIG_CMD_SDRAM)
d9fc7032 1271 "i2c sdram chip - print SDRAM configuration information\n"
90253178 1272#endif
d9fc7032 1273);
0c75c9d8 1274#endif /* CONFIG_I2C_CMD_TREE */
0d498393
WD
1275U_BOOT_CMD(
1276 imd, 4, 1, do_i2c_md, \
8bde7f77
WD
1277 "imd - i2c memory display\n", \
1278 "chip address[.0, .1, .2] [# of objects]\n - i2c memory display\n" \
1279);
1280
0d498393 1281U_BOOT_CMD(
53677ef1 1282 imm, 3, 1, do_i2c_mm,
8bde7f77
WD
1283 "imm - i2c memory modify (auto-incrementing)\n",
1284 "chip address[.0, .1, .2]\n"
1285 " - memory modify, auto increment address\n"
1286);
0d498393
WD
1287U_BOOT_CMD(
1288 inm, 3, 1, do_i2c_nm,
8bde7f77
WD
1289 "inm - memory modify (constant address)\n",
1290 "chip address[.0, .1, .2]\n - memory modify, read and keep address\n"
1291);
1292
0d498393
WD
1293U_BOOT_CMD(
1294 imw, 5, 1, do_i2c_mw,
8bde7f77
WD
1295 "imw - memory write (fill)\n",
1296 "chip address[.0, .1, .2] value [count]\n - memory write (fill)\n"
1297);
1298
0d498393
WD
1299U_BOOT_CMD(
1300 icrc32, 5, 1, do_i2c_crc,
8bde7f77
WD
1301 "icrc32 - checksum calculation\n",
1302 "chip address[.0, .1, .2] count\n - compute CRC32 checksum\n"
1303);
1304
0d498393
WD
1305U_BOOT_CMD(
1306 iprobe, 1, 1, do_i2c_probe,
8bde7f77
WD
1307 "iprobe - probe to discover valid I2C chip addresses\n",
1308 "\n -discover valid I2C chip addresses\n"
1309);
1310
1311/*
1312 * Require full name for "iloop" because it is an infinite loop!
1313 */
0d498393
WD
1314U_BOOT_CMD(
1315 iloop, 5, 1, do_i2c_loop,
8bde7f77
WD
1316 "iloop - infinite loop on address range\n",
1317 "chip address[.0, .1, .2] [# of objects]\n"
1318 " - loop, reading a set of addresses\n"
1319);
1320
c76fe474 1321#if defined(CONFIG_CMD_SDRAM)
0d498393
WD
1322U_BOOT_CMD(
1323 isdram, 2, 1, do_sdram,
8bde7f77
WD
1324 "isdram - print SDRAM configuration information\n",
1325 "chip\n - print SDRAM configuration information\n"
1326 " (valid chip values 50..57)\n"
1327);
1328#endif