]> git.ipfire.org Git - people/ms/u-boot.git/blame - drivers/ddr/altera/sequencer.c
ddr: altera: Clean up run_mem_calibrate()
[people/ms/u-boot.git] / drivers / ddr / altera / sequencer.c
CommitLineData
3da42859
DN
1/*
2 * Copyright Altera Corporation (C) 2012-2015
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7#include <common.h>
8#include <asm/io.h>
9#include <asm/arch/sdram.h>
10#include "sequencer.h"
11#include "sequencer_auto.h"
12#include "sequencer_auto_ac_init.h"
13#include "sequencer_auto_inst_init.h"
14#include "sequencer_defines.h"
15
3da42859 16static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
6afb4fe2 17 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
3da42859
DN
18
19static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
6afb4fe2 20 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
3da42859
DN
21
22static struct socfpga_sdr_reg_file *sdr_reg_file =
a1c654a8 23 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
3da42859
DN
24
25static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
e79025a7 26 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
3da42859
DN
27
28static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
1bc6f14a 29 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
3da42859
DN
30
31static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
1bc6f14a 32 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
3da42859
DN
33
34static struct socfpga_data_mgr *data_mgr =
c4815f76 35 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
3da42859 36
6cb9f167
MV
37static struct socfpga_sdr_ctrl *sdr_ctrl =
38 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
39
3da42859 40#define DELTA_D 1
3da42859
DN
41
42/*
43 * In order to reduce ROM size, most of the selectable calibration steps are
44 * decided at compile time based on the user's calibration mode selection,
45 * as captured by the STATIC_CALIB_STEPS selection below.
46 *
47 * However, to support simulation-time selection of fast simulation mode, where
48 * we skip everything except the bare minimum, we need a few of the steps to
49 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the
50 * check, which is based on the rtl-supplied value, or we dynamically compute
51 * the value to use based on the dynamically-chosen calibration mode
52 */
53
54#define DLEVEL 0
55#define STATIC_IN_RTL_SIM 0
56#define STATIC_SKIP_DELAY_LOOPS 0
57
58#define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
59 STATIC_SKIP_DELAY_LOOPS)
60
61/* calibration steps requested by the rtl */
62uint16_t dyn_calib_steps;
63
64/*
65 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
66 * instead of static, we use boolean logic to select between
67 * non-skip and skip values
68 *
69 * The mask is set to include all bits when not-skipping, but is
70 * zero when skipping
71 */
72
73uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */
74
75#define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
76 ((non_skip_value) & skip_delay_mask)
77
78struct gbl_type *gbl;
79struct param_type *param;
80uint32_t curr_shadow_reg;
81
82static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
83 uint32_t write_group, uint32_t use_dm,
84 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
85
3da42859
DN
86static void set_failing_group_stage(uint32_t group, uint32_t stage,
87 uint32_t substage)
88{
89 /*
90 * Only set the global stage if there was not been any other
91 * failing group
92 */
93 if (gbl->error_stage == CAL_STAGE_NIL) {
94 gbl->error_substage = substage;
95 gbl->error_stage = stage;
96 gbl->error_group = group;
97 }
98}
99
2c0d2d9c 100static void reg_file_set_group(u16 set_group)
3da42859 101{
2c0d2d9c 102 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
3da42859
DN
103}
104
2c0d2d9c 105static void reg_file_set_stage(u8 set_stage)
3da42859 106{
2c0d2d9c 107 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
3da42859
DN
108}
109
2c0d2d9c 110static void reg_file_set_sub_stage(u8 set_sub_stage)
3da42859 111{
2c0d2d9c
MV
112 set_sub_stage &= 0xff;
113 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
3da42859
DN
114}
115
9fa9c90e 116static void phy_mgr_initialize(void)
3da42859 117{
3da42859
DN
118 debug("%s:%d\n", __func__, __LINE__);
119 /* USER calibration has control over path to memory */
120 /*
121 * In Hard PHY this is a 2-bit control:
122 * 0: AFI Mux Select
123 * 1: DDIO Mux Select
124 */
1273dd9e 125 writel(0x3, &phy_mgr_cfg->mux_sel);
3da42859
DN
126
127 /* USER memory clock is not stable we begin initialization */
1273dd9e 128 writel(0, &phy_mgr_cfg->reset_mem_stbl);
3da42859
DN
129
130 /* USER calibration status all set to zero */
1273dd9e 131 writel(0, &phy_mgr_cfg->cal_status);
3da42859 132
1273dd9e 133 writel(0, &phy_mgr_cfg->cal_debug_info);
3da42859
DN
134
135 if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) {
136 param->read_correct_mask_vg = ((uint32_t)1 <<
137 (RW_MGR_MEM_DQ_PER_READ_DQS /
138 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
139 param->write_correct_mask_vg = ((uint32_t)1 <<
140 (RW_MGR_MEM_DQ_PER_READ_DQS /
141 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
142 param->read_correct_mask = ((uint32_t)1 <<
143 RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
144 param->write_correct_mask = ((uint32_t)1 <<
145 RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
146 param->dm_correct_mask = ((uint32_t)1 <<
147 (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH))
148 - 1;
149 }
150}
151
152static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
153{
154 uint32_t odt_mask_0 = 0;
155 uint32_t odt_mask_1 = 0;
156 uint32_t cs_and_odt_mask;
3da42859
DN
157
158 if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
159 if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
160 /*
161 * 1 Rank
162 * Read: ODT = 0
163 * Write: ODT = 1
164 */
165 odt_mask_0 = 0x0;
166 odt_mask_1 = 0x1;
167 } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
168 /* 2 Ranks */
169 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
170 /* - Dual-Slot , Single-Rank
171 * (1 chip-select per DIMM)
172 * OR
173 * - RDIMM, 4 total CS (2 CS per DIMM)
174 * means 2 DIMM
175 * Since MEM_NUMBER_OF_RANKS is 2 they are
176 * both single rank
177 * with 2 CS each (special for RDIMM)
178 * Read: Turn on ODT on the opposite rank
179 * Write: Turn on ODT on all ranks
180 */
181 odt_mask_0 = 0x3 & ~(1 << rank);
182 odt_mask_1 = 0x3;
183 } else {
184 /*
185 * USER - Single-Slot , Dual-rank DIMMs
186 * (2 chip-selects per DIMM)
187 * USER Read: Turn on ODT off on all ranks
188 * USER Write: Turn on ODT on active rank
189 */
190 odt_mask_0 = 0x0;
191 odt_mask_1 = 0x3 & (1 << rank);
192 }
963bca63 193 } else {
3da42859
DN
194 /* 4 Ranks
195 * Read:
196 * ----------+-----------------------+
197 * | |
198 * | ODT |
199 * Read From +-----------------------+
200 * Rank | 3 | 2 | 1 | 0 |
201 * ----------+-----+-----+-----+-----+
202 * 0 | 0 | 1 | 0 | 0 |
203 * 1 | 1 | 0 | 0 | 0 |
204 * 2 | 0 | 0 | 0 | 1 |
205 * 3 | 0 | 0 | 1 | 0 |
206 * ----------+-----+-----+-----+-----+
207 *
208 * Write:
209 * ----------+-----------------------+
210 * | |
211 * | ODT |
212 * Write To +-----------------------+
213 * Rank | 3 | 2 | 1 | 0 |
214 * ----------+-----+-----+-----+-----+
215 * 0 | 0 | 1 | 0 | 1 |
216 * 1 | 1 | 0 | 1 | 0 |
217 * 2 | 0 | 1 | 0 | 1 |
218 * 3 | 1 | 0 | 1 | 0 |
219 * ----------+-----+-----+-----+-----+
220 */
221 switch (rank) {
222 case 0:
223 odt_mask_0 = 0x4;
224 odt_mask_1 = 0x5;
225 break;
226 case 1:
227 odt_mask_0 = 0x8;
228 odt_mask_1 = 0xA;
229 break;
230 case 2:
231 odt_mask_0 = 0x1;
232 odt_mask_1 = 0x5;
233 break;
234 case 3:
235 odt_mask_0 = 0x2;
236 odt_mask_1 = 0xA;
237 break;
238 }
239 }
240 } else {
241 odt_mask_0 = 0x0;
242 odt_mask_1 = 0x0;
243 }
244
245 cs_and_odt_mask =
246 (0xFF & ~(1 << rank)) |
247 ((0xFF & odt_mask_0) << 8) |
248 ((0xFF & odt_mask_1) << 16);
1273dd9e
MV
249 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
250 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
3da42859
DN
251}
252
c76976d9
MV
253/**
254 * scc_mgr_set() - Set SCC Manager register
255 * @off: Base offset in SCC Manager space
256 * @grp: Read/Write group
257 * @val: Value to be set
258 *
259 * This function sets the SCC Manager (Scan Chain Control Manager) register.
260 */
261static void scc_mgr_set(u32 off, u32 grp, u32 val)
3da42859 262{
c76976d9
MV
263 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
264}
3da42859 265
e893f4dc
MV
266/**
267 * scc_mgr_initialize() - Initialize SCC Manager registers
268 *
269 * Initialize SCC Manager registers.
270 */
c76976d9
MV
271static void scc_mgr_initialize(void)
272{
3da42859 273 /*
e893f4dc
MV
274 * Clear register file for HPS. 16 (2^4) is the size of the
275 * full register file in the scc mgr:
276 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
277 * MEM_IF_READ_DQS_WIDTH - 1);
3da42859 278 */
c76976d9 279 int i;
e893f4dc 280
3da42859 281 for (i = 0; i < 16; i++) {
7ac40d25 282 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
3da42859 283 __func__, __LINE__, i);
c76976d9 284 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
3da42859
DN
285 }
286}
287
5ff825b8
MV
288static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
289{
c76976d9 290 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
5ff825b8
MV
291}
292
293static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
3da42859 294{
c76976d9 295 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
3da42859
DN
296}
297
5ff825b8
MV
298static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
299{
c76976d9 300 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
5ff825b8
MV
301}
302
303static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
304{
c76976d9 305 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
5ff825b8
MV
306}
307
32675249 308static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
3da42859 309{
c76976d9
MV
310 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
311 delay);
3da42859
DN
312}
313
5ff825b8 314static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
3da42859 315{
c76976d9 316 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
5ff825b8
MV
317}
318
319static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
320{
c76976d9 321 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
5ff825b8
MV
322}
323
32675249 324static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
5ff825b8 325{
c76976d9
MV
326 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
327 delay);
5ff825b8
MV
328}
329
330static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
331{
c76976d9
MV
332 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
333 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
334 delay);
5ff825b8
MV
335}
336
337/* load up dqs config settings */
338static void scc_mgr_load_dqs(uint32_t dqs)
339{
340 writel(dqs, &sdr_scc_mgr->dqs_ena);
341}
342
343/* load up dqs io config settings */
344static void scc_mgr_load_dqs_io(void)
345{
346 writel(0, &sdr_scc_mgr->dqs_io_ena);
347}
348
349/* load up dq config settings */
350static void scc_mgr_load_dq(uint32_t dq_in_group)
351{
352 writel(dq_in_group, &sdr_scc_mgr->dq_ena);
353}
354
355/* load up dm config settings */
356static void scc_mgr_load_dm(uint32_t dm)
357{
358 writel(dm, &sdr_scc_mgr->dm_ena);
3da42859
DN
359}
360
0b69b807
MV
361/**
362 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
363 * @off: Base offset in SCC Manager space
364 * @grp: Read/Write group
365 * @val: Value to be set
366 * @update: If non-zero, trigger SCC Manager update for all ranks
367 *
368 * This function sets the SCC Manager (Scan Chain Control Manager) register
369 * and optionally triggers the SCC update for all ranks.
370 */
371static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
372 const int update)
3da42859 373{
0b69b807 374 u32 r;
3da42859
DN
375
376 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
377 r += NUM_RANKS_PER_SHADOW_REG) {
0b69b807
MV
378 scc_mgr_set(off, grp, val);
379
380 if (update || (r == 0)) {
381 writel(grp, &sdr_scc_mgr->dqs_ena);
1273dd9e 382 writel(0, &sdr_scc_mgr->update);
3da42859
DN
383 }
384 }
385}
386
0b69b807
MV
387static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
388{
389 /*
390 * USER although the h/w doesn't support different phases per
391 * shadow register, for simplicity our scc manager modeling
392 * keeps different phase settings per shadow reg, and it's
393 * important for us to keep them in sync to match h/w.
394 * for efficiency, the scan chain update should occur only
395 * once to sr0.
396 */
397 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
398 read_group, phase, 0);
399}
400
3da42859
DN
401static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
402 uint32_t phase)
403{
0b69b807
MV
404 /*
405 * USER although the h/w doesn't support different phases per
406 * shadow register, for simplicity our scc manager modeling
407 * keeps different phase settings per shadow reg, and it's
408 * important for us to keep them in sync to match h/w.
409 * for efficiency, the scan chain update should occur only
410 * once to sr0.
411 */
412 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
413 write_group, phase, 0);
3da42859
DN
414}
415
3da42859
DN
416static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
417 uint32_t delay)
418{
3da42859
DN
419 /*
420 * In shadow register mode, the T11 settings are stored in
421 * registers in the core, which are updated by the DQS_ENA
422 * signals. Not issuing the SCC_MGR_UPD command allows us to
423 * save lots of rank switching overhead, by calling
424 * select_shadow_regs_for_update with update_scan_chains
425 * set to 0.
426 */
0b69b807
MV
427 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
428 read_group, delay, 1);
1273dd9e 429 writel(0, &sdr_scc_mgr->update);
3da42859
DN
430}
431
5be355c1
MV
432/**
433 * scc_mgr_set_oct_out1_delay() - Set OCT output delay
434 * @write_group: Write group
435 * @delay: Delay value
436 *
437 * This function sets the OCT output delay in SCC manager.
438 */
439static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
3da42859 440{
5be355c1
MV
441 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
442 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
443 const int base = write_group * ratio;
444 int i;
3da42859
DN
445 /*
446 * Load the setting in the SCC manager
447 * Although OCT affects only write data, the OCT delay is controlled
448 * by the DQS logic block which is instantiated once per read group.
449 * For protocols where a write group consists of multiple read groups,
450 * the setting must be set multiple times.
451 */
5be355c1
MV
452 for (i = 0; i < ratio; i++)
453 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
3da42859
DN
454}
455
37a37ca7
MV
456/**
457 * scc_mgr_set_hhp_extras() - Set HHP extras.
