]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/edac/edac_mc.c
Replace <asm/uaccess.h> with <linux/uaccess.h> globally
[thirdparty/linux.git] / drivers / edac / edac_mc.c
CommitLineData
da9bb1d2
AC
1/*
2 * edac_mc kernel module
49c0dab7 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
da9bb1d2
AC
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
da9bb1d2
AC
15#include <linux/module.h>
16#include <linux/proc_fs.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/smp.h>
20#include <linux/init.h>
21#include <linux/sysctl.h>
22#include <linux/highmem.h>
23#include <linux/timer.h>
24#include <linux/slab.h>
25#include <linux/jiffies.h>
26#include <linux/spinlock.h>
27#include <linux/list.h>
da9bb1d2 28#include <linux/ctype.h>
c0d12172 29#include <linux/edac.h>
53f2d028 30#include <linux/bitops.h>
7c0f6ba6 31#include <linux/uaccess.h>
da9bb1d2 32#include <asm/page.h>
78d88e8a 33#include "edac_mc.h"
7c9281d7 34#include "edac_module.h"
53f2d028
MCC
35#include <ras/ras_event.h>
36
b01aec9b
BP
37#ifdef CONFIG_EDAC_ATOMIC_SCRUB
38#include <asm/edac.h>
39#else
40#define edac_atomic_scrub(va, size) do { } while (0)
41#endif
42
da9bb1d2 43/* lock to memory controller's control array */
63b7df91 44static DEFINE_MUTEX(mem_ctls_mutex);
ff6ac2a6 45static LIST_HEAD(mc_devices);
da9bb1d2 46
80cc7d87
MCC
47/*
48 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
49 * apei/ghes and i7core_edac to be used at the same time.
50 */
51static void const *edac_mc_owner;
52
88d84ac9
BP
53static struct bus_type mc_bus[EDAC_MAX_MCS];
54
6e84d359
MCC
55unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
56 unsigned len)
57{
58 struct mem_ctl_info *mci = dimm->mci;
59 int i, n, count = 0;
60 char *p = buf;
61
62 for (i = 0; i < mci->n_layers; i++) {
63 n = snprintf(p, len, "%s %d ",
64 edac_layer_name[mci->layers[i].type],
65 dimm->location[i]);
66 p += n;
67 len -= n;
68 count += n;
69 if (!len)
70 break;
71 }
72
73 return count;
74}
75
da9bb1d2
AC
76#ifdef CONFIG_EDAC_DEBUG
77
a4b4be3f 78static void edac_mc_dump_channel(struct rank_info *chan)
da9bb1d2 79{
6e84d359
MCC
80 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
81 edac_dbg(4, " channel = %p\n", chan);
82 edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
83 edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
4275be63
MCC
84}
85
6e84d359 86static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
4275be63 87{
6e84d359
MCC
88 char location[80];
89
90 edac_dimm_info_location(dimm, location, sizeof(location));
91
92 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
9713faec 93 dimm->mci->csbased ? "rank" : "dimm",
6e84d359
MCC
94 number, location, dimm->csrow, dimm->cschannel);
95 edac_dbg(4, " dimm = %p\n", dimm);
96 edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
97 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
98 edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
99 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
da9bb1d2
AC
100}
101
2da1c119 102static void edac_mc_dump_csrow(struct csrow_info *csrow)
da9bb1d2 103{
6e84d359
MCC
104 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
105 edac_dbg(4, " csrow = %p\n", csrow);
106 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
107 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
108 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
109 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
110 edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
111 edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
da9bb1d2
AC
112}
113
2da1c119 114static void edac_mc_dump_mci(struct mem_ctl_info *mci)
da9bb1d2 115{
956b9ba1
JP
116 edac_dbg(3, "\tmci = %p\n", mci);
117 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
118 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
119 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
120 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
121 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
122 mci->nr_csrows, mci->csrows);
123 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
124 mci->tot_dimms, mci->dimms);
125 edac_dbg(3, "\tdev = %p\n", mci->pdev);
126 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
127 mci->mod_name, mci->ctl_name);
128 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
da9bb1d2
AC
129}
130
24f9a7fe
BP
131#endif /* CONFIG_EDAC_DEBUG */
132
f4ce6eca 133const char * const edac_mem_types[] = {
4cfc3a40
BP
134 [MEM_EMPTY] = "Empty csrow",
135 [MEM_RESERVED] = "Reserved csrow type",
136 [MEM_UNKNOWN] = "Unknown csrow type",
137 [MEM_FPM] = "Fast page mode RAM",
138 [MEM_EDO] = "Extended data out RAM",
139 [MEM_BEDO] = "Burst Extended data out RAM",
140 [MEM_SDR] = "Single data rate SDRAM",
141 [MEM_RDR] = "Registered single data rate SDRAM",
142 [MEM_DDR] = "Double data rate SDRAM",
143 [MEM_RDDR] = "Registered Double data rate SDRAM",
144 [MEM_RMBS] = "Rambus DRAM",
145 [MEM_DDR2] = "Unbuffered DDR2 RAM",
146 [MEM_FB_DDR2] = "Fully buffered DDR2",
147 [MEM_RDDR2] = "Registered DDR2 RAM",
148 [MEM_XDR] = "Rambus XDR",
149 [MEM_DDR3] = "Unbuffered DDR3 RAM",
150 [MEM_RDDR3] = "Registered DDR3 RAM",
151 [MEM_LRDDR3] = "Load-Reduced DDR3 RAM",
152 [MEM_DDR4] = "Unbuffered DDR4 RAM",
153 [MEM_RDDR4] = "Registered DDR4 RAM",
239642fe
BP
154};
155EXPORT_SYMBOL_GPL(edac_mem_types);
156
93e4fe64
MCC
157/**
158 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
159 * @p: pointer to a pointer with the memory offset to be used. At
160 * return, this will be incremented to point to the next offset
161 * @size: Size of the data structure to be reserved
162 * @n_elems: Number of elements that should be reserved
da9bb1d2
AC
163 *
164 * If 'size' is a constant, the compiler will optimize this whole function
93e4fe64
MCC
165 * down to either a no-op or the addition of a constant to the value of '*p'.
