]> git.ipfire.org Git - people/ms/u-boot.git/blame - drivers/dc2114x.c
* Patches by Xianghua Xiao, 15 Oct 2003:
[people/ms/u-boot.git] / drivers / dc2114x.c
CommitLineData
c609719b
WD
1/*
2 * See file CREDITS for list of people who contributed to this
3 * project.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation; either version 2 of
8 * the License, or (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
18 * MA 02111-1307 USA
19 */
20
21#include <common.h>
22
23#if (CONFIG_COMMANDS & CFG_CMD_NET) && defined(CONFIG_NET_MULTI) \
24 && defined(CONFIG_TULIP)
25
26#include <malloc.h>
27#include <net.h>
28#include <pci.h>
29
30#undef DEBUG
31#undef DEBUG_SROM
32#undef DEBUG_SROM2
33
34#undef UPDATE_SROM
35
36/* PCI Registers.
37 */
38#define PCI_CFDA_PSM 0x43
39
40#define CFRV_RN 0x000000f0 /* Revision Number */
41
42#define WAKEUP 0x00 /* Power Saving Wakeup */
43#define SLEEP 0x80 /* Power Saving Sleep Mode */
44
45#define DC2114x_BRK 0x0020 /* CFRV break between DC21142 & DC21143 */
46
47/* Ethernet chip registers.
48 */
49#define DE4X5_BMR 0x000 /* Bus Mode Register */
50#define DE4X5_TPD 0x008 /* Transmit Poll Demand Reg */
51#define DE4X5_RRBA 0x018 /* RX Ring Base Address Reg */
52#define DE4X5_TRBA 0x020 /* TX Ring Base Address Reg */
53#define DE4X5_STS 0x028 /* Status Register */
54#define DE4X5_OMR 0x030 /* Operation Mode Register */
55#define DE4X5_SICR 0x068 /* SIA Connectivity Register */
56#define DE4X5_APROM 0x048 /* Ethernet Address PROM */
57
58/* Register bits.
59 */
60#define BMR_SWR 0x00000001 /* Software Reset */
61#define STS_TS 0x00700000 /* Transmit Process State */
62#define STS_RS 0x000e0000 /* Receive Process State */
63#define OMR_ST 0x00002000 /* Start/Stop Transmission Command */
64#define OMR_SR 0x00000002 /* Start/Stop Receive */
65#define OMR_PS 0x00040000 /* Port Select */
66#define OMR_SDP 0x02000000 /* SD Polarity - MUST BE ASSERTED */
67#define OMR_PM 0x00000080 /* Pass All Multicast */
68
69/* Descriptor bits.
70 */
71#define R_OWN 0x80000000 /* Own Bit */
72#define RD_RER 0x02000000 /* Receive End Of Ring */
73#define RD_LS 0x00000100 /* Last Descriptor */
74#define RD_ES 0x00008000 /* Error Summary */
75#define TD_TER 0x02000000 /* Transmit End Of Ring */
76#define T_OWN 0x80000000 /* Own Bit */
77#define TD_LS 0x40000000 /* Last Segment */
78#define TD_FS 0x20000000 /* First Segment */
79#define TD_ES 0x00008000 /* Error Summary */
80#define TD_SET 0x08000000 /* Setup Packet */
81
82/* The EEPROM commands include the alway-set leading bit. */
83#define SROM_WRITE_CMD 5
84#define SROM_READ_CMD 6
85#define SROM_ERASE_CMD 7
86
87#define SROM_HWADD 0x0014 /* Hardware Address offset in SROM */
88#define SROM_RD 0x00004000 /* Read from Boot ROM */
89#define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
90#define EE_WRITE_0 0x4801
91#define EE_WRITE_1 0x4805
92#define EE_DATA_READ 0x08 /* EEPROM chip data out. */
93#define SROM_SR 0x00000800 /* Select Serial ROM when set */
94
95#define DT_IN 0x00000004 /* Serial Data In */
96#define DT_CLK 0x00000002 /* Serial ROM Clock */
97#define DT_CS 0x00000001 /* Serial ROM Chip Select */
98
99#define POLL_DEMAND 1
100
101#define RESET_DE4X5(dev) {\
102 int i;\
103 i=INL(dev, DE4X5_BMR);\
104 udelay(1000);\
105 OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
106 udelay(1000);\
107 OUTL(dev, i, DE4X5_BMR);\
108 udelay(1000);\