458 *
459 * Load the fixed setting in the SCC manager HHP extras.
460 */
3da42859
DN
461static void scc_mgr_set_hhp_extras(void)
462{
463 /*
464 * Load the fixed setting in the SCC manager
37a37ca7
MV
465 * bits: 0:0 = 1'b1 - DQS bypass
466 * bits: 1:1 = 1'b1 - DQ bypass
467 * bits: 4:2 = 3'b001 - rfifo_mode
468 * bits: 6:5 = 2'b01 - rfifo clock_select
469 * bits: 7:7 = 1'b0 - separate gating from ungating setting
470 * bits: 8:8 = 1'b0 - separate OE from Output delay setting
3da42859 471 */
37a37ca7
MV
472 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
473 (1 << 2) | (1 << 1) | (1 << 0);
474 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
475 SCC_MGR_HHP_GLOBALS_OFFSET |
476 SCC_MGR_HHP_EXTRAS_OFFSET;
477
478 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
479 __func__, __LINE__);
480 writel(value, addr);
481 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
482 __func__, __LINE__);
3da42859
DN
483}
484
f42af35b
MV
485/**
486 * scc_mgr_zero_all() - Zero all DQS config
487 *
488 * Zero all DQS config.
3da42859
DN
489 */
490static void scc_mgr_zero_all(void)
491{
f42af35b 492 int i, r;
3da42859
DN
493
494 /*
495 * USER Zero all DQS config settings, across all groups and all
496 * shadow registers
497 */
f42af35b
MV
498 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
499 r += NUM_RANKS_PER_SHADOW_REG) {
3da42859
DN
500 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
501 /*
502 * The phases actually don't exist on a per-rank basis,
503 * but there's no harm updating them several times, so
504 * let's keep the code simple.
505 */
506 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
507 scc_mgr_set_dqs_en_phase(i, 0);
508 scc_mgr_set_dqs_en_delay(i, 0);
509 }
510
511 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
512 scc_mgr_set_dqdqs_output_phase(i, 0);
f42af35b 513 /* Arria V/Cyclone V don't have out2. */
3da42859
DN
514 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
515 }
516 }
517
f42af35b 518 /* Multicast to all DQS group enables. */
1273dd9e
MV
519 writel(0xff, &sdr_scc_mgr->dqs_ena);
520 writel(0, &sdr_scc_mgr->update);
3da42859
DN
521}
522
c5c5f537
MV
523/**
524 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
525 * @write_group: Write group
526 *
527 * Set bypass mode and trigger SCC update.
528 */
529static void scc_set_bypass_mode(const u32 write_group)
3da42859 530{
c5c5f537 531 /* Multicast to all DQ enables. */
1273dd9e
MV
532 writel(0xff, &sdr_scc_mgr->dq_ena);
533 writel(0xff, &sdr_scc_mgr->dm_ena);
3da42859 534
c5c5f537 535 /* Update current DQS IO enable. */
1273dd9e 536 writel(0, &sdr_scc_mgr->dqs_io_ena);
3da42859 537
c5c5f537 538 /* Update the DQS logic. */
1273dd9e 539 writel(write_group, &sdr_scc_mgr->dqs_ena);
3da42859 540
c5c5f537 541 /* Hit update. */
1273dd9e 542 writel(0, &sdr_scc_mgr->update);
3da42859
DN
543}
544
5e837896
MV
545/**
546 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
547 * @write_group: Write group
548 *
549 * Load DQS settings for Write Group, do not trigger SCC update.
550 */
551static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
5ff825b8 552{
5e837896
MV
553 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
554 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
555 const int base = write_group * ratio;
556 int i;
5ff825b8 557 /*
5e837896 558 * Load the setting in the SCC manager
5ff825b8
MV
559 * Although OCT affects only write data, the OCT delay is controlled
560 * by the DQS logic block which is instantiated once per read group.
561 * For protocols where a write group consists of multiple read groups,
5e837896 562 * the setting must be set multiple times.
5ff825b8 563 */
5e837896
MV
564 for (i = 0; i < ratio; i++)
565 writel(base + i, &sdr_scc_mgr->dqs_ena);
5ff825b8
MV
566}
567
d41ea93a
MV
568/**
569 * scc_mgr_zero_group() - Zero all configs for a group
570 *
571 * Zero DQ, DM, DQS and OCT configs for a group.
572 */
573static void scc_mgr_zero_group(const u32 write_group, const int out_only)
3da42859 574{
d41ea93a 575 int i, r;
3da42859 576
d41ea93a
MV
577 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
578 r += NUM_RANKS_PER_SHADOW_REG) {
579 /* Zero all DQ config settings. */
3da42859 580 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
07aee5bd 581 scc_mgr_set_dq_out1_delay(i, 0);
3da42859 582 if (!out_only)
07aee5bd 583 scc_mgr_set_dq_in_delay(i, 0);
3da42859
DN
584 }
585
d41ea93a 586 /* Multicast to all DQ enables. */
1273dd9e 587 writel(0xff, &sdr_scc_mgr->dq_ena);
3da42859 588
d41ea93a
MV
589 /* Zero all DM config settings. */
590 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
07aee5bd 591 scc_mgr_set_dm_out1_delay(i, 0);
3da42859 592
d41ea93a 593 /* Multicast to all DM enables. */
1273dd9e 594 writel(0xff, &sdr_scc_mgr->dm_ena);
3da42859 595
d41ea93a 596 /* Zero all DQS IO settings. */
3da42859 597 if (!out_only)
32675249 598 scc_mgr_set_dqs_io_in_delay(0);
d41ea93a
MV
599
600 /* Arria V/Cyclone V don't have out2. */
32675249 601 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
3da42859
DN
602 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
603 scc_mgr_load_dqs_for_write_group(write_group);
604
d41ea93a 605 /* Multicast to all DQS IO enables (only 1 in total). */
1273dd9e 606 writel(0, &sdr_scc_mgr->dqs_io_ena);
3da42859 607
d41ea93a 608 /* Hit update to zero everything. */
1273dd9e 609 writel(0, &sdr_scc_mgr->update);
3da42859
DN
610 }
611}
612
3da42859
DN
613/*
614 * apply and load a particular input delay for the DQ pins in a group
615 * group_bgn is the index of the first dq pin (in the write group)
616 */
32675249 617static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
3da42859
DN
618{
619 uint32_t i, p;
620
621 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
07aee5bd 622 scc_mgr_set_dq_in_delay(p, delay);
3da42859
DN
623 scc_mgr_load_dq(p);
624 }
625}
626
300c2e62
MV
627/**
628 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
629 * @delay: Delay value
630 *
631 * Apply and load a particular output delay for the DQ pins in a group.
632 */
633static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
3da42859 634{
300c2e62 635 int i;
3da42859 636
300c2e62
MV
637 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
638 scc_mgr_set_dq_out1_delay(i, delay);
3da42859
DN
639 scc_mgr_load_dq(i);
640 }
641}
642
643/* apply and load a particular output delay for the DM pins in a group */
32675249 644static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
3da42859
DN
645{
646 uint32_t i;
647
648 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
07aee5bd 649 scc_mgr_set_dm_out1_delay(i, delay1);
3da42859
DN
650 scc_mgr_load_dm(i);
651 }
652}
653
654
655/* apply and load delay on both DQS and OCT out1 */
656static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
657 uint32_t delay)
658{
32675249 659 scc_mgr_set_dqs_out1_delay(delay);
3da42859
DN
660 scc_mgr_load_dqs_io();
661
662 scc_mgr_set_oct_out1_delay(write_group, delay);
663 scc_mgr_load_dqs_for_write_group(write_group);
664}
665
5cb1b508
MV
666/**
667 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
668 * @write_group: Write group
669 * @delay: Delay value
670 *
671 * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
672 */
8eccde3e 673static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
8eccde3e
MV
674 const u32 delay)
675{
676 u32 i, new_delay;
3da42859 677
8eccde3e
MV
678 /* DQ shift */
679 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
3da42859 680 scc_mgr_load_dq(i);
3da42859 681
8eccde3e
MV
682 /* DM shift */
683 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
3da42859 684 scc_mgr_load_dm(i);
3da42859 685
5cb1b508
MV
686 /* DQS shift */
687 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
3da42859 688 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
5cb1b508
MV
689 debug_cond(DLEVEL == 1,
690 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
691 __func__, __LINE__, write_group, delay, new_delay,
692 IO_IO_OUT2_DELAY_MAX,
3da42859 693 new_delay - IO_IO_OUT2_DELAY_MAX);
5cb1b508
MV
694 new_delay -= IO_IO_OUT2_DELAY_MAX;
695 scc_mgr_set_dqs_out1_delay(new_delay);
3da42859
DN
696 }
697
698 scc_mgr_load_dqs_io();
699
5cb1b508
MV
700 /* OCT shift */
701 new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
3da42859 702 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
5cb1b508
MV
703 debug_cond(DLEVEL == 1,
704 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
705 __func__, __LINE__, write_group, delay,
706 new_delay, IO_IO_OUT2_DELAY_MAX,
3da42859 707 new_delay - IO_IO_OUT2_DELAY_MAX);
5cb1b508
MV
708 new_delay -= IO_IO_OUT2_DELAY_MAX;
709 scc_mgr_set_oct_out1_delay(write_group, new_delay);
3da42859
DN
710 }
711
712 scc_mgr_load_dqs_for_write_group(write_group);
713}
714
f51a7d35
MV
715/**
716 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
717 * @write_group: Write group
718 * @delay: Delay value
719 *
720 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
3da42859 721 */
f51a7d35
MV
722static void
723scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
724 const u32 delay)
3da42859 725{
f51a7d35 726 int r;
3da42859
DN
727
728 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
f51a7d35 729 r += NUM_RANKS_PER_SHADOW_REG) {
5cb1b508 730 scc_mgr_apply_group_all_out_delay_add(write_group, delay);
1273dd9e 731 writel(0, &sdr_scc_mgr->update);
3da42859
DN
732 }
733}
734
f936f94f
MV
735/**
736 * set_jump_as_return() - Return instruction optimization
737 *
738 * Optimization used to recover some slots in ddr3 inst_rom could be
739 * applied to other protocols if we wanted to
740 */
3da42859
DN
741static void set_jump_as_return(void)
742{
3da42859 743 /*
f936f94f 744 * To save space, we replace return with jump to special shared
3da42859 745 * RETURN instruction so we set the counter to large value so that
f936f94f 746 * we always jump.
3da42859 747 */
1273dd9e
MV
748 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
749 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3da42859
DN
750}
751
752/*
753 * should always use constants as argument to ensure all computations are
754 * performed at compile time
755 */
756static void delay_for_n_mem_clocks(const uint32_t clocks)
757{
758 uint32_t afi_clocks;
759 uint8_t inner = 0;
760 uint8_t outer = 0;
761 uint16_t c_loop = 0;
3da42859
DN
762
763 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
764
765
766 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
767 /* scale (rounding up) to get afi clocks */
768
769 /*
770 * Note, we don't bother accounting for being off a little bit
771 * because of a few extra instructions in outer loops
772 * Note, the loops have a test at the end, and do the test before
773 * the decrement, and so always perform the loop
774 * 1 time more than the counter value
775 */
776 if (afi_clocks == 0) {
777 ;
778 } else if (afi_clocks <= 0x100) {
779 inner = afi_clocks-1;
780 outer = 0;
781 c_loop = 0;
782 } else if (afi_clocks <= 0x10000) {
783 inner = 0xff;
784 outer = (afi_clocks-1) >> 8;
785 c_loop = 0;
786 } else {
787 inner = 0xff;
788 outer = 0xff;
789 c_loop = (afi_clocks-1) >> 16;
790 }
791
792 /*
793 * rom instructions are structured as follows:
794 *
795 * IDLE_LOOP2: jnz cntr0, TARGET_A
796 * IDLE_LOOP1: jnz cntr1, TARGET_B
797 * return
798 *
799 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
800 * TARGET_B is set to IDLE_LOOP2 as well
801 *
802 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
803 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
804 *
805 * a little confusing, but it helps save precious space in the inst_rom
806 * and sequencer rom and keeps the delays more accurate and reduces
807 * overhead
808 */
809 if (afi_clocks <= 0x100) {
1273dd9e
MV
810 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
811 &sdr_rw_load_mgr_regs->load_cntr1);
3da42859 812
1273dd9e
MV
813 writel(RW_MGR_IDLE_LOOP1,
814 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3da42859 815
1273dd9e
MV
816 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
817 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3da42859 818 } else {
1273dd9e
MV
819 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
820 &sdr_rw_load_mgr_regs->load_cntr0);
3da42859 821
1273dd9e
MV
822 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
823 &sdr_rw_load_mgr_regs->load_cntr1);
3da42859 824
1273dd9e
MV
825 writel(RW_MGR_IDLE_LOOP2,
826 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3da42859 827
1273dd9e
MV
828 writel(RW_MGR_IDLE_LOOP2,
829 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3da42859
DN
830
831 /* hack to get around compiler not being smart enough */
832 if (afi_clocks <= 0x10000) {
833 /* only need to run once */
1273dd9e
MV
834 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
835 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3da42859
DN
836 } else {
837 do {
1273dd9e
MV
838 writel(RW_MGR_IDLE_LOOP2,
839 SDR_PHYGRP_RWMGRGRP_ADDRESS |
840 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3da42859
DN
841 } while (c_loop-- != 0);
842 }
843 }
844 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
845}
846
944fe719
MV
847/**
848 * rw_mgr_mem_init_load_regs() - Load instruction registers
849 * @cntr0: Counter 0 value
850 * @cntr1: Counter 1 value
851 * @cntr2: Counter 2 value
852 * @jump: Jump instruction value
853 *
854 * Load instruction registers.
855 */
856static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
857{
858 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
859 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
860
861 /* Load counters */
862 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
863 &sdr_rw_load_mgr_regs->load_cntr0);
864 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
865 &sdr_rw_load_mgr_regs->load_cntr1);
866 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
867 &sdr_rw_load_mgr_regs->load_cntr2);
868
869 /* Load jump address */
870 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
871 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
872 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
873
874 /* Execute count instruction */
875 writel(jump, grpaddr);
876}
877
ecd2334a
MV
878/**
879 * rw_mgr_mem_load_user() - Load user calibration values
880 * @fin1: Final instruction 1
881 * @fin2: Final instruction 2
882 * @precharge: If 1, precharge the banks at the end
883 *
884 * Load user calibration values and optionally precharge the banks.