166 *
167 * The 'p' pointer is absolutely needed to keep the proper advancing
168 * further in memory to the proper offsets when allocating the struct along
169 * with its embedded structs, as edac_device_alloc_ctl_info() does it
170 * above, for example.
171 *
172 * At return, the pointer 'p' will be incremented to be used on a next call
173 * to this function.
da9bb1d2 174 */
93e4fe64 175void *edac_align_ptr(void **p, unsigned size, int n_elems)
da9bb1d2
AC
176{
177 unsigned align, r;
93e4fe64 178 void *ptr = *p;
da9bb1d2 179
93e4fe64
MCC
180 *p += size * n_elems;
181
182 /*
183 * 'p' can possibly be an unaligned item X such that sizeof(X) is
184 * 'size'. Adjust 'p' so that its alignment is at least as
185 * stringent as what the compiler would provide for X and return
186 * the aligned result.
187 * Here we assume that the alignment of a "long long" is the most
da9bb1d2
AC
188 * stringent alignment that the compiler will ever provide by default.
189 * As far as I know, this is a reasonable assumption.
190 */
191 if (size > sizeof(long))
192 align = sizeof(long long);
193 else if (size > sizeof(int))
194 align = sizeof(long);
195 else if (size > sizeof(short))
196 align = sizeof(int);
197 else if (size > sizeof(char))
198 align = sizeof(short);
199 else
079708b9 200 return (char *)ptr;
da9bb1d2 201
8447c4d1 202 r = (unsigned long)p % align;
da9bb1d2
AC
203
204 if (r == 0)
079708b9 205 return (char *)ptr;
da9bb1d2 206
93e4fe64
MCC
207 *p += align - r;
208
7391c6dc 209 return (void *)(((unsigned long)ptr) + align - r);
da9bb1d2
AC
210}
211
faa2ad09
SR
212static void _edac_mc_free(struct mem_ctl_info *mci)
213{
214 int i, chn, row;
215 struct csrow_info *csr;
216 const unsigned int tot_dimms = mci->tot_dimms;
217 const unsigned int tot_channels = mci->num_cschannel;
218 const unsigned int tot_csrows = mci->nr_csrows;
219
220 if (mci->dimms) {
221 for (i = 0; i < tot_dimms; i++)
222 kfree(mci->dimms[i]);
223 kfree(mci->dimms);
224 }
225 if (mci->csrows) {
226 for (row = 0; row < tot_csrows; row++) {
227 csr = mci->csrows[row];
228 if (csr) {
229 if (csr->channels) {
230 for (chn = 0; chn < tot_channels; chn++)
231 kfree(csr->channels[chn]);
232 kfree(csr->channels);
233 }
234 kfree(csr);
235 }
236 }
237 kfree(mci->csrows);
238 }
239 kfree(mci);
240}
241
ca0907b9
MCC
242struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
243 unsigned n_layers,
244 struct edac_mc_layer *layers,
245 unsigned sz_pvt)
da9bb1d2
AC
246{
247 struct mem_ctl_info *mci;
4275be63 248 struct edac_mc_layer *layer;
de3910eb
MCC
249 struct csrow_info *csr;
250 struct rank_info *chan;
a7d7d2e1 251 struct dimm_info *dimm;
4275be63
MCC
252 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
253 unsigned pos[EDAC_MAX_LAYERS];
4275be63
MCC
254 unsigned size, tot_dimms = 1, count = 1;
255 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
5926ff50 256 void *pvt, *p, *ptr = NULL;
de3910eb 257 int i, j, row, chn, n, len, off;
4275be63
MCC
258 bool per_rank = false;
259
260 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
261 /*
262 * Calculate the total amount of dimms and csrows/cschannels while
263 * in the old API emulation mode
264 */
265 for (i = 0; i < n_layers; i++) {
266 tot_dimms *= layers[i].size;
267 if (layers[i].is_virt_csrow)
268 tot_csrows *= layers[i].size;
269 else
270 tot_channels *= layers[i].size;
271
272 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
273 per_rank = true;
274 }
da9bb1d2
AC
275
276 /* Figure out the offsets of the various items from the start of an mc
277 * structure. We want the alignment of each item to be at least as
278 * stringent as what the compiler would provide if we could simply
279 * hardcode everything into a single struct.
280 */
93e4fe64 281 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
4275be63 282 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
4275be63
MCC
283 for (i = 0; i < n_layers; i++) {
284 count *= layers[i].size;
956b9ba1 285 edac_dbg(4, "errcount layer %d size %d\n", i, count);
4275be63
MCC
286 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
287 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
288 tot_errcount += 2 * count;
289 }
290
956b9ba1 291 edac_dbg(4, "allocating %d error counters\n", tot_errcount);
93e4fe64 292 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
079708b9 293 size = ((unsigned long)pvt) + sz_pvt;
da9bb1d2 294
956b9ba1
JP
295 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
296 size,
297 tot_dimms,
298 per_rank ? "ranks" : "dimms",
299 tot_csrows * tot_channels);
de3910eb 300
8096cfaf
DT
301 mci = kzalloc(size, GFP_KERNEL);
302 if (mci == NULL)
da9bb1d2
AC
303 return NULL;
304
305 /* Adjust pointers so they point within the memory we just allocated
306 * rather than an imaginary chunk of memory located at address 0.
