]> git.ipfire.org Git - people/ms/u-boot.git/blame - common/dlmalloc.c
dm: tegra: Avoid using arch-specific memcpy() in SPL
[people/ms/u-boot.git] / common / dlmalloc.c
CommitLineData
81673e9a
KG
1#include <common.h>
2
6d7601e7
SG
3#ifdef CONFIG_SANDBOX
4#define DEBUG
5#endif
6
217c9dad
WD
7#if 0 /* Moved to malloc.h */
8/* ---------- To make a malloc.h, start cutting here ------------ */
9
10/*
11 A version of malloc/free/realloc written by Doug Lea and released to the
12 public domain. Send questions/comments/complaints/performance data
13 to dl@cs.oswego.edu
14
15* VERSION 2.6.6 Sun Mar 5 19:10:03 2000 Doug Lea (dl at gee)
16
17 Note: There may be an updated version of this malloc obtainable at
8bde7f77
WD
18 ftp://g.oswego.edu/pub/misc/malloc.c
19 Check before installing!
217c9dad
WD
20
21* Why use this malloc?
22
23 This is not the fastest, most space-conserving, most portable, or
24 most tunable malloc ever written. However it is among the fastest
25 while also being among the most space-conserving, portable and tunable.
26 Consistent balance across these factors results in a good general-purpose
27 allocator. For a high-level description, see
28 http://g.oswego.edu/dl/html/malloc.html
29
30* Synopsis of public routines
31
32 (Much fuller descriptions are contained in the program documentation below.)
33
34 malloc(size_t n);
35 Return a pointer to a newly allocated chunk of at least n bytes, or null
36 if no space is available.
37 free(Void_t* p);
38 Release the chunk of memory pointed to by p, or no effect if p is null.
39 realloc(Void_t* p, size_t n);
40 Return a pointer to a chunk of size n that contains the same data
41 as does chunk p up to the minimum of (n, p's size) bytes, or null
42 if no space is available. The returned pointer may or may not be
43 the same as p. If p is null, equivalent to malloc. Unless the
44 #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a
45 size argument of zero (re)allocates a minimum-sized chunk.
46 memalign(size_t alignment, size_t n);
47 Return a pointer to a newly allocated chunk of n bytes, aligned
48 in accord with the alignment argument, which must be a power of
49 two.
50 valloc(size_t n);
51 Equivalent to memalign(pagesize, n), where pagesize is the page
52 size of the system (or as near to this as can be figured out from
53 all the includes/defines below.)
54 pvalloc(size_t n);
55 Equivalent to valloc(minimum-page-that-holds(n)), that is,
56 round up n to nearest pagesize.
57 calloc(size_t unit, size_t quantity);
58 Returns a pointer to quantity * unit bytes, with all locations
59 set to zero.
60 cfree(Void_t* p);
61 Equivalent to free(p).
62 malloc_trim(size_t pad);
63 Release all but pad bytes of freed top-most memory back
64 to the system. Return 1 if successful, else 0.
65 malloc_usable_size(Void_t* p);
66 Report the number usable allocated bytes associated with allocated
67 chunk p. This may or may not report more bytes than were requested,
68 due to alignment and minimum size constraints.
69 malloc_stats();
70 Prints brief summary statistics.
71 mallinfo()
72 Returns (by copy) a struct containing various summary statistics.
73 mallopt(int parameter_number, int parameter_value)
74 Changes one of the tunable parameters described below. Returns
75 1 if successful in changing the parameter, else 0.
76
77* Vital statistics:
78
79 Alignment: 8-byte
80 8 byte alignment is currently hardwired into the design. This
81 seems to suffice for all current machines and C compilers.
82
83 Assumed pointer representation: 4 or 8 bytes
84 Code for 8-byte pointers is untested by me but has worked
85 reliably by Wolfram Gloger, who contributed most of the
86 changes supporting this.
87
88 Assumed size_t representation: 4 or 8 bytes
89 Note that size_t is allowed to be 4 bytes even if pointers are 8.
90
91 Minimum overhead per allocated chunk: 4 or 8 bytes
92 Each malloced chunk has a hidden overhead of 4 bytes holding size
93 and status information.
94
95 Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead)
8bde7f77 96 8-byte ptrs: 24/32 bytes (including, 4/8 overhead)
217c9dad
WD
97
98 When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
99 ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
100 needed; 4 (8) for a trailing size field
101 and 8 (16) bytes for free list pointers. Thus, the minimum
102 allocatable size is 16/24/32 bytes.
103
104 Even a request for zero bytes (i.e., malloc(0)) returns a
105 pointer to something of the minimum allocatable size.
106
107 Maximum allocated size: 4-byte size_t: 2^31 - 8 bytes
8bde7f77 108 8-byte size_t: 2^63 - 16 bytes
217c9dad
WD
109
110 It is assumed that (possibly signed) size_t bit values suffice to
111 represent chunk sizes. `Possibly signed' is due to the fact
112 that `size_t' may be defined on a system as either a signed or
113 an unsigned type. To be conservative, values that would appear
114 as negative numbers are avoided.
115 Requests for sizes with a negative sign bit when the request
116 size is treaded as a long will return null.
117
118 Maximum overhead wastage per allocated chunk: normally 15 bytes
119
120 Alignnment demands, plus the minimum allocatable size restriction
121 make the normal worst-case wastage 15 bytes (i.e., up to 15
122 more bytes will be allocated than were requested in malloc), with
123 two exceptions:
8bde7f77
WD
124 1. Because requests for zero bytes allocate non-zero space,
125 the worst case wastage for a request of zero bytes is 24 bytes.
126 2. For requests >= mmap_threshold that are serviced via
127 mmap(), the worst case wastage is 8 bytes plus the remainder
128 from a system page (the minimal mmap unit); typically 4096 bytes.
217c9dad
WD
129
130* Limitations
131
132 Here are some features that are NOT currently supported
133
134 * No user-definable hooks for callbacks and the like.
135 * No automated mechanism for fully checking that all accesses
136 to malloced memory stay within their bounds.
137 * No support for compaction.
138
139* Synopsis of compile-time options:
140
141 People have reported using previous versions of this malloc on all
142 versions of Unix, sometimes by tweaking some of the defines
143 below. It has been tested most extensively on Solaris and
144 Linux. It is also reported to work on WIN32 platforms.
145 People have also reported adapting this malloc for use in
146 stand-alone embedded systems.
147
148 The implementation is in straight, hand-tuned ANSI C. Among other
149 consequences, it uses a lot of macros. Because of this, to be at
150 all usable, this code should be compiled using an optimizing compiler
151 (for example gcc -O2) that can simplify expressions and control
152 paths.
153
154 __STD_C (default: derived from C compiler defines)
155 Nonzero if using ANSI-standard C compiler, a C++ compiler, or
156 a C compiler sufficiently close to ANSI to get away with it.
157 DEBUG (default: NOT defined)
158 Define to enable debugging. Adds fairly extensive assertion-based
159 checking to help track down memory errors, but noticeably slows down
160 execution.
161 REALLOC_ZERO_BYTES_FREES (default: NOT defined)
162 Define this if you think that realloc(p, 0) should be equivalent
163 to free(p). Otherwise, since malloc returns a unique pointer for
164 malloc(0), so does realloc(p, 0).
165 HAVE_MEMCPY (default: defined)
166 Define if you are not otherwise using ANSI STD C, but still
167 have memcpy and memset in your C library and want to use them.
168 Otherwise, simple internal versions are supplied.
169 USE_MEMCPY (default: 1 if HAVE_MEMCPY is defined, 0 otherwise)
170 Define as 1 if you want the C library versions of memset and
171 memcpy called in realloc and calloc (otherwise macro versions are used).
172 At least on some platforms, the simple macro versions usually
173 outperform libc versions.
174 HAVE_MMAP (default: defined as 1)
175 Define to non-zero to optionally make malloc() use mmap() to
176 allocate very large blocks.
177 HAVE_MREMAP (default: defined as 0 unless Linux libc set)
178 Define to non-zero to optionally make realloc() use mremap() to
179 reallocate very large blocks.
180 malloc_getpagesize (default: derived from system #includes)
181 Either a constant or routine call returning the system page size.
182 HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined)
183 Optionally define if you are on a system with a /usr/include/malloc.h
184 that declares struct mallinfo. It is not at all necessary to
185 define this even if you do, but will ensure consistency.
186 INTERNAL_SIZE_T (default: size_t)
187 Define to a 32-bit type (probably `unsigned int') if you are on a
188 64-bit machine, yet do not want or need to allow malloc requests of
189 greater than 2^31 to be handled. This saves space, especially for
190 very small chunks.
191 INTERNAL_LINUX_C_LIB (default: NOT defined)
192 Defined only when compiled as part of Linux libc.
193 Also note that there is some odd internal name-mangling via defines
194 (for example, internally, `malloc' is named `mALLOc') needed
195 when compiling in this case. These look funny but don't otherwise
196 affect anything.
197 WIN32 (default: undefined)
198 Define this on MS win (95, nt) platforms to compile in sbrk emulation.
199 LACKS_UNISTD_H (default: undefined if not WIN32)
200 Define this if your system does not have a <unistd.h>.
201 LACKS_SYS_PARAM_H (default: undefined if not WIN32)
202 Define this if your system does not have a <sys/param.h>.
203 MORECORE (default: sbrk)
204 The name of the routine to call to obtain more memory from the system.
205 MORECORE_FAILURE (default: -1)
206 The value returned upon failure of MORECORE.
207 MORECORE_CLEARS (default 1)
472d5460 208 true (1) if the routine mapped to MORECORE zeroes out memory (which
217c9dad
WD
209 holds for sbrk).
210 DEFAULT_TRIM_THRESHOLD
211 DEFAULT_TOP_PAD
212 DEFAULT_MMAP_THRESHOLD
213 DEFAULT_MMAP_MAX
214 Default values of tunable parameters (described in detail below)
215 controlling interaction with host system routines (sbrk, mmap, etc).
216 These values may also be changed dynamically via mallopt(). The
217 preset defaults are those that give best performance for typical
218 programs/systems.
219 USE_DL_PREFIX (default: undefined)
220 Prefix all public routines with the string 'dl'. Useful to
221 quickly avoid procedure declaration conflicts and linker symbol
222 conflicts with existing memory allocation routines.
223
224
225*/
226
d93041a4 227
217c9dad 228
217c9dad
WD
229/* Preliminaries */
230
231#ifndef __STD_C
232#ifdef __STDC__
233#define __STD_C 1
234#else
235#if __cplusplus
236#define __STD_C 1
237#else
238#define __STD_C 0
239#endif /*__cplusplus*/
240#endif /*__STDC__*/
241#endif /*__STD_C*/
242
243#ifndef Void_t
244#if (__STD_C || defined(WIN32))
245#define Void_t void
246#else
247#define Void_t char
248#endif
249#endif /*Void_t*/
250
251#if __STD_C
252#include <stddef.h> /* for size_t */
253#else
254#include <sys/types.h>
255#endif
256
257#ifdef __cplusplus
258extern "C" {
259#endif
260
261#include <stdio.h> /* needed for malloc_stats */
262
263
264/*
265 Compile-time options
266*/
267
268
269/*
270 Debugging:
271
272 Because freed chunks may be overwritten with link fields, this
273 malloc will often die when freed memory is overwritten by user
274 programs. This can be very effective (albeit in an annoying way)
275 in helping track down dangling pointers.
276
277 If you compile with -DDEBUG, a number of assertion checks are
278 enabled that will catch more memory errors. You probably won't be
279 able to make much sense of the actual assertion errors, but they
280 should help you locate incorrectly overwritten memory. The
281 checking is fairly extensive, and will slow down execution
282 noticeably. Calling malloc_stats or mallinfo with DEBUG set will
283 attempt to check every non-mmapped allocated and free chunk in the
284 course of computing the summmaries. (By nature, mmapped regions
285 cannot be checked very much automatically.)
286
287 Setting DEBUG may also be helpful if you are trying to modify
288 this code. The assertions in the check routines spell out in more
289 detail the assumptions and invariants underlying the algorithms.
290
291*/
292
217c9dad
WD
293/*
294 INTERNAL_SIZE_T is the word-size used for internal bookkeeping
295 of chunk sizes. On a 64-bit machine, you can reduce malloc
296 overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
297 at the expense of not being able to handle requests greater than
298 2^31. This limitation is hardly ever a concern; you are encouraged
299 to set this. However, the default version is the same as size_t.
300*/
301
302#ifndef INTERNAL_SIZE_T
303#define INTERNAL_SIZE_T size_t
304#endif
305
306/*
307 REALLOC_ZERO_BYTES_FREES should be set if a call to
308 realloc with zero bytes should be the same as a call to free.
309 Some people think it should. Otherwise, since this malloc
310 returns a unique pointer for malloc(0), so does realloc(p, 0).
311*/
312
313
314/* #define REALLOC_ZERO_BYTES_FREES */
315
316
317/*
318 WIN32 causes an emulation of sbrk to be compiled in
319 mmap-based options are not currently supported in WIN32.
320*/
321
322/* #define WIN32 */
323#ifdef WIN32
324#define MORECORE wsbrk
325#define HAVE_MMAP 0
326
327#define LACKS_UNISTD_H
328#define LACKS_SYS_PARAM_H
329
330/*
331 Include 'windows.h' to get the necessary declarations for the
332 Microsoft Visual C++ data structures and routines used in the 'sbrk'
333 emulation.
334
335 Define WIN32_LEAN_AND_MEAN so that only the essential Microsoft
336 Visual C++ header files are included.
337*/
338#define WIN32_LEAN_AND_MEAN
339#include <windows.h>
340#endif
341
342
343/*
344 HAVE_MEMCPY should be defined if you are not otherwise using
345 ANSI STD C, but still have memcpy and memset in your C library
346 and want to use them in calloc and realloc. Otherwise simple
347 macro versions are defined here.
348
349 USE_MEMCPY should be defined as 1 if you actually want to
350 have memset and memcpy called. People report that the macro
351 versions are often enough faster than libc versions on many
352 systems that it is better to use them.