885 */
886static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
887 const int precharge)
3da42859 888{
ecd2334a
MV
889 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
890 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
891 u32 r;
892
893 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
894 if (param->skip_ranks[r]) {
895 /* request to skip the rank */
896 continue;
897 }
898
899 /* set rank */
900 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
901
902 /* precharge all banks ... */
903 if (precharge)
904 writel(RW_MGR_PRECHARGE_ALL, grpaddr);
3da42859 905
ecd2334a
MV
906 /*
907 * USER Use Mirror-ed commands for odd ranks if address
908 * mirrorring is on
909 */
910 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
911 set_jump_as_return();
912 writel(RW_MGR_MRS2_MIRR, grpaddr);
913 delay_for_n_mem_clocks(4);
914 set_jump_as_return();
915 writel(RW_MGR_MRS3_MIRR, grpaddr);
916 delay_for_n_mem_clocks(4);
917 set_jump_as_return();
918 writel(RW_MGR_MRS1_MIRR, grpaddr);
919 delay_for_n_mem_clocks(4);
920 set_jump_as_return();
921 writel(fin1, grpaddr);
922 } else {
923 set_jump_as_return();
924 writel(RW_MGR_MRS2, grpaddr);
925 delay_for_n_mem_clocks(4);
926 set_jump_as_return();
927 writel(RW_MGR_MRS3, grpaddr);
928 delay_for_n_mem_clocks(4);
929 set_jump_as_return();
930 writel(RW_MGR_MRS1, grpaddr);
931 set_jump_as_return();
932 writel(fin2, grpaddr);
933 }
934
935 if (precharge)
936 continue;
937
938 set_jump_as_return();
939 writel(RW_MGR_ZQCL, grpaddr);
940
941 /* tZQinit = tDLLK = 512 ck cycles */
942 delay_for_n_mem_clocks(512);
943 }
944}
945
946static void rw_mgr_mem_initialize(void)
947{
3da42859
DN
948 debug("%s:%d\n", __func__, __LINE__);
949
950 /* The reset / cke part of initialization is broadcasted to all ranks */
1273dd9e
MV
951 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
952 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
3da42859
DN
953
954 /*
955 * Here's how you load register for a loop
956 * Counters are located @ 0x800
957 * Jump address are located @ 0xC00
958 * For both, registers 0 to 3 are selected using bits 3 and 2, like
959 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
960 * I know this ain't pretty, but Avalon bus throws away the 2 least
961 * significant bits
962 */
963
964 /* start with memory RESET activated */
965
966 /* tINIT = 200us */
967
968 /*
969 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
970 * If a and b are the number of iteration in 2 nested loops
971 * it takes the following number of cycles to complete the operation:
972 * number_of_cycles = ((2 + n) * a + 2) * b
973 * where n is the number of instruction in the inner loop
974 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
975 * b = 6A
976 */
944fe719
MV
977 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
978 SEQ_TINIT_CNTR2_VAL,
979 RW_MGR_INIT_RESET_0_CKE_0);
3da42859
DN
980
981 /* indicate that memory is stable */
1273dd9e 982 writel(1, &phy_mgr_cfg->reset_mem_stbl);
3da42859
DN
983
984 /*
985 * transition the RESET to high
986 * Wait for 500us
987 */
988
989 /*
990 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
991 * If a and b are the number of iteration in 2 nested loops
992 * it takes the following number of cycles to complete the operation
993 * number_of_cycles = ((2 + n) * a + 2) * b
994 * where n is the number of instruction in the inner loop
995 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
996 * b = FF
997 */
944fe719
MV
998 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
999 SEQ_TRESET_CNTR2_VAL,
1000 RW_MGR_INIT_RESET_1_CKE_0);
3da42859
DN
1001
1002 /* bring up clock enable */
1003
1004 /* tXRP < 250 ck cycles */
1005 delay_for_n_mem_clocks(250);
1006
ecd2334a
MV
1007 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1008 0);
3da42859
DN
1009}
1010
1011/*
1012 * At the end of calibration we have to program the user settings in, and
1013 * USER hand off the memory to the user.
1014 */
1015static void rw_mgr_mem_handoff(void)
1016{
ecd2334a
MV
1017 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1018 /*
1019 * USER need to wait tMOD (12CK or 15ns) time before issuing
1020 * other commands, but we will have plenty of NIOS cycles before
1021 * actual handoff so its okay.
1022 */
3da42859
DN
1023}
1024
1025/*
1026 * performs a guaranteed read on the patterns we are going to use during a
1027 * read test to ensure memory works
1028 */
1029static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
1030 uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
1031 uint32_t all_ranks)
1032{
1033 uint32_t r, vg;
1034 uint32_t correct_mask_vg;
1035 uint32_t tmp_bit_chk;
1036 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1037 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1038 uint32_t addr;
1039 uint32_t base_rw_mgr;
1040
1041 *bit_chk = param->read_correct_mask;
1042 correct_mask_vg = param->read_correct_mask_vg;
1043
1044 for (r = rank_bgn; r < rank_end; r++) {
1045 if (param->skip_ranks[r])
1046 /* request to skip the rank */
1047 continue;
1048
1049 /* set rank */
1050 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1051
1052 /* Load up a constant bursts of read commands */
1273dd9e
MV
1053 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1054 writel(RW_MGR_GUARANTEED_READ,
1055 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3da42859 1056
1273dd9e
MV
1057 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1058 writel(RW_MGR_GUARANTEED_READ_CONT,
1059 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3da42859
DN
1060
1061 tmp_bit_chk = 0;
1062 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1063 /* reset the fifos to get pointers to known state */
1064
1273dd9e
MV
1065 writel(0, &phy_mgr_cmd->fifo_reset);
1066 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1067 RW_MGR_RESET_READ_DATAPATH_OFFSET);
3da42859
DN
1068
1069 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1070 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1071
c4815f76 1072 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
17fdc916 1073 writel(RW_MGR_GUARANTEED_READ, addr +
3da42859
DN
1074 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1075 vg) << 2));
1076
1273dd9e 1077 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
3da42859
DN
1078 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
1079
1080 if (vg == 0)
1081 break;
1082 }
1083 *bit_chk &= tmp_bit_chk;
1084 }
1085
c4815f76 1086 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
17fdc916 1087 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
3da42859
DN
1088
1089 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1090 debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
1091 %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
1092 (long unsigned int)(*bit_chk == param->read_correct_mask));
1093 return *bit_chk == param->read_correct_mask;
1094}
1095
1096static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
1097 (uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
1098{
1099 return rw_mgr_mem_calibrate_read_test_patterns(0, group,
1100 num_tries, bit_chk, 1);
1101}
1102
1103/* load up the patterns we are going to use during a read test */
1104static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
1105 uint32_t all_ranks)
1106{
1107 uint32_t r;
3da42859
DN
1108 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1109 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1110
1111 debug("%s:%d\n", __func__, __LINE__);
1112 for (r = rank_bgn; r < rank_end; r++) {
1113 if (param->skip_ranks[r])
1114 /* request to skip the rank */
1115 continue;
1116
1117 /* set rank */
1118 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1119
1120 /* Load up a constant bursts */
1273dd9e 1121 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
3da42859 1122
1273dd9e
MV
1123 writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1124 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3da42859 1125
1273dd9e 1126 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
3da42859 1127
1273dd9e
MV
1128 writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1129 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3da42859 1130
1273dd9e 1131 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
3da42859 1132
1273dd9e
MV
1133 writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1134 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
3da42859 1135
1273dd9e 1136 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
3da42859 1137
1273dd9e
MV
1138 writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1139 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
3da42859 1140
1273dd9e
MV
1141 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1142 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3da42859
DN
1143 }
1144
1145 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1146}
1147
1148/*
1149 * try a read and see if it returns correct data back. has dummy reads
1150 * inserted into the mix used to align dqs enable. has more thorough checks
1151 * than the regular read test.
1152 */
1153static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1154 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1155 uint32_t all_groups, uint32_t all_ranks)
1156{
1157 uint32_t r, vg;
1158 uint32_t correct_mask_vg;
1159 uint32_t tmp_bit_chk;
1160 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1161 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1162 uint32_t addr;
1163 uint32_t base_rw_mgr;
1164
1165 *bit_chk = param->read_correct_mask;
1166 correct_mask_vg = param->read_correct_mask_vg;
1167
1168 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1169 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1170
1171 for (r = rank_bgn; r < rank_end; r++) {
1172 if (param->skip_ranks[r])
1173 /* request to skip the rank */
1174 continue;
1175
1176 /* set rank */
1177 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1178
1273dd9e 1179 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
3da42859 1180
1273dd9e
MV
1181 writel(RW_MGR_READ_B2B_WAIT1,
1182 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3da42859 1183
1273dd9e
MV
1184 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1185 writel(RW_MGR_READ_B2B_WAIT2,
1186 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
3da42859 1187
3da42859 1188 if (quick_read_mode)
1273dd9e 1189 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
3da42859
DN
1190 /* need at least two (1+1) reads to capture failures */
1191 else if (all_groups)
1273dd9e 1192 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
3da42859 1193 else
1273dd9e 1194 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
3da42859 1195
1273dd9e
MV
1196 writel(RW_MGR_READ_B2B,
1197 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3da42859
DN
1198 if (all_groups)
1199 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1200 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1273dd9e 1201 &sdr_rw_load_mgr_regs->load_cntr3);
3da42859 1202 else
1273dd9e 1203 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
3da42859 1204
1273dd9e
MV
1205 writel(RW_MGR_READ_B2B,
1206 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
3da42859
DN
1207
1208 tmp_bit_chk = 0;
1209 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1210 /* reset the fifos to get pointers to known state */
1273dd9e
MV
1211 writel(0, &phy_mgr_cmd->fifo_reset);
1212 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1213 RW_MGR_RESET_READ_DATAPATH_OFFSET);
3da42859
DN
1214
1215 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1216 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1217
c4815f76
MV
1218 if (all_groups)
1219 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1220 else
1221 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1222
17fdc916 1223 writel(RW_MGR_READ_B2B, addr +
3da42859
DN
1224 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1225 vg) << 2));
1226
1273dd9e 1227 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
3da42859
DN
1228 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1229
1230 if (vg == 0)
1231 break;
1232 }
1233 *bit_chk &= tmp_bit_chk;
1234 }
1235
c4815f76 1236 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
17fdc916 1237 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
3da42859
DN
1238
1239 if (all_correct) {
1240 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1241 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1242 (%u == %u) => %lu", __func__, __LINE__, group,
1243 all_groups, *bit_chk, param->read_correct_mask,
1244 (long unsigned int)(*bit_chk ==
1245 param->read_correct_mask));
1246 return *bit_chk == param->read_correct_mask;
1247 } else {
1248 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1249 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1250 (%u != %lu) => %lu\n", __func__, __LINE__,
1251 group, all_groups, *bit_chk, (long unsigned int)0,
1252 (long unsigned int)(*bit_chk != 0x00));
1253 return *bit_chk != 0x00;
1254 }
1255}
1256
1257static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1258 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1259 uint32_t all_groups)
1260{
1261 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1262 bit_chk, all_groups, 1);
1263}
1264
1265static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1266{
1273dd9e 1267 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
3da42859
DN
1268 (*v)++;
1269}
1270
1271static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1272{
1273 uint32_t i;
1274
1275 for (i = 0; i < VFIFO_SIZE-1; i++)
1276 rw_mgr_incr_vfifo(grp, v);
1277}
1278
1279static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1280{
1281 uint32_t v;
1282 uint32_t fail_cnt = 0;
1283 uint32_t test_status;
1284
1285 for (v = 0; v < VFIFO_SIZE; ) {
1286 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1287 __func__, __LINE__, v);
1288 test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1289 (grp, 1, PASS_ONE_BIT, bit_chk, 0);
1290 if (!test_status) {
1291 fail_cnt++;
1292
1293 if (fail_cnt == 2)
1294 break;
1295 }
1296
1297 /* fiddle with FIFO */
1298 rw_mgr_incr_vfifo(grp, &v);
1299 }
1300
1301 if (v >= VFIFO_SIZE) {
1302 /* no failing read found!! Something must have gone wrong */
1303 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1304 __func__, __LINE__);
1305 return 0;
1306 } else {
1307 return v;
1308 }
1309}
1310
1311static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1312 uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1313 uint32_t *v, uint32_t *d, uint32_t *p,
1314 uint32_t *i, uint32_t *max_working_cnt)
1315{
1316 uint32_t found_begin = 0;
1317 uint32_t tmp_delay = 0;
1318 uint32_t test_status;
1319
1320 for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1321 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1322 *work_bgn = tmp_delay;
1323 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1324
1325 for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1326 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1327 IO_DELAY_PER_OPA_TAP) {
1328 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1329
1330 test_status =
1331 rw_mgr_mem_calibrate_read_test_all_ranks
1332 (*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1333
1334 if (test_status) {
1335 *max_working_cnt = 1;
1336 found_begin = 1;
1337 break;
1338 }
1339 }
1340
1341 if (found_begin)
1342 break;
1343
1344 if (*p > IO_DQS_EN_PHASE_MAX)
1345 /* fiddle with FIFO */
1346 rw_mgr_incr_vfifo(*grp, v);
1347 }
1348
1349 if (found_begin)
1350 break;
1351 }
1352
1353 if (*i >= VFIFO_SIZE) {
1354 /* cannot find working solution */
1355 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1356 ptap/dtap\n", __func__, __LINE__);
1357 return 0;
1358 } else {
1359 return 1;
1360 }
1361}
1362
1363static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1364 uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1365 uint32_t *p, uint32_t *max_working_cnt)
1366{
1367 uint32_t found_begin = 0;
1368 uint32_t tmp_delay;
1369
1370 /* Special case code for backing up a phase */
1371 if (*p == 0) {
1372 *p = IO_DQS_EN_PHASE_MAX;
1373 rw_mgr_decr_vfifo(*grp, v);
1374 } else {
1375 (*p)--;
1376 }
1377 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1378 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1379
1380 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1381 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1382 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1383
1384 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1385 PASS_ONE_BIT,
1386 bit_chk, 0)) {
1387 found_begin = 1;
1388 *work_bgn = tmp_delay;
1389 break;
1390 }
1391 }
1392
1393 /* We have found a working dtap before the ptap found above */
1394 if (found_begin == 1)
1395 (*max_working_cnt)++;
1396
1397 /*
1398 * Restore VFIFO to old state before we decremented it
1399 * (if needed).