307 */
4275be63 308 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
4275be63
MCC
309 for (i = 0; i < n_layers; i++) {
310 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
311 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
312 }
079708b9 313 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
da9bb1d2 314
b8f6f975 315 /* setup index and various internal pointers */
4275be63 316 mci->mc_idx = mc_num;
4275be63 317 mci->tot_dimms = tot_dimms;
da9bb1d2 318 mci->pvt_info = pvt;
4275be63
MCC
319 mci->n_layers = n_layers;
320 mci->layers = layer;
321 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
322 mci->nr_csrows = tot_csrows;
323 mci->num_cschannel = tot_channels;
9713faec 324 mci->csbased = per_rank;
da9bb1d2 325
a7d7d2e1 326 /*
de3910eb 327 * Alocate and fill the csrow/channels structs
a7d7d2e1 328 */
d3d09e18 329 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
de3910eb
MCC
330 if (!mci->csrows)
331 goto error;
4275be63 332 for (row = 0; row < tot_csrows; row++) {
de3910eb
MCC
333 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
334 if (!csr)
335 goto error;
336 mci->csrows[row] = csr;
4275be63
MCC
337 csr->csrow_idx = row;
338 csr->mci = mci;
339 csr->nr_channels = tot_channels;
d3d09e18 340 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
de3910eb
MCC
341 GFP_KERNEL);
342 if (!csr->channels)
343 goto error;
4275be63
MCC
344
345 for (chn = 0; chn < tot_channels; chn++) {
de3910eb
MCC
346 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
347 if (!chan)
348 goto error;
349 csr->channels[chn] = chan;
da9bb1d2 350 chan->chan_idx = chn;
4275be63
MCC
351 chan->csrow = csr;
352 }
353 }
354
355 /*
de3910eb 356 * Allocate and fill the dimm structs
4275be63 357 */
d3d09e18 358 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
de3910eb
MCC
359 if (!mci->dimms)
360 goto error;
361
4275be63
MCC
362 memset(&pos, 0, sizeof(pos));
363 row = 0;
364 chn = 0;
4275be63 365 for (i = 0; i < tot_dimms; i++) {
de3910eb
MCC
366 chan = mci->csrows[row]->channels[chn];
367 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
368 if (off < 0 || off >= tot_dimms) {
369 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
370 goto error;
371 }
4275be63 372
de3910eb 373 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
08a4a136
DC
374 if (!dimm)
375 goto error;
de3910eb 376 mci->dimms[off] = dimm;
4275be63 377 dimm->mci = mci;
4275be63 378
5926ff50
MCC
379 /*
380 * Copy DIMM location and initialize it.
381 */
382 len = sizeof(dimm->label);
383 p = dimm->label;
384 n = snprintf(p, len, "mc#%u", mc_num);
385 p += n;
386 len -= n;
387 for (j = 0; j < n_layers; j++) {
388 n = snprintf(p, len, "%s#%u",
389 edac_layer_name[layers[j].type],
390 pos[j]);
391 p += n;
392 len -= n;
4275be63
MCC
393 dimm->location[j] = pos[j];
394
5926ff50
MCC
395 if (len <= 0)
396 break;
397 }
398
4275be63
MCC
399 /* Link it to the csrows old API data */
400 chan->dimm = dimm;
401 dimm->csrow = row;
402 dimm->cschannel = chn;
403
404 /* Increment csrow location */
24bef66e 405 if (layers[0].is_virt_csrow) {
4275be63 406 chn++;
24bef66e
MCC
407 if (chn == tot_channels) {
408 chn = 0;
409 row++;
410 }
411 } else {
412 row++;
413 if (row == tot_csrows) {
414 row = 0;
415 chn++;
416 }
4275be63 417 }
a7d7d2e1 418
4275be63
MCC
419 /* Increment dimm location */
420 for (j = n_layers - 1; j >= 0; j--) {
421 pos[j]++;
422 if (pos[j] < layers[j].size)
423 break;
424 pos[j] = 0;
da9bb1d2
AC
425 }
426 }
427
81d87cb1 428 mci->op_state = OP_ALLOC;
8096cfaf 429
da9bb1d2 430 return mci;
de3910eb
MCC
431
432error:
faa2ad09 433 _edac_mc_free(mci);
de3910eb
MCC
434
435 return NULL;
4275be63 436}
9110540f 437EXPORT_SYMBOL_GPL(edac_mc_alloc);
da9bb1d2 438
da9bb1d2
AC
439void edac_mc_free(struct mem_ctl_info *mci)
440{
956b9ba1 441 edac_dbg(1, "\n");
bbc560ae 442
faa2ad09
SR
443 /* If we're not yet registered with sysfs free only what was allocated
444 * in edac_mc_alloc().
