]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Mark a few functions as __must_check
[thirdparty/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
673a394b 37
0f8c6d7c
CW
38struct change_domains {
39 uint32_t invalidate_domains;
40 uint32_t flush_domains;
41 uint32_t flush_rings;
42};
43
05394f39 44static int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj,
919926ae 45 struct intel_ring_buffer *pipelined);
05394f39
CW
46static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
47static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
48static int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
919926ae 49 bool write);
05394f39 50static int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
e47c68e9
EA
51 uint64_t offset,
52 uint64_t size);
05394f39
CW
53static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
54static int i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
2cf34d7b 55 bool interruptible);
05394f39 56static int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
a00b10c3 57 unsigned alignment,
75e9e915 58 bool map_and_fenceable);
05394f39
CW
59static void i915_gem_clear_fence_reg(struct drm_i915_gem_object *obj);
60static int i915_gem_phys_pwrite(struct drm_device *dev,
61 struct drm_i915_gem_object *obj,
71acb5eb 62 struct drm_i915_gem_pwrite *args,
05394f39
CW
63 struct drm_file *file);
64static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
673a394b 65
17250b71
CW
66static int i915_gem_inactive_shrink(struct shrinker *shrinker,
67 int nr_to_scan,
68 gfp_t gfp_mask);
69
31169714 70
73aa808f
CW
71/* some bookkeeping */
72static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
73 size_t size)
74{
75 dev_priv->mm.object_count++;
76 dev_priv->mm.object_memory += size;
77}
78
79static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
80 size_t size)
81{
82 dev_priv->mm.object_count--;
83 dev_priv->mm.object_memory -= size;
84}
85
86static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
a00b10c3 87 struct drm_i915_gem_object *obj)
73aa808f
CW
88{
89 dev_priv->mm.gtt_count++;
a00b10c3
CW
90 dev_priv->mm.gtt_memory += obj->gtt_space->size;
91 if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
fb7d516a 92 dev_priv->mm.mappable_gtt_used +=
a00b10c3
CW
93 min_t(size_t, obj->gtt_space->size,
94 dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
fb7d516a 95 }
93a37f20 96 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
73aa808f
CW
97}
98
99static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
a00b10c3 100 struct drm_i915_gem_object *obj)
73aa808f
CW
101{
102 dev_priv->mm.gtt_count--;
a00b10c3
CW
103 dev_priv->mm.gtt_memory -= obj->gtt_space->size;
104 if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
fb7d516a 105 dev_priv->mm.mappable_gtt_used -=
a00b10c3
CW
106 min_t(size_t, obj->gtt_space->size,
107 dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
fb7d516a 108 }
93a37f20 109 list_del_init(&obj->gtt_list);
fb7d516a
DV
110}
111
112/**
113 * Update the mappable working set counters. Call _only_ when there is a change
114 * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
115 * @mappable: new state the changed mappable flag (either pin_ or fault_).
116 */
117static void
118i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
a00b10c3 119 struct drm_i915_gem_object *obj,
fb7d516a
DV
120 bool mappable)
121{
fb7d516a 122 if (mappable) {
a00b10c3 123 if (obj->pin_mappable && obj->fault_mappable)
fb7d516a
DV
124 /* Combined state was already mappable. */
125 return;
126 dev_priv->mm.gtt_mappable_count++;
a00b10c3 127 dev_priv->mm.gtt_mappable_memory += obj->gtt_space->size;
fb7d516a 128 } else {
a00b10c3 129 if (obj->pin_mappable || obj->fault_mappable)
fb7d516a
DV
130 /* Combined state still mappable. */
131 return;
132 dev_priv->mm.gtt_mappable_count--;
a00b10c3 133 dev_priv->mm.gtt_mappable_memory -= obj->gtt_space->size;
fb7d516a 134 }
73aa808f
CW
135}
136
137static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
a00b10c3 138 struct drm_i915_gem_object *obj,
fb7d516a 139 bool mappable)
73aa808f
CW
140{
141 dev_priv->mm.pin_count++;
a00b10c3 142 dev_priv->mm.pin_memory += obj->gtt_space->size;
fb7d516a 143 if (mappable) {
a00b10c3 144 obj->pin_mappable = true;
fb7d516a
DV
145 i915_gem_info_update_mappable(dev_priv, obj, true);
146 }
73aa808f
CW
147}
148
149static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
a00b10c3 150 struct drm_i915_gem_object *obj)
73aa808f
CW
151{
152 dev_priv->mm.pin_count--;
a00b10c3
CW
153 dev_priv->mm.pin_memory -= obj->gtt_space->size;
154 if (obj->pin_mappable) {
155 obj->pin_mappable = false;
fb7d516a
DV
156 i915_gem_info_update_mappable(dev_priv, obj, false);
157 }
73aa808f
CW
158}
159
30dbf0c0
CW
160int
161i915_gem_check_is_wedged(struct drm_device *dev)
162{
163 struct drm_i915_private *dev_priv = dev->dev_private;
164 struct completion *x = &dev_priv->error_completion;
165 unsigned long flags;
166 int ret;
167
168 if (!atomic_read(&dev_priv->mm.wedged))
169 return 0;
170
171 ret = wait_for_completion_interruptible(x);
172 if (ret)
173 return ret;
174
175 /* Success, we reset the GPU! */
176 if (!atomic_read(&dev_priv->mm.wedged))
177 return 0;
178
179 /* GPU is hung, bump the completion count to account for
180 * the token we just consumed so that we never hit zero and
181 * end up waiting upon a subsequent completion event that
182 * will never happen.