1400 */
1401 (*p)++;
1402 if (*p > IO_DQS_EN_PHASE_MAX) {
1403 *p = 0;
1404 rw_mgr_incr_vfifo(*grp, v);
1405 }
1406
1407 scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1408}
1409
1410static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1411 uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1412 uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1413 uint32_t *work_end)
1414{
1415 uint32_t found_end = 0;
1416
1417 (*p)++;
1418 *work_end += IO_DELAY_PER_OPA_TAP;
1419 if (*p > IO_DQS_EN_PHASE_MAX) {
1420 /* fiddle with FIFO */
1421 *p = 0;
1422 rw_mgr_incr_vfifo(*grp, v);
1423 }
1424
1425 for (; *i < VFIFO_SIZE + 1; (*i)++) {
1426 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1427 += IO_DELAY_PER_OPA_TAP) {
1428 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1429
1430 if (!rw_mgr_mem_calibrate_read_test_all_ranks
1431 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1432 found_end = 1;
1433 break;
1434 } else {
1435 (*max_working_cnt)++;
1436 }
1437 }
1438
1439 if (found_end)
1440 break;
1441
1442 if (*p > IO_DQS_EN_PHASE_MAX) {
1443 /* fiddle with FIFO */
1444 rw_mgr_incr_vfifo(*grp, v);
1445 *p = 0;
1446 }
1447 }
1448
1449 if (*i >= VFIFO_SIZE + 1) {
1450 /* cannot see edge of failing read */
1451 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1452 failed\n", __func__, __LINE__);
1453 return 0;
1454 } else {
1455 return 1;
1456 }
1457}
1458
1459static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
1460 uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1461 uint32_t *p, uint32_t *work_mid,
1462 uint32_t *work_end)
1463{
1464 int i;
1465 int tmp_delay = 0;
1466
1467 *work_mid = (*work_bgn + *work_end) / 2;
1468
1469 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1470 *work_bgn, *work_end, *work_mid);
1471 /* Get the middle delay to be less than a VFIFO delay */
1472 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
1473 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1474 ;
1475 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1476 while (*work_mid > tmp_delay)
1477 *work_mid -= tmp_delay;
1478 debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
1479
1480 tmp_delay = 0;
1481 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
1482 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1483 ;
1484 tmp_delay -= IO_DELAY_PER_OPA_TAP;
1485 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
1486 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
1487 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
1488 ;
1489 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
1490
1491 scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
1492 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1493
1494 /*
1495 * push vfifo until we can successfully calibrate. We can do this
1496 * because the largest possible margin in 1 VFIFO cycle.
1497 */
1498 for (i = 0; i < VFIFO_SIZE; i++) {
1499 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1500 *v);
1501 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1502 PASS_ONE_BIT,
1503 bit_chk, 0)) {
1504 break;
1505 }
1506
1507 /* fiddle with FIFO */
1508 rw_mgr_incr_vfifo(*grp, v);
1509 }
1510
1511 if (i >= VFIFO_SIZE) {
1512 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
1513 failed\n", __func__, __LINE__);
1514 return 0;
1515 } else {
1516 return 1;
1517 }
1518}
1519
1520/* find a good dqs enable to use */
1521static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1522{
1523 uint32_t v, d, p, i;
1524 uint32_t max_working_cnt;
1525 uint32_t bit_chk;
1526 uint32_t dtaps_per_ptap;
1527 uint32_t work_bgn, work_mid, work_end;
1528 uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
3da42859
DN
1529
1530 debug("%s:%d %u\n", __func__, __LINE__, grp);
1531
1532 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1533
1534 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1535 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1536
1537 /* ************************************************************** */
1538 /* * Step 0 : Determine number of delay taps for each phase tap * */
1539 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1540
1541 /* ********************************************************* */
1542 /* * Step 1 : First push vfifo until we get a failing read * */
1543 v = find_vfifo_read(grp, &bit_chk);
1544
1545 max_working_cnt = 0;
1546
1547 /* ******************************************************** */
1548 /* * step 2: find first working phase, increment in ptaps * */
1549 work_bgn = 0;
1550 if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1551 &p, &i, &max_working_cnt) == 0)
1552 return 0;
1553
1554 work_end = work_bgn;
1555
1556 /*
1557 * If d is 0 then the working window covers a phase tap and
1558 * we can follow the old procedure otherwise, we've found the beginning,
1559 * and we need to increment the dtaps until we find the end.
1560 */
1561 if (d == 0) {
1562 /* ********************************************************* */
1563 /* * step 3a: if we have room, back off by one and
1564 increment in dtaps * */
1565
1566 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1567 &max_working_cnt);
1568
1569 /* ********************************************************* */
1570 /* * step 4a: go forward from working phase to non working
1571 phase, increment in ptaps * */
1572 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1573 &i, &max_working_cnt, &work_end) == 0)
1574 return 0;
1575
1576 /* ********************************************************* */
1577 /* * step 5a: back off one from last, increment in dtaps * */
1578
1579 /* Special case code for backing up a phase */
1580 if (p == 0) {
1581 p = IO_DQS_EN_PHASE_MAX;
1582 rw_mgr_decr_vfifo(grp, &v);
1583 } else {
1584 p = p - 1;
1585 }
1586
1587 work_end -= IO_DELAY_PER_OPA_TAP;
1588 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1589
1590 /* * The actual increment of dtaps is done outside of
1591 the if/else loop to share code */
1592 d = 0;
1593
1594 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1595 vfifo=%u ptap=%u\n", __func__, __LINE__,
1596 v, p);
1597 } else {
1598 /* ******************************************************* */
1599 /* * step 3-5b: Find the right edge of the window using
1600 delay taps * */
1601 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1602 ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1603 v, p, d, work_bgn);
1604
1605 work_end = work_bgn;
1606
1607 /* * The actual increment of dtaps is done outside of the
1608 if/else loop to share code */
1609
1610 /* Only here to counterbalance a subtract later on which is
1611 not needed if this branch of the algorithm is taken */
1612 max_working_cnt++;
1613 }
1614
1615 /* The dtap increment to find the failing edge is done here */
1616 for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1617 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1618 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1619 end-2: dtap=%u\n", __func__, __LINE__, d);
1620 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1621
1622 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1623 PASS_ONE_BIT,
1624 &bit_chk, 0)) {
1625 break;
1626 }
1627 }
1628
1629 /* Go back to working dtap */
1630 if (d != 0)
1631 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1632
1633 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1634 ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1635 v, p, d-1, work_end);
1636
1637 if (work_end < work_bgn) {
1638 /* nil range */
1639 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1640 failed\n", __func__, __LINE__);
1641 return 0;
1642 }
1643
1644 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1645 __func__, __LINE__, work_bgn, work_end);
1646
1647 /* *************************************************************** */
1648 /*
1649 * * We need to calculate the number of dtaps that equal a ptap
1650 * * To do that we'll back up a ptap and re-find the edge of the
1651 * * window using dtaps
1652 */
1653
1654 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1655 for tracking\n", __func__, __LINE__);
1656
1657 /* Special case code for backing up a phase */
1658 if (p == 0) {
1659 p = IO_DQS_EN_PHASE_MAX;
1660 rw_mgr_decr_vfifo(grp, &v);
1661 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1662 cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1663 v, p);
1664 } else {
1665 p = p - 1;
1666 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1667 phase only: v=%u p=%u", __func__, __LINE__,
1668 v, p);
1669 }
1670
1671 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1672
1673 /*
1674 * Increase dtap until we first see a passing read (in case the
1675 * window is smaller than a ptap),
1676 * and then a failing read to mark the edge of the window again
1677 */
1678
1679 /* Find a passing read */
1680 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1681 __func__, __LINE__);
1682 found_passing_read = 0;
1683 found_failing_read = 0;
1684 initial_failing_dtap = d;
1685 for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1686 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1687 read d=%u\n", __func__, __LINE__, d);
1688 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1689
1690 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1691 PASS_ONE_BIT,
1692 &bit_chk, 0)) {
1693 found_passing_read = 1;
1694 break;
1695 }
1696 }
1697
1698 if (found_passing_read) {
1699 /* Find a failing read */
1700 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1701 read\n", __func__, __LINE__);
1702 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1703 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1704 testing read d=%u\n", __func__, __LINE__, d);
1705 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1706
1707 if (!rw_mgr_mem_calibrate_read_test_all_ranks
1708 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1709 found_failing_read = 1;
1710 break;
1711 }
1712 }
1713 } else {
1714 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1715 calculate dtaps", __func__, __LINE__);
1716 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1717 }
1718
1719 /*
1720 * The dynamically calculated dtaps_per_ptap is only valid if we
1721 * found a passing/failing read. If we didn't, it means d hit the max
1722 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1723 * statically calculated value.
1724 */
1725 if (found_passing_read && found_failing_read)
1726 dtaps_per_ptap = d - initial_failing_dtap;
1727
1273dd9e 1728 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
3da42859
DN
1729 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1730 - %u = %u", __func__, __LINE__, d,
1731 initial_failing_dtap, dtaps_per_ptap);
1732
1733 /* ******************************************** */
1734 /* * step 6: Find the centre of the window * */
1735 if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1736 &work_mid, &work_end) == 0)
1737 return 0;
1738
1739 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
1740 vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
1741 v, p-1, d);
1742 return 1;
1743}
1744
1745/*
1746 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
1747 * dq_in_delay values
1748 */
1749static uint32_t
1750rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
1751(uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
1752{
1753 uint32_t found;
1754 uint32_t i;
1755 uint32_t p;
1756 uint32_t d;
1757 uint32_t r;
3da42859
DN
1758
1759 const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
1760 (RW_MGR_MEM_DQ_PER_READ_DQS-1);
1761 /* we start at zero, so have one less dq to devide among */
1762
1763 debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
1764 test_bgn);
1765
1766 /* try different dq_in_delays since the dq path is shorter than dqs */
1767
1768 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1769 r += NUM_RANKS_PER_SHADOW_REG) {
32675249 1770 for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) {
3da42859
DN
1771 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
1772 vfifo_find_dqs_", __func__, __LINE__);
1773 debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
1774 write_group, read_group);
1775 debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
07aee5bd 1776 scc_mgr_set_dq_in_delay(p, d);
3da42859
DN
1777 scc_mgr_load_dq(p);
1778 }
1273dd9e 1779 writel(0, &sdr_scc_mgr->update);
3da42859
DN
1780 }
1781
1782 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
1783
1784 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
1785 en_phase_sweep_dq", __func__, __LINE__);
1786 debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
1787 chain to zero\n", write_group, read_group, found);
1788
1789 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1790 r += NUM_RANKS_PER_SHADOW_REG) {
1791 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1792 i++, p++) {
07aee5bd 1793 scc_mgr_set_dq_in_delay(p, 0);
3da42859
DN
1794 scc_mgr_load_dq(p);
1795 }
1273dd9e 1796 writel(0, &sdr_scc_mgr->update);
3da42859
DN
1797 }
1798
1799 return found;
1800}
1801
1802/* per-bit deskew DQ and center */
1803static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1804 uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1805 uint32_t use_read_test, uint32_t update_fom)
1806{
1807 uint32_t i, p, d, min_index;
1808 /*
1809 * Store these as signed since there are comparisons with
1810 * signed numbers.
1811 */
1812 uint32_t bit_chk;
1813 uint32_t sticky_bit_chk;
1814 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1815 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1816 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1817 int32_t mid;
1818 int32_t orig_mid_min, mid_min;
1819 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1820 final_dqs_en;
1821 int32_t dq_margin, dqs_margin;
1822 uint32_t stop;
1823 uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1824 uint32_t addr;
1825
1826 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1827
c4815f76 1828 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
17fdc916 1829 start_dqs = readl(addr + (read_group << 2));
3da42859 1830 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
17fdc916 1831 start_dqs_en = readl(addr + ((read_group << 2)
3da42859
DN
1832 - IO_DQS_EN_DELAY_OFFSET));
1833
1834 /* set the left and right edge of each bit to an illegal value */
1835 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1836 sticky_bit_chk = 0;
1837 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1838 left_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1839 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1840 }
1841
3da42859
DN
1842 /* Search for the left edge of the window for each bit */
1843 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1844 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1845
1273dd9e 1846 writel(0, &sdr_scc_mgr->update);
3da42859
DN
1847
1848 /*
1849 * Stop searching when the read test doesn't pass AND when
1850 * we've seen a passing read on every bit.
1851 */
1852 if (use_read_test) {
1853 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1854 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1855 &bit_chk, 0, 0);
1856 } else {
1857 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1858 0, PASS_ONE_BIT,
1859 &bit_chk, 0);
1860 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1861 (read_group - (write_group *
1862 RW_MGR_MEM_IF_READ_DQS_WIDTH /
1863 RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1864 stop = (bit_chk == 0);
1865 }
1866 sticky_bit_chk = sticky_bit_chk | bit_chk;
1867 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1868 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1869 && %u", __func__, __LINE__, d,
1870 sticky_bit_chk,
1871 param->read_correct_mask, stop);
1872
1873 if (stop == 1) {
1874 break;
1875 } else {
1876 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1877 if (bit_chk & 1) {
1878 /* Remember a passing test as the
1879 left_edge */
1880 left_edge[i] = d;
1881 } else {
1882 /* If a left edge has not been seen yet,
1883 then a future passing test will mark
1884 this edge as the right edge */
1885 if (left_edge[i] ==
1886 IO_IO_IN_DELAY_MAX + 1) {
1887 right_edge[i] = -(d + 1);
1888 }
1889 }
1890 bit_chk = bit_chk >> 1;
1891 }
1892 }
1893 }
1894
1895 /* Reset DQ delay chains to 0 */
32675249 1896 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
3da42859
DN
1897 sticky_bit_chk = 0;
1898 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1899 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1900 %d right_edge[%u]: %d\n", __func__, __LINE__,
1901 i, left_edge[i], i, right_edge[i]);
1902
1903 /*
1904 * Check for cases where we haven't found the left edge,
1905 * which makes our assignment of the the right edge invalid.
1906 * Reset it to the illegal value.
1907 */
1908 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1909 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1910 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1911 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1912 right_edge[%u]: %d\n", __func__, __LINE__,
1913 i, right_edge[i]);
1914 }
1915
1916 /*
1917 * Reset sticky bit (except for bits where we have seen
1918 * both the left and right edge).
