]> git.ipfire.org Git - people/ms/u-boot.git/blame - drivers/ddr/altera/sequencer.c
ddr: altera: Clean up rw_mgr_mem_calibrate_read_test() part 3
[people/ms/u-boot.git] / drivers / ddr / altera / sequencer.c
CommitLineData
3da42859
DN
1/*
2 * Copyright Altera Corporation (C) 2012-2015
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7#include <common.h>
8#include <asm/io.h>
9#include <asm/arch/sdram.h>
04372fb8 10#include <errno.h>
3da42859
DN
11#include "sequencer.h"
12#include "sequencer_auto.h"
13#include "sequencer_auto_ac_init.h"
14#include "sequencer_auto_inst_init.h"
15#include "sequencer_defines.h"
16
3da42859 17static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
6afb4fe2 18 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
3da42859
DN
19
20static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
6afb4fe2 21 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
3da42859
DN
22
23static struct socfpga_sdr_reg_file *sdr_reg_file =
a1c654a8 24 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
3da42859
DN
25
26static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
e79025a7 27 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
3da42859
DN
28
29static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
1bc6f14a 30 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
3da42859
DN
31
32static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
1bc6f14a 33 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
3da42859
DN
34
35static struct socfpga_data_mgr *data_mgr =
c4815f76 36 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
3da42859 37
6cb9f167
MV
38static struct socfpga_sdr_ctrl *sdr_ctrl =
39 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40
3da42859 41#define DELTA_D 1
3da42859
DN
42
43/*
44 * In order to reduce ROM size, most of the selectable calibration steps are
45 * decided at compile time based on the user's calibration mode selection,
46 * as captured by the STATIC_CALIB_STEPS selection below.
47 *
48 * However, to support simulation-time selection of fast simulation mode, where
49 * we skip everything except the bare minimum, we need a few of the steps to
50 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51 * check, which is based on the rtl-supplied value, or we dynamically compute
52 * the value to use based on the dynamically-chosen calibration mode
53 */
54
55#define DLEVEL 0
56#define STATIC_IN_RTL_SIM 0
57#define STATIC_SKIP_DELAY_LOOPS 0
58
59#define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60 STATIC_SKIP_DELAY_LOOPS)
61
62/* calibration steps requested by the rtl */
63uint16_t dyn_calib_steps;
64
65/*
66 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67 * instead of static, we use boolean logic to select between
68 * non-skip and skip values
69 *
70 * The mask is set to include all bits when not-skipping, but is
71 * zero when skipping
72 */
73
74uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */
75
76#define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77 ((non_skip_value) & skip_delay_mask)
78
79struct gbl_type *gbl;
80struct param_type *param;
81uint32_t curr_shadow_reg;
82
83static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
84 uint32_t write_group, uint32_t use_dm,
85 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
86
3da42859
DN
87static void set_failing_group_stage(uint32_t group, uint32_t stage,
88 uint32_t substage)
89{
90 /*
91 * Only set the global stage if there was not been any other
92 * failing group
93 */
94 if (gbl->error_stage == CAL_STAGE_NIL) {
95 gbl->error_substage = substage;
96 gbl->error_stage = stage;
97 gbl->error_group = group;
98 }
99}
100
2c0d2d9c 101static void reg_file_set_group(u16 set_group)
3da42859 102{
2c0d2d9c 103 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
3da42859
DN
104}
105
2c0d2d9c 106static void reg_file_set_stage(u8 set_stage)
3da42859 107{
2c0d2d9c 108 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
3da42859
DN
109}
110
2c0d2d9c 111static void reg_file_set_sub_stage(u8 set_sub_stage)
3da42859 112{
2c0d2d9c
MV
113 set_sub_stage &= 0xff;
114 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
3da42859
DN
115}
116
7c89c2d9
MV
117/**
118 * phy_mgr_initialize() - Initialize PHY Manager
119 *
120 * Initialize PHY Manager.
121 */
9fa9c90e 122static void phy_mgr_initialize(void)
3da42859 123{
7c89c2d9
MV
124 u32 ratio;
125
3da42859 126 debug("%s:%d\n", __func__, __LINE__);
7c89c2d9 127 /* Calibration has control over path to memory */
3da42859
DN
128 /*
129 * In Hard PHY this is a 2-bit control:
130 * 0: AFI Mux Select
131 * 1: DDIO Mux Select
132 */
1273dd9e 133 writel(0x3, &phy_mgr_cfg->mux_sel);
3da42859
DN
134
135 /* USER memory clock is not stable we begin initialization */
1273dd9e 136 writel(0, &phy_mgr_cfg->reset_mem_stbl);
3da42859
DN
137
138 /* USER calibration status all set to zero */
1273dd9e 139 writel(0, &phy_mgr_cfg->cal_status);
3da42859 140
1273dd9e 141 writel(0, &phy_mgr_cfg->cal_debug_info);
3da42859 142
7c89c2d9
MV
143 /* Init params only if we do NOT skip calibration. */
144 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
145 return;
146
147 ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
148 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
149 param->read_correct_mask_vg = (1 << ratio) - 1;
150 param->write_correct_mask_vg = (1 << ratio) - 1;
151 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
152 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
153 ratio = RW_MGR_MEM_DATA_WIDTH /
154 RW_MGR_MEM_DATA_MASK_WIDTH;
155 param->dm_correct_mask = (1 << ratio) - 1;
3da42859
DN
156}
157
080bf64e
MV
158/**
159 * set_rank_and_odt_mask() - Set Rank and ODT mask
160 * @rank: Rank mask
161 * @odt_mode: ODT mode, OFF or READ_WRITE
162 *
163 * Set Rank and ODT mask (On-Die Termination).
164 */
b2dfd100 165static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
3da42859 166{
b2dfd100
MV
167 u32 odt_mask_0 = 0;
168 u32 odt_mask_1 = 0;
169 u32 cs_and_odt_mask;
3da42859 170
b2dfd100
MV
171 if (odt_mode == RW_MGR_ODT_MODE_OFF) {
172 odt_mask_0 = 0x0;
173 odt_mask_1 = 0x0;
174 } else { /* RW_MGR_ODT_MODE_READ_WRITE */
287cdf6b
MV
175 switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
176 case 1: /* 1 Rank */
177 /* Read: ODT = 0 ; Write: ODT = 1 */
3da42859
DN
178 odt_mask_0 = 0x0;
179 odt_mask_1 = 0x1;
287cdf6b
MV
180 break;
181 case 2: /* 2 Ranks */
3da42859 182 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
080bf64e
MV
183 /*
184 * - Dual-Slot , Single-Rank (1 CS per DIMM)
185 * OR
186 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
187 *
188 * Since MEM_NUMBER_OF_RANKS is 2, they
189 * are both single rank with 2 CS each
190 * (special for RDIMM).
191 *
3da42859
DN
192 * Read: Turn on ODT on the opposite rank
193 * Write: Turn on ODT on all ranks
194 */
195 odt_mask_0 = 0x3 & ~(1 << rank);
196 odt_mask_1 = 0x3;
197 } else {
198 /*
080bf64e
MV
199 * - Single-Slot , Dual-Rank (2 CS per DIMM)
200 *
201 * Read: Turn on ODT off on all ranks
202 * Write: Turn on ODT on active rank
3da42859
DN
203 */
204 odt_mask_0 = 0x0;
205 odt_mask_1 = 0x3 & (1 << rank);
206 }
287cdf6b
MV
207 break;
208 case 4: /* 4 Ranks */
209 /* Read:
3da42859 210 * ----------+-----------------------+
3da42859
DN
211 * | ODT |
212 * Read From +-----------------------+
213 * Rank | 3 | 2 | 1 | 0 |
214 * ----------+-----+-----+-----+-----+
215 * 0 | 0 | 1 | 0 | 0 |
216 * 1 | 1 | 0 | 0 | 0 |
217 * 2 | 0 | 0 | 0 | 1 |
218 * 3 | 0 | 0 | 1 | 0 |
219 * ----------+-----+-----+-----+-----+
220 *
221 * Write:
222 * ----------+-----------------------+
3da42859
DN
223 * | ODT |
224 * Write To +-----------------------+
225 * Rank | 3 | 2 | 1 | 0 |
226 * ----------+-----+-----+-----+-----+
227 * 0 | 0 | 1 | 0 | 1 |
228 * 1 | 1 | 0 | 1 | 0 |
229 * 2 | 0 | 1 | 0 | 1 |
230 * 3 | 1 | 0 | 1 | 0 |
231 * ----------+-----+-----+-----+-----+
232 */
233 switch (rank) {
234 case 0:
235 odt_mask_0 = 0x4;
236 odt_mask_1 = 0x5;
237 break;
238 case 1:
239 odt_mask_0 = 0x8;
240 odt_mask_1 = 0xA;
241 break;
242 case 2:
243 odt_mask_0 = 0x1;
244 odt_mask_1 = 0x5;
245 break;
246 case 3:
247 odt_mask_0 = 0x2;
248 odt_mask_1 = 0xA;
249 break;
250 }
287cdf6b 251 break;
3da42859 252 }
3da42859
DN
253 }
254
b2dfd100
MV
255 cs_and_odt_mask = (0xFF & ~(1 << rank)) |
256 ((0xFF & odt_mask_0) << 8) |
257 ((0xFF & odt_mask_1) << 16);
1273dd9e
MV
258 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
259 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
3da42859
DN
260}
261
c76976d9
MV
262/**
263 * scc_mgr_set() - Set SCC Manager register
264 * @off: Base offset in SCC Manager space
265 * @grp: Read/Write group
266 * @val: Value to be set
267 *
268 * This function sets the SCC Manager (Scan Chain Control Manager) register.
269 */
270static void scc_mgr_set(u32 off, u32 grp, u32 val)
3da42859 271{
c76976d9
MV
272 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
273}
3da42859 274
e893f4dc
MV
275/**
276 * scc_mgr_initialize() - Initialize SCC Manager registers
277 *
278 * Initialize SCC Manager registers.
279 */
c76976d9
MV
280static void scc_mgr_initialize(void)
281{
3da42859 282 /*
e893f4dc
MV
283 * Clear register file for HPS. 16 (2^4) is the size of the
284 * full register file in the scc mgr:
285 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
286 * MEM_IF_READ_DQS_WIDTH - 1);
3da42859 287 */
c76976d9 288 int i;
e893f4dc 289
3da42859 290 for (i = 0; i < 16; i++) {
7ac40d25 291 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
3da42859 292 __func__, __LINE__, i);
c76976d9 293 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
3da42859
DN
294 }
295}
296
5ff825b8
MV
297static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
298{
c76976d9 299 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
5ff825b8
MV
300}
301
302static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
3da42859 303{
c76976d9 304 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
3da42859
DN
305}
306
5ff825b8
MV
307static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
308{
c76976d9 309 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
5ff825b8
MV
310}
311
312static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
313{
c76976d9 314 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
5ff825b8
MV
315}
316
32675249 317static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
3da42859 318{
c76976d9
MV
319 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
320 delay);
3da42859
DN
321}
322
5ff825b8 323static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
3da42859 324{
c76976d9 325 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
5ff825b8
MV
326}
327
328static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
329{
c76976d9 330 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
5ff825b8
MV
331}
332
32675249 333static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
5ff825b8 334{
c76976d9
MV
335 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
336 delay);
5ff825b8
MV
337}
338
339static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
340{
c76976d9
MV
341 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
342 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
343 delay);
5ff825b8
MV
344}
345
346/* load up dqs config settings */
347static void scc_mgr_load_dqs(uint32_t dqs)
348{
349 writel(dqs, &sdr_scc_mgr->dqs_ena);
350}
351
352/* load up dqs io config settings */
353static void scc_mgr_load_dqs_io(void)
354{
355 writel(0, &sdr_scc_mgr->dqs_io_ena);
356}
357
358/* load up dq config settings */
359static void scc_mgr_load_dq(uint32_t dq_in_group)
360{
361 writel(dq_in_group, &sdr_scc_mgr->dq_ena);
362}
363
364/* load up dm config settings */
365static void scc_mgr_load_dm(uint32_t dm)
366{
367 writel(dm, &sdr_scc_mgr->dm_ena);
3da42859
DN
368}
369
0b69b807
MV
370/**
371 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
372 * @off: Base offset in SCC Manager space
373 * @grp: Read/Write group
374 * @val: Value to be set
375 * @update: If non-zero, trigger SCC Manager update for all ranks
376 *
377 * This function sets the SCC Manager (Scan Chain Control Manager) register
378 * and optionally triggers the SCC update for all ranks.
379 */
380static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
381 const int update)
3da42859 382{
0b69b807 383 u32 r;
3da42859
DN
384
385 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
386 r += NUM_RANKS_PER_SHADOW_REG) {
0b69b807
MV
387 scc_mgr_set(off, grp, val);
388
389 if (update || (r == 0)) {
390 writel(grp, &sdr_scc_mgr->dqs_ena);
1273dd9e 391 writel(0, &sdr_scc_mgr->update);
3da42859
DN
392 }
393 }
394}
395
0b69b807
MV
396static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
397{
398 /*
399 * USER although the h/w doesn't support different phases per
400 * shadow register, for simplicity our scc manager modeling
401 * keeps different phase settings per shadow reg, and it's
402 * important for us to keep them in sync to match h/w.
403 * for efficiency, the scan chain update should occur only
404 * once to sr0.
405 */
406 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
407 read_group, phase, 0);
408}
409
3da42859
DN
410static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
411 uint32_t phase)
412{
0b69b807
MV
413 /*
414 * USER although the h/w doesn't support different phases per
415 * shadow register, for simplicity our scc manager modeling
416 * keeps different phase settings per shadow reg, and it's
417 * important for us to keep them in sync to match h/w.
418 * for efficiency, the scan chain update should occur only
419 * once to sr0.
420 */
421 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
422 write_group, phase, 0);
3da42859
DN
423}
424
3da42859
DN
425static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
426 uint32_t delay)
427{
3da42859
DN
428 /*
429 * In shadow register mode, the T11 settings are stored in
430 * registers in the core, which are updated by the DQS_ENA
431 * signals. Not issuing the SCC_MGR_UPD command allows us to
432 * save lots of rank switching overhead, by calling
433 * select_shadow_regs_for_update with update_scan_chains
434 * set to 0.
435 */
0b69b807
MV
436 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
437 read_group, delay, 1);
1273dd9e 438 writel(0, &sdr_scc_mgr->update);
3da42859
DN
439}
440
5be355c1
MV
441/**
442 * scc_mgr_set_oct_out1_delay() - Set OCT output delay
443 * @write_group: Write group
444 * @delay: Delay value
445 *
446 * This function sets the OCT output delay in SCC manager.
447 */
448static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
3da42859 449{
5be355c1
MV
450 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
451 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
452 const int base = write_group * ratio;
453 int i;
3da42859
DN
454 /*
455 * Load the setting in the SCC manager
456 * Although OCT affects only write data, the OCT delay is controlled
457 * by the DQS logic block which is instantiated once per read group.
458 * For protocols where a write group consists of multiple read groups,
459 * the setting must be set multiple times.
460 */
5be355c1
MV
461 for (i = 0; i < ratio; i++)
462 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
3da42859
DN
463}
464
37a37ca7
MV
465/**
466 * scc_mgr_set_hhp_extras() - Set HHP extras.
467 *
468 * Load the fixed setting in the SCC manager HHP extras.