109 for (i=0;i<5;i++) {INL(dev, DE4X5_BMR); udelay(10000);}\
110 udelay(1000);\
111}
112
113#define START_DE4X5(dev) {\
114 s32 omr; \
115 omr = INL(dev, DE4X5_OMR);\
116 omr |= OMR_ST | OMR_SR;\
117 OUTL(dev, omr, DE4X5_OMR); /* Enable the TX and/or RX */\
118}
119
120#define STOP_DE4X5(dev) {\
121 s32 omr; \
122 omr = INL(dev, DE4X5_OMR);\
123 omr &= ~(OMR_ST|OMR_SR);\
124 OUTL(dev, omr, DE4X5_OMR); /* Disable the TX and/or RX */ \
125}
126
127#define NUM_RX_DESC PKTBUFSRX
128#define NUM_TX_DESC 1 /* Number of TX descriptors */
129#define RX_BUFF_SZ PKTSIZE_ALIGN
130
131#define TOUT_LOOP 1000000
132
133#define SETUP_FRAME_LEN 192
134#define ETH_ALEN 6
135
136
137struct de4x5_desc {
138 volatile s32 status;
139 u32 des1;
140 u32 buf;
141 u32 next;
142};
143
144static struct de4x5_desc rx_ring[NUM_RX_DESC]; /* RX descriptor ring */
145static struct de4x5_desc tx_ring[NUM_TX_DESC]; /* TX descriptor ring */
146static int rx_new; /* RX descriptor ring pointer */
147static int tx_new; /* TX descriptor ring pointer */
148
149static char rxRingSize;
150static char txRingSize;
151
152static void sendto_srom(struct eth_device* dev, u_int command, u_long addr);
153static int getfrom_srom(struct eth_device* dev, u_long addr);
154static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr, int cmd, int cmd_len);
155static int do_read_eeprom(struct eth_device *dev, u_long ioaddr, int location, int addr_len);
156static int read_srom(struct eth_device *dev, u_long ioaddr, int index);
157#ifdef UPDATE_SROM
158static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value);
159static void update_srom(struct eth_device *dev, bd_t *bis);
160#endif
161static void read_hw_addr(struct eth_device* dev, bd_t * bis);
162static void send_setup_frame(struct eth_device* dev, bd_t * bis);
163
164static int dc21x4x_init(struct eth_device* dev, bd_t* bis);
165static int dc21x4x_send(struct eth_device* dev, volatile void *packet, int length);
166static int dc21x4x_recv(struct eth_device* dev);
167static void dc21x4x_halt(struct eth_device* dev);
168#ifdef CONFIG_TULIP_SELECT_MEDIA
169extern void dc21x4x_select_media(struct eth_device* dev);
170#endif
171
42d1f039
WD
172#if defined(CONFIG_E500)
173#define phys_to_bus(a) (a)
174#else
c609719b 175#define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a)
42d1f039 176#endif
c609719b
WD
177
178static int INL(struct eth_device* dev, u_long addr)
179{
180 return le32_to_cpu(*(volatile u_long *)(addr + dev->iobase));
181}
182
183static void OUTL(struct eth_device* dev, int command, u_long addr)
184{
185 *(volatile u_long *)(addr + dev->iobase) = cpu_to_le32(command);
186}
187
188static struct pci_device_id supported[] = {
189 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST },
190 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142 },
191 { }
192};
193
194int dc21x4x_initialize(bd_t *bis)
195{
196 int idx=0;
197 int card_number = 0;
198 int cfrv;
199 unsigned char timer;
200 pci_dev_t devbusfn;
201 unsigned int iobase;
202 unsigned short status;
203 struct eth_device* dev;
204
205 while(1) {
206 devbusfn = pci_find_devices(supported, idx++);
207 if (devbusfn == -1) {
208 break;
209 }
210
211 /* Get the chip configuration revision register. */
212 pci_read_config_dword(devbusfn, PCI_REVISION_ID, &cfrv);
213
214 if ((cfrv & CFRV_RN) < DC2114x_BRK ) {
215 printf("Error: The chip is not DC21143.\n");
216 continue;
217 }
218