1919 */
1920 sticky_bit_chk = sticky_bit_chk << 1;
1921 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1922 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1923 sticky_bit_chk = sticky_bit_chk | 1;
1924 }
1925
1926 if (i == 0)
1927 break;
1928 }
1929
3da42859
DN
1930 /* Search for the right edge of the window for each bit */
1931 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1932 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1933 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1934 uint32_t delay = d + start_dqs_en;
1935 if (delay > IO_DQS_EN_DELAY_MAX)
1936 delay = IO_DQS_EN_DELAY_MAX;
1937 scc_mgr_set_dqs_en_delay(read_group, delay);
1938 }
1939 scc_mgr_load_dqs(read_group);
1940
1273dd9e 1941 writel(0, &sdr_scc_mgr->update);
3da42859
DN
1942
1943 /*
1944 * Stop searching when the read test doesn't pass AND when
1945 * we've seen a passing read on every bit.
1946 */
1947 if (use_read_test) {
1948 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1949 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1950 &bit_chk, 0, 0);
1951 } else {
1952 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1953 0, PASS_ONE_BIT,
1954 &bit_chk, 0);
1955 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1956 (read_group - (write_group *
1957 RW_MGR_MEM_IF_READ_DQS_WIDTH /
1958 RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1959 stop = (bit_chk == 0);
1960 }
1961 sticky_bit_chk = sticky_bit_chk | bit_chk;
1962 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1963
1964 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1965 %u && %u", __func__, __LINE__, d,
1966 sticky_bit_chk, param->read_correct_mask, stop);
1967
1968 if (stop == 1) {
1969 break;
1970 } else {
1971 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1972 if (bit_chk & 1) {
1973 /* Remember a passing test as
1974 the right_edge */
1975 right_edge[i] = d;
1976 } else {
1977 if (d != 0) {
1978 /* If a right edge has not been
1979 seen yet, then a future passing
1980 test will mark this edge as the
1981 left edge */
1982 if (right_edge[i] ==
1983 IO_IO_IN_DELAY_MAX + 1) {
1984 left_edge[i] = -(d + 1);
1985 }
1986 } else {
1987 /* d = 0 failed, but it passed
1988 when testing the left edge,
1989 so it must be marginal,
1990 set it to -1 */
1991 if (right_edge[i] ==
1992 IO_IO_IN_DELAY_MAX + 1 &&
1993 left_edge[i] !=
1994 IO_IO_IN_DELAY_MAX
1995 + 1) {
1996 right_edge[i] = -1;
1997 }
1998 /* If a right edge has not been
1999 seen yet, then a future passing
2000 test will mark this edge as the
2001 left edge */
2002 else if (right_edge[i] ==
2003 IO_IO_IN_DELAY_MAX +
2004 1) {
2005 left_edge[i] = -(d + 1);
2006 }
2007 }
2008 }
2009
2010 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
2011 d=%u]: ", __func__, __LINE__, d);
2012 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
2013 (int)(bit_chk & 1), i, left_edge[i]);
2014 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2015 right_edge[i]);
2016 bit_chk = bit_chk >> 1;
2017 }
2018 }
2019 }
2020
2021 /* Check that all bits have a window */
3da42859
DN
2022 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2023 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2024 %d right_edge[%u]: %d", __func__, __LINE__,
2025 i, left_edge[i], i, right_edge[i]);
2026 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2027 == IO_IO_IN_DELAY_MAX + 1)) {
2028 /*
2029 * Restore delay chain settings before letting the loop
2030 * in rw_mgr_mem_calibrate_vfifo to retry different
2031 * dqs/ck relationships.
2032 */
2033 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2034 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2035 scc_mgr_set_dqs_en_delay(read_group,
2036 start_dqs_en);
2037 }
2038 scc_mgr_load_dqs(read_group);
1273dd9e 2039 writel(0, &sdr_scc_mgr->update);
3da42859
DN
2040
2041 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2042 find edge [%u]: %d %d", __func__, __LINE__,
2043 i, left_edge[i], right_edge[i]);
2044 if (use_read_test) {
2045 set_failing_group_stage(read_group *
2046 RW_MGR_MEM_DQ_PER_READ_DQS + i,
2047 CAL_STAGE_VFIFO,
2048 CAL_SUBSTAGE_VFIFO_CENTER);
2049 } else {
2050 set_failing_group_stage(read_group *
2051 RW_MGR_MEM_DQ_PER_READ_DQS + i,
2052 CAL_STAGE_VFIFO_AFTER_WRITES,
2053 CAL_SUBSTAGE_VFIFO_CENTER);
2054 }
2055 return 0;
2056 }
2057 }
2058
2059 /* Find middle of window for each DQ bit */
2060 mid_min = left_edge[0] - right_edge[0];
2061 min_index = 0;
2062 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2063 mid = left_edge[i] - right_edge[i];
2064 if (mid < mid_min) {
2065 mid_min = mid;
2066 min_index = i;
2067 }
2068 }
2069
2070 /*
2071 * -mid_min/2 represents the amount that we need to move DQS.
2072 * If mid_min is odd and positive we'll need to add one to
2073 * make sure the rounding in further calculations is correct
2074 * (always bias to the right), so just add 1 for all positive values.
2075 */
2076 if (mid_min > 0)
2077 mid_min++;
2078
2079 mid_min = mid_min / 2;
2080
2081 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2082 __func__, __LINE__, mid_min, min_index);
2083
2084 /* Determine the amount we can change DQS (which is -mid_min) */
2085 orig_mid_min = mid_min;
2086 new_dqs = start_dqs - mid_min;
2087 if (new_dqs > IO_DQS_IN_DELAY_MAX)
2088 new_dqs = IO_DQS_IN_DELAY_MAX;
2089 else if (new_dqs < 0)
2090 new_dqs = 0;
2091
2092 mid_min = start_dqs - new_dqs;
2093 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2094 mid_min, new_dqs);
2095
2096 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2097 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2098 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2099 else if (start_dqs_en - mid_min < 0)
2100 mid_min += start_dqs_en - mid_min;
2101 }
2102 new_dqs = start_dqs - mid_min;
2103
2104 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2105 new_dqs=%d mid_min=%d\n", start_dqs,
2106 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2107 new_dqs, mid_min);
2108
2109 /* Initialize data for export structures */
2110 dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2111 dq_margin = IO_IO_IN_DELAY_MAX + 1;
2112
3da42859
DN
2113 /* add delay to bring centre of all DQ windows to the same "level" */
2114 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2115 /* Use values before divide by 2 to reduce round off error */
2116 shift_dq = (left_edge[i] - right_edge[i] -
2117 (left_edge[min_index] - right_edge[min_index]))/2 +
2118 (orig_mid_min - mid_min);
2119
2120 debug_cond(DLEVEL == 2, "vfifo_center: before: \
2121 shift_dq[%u]=%d\n", i, shift_dq);
2122
1273dd9e 2123 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
17fdc916
MV
2124 temp_dq_in_delay1 = readl(addr + (p << 2));
2125 temp_dq_in_delay2 = readl(addr + (i << 2));
3da42859
DN
2126
2127 if (shift_dq + (int32_t)temp_dq_in_delay1 >
2128 (int32_t)IO_IO_IN_DELAY_MAX) {
2129 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2130 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2131 shift_dq = -(int32_t)temp_dq_in_delay1;
2132 }
2133 debug_cond(DLEVEL == 2, "vfifo_center: after: \
2134 shift_dq[%u]=%d\n", i, shift_dq);
2135 final_dq[i] = temp_dq_in_delay1 + shift_dq;
07aee5bd 2136 scc_mgr_set_dq_in_delay(p, final_dq[i]);
3da42859
DN
2137 scc_mgr_load_dq(p);
2138
2139 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2140 left_edge[i] - shift_dq + (-mid_min),
2141 right_edge[i] + shift_dq - (-mid_min));
2142 /* To determine values for export structures */
2143 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2144 dq_margin = left_edge[i] - shift_dq + (-mid_min);
2145
2146 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2147 dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2148 }
2149
2150 final_dqs = new_dqs;
2151 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2152 final_dqs_en = start_dqs_en - mid_min;
2153
2154 /* Move DQS-en */
2155 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2156 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2157 scc_mgr_load_dqs(read_group);
2158 }
2159
2160 /* Move DQS */
2161 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2162 scc_mgr_load_dqs(read_group);
2163 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2164 dqs_margin=%d", __func__, __LINE__,
2165 dq_margin, dqs_margin);
2166
2167 /*
2168 * Do not remove this line as it makes sure all of our decisions
2169 * have been applied. Apply the update bit.
2170 */
1273dd9e 2171 writel(0, &sdr_scc_mgr->update);
3da42859
DN
2172
2173 return (dq_margin >= 0) && (dqs_margin >= 0);
2174}
2175
2176/*
2177 * calibrate the read valid prediction FIFO.
2178 *
2179 * - read valid prediction will consist of finding a good DQS enable phase,
2180 * DQS enable delay, DQS input phase, and DQS input delay.
2181 * - we also do a per-bit deskew on the DQ lines.
2182 */
2183static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group,
2184 uint32_t test_bgn)
2185{
2186 uint32_t p, d, rank_bgn, sr;
2187 uint32_t dtaps_per_ptap;
3da42859
DN
2188 uint32_t bit_chk;
2189 uint32_t grp_calibrated;
2190 uint32_t write_group, write_test_bgn;
2191 uint32_t failed_substage;
2192
7ac40d25 2193 debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn);
3da42859
DN
2194
2195 /* update info for sims */
2196 reg_file_set_stage(CAL_STAGE_VFIFO);
2197
2198 write_group = read_group;
2199 write_test_bgn = test_bgn;
2200
2201 /* USER Determine number of delay taps for each phase tap */
d32badbd
MV
2202 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2203 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
3da42859
DN
2204
2205 /* update info for sims */
2206 reg_file_set_group(read_group);
2207
2208 grp_calibrated = 0;
2209
2210 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2211 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2212
2213 for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) {
2214 /*
2215 * In RLDRAMX we may be messing the delay of pins in
2216 * the same write group but outside of the current read
2217 * the group, but that's ok because we haven't
2218 * calibrated output side yet.
2219 */
2220 if (d > 0) {
f51a7d35
MV
2221 scc_mgr_apply_group_all_out_delay_add_all_ranks(
2222 write_group, d);
3da42859
DN
2223 }
2224
2225 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0;
2226 p++) {
2227 /* set a particular dqdqs phase */
2228 scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p);
2229
2230 debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \
2231 p=%u d=%u\n", __func__, __LINE__,
2232 read_group, p, d);
2233
2234 /*
2235 * Load up the patterns used by read calibration
2236 * using current DQDQS phase.
2237 */
2238 rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2239 if (!(gbl->phy_debug_mode_flags &
2240 PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
2241 if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
2242 (read_group, 1, &bit_chk)) {
2243 debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:",
2244 __func__, __LINE__);
2245 debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n",
2246 read_group, p, d);
2247 break;
2248 }
2249 }
2250
2251/* case:56390 */
2252 grp_calibrated = 1;
2253 if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
2254 (write_group, read_group, test_bgn)) {
2255 /*
2256 * USER Read per-bit deskew can be done on a
2257 * per shadow register basis.
2258 */
2259 for (rank_bgn = 0, sr = 0;
2260 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2261 rank_bgn += NUM_RANKS_PER_SHADOW_REG,
2262 ++sr) {
2263 /*
2264 * Determine if this set of ranks
2265 * should be skipped entirely.
2266 */
2267 if (!param->skip_shadow_regs[sr]) {
2268 /*
2269 * If doing read after write
2270 * calibration, do not update
2271 * FOM, now - do it then.
2272 */
2273 if (!rw_mgr_mem_calibrate_vfifo_center
2274 (rank_bgn, write_group,
2275 read_group, test_bgn, 1, 0)) {
2276 grp_calibrated = 0;
2277 failed_substage =
2278 CAL_SUBSTAGE_VFIFO_CENTER;
2279 }
2280 }
2281 }
2282 } else {
2283 grp_calibrated = 0;
2284 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2285 }
2286 }
2287 }
2288
2289 if (grp_calibrated == 0) {
2290 set_failing_group_stage(write_group, CAL_STAGE_VFIFO,
2291 failed_substage);
2292 return 0;
2293 }
2294
2295 /*
2296 * Reset the delay chains back to zero if they have moved > 1
2297 * (check for > 1 because loop will increase d even when pass in
2298 * first case).
2299 */
2300 if (d > 2)
d41ea93a 2301 scc_mgr_zero_group(write_group, 1);
3da42859
DN
2302
2303 return 1;
2304}
2305
2306/* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2307static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2308 uint32_t test_bgn)
2309{
2310 uint32_t rank_bgn, sr;
2311 uint32_t grp_calibrated;
2312 uint32_t write_group;
2313
2314 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2315
2316 /* update info for sims */
2317
2318 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2319 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2320
2321 write_group = read_group;
2322
2323 /* update info for sims */
2324 reg_file_set_group(read_group);
2325
2326 grp_calibrated = 1;
2327 /* Read per-bit deskew can be done on a per shadow register basis */
2328 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2329 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2330 /* Determine if this set of ranks should be skipped entirely */
2331 if (!param->skip_shadow_regs[sr]) {
2332 /* This is the last calibration round, update FOM here */
2333 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2334 write_group,
2335 read_group,
2336 test_bgn, 0,
2337 1)) {
2338 grp_calibrated = 0;
2339 }
2340 }
2341 }
2342
2343
2344 if (grp_calibrated == 0) {
2345 set_failing_group_stage(write_group,
2346 CAL_STAGE_VFIFO_AFTER_WRITES,
2347 CAL_SUBSTAGE_VFIFO_CENTER);
2348 return 0;
2349 }
2350
2351 return 1;
2352}
2353
2354/* Calibrate LFIFO to find smallest read latency */
2355static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2356{
2357 uint32_t found_one;
2358 uint32_t bit_chk;
3da42859
DN
2359
2360 debug("%s:%d\n", __func__, __LINE__);
2361
2362 /* update info for sims */
2363 reg_file_set_stage(CAL_STAGE_LFIFO);
2364 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2365
2366 /* Load up the patterns used by read calibration for all ranks */
2367 rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2368 found_one = 0;
2369
3da42859 2370 do {
1273dd9e 2371 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3da42859
DN
2372 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2373 __func__, __LINE__, gbl->curr_read_lat);
2374
2375 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2376 NUM_READ_TESTS,
2377 PASS_ALL_BITS,
2378 &bit_chk, 1)) {
2379 break;
2380 }
2381
2382 found_one = 1;
2383 /* reduce read latency and see if things are working */
2384 /* correctly */
2385 gbl->curr_read_lat--;
2386 } while (gbl->curr_read_lat > 0);
2387
2388 /* reset the fifos to get pointers to known state */
2389
1273dd9e 2390 writel(0, &phy_mgr_cmd->fifo_reset);
3da42859
DN
2391
2392 if (found_one) {
2393 /* add a fudge factor to the read latency that was determined */
2394 gbl->curr_read_lat += 2;
1273dd9e 2395 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3da42859
DN
2396 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2397 read_lat=%u\n", __func__, __LINE__,
2398 gbl->curr_read_lat);
2399 return 1;
2400 } else {
2401 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2402 CAL_SUBSTAGE_READ_LATENCY);
2403
2404 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2405 read_lat=%u\n", __func__, __LINE__,
2406 gbl->curr_read_lat);
2407 return 0;
2408 }
2409}
2410
2411/*
2412 * issue write test command.