469 */
3da42859
DN
470static void scc_mgr_set_hhp_extras(void)
471{
472 /*
473 * Load the fixed setting in the SCC manager
37a37ca7
MV
474 * bits: 0:0 = 1'b1 - DQS bypass
475 * bits: 1:1 = 1'b1 - DQ bypass
476 * bits: 4:2 = 3'b001 - rfifo_mode
477 * bits: 6:5 = 2'b01 - rfifo clock_select
478 * bits: 7:7 = 1'b0 - separate gating from ungating setting
479 * bits: 8:8 = 1'b0 - separate OE from Output delay setting
3da42859 480 */
37a37ca7
MV
481 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
482 (1 << 2) | (1 << 1) | (1 << 0);
483 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
484 SCC_MGR_HHP_GLOBALS_OFFSET |
485 SCC_MGR_HHP_EXTRAS_OFFSET;
486
487 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
488 __func__, __LINE__);
489 writel(value, addr);
490 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
491 __func__, __LINE__);
3da42859
DN
492}
493
f42af35b
MV
494/**
495 * scc_mgr_zero_all() - Zero all DQS config
496 *
497 * Zero all DQS config.
3da42859
DN
498 */
499static void scc_mgr_zero_all(void)
500{
f42af35b 501 int i, r;
3da42859
DN
502
503 /*
504 * USER Zero all DQS config settings, across all groups and all
505 * shadow registers
506 */
f42af35b
MV
507 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
508 r += NUM_RANKS_PER_SHADOW_REG) {
3da42859
DN
509 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
510 /*
511 * The phases actually don't exist on a per-rank basis,
512 * but there's no harm updating them several times, so
513 * let's keep the code simple.
514 */
515 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
516 scc_mgr_set_dqs_en_phase(i, 0);
517 scc_mgr_set_dqs_en_delay(i, 0);
518 }
519
520 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
521 scc_mgr_set_dqdqs_output_phase(i, 0);
f42af35b 522 /* Arria V/Cyclone V don't have out2. */
3da42859
DN
523 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
524 }
525 }
526
f42af35b 527 /* Multicast to all DQS group enables. */
1273dd9e
MV
528 writel(0xff, &sdr_scc_mgr->dqs_ena);
529 writel(0, &sdr_scc_mgr->update);
3da42859
DN
530}
531
c5c5f537
MV
532/**
533 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
534 * @write_group: Write group
535 *
536 * Set bypass mode and trigger SCC update.
537 */
538static void scc_set_bypass_mode(const u32 write_group)
3da42859 539{
c5c5f537 540 /* Multicast to all DQ enables. */
1273dd9e
MV
541 writel(0xff, &sdr_scc_mgr->dq_ena);
542 writel(0xff, &sdr_scc_mgr->dm_ena);
3da42859 543
c5c5f537 544 /* Update current DQS IO enable. */
1273dd9e 545 writel(0, &sdr_scc_mgr->dqs_io_ena);
3da42859 546
c5c5f537 547 /* Update the DQS logic. */
1273dd9e 548 writel(write_group, &sdr_scc_mgr->dqs_ena);
3da42859 549
c5c5f537 550 /* Hit update. */
1273dd9e 551 writel(0, &sdr_scc_mgr->update);
3da42859
DN
552}
553
5e837896
MV
554/**
555 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
556 * @write_group: Write group
557 *
558 * Load DQS settings for Write Group, do not trigger SCC update.
559 */
560static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
5ff825b8 561{
5e837896
MV
562 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
563 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
564 const int base = write_group * ratio;
565 int i;
5ff825b8 566 /*
5e837896 567 * Load the setting in the SCC manager
5ff825b8
MV
568 * Although OCT affects only write data, the OCT delay is controlled
569 * by the DQS logic block which is instantiated once per read group.
570 * For protocols where a write group consists of multiple read groups,
5e837896 571 * the setting must be set multiple times.
5ff825b8 572 */
5e837896
MV
573 for (i = 0; i < ratio; i++)
574 writel(base + i, &sdr_scc_mgr->dqs_ena);
5ff825b8
MV
575}
576
d41ea93a
MV
577/**
578 * scc_mgr_zero_group() - Zero all configs for a group
579 *
580 * Zero DQ, DM, DQS and OCT configs for a group.
581 */
582static void scc_mgr_zero_group(const u32 write_group, const int out_only)
3da42859 583{
d41ea93a 584 int i, r;
3da42859 585
d41ea93a
MV
586 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
587 r += NUM_RANKS_PER_SHADOW_REG) {
588 /* Zero all DQ config settings. */
3da42859 589 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
07aee5bd 590 scc_mgr_set_dq_out1_delay(i, 0);
3da42859 591 if (!out_only)
07aee5bd 592 scc_mgr_set_dq_in_delay(i, 0);
3da42859
DN
593 }
594
d41ea93a 595 /* Multicast to all DQ enables. */
1273dd9e 596 writel(0xff, &sdr_scc_mgr->dq_ena);
3da42859 597
d41ea93a
MV
598 /* Zero all DM config settings. */
599 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
07aee5bd 600 scc_mgr_set_dm_out1_delay(i, 0);
3da42859 601
d41ea93a 602 /* Multicast to all DM enables. */
1273dd9e 603 writel(0xff, &sdr_scc_mgr->dm_ena);
3da42859 604
d41ea93a 605 /* Zero all DQS IO settings. */
3da42859 606 if (!out_only)
32675249 607 scc_mgr_set_dqs_io_in_delay(0);
d41ea93a
MV
608
609 /* Arria V/Cyclone V don't have out2. */
32675249 610 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
3da42859
DN
611 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
612 scc_mgr_load_dqs_for_write_group(write_group);
613
d41ea93a 614 /* Multicast to all DQS IO enables (only 1 in total). */
1273dd9e 615 writel(0, &sdr_scc_mgr->dqs_io_ena);
3da42859 616
d41ea93a 617 /* Hit update to zero everything. */
1273dd9e 618 writel(0, &sdr_scc_mgr->update);
3da42859
DN
619 }
620}
621
3da42859
DN
622/*
623 * apply and load a particular input delay for the DQ pins in a group
624 * group_bgn is the index of the first dq pin (in the write group)
625 */
32675249 626static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
3da42859
DN
627{
628 uint32_t i, p;
629
630 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
07aee5bd 631 scc_mgr_set_dq_in_delay(p, delay);
3da42859
DN
632 scc_mgr_load_dq(p);
633 }
634}
635
300c2e62
MV
636/**
637 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
638 * @delay: Delay value
639 *
640 * Apply and load a particular output delay for the DQ pins in a group.
641 */
642static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
3da42859 643{
300c2e62 644 int i;
3da42859 645
300c2e62
MV
646 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
647 scc_mgr_set_dq_out1_delay(i, delay);
3da42859
DN
648 scc_mgr_load_dq(i);
649 }
650}
651
652/* apply and load a particular output delay for the DM pins in a group */
32675249 653static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
3da42859
DN
654{
655 uint32_t i;
656
657 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
07aee5bd 658 scc_mgr_set_dm_out1_delay(i, delay1);
3da42859
DN
659 scc_mgr_load_dm(i);
660 }
661}
662
663
664/* apply and load delay on both DQS and OCT out1 */
665static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
666 uint32_t delay)
667{
32675249 668 scc_mgr_set_dqs_out1_delay(delay);
3da42859
DN
669 scc_mgr_load_dqs_io();
670
671 scc_mgr_set_oct_out1_delay(write_group, delay);
672 scc_mgr_load_dqs_for_write_group(write_group);
673}
674
5cb1b508
MV
675/**
676 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
677 * @write_group: Write group
678 * @delay: Delay value
679 *
680 * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
681 */
8eccde3e 682static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
8eccde3e
MV
683 const u32 delay)
684{
685 u32 i, new_delay;
3da42859 686
8eccde3e
MV
687 /* DQ shift */
688 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
3da42859 689 scc_mgr_load_dq(i);
3da42859 690
8eccde3e
MV
691 /* DM shift */
692 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
3da42859 693 scc_mgr_load_dm(i);
3da42859 694
5cb1b508
MV
695 /* DQS shift */
696 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
3da42859 697 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
5cb1b508
MV
698 debug_cond(DLEVEL == 1,
699 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
700 __func__, __LINE__, write_group, delay, new_delay,
701 IO_IO_OUT2_DELAY_MAX,
3da42859 702 new_delay - IO_IO_OUT2_DELAY_MAX);
5cb1b508
MV
703 new_delay -= IO_IO_OUT2_DELAY_MAX;
704 scc_mgr_set_dqs_out1_delay(new_delay);
3da42859
DN
705 }
706
707 scc_mgr_load_dqs_io();
708
5cb1b508
MV
709 /* OCT shift */
710 new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
3da42859 711 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
5cb1b508
MV
712 debug_cond(DLEVEL == 1,
713 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
714 __func__, __LINE__, write_group, delay,
715 new_delay, IO_IO_OUT2_DELAY_MAX,
3da42859 716 new_delay - IO_IO_OUT2_DELAY_MAX);
5cb1b508
MV
717 new_delay -= IO_IO_OUT2_DELAY_MAX;
718 scc_mgr_set_oct_out1_delay(write_group, new_delay);
3da42859
DN
719 }
720
721 scc_mgr_load_dqs_for_write_group(write_group);
722}
723
f51a7d35
MV
724/**
725 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
726 * @write_group: Write group
727 * @delay: Delay value
728 *
729 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
3da42859 730 */
f51a7d35
MV
731static void
732scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
733 const u32 delay)
3da42859 734{
f51a7d35 735 int r;
3da42859
DN
736
737 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
f51a7d35 738 r += NUM_RANKS_PER_SHADOW_REG) {
5cb1b508 739 scc_mgr_apply_group_all_out_delay_add(write_group, delay);
1273dd9e 740 writel(0, &sdr_scc_mgr->update);
3da42859
DN
741 }
742}
743
f936f94f
MV
744/**
745 * set_jump_as_return() - Return instruction optimization
746 *
747 * Optimization used to recover some slots in ddr3 inst_rom could be
748 * applied to other protocols if we wanted to
749 */
3da42859
DN
750static void set_jump_as_return(void)
751{
3da42859 752 /*
f936f94f 753 * To save space, we replace return with jump to special shared
3da42859 754 * RETURN instruction so we set the counter to large value so that
f936f94f 755 * we always jump.
3da42859 756 */
1273dd9e
MV
757 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
758 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3da42859
DN
759}
760
761/*
762 * should always use constants as argument to ensure all computations are
763 * performed at compile time
764 */
765static void delay_for_n_mem_clocks(const uint32_t clocks)
766{
767 uint32_t afi_clocks;
768 uint8_t inner = 0;
769 uint8_t outer = 0;
770 uint16_t c_loop = 0;
3da42859
DN
771
772 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
773
774
775 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
776 /* scale (rounding up) to get afi clocks */
777
778 /*
779 * Note, we don't bother accounting for being off a little bit
780 * because of a few extra instructions in outer loops
781 * Note, the loops have a test at the end, and do the test before
782 * the decrement, and so always perform the loop
783 * 1 time more than the counter value
784 */
785 if (afi_clocks == 0) {
786 ;
787 } else if (afi_clocks <= 0x100) {
788 inner = afi_clocks-1;
789 outer = 0;
790 c_loop = 0;
791 } else if (afi_clocks <= 0x10000) {
792 inner = 0xff;
793 outer = (afi_clocks-1) >> 8;
794 c_loop = 0;
795 } else {
796 inner = 0xff;
797 outer = 0xff;
798 c_loop = (afi_clocks-1) >> 16;
799 }
800
801 /*
802 * rom instructions are structured as follows:
803 *
804 * IDLE_LOOP2: jnz cntr0, TARGET_A
805 * IDLE_LOOP1: jnz cntr1, TARGET_B
806 * return
807 *
808 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
809 * TARGET_B is set to IDLE_LOOP2 as well
810 *
811 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
812 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
813 *
814 * a little confusing, but it helps save precious space in the inst_rom
815 * and sequencer rom and keeps the delays more accurate and reduces
816 * overhead
817 */
818 if (afi_clocks <= 0x100) {
1273dd9e
MV
819 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
820 &sdr_rw_load_mgr_regs->load_cntr1);
3da42859 821
1273dd9e
MV
822 writel(RW_MGR_IDLE_LOOP1,
823 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3da42859 824
1273dd9e
MV
825 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
826 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3da42859 827 } else {
1273dd9e
MV
828 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
829 &sdr_rw_load_mgr_regs->load_cntr0);
3da42859 830
1273dd9e
MV
831 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
832 &sdr_rw_load_mgr_regs->load_cntr1);
3da42859 833
1273dd9e
MV
834 writel(RW_MGR_IDLE_LOOP2,
835 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3da42859 836
1273dd9e
MV
837 writel(RW_MGR_IDLE_LOOP2,
838 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3da42859
DN
839
840 /* hack to get around compiler not being smart enough */
841 if (afi_clocks <= 0x10000) {
842 /* only need to run once */
1273dd9e
MV
843 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
844 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3da42859
DN
845 } else {
846 do {
1273dd9e
MV
847 writel(RW_MGR_IDLE_LOOP2,
848 SDR_PHYGRP_RWMGRGRP_ADDRESS |
849 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3da42859
DN
850 } while (c_loop-- != 0);
851 }
852 }
853 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
854}
855
944fe719
MV
856/**
857 * rw_mgr_mem_init_load_regs() - Load instruction registers
858 * @cntr0: Counter 0 value
859 * @cntr1: Counter 1 value
860 * @cntr2: Counter 2 value
861 * @jump: Jump instruction value
862 *
863 * Load instruction registers.
864 */
865static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
866{
867 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
868 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
869
870 /* Load counters */
871 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
872 &sdr_rw_load_mgr_regs->load_cntr0);
873 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
874 &sdr_rw_load_mgr_regs->load_cntr1);
875 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
876 &sdr_rw_load_mgr_regs->load_cntr2);
877
878 /* Load jump address */
879 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
880 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
881 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
882
883 /* Execute count instruction */
884 writel(jump, grpaddr);
885}
886
ecd2334a
MV
887/**
888 * rw_mgr_mem_load_user() - Load user calibration values
889 * @fin1: Final instruction 1
890 * @fin2: Final instruction 2
891 * @precharge: If 1, precharge the banks at the end
892 *
893 * Load user calibration values and optionally precharge the banks.
894 */
895static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
896 const int precharge)
3da42859 897{
ecd2334a
MV
898 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
899 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
900 u32 r;
901
902 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
903 if (param->skip_ranks[r]) {
904 /* request to skip the rank */
905 continue;
906 }
907
908 /* set rank */
909 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
910
911 /* precharge all banks ... */
912 if (precharge)
913 writel(RW_MGR_PRECHARGE_ALL, grpaddr);
3da42859 914
ecd2334a
MV
915 /*
916 * USER Use Mirror-ed commands for odd ranks if address
917 * mirrorring is on
918 */
919 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
920 set_jump_as_return();
921 writel(RW_MGR_MRS2_MIRR, grpaddr);
922 delay_for_n_mem_clocks(4);
923 set_jump_as_return();
924 writel(RW_MGR_MRS3_MIRR, grpaddr);
925 delay_for_n_mem_clocks(4);
926 set_jump_as_return();
927 writel(RW_MGR_MRS1_MIRR, grpaddr);
928 delay_for_n_mem_clocks(4);
929 set_jump_as_return();
930 writel(fin1, grpaddr);
931 } else {
932 set_jump_as_return();
933 writel(RW_MGR_MRS2, grpaddr);
934 delay_for_n_mem_clocks(4);
935 set_jump_as_return();
936 writel(RW_MGR_MRS3, grpaddr);
937 delay_for_n_mem_clocks(4);
938 set_jump_as_return();
939 writel(RW_MGR_MRS1, grpaddr);
940 set_jump_as_return();
941 writel(fin2, grpaddr);
942 }
943
944 if (precharge)
945 continue;
946
947 set_jump_as_return();
948 writel(RW_MGR_ZQCL, grpaddr);
949
950 /* tZQinit = tDLLK = 512 ck cycles */
951 delay_for_n_mem_clocks(512);
952 }
953}
954
8e9d7d04
MV
955/**
956 * rw_mgr_mem_initialize() - Initialize RW Manager
957 *
958 * Initialize RW Manager.