219 pci_read_config_word(devbusfn, PCI_COMMAND, &status);
220 status |=
221#ifdef CONFIG_TULIP_USE_IO
222 PCI_COMMAND_IO |
223#else
224 PCI_COMMAND_MEMORY |
225#endif
226 PCI_COMMAND_MASTER;
227 pci_write_config_word(devbusfn, PCI_COMMAND, status);
228
229 pci_read_config_word(devbusfn, PCI_COMMAND, &status);
230 if (!(status & PCI_COMMAND_IO)) {
231 printf("Error: Can not enable I/O access.\n");
232 continue;
233 }
234
235 if (!(status & PCI_COMMAND_IO)) {
236 printf("Error: Can not enable I/O access.\n");
237 continue;
238 }
239
240 if (!(status & PCI_COMMAND_MASTER)) {
241 printf("Error: Can not enable Bus Mastering.\n");
242 continue;
243 }
244
245 /* Check the latency timer for values >= 0x60. */
246 pci_read_config_byte(devbusfn, PCI_LATENCY_TIMER, &timer);
247
248 if (timer < 0x60) {
249 pci_write_config_byte(devbusfn, PCI_LATENCY_TIMER, 0x60);
250 }
251
252#ifdef CONFIG_TULIP_USE_IO
253 /* read BAR for memory space access */
254 pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_0, &iobase);
255 iobase &= PCI_BASE_ADDRESS_IO_MASK;
256#else
257 /* read BAR for memory space access */
258 pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_1, &iobase);
259 iobase &= PCI_BASE_ADDRESS_MEM_MASK;
260#endif
261
262#ifdef DEBUG
263 printf("dc21x4x: DEC 21142 PCI Device @0x%x\n", iobase);
264#endif
265
266 dev = (struct eth_device*) malloc(sizeof *dev);
267
268 sprintf(dev->name, "dc21x4x#%d", card_number);
269#ifdef CONFIG_TULIP_USE_IO
270 dev->iobase = pci_io_to_phys(devbusfn, iobase);
271#else
272 dev->iobase = pci_mem_to_phys(devbusfn, iobase);
273#endif
274 dev->priv = (void*) devbusfn;
275 dev->init = dc21x4x_init;
276 dev->halt = dc21x4x_halt;
277 dev->send = dc21x4x_send;
278 dev->recv = dc21x4x_recv;
279
280 /* Ensure we're not sleeping. */
281 pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
282
283 udelay(10 * 1000);
284
285 read_hw_addr(dev, bis);
286
287 eth_register(dev);
288
289 card_number++;
290 }
291
292 return card_number;
293}
294
295static int dc21x4x_init(struct eth_device* dev, bd_t* bis)
296{
297 int i;
298 int devbusfn = (int) dev->priv;
299
300 /* Ensure we're not sleeping. */
301 pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
302
303 RESET_DE4X5(dev);
304
305 if ((INL(dev, DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
306 printf("Error: Cannot reset ethernet controller.\n");
307 return 0;
308 }
309
310#ifdef CONFIG_TULIP_SELECT_MEDIA
311 dc21x4x_select_media(dev);
312#else
313 OUTL(dev, OMR_SDP | OMR_PS | OMR_PM, DE4X5_OMR);
314#endif
315
316 for (i = 0; i < NUM_RX_DESC; i++) {
317 rx_ring[i].status = cpu_to_le32(R_OWN);
318 rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
319 rx_ring[i].buf = cpu_to_le32(phys_to_bus((u32) NetRxPackets[i]));
320 rx_ring[i].next = 0;
321 }
322
323 for (i=0; i < NUM_TX_DESC; i++) {
324 tx_ring[i].status = 0;
325 tx_ring[i].des1 = 0;
326 tx_ring[i].buf = 0;
327 tx_ring[i].next = 0;
328 }
329
330 rxRingSize = NUM_RX_DESC;
331 txRingSize = NUM_TX_DESC;
332
333 /* Write the end of list marker to the descriptor lists. */
334 rx_ring[rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
335 tx_ring[txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
336
337 /* Tell the adapter where the TX/RX rings are located. */
338 OUTL(dev, phys_to_bus((u32) &rx_ring), DE4X5_RRBA);
339 OUTL(dev, phys_to_bus((u32) &tx_ring), DE4X5_TRBA);
340
341 START_DE4X5(dev);
342
343 tx_new = 0;
344 rx_new = 0;