445 */
446 if (!device_is_registered(&mci->dev)) {
447 _edac_mc_free(mci);
448 return;
449 }
450
de3910eb 451 /* the mci instance is freed here, when the sysfs object is dropped */
7a623c03 452 edac_unregister_sysfs(mci);
da9bb1d2 453}
9110540f 454EXPORT_SYMBOL_GPL(edac_mc_free);
da9bb1d2 455
c73e8833
BP
456/* Caller must hold mem_ctls_mutex */
457static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
da9bb1d2
AC
458{
459 struct mem_ctl_info *mci;
460 struct list_head *item;
461
956b9ba1 462 edac_dbg(3, "\n");
da9bb1d2
AC
463
464 list_for_each(item, &mc_devices) {
465 mci = list_entry(item, struct mem_ctl_info, link);
466
fd687502 467 if (mci->pdev == dev)
da9bb1d2
AC
468 return mci;
469 }
470
471 return NULL;
472}
c73e8833
BP
473
474/**
475 * find_mci_by_dev
476 *
477 * scan list of controllers looking for the one that manages
478 * the 'dev' device
479 * @dev: pointer to a struct device related with the MCI
480 */
481struct mem_ctl_info *find_mci_by_dev(struct device *dev)
482{
483 struct mem_ctl_info *ret;
484
485 mutex_lock(&mem_ctls_mutex);
486 ret = __find_mci_by_dev(dev);
487 mutex_unlock(&mem_ctls_mutex);
488
489 return ret;
490}
939747bd 491EXPORT_SYMBOL_GPL(find_mci_by_dev);
da9bb1d2 492
81d87cb1
DJ
493/*
494 * handler for EDAC to check if NMI type handler has asserted interrupt
495 */
496static int edac_mc_assert_error_check_and_clear(void)
497{
66ee2f94 498 int old_state;
81d87cb1 499
079708b9 500 if (edac_op_state == EDAC_OPSTATE_POLL)
81d87cb1
DJ
501 return 1;
502
66ee2f94
DJ
503 old_state = edac_err_assert;
504 edac_err_assert = 0;
81d87cb1 505
66ee2f94 506 return old_state;
81d87cb1
DJ
507}
508
509/*
510 * edac_mc_workq_function
511 * performs the operation scheduled by a workq request
512 */
81d87cb1
DJ
513static void edac_mc_workq_function(struct work_struct *work_req)
514{
fbeb4384 515 struct delayed_work *d_work = to_delayed_work(work_req);
81d87cb1 516 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
81d87cb1
DJ
517
518 mutex_lock(&mem_ctls_mutex);
519
06e912d4 520 if (mci->op_state != OP_RUNNING_POLL) {
bf52fa4a
DT
521 mutex_unlock(&mem_ctls_mutex);
522 return;
523 }
524
06e912d4 525 if (edac_mc_assert_error_check_and_clear())
81d87cb1
DJ
526 mci->edac_check(mci);
527
81d87cb1
DJ
528 mutex_unlock(&mem_ctls_mutex);
529
06e912d4 530 /* Queue ourselves again. */
c4cf3b45 531 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
81d87cb1
DJ
532}
533
81d87cb1 534/*
bce19683
DT
535 * edac_mc_reset_delay_period(unsigned long value)
536 *
537 * user space has updated our poll period value, need to
538 * reset our workq delays
81d87cb1 539 */
9da21b15 540void edac_mc_reset_delay_period(unsigned long value)
81d87cb1 541{
bce19683
DT
542 struct mem_ctl_info *mci;
543 struct list_head *item;
544
545 mutex_lock(&mem_ctls_mutex);
546
bce19683
DT
547 list_for_each(item, &mc_devices) {
548 mci = list_entry(item, struct mem_ctl_info, link);
549
fbedcaf4
NK
550 if (mci->op_state == OP_RUNNING_POLL)
551 edac_mod_work(&mci->work, value);
bce19683 552 }
81d87cb1
DJ
553 mutex_unlock(&mem_ctls_mutex);
554}
555
bce19683
DT
556
557
2d7bbb91
DT
558/* Return 0 on success, 1 on failure.
559 * Before calling this function, caller must
560 * assign a unique value to mci->mc_idx.
bf52fa4a
DT
561 *
562 * locking model:
563 *
564 * called with the mem_ctls_mutex lock held
2d7bbb91 565 */
079708b9 566static int add_mc_to_global_list(struct mem_ctl_info *mci)
da9bb1d2
AC
567{
568 struct list_head *item, *insert_before;
569 struct mem_ctl_info *p;
da9bb1d2 570
2d7bbb91 571 insert_before = &mc_devices;
da9bb1d2 572
c73e8833 573 p = __find_mci_by_dev(mci->pdev);
bf52fa4a 574 if (unlikely(p != NULL))
2d7bbb91 575 goto fail0;
da9bb1d2 576
2d7bbb91
DT
577 list_for_each(item, &mc_devices) {
578 p = list_entry(item, struct mem_ctl_info, link);
da9bb1d2 579
2d7bbb91
DT
580 if (p->mc_idx >= mci->mc_idx) {
581 if (unlikely(p->mc_idx == mci->mc_idx))
582 goto fail1;
da9bb1d2 583
2d7bbb91
DT
584 insert_before = item;
585 break;
da9bb1d2 586 }
da9bb1d2
AC
587 }
588
589 list_add_tail_rcu(&mci->link, insert_before);
c0d12172 590 atomic_inc(&edac_handlers);
da9bb1d2 591 return 0;
2d7bbb91 592
052dfb45 593fail0:
2d7bbb91 594 edac_printk(KERN_WARNING, EDAC_MC,
fd687502 595 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
17aa7e03 596 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
2d7bbb91
DT
597 return 1;
598
052dfb45 599fail1:
2d7bbb91 600 edac_printk(KERN_WARNING, EDAC_MC,
052dfb45
DT
601 "bug in low-level driver: attempt to assign\n"
602 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
2d7bbb91 603 return 1;
da9bb1d2
AC
604}
605
80cc7d87 606static int del_mc_from_global_list(struct mem_ctl_info *mci)
a1d03fcc 607{
80cc7d87 608 int handlers = atomic_dec_return(&edac_handlers);
a1d03fcc 609 list_del_rcu(&mci->link);
e2e77098
LJ
610
611 /* these are for safe removal of devices from global list while