183 */
184 spin_lock_irqsave(&x->wait.lock, flags);
185 x->done++;
186 spin_unlock_irqrestore(&x->wait.lock, flags);
187 return -EIO;
188}
189
76c1dec1
CW
190static int i915_mutex_lock_interruptible(struct drm_device *dev)
191{
192 struct drm_i915_private *dev_priv = dev->dev_private;
193 int ret;
194
195 ret = i915_gem_check_is_wedged(dev);
196 if (ret)
197 return ret;
198
199 ret = mutex_lock_interruptible(&dev->struct_mutex);
200 if (ret)
201 return ret;
202
203 if (atomic_read(&dev_priv->mm.wedged)) {
204 mutex_unlock(&dev->struct_mutex);
205 return -EAGAIN;
206 }
207
23bc5982 208 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
209 return 0;
210}
30dbf0c0 211
7d1c4804 212static inline bool
05394f39 213i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 214{
05394f39 215 return obj->gtt_space && !obj->active && obj->pin_count == 0;
7d1c4804
CW
216}
217
2021746e
CW
218void i915_gem_do_init(struct drm_device *dev,
219 unsigned long start,
220 unsigned long mappable_end,
221 unsigned long end)
673a394b
EA
222{
223 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 224
79e53945
JB
225 drm_mm_init(&dev_priv->mm.gtt_space, start,
226 end - start);
673a394b 227
73aa808f 228 dev_priv->mm.gtt_total = end - start;
fb7d516a 229 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
53984635 230 dev_priv->mm.gtt_mappable_end = mappable_end;
79e53945 231}
673a394b 232
79e53945
JB
233int
234i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 235 struct drm_file *file)
79e53945
JB
236{
237 struct drm_i915_gem_init *args = data;
2021746e
CW
238
239 if (args->gtt_start >= args->gtt_end ||
240 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
241 return -EINVAL;
79e53945
JB
242
243 mutex_lock(&dev->struct_mutex);
2021746e 244 i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
673a394b
EA
245 mutex_unlock(&dev->struct_mutex);
246
2021746e 247 return 0;
673a394b
EA
248}
249
5a125c3c
EA
250int
251i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 252 struct drm_file *file)
5a125c3c 253{
73aa808f 254 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 255 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
256
257 if (!(dev->driver->driver_features & DRIVER_GEM))
258 return -ENODEV;
259
73aa808f
CW
260 mutex_lock(&dev->struct_mutex);
261 args->aper_size = dev_priv->mm.gtt_total;
262 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
263 mutex_unlock(&dev->struct_mutex);
5a125c3c
EA
264
265 return 0;
266}
267
673a394b
EA
268
269/**
270 * Creates a new mm object and returns a handle to it.