959 */
ecd2334a
MV
960static void rw_mgr_mem_initialize(void)
961{
3da42859
DN
962 debug("%s:%d\n", __func__, __LINE__);
963
964 /* The reset / cke part of initialization is broadcasted to all ranks */
1273dd9e
MV
965 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
966 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
3da42859
DN
967
968 /*
969 * Here's how you load register for a loop
970 * Counters are located @ 0x800
971 * Jump address are located @ 0xC00
972 * For both, registers 0 to 3 are selected using bits 3 and 2, like
973 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
974 * I know this ain't pretty, but Avalon bus throws away the 2 least
975 * significant bits
976 */
977
8e9d7d04 978 /* Start with memory RESET activated */
3da42859
DN
979
980 /* tINIT = 200us */
981
982 /*
983 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
984 * If a and b are the number of iteration in 2 nested loops
985 * it takes the following number of cycles to complete the operation:
986 * number_of_cycles = ((2 + n) * a + 2) * b
987 * where n is the number of instruction in the inner loop
988 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
989 * b = 6A
990 */
944fe719
MV
991 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
992 SEQ_TINIT_CNTR2_VAL,
993 RW_MGR_INIT_RESET_0_CKE_0);
3da42859 994
8e9d7d04 995 /* Indicate that memory is stable. */
1273dd9e 996 writel(1, &phy_mgr_cfg->reset_mem_stbl);
3da42859
DN
997
998 /*
999 * transition the RESET to high
1000 * Wait for 500us
1001 */
1002
1003 /*
1004 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1005 * If a and b are the number of iteration in 2 nested loops
1006 * it takes the following number of cycles to complete the operation
1007 * number_of_cycles = ((2 + n) * a + 2) * b
1008 * where n is the number of instruction in the inner loop
1009 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1010 * b = FF
1011 */
944fe719
MV
1012 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1013 SEQ_TRESET_CNTR2_VAL,
1014 RW_MGR_INIT_RESET_1_CKE_0);
3da42859 1015
8e9d7d04 1016 /* Bring up clock enable. */
3da42859
DN
1017
1018 /* tXRP < 250 ck cycles */
1019 delay_for_n_mem_clocks(250);
1020
ecd2334a
MV
1021 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1022 0);
3da42859
DN
1023}
1024
1025/*
1026 * At the end of calibration we have to program the user settings in, and
1027 * USER hand off the memory to the user.
1028 */
1029static void rw_mgr_mem_handoff(void)
1030{
ecd2334a
MV
1031 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1032 /*
1033 * USER need to wait tMOD (12CK or 15ns) time before issuing
1034 * other commands, but we will have plenty of NIOS cycles before
1035 * actual handoff so its okay.
1036 */
3da42859
DN
1037}
1038
d844c7d4
MV
1039/**
1040 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1041 * @rank_bgn: Rank number
1042 * @group: Read/Write Group
1043 * @all_ranks: Test all ranks
1044 *
1045 * Performs a guaranteed read on the patterns we are going to use during a
1046 * read test to ensure memory works.
3da42859 1047 */
d844c7d4
MV
1048static int
1049rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1050 const u32 all_ranks)
3da42859 1051{
d844c7d4
MV
1052 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1053 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1054 const u32 addr_offset =
1055 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1056 const u32 rank_end = all_ranks ?
1057 RW_MGR_MEM_NUMBER_OF_RANKS :
1058 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1059 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1060 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1061 const u32 correct_mask_vg = param->read_correct_mask_vg;
3da42859 1062
d844c7d4
MV
1063 u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1064 int vg, r;
1065 int ret = 0;
1066
1067 bit_chk = param->read_correct_mask;
3da42859
DN
1068
1069 for (r = rank_bgn; r < rank_end; r++) {
d844c7d4 1070 /* Request to skip the rank */
3da42859 1071 if (param->skip_ranks[r])
3da42859
DN
1072 continue;
1073
d844c7d4 1074 /* Set rank */
3da42859
DN
1075 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1076
1077 /* Load up a constant bursts of read commands */
1273dd9e
MV
1078 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1079 writel(RW_MGR_GUARANTEED_READ,
1080 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3da42859 1081
1273dd9e
MV
1082 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1083 writel(RW_MGR_GUARANTEED_READ_CONT,
1084 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3da42859
DN
1085
1086 tmp_bit_chk = 0;
d844c7d4
MV
1087 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1088 vg >= 0; vg--) {
1089 /* Reset the FIFOs to get pointers to known state. */
1273dd9e
MV
1090 writel(0, &phy_mgr_cmd->fifo_reset);
1091 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1092 RW_MGR_RESET_READ_DATAPATH_OFFSET);
d844c7d4
MV
1093 writel(RW_MGR_GUARANTEED_READ,
1094 addr + addr_offset + (vg << 2));
3da42859 1095
1273dd9e 1096 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
d844c7d4
MV
1097 tmp_bit_chk <<= shift_ratio;
1098 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
3da42859 1099 }
d844c7d4
MV
1100
1101 bit_chk &= tmp_bit_chk;
3da42859
DN
1102 }
1103
17fdc916 1104 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
3da42859
DN
1105
1106 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
d844c7d4
MV
1107
1108 if (bit_chk != param->read_correct_mask)
1109 ret = -EIO;
1110
1111 debug_cond(DLEVEL == 1,
1112 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1113 __func__, __LINE__, group, bit_chk,
1114 param->read_correct_mask, ret);
1115
1116 return ret;
3da42859
DN
1117}
1118
b6cb7f9e
MV
1119/**
1120 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1121 * @rank_bgn: Rank number
1122 * @all_ranks: Test all ranks
1123 *
1124 * Load up the patterns we are going to use during a read test.
1125 */
1126static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1127 const int all_ranks)
3da42859 1128{
b6cb7f9e
MV
1129 const u32 rank_end = all_ranks ?
1130 RW_MGR_MEM_NUMBER_OF_RANKS :
1131 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1132 u32 r;
3da42859
DN
1133
1134 debug("%s:%d\n", __func__, __LINE__);
b6cb7f9e 1135
3da42859
DN
1136 for (r = rank_bgn; r < rank_end; r++) {
1137 if (param->skip_ranks[r])
1138 /* request to skip the rank */
1139 continue;
1140
1141 /* set rank */
1142 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1143
1144 /* Load up a constant bursts */
1273dd9e 1145 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
3da42859 1146
1273dd9e
MV
1147 writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1148 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3da42859 1149
1273dd9e 1150 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
3da42859 1151
1273dd9e
MV
1152 writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1153 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3da42859 1154
1273dd9e 1155 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
3da42859 1156
1273dd9e
MV
1157 writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1158 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
3da42859 1159
1273dd9e 1160 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
3da42859 1161
1273dd9e
MV
1162 writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1163 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
3da42859 1164
1273dd9e
MV
1165 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1166 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3da42859
DN
1167 }
1168
1169 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1170}
1171
1172/*
1173 * try a read and see if it returns correct data back. has dummy reads
1174 * inserted into the mix used to align dqs enable. has more thorough checks
1175 * than the regular read test.
1176 */
3cb8bf3f
MV
1177static int
1178rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1179 const u32 num_tries, const u32 all_correct,
1180 u32 *bit_chk,
1181 const u32 all_groups, const u32 all_ranks)
3da42859 1182{
3cb8bf3f 1183 const u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
3da42859 1184 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
3cb8bf3f
MV
1185 const u32 quick_read_mode =
1186 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1187 ENABLE_SUPER_QUICK_CALIBRATION);
1188 u32 correct_mask_vg = param->read_correct_mask_vg;
1189 u32 tmp_bit_chk;
1190 u32 base_rw_mgr;
1191 u32 addr;
3da42859 1192
3cb8bf3f 1193 int r, vg, ret;
3853d65e 1194
3cb8bf3f 1195 *bit_chk = param->read_correct_mask;
3da42859
DN
1196
1197 for (r = rank_bgn; r < rank_end; r++) {
1198 if (param->skip_ranks[r])
1199 /* request to skip the rank */
1200 continue;
1201
1202 /* set rank */
1203 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1204
1273dd9e 1205 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
3da42859 1206
1273dd9e
MV
1207 writel(RW_MGR_READ_B2B_WAIT1,
1208 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3da42859 1209
1273dd9e
MV
1210 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1211 writel(RW_MGR_READ_B2B_WAIT2,
1212 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
3da42859 1213
3da42859 1214 if (quick_read_mode)
1273dd9e 1215 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
3da42859
DN
1216 /* need at least two (1+1) reads to capture failures */
1217 else if (all_groups)
1273dd9e 1218 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
3da42859 1219 else
1273dd9e 1220 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
3da42859 1221
1273dd9e
MV
1222 writel(RW_MGR_READ_B2B,
1223 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3da42859
DN
1224 if (all_groups)
1225 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1226 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1273dd9e 1227 &sdr_rw_load_mgr_regs->load_cntr3);
3da42859 1228 else
1273dd9e 1229 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
3da42859 1230
1273dd9e
MV
1231 writel(RW_MGR_READ_B2B,
1232 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
3da42859
DN
1233
1234 tmp_bit_chk = 0;
7ce23bb6
MV
1235 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; vg >= 0;
1236 vg--) {
3da42859 1237 /* reset the fifos to get pointers to known state */
1273dd9e
MV
1238 writel(0, &phy_mgr_cmd->fifo_reset);
1239 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1240 RW_MGR_RESET_READ_DATAPATH_OFFSET);
3da42859
DN
1241
1242 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1243 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1244
c4815f76
MV
1245 if (all_groups)
1246 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1247 else
1248 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1249
17fdc916 1250 writel(RW_MGR_READ_B2B, addr +
3da42859
DN
1251 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1252 vg) << 2));
1253
1273dd9e 1254 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
3da42859 1255 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
3da42859 1256 }
7ce23bb6 1257
3da42859
DN
1258 *bit_chk &= tmp_bit_chk;
1259 }
1260
c4815f76 1261 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
17fdc916 1262 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
3da42859 1263
3853d65e
MV
1264 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1265
3da42859 1266 if (all_correct) {
3853d65e
MV
1267 ret = (*bit_chk == param->read_correct_mask);
1268 debug_cond(DLEVEL == 2,
1269 "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1270 __func__, __LINE__, group, all_groups, *bit_chk,
1271 param->read_correct_mask, ret);
3da42859 1272 } else {
3853d65e
MV
1273 ret = (*bit_chk != 0x00);
1274 debug_cond(DLEVEL == 2,
1275 "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1276 __func__, __LINE__, group, all_groups, *bit_chk,
1277 0, ret);
3da42859 1278 }
3853d65e
MV
1279
1280 return ret;
3da42859
DN
1281}
1282
96df6036
MV
1283/**
1284 * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1285 * @grp: Read/Write group
1286 * @num_tries: Number of retries of the test
1287 * @all_correct: All bits must be correct in the mask
1288 * @all_groups: Test all R/W groups
1289 *
1290 * Perform a READ test across all memory ranks.
1291 */
1292static int
1293rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1294 const u32 all_correct,
1295 const u32 all_groups)
3da42859 1296{
96df6036
MV
1297 u32 bit_chk;
1298 return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1299 &bit_chk, all_groups, 1);
3da42859
DN
1300}
1301
60bb8a8a
MV
1302/**
1303 * rw_mgr_incr_vfifo() - Increase VFIFO value
1304 * @grp: Read/Write group
60bb8a8a
MV
1305 *
1306 * Increase VFIFO value.
1307 */
8c887b6e 1308static void rw_mgr_incr_vfifo(const u32 grp)
3da42859 1309{
1273dd9e 1310 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
3da42859
DN
1311}
1312
60bb8a8a
MV
1313/**
1314 * rw_mgr_decr_vfifo() - Decrease VFIFO value
1315 * @grp: Read/Write group
60bb8a8a
MV
1316 *
1317 * Decrease VFIFO value.
1318 */
8c887b6e 1319static void rw_mgr_decr_vfifo(const u32 grp)
3da42859 1320{
60bb8a8a 1321 u32 i;
3da42859 1322
60bb8a8a 1323 for (i = 0; i < VFIFO_SIZE - 1; i++)
8c887b6e 1324 rw_mgr_incr_vfifo(grp);
3da42859
DN
1325}
1326
d145ca9f
MV
1327/**
1328 * find_vfifo_failing_read() - Push VFIFO to get a failing read
1329 * @grp: Read/Write group
1330 *
1331 * Push VFIFO until a failing read happens.
1332 */
1333static int find_vfifo_failing_read(const u32 grp)
3da42859 1334{
96df6036 1335 u32 v, ret, fail_cnt = 0;
3da42859 1336
8c887b6e 1337 for (v = 0; v < VFIFO_SIZE; v++) {
d145ca9f 1338 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
3da42859 1339 __func__, __LINE__, v);
d145ca9f 1340 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
96df6036 1341 PASS_ONE_BIT, 0);
d145ca9f 1342 if (!ret) {
3da42859
DN
1343 fail_cnt++;
1344
1345 if (fail_cnt == 2)
d145ca9f 1346 return v;
3da42859
DN
1347 }
1348
d145ca9f 1349 /* Fiddle with FIFO. */
8c887b6e 1350 rw_mgr_incr_vfifo(grp);
3da42859
DN
1351 }
1352
d145ca9f
MV
1353 /* No failing read found! Something must have gone wrong. */
1354 debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1355 return 0;
3da42859
DN
1356}
1357
52e8f217
MV
1358/**
1359 * sdr_find_phase_delay() - Find DQS enable phase or delay
1360 * @working: If 1, look for working phase/delay, if 0, look for non-working
1361 * @delay: If 1, look for delay, if 0, look for phase
1362 * @grp: Read/Write group
1363 * @work: Working window position
1364 * @work_inc: Working window increment
1365 * @pd: DQS Phase/Delay Iterator
1366 *
1367 * Find working or non-working DQS enable phase setting.
1368 */
1369static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1370 u32 *work, const u32 work_inc, u32 *pd)
1371{
1372 const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX;
96df6036 1373 u32 ret;
52e8f217
MV
1374
1375 for (; *pd <= max; (*pd)++) {
1376 if (delay)
1377 scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1378 else
1379 scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1380
1381 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
96df6036 1382 PASS_ONE_BIT, 0);
52e8f217
MV
1383 if (!working)
1384 ret = !ret;
1385
1386 if (ret)
1387 return 0;
1388
1389 if (work)
1390 *work += work_inc;
1391 }
1392
1393 return -EINVAL;
1394}
192d6f9f
MV
1395/**
1396 * sdr_find_phase() - Find DQS enable phase
1397 * @working: If 1, look for working phase, if 0, look for non-working phase
1398 * @grp: Read/Write group
192d6f9f
MV
1399 * @work: Working window position
1400 * @i: Iterator
1401 * @p: DQS Phase Iterator
192d6f9f
MV
1402 *
1403 * Find working or non-working DQS enable phase setting.