612 * NMI handlers may be traversing list
613 */
614 synchronize_rcu();
615 INIT_LIST_HEAD(&mci->link);
80cc7d87
MCC
616
617 return handlers;
a1d03fcc
DP
618}
619
079708b9 620struct mem_ctl_info *edac_mc_find(int idx)
5da0831c 621{
c73e8833 622 struct mem_ctl_info *mci = NULL;
5da0831c 623 struct list_head *item;
c73e8833
BP
624
625 mutex_lock(&mem_ctls_mutex);
5da0831c
DT
626
627 list_for_each(item, &mc_devices) {
628 mci = list_entry(item, struct mem_ctl_info, link);
629
630 if (mci->mc_idx >= idx) {
c73e8833
BP
631 if (mci->mc_idx == idx) {
632 goto unlock;
633 }
5da0831c
DT
634 break;
635 }
636 }
637
c73e8833
BP
638unlock:
639 mutex_unlock(&mem_ctls_mutex);
640 return mci;
5da0831c
DT
641}
642EXPORT_SYMBOL(edac_mc_find);
643
da9bb1d2
AC
644
645/* FIXME - should a warning be printed if no error detection? correction? */
4e8d230d
TI
646int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
647 const struct attribute_group **groups)
da9bb1d2 648{
80cc7d87 649 int ret = -EINVAL;
956b9ba1 650 edac_dbg(0, "\n");
b8f6f975 651
88d84ac9
BP
652 if (mci->mc_idx >= EDAC_MAX_MCS) {
653 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
654 return -ENODEV;
655 }
656
da9bb1d2
AC
657#ifdef CONFIG_EDAC_DEBUG
658 if (edac_debug_level >= 3)
659 edac_mc_dump_mci(mci);
e7ecd891 660
da9bb1d2
AC
661 if (edac_debug_level >= 4) {
662 int i;
663
664 for (i = 0; i < mci->nr_csrows; i++) {
6e84d359
MCC
665 struct csrow_info *csrow = mci->csrows[i];
666 u32 nr_pages = 0;
da9bb1d2 667 int j;
e7ecd891 668
6e84d359
MCC
669 for (j = 0; j < csrow->nr_channels; j++)
670 nr_pages += csrow->channels[j]->dimm->nr_pages;
671 if (!nr_pages)
672 continue;
673 edac_mc_dump_csrow(csrow);
674 for (j = 0; j < csrow->nr_channels; j++)
675 if (csrow->channels[j]->dimm->nr_pages)
676 edac_mc_dump_channel(csrow->channels[j]);
da9bb1d2 677 }
4275be63 678 for (i = 0; i < mci->tot_dimms; i++)
6e84d359
MCC
679 if (mci->dimms[i]->nr_pages)
680 edac_mc_dump_dimm(mci->dimms[i], i);
da9bb1d2
AC
681 }
682#endif
63b7df91 683 mutex_lock(&mem_ctls_mutex);
da9bb1d2 684
80cc7d87
MCC
685 if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
686 ret = -EPERM;
687 goto fail0;
688 }
689
da9bb1d2 690 if (add_mc_to_global_list(mci))
028a7b6d 691 goto fail0;
da9bb1d2
AC
692
693 /* set load time so that error rate can be tracked */
694 mci->start_time = jiffies;
695
88d84ac9
BP
696 mci->bus = &mc_bus[mci->mc_idx];
697
4e8d230d 698 if (edac_create_sysfs_mci_device(mci, groups)) {
9794f33d 699 edac_mc_printk(mci, KERN_WARNING,
052dfb45 700 "failed to create sysfs device\n");
9794f33d 701 goto fail1;
702 }
da9bb1d2 703
09667606 704 if (mci->edac_check) {
81d87cb1
DJ
705 mci->op_state = OP_RUNNING_POLL;
706
626a7a4d
BP
707 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
708 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
709
81d87cb1
DJ
710 } else {
711 mci->op_state = OP_RUNNING_INTERRUPT;
712 }
713
da9bb1d2 714 /* Report action taken */
7270a608
RR
715 edac_mc_printk(mci, KERN_INFO,
716 "Giving out device to module %s controller %s: DEV %s (%s)\n",
717 mci->mod_name, mci->ctl_name, mci->dev_name,
718 edac_op_state_to_string(mci->op_state));
da9bb1d2 719
80cc7d87
MCC
720 edac_mc_owner = mci->mod_name;
721
63b7df91 722 mutex_unlock(&mem_ctls_mutex);
028a7b6d 723 return 0;
da9bb1d2 724
052dfb45 725fail1:
028a7b6d
DP
726 del_mc_from_global_list(mci);
727
052dfb45 728fail0:
63b7df91 729 mutex_unlock(&mem_ctls_mutex);
80cc7d87 730 return ret;
da9bb1d2 731}
4e8d230d 732EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
da9bb1d2 733
079708b9 734struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
da9bb1d2 735{
18dbc337 736 struct mem_ctl_info *mci;
da9bb1d2 737
956b9ba1 738 edac_dbg(0, "\n");
bf52fa4a 739
63b7df91 740 mutex_lock(&mem_ctls_mutex);
18dbc337 741
bf52fa4a 742 /* find the requested mci struct in the global list */
c73e8833 743 mci = __find_mci_by_dev(dev);
bf52fa4a 744 if (mci == NULL) {
63b7df91 745 mutex_unlock(&mem_ctls_mutex);
18dbc337
DP
746 return NULL;
747 }
748
09667606
BP
749 /* mark MCI offline: */
750 mci->op_state = OP_OFFLINE;
751
80cc7d87
MCC
752 if (!del_mc_from_global_list(mci))
753 edac_mc_owner = NULL;
bf52fa4a 754
09667606 755 mutex_unlock(&mem_ctls_mutex);
bb31b312 756
09667606 757 if (mci->edac_check)
626a7a4d 758 edac_stop_work(&mci->work);
bb31b312
BP
759
760 /* remove from sysfs */
bf52fa4a
DT
761 edac_remove_sysfs_mci_device(mci);
762
537fba28 763 edac_printk(KERN_INFO, EDAC_MC,
052dfb45 764 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
17aa7e03 765 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
bf52fa4a 766
18dbc337 767 return mci;
da9bb1d2 768}
9110540f 769EXPORT_SYMBOL_GPL(edac_mc_del_mc);
da9bb1d2 770
2da1c119
AB
771static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
772 u32 size)
da9bb1d2
AC
773{
774 struct page *pg;
775 void *virt_addr;
776 unsigned long flags = 0;
777