345
346 send_setup_frame(dev, bis);
347
348 return 1;
349}
350
351static int dc21x4x_send(struct eth_device* dev, volatile void *packet, int length)
352{
353 int status = -1;
354 int i;
355
356 if (length <= 0) {
357 printf("%s: bad packet size: %d\n", dev->name, length);
358 goto Done;
359 }
360
361 for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
362 if (i >= TOUT_LOOP) {
363 printf("%s: tx error buffer not ready\n", dev->name);
364 goto Done;
365 }
366 }
367
368 tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) packet));
369 tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_LS | TD_FS | length);
370 tx_ring[tx_new].status = cpu_to_le32(T_OWN);
371
372 OUTL(dev, POLL_DEMAND, DE4X5_TPD);
373
374 for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
375 if (i >= TOUT_LOOP) {
376 printf(".%s: tx buffer not ready\n", dev->name);
377 goto Done;
378 }
379 }
380
381 if (le32_to_cpu(tx_ring[tx_new].status) & TD_ES) {
382#if 0 /* test-only */
383 printf("TX error status = 0x%08X\n",
384 le32_to_cpu(tx_ring[tx_new].status));
385#endif
386 goto Done;
387 }
388
389 status = length;
390
391 Done:
392 return status;
393}
394
395static int dc21x4x_recv(struct eth_device* dev)
396{
397 s32 status;
398 int length = 0;
399
400 for ( ; ; ) {
401 status = (s32)le32_to_cpu(rx_ring[rx_new].status);
402
403 if (status & R_OWN) {
404 break;
405 }
406
407 if (status & RD_LS) {
408 /* Valid frame status.
409 */
410 if (status & RD_ES) {
411
412 /* There was an error.
413 */
414 printf("RX error status = 0x%08X\n", status);
415 } else {
416 /* A valid frame received.
417 */
418 length = (le32_to_cpu(rx_ring[rx_new].status) >> 16);
419
420 /* Pass the packet up to the protocol
421 * layers.
422 */
423 NetReceive(NetRxPackets[rx_new], length - 4);
424 }
425
426 /* Change buffer ownership for this frame, back
427 * to the adapter.
428 */
429 rx_ring[rx_new].status = cpu_to_le32(R_OWN);
430 }
431
432 /* Update entry information.
433 */
434 rx_new = (rx_new + 1) % rxRingSize;
435 }
436
437 return length;
438}
439
440static void dc21x4x_halt(struct eth_device* dev)
441{
442 int devbusfn = (int) dev->priv;
443
444 STOP_DE4X5(dev);
445 OUTL(dev, 0, DE4X5_SICR);
446
447 pci_write_config_byte(devbusfn, PCI_CFDA_PSM, SLEEP);
448}
449
450static void send_setup_frame(struct eth_device* dev, bd_t *bis)
451{
452 int i;
453 char setup_frame[SETUP_FRAME_LEN];
454 char *pa = &setup_frame[0];
455
456 memset(pa, 0xff, SETUP_FRAME_LEN);
457
458 for (i = 0; i < ETH_ALEN; i++) {
459 *(pa + (i & 1)) = dev->enetaddr[i];
460 if (i & 0x01) {
461 pa += 4;
462 }
463 }
464
465 for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
466 if (i >= TOUT_LOOP) {
467 printf("%s: tx error buffer not ready\n", dev->name);
468 goto Done;
469 }
470 }
471
472 tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) &setup_frame[0]));
473 tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_SET| SETUP_FRAME_LEN);
474 tx_ring[tx_new].status = cpu_to_le32(T_OWN);
475
476 OUTL(dev, POLL_DEMAND, DE4X5_TPD);
477
478 for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
479 if (i >= TOUT_LOOP) {
480 printf("%s: tx buffer not ready\n", dev->name);
481 goto Done;
482 }
483 }
484
485 if (le32_to_cpu(tx_ring[tx_new].status) != 0x7FFFFFFF) {
486 printf("TX error status2 = 0x%08X\n", le32_to_cpu(tx_ring[tx_new].status));
487 }
488Done:
489 return;
490}
491
492/* SROM Read and write routines.