1404 */
8c887b6e 1405static int sdr_find_phase(int working, const u32 grp, u32 *work,
86a39dc7 1406 u32 *i, u32 *p)
3da42859 1407{
192d6f9f 1408 const u32 end = VFIFO_SIZE + (working ? 0 : 1);
52e8f217 1409 int ret;
3da42859 1410
192d6f9f
MV
1411 for (; *i < end; (*i)++) {
1412 if (working)
1413 *p = 0;
1414
52e8f217
MV
1415 ret = sdr_find_phase_delay(working, 0, grp, work,
1416 IO_DELAY_PER_OPA_TAP, p);
1417 if (!ret)
1418 return 0;
192d6f9f
MV
1419
1420 if (*p > IO_DQS_EN_PHASE_MAX) {
1421 /* Fiddle with FIFO. */
8c887b6e 1422 rw_mgr_incr_vfifo(grp);
192d6f9f
MV
1423 if (!working)
1424 *p = 0;
3da42859 1425 }
3da42859
DN
1426 }
1427
192d6f9f
MV
1428 return -EINVAL;
1429}
1430
4c5e584b
MV
1431/**
1432 * sdr_working_phase() - Find working DQS enable phase
1433 * @grp: Read/Write group
1434 * @work_bgn: Working window start position
4c5e584b
MV
1435 * @d: dtaps output value
1436 * @p: DQS Phase Iterator
1437 * @i: Iterator
1438 *
1439 * Find working DQS enable phase setting.
1440 */
8c887b6e 1441static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
4c5e584b 1442 u32 *p, u32 *i)
192d6f9f 1443{
35ee867f
MV
1444 const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP /
1445 IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
192d6f9f
MV
1446 int ret;
1447
1448 *work_bgn = 0;
1449
1450 for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1451 *i = 0;
1452 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
8c887b6e 1453 ret = sdr_find_phase(1, grp, work_bgn, i, p);
192d6f9f
MV
1454 if (!ret)
1455 return 0;
1456 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1457 }
1458
38ed6922 1459 /* Cannot find working solution */
192d6f9f
MV
1460 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1461 __func__, __LINE__);
1462 return -EINVAL;
3da42859
DN
1463}
1464
4c5e584b
MV
1465/**
1466 * sdr_backup_phase() - Find DQS enable backup phase
1467 * @grp: Read/Write group
1468 * @work_bgn: Working window start position
4c5e584b
MV
1469 * @p: DQS Phase Iterator
1470 *
1471 * Find DQS enable backup phase setting.
1472 */
8c887b6e 1473static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
3da42859 1474{
96df6036 1475 u32 tmp_delay, d;
4c5e584b 1476 int ret;
3da42859
DN
1477
1478 /* Special case code for backing up a phase */
1479 if (*p == 0) {
1480 *p = IO_DQS_EN_PHASE_MAX;
8c887b6e 1481 rw_mgr_decr_vfifo(grp);
3da42859
DN
1482 } else {
1483 (*p)--;
1484 }
1485 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
521fe39c 1486 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
3da42859 1487
49891df6
MV
1488 for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) {
1489 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
3da42859 1490
4c5e584b 1491 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
96df6036 1492 PASS_ONE_BIT, 0);
4c5e584b 1493 if (ret) {
3da42859
DN
1494 *work_bgn = tmp_delay;
1495 break;
1496 }
49891df6
MV
1497
1498 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
3da42859
DN
1499 }
1500
4c5e584b 1501 /* Restore VFIFO to old state before we decremented it (if needed). */
3da42859
DN
1502 (*p)++;
1503 if (*p > IO_DQS_EN_PHASE_MAX) {
1504 *p = 0;
8c887b6e 1505 rw_mgr_incr_vfifo(grp);
3da42859
DN
1506 }
1507
521fe39c 1508 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
3da42859
DN
1509}
1510
4c5e584b
MV
1511/**
1512 * sdr_nonworking_phase() - Find non-working DQS enable phase
1513 * @grp: Read/Write group
1514 * @work_end: Working window end position
4c5e584b
MV
1515 * @p: DQS Phase Iterator
1516 * @i: Iterator
1517 *
1518 * Find non-working DQS enable phase setting.
1519 */
8c887b6e 1520static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
3da42859 1521{
192d6f9f 1522 int ret;
3da42859
DN
1523
1524 (*p)++;
1525 *work_end += IO_DELAY_PER_OPA_TAP;
1526 if (*p > IO_DQS_EN_PHASE_MAX) {
192d6f9f 1527 /* Fiddle with FIFO. */
3da42859 1528 *p = 0;
8c887b6e 1529 rw_mgr_incr_vfifo(grp);
3da42859
DN
1530 }
1531
8c887b6e 1532 ret = sdr_find_phase(0, grp, work_end, i, p);
192d6f9f
MV
1533 if (ret) {
1534 /* Cannot see edge of failing read. */
1535 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1536 __func__, __LINE__);
3da42859
DN
1537 }
1538
192d6f9f 1539 return ret;
3da42859
DN
1540}
1541
0a13a0fb
MV
1542/**
1543 * sdr_find_window_center() - Find center of the working DQS window.
1544 * @grp: Read/Write group
1545 * @work_bgn: First working settings
1546 * @work_end: Last working settings
0a13a0fb
MV
1547 *
1548 * Find center of the working DQS enable window.
1549 */
1550static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
8c887b6e 1551 const u32 work_end)
3da42859 1552{
96df6036 1553 u32 work_mid;
3da42859 1554 int tmp_delay = 0;
28fd242a 1555 int i, p, d;
3da42859 1556
28fd242a 1557 work_mid = (work_bgn + work_end) / 2;
3da42859
DN
1558
1559 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
28fd242a 1560 work_bgn, work_end, work_mid);
3da42859 1561 /* Get the middle delay to be less than a VFIFO delay */
cbb0b7e0 1562 tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
28fd242a 1563
3da42859 1564 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
cbb0b7e0 1565 work_mid %= tmp_delay;
28fd242a 1566 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
3da42859 1567
cbb0b7e0
MV
1568 tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1569 if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1570 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1571 p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1572
1573 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1574
1575 d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1576 if (d > IO_DQS_EN_DELAY_MAX)
1577 d = IO_DQS_EN_DELAY_MAX;
1578 tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
28fd242a 1579
28fd242a 1580 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
3da42859 1581
cbb0b7e0 1582 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
28fd242a 1583 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
3da42859
DN
1584
1585 /*
1586 * push vfifo until we can successfully calibrate. We can do this
1587 * because the largest possible margin in 1 VFIFO cycle.
1588 */
1589 for (i = 0; i < VFIFO_SIZE; i++) {
8c887b6e 1590 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
28fd242a 1591 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
3da42859 1592 PASS_ONE_BIT,
96df6036 1593 0)) {
0a13a0fb 1594 debug_cond(DLEVEL == 2,
8c887b6e
MV
1595 "%s:%d center: found: ptap=%u dtap=%u\n",
1596 __func__, __LINE__, p, d);
0a13a0fb 1597 return 0;
3da42859
DN
1598 }
1599
0a13a0fb 1600 /* Fiddle with FIFO. */
8c887b6e 1601 rw_mgr_incr_vfifo(grp);
3da42859
DN
1602 }
1603
0a13a0fb
MV
1604 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1605 __func__, __LINE__);
1606 return -EINVAL;
3da42859
DN
1607}
1608
33756893
MV
1609/**
1610 * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1611 * @grp: Read/Write Group
1612 *
1613 * Find a good DQS enable to use.
1614 */
914546e7 1615static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
3da42859 1616{
5735540f
MV
1617 u32 d, p, i;
1618 u32 dtaps_per_ptap;
1619 u32 work_bgn, work_end;
1620 u32 found_passing_read, found_failing_read, initial_failing_dtap;
1621 int ret;
3da42859
DN
1622
1623 debug("%s:%d %u\n", __func__, __LINE__, grp);
1624
1625 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1626
1627 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1628 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1629
2f3589ca
MV
1630 /* Step 0: Determine number of delay taps for each phase tap. */
1631 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
3da42859 1632
2f3589ca 1633 /* Step 1: First push vfifo until we get a failing read. */
d145ca9f 1634 find_vfifo_failing_read(grp);
3da42859 1635
2f3589ca 1636 /* Step 2: Find first working phase, increment in ptaps. */
3da42859 1637 work_bgn = 0;
914546e7
MV
1638 ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1639 if (ret)
1640 return ret;
3da42859
DN
1641
1642 work_end = work_bgn;
1643
1644 /*
2f3589ca
MV
1645 * If d is 0 then the working window covers a phase tap and we can
1646 * follow the old procedure. Otherwise, we've found the beginning
3da42859
DN
1647 * and we need to increment the dtaps until we find the end.
1648 */
1649 if (d == 0) {
2f3589ca
MV
1650 /*
1651 * Step 3a: If we have room, back off by one and
1652 * increment in dtaps.
1653 */
8c887b6e 1654 sdr_backup_phase(grp, &work_bgn, &p);
3da42859 1655
2f3589ca
MV
1656 /*
1657 * Step 4a: go forward from working phase to non working
1658 * phase, increment in ptaps.
1659 */
914546e7
MV
1660 ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1661 if (ret)
1662 return ret;
3da42859 1663
2f3589ca 1664 /* Step 5a: Back off one from last, increment in dtaps. */
3da42859
DN
1665
1666 /* Special case code for backing up a phase */
1667 if (p == 0) {
1668 p = IO_DQS_EN_PHASE_MAX;
8c887b6e 1669 rw_mgr_decr_vfifo(grp);
3da42859
DN
1670 } else {
1671 p = p - 1;
1672 }
1673
1674 work_end -= IO_DELAY_PER_OPA_TAP;
1675 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1676
3da42859
DN
1677 d = 0;
1678
2f3589ca
MV
1679 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
1680 __func__, __LINE__, p);
3da42859
DN
1681 }
1682
2f3589ca 1683 /* The dtap increment to find the failing edge is done here. */
52e8f217
MV
1684 sdr_find_phase_delay(0, 1, grp, &work_end,
1685 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d);
3da42859
DN
1686
1687 /* Go back to working dtap */
1688 if (d != 0)
1689 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1690
2f3589ca
MV
1691 debug_cond(DLEVEL == 2,
1692 "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1693 __func__, __LINE__, p, d - 1, work_end);
3da42859
DN
1694
1695 if (work_end < work_bgn) {
1696 /* nil range */
2f3589ca
MV
1697 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
1698 __func__, __LINE__);
914546e7 1699 return -EINVAL;
3da42859
DN
1700 }
1701
2f3589ca 1702 debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
3da42859
DN
1703 __func__, __LINE__, work_bgn, work_end);
1704
3da42859 1705 /*
2f3589ca
MV
1706 * We need to calculate the number of dtaps that equal a ptap.
1707 * To do that we'll back up a ptap and re-find the edge of the
1708 * window using dtaps
3da42859 1709 */
2f3589ca
MV
1710 debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1711 __func__, __LINE__);
3da42859
DN
1712
1713 /* Special case code for backing up a phase */
1714 if (p == 0) {
1715 p = IO_DQS_EN_PHASE_MAX;
8c887b6e 1716 rw_mgr_decr_vfifo(grp);
2f3589ca
MV
1717 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
1718 __func__, __LINE__, p);
3da42859
DN
1719 } else {
1720 p = p - 1;
2f3589ca
MV
1721 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
1722 __func__, __LINE__, p);
3da42859
DN
1723 }
1724
1725 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1726
1727 /*
1728 * Increase dtap until we first see a passing read (in case the
2f3589ca
MV
1729 * window is smaller than a ptap), and then a failing read to
1730 * mark the edge of the window again.
3da42859
DN
1731 */
1732
2f3589ca
MV
1733 /* Find a passing read. */
1734 debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
3da42859 1735 __func__, __LINE__);
3da42859 1736
52e8f217 1737 initial_failing_dtap = d;
3da42859 1738
52e8f217 1739 found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
3da42859 1740 if (found_passing_read) {
2f3589ca
MV
1741 /* Find a failing read. */
1742 debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
1743 __func__, __LINE__);
52e8f217
MV
1744 d++;
1745 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1746 &d);
3da42859 1747 } else {
2f3589ca
MV
1748 debug_cond(DLEVEL == 1,
1749 "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1750 __func__, __LINE__);
3da42859
DN
1751 }
1752
1753 /*
1754 * The dynamically calculated dtaps_per_ptap is only valid if we
1755 * found a passing/failing read. If we didn't, it means d hit the max
1756 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1757 * statically calculated value.
1758 */
1759 if (found_passing_read && found_failing_read)
1760 dtaps_per_ptap = d - initial_failing_dtap;
1761
1273dd9e 1762 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
2f3589ca
MV
1763 debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1764 __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
3da42859 1765
2f3589ca 1766 /* Step 6: Find the centre of the window. */
914546e7 1767 ret = sdr_find_window_center(grp, work_bgn, work_end);
3da42859 1768
914546e7 1769 return ret;
3da42859
DN
1770}
1771
3da42859
DN
1772/* per-bit deskew DQ and center */
1773static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1774 uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1775 uint32_t use_read_test, uint32_t update_fom)
1776{
1777 uint32_t i, p, d, min_index;
1778 /*
1779 * Store these as signed since there are comparisons with
1780 * signed numbers.
1781 */
1782 uint32_t bit_chk;
1783 uint32_t sticky_bit_chk;
1784 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1785 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1786 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1787 int32_t mid;
1788 int32_t orig_mid_min, mid_min;
1789 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1790 final_dqs_en;
1791 int32_t dq_margin, dqs_margin;
1792 uint32_t stop;
1793 uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1794 uint32_t addr;
1795
1796 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1797
c4815f76 1798 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
17fdc916 1799 start_dqs = readl(addr + (read_group << 2));
3da42859 1800 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
17fdc916 1801 start_dqs_en = readl(addr + ((read_group << 2)
3da42859
DN
1802 - IO_DQS_EN_DELAY_OFFSET));
1803
1804 /* set the left and right edge of each bit to an illegal value */
1805 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1806 sticky_bit_chk = 0;
1807 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1808 left_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1809 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1810 }
1811
3da42859
DN
1812 /* Search for the left edge of the window for each bit */
1813 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1814 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1815
1273dd9e 1816 writel(0, &sdr_scc_mgr->update);
3da42859
DN
1817
1818 /*
1819 * Stop searching when the read test doesn't pass AND when
1820 * we've seen a passing read on every bit.
1821 */
1822 if (use_read_test) {
1823 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1824 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1825 &bit_chk, 0, 0);
1826 } else {
1827 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1828 0, PASS_ONE_BIT,
1829 &bit_chk, 0);
1830 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1831 (read_group - (write_group *
1832 RW_MGR_MEM_IF_READ_DQS_WIDTH /
1833 RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1834 stop = (bit_chk == 0);
1835 }
1836 sticky_bit_chk = sticky_bit_chk | bit_chk;
1837 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1838 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1839 && %u", __func__, __LINE__, d,
1840 sticky_bit_chk,
1841 param->read_correct_mask, stop);
1842
1843 if (stop == 1) {
1844 break;
1845 } else {
1846 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1847 if (bit_chk & 1) {
1848 /* Remember a passing test as the
1849 left_edge */
1850 left_edge[i] = d;
1851 } else {
1852 /* If a left edge has not been seen yet,
1853 then a future passing test will mark
1854 this edge as the right edge */
1855 if (left_edge[i] ==
1856 IO_IO_IN_DELAY_MAX + 1) {
1857 right_edge[i] = -(d + 1);
1858 }
1859 }
1860 bit_chk = bit_chk >> 1;
1861 }
1862 }
1863 }
1864
1865 /* Reset DQ delay chains to 0 */
32675249 1866 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
3da42859
DN
1867 sticky_bit_chk = 0;
1868 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1869 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1870 %d right_edge[%u]: %d\n", __func__, __LINE__,
1871 i, left_edge[i], i, right_edge[i]);
1872
1873 /*
1874 * Check for cases where we haven't found the left edge,
1875 * which makes our assignment of the the right edge invalid.