956b9ba1 778 edac_dbg(3, "\n");
da9bb1d2
AC
779
780 /* ECC error page was not in our memory. Ignore it. */
079708b9 781 if (!pfn_valid(page))
da9bb1d2
AC
782 return;
783
784 /* Find the actual page structure then map it and fix */
785 pg = pfn_to_page(page);
786
787 if (PageHighMem(pg))
788 local_irq_save(flags);
789
4e5df7ca 790 virt_addr = kmap_atomic(pg);
da9bb1d2
AC
791
792 /* Perform architecture specific atomic scrub operation */
b01aec9b 793 edac_atomic_scrub(virt_addr + offset, size);
da9bb1d2
AC
794
795 /* Unmap and complete */
4e5df7ca 796 kunmap_atomic(virt_addr);
da9bb1d2
AC
797
798 if (PageHighMem(pg))
799 local_irq_restore(flags);
800}
801
da9bb1d2 802/* FIXME - should return -1 */
e7ecd891 803int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
da9bb1d2 804{
de3910eb 805 struct csrow_info **csrows = mci->csrows;
a895bf8b 806 int row, i, j, n;
da9bb1d2 807
956b9ba1 808 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
da9bb1d2
AC
809 row = -1;
810
811 for (i = 0; i < mci->nr_csrows; i++) {
de3910eb 812 struct csrow_info *csrow = csrows[i];
a895bf8b
MCC
813 n = 0;
814 for (j = 0; j < csrow->nr_channels; j++) {
de3910eb 815 struct dimm_info *dimm = csrow->channels[j]->dimm;
a895bf8b
MCC
816 n += dimm->nr_pages;
817 }
818 if (n == 0)
da9bb1d2
AC
819 continue;
820
956b9ba1
JP
821 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
822 mci->mc_idx,
823 csrow->first_page, page, csrow->last_page,
824 csrow->page_mask);
da9bb1d2
AC
825
826 if ((page >= csrow->first_page) &&
827 (page <= csrow->last_page) &&
828 ((page & csrow->page_mask) ==
829 (csrow->first_page & csrow->page_mask))) {
830 row = i;
831 break;
832 }
833 }
834
835 if (row == -1)
537fba28 836 edac_mc_printk(mci, KERN_ERR,
052dfb45
DT
837 "could not look up page error address %lx\n",
838 (unsigned long)page);
da9bb1d2
AC
839
840 return row;
841}
9110540f 842EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
da9bb1d2 843
4275be63
MCC
844const char *edac_layer_name[] = {
845 [EDAC_MC_LAYER_BRANCH] = "branch",
846 [EDAC_MC_LAYER_CHANNEL] = "channel",
847 [EDAC_MC_LAYER_SLOT] = "slot",
848 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
c66b5a79 849 [EDAC_MC_LAYER_ALL_MEM] = "memory",
4275be63
MCC
850};
851EXPORT_SYMBOL_GPL(edac_layer_name);
852
853static void edac_inc_ce_error(struct mem_ctl_info *mci,
9eb07a7f
MCC
854 bool enable_per_layer_report,
855 const int pos[EDAC_MAX_LAYERS],
856 const u16 count)
da9bb1d2 857{
4275be63 858 int i, index = 0;
da9bb1d2 859
9eb07a7f 860 mci->ce_mc += count;
da9bb1d2 861
4275be63 862 if (!enable_per_layer_report) {
9eb07a7f 863 mci->ce_noinfo_count += count;
da9bb1d2
AC
864 return;
865 }
e7ecd891 866
4275be63
MCC
867 for (i = 0; i < mci->n_layers; i++) {
868 if (pos[i] < 0)
869 break;
870 index += pos[i];
9eb07a7f 871 mci->ce_per_layer[i][index] += count;
4275be63
MCC
872
873 if (i < mci->n_layers - 1)
874 index *= mci->layers[i + 1].size;
875 }
876}
877
878static void edac_inc_ue_error(struct mem_ctl_info *mci,
879 bool enable_per_layer_report,
9eb07a7f
MCC
880 const int pos[EDAC_MAX_LAYERS],
881 const u16 count)
4275be63
MCC
882{
883 int i, index = 0;
884
9eb07a7f 885 mci->ue_mc += count;
4275be63
MCC
886
887 if (!enable_per_layer_report) {
993f88f1 888 mci->ue_noinfo_count += count;
da9bb1d2
AC
889 return;
890 }
891
4275be63
MCC
892 for (i = 0; i < mci->n_layers; i++) {
893 if (pos[i] < 0)
894 break;
895 index += pos[i];
9eb07a7f 896 mci->ue_per_layer[i][index] += count;
a7d7d2e1 897
4275be63
MCC
898 if (i < mci->n_layers - 1)
899 index *= mci->layers[i + 1].size;
900 }
901}
da9bb1d2 902
4275be63 903static void edac_ce_error(struct mem_ctl_info *mci,
9eb07a7f 904 const u16 error_count,
4275be63
MCC
905 const int pos[EDAC_MAX_LAYERS],
906 const char *msg,
907 const char *location,
908 const char *label,
909 const char *detail,
910 const char *other_detail,
911 const bool enable_per_layer_report,
912 const unsigned long page_frame_number,
913 const unsigned long offset_in_page,
53f2d028 914 long grain)
4275be63
MCC
915{
916 unsigned long remapped_page;
f430d570
BP
917 char *msg_aux = "";
918
919 if (*msg)
920 msg_aux = " ";
4275be63
MCC
921
922 if (edac_mc_get_log_ce()) {
923 if (other_detail && *other_detail)
924 edac_mc_printk(mci, KERN_WARNING,
f430d570
BP
925 "%d CE %s%son %s (%s %s - %s)\n",
926 error_count, msg, msg_aux, label,
927 location, detail, other_detail);
4275be63
MCC
928 else
929 edac_mc_printk(mci, KERN_WARNING,
f430d570
BP
930 "%d CE %s%son %s (%s %s)\n",
931 error_count, msg, msg_aux, label,
932 location, detail);
4275be63 933 }
9eb07a7f 934 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
da9bb1d2 935
aa2064d7 936 if (mci->scrub_mode == SCRUB_SW_SRC) {
da9bb1d2 937 /*
4275be63
MCC
938 * Some memory controllers (called MCs below) can remap
939 * memory so that it is still available at a different
940 * address when PCI devices map into memory.