353
354*/
355
356#define HAVE_MEMCPY
357
358#ifndef USE_MEMCPY
359#ifdef HAVE_MEMCPY
360#define USE_MEMCPY 1
361#else
362#define USE_MEMCPY 0
363#endif
364#endif
365
366#if (__STD_C || defined(HAVE_MEMCPY))
367
368#if __STD_C
369void* memset(void*, int, size_t);
370void* memcpy(void*, const void*, size_t);
371#else
372#ifdef WIN32
8bde7f77
WD
373/* On Win32 platforms, 'memset()' and 'memcpy()' are already declared in */
374/* 'windows.h' */
217c9dad
WD
375#else
376Void_t* memset();
377Void_t* memcpy();
378#endif
379#endif
380#endif
381
382#if USE_MEMCPY
383
384/* The following macros are only invoked with (2n+1)-multiples of
385 INTERNAL_SIZE_T units, with a positive integer n. This is exploited
386 for fast inline execution when n is small. */
387
388#define MALLOC_ZERO(charp, nbytes) \
389do { \
390 INTERNAL_SIZE_T mzsz = (nbytes); \
391 if(mzsz <= 9*sizeof(mzsz)) { \
392 INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp); \
393 if(mzsz >= 5*sizeof(mzsz)) { *mz++ = 0; \
8bde7f77 394 *mz++ = 0; \
217c9dad 395 if(mzsz >= 7*sizeof(mzsz)) { *mz++ = 0; \
8bde7f77
WD
396 *mz++ = 0; \
397 if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0; \
398 *mz++ = 0; }}} \
399 *mz++ = 0; \
400 *mz++ = 0; \
401 *mz = 0; \
217c9dad
WD
402 } else memset((charp), 0, mzsz); \
403} while(0)
404
405#define MALLOC_COPY(dest,src,nbytes) \
406do { \
407 INTERNAL_SIZE_T mcsz = (nbytes); \
408 if(mcsz <= 9*sizeof(mcsz)) { \
409 INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src); \
410 INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest); \
411 if(mcsz >= 5*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
8bde7f77 412 *mcdst++ = *mcsrc++; \
217c9dad 413 if(mcsz >= 7*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
8bde7f77
WD
414 *mcdst++ = *mcsrc++; \
415 if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
416 *mcdst++ = *mcsrc++; }}} \
417 *mcdst++ = *mcsrc++; \
418 *mcdst++ = *mcsrc++; \
419 *mcdst = *mcsrc ; \
217c9dad
WD
420 } else memcpy(dest, src, mcsz); \
421} while(0)
422
423#else /* !USE_MEMCPY */
424
425/* Use Duff's device for good zeroing/copying performance. */
426
427#define MALLOC_ZERO(charp, nbytes) \
428do { \
429 INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp); \
430 long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \
431 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
432 switch (mctmp) { \
433 case 0: for(;;) { *mzp++ = 0; \
434 case 7: *mzp++ = 0; \
435 case 6: *mzp++ = 0; \
436 case 5: *mzp++ = 0; \
437 case 4: *mzp++ = 0; \
438 case 3: *mzp++ = 0; \
439 case 2: *mzp++ = 0; \
440 case 1: *mzp++ = 0; if(mcn <= 0) break; mcn--; } \
441 } \
442} while(0)
443
444#define MALLOC_COPY(dest,src,nbytes) \
445do { \
446 INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src; \
447 INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest; \
448 long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \
449 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
450 switch (mctmp) { \
451 case 0: for(;;) { *mcdst++ = *mcsrc++; \
452 case 7: *mcdst++ = *mcsrc++; \
453 case 6: *mcdst++ = *mcsrc++; \
454 case 5: *mcdst++ = *mcsrc++; \
455 case 4: *mcdst++ = *mcsrc++; \
456 case 3: *mcdst++ = *mcsrc++; \
457 case 2: *mcdst++ = *mcsrc++; \
458 case 1: *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; } \
459 } \
460} while(0)
461
462#endif
463
464
465/*
466 Define HAVE_MMAP to optionally make malloc() use mmap() to
467 allocate very large blocks. These will be returned to the
468 operating system immediately after a free().
469*/
470
471#ifndef HAVE_MMAP
472#define HAVE_MMAP 1
473#endif
474
475/*
476 Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
477 large blocks. This is currently only possible on Linux with
478 kernel versions newer than 1.3.77.
479*/
480
481#ifndef HAVE_MREMAP
482#ifdef INTERNAL_LINUX_C_LIB
483#define HAVE_MREMAP 1
484#else
485#define HAVE_MREMAP 0
486#endif
487#endif
488
489#if HAVE_MMAP
490
491#include <unistd.h>
492#include <fcntl.h>
493#include <sys/mman.h>
494
495#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
496#define MAP_ANONYMOUS MAP_ANON
497#endif
498
499#endif /* HAVE_MMAP */
500
501/*
502 Access to system page size. To the extent possible, this malloc
503 manages memory from the system in page-size units.
504
505 The following mechanics for getpagesize were adapted from
506 bsd/gnu getpagesize.h
507*/
508
509#ifndef LACKS_UNISTD_H
510# include <unistd.h>
511#endif
512
513#ifndef malloc_getpagesize
514# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
515# ifndef _SC_PAGE_SIZE
516# define _SC_PAGE_SIZE _SC_PAGESIZE
517# endif
518# endif
519# ifdef _SC_PAGE_SIZE
520# define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
521# else
522# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
523 extern size_t getpagesize();
524# define malloc_getpagesize getpagesize()
525# else
526# ifdef WIN32
527# define malloc_getpagesize (4096) /* TBD: Use 'GetSystemInfo' instead */
528# else
529# ifndef LACKS_SYS_PARAM_H
530# include <sys/param.h>
531# endif
532# ifdef EXEC_PAGESIZE
533# define malloc_getpagesize EXEC_PAGESIZE
534# else
535# ifdef NBPG
536# ifndef CLSIZE
537# define malloc_getpagesize NBPG
538# else
539# define malloc_getpagesize (NBPG * CLSIZE)
540# endif
541# else
542# ifdef NBPC
543# define malloc_getpagesize NBPC
544# else
545# ifdef PAGESIZE
546# define malloc_getpagesize PAGESIZE
547# else
548# define malloc_getpagesize (4096) /* just guess */
549# endif
550# endif
551# endif
552# endif
553# endif
554# endif
555# endif
556#endif
557
558
217c9dad
WD
559/*
560
561 This version of malloc supports the standard SVID/XPG mallinfo
562 routine that returns a struct containing the same kind of
563 information you can get from malloc_stats. It should work on
564 any SVID/XPG compliant system that has a /usr/include/malloc.h
565 defining struct mallinfo. (If you'd like to install such a thing
566 yourself, cut out the preliminary declarations as described above
567 and below and save them in a malloc.h file. But there's no
568 compelling reason to bother to do this.)
569
570 The main declaration needed is the mallinfo struct that is returned
571 (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a
572 bunch of fields, most of which are not even meaningful in this
573 version of malloc. Some of these fields are are instead filled by
574 mallinfo() with other numbers that might possibly be of interest.
575
576 HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
577 /usr/include/malloc.h file that includes a declaration of struct
578 mallinfo. If so, it is included; else an SVID2/XPG2 compliant
579 version is declared below. These must be precisely the same for
580 mallinfo() to work.
581
582*/
583
584/* #define HAVE_USR_INCLUDE_MALLOC_H */
585
586#if HAVE_USR_INCLUDE_MALLOC_H
587#include "/usr/include/malloc.h"
588#else
589
590/* SVID2/XPG mallinfo structure */
591
592struct mallinfo {
593 int arena; /* total space allocated from system */
594 int ordblks; /* number of non-inuse chunks */
595 int smblks; /* unused -- always zero */
596 int hblks; /* number of mmapped regions */
597 int hblkhd; /* total space in mmapped regions */
598 int usmblks; /* unused -- always zero */
599 int fsmblks; /* unused -- always zero */
600 int uordblks; /* total allocated space */
601 int fordblks; /* total non-inuse space */
602 int keepcost; /* top-most, releasable (via malloc_trim) space */
603};
604
605/* SVID2/XPG mallopt options */
606
607#define M_MXFAST 1 /* UNUSED in this malloc */
608#define M_NLBLKS 2 /* UNUSED in this malloc */
609#define M_GRAIN 3 /* UNUSED in this malloc */
610#define M_KEEP 4 /* UNUSED in this malloc */
611
612#endif
613
614/* mallopt options that actually do something */
615
616#define M_TRIM_THRESHOLD -1
617#define M_TOP_PAD -2
618#define M_MMAP_THRESHOLD -3
619#define M_MMAP_MAX -4
620
621
217c9dad
WD
622#ifndef DEFAULT_TRIM_THRESHOLD
623#define DEFAULT_TRIM_THRESHOLD (128 * 1024)
624#endif
625
626/*
627 M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
628 to keep before releasing via malloc_trim in free().
629
630 Automatic trimming is mainly useful in long-lived programs.
631 Because trimming via sbrk can be slow on some systems, and can
632 sometimes be wasteful (in cases where programs immediately
633 afterward allocate more large chunks) the value should be high
634 enough so that your overall system performance would improve by
635 releasing.
636
637 The trim threshold and the mmap control parameters (see below)
638 can be traded off with one another. Trimming and mmapping are
639 two different ways of releasing unused memory back to the
640 system. Between these two, it is often possible to keep
641 system-level demands of a long-lived program down to a bare
642 minimum. For example, in one test suite of sessions measuring
643 the XF86 X server on Linux, using a trim threshold of 128K and a
644 mmap threshold of 192K led to near-minimal long term resource
645 consumption.
646
647 If you are using this malloc in a long-lived program, it should
648 pay to experiment with these values. As a rough guide, you
649 might set to a value close to the average size of a process
650 (program) running on your system. Releasing this much memory
651 would allow such a process to run in memory. Generally, it's
652 worth it to tune for trimming rather tham memory mapping when a
653 program undergoes phases where several large chunks are
654 allocated and released in ways that can reuse each other's
655 storage, perhaps mixed with phases where there are no such
656 chunks at all. And in well-behaved long-lived programs,
657 controlling release of large blocks via trimming versus mapping
658 is usually faster.
659
660 However, in most programs, these parameters serve mainly as
661 protection against the system-level effects of carrying around
662 massive amounts of unneeded memory. Since frequent calls to
663 sbrk, mmap, and munmap otherwise degrade performance, the default
664 parameters are set to relatively high values that serve only as
665 safeguards.
666
667 The default trim value is high enough to cause trimming only in
668 fairly extreme (by current memory consumption standards) cases.
669 It must be greater than page size to have any useful effect. To
670 disable trimming completely, you can set to (unsigned long)(-1);
671
672
673*/
674
675
676#ifndef DEFAULT_TOP_PAD
677#define DEFAULT_TOP_PAD (0)
678#endif
679
680/*
681 M_TOP_PAD is the amount of extra `padding' space to allocate or
682 retain whenever sbrk is called. It is used in two ways internally:
683
684 * When sbrk is called to extend the top of the arena to satisfy
8bde7f77
WD
685 a new malloc request, this much padding is added to the sbrk
686 request.
217c9dad
WD
687
688 * When malloc_trim is called automatically from free(),
8bde7f77 689 it is used as the `pad' argument.
217c9dad
WD
690
691 In both cases, the actual amount of padding is rounded
692 so that the end of the arena is always a system page boundary.
693
694 The main reason for using padding is to avoid calling sbrk so
695 often. Having even a small pad greatly reduces the likelihood
696 that nearly every malloc request during program start-up (or
697 after trimming) will invoke sbrk, which needlessly wastes
698 time.
699
700 Automatic rounding-up to page-size units is normally sufficient
701 to avoid measurable overhead, so the default is 0. However, in
702 systems where sbrk is relatively slow, it can pay to increase
703 this value, at the expense of carrying around more memory than
704 the program needs.
705
706*/
707
708
709#ifndef DEFAULT_MMAP_THRESHOLD
710#define DEFAULT_MMAP_THRESHOLD (128 * 1024)
711#endif
712
713/*
714
715 M_MMAP_THRESHOLD is the request size threshold for using mmap()
716 to service a request. Requests of at least this size that cannot
717 be allocated using already-existing space will be serviced via mmap.
718 (If enough normal freed space already exists it is used instead.)
719
720 Using mmap segregates relatively large chunks of memory so that
721 they can be individually obtained and released from the host
722 system. A request serviced through mmap is never reused by any
723 other request (at least not directly; the system may just so
724 happen to remap successive requests to the same locations).
725
726 Segregating space in this way has the benefit that mmapped space
727 can ALWAYS be individually released back to the system, which
728 helps keep the system level memory demands of a long-lived
729 program low. Mapped memory can never become `locked' between
730 other chunks, as can happen with normally allocated chunks, which
731 menas that even trimming via malloc_trim would not release them.
732
733 However, it has the disadvantages that:
734
8bde7f77
WD
735 1. The space cannot be reclaimed, consolidated, and then
736 used to service later requests, as happens with normal chunks.
737 2. It can lead to more wastage because of mmap page alignment
738 requirements
739 3. It causes malloc performance to be more dependent on host
740 system memory management support routines which may vary in
741 implementation quality and may impose arbitrary
742 limitations. Generally, servicing a request via normal
743 malloc steps is faster than going through a system's mmap.
217c9dad
WD
744
745 All together, these considerations should lead you to use mmap
746 only for relatively large requests.
747
748
749*/
750
751
217c9dad
WD
752#ifndef DEFAULT_MMAP_MAX
753#if HAVE_MMAP
754#define DEFAULT_MMAP_MAX (64)
755#else
756#define DEFAULT_MMAP_MAX (0)
757#endif
758#endif
759
760/*
761 M_MMAP_MAX is the maximum number of requests to simultaneously
762 service using mmap. This parameter exists because:
763
8bde7f77
WD
764 1. Some systems have a limited number of internal tables for
765 use by mmap.
766 2. In most systems, overreliance on mmap can degrade overall
767 performance.
768 3. If a program allocates many large regions, it is probably
769 better off using normal sbrk-based allocation routines that
770 can reclaim and reallocate normal heap memory. Using a
771 small value allows transition into this mode after the
772 first few allocations.
217c9dad
WD
773
774 Setting to 0 disables all use of mmap. If HAVE_MMAP is not set,
775 the default value is 0, and attempts to set it to non-zero values
776 in mallopt will fail.
777*/
778
779
217c9dad
WD
780/*
781 USE_DL_PREFIX will prefix all public routines with the string 'dl'.
782 Useful to quickly avoid procedure declaration conflicts and linker
783 symbol conflicts with existing memory allocation routines.