271 */
272int
273i915_gem_create_ioctl(struct drm_device *dev, void *data,
05394f39 274 struct drm_file *file)
673a394b
EA
275{
276 struct drm_i915_gem_create *args = data;
05394f39 277 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
278 int ret;
279 u32 handle;
673a394b
EA
280
281 args->size = roundup(args->size, PAGE_SIZE);
282
283 /* Allocate the new object */
ac52bc56 284 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
285 if (obj == NULL)
286 return -ENOMEM;
287
05394f39 288 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 289 if (ret) {
05394f39
CW
290 drm_gem_object_release(&obj->base);
291 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 292 kfree(obj);
673a394b 293 return ret;
1dfd9754 294 }
673a394b 295
202f2fef 296 /* drop reference from allocate - handle holds it now */
05394f39 297 drm_gem_object_unreference(&obj->base);
202f2fef
CW
298 trace_i915_gem_object_create(obj);
299
1dfd9754 300 args->handle = handle;
673a394b
EA
301 return 0;
302}
303
05394f39 304static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 305{
05394f39 306 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
307
308 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 309 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
310}
311
99a03df5 312static inline void
40123c1f
EA
313slow_shmem_copy(struct page *dst_page,
314 int dst_offset,
315 struct page *src_page,
316 int src_offset,
317 int length)
318{
319 char *dst_vaddr, *src_vaddr;
320
99a03df5
CW
321 dst_vaddr = kmap(dst_page);
322 src_vaddr = kmap(src_page);
40123c1f
EA
323
324 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
325
99a03df5
CW
326 kunmap(src_page);
327 kunmap(dst_page);
40123c1f
EA
328}
329
99a03df5 330static inline void
280b713b
EA
331slow_shmem_bit17_copy(struct page *gpu_page,
332 int gpu_offset,
333 struct page *cpu_page,
334 int cpu_offset,
335 int length,
336 int is_read)
337{
338 char *gpu_vaddr, *cpu_vaddr;
339
340 /* Use the unswizzled path if this page isn't affected. */
341 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
342 if (is_read)
343 return slow_shmem_copy(cpu_page, cpu_offset,
344 gpu_page, gpu_offset, length);
345 else
346 return slow_shmem_copy(gpu_page, gpu_offset,
347 cpu_page, cpu_offset, length);
348 }
349
99a03df5
CW
350 gpu_vaddr = kmap(gpu_page);
351 cpu_vaddr = kmap(cpu_page);
280b713b
EA
352
353 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
354 * XORing with the other bits (A9 for Y, A9 and A10 for X)
355 */
356 while (length > 0) {
357 int cacheline_end = ALIGN(gpu_offset + 1, 64);
358 int this_length = min(cacheline_end - gpu_offset, length);
359 int swizzled_gpu_offset = gpu_offset ^ 64;
360
361 if (is_read) {
362 memcpy(cpu_vaddr + cpu_offset,
363 gpu_vaddr + swizzled_gpu_offset,
364 this_length);
365 } else {
366 memcpy(gpu_vaddr + swizzled_gpu_offset,
367 cpu_vaddr + cpu_offset,
368 this_length);
369 }
370 cpu_offset += this_length;
371 gpu_offset += this_length;
372 length -= this_length;
373 }
374
99a03df5
CW
375 kunmap(cpu_page);
376 kunmap(gpu_page);
280b713b
EA
377}
378
eb01459f
EA
379/**
380 * This is the fast shmem pread path, which attempts to copy_from_user directly
381 * from the backing pages of the object to the user's address space. On a
382 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
383 */
384static int
05394f39
CW
385i915_gem_shmem_pread_fast(struct drm_device *dev,
386 struct drm_i915_gem_object *obj,
eb01459f 387 struct drm_i915_gem_pread *args,
05394f39 388 struct drm_file *file)
eb01459f 389{
05394f39 390 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
eb01459f 391 ssize_t remain;
e5281ccd 392 loff_t offset;
eb01459f
EA
393 char __user *user_data;
394 int page_offset, page_length;
eb01459f
EA
395
396 user_data = (char __user *) (uintptr_t) args->data_ptr;
397 remain = args->size;
398
eb01459f
EA
399 offset = args->offset;
400
401 while (remain > 0) {
e5281ccd
CW
402 struct page *page;
403 char *vaddr;
404 int ret;
405
eb01459f
EA
406 /* Operation in this page
407 *
eb01459f
EA
408 * page_offset = offset within page
409 * page_length = bytes to copy for this page
410 */
eb01459f
EA
411 page_offset = offset & (PAGE_SIZE-1);
412 page_length = remain;
413 if ((page_offset + remain) > PAGE_SIZE)
414 page_length = PAGE_SIZE - page_offset;
415
e5281ccd
CW
416 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
417 GFP_HIGHUSER | __GFP_RECLAIMABLE);
418 if (IS_ERR(page))
419 return PTR_ERR(page);
420
421 vaddr = kmap_atomic(page);
422 ret = __copy_to_user_inatomic(user_data,
423 vaddr + page_offset,
424 page_length);
425 kunmap_atomic(vaddr);
426
427 mark_page_accessed(page);
428 page_cache_release(page);
429 if (ret)
4f27b75d 430 return -EFAULT;
eb01459f
EA
431
432 remain -= page_length;
433 user_data += page_length;
434 offset += page_length;
435 }
436
4f27b75d 437 return 0;
eb01459f
EA
438}
439
440/**
441 * This is the fallback shmem pread path, which allocates temporary storage
442 * in kernel space to copy_to_user into outside of the struct_mutex, so we
443 * can copy out of the object's backing pages while holding the struct mutex
444 * and not take page faults.