941 * MC's that can't do this, lose the memory where PCI
942 * devices are mapped. This mapping is MC-dependent
943 * and so we call back into the MC driver for it to
944 * map the MC page to a physical (CPU) page which can
945 * then be mapped to a virtual page - which can then
946 * be scrubbed.
947 */
da9bb1d2 948 remapped_page = mci->ctl_page_to_phys ?
052dfb45
DT
949 mci->ctl_page_to_phys(mci, page_frame_number) :
950 page_frame_number;
da9bb1d2 951
4275be63
MCC
952 edac_mc_scrub_block(remapped_page,
953 offset_in_page, grain);
da9bb1d2
AC
954 }
955}
956
4275be63 957static void edac_ue_error(struct mem_ctl_info *mci,
9eb07a7f 958 const u16 error_count,
4275be63
MCC
959 const int pos[EDAC_MAX_LAYERS],
960 const char *msg,
961 const char *location,
962 const char *label,
963 const char *detail,
964 const char *other_detail,
965 const bool enable_per_layer_report)
da9bb1d2 966{
f430d570
BP
967 char *msg_aux = "";
968
969 if (*msg)
970 msg_aux = " ";
971
4275be63
MCC
972 if (edac_mc_get_log_ue()) {
973 if (other_detail && *other_detail)
974 edac_mc_printk(mci, KERN_WARNING,
f430d570
BP
975 "%d UE %s%son %s (%s %s - %s)\n",
976 error_count, msg, msg_aux, label,
977 location, detail, other_detail);
4275be63
MCC
978 else
979 edac_mc_printk(mci, KERN_WARNING,
f430d570
BP
980 "%d UE %s%son %s (%s %s)\n",
981 error_count, msg, msg_aux, label,
982 location, detail);
4275be63 983 }
e7ecd891 984
4275be63
MCC
985 if (edac_mc_get_panic_on_ue()) {
986 if (other_detail && *other_detail)
f430d570
BP
987 panic("UE %s%son %s (%s%s - %s)\n",
988 msg, msg_aux, label, location, detail, other_detail);
4275be63 989 else
f430d570
BP
990 panic("UE %s%son %s (%s%s)\n",
991 msg, msg_aux, label, location, detail);
4275be63
MCC
992 }
993
9eb07a7f 994 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
da9bb1d2
AC
995}
996
e7e24830
MCC
997void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
998 struct mem_ctl_info *mci,
999 struct edac_raw_error_desc *e)
1000{
1001 char detail[80];
1002 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1003
1004 /* Memory type dependent details about the error */
1005 if (type == HW_EVENT_ERR_CORRECTED) {
1006 snprintf(detail, sizeof(detail),
1007 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1008 e->page_frame_number, e->offset_in_page,
1009 e->grain, e->syndrome);
1010 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1011 detail, e->other_detail, e->enable_per_layer_report,
1012 e->page_frame_number, e->offset_in_page, e->grain);
1013 } else {
1014 snprintf(detail, sizeof(detail),
1015 "page:0x%lx offset:0x%lx grain:%ld",
1016 e->page_frame_number, e->offset_in_page, e->grain);
1017
1018 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1019 detail, e->other_detail, e->enable_per_layer_report);
1020 }
1021
1022
1023}
1024EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
53f2d028 1025
4275be63
MCC
1026void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1027 struct mem_ctl_info *mci,
9eb07a7f 1028 const u16 error_count,
4275be63
MCC
1029 const unsigned long page_frame_number,
1030 const unsigned long offset_in_page,
1031 const unsigned long syndrome,
53f2d028
MCC
1032 const int top_layer,
1033 const int mid_layer,
1034 const int low_layer,
4275be63 1035 const char *msg,
03f7eae8 1036 const char *other_detail)
da9bb1d2 1037{
4275be63
MCC
1038 char *p;
1039 int row = -1, chan = -1;
53f2d028 1040 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
c7ef7645 1041 int i, n_labels = 0;
53f2d028 1042 u8 grain_bits;
c7ef7645 1043 struct edac_raw_error_desc *e = &mci->error_desc;
da9bb1d2 1044
956b9ba1 1045 edac_dbg(3, "MC%d\n", mci->mc_idx);
da9bb1d2 1046
c7ef7645
MCC
1047 /* Fills the error report buffer */
1048 memset(e, 0, sizeof (*e));
1049 e->error_count = error_count;
1050 e->top_layer = top_layer;
1051 e->mid_layer = mid_layer;
1052 e->low_layer = low_layer;
1053 e->page_frame_number = page_frame_number;
1054 e->offset_in_page = offset_in_page;
1055 e->syndrome = syndrome;
1056 e->msg = msg;
1057 e->other_detail = other_detail;
1058
4275be63
MCC
1059 /*
1060 * Check if the event report is consistent and if the memory
1061 * location is known. If it is known, enable_per_layer_report will be
1062 * true, the DIMM(s) label info will be filled and the per-layer
1063 * error counters will be incremented.