784
785*/
786
787/* #define USE_DL_PREFIX */
788
789
217c9dad
WD
790/*
791
792 Special defines for linux libc
793
794 Except when compiled using these special defines for Linux libc
795 using weak aliases, this malloc is NOT designed to work in
796 multithreaded applications. No semaphores or other concurrency
797 control are provided to ensure that multiple malloc or free calls
798 don't run at the same time, which could be disasterous. A single
799 semaphore could be used across malloc, realloc, and free (which is
800 essentially the effect of the linux weak alias approach). It would
801 be hard to obtain finer granularity.
802
803*/
804
805
806#ifdef INTERNAL_LINUX_C_LIB
807
808#if __STD_C
809
810Void_t * __default_morecore_init (ptrdiff_t);
811Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init;
812
813#else
814
815Void_t * __default_morecore_init ();
816Void_t *(*__morecore)() = __default_morecore_init;
817
818#endif
819
820#define MORECORE (*__morecore)
821#define MORECORE_FAILURE 0
822#define MORECORE_CLEARS 1
823
824#else /* INTERNAL_LINUX_C_LIB */
825
826#if __STD_C
827extern Void_t* sbrk(ptrdiff_t);
828#else
829extern Void_t* sbrk();
830#endif
831
832#ifndef MORECORE
833#define MORECORE sbrk
834#endif
835
836#ifndef MORECORE_FAILURE
837#define MORECORE_FAILURE -1
838#endif
839
840#ifndef MORECORE_CLEARS
841#define MORECORE_CLEARS 1
842#endif
843
844#endif /* INTERNAL_LINUX_C_LIB */
845
846#if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__)
847
848#define cALLOc __libc_calloc
849#define fREe __libc_free
850#define mALLOc __libc_malloc
851#define mEMALIGn __libc_memalign
852#define rEALLOc __libc_realloc
853#define vALLOc __libc_valloc
854#define pvALLOc __libc_pvalloc
855#define mALLINFo __libc_mallinfo
856#define mALLOPt __libc_mallopt
857
858#pragma weak calloc = __libc_calloc
859#pragma weak free = __libc_free
860#pragma weak cfree = __libc_free
861#pragma weak malloc = __libc_malloc
862#pragma weak memalign = __libc_memalign
863#pragma weak realloc = __libc_realloc
864#pragma weak valloc = __libc_valloc
865#pragma weak pvalloc = __libc_pvalloc
866#pragma weak mallinfo = __libc_mallinfo
867#pragma weak mallopt = __libc_mallopt
868
869#else
870
871#ifdef USE_DL_PREFIX
872#define cALLOc dlcalloc
873#define fREe dlfree
874#define mALLOc dlmalloc
875#define mEMALIGn dlmemalign
876#define rEALLOc dlrealloc
877#define vALLOc dlvalloc
878#define pvALLOc dlpvalloc
879#define mALLINFo dlmallinfo
880#define mALLOPt dlmallopt
881#else /* USE_DL_PREFIX */
882#define cALLOc calloc
883#define fREe free
884#define mALLOc malloc
885#define mEMALIGn memalign
886#define rEALLOc realloc
887#define vALLOc valloc
888#define pvALLOc pvalloc
889#define mALLINFo mallinfo
890#define mALLOPt mallopt
891#endif /* USE_DL_PREFIX */
892
893#endif
894
895/* Public routines */
896
897#if __STD_C
898
899Void_t* mALLOc(size_t);
900void fREe(Void_t*);
901Void_t* rEALLOc(Void_t*, size_t);
902Void_t* mEMALIGn(size_t, size_t);
903Void_t* vALLOc(size_t);
904Void_t* pvALLOc(size_t);
905Void_t* cALLOc(size_t, size_t);
906void cfree(Void_t*);
907int malloc_trim(size_t);
908size_t malloc_usable_size(Void_t*);
909void malloc_stats();
910int mALLOPt(int, int);
911struct mallinfo mALLINFo(void);
912#else
913Void_t* mALLOc();
914void fREe();
915Void_t* rEALLOc();
916Void_t* mEMALIGn();
917Void_t* vALLOc();
918Void_t* pvALLOc();
919Void_t* cALLOc();
920void cfree();
921int malloc_trim();
922size_t malloc_usable_size();
923void malloc_stats();
924int mALLOPt();
925struct mallinfo mALLINFo();
926#endif
927
928
929#ifdef __cplusplus
930}; /* end of extern "C" */
931#endif
932
933/* ---------- To make a malloc.h, end cutting here ------------ */
ea882baf 934#endif /* 0 */ /* Moved to malloc.h */
217c9dad
WD
935
936#include <malloc.h>
d59476b6
SG
937#include <asm/io.h>
938
ea882baf 939#ifdef DEBUG
217c9dad
WD
940#if __STD_C
941static void malloc_update_mallinfo (void);
942void malloc_stats (void);
943#else
944static void malloc_update_mallinfo ();
945void malloc_stats();
946#endif
ea882baf 947#endif /* DEBUG */
217c9dad 948
d87080b7
WD
949DECLARE_GLOBAL_DATA_PTR;
950
217c9dad
WD
951/*
952 Emulation of sbrk for WIN32
953 All code within the ifdef WIN32 is untested by me.
954
955 Thanks to Martin Fong and others for supplying this.
956*/
957
958
959#ifdef WIN32
960
961#define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
962~(malloc_getpagesize-1))
963#define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))
964
965/* resrve 64MB to insure large contiguous space */
966#define RESERVED_SIZE (1024*1024*64)
967#define NEXT_SIZE (2048*1024)
968#define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
969
970struct GmListElement;
971typedef struct GmListElement GmListElement;
972
973struct GmListElement
974{
975 GmListElement* next;
976 void* base;
977};
978
979static GmListElement* head = 0;
980static unsigned int gNextAddress = 0;
981static unsigned int gAddressBase = 0;
982static unsigned int gAllocatedSize = 0;
983
984static
985GmListElement* makeGmListElement (void* bas)
986{
987 GmListElement* this;
988 this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
989 assert (this);
990 if (this)
991 {
992 this->base = bas;
993 this->next = head;
994 head = this;
995 }
996 return this;
997}
998
999void gcleanup ()
1000{
1001 BOOL rval;
1002 assert ( (head == NULL) || (head->base == (void*)gAddressBase));
1003 if (gAddressBase && (gNextAddress - gAddressBase))
1004 {
1005 rval = VirtualFree ((void*)gAddressBase,
1006 gNextAddress - gAddressBase,
1007 MEM_DECOMMIT);
8bde7f77 1008 assert (rval);
217c9dad
WD
1009 }
1010 while (head)
1011 {
1012 GmListElement* next = head->next;
1013 rval = VirtualFree (head->base, 0, MEM_RELEASE);
1014 assert (rval);
1015 LocalFree (head);
1016 head = next;
1017 }
1018}
1019
1020static
1021void* findRegion (void* start_address, unsigned long size)
1022{
1023 MEMORY_BASIC_INFORMATION info;
1024 if (size >= TOP_MEMORY) return NULL;
1025
1026 while ((unsigned long)start_address + size < TOP_MEMORY)
1027 {
1028 VirtualQuery (start_address, &info, sizeof (info));
1029 if ((info.State == MEM_FREE) && (info.RegionSize >= size))
1030 return start_address;
1031 else
1032 {
8bde7f77
WD
1033 /* Requested region is not available so see if the */
1034 /* next region is available. Set 'start_address' */
1035 /* to the next region and call 'VirtualQuery()' */
1036 /* again. */
217c9dad
WD
1037
1038 start_address = (char*)info.BaseAddress + info.RegionSize;
1039
8bde7f77
WD
1040 /* Make sure we start looking for the next region */
1041 /* on the *next* 64K boundary. Otherwise, even if */
1042 /* the new region is free according to */
1043 /* 'VirtualQuery()', the subsequent call to */
1044 /* 'VirtualAlloc()' (which follows the call to */
1045 /* this routine in 'wsbrk()') will round *down* */
1046 /* the requested address to a 64K boundary which */
1047 /* we already know is an address in the */
1048 /* unavailable region. Thus, the subsequent call */
1049 /* to 'VirtualAlloc()' will fail and bring us back */
1050 /* here, causing us to go into an infinite loop. */
217c9dad
WD
1051
1052 start_address =
1053 (void *) AlignPage64K((unsigned long) start_address);
1054 }
1055 }
1056 return NULL;
1057
1058}
1059
1060
1061void* wsbrk (long size)
1062{
1063 void* tmp;
1064 if (size > 0)
1065 {
1066 if (gAddressBase == 0)
1067 {
1068 gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
1069 gNextAddress = gAddressBase =
1070 (unsigned int)VirtualAlloc (NULL, gAllocatedSize,
1071 MEM_RESERVE, PAGE_NOACCESS);
1072 } else if (AlignPage (gNextAddress + size) > (gAddressBase +
1073gAllocatedSize))
1074 {
1075 long new_size = max (NEXT_SIZE, AlignPage (size));
1076 void* new_address = (void*)(gAddressBase+gAllocatedSize);
1077 do
1078 {
1079 new_address = findRegion (new_address, new_size);
1080
1081 if (new_address == 0)
1082 return (void*)-1;
1083
1084 gAddressBase = gNextAddress =
1085 (unsigned int)VirtualAlloc (new_address, new_size,
1086 MEM_RESERVE, PAGE_NOACCESS);
8bde7f77
WD
1087 /* repeat in case of race condition */
1088 /* The region that we found has been snagged */
1089 /* by another thread */
217c9dad
WD
1090 }
1091 while (gAddressBase == 0);
1092
1093 assert (new_address == (void*)gAddressBase);
1094
1095 gAllocatedSize = new_size;
1096
1097 if (!makeGmListElement ((void*)gAddressBase))
1098 return (void*)-1;
1099 }
1100 if ((size + gNextAddress) > AlignPage (gNextAddress))
1101 {
1102 void* res;
1103 res = VirtualAlloc ((void*)AlignPage (gNextAddress),
1104 (size + gNextAddress -
1105 AlignPage (gNextAddress)),
1106 MEM_COMMIT, PAGE_READWRITE);
1107 if (res == 0)
1108 return (void*)-1;
1109 }
1110 tmp = (void*)gNextAddress;
1111 gNextAddress = (unsigned int)tmp + size;
1112 return tmp;
1113 }
1114 else if (size < 0)
1115 {
1116 unsigned int alignedGoal = AlignPage (gNextAddress + size);
1117 /* Trim by releasing the virtual memory */
1118 if (alignedGoal >= gAddressBase)
1119 {
1120 VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
1121 MEM_DECOMMIT);
1122 gNextAddress = gNextAddress + size;
1123 return (void*)gNextAddress;
1124 }
1125 else
1126 {
1127 VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
1128 MEM_DECOMMIT);
1129 gNextAddress = gAddressBase;
1130 return (void*)-1;
1131 }
1132 }
1133 else
1134 {
1135 return (void*)gNextAddress;
1136 }
1137}
1138
1139#endif
1140
d93041a4 1141
217c9dad
WD
1142
1143/*
1144 Type declarations
1145*/
1146
1147
1148struct malloc_chunk
1149{
1150 INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
1151 INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */
1152 struct malloc_chunk* fd; /* double links -- used only if free. */
1153 struct malloc_chunk* bk;
1ba91ba2 1154} __attribute__((__may_alias__)) ;
217c9dad
WD
1155
1156typedef struct malloc_chunk* mchunkptr;
1157
1158/*
1159
1160 malloc_chunk details:
1161
1162 (The following includes lightly edited explanations by Colin Plumb.)
1163
1164 Chunks of memory are maintained using a `boundary tag' method as
1165 described in e.g., Knuth or Standish. (See the paper by Paul
1166 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1167 survey of such techniques.) Sizes of free chunks are stored both
1168 in the front of each chunk and at the end. This makes
1169 consolidating fragmented chunks into bigger chunks very fast. The
1170 size fields also hold bits representing whether chunks are free or
1171 in use.
1172
1173 An allocated chunk looks like this:
1174
1175
1176 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
8bde7f77
WD
1177 | Size of previous chunk, if allocated | |
1178 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1179 | Size of chunk, in bytes |P|
217c9dad 1180 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
8bde7f77
WD
1181 | User data starts here... .
1182 . .
1183 . (malloc_usable_space() bytes) .
1184 . |
217c9dad 1185nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
8bde7f77
WD
1186 | Size of chunk |
1187 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
217c9dad
WD
1188
1189
1190 Where "chunk" is the front of the chunk for the purpose of most of
1191 the malloc code, but "mem" is the pointer that is returned to the
1192 user. "Nextchunk" is the beginning of the next contiguous chunk.
1193
1194 Chunks always begin on even word boundries, so the mem portion
1195 (which is returned to the user) is also on an even word boundary, and
1196 thus double-word aligned.
1197
1198 Free chunks are stored in circular doubly-linked lists, and look like this:
1199
1200 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
8bde7f77
WD
1201 | Size of previous chunk |
1202 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
217c9dad
WD
1203 `head:' | Size of chunk, in bytes |P|
1204 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
8bde7f77
WD
1205 | Forward pointer to next chunk in list |
1206 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1207 | Back pointer to previous chunk in list |
1208 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1209 | Unused space (may be 0 bytes long) .
1210 . .
1211 . |
217c9dad
WD
1212nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1213 `foot:' | Size of chunk, in bytes |
8bde7f77 1214 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
217c9dad
WD
1215
1216 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1217 chunk size (which is always a multiple of two words), is an in-use
1218 bit for the *previous* chunk. If that bit is *clear*, then the
1219 word before the current chunk size contains the previous chunk
1220 size, and can be used to find the front of the previous chunk.
1221 (The very first chunk allocated always has this bit set,
1222 preventing access to non-existent (or non-owned) memory.)
1223
1224 Note that the `foot' of the current chunk is actually represented
1225 as the prev_size of the NEXT chunk. (This makes it easier to
1226 deal with alignments etc).
1227
1228 The two exceptions to all this are
1229
1230 1. The special chunk `top', which doesn't bother using the
8bde7f77
WD
1231 trailing size field since there is no
1232 next contiguous chunk that would have to index off it. (After
1233 initialization, `top' is forced to always exist. If it would
1234 become less than MINSIZE bytes long, it is replenished via
1235 malloc_extend_top.)
217c9dad
WD
1236
1237 2. Chunks allocated via mmap, which have the second-lowest-order
8bde7f77
WD
1238 bit (IS_MMAPPED) set in their size fields. Because they are
1239 never merged or traversed from any other chunk, they have no
1240 foot size or inuse information.