445 */
446static int
05394f39
CW
447i915_gem_shmem_pread_slow(struct drm_device *dev,
448 struct drm_i915_gem_object *obj,
eb01459f 449 struct drm_i915_gem_pread *args,
05394f39 450 struct drm_file *file)
eb01459f 451{
05394f39 452 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
eb01459f
EA
453 struct mm_struct *mm = current->mm;
454 struct page **user_pages;
455 ssize_t remain;
456 loff_t offset, pinned_pages, i;
457 loff_t first_data_page, last_data_page, num_pages;
e5281ccd
CW
458 int shmem_page_offset;
459 int data_page_index, data_page_offset;
eb01459f
EA
460 int page_length;
461 int ret;
462 uint64_t data_ptr = args->data_ptr;
280b713b 463 int do_bit17_swizzling;
eb01459f
EA
464
465 remain = args->size;
466
467 /* Pin the user pages containing the data. We can't fault while
468 * holding the struct mutex, yet we want to hold it while
469 * dereferencing the user data.
470 */
471 first_data_page = data_ptr / PAGE_SIZE;
472 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
473 num_pages = last_data_page - first_data_page + 1;
474
4f27b75d 475 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
eb01459f
EA
476 if (user_pages == NULL)
477 return -ENOMEM;
478
4f27b75d 479 mutex_unlock(&dev->struct_mutex);
eb01459f
EA
480 down_read(&mm->mmap_sem);
481 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 482 num_pages, 1, 0, user_pages, NULL);
eb01459f 483 up_read(&mm->mmap_sem);
4f27b75d 484 mutex_lock(&dev->struct_mutex);
eb01459f
EA
485 if (pinned_pages < num_pages) {
486 ret = -EFAULT;
4f27b75d 487 goto out;
eb01459f
EA
488 }
489
4f27b75d
CW
490 ret = i915_gem_object_set_cpu_read_domain_range(obj,
491 args->offset,
492 args->size);
07f73f69 493 if (ret)
4f27b75d 494 goto out;
eb01459f 495
4f27b75d 496 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 497
eb01459f
EA
498 offset = args->offset;
499
500 while (remain > 0) {
e5281ccd
CW
501 struct page *page;
502
eb01459f
EA
503 /* Operation in this page
504 *
eb01459f
EA
505 * shmem_page_offset = offset within page in shmem file
506 * data_page_index = page number in get_user_pages return
507 * data_page_offset = offset with data_page_index page.
508 * page_length = bytes to copy for this page
509 */
eb01459f
EA
510 shmem_page_offset = offset & ~PAGE_MASK;
511 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
512 data_page_offset = data_ptr & ~PAGE_MASK;
513
514 page_length = remain;
515 if ((shmem_page_offset + page_length) > PAGE_SIZE)
516 page_length = PAGE_SIZE - shmem_page_offset;
517 if ((data_page_offset + page_length) > PAGE_SIZE)
518 page_length = PAGE_SIZE - data_page_offset;
519
e5281ccd
CW
520 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
521 GFP_HIGHUSER | __GFP_RECLAIMABLE);
522 if (IS_ERR(page))
523 return PTR_ERR(page);
524
280b713b 525 if (do_bit17_swizzling) {
e5281ccd 526 slow_shmem_bit17_copy(page,
280b713b 527 shmem_page_offset,
99a03df5
CW
528 user_pages[data_page_index],
529 data_page_offset,
530 page_length,
531 1);
532 } else {
533 slow_shmem_copy(user_pages[data_page_index],
534 data_page_offset,
e5281ccd 535 page,
99a03df5
CW
536 shmem_page_offset,
537 page_length);
280b713b 538 }
eb01459f 539
e5281ccd
CW
540 mark_page_accessed(page);
541 page_cache_release(page);
542
eb01459f
EA
543 remain -= page_length;
544 data_ptr += page_length;
545 offset += page_length;
546 }
547
4f27b75d 548out:
eb01459f
EA
549 for (i = 0; i < pinned_pages; i++) {
550 SetPageDirty(user_pages[i]);
e5281ccd 551 mark_page_accessed(user_pages[i]);
eb01459f
EA
552 page_cache_release(user_pages[i]);
553 }
8e7d2b2c 554 drm_free_large(user_pages);
eb01459f
EA
555
556 return ret;
557}
558
673a394b
EA
559/**
560 * Reads data from the object referenced by handle.