1876 * Reset it to the illegal value.
1877 */
1878 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1879 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1880 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1881 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1882 right_edge[%u]: %d\n", __func__, __LINE__,
1883 i, right_edge[i]);
1884 }
1885
1886 /*
1887 * Reset sticky bit (except for bits where we have seen
1888 * both the left and right edge).
1889 */
1890 sticky_bit_chk = sticky_bit_chk << 1;
1891 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1892 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1893 sticky_bit_chk = sticky_bit_chk | 1;
1894 }
1895
1896 if (i == 0)
1897 break;
1898 }
1899
3da42859
DN
1900 /* Search for the right edge of the window for each bit */
1901 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1902 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1903 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1904 uint32_t delay = d + start_dqs_en;
1905 if (delay > IO_DQS_EN_DELAY_MAX)
1906 delay = IO_DQS_EN_DELAY_MAX;
1907 scc_mgr_set_dqs_en_delay(read_group, delay);
1908 }
1909 scc_mgr_load_dqs(read_group);
1910
1273dd9e 1911 writel(0, &sdr_scc_mgr->update);
3da42859
DN
1912
1913 /*
1914 * Stop searching when the read test doesn't pass AND when
1915 * we've seen a passing read on every bit.
1916 */
1917 if (use_read_test) {
1918 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1919 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1920 &bit_chk, 0, 0);
1921 } else {
1922 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1923 0, PASS_ONE_BIT,
1924 &bit_chk, 0);
1925 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1926 (read_group - (write_group *
1927 RW_MGR_MEM_IF_READ_DQS_WIDTH /
1928 RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1929 stop = (bit_chk == 0);
1930 }
1931 sticky_bit_chk = sticky_bit_chk | bit_chk;
1932 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1933
1934 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1935 %u && %u", __func__, __LINE__, d,
1936 sticky_bit_chk, param->read_correct_mask, stop);
1937
1938 if (stop == 1) {
1939 break;
1940 } else {
1941 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1942 if (bit_chk & 1) {
1943 /* Remember a passing test as
1944 the right_edge */
1945 right_edge[i] = d;
1946 } else {
1947 if (d != 0) {
1948 /* If a right edge has not been
1949 seen yet, then a future passing
1950 test will mark this edge as the
1951 left edge */
1952 if (right_edge[i] ==
1953 IO_IO_IN_DELAY_MAX + 1) {
1954 left_edge[i] = -(d + 1);
1955 }
1956 } else {
1957 /* d = 0 failed, but it passed
1958 when testing the left edge,
1959 so it must be marginal,
1960 set it to -1 */
1961 if (right_edge[i] ==
1962 IO_IO_IN_DELAY_MAX + 1 &&
1963 left_edge[i] !=
1964 IO_IO_IN_DELAY_MAX
1965 + 1) {
1966 right_edge[i] = -1;
1967 }
1968 /* If a right edge has not been
1969 seen yet, then a future passing
1970 test will mark this edge as the
1971 left edge */
1972 else if (right_edge[i] ==
1973 IO_IO_IN_DELAY_MAX +
1974 1) {
1975 left_edge[i] = -(d + 1);
1976 }
1977 }
1978 }
1979
1980 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
1981 d=%u]: ", __func__, __LINE__, d);
1982 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
1983 (int)(bit_chk & 1), i, left_edge[i]);
1984 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
1985 right_edge[i]);
1986 bit_chk = bit_chk >> 1;
1987 }
1988 }
1989 }
1990
1991 /* Check that all bits have a window */
3da42859
DN
1992 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1993 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1994 %d right_edge[%u]: %d", __func__, __LINE__,
1995 i, left_edge[i], i, right_edge[i]);
1996 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
1997 == IO_IO_IN_DELAY_MAX + 1)) {
1998 /*
1999 * Restore delay chain settings before letting the loop
2000 * in rw_mgr_mem_calibrate_vfifo to retry different
2001 * dqs/ck relationships.
2002 */
2003 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2004 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2005 scc_mgr_set_dqs_en_delay(read_group,
2006 start_dqs_en);
2007 }
2008 scc_mgr_load_dqs(read_group);
1273dd9e 2009 writel(0, &sdr_scc_mgr->update);
3da42859
DN
2010
2011 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2012 find edge [%u]: %d %d", __func__, __LINE__,
2013 i, left_edge[i], right_edge[i]);
2014 if (use_read_test) {
2015 set_failing_group_stage(read_group *
2016 RW_MGR_MEM_DQ_PER_READ_DQS + i,
2017 CAL_STAGE_VFIFO,
2018 CAL_SUBSTAGE_VFIFO_CENTER);
2019 } else {
2020 set_failing_group_stage(read_group *
2021 RW_MGR_MEM_DQ_PER_READ_DQS + i,
2022 CAL_STAGE_VFIFO_AFTER_WRITES,
2023 CAL_SUBSTAGE_VFIFO_CENTER);
2024 }
2025 return 0;
2026 }
2027 }
2028
2029 /* Find middle of window for each DQ bit */
2030 mid_min = left_edge[0] - right_edge[0];
2031 min_index = 0;
2032 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2033 mid = left_edge[i] - right_edge[i];
2034 if (mid < mid_min) {
2035 mid_min = mid;
2036 min_index = i;
2037 }
2038 }
2039
2040 /*
2041 * -mid_min/2 represents the amount that we need to move DQS.
2042 * If mid_min is odd and positive we'll need to add one to
2043 * make sure the rounding in further calculations is correct
2044 * (always bias to the right), so just add 1 for all positive values.
2045 */
2046 if (mid_min > 0)
2047 mid_min++;
2048
2049 mid_min = mid_min / 2;
2050
2051 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2052 __func__, __LINE__, mid_min, min_index);
2053
2054 /* Determine the amount we can change DQS (which is -mid_min) */
2055 orig_mid_min = mid_min;
2056 new_dqs = start_dqs - mid_min;
2057 if (new_dqs > IO_DQS_IN_DELAY_MAX)
2058 new_dqs = IO_DQS_IN_DELAY_MAX;
2059 else if (new_dqs < 0)
2060 new_dqs = 0;
2061
2062 mid_min = start_dqs - new_dqs;
2063 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2064 mid_min, new_dqs);
2065
2066 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2067 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2068 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2069 else if (start_dqs_en - mid_min < 0)
2070 mid_min += start_dqs_en - mid_min;
2071 }
2072 new_dqs = start_dqs - mid_min;
2073
2074 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2075 new_dqs=%d mid_min=%d\n", start_dqs,
2076 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2077 new_dqs, mid_min);
2078
2079 /* Initialize data for export structures */
2080 dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2081 dq_margin = IO_IO_IN_DELAY_MAX + 1;
2082
3da42859
DN
2083 /* add delay to bring centre of all DQ windows to the same "level" */
2084 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2085 /* Use values before divide by 2 to reduce round off error */
2086 shift_dq = (left_edge[i] - right_edge[i] -
2087 (left_edge[min_index] - right_edge[min_index]))/2 +
2088 (orig_mid_min - mid_min);
2089
2090 debug_cond(DLEVEL == 2, "vfifo_center: before: \
2091 shift_dq[%u]=%d\n", i, shift_dq);
2092
1273dd9e 2093 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
17fdc916
MV
2094 temp_dq_in_delay1 = readl(addr + (p << 2));
2095 temp_dq_in_delay2 = readl(addr + (i << 2));
3da42859
DN
2096
2097 if (shift_dq + (int32_t)temp_dq_in_delay1 >
2098 (int32_t)IO_IO_IN_DELAY_MAX) {
2099 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2100 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2101 shift_dq = -(int32_t)temp_dq_in_delay1;
2102 }
2103 debug_cond(DLEVEL == 2, "vfifo_center: after: \
2104 shift_dq[%u]=%d\n", i, shift_dq);
2105 final_dq[i] = temp_dq_in_delay1 + shift_dq;
07aee5bd 2106 scc_mgr_set_dq_in_delay(p, final_dq[i]);
3da42859
DN
2107 scc_mgr_load_dq(p);
2108
2109 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2110 left_edge[i] - shift_dq + (-mid_min),
2111 right_edge[i] + shift_dq - (-mid_min));
2112 /* To determine values for export structures */
2113 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2114 dq_margin = left_edge[i] - shift_dq + (-mid_min);
2115
2116 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2117 dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2118 }
2119
2120 final_dqs = new_dqs;
2121 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2122 final_dqs_en = start_dqs_en - mid_min;
2123
2124 /* Move DQS-en */
2125 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2126 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2127 scc_mgr_load_dqs(read_group);
2128 }
2129
2130 /* Move DQS */
2131 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2132 scc_mgr_load_dqs(read_group);
2133 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2134 dqs_margin=%d", __func__, __LINE__,
2135 dq_margin, dqs_margin);
2136
2137 /*
2138 * Do not remove this line as it makes sure all of our decisions
2139 * have been applied. Apply the update bit.
2140 */
1273dd9e 2141 writel(0, &sdr_scc_mgr->update);
3da42859
DN
2142
2143 return (dq_margin >= 0) && (dqs_margin >= 0);
2144}
2145
04372fb8
MV
2146/**
2147 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2148 * @rw_group: Read/Write Group
2149 * @phase: DQ/DQS phase
2150 *
2151 * Because initially no communication ca be reliably performed with the memory
2152 * device, the sequencer uses a guaranteed write mechanism to write data into
2153 * the memory device.
2154 */
2155static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2156 const u32 phase)
2157{
04372fb8
MV
2158 int ret;
2159
2160 /* Set a particular DQ/DQS phase. */
2161 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2162
2163 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2164 __func__, __LINE__, rw_group, phase);
2165
2166 /*
2167 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2168 * Load up the patterns used by read calibration using the
2169 * current DQDQS phase.
2170 */
2171 rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2172
2173 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2174 return 0;
2175
2176 /*
2177 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2178 * Back-to-Back reads of the patterns used for calibration.
2179 */
d844c7d4
MV
2180 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2181 if (ret)
04372fb8
MV
2182 debug_cond(DLEVEL == 1,
2183 "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2184 __func__, __LINE__, rw_group, phase);
d844c7d4 2185 return ret;
04372fb8
MV
2186}
2187
f09da11e
MV
2188/**
2189 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2190 * @rw_group: Read/Write Group
2191 * @test_bgn: Rank at which the test begins
2192 *
2193 * DQS enable calibration ensures reliable capture of the DQ signal without
2194 * glitches on the DQS line.
2195 */
2196static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2197 const u32 test_bgn)
2198{
f09da11e
MV
2199 /*
2200 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2201 * DQS and DQS Eanble Signal Relationships.
2202 */
28ea827d
MV
2203
2204 /* We start at zero, so have one less dq to devide among */
2205 const u32 delay_step = IO_IO_IN_DELAY_MAX /
2206 (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
914546e7 2207 int ret;
28ea827d
MV
2208 u32 i, p, d, r;
2209
2210 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2211
2212 /* Try different dq_in_delays since the DQ path is shorter than DQS. */
2213 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2214 r += NUM_RANKS_PER_SHADOW_REG) {
2215 for (i = 0, p = test_bgn, d = 0;
2216 i < RW_MGR_MEM_DQ_PER_READ_DQS;
2217 i++, p++, d += delay_step) {
2218 debug_cond(DLEVEL == 1,
2219 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2220 __func__, __LINE__, rw_group, r, i, p, d);
2221
2222 scc_mgr_set_dq_in_delay(p, d);
2223 scc_mgr_load_dq(p);
2224 }
2225
2226 writel(0, &sdr_scc_mgr->update);
2227 }
2228
2229 /*
2230 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2231 * dq_in_delay values
2232 */
914546e7 2233 ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
28ea827d
MV
2234
2235 debug_cond(DLEVEL == 1,
2236 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
914546e7 2237 __func__, __LINE__, rw_group, !ret);
28ea827d
MV
2238
2239 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2240 r += NUM_RANKS_PER_SHADOW_REG) {
2241 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2242 writel(0, &sdr_scc_mgr->update);
2243 }
2244
914546e7 2245 return ret;
f09da11e
MV
2246}
2247
16cfc4b9
MV
2248/**
2249 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2250 * @rw_group: Read/Write Group
2251 * @test_bgn: Rank at which the test begins
2252 * @use_read_test: Perform a read test
2253 * @update_fom: Update FOM
2254 *
2255 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2256 * within a group.
2257 */
2258static int
2259rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2260 const int use_read_test,
2261 const int update_fom)
2262
2263{
2264 int ret, grp_calibrated;
2265 u32 rank_bgn, sr;
2266
2267 /*
2268 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2269 * Read per-bit deskew can be done on a per shadow register basis.
2270 */
2271 grp_calibrated = 1;
2272 for (rank_bgn = 0, sr = 0;
2273 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2274 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2275 /* Check if this set of ranks should be skipped entirely. */
2276 if (param->skip_shadow_regs[sr])
2277 continue;
2278
2279 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2280 rw_group, test_bgn,
2281 use_read_test,
2282 update_fom);
2283 if (ret)
2284 continue;
2285
2286 grp_calibrated = 0;
2287 }
2288
2289 if (!grp_calibrated)
2290 return -EIO;
2291
2292 return 0;
2293}
2294
bce24efa
MV
2295/**
2296 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2297 * @rw_group: Read/Write Group
2298 * @test_bgn: Rank at which the test begins
2299 *
2300 * Stage 1: Calibrate the read valid prediction FIFO.
2301 *
2302 * This function implements UniPHY calibration Stage 1, as explained in
2303 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3da42859 2304 *
bce24efa
MV
2305 * - read valid prediction will consist of finding:
2306 * - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2307 * - DQS input phase and DQS input delay (DQ/DQS Centering)
3da42859
DN
2308 * - we also do a per-bit deskew on the DQ lines.
2309 */
c336ca3e 2310static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
3da42859 2311{
16cfc4b9 2312 uint32_t p, d;
3da42859 2313 uint32_t dtaps_per_ptap;
3da42859
DN
2314 uint32_t failed_substage;
2315
04372fb8
MV
2316 int ret;
2317
c336ca3e 2318 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
3da42859 2319
7c0a9df3
MV
2320 /* Update info for sims */
2321 reg_file_set_group(rw_group);
3da42859 2322 reg_file_set_stage(CAL_STAGE_VFIFO);
7c0a9df3 2323 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
3da42859 2324
7c0a9df3
MV
2325 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2326
2327 /* USER Determine number of delay taps for each phase tap. */
d32badbd
MV
2328 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2329 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
3da42859 2330
fe2d0a2d 2331 for (d = 0; d <= dtaps_per_ptap; d += 2) {
3da42859
DN
2332 /*
2333 * In RLDRAMX we may be messing the delay of pins in
c336ca3e
MV
2334 * the same write rw_group but outside of the current read
2335 * the rw_group, but that's ok because we haven't calibrated
ac70d2f3 2336 * output side yet.