217c9dad
WD
1241
1242 Available chunks are kept in any of several places (all declared below):
1243
1244 * `av': An array of chunks serving as bin headers for consolidated
1245 chunks. Each bin is doubly linked. The bins are approximately
1246 proportionally (log) spaced. There are a lot of these bins
1247 (128). This may look excessive, but works very well in
1248 practice. All procedures maintain the invariant that no
1249 consolidated chunk physically borders another one. Chunks in
1250 bins are kept in size order, with ties going to the
1251 approximately least recently used chunk.
1252
1253 The chunks in each bin are maintained in decreasing sorted order by
1254 size. This is irrelevant for the small bins, which all contain
1255 the same-sized chunks, but facilitates best-fit allocation for
1256 larger chunks. (These lists are just sequential. Keeping them in
1257 order almost never requires enough traversal to warrant using
1258 fancier ordered data structures.) Chunks of the same size are
1259 linked with the most recently freed at the front, and allocations
1260 are taken from the back. This results in LRU or FIFO allocation
1261 order, which tends to give each chunk an equal opportunity to be
1262 consolidated with adjacent freed chunks, resulting in larger free
1263 chunks and less fragmentation.
1264
1265 * `top': The top-most available chunk (i.e., the one bordering the
1266 end of available memory) is treated specially. It is never
1267 included in any bin, is used only if no other chunk is
1268 available, and is released back to the system if it is very
1269 large (see M_TRIM_THRESHOLD).
1270
1271 * `last_remainder': A bin holding only the remainder of the
1272 most recently split (non-top) chunk. This bin is checked
1273 before other non-fitting chunks, so as to provide better
1274 locality for runs of sequentially allocated chunks.
1275
1276 * Implicitly, through the host system's memory mapping tables.
1277 If supported, requests greater than a threshold are usually
1278 serviced via calls to mmap, and then later released via munmap.
1279
1280*/
d93041a4 1281
217c9dad
WD
1282/* sizes, alignments */
1283
1284#define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
1285#define MALLOC_ALIGNMENT (SIZE_SZ + SIZE_SZ)
1286#define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
1287#define MINSIZE (sizeof(struct malloc_chunk))
1288
1289/* conversion from malloc headers to user pointers, and back */
1290
1291#define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ))
1292#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
1293
1294/* pad request bytes into a usable size */
1295
1296#define request2size(req) \
1297 (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
1298 (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
1299 (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
1300
1301/* Check if m has acceptable alignment */
1302
1303#define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
1304
1305
d93041a4 1306
217c9dad
WD
1307
1308/*
1309 Physical chunk operations
1310*/
1311
1312
1313/* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1314
1315#define PREV_INUSE 0x1
1316
1317/* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1318
1319#define IS_MMAPPED 0x2
1320
1321/* Bits to mask off when extracting size */
1322
1323#define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
1324
1325
1326/* Ptr to next physical malloc_chunk. */
1327
1328#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
1329
1330/* Ptr to previous physical malloc_chunk */
1331
1332#define prev_chunk(p)\
1333 ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
1334
1335
1336/* Treat space at ptr + offset as a chunk */
1337
1338#define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
1339
1340
d93041a4 1341
217c9dad
WD
1342
1343/*
1344 Dealing with use bits
1345*/
1346
1347/* extract p's inuse bit */
1348
1349#define inuse(p)\
1350((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
1351
1352/* extract inuse bit of previous chunk */
1353
1354#define prev_inuse(p) ((p)->size & PREV_INUSE)
1355
1356/* check for mmap()'ed chunk */
1357
1358#define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
1359
1360/* set/clear chunk as in use without otherwise disturbing */
1361
1362#define set_inuse(p)\
1363((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
1364
1365#define clear_inuse(p)\
1366((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
1367
1368/* check/set/clear inuse bits in known places */
1369
1370#define inuse_bit_at_offset(p, s)\
1371 (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
1372
1373#define set_inuse_bit_at_offset(p, s)\
1374 (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
1375
1376#define clear_inuse_bit_at_offset(p, s)\
1377 (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
1378
1379
d93041a4 1380
217c9dad
WD
1381
1382/*
1383 Dealing with size fields
1384*/
1385
1386/* Get size, ignoring use bits */
1387
1388#define chunksize(p) ((p)->size & ~(SIZE_BITS))
1389
1390/* Set size at head, without disturbing its use bit */
1391
1392#define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s)))
1393
1394/* Set size/use ignoring previous bits in header */
1395
1396#define set_head(p, s) ((p)->size = (s))
1397
1398/* Set size at footer (only when chunk is not in use) */
1399
1400#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
1401
1402
d93041a4 1403
217c9dad
WD
1404
1405
1406/*
1407 Bins
1408
1409 The bins, `av_' are an array of pairs of pointers serving as the
1410 heads of (initially empty) doubly-linked lists of chunks, laid out
1411 in a way so that each pair can be treated as if it were in a
1412 malloc_chunk. (This way, the fd/bk offsets for linking bin heads
1413 and chunks are the same).
1414
1415 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
1416 8 bytes apart. Larger bins are approximately logarithmically
1417 spaced. (See the table below.) The `av_' array is never mentioned
1418 directly in the code, but instead via bin access macros.
1419
1420 Bin layout:
1421
1422 64 bins of size 8
1423 32 bins of size 64
1424 16 bins of size 512
1425 8 bins of size 4096
1426 4 bins of size 32768
1427 2 bins of size 262144
1428 1 bin of size what's left
1429
1430 There is actually a little bit of slop in the numbers in bin_index
1431 for the sake of speed. This makes no difference elsewhere.
1432
1433 The special chunks `top' and `last_remainder' get their own bins,
1434 (this is implemented via yet more trickery with the av_ array),
1435 although `top' is never properly linked to its bin since it is
1436 always handled specially.
1437
1438*/
1439
1440#define NAV 128 /* number of bins */
1441
1442typedef struct malloc_chunk* mbinptr;
1443
1444/* access macros */
1445
1446#define bin_at(i) ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
1447#define next_bin(b) ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
1448#define prev_bin(b) ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
1449
1450/*
1451 The first 2 bins are never indexed. The corresponding av_ cells are instead
1452 used for bookkeeping. This is not to save space, but to simplify
1453 indexing, maintain locality, and avoid some initialization tests.
1454*/
1455
f2302d44 1456#define top (av_[2]) /* The topmost chunk */
217c9dad
WD
1457#define last_remainder (bin_at(1)) /* remainder from last split */
1458
1459
1460/*
1461 Because top initially points to its own bin with initial
1462 zero size, thus forcing extension on the first malloc request,
1463 we avoid having any special code in malloc to check whether
1464 it even exists yet. But we still need to in malloc_extend_top.
1465*/
1466
1467#define initial_top ((mchunkptr)(bin_at(0)))
1468
1469/* Helper macro to initialize bins */
1470
1471#define IAV(i) bin_at(i), bin_at(i)
1472
1473static mbinptr av_[NAV * 2 + 2] = {
199adb60 1474 NULL, NULL,
217c9dad
WD
1475 IAV(0), IAV(1), IAV(2), IAV(3), IAV(4), IAV(5), IAV(6), IAV(7),
1476 IAV(8), IAV(9), IAV(10), IAV(11), IAV(12), IAV(13), IAV(14), IAV(15),
1477 IAV(16), IAV(17), IAV(18), IAV(19), IAV(20), IAV(21), IAV(22), IAV(23),
1478 IAV(24), IAV(25), IAV(26), IAV(27), IAV(28), IAV(29), IAV(30), IAV(31),
1479 IAV(32), IAV(33), IAV(34), IAV(35), IAV(36), IAV(37), IAV(38), IAV(39),
1480 IAV(40), IAV(41), IAV(42), IAV(43), IAV(44), IAV(45), IAV(46), IAV(47),
1481 IAV(48), IAV(49), IAV(50), IAV(51), IAV(52), IAV(53), IAV(54), IAV(55),
1482 IAV(56), IAV(57), IAV(58), IAV(59), IAV(60), IAV(61), IAV(62), IAV(63),
1483 IAV(64), IAV(65), IAV(66), IAV(67), IAV(68), IAV(69), IAV(70), IAV(71),
1484 IAV(72), IAV(73), IAV(74), IAV(75), IAV(76), IAV(77), IAV(78), IAV(79),
1485 IAV(80), IAV(81), IAV(82), IAV(83), IAV(84), IAV(85), IAV(86), IAV(87),
1486 IAV(88), IAV(89), IAV(90), IAV(91), IAV(92), IAV(93), IAV(94), IAV(95),
1487 IAV(96), IAV(97), IAV(98), IAV(99), IAV(100), IAV(101), IAV(102), IAV(103),
1488 IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
1489 IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
1490 IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
1491};
1492
2e5167cc 1493#ifdef CONFIG_NEEDS_MANUAL_RELOC
7b395232 1494static void malloc_bin_reloc(void)
217c9dad 1495{
93691842
SG
1496 mbinptr *p = &av_[2];
1497 size_t i;
1498
1499 for (i = 2; i < ARRAY_SIZE(av_); ++i, ++p)
1500 *p = (mbinptr)((ulong)*p + gd->reloc_off);
217c9dad 1501}
7b395232
GJ
1502#else
1503static inline void malloc_bin_reloc(void) {}
521af04d 1504#endif
5e93bd1c
PT
1505
1506ulong mem_malloc_start = 0;
1507ulong mem_malloc_end = 0;
1508ulong mem_malloc_brk = 0;
1509
1510void *sbrk(ptrdiff_t increment)
1511{
1512 ulong old = mem_malloc_brk;
1513 ulong new = old + increment;
1514
6163f5b4
KG
1515 /*
1516 * if we are giving memory back make sure we clear it out since
1517 * we set MORECORE_CLEARS to 1
1518 */
1519 if (increment < 0)
1520 memset((void *)new, 0, -increment);
1521
5e93bd1c 1522 if ((new < mem_malloc_start) || (new > mem_malloc_end))
ae30b8c2 1523 return (void *)MORECORE_FAILURE;
5e93bd1c
PT
1524
1525 mem_malloc_brk = new;
1526
1527 return (void *)old;
1528}
217c9dad 1529
d4e8ada0
PT
1530void mem_malloc_init(ulong start, ulong size)
1531{
1532 mem_malloc_start = start;
1533 mem_malloc_end = start + size;
1534 mem_malloc_brk = start;
1535
868de51d
TR
1536 debug("using memory %#lx-%#lx for malloc()\n", mem_malloc_start,
1537 mem_malloc_end);
1538
d4e8ada0 1539 memset((void *)mem_malloc_start, 0, size);
7b395232
GJ
1540
1541 malloc_bin_reloc();
d4e8ada0 1542}
d4e8ada0 1543
217c9dad
WD
1544/* field-extraction macros */
1545
1546#define first(b) ((b)->fd)
1547#define last(b) ((b)->bk)
1548
1549/*
1550 Indexing into bins
1551*/
1552
1553#define bin_index(sz) \
1554(((((unsigned long)(sz)) >> 9) == 0) ? (((unsigned long)(sz)) >> 3): \
1555 ((((unsigned long)(sz)) >> 9) <= 4) ? 56 + (((unsigned long)(sz)) >> 6): \
1556 ((((unsigned long)(sz)) >> 9) <= 20) ? 91 + (((unsigned long)(sz)) >> 9): \
1557 ((((unsigned long)(sz)) >> 9) <= 84) ? 110 + (((unsigned long)(sz)) >> 12): \
1558 ((((unsigned long)(sz)) >> 9) <= 340) ? 119 + (((unsigned long)(sz)) >> 15): \
1559 ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
8bde7f77 1560 126)
217c9dad
WD
1561/*
1562 bins for chunks < 512 are all spaced 8 bytes apart, and hold
1563 identically sized chunks. This is exploited in malloc.
1564*/
1565
1566#define MAX_SMALLBIN 63
1567#define MAX_SMALLBIN_SIZE 512
1568#define SMALLBIN_WIDTH 8
1569
1570#define smallbin_index(sz) (((unsigned long)(sz)) >> 3)
1571
1572/*
1573 Requests are `small' if both the corresponding and the next bin are small
1574*/
1575
1576#define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
1577
d93041a4 1578
217c9dad
WD
1579
1580/*
1581 To help compensate for the large number of bins, a one-level index
1582 structure is used for bin-by-bin searching. `binblocks' is a
1583 one-word bitvector recording whether groups of BINBLOCKWIDTH bins
1584 have any (possibly) non-empty bins, so they can be skipped over
1585 all at once during during traversals. The bits are NOT always
1586 cleared as soon as all bins in a block are empty, but instead only
1587 when all are noticed to be empty during traversal in malloc.
1588*/
1589
1590#define BINBLOCKWIDTH 4 /* bins per block */
1591
f2302d44
SR
1592#define binblocks_r ((INTERNAL_SIZE_T)av_[1]) /* bitvector of nonempty blocks */
1593#define binblocks_w (av_[1])
217c9dad
WD
1594
1595/* bin<->block macros */
1596
1597#define idx2binblock(ix) ((unsigned)1 << (ix / BINBLOCKWIDTH))
f2302d44
SR
1598#define mark_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r | idx2binblock(ii)))
1599#define clear_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r & ~(idx2binblock(ii))))
217c9dad
WD
1600
1601
d93041a4 1602
217c9dad
WD
1603
1604
1605/* Other static bookkeeping data */
1606
1607/* variables holding tunable values */
1608
1609static unsigned long trim_threshold = DEFAULT_TRIM_THRESHOLD;
1610static unsigned long top_pad = DEFAULT_TOP_PAD;
1611static unsigned int n_mmaps_max = DEFAULT_MMAP_MAX;
1612static unsigned long mmap_threshold = DEFAULT_MMAP_THRESHOLD;
1613
1614/* The first value returned from sbrk */
1615static char* sbrk_base = (char*)(-1);
1616
1617/* The maximum memory obtained from system via sbrk */
1618static unsigned long max_sbrked_mem = 0;
1619
1620/* The maximum via either sbrk or mmap */
1621static unsigned long max_total_mem = 0;
1622
1623/* internal working copy of mallinfo */
1624static struct mallinfo current_mallinfo = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
1625
1626/* The total memory obtained from system via sbrk */
1627#define sbrked_mem (current_mallinfo.arena)
1628
1629/* Tracking mmaps */
1630
ea882baf 1631#ifdef DEBUG
217c9dad 1632static unsigned int n_mmaps = 0;
ea882baf 1633#endif /* DEBUG */
217c9dad
WD
1634static unsigned long mmapped_mem = 0;
1635#if HAVE_MMAP
1636static unsigned int max_n_mmaps = 0;
1637static unsigned long max_mmapped_mem = 0;
1638#endif
1639
d93041a4 1640
217c9dad
WD
1641
1642/*
1643 Debugging support
1644*/
1645
1646#ifdef DEBUG
1647
1648
1649/*
1650 These routines make a number of assertions about the states
1651 of data structures that should be true at all times. If any
1652 are not true, it's very likely that a user program has somehow
1653 trashed memory. (It's also possible that there is a coding error
1654 in malloc. In which case, please report it!)