561 *
562 * On error, the contents of *data are undefined.
563 */
564int
565i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 566 struct drm_file *file)
673a394b
EA
567{
568 struct drm_i915_gem_pread *args = data;
05394f39 569 struct drm_i915_gem_object *obj;
35b62a89 570 int ret = 0;
673a394b 571
51311d0a
CW
572 if (args->size == 0)
573 return 0;
574
575 if (!access_ok(VERIFY_WRITE,
576 (char __user *)(uintptr_t)args->data_ptr,
577 args->size))
578 return -EFAULT;
579
580 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
581 args->size);
582 if (ret)
583 return -EFAULT;
584
4f27b75d 585 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 586 if (ret)
4f27b75d 587 return ret;
673a394b 588
05394f39 589 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1d7cfea1
CW
590 if (obj == NULL) {
591 ret = -ENOENT;
592 goto unlock;
4f27b75d 593 }
673a394b 594
7dcd2499 595 /* Bounds check source. */
05394f39
CW
596 if (args->offset > obj->base.size ||
597 args->size > obj->base.size - args->offset) {
ce9d419d 598 ret = -EINVAL;
35b62a89 599 goto out;
ce9d419d
CW
600 }
601
4f27b75d
CW
602 ret = i915_gem_object_set_cpu_read_domain_range(obj,
603 args->offset,
604 args->size);
605 if (ret)
e5281ccd 606 goto out;
4f27b75d
CW
607
608 ret = -EFAULT;
609 if (!i915_gem_object_needs_bit17_swizzle(obj))
05394f39 610 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
4f27b75d 611 if (ret == -EFAULT)
05394f39 612 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
673a394b 613
35b62a89 614out:
05394f39 615 drm_gem_object_unreference(&obj->base);
1d7cfea1 616unlock:
4f27b75d 617 mutex_unlock(&dev->struct_mutex);
eb01459f 618 return ret;
673a394b
EA
619}
620
0839ccb8
KP
621/* This is the fast write path which cannot handle
622 * page faults in the source data
9b7530cc 623 */
0839ccb8
KP
624
625static inline int
626fast_user_write(struct io_mapping *mapping,
627 loff_t page_base, int page_offset,
628 char __user *user_data,
629 int length)
9b7530cc 630{
9b7530cc 631 char *vaddr_atomic;
0839ccb8 632 unsigned long unwritten;
9b7530cc 633
3e4d3af5 634 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
635 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
636 user_data, length);
3e4d3af5 637 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 638 return unwritten;
0839ccb8
KP
639}
640
641/* Here's the write path which can sleep for
642 * page faults
643 */
644
ab34c226 645static inline void
3de09aa3
EA
646slow_kernel_write(struct io_mapping *mapping,
647 loff_t gtt_base, int gtt_offset,
648 struct page *user_page, int user_offset,
649 int length)
0839ccb8 650{
ab34c226
CW
651 char __iomem *dst_vaddr;
652 char *src_vaddr;
0839ccb8 653
ab34c226
CW
654 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
655 src_vaddr = kmap(user_page);
656
657 memcpy_toio(dst_vaddr + gtt_offset,
658 src_vaddr + user_offset,
659 length);
660
661 kunmap(user_page);
662 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
663}
664
3de09aa3
EA
665/**
666 * This is the fast pwrite path, where we copy the data directly from the
667 * user into the GTT, uncached.