2413 * two variants are provided. one that just tests a write pattern and
2414 * another that tests datamask functionality.
2415 */
2416static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2417 uint32_t test_dm)
2418{
2419 uint32_t mcc_instruction;
2420 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2421 ENABLE_SUPER_QUICK_CALIBRATION);
2422 uint32_t rw_wl_nop_cycles;
2423 uint32_t addr;
2424
2425 /*
2426 * Set counter and jump addresses for the right
2427 * number of NOP cycles.
2428 * The number of supported NOP cycles can range from -1 to infinity
2429 * Three different cases are handled:
2430 *
2431 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2432 * mechanism will be used to insert the right number of NOPs
2433 *
2434 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2435 * issuing the write command will jump straight to the
2436 * micro-instruction that turns on DQS (for DDRx), or outputs write
2437 * data (for RLD), skipping
2438 * the NOP micro-instruction all together
2439 *
2440 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2441 * turned on in the same micro-instruction that issues the write
2442 * command. Then we need
2443 * to directly jump to the micro-instruction that sends out the data
2444 *
2445 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2446 * (2 and 3). One jump-counter (0) is used to perform multiple
2447 * write-read operations.
2448 * one counter left to issue this command in "multiple-group" mode
2449 */
2450
2451 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2452
2453 if (rw_wl_nop_cycles == -1) {
2454 /*
2455 * CNTR 2 - We want to execute the special write operation that
2456 * turns on DQS right away and then skip directly to the
2457 * instruction that sends out the data. We set the counter to a
2458 * large number so that the jump is always taken.
2459 */
1273dd9e 2460 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
3da42859
DN
2461
2462 /* CNTR 3 - Not used */
2463 if (test_dm) {
2464 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
3da42859 2465 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
1273dd9e 2466 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
3da42859 2467 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1273dd9e 2468 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
3da42859
DN
2469 } else {
2470 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
1273dd9e
MV
2471 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2472 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2473 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2474 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
3da42859
DN
2475 }
2476 } else if (rw_wl_nop_cycles == 0) {
2477 /*
2478 * CNTR 2 - We want to skip the NOP operation and go straight
2479 * to the DQS enable instruction. We set the counter to a large
2480 * number so that the jump is always taken.
2481 */
1273dd9e 2482 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
3da42859
DN
2483
2484 /* CNTR 3 - Not used */
2485 if (test_dm) {
2486 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
3da42859 2487 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
1273dd9e 2488 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
3da42859
DN
2489 } else {
2490 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1273dd9e
MV
2491 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2492 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
3da42859
DN
2493 }
2494 } else {
2495 /*
2496 * CNTR 2 - In this case we want to execute the next instruction
2497 * and NOT take the jump. So we set the counter to 0. The jump
2498 * address doesn't count.
2499 */
1273dd9e
MV
2500 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2501 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
3da42859
DN
2502
2503 /*
2504 * CNTR 3 - Set the nop counter to the number of cycles we
2505 * need to loop for, minus 1.
2506 */
1273dd9e 2507 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
3da42859
DN
2508 if (test_dm) {
2509 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1273dd9e
MV
2510 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2511 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
3da42859
DN
2512 } else {
2513 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1273dd9e
MV
2514 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2515 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
3da42859
DN
2516 }
2517 }
2518
1273dd9e
MV
2519 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2520 RW_MGR_RESET_READ_DATAPATH_OFFSET);
3da42859 2521
3da42859 2522 if (quick_write_mode)
1273dd9e 2523 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
3da42859 2524 else
1273dd9e 2525 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
3da42859 2526
1273dd9e 2527 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3da42859
DN
2528
2529 /*
2530 * CNTR 1 - This is used to ensure enough time elapses
2531 * for read data to come back.
2532 */
1273dd9e 2533 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
3da42859 2534
3da42859 2535 if (test_dm) {
1273dd9e
MV
2536 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2537 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3da42859 2538 } else {
1273dd9e
MV
2539 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2540 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3da42859
DN
2541 }
2542
c4815f76 2543 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
17fdc916 2544 writel(mcc_instruction, addr + (group << 2));
3da42859
DN
2545}
2546
2547/* Test writes, can check for a single bit pass or multiple bit pass */
2548static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2549 uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2550 uint32_t *bit_chk, uint32_t all_ranks)
2551{
3da42859
DN
2552 uint32_t r;
2553 uint32_t correct_mask_vg;
2554 uint32_t tmp_bit_chk;
2555 uint32_t vg;
2556 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2557 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2558 uint32_t addr_rw_mgr;
2559 uint32_t base_rw_mgr;
2560
2561 *bit_chk = param->write_correct_mask;
2562 correct_mask_vg = param->write_correct_mask_vg;
2563
2564 for (r = rank_bgn; r < rank_end; r++) {
2565 if (param->skip_ranks[r]) {
2566 /* request to skip the rank */
2567 continue;
2568 }
2569
2570 /* set rank */
2571 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2572
2573 tmp_bit_chk = 0;
a4bfa463 2574 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
3da42859
DN
2575 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2576 /* reset the fifos to get pointers to known state */
1273dd9e 2577 writel(0, &phy_mgr_cmd->fifo_reset);
3da42859
DN
2578
2579 tmp_bit_chk = tmp_bit_chk <<
2580 (RW_MGR_MEM_DQ_PER_WRITE_DQS /
2581 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2582 rw_mgr_mem_calibrate_write_test_issue(write_group *
2583 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2584 use_dm);
2585
17fdc916 2586 base_rw_mgr = readl(addr_rw_mgr);
3da42859
DN
2587 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2588 if (vg == 0)
2589 break;
2590 }
2591 *bit_chk &= tmp_bit_chk;
2592 }
2593
2594 if (all_correct) {
2595 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2596 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2597 %u => %lu", write_group, use_dm,
2598 *bit_chk, param->write_correct_mask,
2599 (long unsigned int)(*bit_chk ==
2600 param->write_correct_mask));
2601 return *bit_chk == param->write_correct_mask;
2602 } else {
2603 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2604 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2605 write_group, use_dm, *bit_chk);
2606 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2607 (long unsigned int)(*bit_chk != 0));
2608 return *bit_chk != 0x00;
2609 }
2610}
2611
2612/*
2613 * center all windows. do per-bit-deskew to possibly increase size of
2614 * certain windows.
2615 */
2616static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2617 uint32_t write_group, uint32_t test_bgn)
2618{
2619 uint32_t i, p, min_index;
2620 int32_t d;
2621 /*
2622 * Store these as signed since there are comparisons with
2623 * signed numbers.
2624 */
2625 uint32_t bit_chk;
2626 uint32_t sticky_bit_chk;
2627 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2628 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2629 int32_t mid;
2630 int32_t mid_min, orig_mid_min;
2631 int32_t new_dqs, start_dqs, shift_dq;
2632 int32_t dq_margin, dqs_margin, dm_margin;
2633 uint32_t stop;
2634 uint32_t temp_dq_out1_delay;
2635 uint32_t addr;
2636
2637 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2638
2639 dm_margin = 0;
2640
c4815f76 2641 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
17fdc916 2642 start_dqs = readl(addr +
3da42859
DN
2643 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2644
2645 /* per-bit deskew */
2646
2647 /*
2648 * set the left and right edge of each bit to an illegal value
2649 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2650 */
2651 sticky_bit_chk = 0;
2652 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2653 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2654 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2655 }
2656
2657 /* Search for the left edge of the window for each bit */
3da42859 2658 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
300c2e62 2659 scc_mgr_apply_group_dq_out1_delay(write_group, d);
3da42859 2660
1273dd9e 2661 writel(0, &sdr_scc_mgr->update);
3da42859
DN
2662
2663 /*
2664 * Stop searching when the read test doesn't pass AND when
2665 * we've seen a passing read on every bit.
2666 */
2667 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2668 0, PASS_ONE_BIT, &bit_chk, 0);
2669 sticky_bit_chk = sticky_bit_chk | bit_chk;
2670 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2671 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2672 == %u && %u [bit_chk= %u ]\n",
2673 d, sticky_bit_chk, param->write_correct_mask,
2674 stop, bit_chk);
2675
2676 if (stop == 1) {
2677 break;
2678 } else {
2679 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2680 if (bit_chk & 1) {
2681 /*
2682 * Remember a passing test as the
2683 * left_edge.
2684 */
2685 left_edge[i] = d;
2686 } else {
2687 /*
2688 * If a left edge has not been seen
2689 * yet, then a future passing test will
2690 * mark this edge as the right edge.
2691 */
2692 if (left_edge[i] ==
2693 IO_IO_OUT1_DELAY_MAX + 1) {
2694 right_edge[i] = -(d + 1);
2695 }
2696 }
2697 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2698 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2699 (int)(bit_chk & 1), i, left_edge[i]);
2700 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2701 right_edge[i]);
2702 bit_chk = bit_chk >> 1;
2703 }
2704 }
2705 }
2706
2707 /* Reset DQ delay chains to 0 */
32675249 2708 scc_mgr_apply_group_dq_out1_delay(0);
3da42859
DN
2709 sticky_bit_chk = 0;
2710 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2711 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2712 %d right_edge[%u]: %d\n", __func__, __LINE__,
2713 i, left_edge[i], i, right_edge[i]);
2714
2715 /*
2716 * Check for cases where we haven't found the left edge,
2717 * which makes our assignment of the the right edge invalid.
2718 * Reset it to the illegal value.
2719 */
2720 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2721 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2722 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2723 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2724 right_edge[%u]: %d\n", __func__, __LINE__,
2725 i, right_edge[i]);
2726 }
2727
2728 /*
2729 * Reset sticky bit (except for bits where we have
2730 * seen the left edge).
2731 */
2732 sticky_bit_chk = sticky_bit_chk << 1;
2733 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2734 sticky_bit_chk = sticky_bit_chk | 1;
2735
2736 if (i == 0)
2737 break;
2738 }
2739
2740 /* Search for the right edge of the window for each bit */
3da42859
DN
2741 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2742 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2743 d + start_dqs);
2744
1273dd9e 2745 writel(0, &sdr_scc_mgr->update);
3da42859
DN
2746
2747 /*
2748 * Stop searching when the read test doesn't pass AND when
2749 * we've seen a passing read on every bit.
2750 */
2751 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2752 0, PASS_ONE_BIT, &bit_chk, 0);
2753
2754 sticky_bit_chk = sticky_bit_chk | bit_chk;
2755 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2756
2757 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2758 %u && %u\n", d, sticky_bit_chk,
2759 param->write_correct_mask, stop);
2760
2761 if (stop == 1) {
2762 if (d == 0) {
2763 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2764 i++) {
2765 /* d = 0 failed, but it passed when
2766 testing the left edge, so it must be
2767 marginal, set it to -1 */
2768 if (right_edge[i] ==
2769 IO_IO_OUT1_DELAY_MAX + 1 &&
2770 left_edge[i] !=
2771 IO_IO_OUT1_DELAY_MAX + 1) {
2772 right_edge[i] = -1;
2773 }
2774 }
2775 }
2776 break;
2777 } else {
2778 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2779 if (bit_chk & 1) {
2780 /*
2781 * Remember a passing test as
2782 * the right_edge.
2783 */
2784 right_edge[i] = d;
2785 } else {
2786 if (d != 0) {
2787 /*
2788 * If a right edge has not
2789 * been seen yet, then a future
2790 * passing test will mark this
2791 * edge as the left edge.
2792 */
2793 if (right_edge[i] ==
2794 IO_IO_OUT1_DELAY_MAX + 1)
2795 left_edge[i] = -(d + 1);
2796 } else {
2797 /*
2798 * d = 0 failed, but it passed
2799 * when testing the left edge,
2800 * so it must be marginal, set
2801 * it to -1.
2802 */
2803 if (right_edge[i] ==
2804 IO_IO_OUT1_DELAY_MAX + 1 &&
2805 left_edge[i] !=
2806 IO_IO_OUT1_DELAY_MAX + 1)
2807 right_edge[i] = -1;
2808 /*
2809 * If a right edge has not been
2810 * seen yet, then a future
2811 * passing test will mark this
2812 * edge as the left edge.
2813 */
2814 else if (right_edge[i] ==
2815 IO_IO_OUT1_DELAY_MAX +
2816 1)
2817 left_edge[i] = -(d + 1);
2818 }
2819 }
2820 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2821 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2822 (int)(bit_chk & 1), i, left_edge[i]);
2823 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2824 right_edge[i]);
2825 bit_chk = bit_chk >> 1;
2826 }
2827 }
2828 }
2829
2830 /* Check that all bits have a window */
2831 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2832 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2833 %d right_edge[%u]: %d", __func__, __LINE__,
2834 i, left_edge[i], i, right_edge[i]);
2835 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2836 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2837 set_failing_group_stage(test_bgn + i,
2838 CAL_STAGE_WRITES,
2839 CAL_SUBSTAGE_WRITES_CENTER);
2840 return 0;
2841 }
2842 }
2843
2844 /* Find middle of window for each DQ bit */
2845 mid_min = left_edge[0] - right_edge[0];
2846 min_index = 0;
2847 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2848 mid = left_edge[i] - right_edge[i];
2849 if (mid < mid_min) {
2850 mid_min = mid;
2851 min_index = i;
2852 }
2853 }
2854
2855 /*
2856 * -mid_min/2 represents the amount that we need to move DQS.