1655*/
1656
1657#if __STD_C
1658static void do_check_chunk(mchunkptr p)
1659#else
1660static void do_check_chunk(p) mchunkptr p;
1661#endif
1662{
217c9dad 1663 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
217c9dad
WD
1664
1665 /* No checkable chunk is mmapped */
1666 assert(!chunk_is_mmapped(p));
1667
1668 /* Check for legal address ... */
1669 assert((char*)p >= sbrk_base);
1670 if (p != top)
1671 assert((char*)p + sz <= (char*)top);
1672 else
1673 assert((char*)p + sz <= sbrk_base + sbrked_mem);
1674
1675}
1676
1677
1678#if __STD_C
1679static void do_check_free_chunk(mchunkptr p)
1680#else
1681static void do_check_free_chunk(p) mchunkptr p;
1682#endif
1683{
1684 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
217c9dad 1685 mchunkptr next = chunk_at_offset(p, sz);
217c9dad
WD
1686
1687 do_check_chunk(p);
1688
1689 /* Check whether it claims to be free ... */
1690 assert(!inuse(p));
1691
1692 /* Unless a special marker, must have OK fields */
1693 if ((long)sz >= (long)MINSIZE)
1694 {
1695 assert((sz & MALLOC_ALIGN_MASK) == 0);
1696 assert(aligned_OK(chunk2mem(p)));
1697 /* ... matching footer field */
1698 assert(next->prev_size == sz);
1699 /* ... and is fully consolidated */
1700 assert(prev_inuse(p));
1701 assert (next == top || inuse(next));
1702
1703 /* ... and has minimally sane links */
1704 assert(p->fd->bk == p);
1705 assert(p->bk->fd == p);
1706 }
1707 else /* markers are always of size SIZE_SZ */
1708 assert(sz == SIZE_SZ);
1709}
1710
1711#if __STD_C
1712static void do_check_inuse_chunk(mchunkptr p)
1713#else
1714static void do_check_inuse_chunk(p) mchunkptr p;
1715#endif
1716{
1717 mchunkptr next = next_chunk(p);
1718 do_check_chunk(p);
1719
1720 /* Check whether it claims to be in use ... */
1721 assert(inuse(p));
1722
1723 /* ... and is surrounded by OK chunks.
1724 Since more things can be checked with free chunks than inuse ones,
1725 if an inuse chunk borders them and debug is on, it's worth doing them.
1726 */
1727 if (!prev_inuse(p))
1728 {
1729 mchunkptr prv = prev_chunk(p);
1730 assert(next_chunk(prv) == p);
1731 do_check_free_chunk(prv);
1732 }
1733 if (next == top)
1734 {
1735 assert(prev_inuse(next));
1736 assert(chunksize(next) >= MINSIZE);
1737 }
1738 else if (!inuse(next))
1739 do_check_free_chunk(next);
1740
1741}
1742
1743#if __STD_C
1744static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
1745#else
1746static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
1747#endif
1748{
217c9dad
WD
1749 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1750 long room = sz - s;
217c9dad
WD
1751
1752 do_check_inuse_chunk(p);
1753
1754 /* Legal size ... */
1755 assert((long)sz >= (long)MINSIZE);
1756 assert((sz & MALLOC_ALIGN_MASK) == 0);
1757 assert(room >= 0);
1758 assert(room < (long)MINSIZE);
1759
1760 /* ... and alignment */
1761 assert(aligned_OK(chunk2mem(p)));
1762
1763
1764 /* ... and was allocated at front of an available chunk */
1765 assert(prev_inuse(p));
1766
1767}
1768
1769
1770#define check_free_chunk(P) do_check_free_chunk(P)
1771#define check_inuse_chunk(P) do_check_inuse_chunk(P)
1772#define check_chunk(P) do_check_chunk(P)
1773#define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
1774#else
1775#define check_free_chunk(P)
1776#define check_inuse_chunk(P)
1777#define check_chunk(P)
1778#define check_malloced_chunk(P,N)
1779#endif
1780
d93041a4 1781
217c9dad
WD
1782
1783/*
1784 Macro-based internal utilities
1785*/
1786
1787
1788/*
1789 Linking chunks in bin lists.
1790 Call these only with variables, not arbitrary expressions, as arguments.
1791*/
1792
1793/*
1794 Place chunk p of size s in its bin, in size order,
1795 putting it ahead of others of same size.
1796*/
1797
1798
1799#define frontlink(P, S, IDX, BK, FD) \
1800{ \
1801 if (S < MAX_SMALLBIN_SIZE) \
1802 { \
1803 IDX = smallbin_index(S); \
1804 mark_binblock(IDX); \
1805 BK = bin_at(IDX); \
1806 FD = BK->fd; \
1807 P->bk = BK; \
1808 P->fd = FD; \
1809 FD->bk = BK->fd = P; \
1810 } \
1811 else \
1812 { \
1813 IDX = bin_index(S); \
1814 BK = bin_at(IDX); \
1815 FD = BK->fd; \
1816 if (FD == BK) mark_binblock(IDX); \
1817 else \
1818 { \
1819 while (FD != BK && S < chunksize(FD)) FD = FD->fd; \
1820 BK = FD->bk; \
1821 } \
1822 P->bk = BK; \
1823 P->fd = FD; \
1824 FD->bk = BK->fd = P; \
1825 } \
1826}
1827
1828
1829/* take a chunk off a list */
1830
1831#define unlink(P, BK, FD) \
1832{ \
1833 BK = P->bk; \
1834 FD = P->fd; \
1835 FD->bk = BK; \
1836 BK->fd = FD; \
1837} \
1838
1839/* Place p as the last remainder */
1840
1841#define link_last_remainder(P) \
1842{ \
1843 last_remainder->fd = last_remainder->bk = P; \
1844 P->fd = P->bk = last_remainder; \
1845}
1846
1847/* Clear the last_remainder bin */
1848
1849#define clear_last_remainder \
1850 (last_remainder->fd = last_remainder->bk = last_remainder)
1851
1852
d93041a4 1853
217c9dad
WD
1854
1855
1856/* Routines dealing with mmap(). */
1857
1858#if HAVE_MMAP
1859
1860#if __STD_C
1861static mchunkptr mmap_chunk(size_t size)
1862#else
1863static mchunkptr mmap_chunk(size) size_t size;
1864#endif
1865{
1866 size_t page_mask = malloc_getpagesize - 1;
1867 mchunkptr p;
1868
1869#ifndef MAP_ANONYMOUS
1870 static int fd = -1;
1871#endif
1872
1873 if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
1874
1875 /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
1876 * there is no following chunk whose prev_size field could be used.
1877 */
1878 size = (size + SIZE_SZ + page_mask) & ~page_mask;
1879
1880#ifdef MAP_ANONYMOUS
1881 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
1882 MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
1883#else /* !MAP_ANONYMOUS */
1884 if (fd < 0)
1885 {
1886 fd = open("/dev/zero", O_RDWR);
1887 if(fd < 0) return 0;
1888 }
1889 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
1890#endif
1891
1892 if(p == (mchunkptr)-1) return 0;
1893
1894 n_mmaps++;
1895 if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
1896
1897 /* We demand that eight bytes into a page must be 8-byte aligned. */
1898 assert(aligned_OK(chunk2mem(p)));
1899
1900 /* The offset to the start of the mmapped region is stored
1901 * in the prev_size field of the chunk; normally it is zero,
1902 * but that can be changed in memalign().
1903 */
1904 p->prev_size = 0;
1905 set_head(p, size|IS_MMAPPED);
1906
1907 mmapped_mem += size;
1908 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1909 max_mmapped_mem = mmapped_mem;
1910 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1911 max_total_mem = mmapped_mem + sbrked_mem;
1912 return p;
1913}
1914
1915#if __STD_C
1916static void munmap_chunk(mchunkptr p)
1917#else
1918static void munmap_chunk(p) mchunkptr p;
1919#endif
1920{
1921 INTERNAL_SIZE_T size = chunksize(p);
1922 int ret;
1923
1924 assert (chunk_is_mmapped(p));
1925 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1926 assert((n_mmaps > 0));
1927 assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
1928
1929 n_mmaps--;
1930 mmapped_mem -= (size + p->prev_size);
1931
1932 ret = munmap((char *)p - p->prev_size, size + p->prev_size);
1933
1934 /* munmap returns non-zero on failure */
1935 assert(ret == 0);
1936}
1937
1938#if HAVE_MREMAP
1939
1940#if __STD_C
1941static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
1942#else
1943static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
1944#endif
1945{
1946 size_t page_mask = malloc_getpagesize - 1;
1947 INTERNAL_SIZE_T offset = p->prev_size;
1948 INTERNAL_SIZE_T size = chunksize(p);
1949 char *cp;
1950
1951 assert (chunk_is_mmapped(p));
1952 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1953 assert((n_mmaps > 0));
1954 assert(((size + offset) & (malloc_getpagesize-1)) == 0);
1955
1956 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
1957 new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
1958
1959 cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
1960
1961 if (cp == (char *)-1) return 0;
1962
1963 p = (mchunkptr)(cp + offset);
1964
1965 assert(aligned_OK(chunk2mem(p)));
1966
1967 assert((p->prev_size == offset));
1968 set_head(p, (new_size - offset)|IS_MMAPPED);
1969
1970 mmapped_mem -= size + offset;
1971 mmapped_mem += new_size;
1972 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1973 max_mmapped_mem = mmapped_mem;
1974 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1975 max_total_mem = mmapped_mem + sbrked_mem;
1976 return p;
1977}
1978
1979#endif /* HAVE_MREMAP */
1980
1981#endif /* HAVE_MMAP */
1982
1983
d93041a4 1984
217c9dad
WD
1985
1986/*
1987 Extend the top-most chunk by obtaining memory from system.
1988 Main interface to sbrk (but see also malloc_trim).
1989*/
1990
1991#if __STD_C
1992static void malloc_extend_top(INTERNAL_SIZE_T nb)
1993#else
1994static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
1995#endif
1996{
1997 char* brk; /* return value from sbrk */
1998 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
1999 INTERNAL_SIZE_T correction; /* bytes for 2nd sbrk call */
2000 char* new_brk; /* return of 2nd sbrk call */
2001 INTERNAL_SIZE_T top_size; /* new size of top chunk */
2002
2003 mchunkptr old_top = top; /* Record state of old top */
2004 INTERNAL_SIZE_T old_top_size = chunksize(old_top);
2005 char* old_end = (char*)(chunk_at_offset(old_top, old_top_size));
2006
2007 /* Pad request with top_pad plus minimal overhead */
2008
2009 INTERNAL_SIZE_T sbrk_size = nb + top_pad + MINSIZE;
2010 unsigned long pagesz = malloc_getpagesize;
2011
2012 /* If not the first time through, round to preserve page boundary */
2013 /* Otherwise, we need to correct to a page size below anyway. */
2014 /* (We also correct below if an intervening foreign sbrk call.) */
2015
2016 if (sbrk_base != (char*)(-1))
2017 sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
2018
2019 brk = (char*)(MORECORE (sbrk_size));
2020
2021 /* Fail if sbrk failed or if a foreign sbrk call killed our space */
2022 if (brk == (char*)(MORECORE_FAILURE) ||
2023 (brk < old_end && old_top != initial_top))
2024 return;
2025
2026 sbrked_mem += sbrk_size;
2027
2028 if (brk == old_end) /* can just add bytes to current top */
2029 {
2030 top_size = sbrk_size + old_top_size;
2031 set_head(top, top_size | PREV_INUSE);
2032 }
2033 else
2034 {
2035 if (sbrk_base == (char*)(-1)) /* First time through. Record base */
2036 sbrk_base = brk;
2037 else /* Someone else called sbrk(). Count those bytes as sbrked_mem. */
2038 sbrked_mem += brk - (char*)old_end;
2039
2040 /* Guarantee alignment of first new chunk made from this space */
2041 front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
2042 if (front_misalign > 0)
2043 {
2044 correction = (MALLOC_ALIGNMENT) - front_misalign;
2045 brk += correction;
2046 }
2047 else
2048 correction = 0;
2049
2050 /* Guarantee the next brk will be at a page boundary */
2051
2052 correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) &
8bde7f77 2053 ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size));
217c9dad
WD
2054
2055 /* Allocate correction */
2056 new_brk = (char*)(MORECORE (correction));
2057 if (new_brk == (char*)(MORECORE_FAILURE)) return;
2058
2059 sbrked_mem += correction;
2060
2061 top = (mchunkptr)brk;
2062 top_size = new_brk - brk + correction;
2063 set_head(top, top_size | PREV_INUSE);
2064
2065 if (old_top != initial_top)
2066 {
2067
2068 /* There must have been an intervening foreign sbrk call. */
2069 /* A double fencepost is necessary to prevent consolidation */
2070
2071 /* If not enough space to do this, then user did something very wrong */
2072 if (old_top_size < MINSIZE)
2073 {
8bde7f77
WD
2074 set_head(top, PREV_INUSE); /* will force null return from malloc */
2075 return;
217c9dad
WD
2076 }
2077
2078 /* Also keep size a multiple of MALLOC_ALIGNMENT */
2079 old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
2080 set_head_size(old_top, old_top_size);
2081 chunk_at_offset(old_top, old_top_size )->size =
8bde7f77 2082 SIZE_SZ|PREV_INUSE;
217c9dad 2083 chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
8bde7f77 2084 SIZE_SZ|PREV_INUSE;
217c9dad
WD
2085 /* If possible, release the rest. */
2086 if (old_top_size >= MINSIZE)
8bde7f77 2087 fREe(chunk2mem(old_top));
217c9dad
WD
2088 }
2089 }
2090
2091 if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
2092 max_sbrked_mem = sbrked_mem;
2093 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
2094 max_total_mem = mmapped_mem + sbrked_mem;
2095
2096 /* We always land on a page boundary */
2097 assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
2098}
2099
2100
d93041a4 2101
217c9dad
WD
2102
2103/* Main public routines */
2104
2105
2106/*
2107 Malloc Algorthim:
2108
2109 The requested size is first converted into a usable form, `nb'.
2110 This currently means to add 4 bytes overhead plus possibly more to
2111 obtain 8-byte alignment and/or to obtain a size of at least
2112 MINSIZE (currently 16 bytes), the smallest allocatable size.
2113 (All fits are considered `exact' if they are within MINSIZE bytes.)