493 */
494
495static void
496sendto_srom(struct eth_device* dev, u_int command, u_long addr)
497{
498 OUTL(dev, command, addr);
499 udelay(1);
500}
501
502static int
503getfrom_srom(struct eth_device* dev, u_long addr)
504{
505 s32 tmp;
506
507 tmp = INL(dev, addr);
508 udelay(1);
509
510 return tmp;
511}
512
513/* Note: this routine returns extra data bits for size detection. */
514static int do_read_eeprom(struct eth_device *dev, u_long ioaddr, int location, int addr_len)
515{
516 int i;
517 unsigned retval = 0;
518 int read_cmd = location | (SROM_READ_CMD << addr_len);
519
520 sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
521 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
522
523#ifdef DEBUG_SROM
524 printf(" EEPROM read at %d ", location);
525#endif
526
527 /* Shift the read command bits out. */
528 for (i = 4 + addr_len; i >= 0; i--) {
529 short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
530 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval, ioaddr);
531 udelay(10);
532 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval | DT_CLK, ioaddr);
533 udelay(10);
534#ifdef DEBUG_SROM2
535 printf("%X", getfrom_srom(dev, ioaddr) & 15);
536#endif
537 retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
538 }
539
540 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
541
542#ifdef DEBUG_SROM2
543 printf(" :%X:", getfrom_srom(dev, ioaddr) & 15);
544#endif
545
546 for (i = 16; i > 0; i--) {
547 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
548 udelay(10);
549#ifdef DEBUG_SROM2
550 printf("%X", getfrom_srom(dev, ioaddr) & 15);
551#endif
552 retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
553 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
554 udelay(10);
555 }
556
557 /* Terminate the EEPROM access. */
558 sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
559
560#ifdef DEBUG_SROM2
561 printf(" EEPROM value at %d is %5.5x.\n", location, retval);
562#endif
563
564 return retval;
565}
566
567/* This executes a generic EEPROM command, typically a write or write enable.
568 It returns the data output from the EEPROM, and thus may also be used for
569 reads. */
570static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr, int cmd, int cmd_len)
571{
572 unsigned retval = 0;
573
574#ifdef DEBUG_SROM
575 printf(" EEPROM op 0x%x: ", cmd);
576#endif
577
578 sendto_srom(dev,SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
579
580 /* Shift the command bits out. */
581 do {
582 short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0;
583 sendto_srom(dev,dataval, ioaddr);
584 udelay(10);
585
586#ifdef DEBUG_SROM2
587 printf("%X", getfrom_srom(dev,ioaddr) & 15);
588#endif
589
590 sendto_srom(dev,dataval | DT_CLK, ioaddr);
591 udelay(10);
592 retval = (retval << 1) | ((getfrom_srom(dev,ioaddr) & EE_DATA_READ) ? 1 : 0);
593 } while (--cmd_len >= 0);
594 sendto_srom(dev,SROM_RD | SROM_SR | DT_CS, ioaddr);
595
596 /* Terminate the EEPROM access. */
597 sendto_srom(dev,SROM_RD | SROM_SR, ioaddr);
598
599#ifdef DEBUG_SROM
600 printf(" EEPROM result is 0x%5.5x.\n", retval);
601#endif
602
603 return retval;
604}
605
606static int read_srom(struct eth_device *dev, u_long ioaddr, int index)
607{
608 int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
609
610 return do_eeprom_cmd(dev, ioaddr,