2857 * If mid_min is odd and positive we'll need to add one to
2858 * make sure the rounding in further calculations is correct
2859 * (always bias to the right), so just add 1 for all positive values.
2860 */
2861 if (mid_min > 0)
2862 mid_min++;
2863 mid_min = mid_min / 2;
2864 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2865 __LINE__, mid_min);
2866
2867 /* Determine the amount we can change DQS (which is -mid_min) */
2868 orig_mid_min = mid_min;
2869 new_dqs = start_dqs;
2870 mid_min = 0;
2871 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2872 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2873 /* Initialize data for export structures */
2874 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2875 dq_margin = IO_IO_OUT1_DELAY_MAX + 1;
2876
2877 /* add delay to bring centre of all DQ windows to the same "level" */
3da42859
DN
2878 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2879 /* Use values before divide by 2 to reduce round off error */
2880 shift_dq = (left_edge[i] - right_edge[i] -
2881 (left_edge[min_index] - right_edge[min_index]))/2 +
2882 (orig_mid_min - mid_min);
2883
2884 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2885 [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2886
1273dd9e 2887 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
17fdc916 2888 temp_dq_out1_delay = readl(addr + (i << 2));
3da42859
DN
2889 if (shift_dq + (int32_t)temp_dq_out1_delay >
2890 (int32_t)IO_IO_OUT1_DELAY_MAX) {
2891 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2892 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2893 shift_dq = -(int32_t)temp_dq_out1_delay;
2894 }
2895 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2896 i, shift_dq);
07aee5bd 2897 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
3da42859
DN
2898 scc_mgr_load_dq(i);
2899
2900 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2901 left_edge[i] - shift_dq + (-mid_min),
2902 right_edge[i] + shift_dq - (-mid_min));
2903 /* To determine values for export structures */
2904 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2905 dq_margin = left_edge[i] - shift_dq + (-mid_min);
2906
2907 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2908 dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2909 }
2910
2911 /* Move DQS */
2912 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
1273dd9e 2913 writel(0, &sdr_scc_mgr->update);
3da42859
DN
2914
2915 /* Centre DM */
2916 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
2917
2918 /*
2919 * set the left and right edge of each bit to an illegal value,
2920 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
2921 */
2922 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
2923 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
2924 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2925 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2926 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2927 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
2928 int32_t win_best = 0;
2929
2930 /* Search for the/part of the window with DM shift */
3da42859 2931 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
32675249 2932 scc_mgr_apply_group_dm_out1_delay(d);
1273dd9e 2933 writel(0, &sdr_scc_mgr->update);
3da42859
DN
2934
2935 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2936 PASS_ALL_BITS, &bit_chk,
2937 0)) {
2938 /* USE Set current end of the window */
2939 end_curr = -d;
2940 /*
2941 * If a starting edge of our window has not been seen
2942 * this is our current start of the DM window.
2943 */
2944 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2945 bgn_curr = -d;
2946
2947 /*
2948 * If current window is bigger than best seen.
2949 * Set best seen to be current window.
2950 */
2951 if ((end_curr-bgn_curr+1) > win_best) {
2952 win_best = end_curr-bgn_curr+1;
2953 bgn_best = bgn_curr;
2954 end_best = end_curr;
2955 }
2956 } else {
2957 /* We just saw a failing test. Reset temp edge */
2958 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2959 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2960 }
2961 }
2962
2963
2964 /* Reset DM delay chains to 0 */
32675249 2965 scc_mgr_apply_group_dm_out1_delay(0);
3da42859
DN
2966
2967 /*
2968 * Check to see if the current window nudges up aganist 0 delay.
2969 * If so we need to continue the search by shifting DQS otherwise DQS
2970 * search begins as a new search. */
2971 if (end_curr != 0) {
2972 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2973 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2974 }
2975
2976 /* Search for the/part of the window with DQS shifts */
3da42859
DN
2977 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
2978 /*
2979 * Note: This only shifts DQS, so are we limiting ourselve to
2980 * width of DQ unnecessarily.
2981 */
2982 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2983 d + new_dqs);
2984
1273dd9e 2985 writel(0, &sdr_scc_mgr->update);
3da42859
DN
2986 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2987 PASS_ALL_BITS, &bit_chk,
2988 0)) {
2989 /* USE Set current end of the window */
2990 end_curr = d;
2991 /*
2992 * If a beginning edge of our window has not been seen
2993 * this is our current begin of the DM window.
2994 */
2995 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2996 bgn_curr = d;
2997
2998 /*
2999 * If current window is bigger than best seen. Set best
3000 * seen to be current window.
3001 */
3002 if ((end_curr-bgn_curr+1) > win_best) {
3003 win_best = end_curr-bgn_curr+1;
3004 bgn_best = bgn_curr;
3005 end_best = end_curr;
3006 }
3007 } else {
3008 /* We just saw a failing test. Reset temp edge */
3009 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3010 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3011
3012 /* Early exit optimization: if ther remaining delay
3013 chain space is less than already seen largest window
3014 we can exit */
3015 if ((win_best-1) >
3016 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3017 break;
3018 }
3019 }
3020 }
3021
3022 /* assign left and right edge for cal and reporting; */
3023 left_edge[0] = -1*bgn_best;
3024 right_edge[0] = end_best;
3025
3026 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3027 __LINE__, left_edge[0], right_edge[0]);
3028
3029 /* Move DQS (back to orig) */
3030 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3031
3032 /* Move DM */
3033
3034 /* Find middle of window for the DM bit */
3035 mid = (left_edge[0] - right_edge[0]) / 2;
3036
3037 /* only move right, since we are not moving DQS/DQ */
3038 if (mid < 0)
3039 mid = 0;
3040
3041 /* dm_marign should fail if we never find a window */
3042 if (win_best == 0)
3043 dm_margin = -1;
3044 else
3045 dm_margin = left_edge[0] - mid;
3046
32675249 3047 scc_mgr_apply_group_dm_out1_delay(mid);
1273dd9e 3048 writel(0, &sdr_scc_mgr->update);
3da42859
DN
3049
3050 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3051 dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3052 right_edge[0], mid, dm_margin);
3053 /* Export values */
3054 gbl->fom_out += dq_margin + dqs_margin;
3055
3056 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3057 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3058 dq_margin, dqs_margin, dm_margin);
3059
3060 /*
3061 * Do not remove this line as it makes sure all of our
3062 * decisions have been applied.
3063 */
1273dd9e 3064 writel(0, &sdr_scc_mgr->update);
3da42859
DN
3065 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3066}
3067
3068/* calibrate the write operations */
3069static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3070 uint32_t test_bgn)
3071{
3072 /* update info for sims */
3073 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3074
3075 reg_file_set_stage(CAL_STAGE_WRITES);
3076 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3077
3078 reg_file_set_group(g);
3079
3080 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3081 set_failing_group_stage(g, CAL_STAGE_WRITES,
3082 CAL_SUBSTAGE_WRITES_CENTER);
3083 return 0;
3084 }
3085
3086 return 1;
3087}
3088
3089/* precharge all banks and activate row 0 in bank "000..." and bank "111..." */
3090static void mem_precharge_and_activate(void)
3091{
3092 uint32_t r;
3da42859
DN
3093
3094 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3095 if (param->skip_ranks[r]) {
3096 /* request to skip the rank */
3097 continue;
3098 }
3099
3100 /* set rank */
3101 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3102
3103 /* precharge all banks ... */
1273dd9e
MV
3104 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3105 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3da42859 3106
1273dd9e
MV
3107 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3108 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3109 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3da42859 3110
1273dd9e
MV
3111 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3112 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3113 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3da42859
DN
3114
3115 /* activate rows */
1273dd9e
MV
3116 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3117 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3da42859
DN
3118 }
3119}
3120
3121/* Configure various memory related parameters. */
3122static void mem_config(void)
3123{
3124 uint32_t rlat, wlat;
3125 uint32_t rw_wl_nop_cycles;
3126 uint32_t max_latency;
3da42859
DN
3127
3128 debug("%s:%d\n", __func__, __LINE__);
3129 /* read in write and read latency */
1273dd9e
MV
3130 wlat = readl(&data_mgr->t_wl_add);
3131 wlat += readl(&data_mgr->mem_t_add);
3da42859 3132
3da42859
DN
3133 /* WL for hard phy does not include additive latency */
3134
3135 /*
3136 * add addtional write latency to offset the address/command extra
3137 * clock cycle. We change the AC mux setting causing AC to be delayed
3138 * by one mem clock cycle. Only do this for DDR3
3139 */
3140 wlat = wlat + 1;
3141
1273dd9e 3142 rlat = readl(&data_mgr->t_rl_add);
3da42859
DN
3143
3144 rw_wl_nop_cycles = wlat - 2;
3145 gbl->rw_wl_nop_cycles = rw_wl_nop_cycles;
3146
3147 /*
3148 * For AV/CV, lfifo is hardened and always runs at full rate so
3149 * max latency in AFI clocks, used here, is correspondingly smaller.
3150 */
3151 max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1;
3152 /* configure for a burst length of 8 */
3153
3154 /* write latency */
3155 /* Adjust Write Latency for Hard PHY */
3156 wlat = wlat + 1;
3157
3158 /* set a pretty high read latency initially */
3159 gbl->curr_read_lat = rlat + 16;
3160
3161 if (gbl->curr_read_lat > max_latency)
3162 gbl->curr_read_lat = max_latency;
3163
1273dd9e 3164 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3da42859
DN
3165
3166 /* advertise write latency */
3167 gbl->curr_write_lat = wlat;
1273dd9e 3168 writel(wlat - 2, &phy_mgr_cfg->afi_wlat);
3da42859
DN
3169
3170 /* initialize bit slips */
3171 mem_precharge_and_activate();
3172}
3173
3174/* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */
3175static void mem_skip_calibrate(void)
3176{
3177 uint32_t vfifo_offset;
3178 uint32_t i, j, r;
3da42859
DN
3179
3180 debug("%s:%d\n", __func__, __LINE__);
3181 /* Need to update every shadow register set used by the interface */
3182 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3183 r += NUM_RANKS_PER_SHADOW_REG) {
3184 /*
3185 * Set output phase alignment settings appropriate for
3186 * skip calibration.
3187 */
3188 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3189 scc_mgr_set_dqs_en_phase(i, 0);
3190#if IO_DLL_CHAIN_LENGTH == 6
3191 scc_mgr_set_dqdqs_output_phase(i, 6);
3192#else
3193 scc_mgr_set_dqdqs_output_phase(i, 7);
3194#endif
3195 /*
3196 * Case:33398
3197 *
3198 * Write data arrives to the I/O two cycles before write
3199 * latency is reached (720 deg).
3200 * -> due to bit-slip in a/c bus
3201 * -> to allow board skew where dqs is longer than ck
3202 * -> how often can this happen!?
3203 * -> can claim back some ptaps for high freq
3204 * support if we can relax this, but i digress...
3205 *
3206 * The write_clk leads mem_ck by 90 deg
3207 * The minimum ptap of the OPA is 180 deg
3208 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3209 * The write_clk is always delayed by 2 ptaps
3210 *
3211 * Hence, to make DQS aligned to CK, we need to delay
3212 * DQS by:
3213 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3214 *
3215 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3216 * gives us the number of ptaps, which simplies to:
3217 *
3218 * (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3219 */
3220 scc_mgr_set_dqdqs_output_phase(i, (1.25 *
3221 IO_DLL_CHAIN_LENGTH - 2));
3222 }
1273dd9e
MV
3223 writel(0xff, &sdr_scc_mgr->dqs_ena);
3224 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3da42859 3225
3da42859 3226 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
1273dd9e
MV
3227 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3228 SCC_MGR_GROUP_COUNTER_OFFSET);
3da42859 3229 }
1273dd9e
MV
3230 writel(0xff, &sdr_scc_mgr->dq_ena);
3231 writel(0xff, &sdr_scc_mgr->dm_ena);
3232 writel(0, &sdr_scc_mgr->update);
3da42859
DN
3233 }
3234
3235 /* Compensate for simulation model behaviour */
3236 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3237 scc_mgr_set_dqs_bus_in_delay(i, 10);
3238 scc_mgr_load_dqs(i);
3239 }
1273dd9e 3240 writel(0, &sdr_scc_mgr->update);
3da42859
DN
3241
3242 /*
3243 * ArriaV has hard FIFOs that can only be initialized by incrementing
3244 * in sequencer.
3245 */
3246 vfifo_offset = CALIB_VFIFO_OFFSET;
3da42859 3247 for (j = 0; j < vfifo_offset; j++) {
1273dd9e 3248 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3da42859 3249 }
1273dd9e 3250 writel(0, &phy_mgr_cmd->fifo_reset);
3da42859
DN
3251
3252 /*
3253 * For ACV with hard lfifo, we get the skip-cal setting from
3254 * generation-time constant.
3255 */
3256 gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
1273dd9e 3257 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3da42859
DN
3258}
3259
3260/* Memory calibration entry point */
3261static uint32_t mem_calibrate(void)
3262{
3263 uint32_t i;
3264 uint32_t rank_bgn, sr;
3265 uint32_t write_group, write_test_bgn;
3266 uint32_t read_group, read_test_bgn;
3267 uint32_t run_groups, current_run;
3268 uint32_t failing_groups = 0;
3269 uint32_t group_failed = 0;
3270 uint32_t sr_failed = 0;
3da42859
DN
3271
3272 debug("%s:%d\n", __func__, __LINE__);
3273 /* Initialize the data settings */
3274
3275 gbl->error_substage = CAL_SUBSTAGE_NIL;
3276 gbl->error_stage = CAL_STAGE_NIL;
3277 gbl->error_group = 0xff;
3278 gbl->fom_in = 0;
3279 gbl->fom_out = 0;
3280
3281 mem_config();
3282
3da42859 3283 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
1273dd9e
MV
3284 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3285 SCC_MGR_GROUP_COUNTER_OFFSET);
fa5d821b
MV
3286 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3287 if (i == 0)
3288 scc_mgr_set_hhp_extras();
3289
c5c5f537 3290 scc_set_bypass_mode(i);
3da42859
DN
3291 }
3292
3293 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3294 /*
3295 * Set VFIFO and LFIFO to instant-on settings in skip
3296 * calibration mode.