2114
2115 From there, the first successful of the following steps is taken:
2116
2117 1. The bin corresponding to the request size is scanned, and if
8bde7f77 2118 a chunk of exactly the right size is found, it is taken.
217c9dad
WD
2119
2120 2. The most recently remaindered chunk is used if it is big
8bde7f77
WD
2121 enough. This is a form of (roving) first fit, used only in
2122 the absence of exact fits. Runs of consecutive requests use
2123 the remainder of the chunk used for the previous such request
2124 whenever possible. This limited use of a first-fit style
2125 allocation strategy tends to give contiguous chunks
2126 coextensive lifetimes, which improves locality and can reduce
2127 fragmentation in the long run.
217c9dad
WD
2128
2129 3. Other bins are scanned in increasing size order, using a
8bde7f77
WD
2130 chunk big enough to fulfill the request, and splitting off
2131 any remainder. This search is strictly by best-fit; i.e.,
2132 the smallest (with ties going to approximately the least
2133 recently used) chunk that fits is selected.
217c9dad
WD
2134
2135 4. If large enough, the chunk bordering the end of memory
8bde7f77
WD
2136 (`top') is split off. (This use of `top' is in accord with
2137 the best-fit search rule. In effect, `top' is treated as
2138 larger (and thus less well fitting) than any other available
2139 chunk since it can be extended to be as large as necessary
2140 (up to system limitations).
217c9dad
WD
2141
2142 5. If the request size meets the mmap threshold and the
8bde7f77
WD
2143 system supports mmap, and there are few enough currently
2144 allocated mmapped regions, and a call to mmap succeeds,
2145 the request is allocated via direct memory mapping.
217c9dad
WD
2146
2147 6. Otherwise, the top of memory is extended by
8bde7f77
WD
2148 obtaining more space from the system (normally using sbrk,
2149 but definable to anything else via the MORECORE macro).
2150 Memory is gathered from the system (in system page-sized
2151 units) in a way that allows chunks obtained across different
2152 sbrk calls to be consolidated, but does not require
2153 contiguous memory. Thus, it should be safe to intersperse
2154 mallocs with other sbrk calls.
217c9dad
WD
2155
2156
2157 All allocations are made from the the `lowest' part of any found
2158 chunk. (The implementation invariant is that prev_inuse is
2159 always true of any allocated chunk; i.e., that each allocated
2160 chunk borders either a previously allocated and still in-use chunk,
2161 or the base of its memory arena.)
2162
2163*/
2164
2165#if __STD_C
2166Void_t* mALLOc(size_t bytes)
2167#else
2168Void_t* mALLOc(bytes) size_t bytes;
2169#endif
2170{
2171 mchunkptr victim; /* inspected/selected chunk */
2172 INTERNAL_SIZE_T victim_size; /* its size */
2173 int idx; /* index for bin traversal */
2174 mbinptr bin; /* associated bin */
2175 mchunkptr remainder; /* remainder from a split */
2176 long remainder_size; /* its size */
2177 int remainder_index; /* its bin index */
2178 unsigned long block; /* block traverser bit */
2179 int startidx; /* first bin of a traversed block */
2180 mchunkptr fwd; /* misc temp for linking */
2181 mchunkptr bck; /* misc temp for linking */
2182 mbinptr q; /* misc temp */
2183
2184 INTERNAL_SIZE_T nb;
2185
d59476b6 2186#ifdef CONFIG_SYS_MALLOC_F_LEN
854d2b97 2187 if (gd && !(gd->flags & GD_FLG_RELOC)) {
d59476b6
SG
2188 ulong new_ptr;
2189 void *ptr;
2190
2191 new_ptr = gd->malloc_ptr + bytes;
2192 if (new_ptr > gd->malloc_limit)
2193 panic("Out of pre-reloc memory");
2194 ptr = map_sysmem(gd->malloc_base + gd->malloc_ptr, bytes);
2195 gd->malloc_ptr = ALIGN(new_ptr, sizeof(new_ptr));
2196 return ptr;
2197 }
2198#endif
2199
27405448
WD
2200 /* check if mem_malloc_init() was run */
2201 if ((mem_malloc_start == 0) && (mem_malloc_end == 0)) {
2202 /* not initialized yet */
199adb60 2203 return NULL;
27405448
WD
2204 }
2205
199adb60 2206 if ((long)bytes < 0) return NULL;
217c9dad
WD
2207
2208 nb = request2size(bytes); /* padded request size; */
2209
2210 /* Check for exact match in a bin */
2211
2212 if (is_small_request(nb)) /* Faster version for small requests */
2213 {
2214 idx = smallbin_index(nb);
2215
2216 /* No traversal or size check necessary for small bins. */
2217
2218 q = bin_at(idx);
2219 victim = last(q);
2220
2221 /* Also scan the next one, since it would have a remainder < MINSIZE */
2222 if (victim == q)
2223 {
2224 q = next_bin(q);
2225 victim = last(q);
2226 }
2227 if (victim != q)
2228 {
2229 victim_size = chunksize(victim);
2230 unlink(victim, bck, fwd);
2231 set_inuse_bit_at_offset(victim, victim_size);
2232 check_malloced_chunk(victim, nb);
2233 return chunk2mem(victim);
2234 }
2235
2236 idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
2237
2238 }
2239 else
2240 {
2241 idx = bin_index(nb);
2242 bin = bin_at(idx);
2243
2244 for (victim = last(bin); victim != bin; victim = victim->bk)
2245 {
2246 victim_size = chunksize(victim);
2247 remainder_size = victim_size - nb;
2248
2249 if (remainder_size >= (long)MINSIZE) /* too big */
2250 {
8bde7f77
WD
2251 --idx; /* adjust to rescan below after checking last remainder */
2252 break;
217c9dad
WD
2253 }
2254
2255 else if (remainder_size >= 0) /* exact fit */
2256 {
8bde7f77
WD
2257 unlink(victim, bck, fwd);
2258 set_inuse_bit_at_offset(victim, victim_size);
2259 check_malloced_chunk(victim, nb);
2260 return chunk2mem(victim);
217c9dad
WD
2261 }
2262 }
2263
2264 ++idx;
2265
2266 }
2267
2268 /* Try to use the last split-off remainder */
2269
2270 if ( (victim = last_remainder->fd) != last_remainder)
2271 {
2272 victim_size = chunksize(victim);
2273 remainder_size = victim_size - nb;
2274
2275 if (remainder_size >= (long)MINSIZE) /* re-split */
2276 {
2277 remainder = chunk_at_offset(victim, nb);
2278 set_head(victim, nb | PREV_INUSE);
2279 link_last_remainder(remainder);
2280 set_head(remainder, remainder_size | PREV_INUSE);
2281 set_foot(remainder, remainder_size);
2282 check_malloced_chunk(victim, nb);
2283 return chunk2mem(victim);
2284 }
2285
2286 clear_last_remainder;
2287
2288 if (remainder_size >= 0) /* exhaust */
2289 {
2290 set_inuse_bit_at_offset(victim, victim_size);
2291 check_malloced_chunk(victim, nb);
2292 return chunk2mem(victim);
2293 }
2294
2295 /* Else place in bin */
2296
2297 frontlink(victim, victim_size, remainder_index, bck, fwd);
2298 }
2299
2300 /*
2301 If there are any possibly nonempty big-enough blocks,
2302 search for best fitting chunk by scanning bins in blockwidth units.
2303 */
2304
f2302d44 2305 if ( (block = idx2binblock(idx)) <= binblocks_r)
217c9dad
WD
2306 {
2307
2308 /* Get to the first marked block */
2309
f2302d44 2310 if ( (block & binblocks_r) == 0)
217c9dad
WD
2311 {
2312 /* force to an even block boundary */
2313 idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
2314 block <<= 1;
f2302d44 2315 while ((block & binblocks_r) == 0)
217c9dad 2316 {
8bde7f77
WD
2317 idx += BINBLOCKWIDTH;
2318 block <<= 1;
217c9dad
WD
2319 }
2320 }
2321
2322 /* For each possibly nonempty block ... */
2323 for (;;)
2324 {
2325 startidx = idx; /* (track incomplete blocks) */
2326 q = bin = bin_at(idx);
2327
2328 /* For each bin in this block ... */
2329 do
2330 {
8bde7f77
WD
2331 /* Find and use first big enough chunk ... */
2332
2333 for (victim = last(bin); victim != bin; victim = victim->bk)
2334 {
2335 victim_size = chunksize(victim);
2336 remainder_size = victim_size - nb;
2337
2338 if (remainder_size >= (long)MINSIZE) /* split */
2339 {
2340 remainder = chunk_at_offset(victim, nb);
2341 set_head(victim, nb | PREV_INUSE);
2342 unlink(victim, bck, fwd);
2343 link_last_remainder(remainder);
2344 set_head(remainder, remainder_size | PREV_INUSE);
2345 set_foot(remainder, remainder_size);
2346 check_malloced_chunk(victim, nb);
2347 return chunk2mem(victim);
2348 }
2349
2350 else if (remainder_size >= 0) /* take */
2351 {
2352 set_inuse_bit_at_offset(victim, victim_size);
2353 unlink(victim, bck, fwd);
2354 check_malloced_chunk(victim, nb);
2355 return chunk2mem(victim);
2356 }
2357
2358 }
217c9dad
WD
2359
2360 bin = next_bin(bin);
2361
2362 } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
2363
2364 /* Clear out the block bit. */
2365
2366 do /* Possibly backtrack to try to clear a partial block */
2367 {
8bde7f77
WD
2368 if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
2369 {
f2302d44 2370 av_[1] = (mbinptr)(binblocks_r & ~block);
8bde7f77
WD
2371 break;
2372 }
2373 --startidx;
217c9dad
WD
2374 q = prev_bin(q);
2375 } while (first(q) == q);
2376
2377 /* Get to the next possibly nonempty block */
2378
f2302d44 2379 if ( (block <<= 1) <= binblocks_r && (block != 0) )
217c9dad 2380 {
f2302d44 2381 while ((block & binblocks_r) == 0)
8bde7f77
WD
2382 {
2383 idx += BINBLOCKWIDTH;
2384 block <<= 1;
2385 }
217c9dad
WD
2386 }
2387 else
8bde7f77 2388 break;
217c9dad
WD
2389 }
2390 }
2391
2392
2393 /* Try to use top chunk */
2394
2395 /* Require that there be a remainder, ensuring top always exists */
2396 if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
2397 {
2398
2399#if HAVE_MMAP
2400 /* If big and would otherwise need to extend, try to use mmap instead */
2401 if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
8bde7f77 2402 (victim = mmap_chunk(nb)) != 0)
217c9dad
WD
2403 return chunk2mem(victim);
2404#endif
2405
2406 /* Try to extend */
2407 malloc_extend_top(nb);
2408 if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
199adb60 2409 return NULL; /* propagate failure */
217c9dad
WD
2410 }
2411
2412 victim = top;
2413 set_head(victim, nb | PREV_INUSE);
2414 top = chunk_at_offset(victim, nb);
2415 set_head(top, remainder_size | PREV_INUSE);
2416 check_malloced_chunk(victim, nb);
2417 return chunk2mem(victim);
2418
2419}
2420
2421
d93041a4 2422
217c9dad
WD
2423
2424/*
2425
2426 free() algorithm :
2427
2428 cases:
2429
2430 1. free(0) has no effect.
2431
2432 2. If the chunk was allocated via mmap, it is release via munmap().
2433
2434 3. If a returned chunk borders the current high end of memory,
8bde7f77
WD
2435 it is consolidated into the top, and if the total unused
2436 topmost memory exceeds the trim threshold, malloc_trim is
2437 called.
217c9dad
WD
2438
2439 4. Other chunks are consolidated as they arrive, and
8bde7f77
WD
2440 placed in corresponding bins. (This includes the case of
2441 consolidating with the current `last_remainder').
217c9dad
WD
2442
2443*/
2444
2445
2446#if __STD_C
2447void fREe(Void_t* mem)
2448#else
2449void fREe(mem) Void_t* mem;
2450#endif
2451{
2452 mchunkptr p; /* chunk corresponding to mem */
2453 INTERNAL_SIZE_T hd; /* its head field */
2454 INTERNAL_SIZE_T sz; /* its size */
2455 int idx; /* its bin index */
2456 mchunkptr next; /* next contiguous chunk */
2457 INTERNAL_SIZE_T nextsz; /* its size */
2458 INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
2459 mchunkptr bck; /* misc temp for linking */
2460 mchunkptr fwd; /* misc temp for linking */
2461 int islr; /* track whether merging with last_remainder */
2462
d59476b6
SG
2463#ifdef CONFIG_SYS_MALLOC_F_LEN
2464 /* free() is a no-op - all the memory will be freed on relocation */
2465 if (!(gd->flags & GD_FLG_RELOC))
2466 return;
2467#endif
2468
199adb60 2469 if (mem == NULL) /* free(0) has no effect */
217c9dad
WD
2470 return;
2471
2472 p = mem2chunk(mem);
2473 hd = p->size;
2474
2475#if HAVE_MMAP
2476 if (hd & IS_MMAPPED) /* release mmapped memory. */
2477 {
2478 munmap_chunk(p);
2479 return;
2480 }
2481#endif
2482
2483 check_inuse_chunk(p);
2484
2485 sz = hd & ~PREV_INUSE;
2486 next = chunk_at_offset(p, sz);
2487 nextsz = chunksize(next);
2488
2489 if (next == top) /* merge with top */
2490 {
2491 sz += nextsz;
2492
2493 if (!(hd & PREV_INUSE)) /* consolidate backward */
2494 {
2495 prevsz = p->prev_size;
2496 p = chunk_at_offset(p, -((long) prevsz));
2497 sz += prevsz;
2498 unlink(p, bck, fwd);
2499 }
2500
2501 set_head(p, sz | PREV_INUSE);
2502 top = p;
2503 if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
2504 malloc_trim(top_pad);
2505 return;
2506 }
2507
2508 set_head(next, nextsz); /* clear inuse bit */
2509
2510 islr = 0;
2511
2512 if (!(hd & PREV_INUSE)) /* consolidate backward */
2513 {
2514 prevsz = p->prev_size;
2515 p = chunk_at_offset(p, -((long) prevsz));
2516 sz += prevsz;
2517
2518 if (p->fd == last_remainder) /* keep as last_remainder */
2519 islr = 1;
2520 else
2521 unlink(p, bck, fwd);
2522 }
2523
2524 if (!(inuse_bit_at_offset(next, nextsz))) /* consolidate forward */
2525 {
2526 sz += nextsz;
2527
2528 if (!islr && next->fd == last_remainder) /* re-insert last_remainder */
2529 {
2530 islr = 1;
2531 link_last_remainder(p);
2532 }
2533 else
2534 unlink(next, bck, fwd);
2535 }
2536
2537
2538 set_head(p, sz | PREV_INUSE);
2539 set_foot(p, sz);
2540 if (!islr)
2541 frontlink(p, sz, idx, bck, fwd);
2542}
2543
2544
d93041a4 2545
217c9dad
WD
2546
2547
2548/*
2549
2550 Realloc algorithm:
2551
2552 Chunks that were obtained via mmap cannot be extended or shrunk
2553 unless HAVE_MREMAP is defined, in which case mremap is used.