1064 */
1065 for (i = 0; i < mci->n_layers; i++) {
1066 if (pos[i] >= (int)mci->layers[i].size) {
4275be63
MCC
1067
1068 edac_mc_printk(mci, KERN_ERR,
1069 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1070 edac_layer_name[mci->layers[i].type],
1071 pos[i], mci->layers[i].size);
1072 /*
1073 * Instead of just returning it, let's use what's
1074 * known about the error. The increment routines and
1075 * the DIMM filter logic will do the right thing by
1076 * pointing the likely damaged DIMMs.
1077 */
1078 pos[i] = -1;
1079 }
1080 if (pos[i] >= 0)
c7ef7645 1081 e->enable_per_layer_report = true;
da9bb1d2
AC
1082 }
1083
4275be63
MCC
1084 /*
1085 * Get the dimm label/grain that applies to the match criteria.
1086 * As the error algorithm may not be able to point to just one memory
1087 * stick, the logic here will get all possible labels that could
1088 * pottentially be affected by the error.
1089 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1090 * to have only the MC channel and the MC dimm (also called "branch")
1091 * but the channel is not known, as the memory is arranged in pairs,
1092 * where each memory belongs to a separate channel within the same
1093 * branch.
1094 */
c7ef7645 1095 p = e->label;
4275be63 1096 *p = '\0';
4da1b7bf 1097
4275be63 1098 for (i = 0; i < mci->tot_dimms; i++) {
de3910eb 1099 struct dimm_info *dimm = mci->dimms[i];
da9bb1d2 1100
53f2d028 1101 if (top_layer >= 0 && top_layer != dimm->location[0])
4275be63 1102 continue;
53f2d028 1103 if (mid_layer >= 0 && mid_layer != dimm->location[1])
4275be63 1104 continue;
53f2d028 1105 if (low_layer >= 0 && low_layer != dimm->location[2])
4275be63 1106 continue;
da9bb1d2 1107
4275be63 1108 /* get the max grain, over the error match range */
c7ef7645
MCC
1109 if (dimm->grain > e->grain)
1110 e->grain = dimm->grain;
9794f33d 1111
4275be63
MCC
1112 /*
1113 * If the error is memory-controller wide, there's no need to
1114 * seek for the affected DIMMs because the whole
1115 * channel/memory controller/... may be affected.
1116 * Also, don't show errors for empty DIMM slots.
1117 */
c7ef7645
MCC
1118 if (e->enable_per_layer_report && dimm->nr_pages) {
1119 if (n_labels >= EDAC_MAX_LABELS) {
1120 e->enable_per_layer_report = false;
1121 break;
1122 }
1123 n_labels++;
1124 if (p != e->label) {
4275be63
MCC
1125 strcpy(p, OTHER_LABEL);
1126 p += strlen(OTHER_LABEL);
1127 }
1128 strcpy(p, dimm->label);
1129 p += strlen(p);
1130 *p = '\0';
1131
1132 /*
1133 * get csrow/channel of the DIMM, in order to allow
1134 * incrementing the compat API counters
1135 */
956b9ba1 1136 edac_dbg(4, "%s csrows map: (%d,%d)\n",
9713faec 1137 mci->csbased ? "rank" : "dimm",
956b9ba1 1138 dimm->csrow, dimm->cschannel);
4275be63
MCC
1139 if (row == -1)
1140 row = dimm->csrow;
1141 else if (row >= 0 && row != dimm->csrow)
1142 row = -2;
1143
1144 if (chan == -1)
1145 chan = dimm->cschannel;
1146 else if (chan >= 0 && chan != dimm->cschannel)
1147 chan = -2;
1148 }
9794f33d 1149 }
1150
c7ef7645
MCC
1151 if (!e->enable_per_layer_report) {
1152 strcpy(e->label, "any memory");
4275be63 1153 } else {
956b9ba1 1154 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
c7ef7645
MCC
1155 if (p == e->label)
1156 strcpy(e->label, "unknown memory");
4275be63
MCC
1157 if (type == HW_EVENT_ERR_CORRECTED) {
1158 if (row >= 0) {
9eb07a7f 1159 mci->csrows[row]->ce_count += error_count;
4275be63 1160 if (chan >= 0)
9eb07a7f 1161 mci->csrows[row]->channels[chan]->ce_count += error_count;
4275be63
MCC
1162 }
1163 } else
1164 if (row >= 0)
9eb07a7f 1165 mci->csrows[row]->ue_count += error_count;
9794f33d 1166 }
1167
4275be63 1168 /* Fill the RAM location data */
c7ef7645 1169 p = e->location;
4da1b7bf 1170
4275be63
MCC
1171 for (i = 0; i < mci->n_layers; i++) {
1172 if (pos[i] < 0)
1173 continue;
9794f33d 1174
4275be63
MCC
1175 p += sprintf(p, "%s:%d ",
1176 edac_layer_name[mci->layers[i].type],
1177 pos[i]);
9794f33d 1178 }
c7ef7645 1179 if (p > e->location)
53f2d028
MCC
1180 *(p - 1) = '\0';
1181
1182 /* Report the error via the trace interface */
c7ef7645
MCC
1183 grain_bits = fls_long(e->grain) + 1;
1184 trace_mc_event(type, e->msg, e->label, e->error_count,
1185 mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
990995ba 1186 (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
e7e24830 1187 grain_bits, e->syndrome, e->other_detail);
a7d7d2e1 1188
e7e24830 1189 edac_raw_mc_handle_error(type, mci, e);
9794f33d 1190}
4275be63 1191EXPORT_SYMBOL_GPL(edac_mc_handle_error);