3297 */
3298 mem_skip_calibrate();
3299 } else {
3300 for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3301 /*
3302 * Zero all delay chain/phase settings for all
3303 * groups and all shadow register sets.
3304 */
3305 scc_mgr_zero_all();
3306
3307 run_groups = ~param->skip_groups;
3308
3309 for (write_group = 0, write_test_bgn = 0; write_group
3310 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3311 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3312 /* Initialized the group failure */
3313 group_failed = 0;
3314
3315 current_run = run_groups & ((1 <<
3316 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3317 run_groups = run_groups >>
3318 RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3319
3320 if (current_run == 0)
3321 continue;
3322
1273dd9e
MV
3323 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3324 SCC_MGR_GROUP_COUNTER_OFFSET);
d41ea93a 3325 scc_mgr_zero_group(write_group, 0);
3da42859
DN
3326
3327 for (read_group = write_group *
3328 RW_MGR_MEM_IF_READ_DQS_WIDTH /
3329 RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3330 read_test_bgn = 0;
3331 read_group < (write_group + 1) *
3332 RW_MGR_MEM_IF_READ_DQS_WIDTH /
3333 RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3334 group_failed == 0;
3335 read_group++, read_test_bgn +=
3336 RW_MGR_MEM_DQ_PER_READ_DQS) {
3337 /* Calibrate the VFIFO */
3338 if (!((STATIC_CALIB_STEPS) &
3339 CALIB_SKIP_VFIFO)) {
3340 if (!rw_mgr_mem_calibrate_vfifo
3341 (read_group,
3342 read_test_bgn)) {
3343 group_failed = 1;
3344
3345 if (!(gbl->
3346 phy_debug_mode_flags &
3347 PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3348 return 0;
3349 }
3350 }
3351 }
3352 }
3353
3354 /* Calibrate the output side */
3355 if (group_failed == 0) {
3356 for (rank_bgn = 0, sr = 0; rank_bgn
3357 < RW_MGR_MEM_NUMBER_OF_RANKS;
3358 rank_bgn +=
3359 NUM_RANKS_PER_SHADOW_REG,
3360 ++sr) {
3361 sr_failed = 0;
3362 if (!((STATIC_CALIB_STEPS) &
3363 CALIB_SKIP_WRITES)) {
3364 if ((STATIC_CALIB_STEPS)
3365 & CALIB_SKIP_DELAY_SWEEPS) {
3366 /* not needed in quick mode! */
3367 } else {
3368 /*
3369 * Determine if this set of
3370 * ranks should be skipped
3371 * entirely.
3372 */
3373 if (!param->skip_shadow_regs[sr]) {
3374 if (!rw_mgr_mem_calibrate_writes
3375 (rank_bgn, write_group,
3376 write_test_bgn)) {
3377 sr_failed = 1;
3378 if (!(gbl->
3379 phy_debug_mode_flags &
3380 PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3381 return 0;
3382 }
3383 }
3384 }
3385 }
3386 }
3387 if (sr_failed != 0)
3388 group_failed = 1;
3389 }
3390 }
3391
3392 if (group_failed == 0) {
3393 for (read_group = write_group *
3394 RW_MGR_MEM_IF_READ_DQS_WIDTH /
3395 RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3396 read_test_bgn = 0;
3397 read_group < (write_group + 1)
3398 * RW_MGR_MEM_IF_READ_DQS_WIDTH
3399 / RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3400 group_failed == 0;
3401 read_group++, read_test_bgn +=
3402 RW_MGR_MEM_DQ_PER_READ_DQS) {
3403 if (!((STATIC_CALIB_STEPS) &
3404 CALIB_SKIP_WRITES)) {
3405 if (!rw_mgr_mem_calibrate_vfifo_end
3406 (read_group, read_test_bgn)) {
3407 group_failed = 1;
3408
3409 if (!(gbl->phy_debug_mode_flags
3410 & PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3411 return 0;
3412 }
3413 }
3414 }
3415 }
3416 }
3417
3418 if (group_failed != 0)
3419 failing_groups++;
3420 }
3421
3422 /*
3423 * USER If there are any failing groups then report
3424 * the failure.
3425 */
3426 if (failing_groups != 0)
3427 return 0;
3428
3429 /* Calibrate the LFIFO */
3430 if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) {
3431 /*
3432 * If we're skipping groups as part of debug,
3433 * don't calibrate LFIFO.
3434 */
3435 if (param->skip_groups == 0) {
3436 if (!rw_mgr_mem_calibrate_lfifo())
3437 return 0;
3438 }
3439 }
3440 }
3441 }
3442
3443 /*
3444 * Do not remove this line as it makes sure all of our decisions
3445 * have been applied.
3446 */
1273dd9e 3447 writel(0, &sdr_scc_mgr->update);
3da42859
DN
3448 return 1;
3449}
3450
23a040c0
MV
3451/**
3452 * run_mem_calibrate() - Perform memory calibration
3453 *
3454 * This function triggers the entire memory calibration procedure.
3455 */
3456static int run_mem_calibrate(void)
3da42859 3457{
23a040c0 3458 int pass;
3da42859
DN
3459
3460 debug("%s:%d\n", __func__, __LINE__);
3461
3462 /* Reset pass/fail status shown on afi_cal_success/fail */
1273dd9e 3463 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3da42859 3464
23a040c0
MV
3465 /* Stop tracking manager. */
3466 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3da42859 3467
9fa9c90e 3468 phy_mgr_initialize();
3da42859
DN
3469 rw_mgr_mem_initialize();
3470
23a040c0 3471 /* Perform the actual memory calibration. */
3da42859
DN
3472 pass = mem_calibrate();
3473
3474 mem_precharge_and_activate();
1273dd9e 3475 writel(0, &phy_mgr_cmd->fifo_reset);
3da42859 3476
23a040c0
MV
3477 /* Handoff. */
3478 rw_mgr_mem_handoff();
3da42859 3479 /*
23a040c0
MV
3480 * In Hard PHY this is a 2-bit control:
3481 * 0: AFI Mux Select
3482 * 1: DDIO Mux Select
3da42859 3483 */
23a040c0 3484 writel(0x2, &phy_mgr_cfg->mux_sel);
3da42859 3485
23a040c0
MV
3486 /* Start tracking manager. */
3487 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3488
3489 return pass;
3490}
3491
3492/**
3493 * debug_mem_calibrate() - Report result of memory calibration
3494 * @pass: Value indicating whether calibration passed or failed
3495 *
3496 * This function reports the results of the memory calibration
3497 * and writes debug information into the register file.
3498 */
3499static void debug_mem_calibrate(int pass)
3500{
3501 uint32_t debug_info;
3da42859
DN
3502
3503 if (pass) {
3504 printf("%s: CALIBRATION PASSED\n", __FILE__);
3505
3506 gbl->fom_in /= 2;
3507 gbl->fom_out /= 2;
3508
3509 if (gbl->fom_in > 0xff)
3510 gbl->fom_in = 0xff;
3511
3512 if (gbl->fom_out > 0xff)
3513 gbl->fom_out = 0xff;
3514
3515 /* Update the FOM in the register file */
3516 debug_info = gbl->fom_in;
3517 debug_info |= gbl->fom_out << 8;
1273dd9e 3518 writel(debug_info, &sdr_reg_file->fom);
3da42859 3519
1273dd9e
MV
3520 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3521 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3da42859
DN
3522 } else {
3523 printf("%s: CALIBRATION FAILED\n", __FILE__);
3524
3525 debug_info = gbl->error_stage;
3526 debug_info |= gbl->error_substage << 8;
3527 debug_info |= gbl->error_group << 16;
3528
1273dd9e
MV
3529 writel(debug_info, &sdr_reg_file->failing_stage);
3530 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3531 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3da42859
DN
3532
3533 /* Update the failing group/stage in the register file */
3534 debug_info = gbl->error_stage;
3535 debug_info |= gbl->error_substage << 8;
3536 debug_info |= gbl->error_group << 16;
1273dd9e 3537 writel(debug_info, &sdr_reg_file->failing_stage);
3da42859
DN
3538 }
3539
23a040c0 3540 printf("%s: Calibration complete\n", __FILE__);
3da42859
DN
3541}
3542
bb06434b
MV
3543/**
3544 * hc_initialize_rom_data() - Initialize ROM data
3545 *
3546 * Initialize ROM data.
3547 */
3da42859
DN
3548static void hc_initialize_rom_data(void)
3549{
bb06434b 3550 u32 i, addr;
3da42859 3551
c4815f76 3552 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
bb06434b
MV
3553 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3554 writel(inst_rom_init[i], addr + (i << 2));
3da42859 3555
c4815f76 3556 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
bb06434b
MV
3557 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3558 writel(ac_rom_init[i], addr + (i << 2));
3da42859
DN
3559}
3560
9c1ab2ca
MV
3561/**
3562 * initialize_reg_file() - Initialize SDR register file
3563 *
3564 * Initialize SDR register file.
3565 */
3da42859
DN
3566static void initialize_reg_file(void)
3567{
3da42859 3568 /* Initialize the register file with the correct data */
1273dd9e
MV
3569 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3570 writel(0, &sdr_reg_file->debug_data_addr);
3571 writel(0, &sdr_reg_file->cur_stage);
3572 writel(0, &sdr_reg_file->fom);
3573 writel(0, &sdr_reg_file->failing_stage);
3574 writel(0, &sdr_reg_file->debug1);
3575 writel(0, &sdr_reg_file->debug2);
3da42859
DN
3576}
3577
2ca151f8
MV
3578/**
3579 * initialize_hps_phy() - Initialize HPS PHY
3580 *
3581 * Initialize HPS PHY.
3582 */
3da42859
DN
3583static void initialize_hps_phy(void)
3584{
3585 uint32_t reg;
3da42859
DN
3586 /*
3587 * Tracking also gets configured here because it's in the
3588 * same register.
3589 */
3590 uint32_t trk_sample_count = 7500;
3591 uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3592 /*
3593 * Format is number of outer loops in the 16 MSB, sample
3594 * count in 16 LSB.
3595 */
3596
3597 reg = 0;
3598 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3599 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3600 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3601 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3602 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3603 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3604 /*
3605 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3606 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3607 */
3608 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3609 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3610 trk_sample_count);
6cb9f167 3611 writel(reg, &sdr_ctrl->phy_ctrl0);
3da42859
DN
3612
3613 reg = 0;
3614 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3615 trk_sample_count >>
3616 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3617 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3618 trk_long_idle_sample_count);
6cb9f167 3619 writel(reg, &sdr_ctrl->phy_ctrl1);
3da42859
DN
3620
3621 reg = 0;
3622 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3623 trk_long_idle_sample_count >>
3624 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
6cb9f167 3625 writel(reg, &sdr_ctrl->phy_ctrl2);
3da42859
DN
3626}
3627
880e46f2
MV
3628/**
3629 * initialize_tracking() - Initialize tracking
3630 *
3631 * Initialize the register file with usable initial data.
3632 */
3da42859
DN
3633static void initialize_tracking(void)
3634{
880e46f2
MV
3635 /*
3636 * Initialize the register file with the correct data.
3637 * Compute usable version of value in case we skip full
3638 * computation later.
3639 */
3640 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3641 &sdr_reg_file->dtaps_per_ptap);
3642
3643 /* trk_sample_count */
3644 writel(7500, &sdr_reg_file->trk_sample_count);
3645
3646 /* longidle outer loop [15:0] */
3647 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3da42859
DN
3648
3649 /*
880e46f2
MV
3650 * longidle sample count [31:24]
3651 * trfc, worst case of 933Mhz 4Gb [23:16]
3652 * trcd, worst case [15:8]
3653 * vfifo wait [7:0]
3da42859 3654 */
880e46f2
MV
3655 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3656 &sdr_reg_file->delays);
3da42859 3657
880e46f2
MV
3658 /* mux delay */
3659 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3660 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3661 &sdr_reg_file->trk_rw_mgr_addr);
3662
3663 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3664 &sdr_reg_file->trk_read_dqs_width);
3665
3666 /* trefi [7:0] */
3667 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3668 &sdr_reg_file->trk_rfsh);
3da42859
DN
3669}
3670
3671int sdram_calibration_full(void)
3672{
3673 struct param_type my_param;
3674 struct gbl_type my_gbl;
3675 uint32_t pass;
84e0b0cf
MV
3676
3677 memset(&my_param, 0, sizeof(my_param));
3678 memset(&my_gbl, 0, sizeof(my_gbl));
3da42859
DN
3679
3680 param = &my_param;
3681 gbl = &my_gbl;
3682
3da42859
DN
3683 /* Set the calibration enabled by default */
3684 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3685 /*
3686 * Only sweep all groups (regardless of fail state) by default
3687 * Set enabled read test by default.
3688 */
3689#if DISABLE_GUARANTEED_READ
3690 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3691#endif
3692 /* Initialize the register file */
3693 initialize_reg_file();
3694
3695 /* Initialize any PHY CSR */
3696 initialize_hps_phy();
3697
3698 scc_mgr_initialize();
3699
3700 initialize_tracking();
3701
3da42859
DN
3702 printf("%s: Preparing to start memory calibration\n", __FILE__);
3703
3704 debug("%s:%d\n", __func__, __LINE__);
23f62b36
MV
3705 debug_cond(DLEVEL == 1,
3706 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3707 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3708 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3709 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3710 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3711 debug_cond(DLEVEL == 1,
3712 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3713 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3714 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3715 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3716 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3717 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3718 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3719 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3720 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3721 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3722 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3723 IO_IO_OUT2_DELAY_MAX);
3724 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3725 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3da42859
DN
3726
3727 hc_initialize_rom_data();
3728
3729 /* update info for sims */
3730 reg_file_set_stage(CAL_STAGE_NIL);
3731 reg_file_set_group(0);
3732
3733 /*
3734 * Load global needed for those actions that require
3735 * some dynamic calibration support.
3736 */
3737 dyn_calib_steps = STATIC_CALIB_STEPS;
3738 /*
3739 * Load global to allow dynamic selection of delay loop settings
3740 * based on calibration mode.
3741 */
3742 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3743 skip_delay_mask = 0xff;
3744 else
3745 skip_delay_mask = 0x0;
3746
3747 pass = run_mem_calibrate();
23a040c0 3748 debug_mem_calibrate(pass);
3da42859
DN
3749 return pass;
3750}