3da42859
DN
2337 */
2338 if (d > 0) {
f51a7d35 2339 scc_mgr_apply_group_all_out_delay_add_all_ranks(
c336ca3e 2340 rw_group, d);
3da42859
DN
2341 }
2342
fe2d0a2d 2343 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
04372fb8
MV
2344 /* 1) Guaranteed Write */
2345 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2346 if (ret)
2347 break;
3da42859 2348
f09da11e
MV
2349 /* 2) DQS Enable Calibration */
2350 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2351 test_bgn);
2352 if (ret) {
3da42859 2353 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
fe2d0a2d
MV
2354 continue;
2355 }
2356
16cfc4b9 2357 /* 3) Centering DQ/DQS */
fe2d0a2d 2358 /*
16cfc4b9
MV
2359 * If doing read after write calibration, do not update
2360 * FOM now. Do it then.
fe2d0a2d 2361 */
16cfc4b9
MV
2362 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2363 test_bgn, 1, 0);
2364 if (ret) {
fe2d0a2d 2365 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
16cfc4b9 2366 continue;
3da42859 2367 }
fe2d0a2d 2368
16cfc4b9
MV
2369 /* All done. */
2370 goto cal_done_ok;
3da42859
DN
2371 }
2372 }
2373
fe2d0a2d 2374 /* Calibration Stage 1 failed. */
c336ca3e 2375 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
fe2d0a2d 2376 return 0;
3da42859 2377
fe2d0a2d
MV
2378 /* Calibration Stage 1 completed OK. */
2379cal_done_ok:
3da42859
DN
2380 /*
2381 * Reset the delay chains back to zero if they have moved > 1
2382 * (check for > 1 because loop will increase d even when pass in
2383 * first case).
2384 */
2385 if (d > 2)
c336ca3e 2386 scc_mgr_zero_group(rw_group, 1);
3da42859
DN
2387
2388 return 1;
2389}
2390
2391/* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2392static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2393 uint32_t test_bgn)
2394{
2395 uint32_t rank_bgn, sr;
2396 uint32_t grp_calibrated;
2397 uint32_t write_group;
2398
2399 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2400
2401 /* update info for sims */
2402
2403 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2404 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2405
2406 write_group = read_group;
2407
2408 /* update info for sims */
2409 reg_file_set_group(read_group);
2410
2411 grp_calibrated = 1;
2412 /* Read per-bit deskew can be done on a per shadow register basis */
2413 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2414 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2415 /* Determine if this set of ranks should be skipped entirely */
2416 if (!param->skip_shadow_regs[sr]) {
2417 /* This is the last calibration round, update FOM here */
2418 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2419 write_group,
2420 read_group,
2421 test_bgn, 0,
2422 1)) {
2423 grp_calibrated = 0;
2424 }
2425 }
2426 }
2427
2428
2429 if (grp_calibrated == 0) {
2430 set_failing_group_stage(write_group,
2431 CAL_STAGE_VFIFO_AFTER_WRITES,
2432 CAL_SUBSTAGE_VFIFO_CENTER);
2433 return 0;
2434 }
2435
2436 return 1;
2437}
2438
2439/* Calibrate LFIFO to find smallest read latency */
2440static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2441{
2442 uint32_t found_one;
3da42859
DN
2443
2444 debug("%s:%d\n", __func__, __LINE__);
2445
2446 /* update info for sims */
2447 reg_file_set_stage(CAL_STAGE_LFIFO);
2448 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2449
2450 /* Load up the patterns used by read calibration for all ranks */
2451 rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2452 found_one = 0;
2453
3da42859 2454 do {
1273dd9e 2455 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3da42859
DN
2456 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2457 __func__, __LINE__, gbl->curr_read_lat);
2458
2459 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2460 NUM_READ_TESTS,
2461 PASS_ALL_BITS,
96df6036 2462 1)) {
3da42859
DN
2463 break;
2464 }
2465
2466 found_one = 1;
2467 /* reduce read latency and see if things are working */
2468 /* correctly */
2469 gbl->curr_read_lat--;
2470 } while (gbl->curr_read_lat > 0);
2471
2472 /* reset the fifos to get pointers to known state */
2473
1273dd9e 2474 writel(0, &phy_mgr_cmd->fifo_reset);
3da42859
DN
2475
2476 if (found_one) {
2477 /* add a fudge factor to the read latency that was determined */
2478 gbl->curr_read_lat += 2;
1273dd9e 2479 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3da42859
DN
2480 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2481 read_lat=%u\n", __func__, __LINE__,
2482 gbl->curr_read_lat);
2483 return 1;
2484 } else {
2485 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2486 CAL_SUBSTAGE_READ_LATENCY);
2487
2488 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2489 read_lat=%u\n", __func__, __LINE__,
2490 gbl->curr_read_lat);
2491 return 0;
2492 }
2493}
2494
2495/*
2496 * issue write test command.
2497 * two variants are provided. one that just tests a write pattern and
2498 * another that tests datamask functionality.
2499 */
2500static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2501 uint32_t test_dm)
2502{
2503 uint32_t mcc_instruction;
2504 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2505 ENABLE_SUPER_QUICK_CALIBRATION);
2506 uint32_t rw_wl_nop_cycles;
2507 uint32_t addr;
2508
2509 /*
2510 * Set counter and jump addresses for the right
2511 * number of NOP cycles.
2512 * The number of supported NOP cycles can range from -1 to infinity
2513 * Three different cases are handled:
2514 *
2515 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2516 * mechanism will be used to insert the right number of NOPs
2517 *
2518 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2519 * issuing the write command will jump straight to the
2520 * micro-instruction that turns on DQS (for DDRx), or outputs write
2521 * data (for RLD), skipping
2522 * the NOP micro-instruction all together
2523 *
2524 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2525 * turned on in the same micro-instruction that issues the write
2526 * command. Then we need
2527 * to directly jump to the micro-instruction that sends out the data
2528 *
2529 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2530 * (2 and 3). One jump-counter (0) is used to perform multiple
2531 * write-read operations.
2532 * one counter left to issue this command in "multiple-group" mode
2533 */
2534
2535 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2536
2537 if (rw_wl_nop_cycles == -1) {
2538 /*
2539 * CNTR 2 - We want to execute the special write operation that
2540 * turns on DQS right away and then skip directly to the
2541 * instruction that sends out the data. We set the counter to a
2542 * large number so that the jump is always taken.
2543 */
1273dd9e 2544 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
3da42859
DN
2545
2546 /* CNTR 3 - Not used */
2547 if (test_dm) {
2548 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
3da42859 2549 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
1273dd9e 2550 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
3da42859 2551 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1273dd9e 2552 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
3da42859
DN
2553 } else {
2554 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
1273dd9e
MV
2555 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2556 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2557 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2558 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
3da42859
DN
2559 }
2560 } else if (rw_wl_nop_cycles == 0) {
2561 /*
2562 * CNTR 2 - We want to skip the NOP operation and go straight
2563 * to the DQS enable instruction. We set the counter to a large
2564 * number so that the jump is always taken.
2565 */
1273dd9e 2566 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
3da42859
DN
2567
2568 /* CNTR 3 - Not used */
2569 if (test_dm) {
2570 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
3da42859 2571 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
1273dd9e 2572 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
3da42859
DN
2573 } else {
2574 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1273dd9e
MV
2575 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2576 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
3da42859
DN
2577 }
2578 } else {
2579 /*
2580 * CNTR 2 - In this case we want to execute the next instruction
2581 * and NOT take the jump. So we set the counter to 0. The jump
2582 * address doesn't count.
2583 */
1273dd9e
MV
2584 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2585 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
3da42859
DN
2586
2587 /*
2588 * CNTR 3 - Set the nop counter to the number of cycles we
2589 * need to loop for, minus 1.
2590 */
1273dd9e 2591 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
3da42859
DN
2592 if (test_dm) {
2593 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1273dd9e
MV
2594 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2595 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
3da42859
DN
2596 } else {
2597 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1273dd9e
MV
2598 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2599 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
3da42859
DN
2600 }
2601 }
2602
1273dd9e
MV
2603 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2604 RW_MGR_RESET_READ_DATAPATH_OFFSET);
3da42859 2605
3da42859 2606 if (quick_write_mode)
1273dd9e 2607 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
3da42859 2608 else
1273dd9e 2609 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
3da42859 2610
1273dd9e 2611 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3da42859
DN
2612
2613 /*
2614 * CNTR 1 - This is used to ensure enough time elapses
2615 * for read data to come back.
2616 */
1273dd9e 2617 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
3da42859 2618
3da42859 2619 if (test_dm) {
1273dd9e
MV
2620 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2621 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3da42859 2622 } else {
1273dd9e
MV
2623 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2624 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3da42859
DN
2625 }
2626
c4815f76 2627 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
17fdc916 2628 writel(mcc_instruction, addr + (group << 2));
3da42859
DN
2629}
2630
2631/* Test writes, can check for a single bit pass or multiple bit pass */
2632static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2633 uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2634 uint32_t *bit_chk, uint32_t all_ranks)
2635{
3da42859
DN
2636 uint32_t r;
2637 uint32_t correct_mask_vg;
2638 uint32_t tmp_bit_chk;
2639 uint32_t vg;
2640 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2641 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2642 uint32_t addr_rw_mgr;
2643 uint32_t base_rw_mgr;
2644
2645 *bit_chk = param->write_correct_mask;
2646 correct_mask_vg = param->write_correct_mask_vg;
2647
2648 for (r = rank_bgn; r < rank_end; r++) {
2649 if (param->skip_ranks[r]) {
2650 /* request to skip the rank */
2651 continue;
2652 }
2653
2654 /* set rank */
2655 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2656
2657 tmp_bit_chk = 0;
a4bfa463 2658 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
3da42859
DN
2659 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2660 /* reset the fifos to get pointers to known state */
1273dd9e 2661 writel(0, &phy_mgr_cmd->fifo_reset);
3da42859
DN
2662
2663 tmp_bit_chk = tmp_bit_chk <<
2664 (RW_MGR_MEM_DQ_PER_WRITE_DQS /
2665 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2666 rw_mgr_mem_calibrate_write_test_issue(write_group *
2667 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2668 use_dm);
2669
17fdc916 2670 base_rw_mgr = readl(addr_rw_mgr);
3da42859
DN
2671 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2672 if (vg == 0)
2673 break;
2674 }
2675 *bit_chk &= tmp_bit_chk;
2676 }
2677
2678 if (all_correct) {
2679 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2680 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2681 %u => %lu", write_group, use_dm,
2682 *bit_chk, param->write_correct_mask,
2683 (long unsigned int)(*bit_chk ==
2684 param->write_correct_mask));
2685 return *bit_chk == param->write_correct_mask;
2686 } else {
2687 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2688 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2689 write_group, use_dm, *bit_chk);
2690 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2691 (long unsigned int)(*bit_chk != 0));
2692 return *bit_chk != 0x00;
2693 }
2694}
2695
2696/*
2697 * center all windows. do per-bit-deskew to possibly increase size of
2698 * certain windows.
2699 */
2700static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2701 uint32_t write_group, uint32_t test_bgn)
2702{
2703 uint32_t i, p, min_index;
2704 int32_t d;
2705 /*
2706 * Store these as signed since there are comparisons with
2707 * signed numbers.
2708 */
2709 uint32_t bit_chk;
2710 uint32_t sticky_bit_chk;
2711 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2712 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2713 int32_t mid;
2714 int32_t mid_min, orig_mid_min;
2715 int32_t new_dqs, start_dqs, shift_dq;
2716 int32_t dq_margin, dqs_margin, dm_margin;
2717 uint32_t stop;
2718 uint32_t temp_dq_out1_delay;
2719 uint32_t addr;
2720
2721 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2722
2723 dm_margin = 0;
2724
c4815f76 2725 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
17fdc916 2726 start_dqs = readl(addr +
3da42859
DN
2727 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2728
2729 /* per-bit deskew */
2730
2731 /*
2732 * set the left and right edge of each bit to an illegal value
2733 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2734 */
2735 sticky_bit_chk = 0;
2736 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2737 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2738 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2739 }
2740
2741 /* Search for the left edge of the window for each bit */
3da42859 2742 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
300c2e62 2743 scc_mgr_apply_group_dq_out1_delay(write_group, d);
3da42859 2744
1273dd9e 2745 writel(0, &sdr_scc_mgr->update);
3da42859
DN
2746
2747 /*
2748 * Stop searching when the read test doesn't pass AND when
2749 * we've seen a passing read on every bit.
2750 */
2751 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2752 0, PASS_ONE_BIT, &bit_chk, 0);
2753 sticky_bit_chk = sticky_bit_chk | bit_chk;
2754 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2755 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2756 == %u && %u [bit_chk= %u ]\n",
2757 d, sticky_bit_chk, param->write_correct_mask,
2758 stop, bit_chk);
2759
2760 if (stop == 1) {
2761 break;
2762 } else {
2763 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2764 if (bit_chk & 1) {
2765 /*
2766 * Remember a passing test as the
2767 * left_edge.
2768 */
2769 left_edge[i] = d;
2770 } else {
2771 /*
2772 * If a left edge has not been seen
2773 * yet, then a future passing test will
2774 * mark this edge as the right edge.
2775 */
2776 if (left_edge[i] ==
2777 IO_IO_OUT1_DELAY_MAX + 1) {
2778 right_edge[i] = -(d + 1);
2779 }
2780 }
2781 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2782 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2783 (int)(bit_chk & 1), i, left_edge[i]);
2784 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2785 right_edge[i]);
2786 bit_chk = bit_chk >> 1;
2787 }
2788 }
2789 }
2790
2791 /* Reset DQ delay chains to 0 */
32675249 2792 scc_mgr_apply_group_dq_out1_delay(0);
3da42859
DN
2793 sticky_bit_chk = 0;
2794 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2795 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2796 %d right_edge[%u]: %d\n", __func__, __LINE__,
2797 i, left_edge[i], i, right_edge[i]);
2798
2799 /*
2800 * Check for cases where we haven't found the left edge,
2801 * which makes our assignment of the the right edge invalid.
2802 * Reset it to the illegal value.
2803 */
2804 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2805 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2806 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2807 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2808 right_edge[%u]: %d\n", __func__, __LINE__,
2809 i, right_edge[i]);
2810 }
2811
2812 /*
2813 * Reset sticky bit (except for bits where we have
2814 * seen the left edge).
2815 */
2816 sticky_bit_chk = sticky_bit_chk << 1;
2817 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2818 sticky_bit_chk = sticky_bit_chk | 1;
2819
2820 if (i == 0)
2821 break;
2822 }
2823
2824 /* Search for the right edge of the window for each bit */
3da42859
DN
2825 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2826 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2827 d + start_dqs);
2828
1273dd9e 2829 writel(0, &sdr_scc_mgr->update);
3da42859
DN
2830
2831 /*
2832 * Stop searching when the read test doesn't pass AND when
2833 * we've seen a passing read on every bit.
2834 */
2835 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2836 0, PASS_ONE_BIT, &bit_chk, 0);
2837
2838 sticky_bit_chk = sticky_bit_chk | bit_chk;
2839 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2840
2841 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2842 %u && %u\n", d, sticky_bit_chk,
2843 param->write_correct_mask, stop);
2844
2845 if (stop == 1) {
2846 if (d == 0) {
2847 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2848 i++) {
2849 /* d = 0 failed, but it passed when
2850 testing the left edge, so it must be
2851 marginal, set it to -1 */
2852 if (right_edge[i] ==
2853 IO_IO_OUT1_DELAY_MAX + 1 &&
2854 left_edge[i] !=
2855 IO_IO_OUT1_DELAY_MAX + 1) {
2856 right_edge[i] = -1;
2857 }
2858 }
2859 }
2860 break;
2861 } else {
2862 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2863 if (bit_chk & 1) {
2864 /*
2865 * Remember a passing test as
2866 * the right_edge.