2554 Otherwise, if their reallocation is for additional space, they are
2555 copied. If for less, they are just left alone.
2556
2557 Otherwise, if the reallocation is for additional space, and the
2558 chunk can be extended, it is, else a malloc-copy-free sequence is
2559 taken. There are several different ways that a chunk could be
2560 extended. All are tried:
2561
2562 * Extending forward into following adjacent free chunk.
2563 * Shifting backwards, joining preceding adjacent space
2564 * Both shifting backwards and extending forward.
2565 * Extending into newly sbrked space
2566
2567 Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
2568 size argument of zero (re)allocates a minimum-sized chunk.
2569
2570 If the reallocation is for less space, and the new request is for
2571 a `small' (<512 bytes) size, then the newly unused space is lopped
2572 off and freed.
2573
2574 The old unix realloc convention of allowing the last-free'd chunk
2575 to be used as an argument to realloc is no longer supported.
2576 I don't know of any programs still relying on this feature,
2577 and allowing it would also allow too many other incorrect
2578 usages of realloc to be sensible.
2579
2580
2581*/
2582
2583
2584#if __STD_C
2585Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
2586#else
2587Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
2588#endif
2589{
2590 INTERNAL_SIZE_T nb; /* padded request size */
2591
2592 mchunkptr oldp; /* chunk corresponding to oldmem */
2593 INTERNAL_SIZE_T oldsize; /* its size */
2594
2595 mchunkptr newp; /* chunk to return */
2596 INTERNAL_SIZE_T newsize; /* its size */
2597 Void_t* newmem; /* corresponding user mem */
2598
2599 mchunkptr next; /* next contiguous chunk after oldp */
2600 INTERNAL_SIZE_T nextsize; /* its size */
2601
2602 mchunkptr prev; /* previous contiguous chunk before oldp */
2603 INTERNAL_SIZE_T prevsize; /* its size */
2604
2605 mchunkptr remainder; /* holds split off extra space from newp */
2606 INTERNAL_SIZE_T remainder_size; /* its size */
2607
2608 mchunkptr bck; /* misc temp for linking */
2609 mchunkptr fwd; /* misc temp for linking */
2610
2611#ifdef REALLOC_ZERO_BYTES_FREES
2612 if (bytes == 0) { fREe(oldmem); return 0; }
2613#endif
2614
199adb60 2615 if ((long)bytes < 0) return NULL;
217c9dad
WD
2616
2617 /* realloc of null is supposed to be same as malloc */
199adb60 2618 if (oldmem == NULL) return mALLOc(bytes);
217c9dad 2619
d59476b6
SG
2620#ifdef CONFIG_SYS_MALLOC_F_LEN
2621 if (!(gd->flags & GD_FLG_RELOC)) {
2622 /* This is harder to support and should not be needed */
2623 panic("pre-reloc realloc() is not supported");
2624 }
2625#endif
2626
217c9dad
WD
2627 newp = oldp = mem2chunk(oldmem);
2628 newsize = oldsize = chunksize(oldp);
2629
2630
2631 nb = request2size(bytes);
2632
2633#if HAVE_MMAP
2634 if (chunk_is_mmapped(oldp))
2635 {
2636#if HAVE_MREMAP
2637 newp = mremap_chunk(oldp, nb);
2638 if(newp) return chunk2mem(newp);
2639#endif
2640 /* Note the extra SIZE_SZ overhead. */
2641 if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
2642 /* Must alloc, copy, free. */
2643 newmem = mALLOc(bytes);
2644 if (newmem == 0) return 0; /* propagate failure */
2645 MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
2646 munmap_chunk(oldp);
2647 return newmem;
2648 }
2649#endif
2650
2651 check_inuse_chunk(oldp);
2652
2653 if ((long)(oldsize) < (long)(nb))
2654 {
2655
2656 /* Try expanding forward */
2657
2658 next = chunk_at_offset(oldp, oldsize);
2659 if (next == top || !inuse(next))
2660 {
2661 nextsize = chunksize(next);
2662
2663 /* Forward into top only if a remainder */
2664 if (next == top)
2665 {
8bde7f77
WD
2666 if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
2667 {
2668 newsize += nextsize;
2669 top = chunk_at_offset(oldp, nb);
2670 set_head(top, (newsize - nb) | PREV_INUSE);
2671 set_head_size(oldp, nb);
2672 return chunk2mem(oldp);
2673 }
217c9dad
WD
2674 }
2675
2676 /* Forward into next chunk */
2677 else if (((long)(nextsize + newsize) >= (long)(nb)))
2678 {
8bde7f77
WD
2679 unlink(next, bck, fwd);
2680 newsize += nextsize;
2681 goto split;
217c9dad
WD
2682 }
2683 }
2684 else
2685 {
199adb60 2686 next = NULL;
217c9dad
WD
2687 nextsize = 0;
2688 }
2689
2690 /* Try shifting backwards. */
2691
2692 if (!prev_inuse(oldp))
2693 {
2694 prev = prev_chunk(oldp);
2695 prevsize = chunksize(prev);
2696
2697 /* try forward + backward first to save a later consolidation */
2698
199adb60 2699 if (next != NULL)
217c9dad 2700 {
8bde7f77
WD
2701 /* into top */
2702 if (next == top)
2703 {
2704 if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
2705 {
2706 unlink(prev, bck, fwd);
2707 newp = prev;
2708 newsize += prevsize + nextsize;
2709 newmem = chunk2mem(newp);
2710 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2711 top = chunk_at_offset(newp, nb);
2712 set_head(top, (newsize - nb) | PREV_INUSE);
2713 set_head_size(newp, nb);
2714 return newmem;
2715 }
2716 }
2717
2718 /* into next chunk */
2719 else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
2720 {
2721 unlink(next, bck, fwd);
2722 unlink(prev, bck, fwd);
2723 newp = prev;
2724 newsize += nextsize + prevsize;
2725 newmem = chunk2mem(newp);
2726 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2727 goto split;
2728 }
217c9dad
WD
2729 }
2730
2731 /* backward only */
199adb60 2732 if (prev != NULL && (long)(prevsize + newsize) >= (long)nb)
217c9dad 2733 {
8bde7f77
WD
2734 unlink(prev, bck, fwd);
2735 newp = prev;
2736 newsize += prevsize;
2737 newmem = chunk2mem(newp);
2738 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2739 goto split;
217c9dad
WD
2740 }
2741 }
2742
2743 /* Must allocate */
2744
2745 newmem = mALLOc (bytes);
2746
199adb60
KP
2747 if (newmem == NULL) /* propagate failure */
2748 return NULL;
217c9dad
WD
2749
2750 /* Avoid copy if newp is next chunk after oldp. */
2751 /* (This can only happen when new chunk is sbrk'ed.) */
2752
2753 if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
2754 {
2755 newsize += chunksize(newp);
2756 newp = oldp;
2757 goto split;
2758 }
2759
2760 /* Otherwise copy, free, and exit */
2761 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2762 fREe(oldmem);
2763 return newmem;
2764 }
2765
2766
2767 split: /* split off extra room in old or expanded chunk */
2768
2769 if (newsize - nb >= MINSIZE) /* split off remainder */
2770 {
2771 remainder = chunk_at_offset(newp, nb);
2772 remainder_size = newsize - nb;
2773 set_head_size(newp, nb);
2774 set_head(remainder, remainder_size | PREV_INUSE);
2775 set_inuse_bit_at_offset(remainder, remainder_size);
2776 fREe(chunk2mem(remainder)); /* let free() deal with it */
2777 }
2778 else
2779 {
2780 set_head_size(newp, newsize);
2781 set_inuse_bit_at_offset(newp, newsize);
2782 }
2783
2784 check_inuse_chunk(newp);
2785 return chunk2mem(newp);
2786}
2787
2788
d93041a4 2789
217c9dad
WD
2790
2791/*
2792
2793 memalign algorithm:
2794
2795 memalign requests more than enough space from malloc, finds a spot
2796 within that chunk that meets the alignment request, and then
2797 possibly frees the leading and trailing space.
2798
2799 The alignment argument must be a power of two. This property is not
2800 checked by memalign, so misuse may result in random runtime errors.
2801
2802 8-byte alignment is guaranteed by normal malloc calls, so don't
2803 bother calling memalign with an argument of 8 or less.
2804
2805 Overreliance on memalign is a sure way to fragment space.
2806
2807*/
2808
2809
2810#if __STD_C
2811Void_t* mEMALIGn(size_t alignment, size_t bytes)
2812#else
2813Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
2814#endif
2815{
2816 INTERNAL_SIZE_T nb; /* padded request size */
2817 char* m; /* memory returned by malloc call */
2818 mchunkptr p; /* corresponding chunk */
2819 char* brk; /* alignment point within p */
2820 mchunkptr newp; /* chunk to return */
2821 INTERNAL_SIZE_T newsize; /* its size */
2822 INTERNAL_SIZE_T leadsize; /* leading space befor alignment point */
2823 mchunkptr remainder; /* spare room at end to split off */
2824 long remainder_size; /* its size */
2825
199adb60 2826 if ((long)bytes < 0) return NULL;
217c9dad
WD
2827
2828 /* If need less alignment than we give anyway, just relay to malloc */
2829
2830 if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
2831
2832 /* Otherwise, ensure that it is at least a minimum chunk size */
2833
2834 if (alignment < MINSIZE) alignment = MINSIZE;
2835
2836 /* Call malloc with worst case padding to hit alignment. */
2837
2838 nb = request2size(bytes);
2839 m = (char*)(mALLOc(nb + alignment + MINSIZE));
2840
199adb60 2841 if (m == NULL) return NULL; /* propagate failure */
217c9dad
WD
2842
2843 p = mem2chunk(m);
2844
2845 if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
2846 {
2847#if HAVE_MMAP
2848 if(chunk_is_mmapped(p))
2849 return chunk2mem(p); /* nothing more to do */
2850#endif
2851 }
2852 else /* misaligned */
2853 {
2854 /*
2855 Find an aligned spot inside chunk.
2856 Since we need to give back leading space in a chunk of at
2857 least MINSIZE, if the first calculation places us at
2858 a spot with less than MINSIZE leader, we can move to the
2859 next aligned spot -- we've allocated enough total room so that
2860 this is always possible.
2861 */
2862
2863 brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
2864 if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;
2865
2866 newp = (mchunkptr)brk;
2867 leadsize = brk - (char*)(p);
2868 newsize = chunksize(p) - leadsize;
2869
2870#if HAVE_MMAP
2871 if(chunk_is_mmapped(p))
2872 {
2873 newp->prev_size = p->prev_size + leadsize;
2874 set_head(newp, newsize|IS_MMAPPED);
2875 return chunk2mem(newp);
2876 }
2877#endif
2878
2879 /* give back leader, use the rest */
2880
2881 set_head(newp, newsize | PREV_INUSE);
2882 set_inuse_bit_at_offset(newp, newsize);
2883 set_head_size(p, leadsize);
2884 fREe(chunk2mem(p));
2885 p = newp;
2886
2887 assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
2888 }
2889
2890 /* Also give back spare room at the end */
2891
2892 remainder_size = chunksize(p) - nb;
2893
2894 if (remainder_size >= (long)MINSIZE)
2895 {
2896 remainder = chunk_at_offset(p, nb);
2897 set_head(remainder, remainder_size | PREV_INUSE);
2898 set_head_size(p, nb);
2899 fREe(chunk2mem(remainder));
2900 }
2901
2902 check_inuse_chunk(p);
2903 return chunk2mem(p);
2904
2905}
2906
d93041a4 2907
217c9dad
WD
2908
2909
2910/*
2911 valloc just invokes memalign with alignment argument equal
2912 to the page size of the system (or as near to this as can
2913 be figured out from all the includes/defines above.)
2914*/
2915
2916#if __STD_C
2917Void_t* vALLOc(size_t bytes)
2918#else
2919Void_t* vALLOc(bytes) size_t bytes;
2920#endif
2921{
2922 return mEMALIGn (malloc_getpagesize, bytes);
2923}
2924
2925/*
2926 pvalloc just invokes valloc for the nearest pagesize
2927 that will accommodate request
2928*/
2929
2930
2931#if __STD_C
2932Void_t* pvALLOc(size_t bytes)
2933#else
2934Void_t* pvALLOc(bytes) size_t bytes;
2935#endif
2936{
2937 size_t pagesize = malloc_getpagesize;
2938 return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
2939}
2940
2941/*
2942
2943 calloc calls malloc, then zeroes out the allocated chunk.