611 (((SROM_READ_CMD << ee_addr_size) | index) << 16)
612 | 0xffff, 3 + ee_addr_size + 16);
613}
614
615#ifdef UPDATE_SROM
616static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value)
617{
618 int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
619 int i;
620 unsigned short newval;
621
622 udelay(10*1000); /* test-only */
623
624#ifdef DEBUG_SROM
625 printf("ee_addr_size=%d.\n", ee_addr_size);
626 printf("Writing new entry 0x%4.4x to offset %d.\n", new_value, index);
627#endif
628
629 /* Enable programming modes. */
630 do_eeprom_cmd(dev, ioaddr, (0x4f << (ee_addr_size-4)), 3+ee_addr_size);
631
632 /* Do the actual write. */
633 do_eeprom_cmd(dev, ioaddr,
634 (((SROM_WRITE_CMD<<ee_addr_size)|index) << 16) | new_value,
635 3 + ee_addr_size + 16);
636
637 /* Poll for write finished. */
638 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
639 for (i = 0; i < 10000; i++) /* Typical 2000 ticks */
640 if (getfrom_srom(dev, ioaddr) & EE_DATA_READ)
641 break;
642
643#ifdef DEBUG_SROM
644 printf(" Write finished after %d ticks.\n", i);
645#endif
646
647 /* Disable programming. */
648 do_eeprom_cmd(dev, ioaddr, (0x40 << (ee_addr_size-4)), 3 + ee_addr_size);
649
650 /* And read the result. */
651 newval = do_eeprom_cmd(dev, ioaddr,
652 (((SROM_READ_CMD<<ee_addr_size)|index) << 16)
653 | 0xffff, 3 + ee_addr_size + 16);
654#ifdef DEBUG_SROM
655 printf(" New value at offset %d is %4.4x.\n", index, newval);
656#endif
657 return 1;
658}
659#endif
660
661static void read_hw_addr(struct eth_device *dev, bd_t *bis)
662{
663 u_short tmp, *p = (short *)(&dev->enetaddr[0]);
664 int i, j = 0;
665
666 for (i = 0; i < (ETH_ALEN >> 1); i++) {
667 tmp = read_srom(dev, DE4X5_APROM, ((SROM_HWADD >> 1) + i));
668 *p = le16_to_cpu(tmp);
669 j += *p++;
670 }
671
672 if ((j == 0) || (j == 0x2fffd)) {
673 memset (dev->enetaddr, 0, ETH_ALEN);
674#ifdef DEBUG
675 printf("Warning: can't read HW address from SROM.\n");
676#endif
677 goto Done;
678 }
679
680 return;
681
682Done:
683#ifdef UPDATE_SROM
684 update_srom(dev, bis);
685#endif
686 return;
687}
688
689#ifdef UPDATE_SROM
690static void update_srom(struct eth_device *dev, bd_t *bis)
691{
692 int i;
693 static unsigned short eeprom[0x40] = {
694 0x140b, 0x6610, 0x0000, 0x0000, /* 00 */
695 0x0000, 0x0000, 0x0000, 0x0000, /* 04 */
696 0x00a3, 0x0103, 0x0000, 0x0000, /* 08 */
697 0x0000, 0x1f00, 0x0000, 0x0000, /* 0c */
698 0x0108, 0x038d, 0x0000, 0x0000, /* 10 */
699 0xe078, 0x0001, 0x0040, 0x0018, /* 14 */
700 0x0000, 0x0000, 0x0000, 0x0000, /* 18 */
701 0x0000, 0x0000, 0x0000, 0x0000, /* 1c */
702 0x0000, 0x0000, 0x0000, 0x0000, /* 20 */
703 0x0000, 0x0000, 0x0000, 0x0000, /* 24 */
704 0x0000, 0x0000, 0x0000, 0x0000, /* 28 */
705 0x0000, 0x0000, 0x0000, 0x0000, /* 2c */
706 0x0000, 0x0000, 0x0000, 0x0000, /* 30 */
707 0x0000, 0x0000, 0x0000, 0x0000, /* 34 */
708 0x0000, 0x0000, 0x0000, 0x0000, /* 38 */
709 0x0000, 0x0000, 0x0000, 0x4e07, /* 3c */
710 };
711
712 /* Ethernet Addr... */
713 eeprom[0x0a] = ((bis->bi_enetaddr[1] & 0xff) << 8) | (bis->bi_enetaddr[0] & 0xff);
714 eeprom[0x0b] = ((bis->bi_enetaddr[3] & 0xff) << 8) | (bis->bi_enetaddr[2] & 0xff);
715 eeprom[0x0c] = ((bis->bi_enetaddr[5] & 0xff) << 8) | (bis->bi_enetaddr[4] & 0xff);
716
717 for (i=0; i<0x40; i++)
718 {
719 write_srom(dev, DE4X5_APROM, i, eeprom[i]);
720 }
721}
722#endif
723
724#endif