2867 */
2868 right_edge[i] = d;
2869 } else {
2870 if (d != 0) {
2871 /*
2872 * If a right edge has not
2873 * been seen yet, then a future
2874 * passing test will mark this
2875 * edge as the left edge.
2876 */
2877 if (right_edge[i] ==
2878 IO_IO_OUT1_DELAY_MAX + 1)
2879 left_edge[i] = -(d + 1);
2880 } else {
2881 /*
2882 * d = 0 failed, but it passed
2883 * when testing the left edge,
2884 * so it must be marginal, set
2885 * it to -1.
2886 */
2887 if (right_edge[i] ==
2888 IO_IO_OUT1_DELAY_MAX + 1 &&
2889 left_edge[i] !=
2890 IO_IO_OUT1_DELAY_MAX + 1)
2891 right_edge[i] = -1;
2892 /*
2893 * If a right edge has not been
2894 * seen yet, then a future
2895 * passing test will mark this
2896 * edge as the left edge.
2897 */
2898 else if (right_edge[i] ==
2899 IO_IO_OUT1_DELAY_MAX +
2900 1)
2901 left_edge[i] = -(d + 1);
2902 }
2903 }
2904 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2905 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2906 (int)(bit_chk & 1), i, left_edge[i]);
2907 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2908 right_edge[i]);
2909 bit_chk = bit_chk >> 1;
2910 }
2911 }
2912 }
2913
2914 /* Check that all bits have a window */
2915 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2916 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2917 %d right_edge[%u]: %d", __func__, __LINE__,
2918 i, left_edge[i], i, right_edge[i]);
2919 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2920 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2921 set_failing_group_stage(test_bgn + i,
2922 CAL_STAGE_WRITES,
2923 CAL_SUBSTAGE_WRITES_CENTER);
2924 return 0;
2925 }
2926 }
2927
2928 /* Find middle of window for each DQ bit */
2929 mid_min = left_edge[0] - right_edge[0];
2930 min_index = 0;
2931 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2932 mid = left_edge[i] - right_edge[i];
2933 if (mid < mid_min) {
2934 mid_min = mid;
2935 min_index = i;
2936 }
2937 }
2938
2939 /*
2940 * -mid_min/2 represents the amount that we need to move DQS.
2941 * If mid_min is odd and positive we'll need to add one to
2942 * make sure the rounding in further calculations is correct
2943 * (always bias to the right), so just add 1 for all positive values.
2944 */
2945 if (mid_min > 0)
2946 mid_min++;
2947 mid_min = mid_min / 2;
2948 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2949 __LINE__, mid_min);
2950
2951 /* Determine the amount we can change DQS (which is -mid_min) */
2952 orig_mid_min = mid_min;
2953 new_dqs = start_dqs;
2954 mid_min = 0;
2955 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2956 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2957 /* Initialize data for export structures */
2958 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2959 dq_margin = IO_IO_OUT1_DELAY_MAX + 1;
2960
2961 /* add delay to bring centre of all DQ windows to the same "level" */
3da42859
DN
2962 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2963 /* Use values before divide by 2 to reduce round off error */
2964 shift_dq = (left_edge[i] - right_edge[i] -
2965 (left_edge[min_index] - right_edge[min_index]))/2 +
2966 (orig_mid_min - mid_min);
2967
2968 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2969 [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2970
1273dd9e 2971 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
17fdc916 2972 temp_dq_out1_delay = readl(addr + (i << 2));
3da42859
DN
2973 if (shift_dq + (int32_t)temp_dq_out1_delay >
2974 (int32_t)IO_IO_OUT1_DELAY_MAX) {
2975 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2976 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2977 shift_dq = -(int32_t)temp_dq_out1_delay;
2978 }
2979 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2980 i, shift_dq);
07aee5bd 2981 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
3da42859
DN
2982 scc_mgr_load_dq(i);
2983
2984 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2985 left_edge[i] - shift_dq + (-mid_min),
2986 right_edge[i] + shift_dq - (-mid_min));
2987 /* To determine values for export structures */
2988 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2989 dq_margin = left_edge[i] - shift_dq + (-mid_min);
2990
2991 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2992 dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2993 }
2994
2995 /* Move DQS */
2996 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
1273dd9e 2997 writel(0, &sdr_scc_mgr->update);
3da42859
DN
2998
2999 /* Centre DM */
3000 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3001
3002 /*
3003 * set the left and right edge of each bit to an illegal value,
3004 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
3005 */
3006 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3007 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3008 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3009 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3010 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
3011 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
3012 int32_t win_best = 0;
3013
3014 /* Search for the/part of the window with DM shift */
3da42859 3015 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
32675249 3016 scc_mgr_apply_group_dm_out1_delay(d);
1273dd9e 3017 writel(0, &sdr_scc_mgr->update);
3da42859
DN
3018
3019 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3020 PASS_ALL_BITS, &bit_chk,
3021 0)) {
3022 /* USE Set current end of the window */
3023 end_curr = -d;
3024 /*
3025 * If a starting edge of our window has not been seen
3026 * this is our current start of the DM window.
3027 */
3028 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3029 bgn_curr = -d;
3030
3031 /*
3032 * If current window is bigger than best seen.
3033 * Set best seen to be current window.
3034 */
3035 if ((end_curr-bgn_curr+1) > win_best) {
3036 win_best = end_curr-bgn_curr+1;
3037 bgn_best = bgn_curr;
3038 end_best = end_curr;
3039 }
3040 } else {
3041 /* We just saw a failing test. Reset temp edge */
3042 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3043 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3044 }
3045 }
3046
3047
3048 /* Reset DM delay chains to 0 */
32675249 3049 scc_mgr_apply_group_dm_out1_delay(0);
3da42859
DN
3050
3051 /*
3052 * Check to see if the current window nudges up aganist 0 delay.
3053 * If so we need to continue the search by shifting DQS otherwise DQS
3054 * search begins as a new search. */
3055 if (end_curr != 0) {
3056 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3057 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3058 }
3059
3060 /* Search for the/part of the window with DQS shifts */
3da42859
DN
3061 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3062 /*
3063 * Note: This only shifts DQS, so are we limiting ourselve to
3064 * width of DQ unnecessarily.
3065 */
3066 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3067 d + new_dqs);
3068
1273dd9e 3069 writel(0, &sdr_scc_mgr->update);
3da42859
DN
3070 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3071 PASS_ALL_BITS, &bit_chk,
3072 0)) {
3073 /* USE Set current end of the window */
3074 end_curr = d;
3075 /*
3076 * If a beginning edge of our window has not been seen
3077 * this is our current begin of the DM window.
3078 */
3079 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3080 bgn_curr = d;
3081
3082 /*
3083 * If current window is bigger than best seen. Set best
3084 * seen to be current window.
3085 */
3086 if ((end_curr-bgn_curr+1) > win_best) {
3087 win_best = end_curr-bgn_curr+1;
3088 bgn_best = bgn_curr;
3089 end_best = end_curr;
3090 }
3091 } else {
3092 /* We just saw a failing test. Reset temp edge */
3093 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3094 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3095
3096 /* Early exit optimization: if ther remaining delay
3097 chain space is less than already seen largest window
3098 we can exit */
3099 if ((win_best-1) >
3100 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3101 break;
3102 }
3103 }
3104 }
3105
3106 /* assign left and right edge for cal and reporting; */
3107 left_edge[0] = -1*bgn_best;
3108 right_edge[0] = end_best;
3109
3110 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3111 __LINE__, left_edge[0], right_edge[0]);
3112
3113 /* Move DQS (back to orig) */
3114 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3115
3116 /* Move DM */
3117
3118 /* Find middle of window for the DM bit */
3119 mid = (left_edge[0] - right_edge[0]) / 2;
3120
3121 /* only move right, since we are not moving DQS/DQ */
3122 if (mid < 0)
3123 mid = 0;
3124
3125 /* dm_marign should fail if we never find a window */
3126 if (win_best == 0)
3127 dm_margin = -1;
3128 else
3129 dm_margin = left_edge[0] - mid;
3130
32675249 3131 scc_mgr_apply_group_dm_out1_delay(mid);
1273dd9e 3132 writel(0, &sdr_scc_mgr->update);
3da42859
DN
3133
3134 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3135 dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3136 right_edge[0], mid, dm_margin);
3137 /* Export values */
3138 gbl->fom_out += dq_margin + dqs_margin;
3139
3140 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3141 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3142 dq_margin, dqs_margin, dm_margin);
3143
3144 /*
3145 * Do not remove this line as it makes sure all of our
3146 * decisions have been applied.
3147 */
1273dd9e 3148 writel(0, &sdr_scc_mgr->update);
3da42859
DN
3149 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3150}
3151
3152/* calibrate the write operations */
3153static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3154 uint32_t test_bgn)
3155{
3156 /* update info for sims */
3157 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3158
3159 reg_file_set_stage(CAL_STAGE_WRITES);
3160 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3161
3162 reg_file_set_group(g);
3163
3164 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3165 set_failing_group_stage(g, CAL_STAGE_WRITES,
3166 CAL_SUBSTAGE_WRITES_CENTER);
3167 return 0;
3168 }
3169
3170 return 1;
3171}
3172
4b0ac26a
MV
3173/**
3174 * mem_precharge_and_activate() - Precharge all banks and activate
3175 *
3176 * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3177 */
3da42859
DN
3178static void mem_precharge_and_activate(void)
3179{
4b0ac26a 3180 int r;
3da42859
DN
3181
3182 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
4b0ac26a
MV
3183 /* Test if the rank should be skipped. */
3184 if (param->skip_ranks[r])
3da42859 3185 continue;
3da42859 3186
4b0ac26a 3187 /* Set rank. */
3da42859
DN
3188 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3189
4b0ac26a 3190 /* Precharge all banks. */
1273dd9e
MV
3191 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3192 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3da42859 3193
1273dd9e
MV
3194 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3195 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3196 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3da42859 3197
1273dd9e
MV
3198 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3199 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3200 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3da42859 3201
4b0ac26a 3202 /* Activate rows. */
1273dd9e
MV
3203 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3204 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3da42859
DN
3205 }
3206}
3207
16502a0b
MV
3208/**
3209 * mem_init_latency() - Configure memory RLAT and WLAT settings
3210 *
3211 * Configure memory RLAT and WLAT parameters.
3212 */
3213static void mem_init_latency(void)
3da42859 3214{
3da42859 3215 /*
16502a0b
MV
3216 * For AV/CV, LFIFO is hardened and always runs at full rate
3217 * so max latency in AFI clocks, used here, is correspondingly
3218 * smaller.
3da42859 3219 */
16502a0b
MV
3220 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3221 u32 rlat, wlat;
3da42859 3222
16502a0b 3223 debug("%s:%d\n", __func__, __LINE__);
3da42859
DN
3224
3225 /*
16502a0b
MV
3226 * Read in write latency.
3227 * WL for Hard PHY does not include additive latency.
3da42859 3228 */
16502a0b
MV
3229 wlat = readl(&data_mgr->t_wl_add);
3230 wlat += readl(&data_mgr->mem_t_add);
3da42859 3231
16502a0b 3232 gbl->rw_wl_nop_cycles = wlat - 1;
3da42859 3233
16502a0b
MV
3234 /* Read in readl latency. */
3235 rlat = readl(&data_mgr->t_rl_add);
3da42859 3236
16502a0b
MV
3237 /* Set a pretty high read latency initially. */
3238 gbl->curr_read_lat = rlat + 16;
3da42859
DN
3239 if (gbl->curr_read_lat > max_latency)
3240 gbl->curr_read_lat = max_latency;
3241
1273dd9e 3242 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3da42859 3243
16502a0b
MV
3244 /* Advertise write latency. */
3245 writel(wlat, &phy_mgr_cfg->afi_wlat);
3da42859
DN
3246}
3247
51cea0b6
MV
3248/**
3249 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3250 *
3251 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3252 */
3da42859
DN
3253static void mem_skip_calibrate(void)
3254{
3255 uint32_t vfifo_offset;
3256 uint32_t i, j, r;
3da42859
DN
3257
3258 debug("%s:%d\n", __func__, __LINE__);
3259 /* Need to update every shadow register set used by the interface */
3260 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
51cea0b6 3261 r += NUM_RANKS_PER_SHADOW_REG) {
3da42859
DN
3262 /*
3263 * Set output phase alignment settings appropriate for
3264 * skip calibration.
3265 */
3266 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3267 scc_mgr_set_dqs_en_phase(i, 0);
3268#if IO_DLL_CHAIN_LENGTH == 6
3269 scc_mgr_set_dqdqs_output_phase(i, 6);
3270#else
3271 scc_mgr_set_dqdqs_output_phase(i, 7);
3272#endif
3273 /*
3274 * Case:33398
3275 *
3276 * Write data arrives to the I/O two cycles before write
3277 * latency is reached (720 deg).
3278 * -> due to bit-slip in a/c bus
3279 * -> to allow board skew where dqs is longer than ck
3280 * -> how often can this happen!?
3281 * -> can claim back some ptaps for high freq
3282 * support if we can relax this, but i digress...
3283 *
3284 * The write_clk leads mem_ck by 90 deg
3285 * The minimum ptap of the OPA is 180 deg
3286 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3287 * The write_clk is always delayed by 2 ptaps
3288 *
3289 * Hence, to make DQS aligned to CK, we need to delay
3290 * DQS by:
3291 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3292 *
3293 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3294 * gives us the number of ptaps, which simplies to:
3295 *
3296 * (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3297 */
51cea0b6
MV
3298 scc_mgr_set_dqdqs_output_phase(i,
3299 1.25 * IO_DLL_CHAIN_LENGTH - 2);
3da42859 3300 }
1273dd9e
MV
3301 writel(0xff, &sdr_scc_mgr->dqs_ena);
3302 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3da42859 3303
3da42859 3304 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
1273dd9e
MV
3305 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3306 SCC_MGR_GROUP_COUNTER_OFFSET);
3da42859 3307 }
1273dd9e
MV
3308 writel(0xff, &sdr_scc_mgr->dq_ena);
3309 writel(0xff, &sdr_scc_mgr->dm_ena);
3310 writel(0, &sdr_scc_mgr->update);
3da42859
DN
3311 }
3312
3313 /* Compensate for simulation model behaviour */
3314 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3315 scc_mgr_set_dqs_bus_in_delay(i, 10);
3316 scc_mgr_load_dqs(i);
3317 }
1273dd9e 3318 writel(0, &sdr_scc_mgr->update);
3da42859
DN
3319
3320 /*
3321 * ArriaV has hard FIFOs that can only be initialized by incrementing
3322 * in sequencer.
3323 */
3324 vfifo_offset = CALIB_VFIFO_OFFSET;
51cea0b6 3325 for (j = 0; j < vfifo_offset; j++)
1273dd9e 3326 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
1273dd9e 3327 writel(0, &phy_mgr_cmd->fifo_reset);
3da42859
DN
3328
3329 /*
51cea0b6
MV
3330 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3331 * setting from generation-time constant.
3da42859
DN
3332 */
3333 gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
1273dd9e 3334 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3da42859
DN
3335}
3336
3589fbfb
MV
3337/**
3338 * mem_calibrate() - Memory calibration entry point.
3339 *
3340 * Perform memory calibration.