2944
2945*/
2946
2947#if __STD_C
2948Void_t* cALLOc(size_t n, size_t elem_size)
2949#else
2950Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
2951#endif
2952{
2953 mchunkptr p;
2954 INTERNAL_SIZE_T csz;
2955
2956 INTERNAL_SIZE_T sz = n * elem_size;
2957
2958
2959 /* check if expand_top called, in which case don't need to clear */
2960#if MORECORE_CLEARS
2961 mchunkptr oldtop = top;
2962 INTERNAL_SIZE_T oldtopsize = chunksize(top);
2963#endif
2964 Void_t* mem = mALLOc (sz);
2965
199adb60 2966 if ((long)n < 0) return NULL;
217c9dad 2967
199adb60
KP
2968 if (mem == NULL)
2969 return NULL;
217c9dad
WD
2970 else
2971 {
d59476b6
SG
2972#ifdef CONFIG_SYS_MALLOC_F_LEN
2973 if (!(gd->flags & GD_FLG_RELOC)) {
2974 MALLOC_ZERO(mem, sz);
2975 return mem;
2976 }
2977#endif
217c9dad
WD
2978 p = mem2chunk(mem);
2979
2980 /* Two optional cases in which clearing not necessary */
2981
2982
2983#if HAVE_MMAP
2984 if (chunk_is_mmapped(p)) return mem;
2985#endif
2986
2987 csz = chunksize(p);
2988
2989#if MORECORE_CLEARS
2990 if (p == oldtop && csz > oldtopsize)
2991 {
2992 /* clear only the bytes from non-freshly-sbrked memory */
2993 csz = oldtopsize;
2994 }
2995#endif
2996
2997 MALLOC_ZERO(mem, csz - SIZE_SZ);
2998 return mem;
2999 }
3000}
3001
3002/*
3003
3004 cfree just calls free. It is needed/defined on some systems
3005 that pair it with calloc, presumably for odd historical reasons.
3006
3007*/
3008
3009#if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
3010#if __STD_C
3011void cfree(Void_t *mem)
3012#else
3013void cfree(mem) Void_t *mem;
3014#endif
3015{
3016 fREe(mem);
3017}
3018#endif
3019
d93041a4 3020
217c9dad
WD
3021
3022/*
3023
3024 Malloc_trim gives memory back to the system (via negative
3025 arguments to sbrk) if there is unused memory at the `high' end of
3026 the malloc pool. You can call this after freeing large blocks of
3027 memory to potentially reduce the system-level memory requirements
3028 of a program. However, it cannot guarantee to reduce memory. Under
3029 some allocation patterns, some large free blocks of memory will be
3030 locked between two used chunks, so they cannot be given back to
3031 the system.
3032
3033 The `pad' argument to malloc_trim represents the amount of free
3034 trailing space to leave untrimmed. If this argument is zero,
3035 only the minimum amount of memory to maintain internal data
3036 structures will be left (one page or less). Non-zero arguments
3037 can be supplied to maintain enough trailing space to service
3038 future expected allocations without having to re-obtain memory
3039 from the system.
3040
3041 Malloc_trim returns 1 if it actually released any memory, else 0.
3042
3043*/
3044
3045#if __STD_C
3046int malloc_trim(size_t pad)
3047#else
3048int malloc_trim(pad) size_t pad;
3049#endif
3050{
3051 long top_size; /* Amount of top-most memory */
3052 long extra; /* Amount to release */
3053 char* current_brk; /* address returned by pre-check sbrk call */
3054 char* new_brk; /* address returned by negative sbrk call */
3055
3056 unsigned long pagesz = malloc_getpagesize;
3057
3058 top_size = chunksize(top);
3059 extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
3060
3061 if (extra < (long)pagesz) /* Not enough memory to release */
3062 return 0;
3063
3064 else
3065 {
3066 /* Test to make sure no one else called sbrk */
3067 current_brk = (char*)(MORECORE (0));
3068 if (current_brk != (char*)(top) + top_size)
3069 return 0; /* Apparently we don't own memory; must fail */
3070
3071 else
3072 {
3073 new_brk = (char*)(MORECORE (-extra));
3074
3075 if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
3076 {
8bde7f77
WD
3077 /* Try to figure out what we have */
3078 current_brk = (char*)(MORECORE (0));
3079 top_size = current_brk - (char*)top;
3080 if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
3081 {
3082 sbrked_mem = current_brk - sbrk_base;
3083 set_head(top, top_size | PREV_INUSE);
3084 }
3085 check_chunk(top);
3086 return 0;
217c9dad
WD
3087 }
3088
3089 else
3090 {
8bde7f77
WD
3091 /* Success. Adjust top accordingly. */
3092 set_head(top, (top_size - extra) | PREV_INUSE);
3093 sbrked_mem -= extra;
3094 check_chunk(top);
3095 return 1;
217c9dad
WD
3096 }
3097 }
3098 }
3099}
3100
d93041a4 3101
217c9dad
WD
3102
3103/*
3104 malloc_usable_size:
3105
3106 This routine tells you how many bytes you can actually use in an
3107 allocated chunk, which may be more than you requested (although
3108 often not). You can use this many bytes without worrying about
3109 overwriting other allocated objects. Not a particularly great
3110 programming practice, but still sometimes useful.
3111
3112*/
3113
3114#if __STD_C
3115size_t malloc_usable_size(Void_t* mem)
3116#else
3117size_t malloc_usable_size(mem) Void_t* mem;
3118#endif
3119{
3120 mchunkptr p;
199adb60 3121 if (mem == NULL)
217c9dad
WD
3122 return 0;
3123 else
3124 {
3125 p = mem2chunk(mem);
3126 if(!chunk_is_mmapped(p))
3127 {
3128 if (!inuse(p)) return 0;
3129 check_inuse_chunk(p);
3130 return chunksize(p) - SIZE_SZ;
3131 }
3132 return chunksize(p) - 2*SIZE_SZ;
3133 }
3134}
3135
3136
d93041a4 3137
217c9dad
WD
3138
3139/* Utility to update current_mallinfo for malloc_stats and mallinfo() */
3140
ea882baf 3141#ifdef DEBUG
217c9dad
WD
3142static void malloc_update_mallinfo()
3143{
3144 int i;
3145 mbinptr b;
3146 mchunkptr p;
3147#ifdef DEBUG
3148 mchunkptr q;
3149#endif
3150
3151 INTERNAL_SIZE_T avail = chunksize(top);
3152 int navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
3153
3154 for (i = 1; i < NAV; ++i)
3155 {
3156 b = bin_at(i);
3157 for (p = last(b); p != b; p = p->bk)
3158 {
3159#ifdef DEBUG
3160 check_free_chunk(p);
3161 for (q = next_chunk(p);
8bde7f77
WD
3162 q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
3163 q = next_chunk(q))
3164 check_inuse_chunk(q);
217c9dad
WD
3165#endif
3166 avail += chunksize(p);
3167 navail++;
3168 }
3169 }
3170
3171 current_mallinfo.ordblks = navail;
3172 current_mallinfo.uordblks = sbrked_mem - avail;
3173 current_mallinfo.fordblks = avail;
3174 current_mallinfo.hblks = n_mmaps;
3175 current_mallinfo.hblkhd = mmapped_mem;
3176 current_mallinfo.keepcost = chunksize(top);
3177
3178}
ea882baf 3179#endif /* DEBUG */
217c9dad 3180
d93041a4 3181
217c9dad
WD
3182
3183/*
3184
3185 malloc_stats:
3186
3187 Prints on the amount of space obtain from the system (both
3188 via sbrk and mmap), the maximum amount (which may be more than
3189 current if malloc_trim and/or munmap got called), the maximum
3190 number of simultaneous mmap regions used, and the current number
3191 of bytes allocated via malloc (or realloc, etc) but not yet
3192 freed. (Note that this is the number of bytes allocated, not the
3193 number requested. It will be larger than the number requested
3194 because of alignment and bookkeeping overhead.)
3195
3196*/
3197
ea882baf 3198#ifdef DEBUG
217c9dad
WD
3199void malloc_stats()
3200{
3201 malloc_update_mallinfo();
3202 printf("max system bytes = %10u\n",
8bde7f77 3203 (unsigned int)(max_total_mem));
217c9dad 3204 printf("system bytes = %10u\n",
8bde7f77 3205 (unsigned int)(sbrked_mem + mmapped_mem));
217c9dad 3206 printf("in use bytes = %10u\n",
8bde7f77 3207 (unsigned int)(current_mallinfo.uordblks + mmapped_mem));
217c9dad
WD
3208#if HAVE_MMAP
3209 printf("max mmap regions = %10u\n",
8bde7f77 3210 (unsigned int)max_n_mmaps);
217c9dad
WD
3211#endif
3212}
ea882baf 3213#endif /* DEBUG */
217c9dad
WD
3214
3215/*
3216 mallinfo returns a copy of updated current mallinfo.
3217*/
3218
ea882baf 3219#ifdef DEBUG
217c9dad
WD
3220struct mallinfo mALLINFo()
3221{
3222 malloc_update_mallinfo();
3223 return current_mallinfo;
3224}
ea882baf 3225#endif /* DEBUG */
217c9dad
WD
3226
3227
d93041a4 3228
217c9dad
WD
3229
3230/*
3231 mallopt:
3232
3233 mallopt is the general SVID/XPG interface to tunable parameters.
3234 The format is to provide a (parameter-number, parameter-value) pair.
3235 mallopt then sets the corresponding parameter to the argument
3236 value if it can (i.e., so long as the value is meaningful),
3237 and returns 1 if successful else 0.
3238
3239 See descriptions of tunable parameters above.
3240
3241*/
3242
3243#if __STD_C
3244int mALLOPt(int param_number, int value)
3245#else
3246int mALLOPt(param_number, value) int param_number; int value;
3247#endif
3248{
3249 switch(param_number)
3250 {
3251 case M_TRIM_THRESHOLD:
3252 trim_threshold = value; return 1;
3253 case M_TOP_PAD:
3254 top_pad = value; return 1;
3255 case M_MMAP_THRESHOLD:
3256 mmap_threshold = value; return 1;
3257 case M_MMAP_MAX:
3258#if HAVE_MMAP
3259 n_mmaps_max = value; return 1;
3260#else
3261 if (value != 0) return 0; else n_mmaps_max = value; return 1;
3262#endif
3263
3264 default:
3265 return 0;
3266 }
3267}
3268
3269/*
3270
3271History:
3272
3273 V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
3274 * return null for negative arguments
3275 * Added Several WIN32 cleanups from Martin C. Fong <mcfong@yahoo.com>
8bde7f77
WD
3276 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
3277 (e.g. WIN32 platforms)
3278 * Cleanup up header file inclusion for WIN32 platforms
3279 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
3280 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
3281 memory allocation routines
3282 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
3283 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
217c9dad 3284 usage of 'assert' in non-WIN32 code
8bde7f77
WD
3285 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
3286 avoid infinite loop
217c9dad
WD
3287 * Always call 'fREe()' rather than 'free()'
3288
3289 V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
3290 * Fixed ordering problem with boundary-stamping
3291
3292 V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
3293 * Added pvalloc, as recommended by H.J. Liu
3294 * Added 64bit pointer support mainly from Wolfram Gloger
3295 * Added anonymously donated WIN32 sbrk emulation
3296 * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
3297 * malloc_extend_top: fix mask error that caused wastage after
8bde7f77 3298 foreign sbrks
217c9dad
WD
3299 * Add linux mremap support code from HJ Liu
3300
3301 V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
3302 * Integrated most documentation with the code.
3303 * Add support for mmap, with help from
8bde7f77 3304 Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
217c9dad
WD
3305 * Use last_remainder in more cases.
3306 * Pack bins using idea from colin@nyx10.cs.du.edu
3307 * Use ordered bins instead of best-fit threshhold
3308 * Eliminate block-local decls to simplify tracing and debugging.
3309 * Support another case of realloc via move into top
3310 * Fix error occuring when initial sbrk_base not word-aligned.
3311 * Rely on page size for units instead of SBRK_UNIT to
8bde7f77 3312 avoid surprises about sbrk alignment conventions.
217c9dad 3313 * Add mallinfo, mallopt. Thanks to Raymond Nijssen
8bde7f77 3314 (raymond@es.ele.tue.nl) for the suggestion.
217c9dad
WD
3315 * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
3316 * More precautions for cases where other routines call sbrk,
8bde7f77 3317 courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
217c9dad 3318 * Added macros etc., allowing use in linux libc from
8bde7f77 3319 H.J. Lu (hjl@gnu.ai.mit.edu)
217c9dad
WD
3320 * Inverted this history list
3321
3322 V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
3323 * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
3324 * Removed all preallocation code since under current scheme
8bde7f77
WD
3325 the work required to undo bad preallocations exceeds
3326 the work saved in good cases for most test programs.
217c9dad 3327 * No longer use return list or unconsolidated bins since
8bde7f77
WD
3328 no scheme using them consistently outperforms those that don't
3329 given above changes.
217c9dad
WD
3330 * Use best fit for very large chunks to prevent some worst-cases.
3331 * Added some support for debugging
3332
3333 V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
3334 * Removed footers when chunks are in use. Thanks to
8bde7f77 3335 Paul Wilson (wilson@cs.texas.edu) for the suggestion.
217c9dad
WD
3336
3337 V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
3338 * Added malloc_trim, with help from Wolfram Gloger
8bde7f77 3339 (wmglo@Dent.MED.Uni-Muenchen.DE).
217c9dad
WD
3340
3341 V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
3342
3343 V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
3344 * realloc: try to expand in both directions
3345 * malloc: swap order of clean-bin strategy;
3346 * realloc: only conditionally expand backwards
3347 * Try not to scavenge used bins
3348 * Use bin counts as a guide to preallocation
3349 * Occasionally bin return list chunks in first scan
3350 * Add a few optimizations from colin@nyx10.cs.du.edu
3351
3352 V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
3353 * faster bin computation & slightly different binning
3354 * merged all consolidations to one part of malloc proper
8bde7f77 3355 (eliminating old malloc_find_space & malloc_clean_bin)
217c9dad
WD
3356 * Scan 2 returns chunks (not just 1)
3357 * Propagate failure in realloc if malloc returns 0
3358 * Add stuff to allow compilation on non-ANSI compilers
8bde7f77 3359 from kpv@research.att.com
217c9dad
WD
3360
3361 V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
3362 * removed potential for odd address access in prev_chunk
3363 * removed dependency on getpagesize.h
3364 * misc cosmetics and a bit more internal documentation
3365 * anticosmetics: mangled names in macros to evade debugger strangeness
3366 * tested on sparc, hp-700, dec-mips, rs6000
8bde7f77
WD
3367 with gcc & native cc (hp, dec only) allowing
3368 Detlefs & Zorn comparison study (in SIGPLAN Notices.)
217c9dad
WD
3369
3370 Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
3371 * Based loosely on libg++-1.2X malloc. (It retains some of the overall
8bde7f77 3372 structure of old version, but most details differ.)
217c9dad
WD
3373
3374*/