3341 */
3da42859
DN
3342static uint32_t mem_calibrate(void)
3343{
3344 uint32_t i;
3345 uint32_t rank_bgn, sr;
3346 uint32_t write_group, write_test_bgn;
3347 uint32_t read_group, read_test_bgn;
3348 uint32_t run_groups, current_run;
3349 uint32_t failing_groups = 0;
3350 uint32_t group_failed = 0;
3da42859 3351
33c42bb8
MV
3352 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3353 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3354
3da42859 3355 debug("%s:%d\n", __func__, __LINE__);
3da42859 3356
16502a0b 3357 /* Initialize the data settings */
3da42859
DN
3358 gbl->error_substage = CAL_SUBSTAGE_NIL;
3359 gbl->error_stage = CAL_STAGE_NIL;
3360 gbl->error_group = 0xff;
3361 gbl->fom_in = 0;
3362 gbl->fom_out = 0;
3363
16502a0b
MV
3364 /* Initialize WLAT and RLAT. */
3365 mem_init_latency();
3366
3367 /* Initialize bit slips. */
3368 mem_precharge_and_activate();
3da42859 3369
3da42859 3370 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
1273dd9e
MV
3371 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3372 SCC_MGR_GROUP_COUNTER_OFFSET);
fa5d821b
MV
3373 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3374 if (i == 0)
3375 scc_mgr_set_hhp_extras();
3376
c5c5f537 3377 scc_set_bypass_mode(i);
3da42859
DN
3378 }
3379
722c9685 3380 /* Calibration is skipped. */
3da42859
DN
3381 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3382 /*
3383 * Set VFIFO and LFIFO to instant-on settings in skip
3384 * calibration mode.
3385 */
3386 mem_skip_calibrate();
3da42859 3387
722c9685
MV
3388 /*
3389 * Do not remove this line as it makes sure all of our
3390 * decisions have been applied.
3391 */
3392 writel(0, &sdr_scc_mgr->update);
3393 return 1;
3394 }
3da42859 3395
722c9685
MV
3396 /* Calibration is not skipped. */
3397 for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3398 /*
3399 * Zero all delay chain/phase settings for all
3400 * groups and all shadow register sets.
3401 */
3402 scc_mgr_zero_all();
3403
3404 run_groups = ~param->skip_groups;
3405
3406 for (write_group = 0, write_test_bgn = 0; write_group
3407 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3408 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
c452dcd0
MV
3409
3410 /* Initialize the group failure */
722c9685
MV
3411 group_failed = 0;
3412
3413 current_run = run_groups & ((1 <<
3414 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3415 run_groups = run_groups >>
3416 RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3417
3418 if (current_run == 0)
3419 continue;
3420
3421 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3422 SCC_MGR_GROUP_COUNTER_OFFSET);
3423 scc_mgr_zero_group(write_group, 0);
3424
33c42bb8
MV
3425 for (read_group = write_group * rwdqs_ratio,
3426 read_test_bgn = 0;
c452dcd0 3427 read_group < (write_group + 1) * rwdqs_ratio;
33c42bb8
MV
3428 read_group++,
3429 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3430 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3431 continue;
3432
722c9685 3433 /* Calibrate the VFIFO */
33c42bb8
MV
3434 if (rw_mgr_mem_calibrate_vfifo(read_group,
3435 read_test_bgn))
3436 continue;
3437
33c42bb8
MV
3438 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3439 return 0;
c452dcd0
MV
3440
3441 /* The group failed, we're done. */
3442 goto grp_failed;
722c9685 3443 }
3da42859 3444
722c9685 3445 /* Calibrate the output side */
c452dcd0
MV
3446 for (rank_bgn = 0, sr = 0;
3447 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3448 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3449 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3450 continue;
4ac21610 3451
c452dcd0
MV
3452 /* Not needed in quick mode! */
3453 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3454 continue;
4ac21610 3455
c452dcd0
MV
3456 /*
3457 * Determine if this set of ranks
3458 * should be skipped entirely.
3459 */
3460 if (param->skip_shadow_regs[sr])
3461 continue;
4ac21610 3462
c452dcd0
MV
3463 /* Calibrate WRITEs */
3464 if (rw_mgr_mem_calibrate_writes(rank_bgn,
3465 write_group, write_test_bgn))
3466 continue;
4ac21610 3467
c452dcd0
MV
3468 group_failed = 1;
3469 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3470 return 0;
722c9685 3471 }
3da42859 3472
c452dcd0
MV
3473 /* Some group failed, we're done. */
3474 if (group_failed)
3475 goto grp_failed;
3476
3477 for (read_group = write_group * rwdqs_ratio,
3478 read_test_bgn = 0;
3479 read_group < (write_group + 1) * rwdqs_ratio;
3480 read_group++,
3481 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3482 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3483 continue;
3484
3485 if (rw_mgr_mem_calibrate_vfifo_end(read_group,
3486 read_test_bgn))
3487 continue;
3488
3489 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3490 return 0;
3491
3492 /* The group failed, we're done. */
3493 goto grp_failed;
3da42859
DN
3494 }
3495
c452dcd0
MV
3496 /* No group failed, continue as usual. */
3497 continue;
3498
3499grp_failed: /* A group failed, increment the counter. */
3500 failing_groups++;
722c9685
MV
3501 }
3502
3503 /*
3504 * USER If there are any failing groups then report
3505 * the failure.
3506 */
3507 if (failing_groups != 0)
3508 return 0;
3509
c50ae303
MV
3510 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3511 continue;
3512
3513 /*
3514 * If we're skipping groups as part of debug,
3515 * don't calibrate LFIFO.
3516 */
3517 if (param->skip_groups != 0)
3518 continue;
3519
722c9685 3520 /* Calibrate the LFIFO */
c50ae303
MV
3521 if (!rw_mgr_mem_calibrate_lfifo())
3522 return 0;
3da42859
DN
3523 }
3524
3525 /*
3526 * Do not remove this line as it makes sure all of our decisions
3527 * have been applied.
3528 */
1273dd9e 3529 writel(0, &sdr_scc_mgr->update);
3da42859
DN
3530 return 1;
3531}
3532
23a040c0
MV
3533/**
3534 * run_mem_calibrate() - Perform memory calibration
3535 *
3536 * This function triggers the entire memory calibration procedure.
3537 */
3538static int run_mem_calibrate(void)
3da42859 3539{
23a040c0 3540 int pass;
3da42859
DN
3541
3542 debug("%s:%d\n", __func__, __LINE__);
3543
3544 /* Reset pass/fail status shown on afi_cal_success/fail */
1273dd9e 3545 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3da42859 3546
23a040c0
MV
3547 /* Stop tracking manager. */
3548 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3da42859 3549
9fa9c90e 3550 phy_mgr_initialize();
3da42859
DN
3551 rw_mgr_mem_initialize();
3552
23a040c0 3553 /* Perform the actual memory calibration. */
3da42859
DN
3554 pass = mem_calibrate();
3555
3556 mem_precharge_and_activate();
1273dd9e 3557 writel(0, &phy_mgr_cmd->fifo_reset);
3da42859 3558
23a040c0
MV
3559 /* Handoff. */
3560 rw_mgr_mem_handoff();
3da42859 3561 /*
23a040c0
MV
3562 * In Hard PHY this is a 2-bit control:
3563 * 0: AFI Mux Select
3564 * 1: DDIO Mux Select
3da42859 3565 */
23a040c0 3566 writel(0x2, &phy_mgr_cfg->mux_sel);
3da42859 3567
23a040c0
MV
3568 /* Start tracking manager. */
3569 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3570
3571 return pass;
3572}
3573
3574/**
3575 * debug_mem_calibrate() - Report result of memory calibration
3576 * @pass: Value indicating whether calibration passed or failed
3577 *
3578 * This function reports the results of the memory calibration
3579 * and writes debug information into the register file.
3580 */
3581static void debug_mem_calibrate(int pass)
3582{
3583 uint32_t debug_info;
3da42859
DN
3584
3585 if (pass) {
3586 printf("%s: CALIBRATION PASSED\n", __FILE__);
3587
3588 gbl->fom_in /= 2;
3589 gbl->fom_out /= 2;
3590
3591 if (gbl->fom_in > 0xff)
3592 gbl->fom_in = 0xff;
3593
3594 if (gbl->fom_out > 0xff)
3595 gbl->fom_out = 0xff;
3596
3597 /* Update the FOM in the register file */
3598 debug_info = gbl->fom_in;
3599 debug_info |= gbl->fom_out << 8;
1273dd9e 3600 writel(debug_info, &sdr_reg_file->fom);
3da42859 3601
1273dd9e
MV
3602 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3603 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3da42859
DN
3604 } else {
3605 printf("%s: CALIBRATION FAILED\n", __FILE__);
3606
3607 debug_info = gbl->error_stage;
3608 debug_info |= gbl->error_substage << 8;
3609 debug_info |= gbl->error_group << 16;
3610
1273dd9e
MV
3611 writel(debug_info, &sdr_reg_file->failing_stage);
3612 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3613 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3da42859
DN
3614
3615 /* Update the failing group/stage in the register file */
3616 debug_info = gbl->error_stage;
3617 debug_info |= gbl->error_substage << 8;
3618 debug_info |= gbl->error_group << 16;
1273dd9e 3619 writel(debug_info, &sdr_reg_file->failing_stage);
3da42859
DN
3620 }
3621
23a040c0 3622 printf("%s: Calibration complete\n", __FILE__);
3da42859
DN
3623}
3624
bb06434b
MV
3625/**
3626 * hc_initialize_rom_data() - Initialize ROM data
3627 *
3628 * Initialize ROM data.
3629 */
3da42859
DN
3630static void hc_initialize_rom_data(void)
3631{
bb06434b 3632 u32 i, addr;
3da42859 3633
c4815f76 3634 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
bb06434b
MV
3635 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3636 writel(inst_rom_init[i], addr + (i << 2));
3da42859 3637
c4815f76 3638 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
bb06434b
MV
3639 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3640 writel(ac_rom_init[i], addr + (i << 2));
3da42859
DN
3641}
3642
9c1ab2ca
MV
3643/**
3644 * initialize_reg_file() - Initialize SDR register file
3645 *
3646 * Initialize SDR register file.
3647 */
3da42859
DN
3648static void initialize_reg_file(void)
3649{
3da42859 3650 /* Initialize the register file with the correct data */
1273dd9e
MV
3651 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3652 writel(0, &sdr_reg_file->debug_data_addr);
3653 writel(0, &sdr_reg_file->cur_stage);
3654 writel(0, &sdr_reg_file->fom);
3655 writel(0, &sdr_reg_file->failing_stage);
3656 writel(0, &sdr_reg_file->debug1);
3657 writel(0, &sdr_reg_file->debug2);
3da42859
DN
3658}
3659
2ca151f8
MV
3660/**
3661 * initialize_hps_phy() - Initialize HPS PHY
3662 *
3663 * Initialize HPS PHY.
3664 */
3da42859
DN
3665static void initialize_hps_phy(void)
3666{
3667 uint32_t reg;
3da42859
DN
3668 /*
3669 * Tracking also gets configured here because it's in the
3670 * same register.
3671 */
3672 uint32_t trk_sample_count = 7500;
3673 uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3674 /*
3675 * Format is number of outer loops in the 16 MSB, sample
3676 * count in 16 LSB.
3677 */
3678
3679 reg = 0;
3680 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3681 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3682 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3683 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3684 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3685 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3686 /*
3687 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3688 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3689 */
3690 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3691 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3692 trk_sample_count);
6cb9f167 3693 writel(reg, &sdr_ctrl->phy_ctrl0);
3da42859
DN
3694
3695 reg = 0;
3696 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3697 trk_sample_count >>
3698 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3699 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3700 trk_long_idle_sample_count);
6cb9f167 3701 writel(reg, &sdr_ctrl->phy_ctrl1);
3da42859
DN
3702
3703 reg = 0;
3704 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3705 trk_long_idle_sample_count >>
3706 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
6cb9f167 3707 writel(reg, &sdr_ctrl->phy_ctrl2);
3da42859
DN
3708}
3709
880e46f2
MV
3710/**
3711 * initialize_tracking() - Initialize tracking
3712 *
3713 * Initialize the register file with usable initial data.
3714 */
3da42859
DN
3715static void initialize_tracking(void)
3716{
880e46f2
MV
3717 /*
3718 * Initialize the register file with the correct data.
3719 * Compute usable version of value in case we skip full
3720 * computation later.
3721 */
3722 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3723 &sdr_reg_file->dtaps_per_ptap);
3724
3725 /* trk_sample_count */
3726 writel(7500, &sdr_reg_file->trk_sample_count);
3727
3728 /* longidle outer loop [15:0] */
3729 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3da42859
DN
3730
3731 /*
880e46f2
MV
3732 * longidle sample count [31:24]
3733 * trfc, worst case of 933Mhz 4Gb [23:16]
3734 * trcd, worst case [15:8]
3735 * vfifo wait [7:0]
3da42859 3736 */
880e46f2
MV
3737 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3738 &sdr_reg_file->delays);
3da42859 3739
880e46f2
MV
3740 /* mux delay */
3741 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3742 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3743 &sdr_reg_file->trk_rw_mgr_addr);
3744
3745 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3746 &sdr_reg_file->trk_read_dqs_width);
3747
3748 /* trefi [7:0] */
3749 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3750 &sdr_reg_file->trk_rfsh);
3da42859
DN
3751}
3752
3753int sdram_calibration_full(void)
3754{
3755 struct param_type my_param;
3756 struct gbl_type my_gbl;
3757 uint32_t pass;
84e0b0cf
MV
3758
3759 memset(&my_param, 0, sizeof(my_param));
3760 memset(&my_gbl, 0, sizeof(my_gbl));
3da42859
DN
3761
3762 param = &my_param;
3763 gbl = &my_gbl;
3764
3da42859
DN
3765 /* Set the calibration enabled by default */
3766 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3767 /*
3768 * Only sweep all groups (regardless of fail state) by default
3769 * Set enabled read test by default.
3770 */
3771#if DISABLE_GUARANTEED_READ
3772 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3773#endif
3774 /* Initialize the register file */
3775 initialize_reg_file();
3776
3777 /* Initialize any PHY CSR */
3778 initialize_hps_phy();
3779
3780 scc_mgr_initialize();
3781
3782 initialize_tracking();
3783
3da42859
DN
3784 printf("%s: Preparing to start memory calibration\n", __FILE__);
3785
3786 debug("%s:%d\n", __func__, __LINE__);
23f62b36
MV
3787 debug_cond(DLEVEL == 1,
3788 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3789 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3790 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3791 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3792 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3793 debug_cond(DLEVEL == 1,
3794 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3795 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3796 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3797 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3798 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3799 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3800 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3801 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3802 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3803 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3804 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3805 IO_IO_OUT2_DELAY_MAX);
3806 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3807 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3da42859
DN
3808
3809 hc_initialize_rom_data();
3810
3811 /* update info for sims */
3812 reg_file_set_stage(CAL_STAGE_NIL);
3813 reg_file_set_group(0);
3814
3815 /*
3816 * Load global needed for those actions that require
3817 * some dynamic calibration support.
3818 */
3819 dyn_calib_steps = STATIC_CALIB_STEPS;
3820 /*
3821 * Load global to allow dynamic selection of delay loop settings
3822 * based on calibration mode.
3823 */
3824 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3825 skip_delay_mask = 0xff;
3826 else
3827 skip_delay_mask = 0x0;
3828
3829 pass = run_mem_calibrate();
23a040c0 3830 debug_mem_calibrate(pass);
3da42859
DN
3831 return pass;
3832}