668 */
673a394b 669static int
05394f39
CW
670i915_gem_gtt_pwrite_fast(struct drm_device *dev,
671 struct drm_i915_gem_object *obj,
3de09aa3 672 struct drm_i915_gem_pwrite *args,
05394f39 673 struct drm_file *file)
673a394b 674{
0839ccb8 675 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 676 ssize_t remain;
0839ccb8 677 loff_t offset, page_base;
673a394b 678 char __user *user_data;
0839ccb8 679 int page_offset, page_length;
673a394b
EA
680
681 user_data = (char __user *) (uintptr_t) args->data_ptr;
682 remain = args->size;
673a394b 683
05394f39 684 offset = obj->gtt_offset + args->offset;
673a394b
EA
685
686 while (remain > 0) {
687 /* Operation in this page
688 *
0839ccb8
KP
689 * page_base = page offset within aperture
690 * page_offset = offset within page
691 * page_length = bytes to copy for this page
673a394b 692 */
0839ccb8
KP
693 page_base = (offset & ~(PAGE_SIZE-1));
694 page_offset = offset & (PAGE_SIZE-1);
695 page_length = remain;
696 if ((page_offset + remain) > PAGE_SIZE)
697 page_length = PAGE_SIZE - page_offset;
698
0839ccb8 699 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
700 * source page isn't available. Return the error and we'll
701 * retry in the slow path.
0839ccb8 702 */
fbd5a26d
CW
703 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
704 page_offset, user_data, page_length))
705
706 return -EFAULT;
673a394b 707
0839ccb8
KP
708 remain -= page_length;
709 user_data += page_length;
710 offset += page_length;
673a394b 711 }
673a394b 712
fbd5a26d 713 return 0;
673a394b
EA
714}
715
3de09aa3
EA
716/**
717 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
718 * the memory and maps it using kmap_atomic for copying.
719 *
720 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
721 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
722 */
3043c60c 723static int
05394f39
CW
724i915_gem_gtt_pwrite_slow(struct drm_device *dev,
725 struct drm_i915_gem_object *obj,
3de09aa3 726 struct drm_i915_gem_pwrite *args,
05394f39 727 struct drm_file *file)
673a394b 728{
3de09aa3
EA
729 drm_i915_private_t *dev_priv = dev->dev_private;
730 ssize_t remain;
731 loff_t gtt_page_base, offset;
732 loff_t first_data_page, last_data_page, num_pages;
733 loff_t pinned_pages, i;
734 struct page **user_pages;
735 struct mm_struct *mm = current->mm;
736 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 737 int ret;
3de09aa3
EA
738 uint64_t data_ptr = args->data_ptr;
739
740 remain = args->size;
741
742 /* Pin the user pages containing the data. We can't fault while
743 * holding the struct mutex, and all of the pwrite implementations
744 * want to hold it while dereferencing the user data.
745 */
746 first_data_page = data_ptr / PAGE_SIZE;
747 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
748 num_pages = last_data_page - first_data_page + 1;
749
fbd5a26d 750 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
3de09aa3
EA
751 if (user_pages == NULL)
752 return -ENOMEM;
753
fbd5a26d 754 mutex_unlock(&dev->struct_mutex);
3de09aa3
EA
755 down_read(&mm->mmap_sem);
756 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
757 num_pages, 0, 0, user_pages, NULL);
758 up_read(&mm->mmap_sem);
fbd5a26d 759 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
760 if (pinned_pages < num_pages) {
761 ret = -EFAULT;
762 goto out_unpin_pages;
763 }
673a394b 764
3de09aa3
EA
765 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
766 if (ret)
fbd5a26d 767 goto out_unpin_pages;
3de09aa3 768
05394f39 769 offset = obj->gtt_offset + args->offset;
3de09aa3
EA
770
771 while (remain > 0) {
772 /* Operation in this page
773 *
774 * gtt_page_base = page offset within aperture
775 * gtt_page_offset = offset within page in aperture
776 * data_page_index = page number in get_user_pages return
777 * data_page_offset = offset with data_page_index page.
778 * page_length = bytes to copy for this page
779 */
780 gtt_page_base = offset & PAGE_MASK;
781 gtt_page_offset = offset & ~PAGE_MASK;
782 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
783 data_page_offset = data_ptr & ~PAGE_MASK;
784
785 page_length = remain;
786 if ((gtt_page_offset + page_length) > PAGE_SIZE)
787 page_length = PAGE_SIZE - gtt_page_offset;
788 if ((data_page_offset + page_length) > PAGE_SIZE)
789 page_length = PAGE_SIZE - data_page_offset;
790
ab34c226
CW
791 slow_kernel_write(dev_priv->mm.gtt_mapping,
792 gtt_page_base, gtt_page_offset,
793 user_pages[data_page_index],
794 data_page_offset,
795 page_length);
3de09aa3
EA
796
797 remain -= page_length;
798 offset += page_length;
799 data_ptr += page_length;
800 }
801
3de09aa3
EA
802out_unpin_pages:
803 for (i = 0; i < pinned_pages; i++)
804 page_cache_release(user_pages[i]);
8e7d2b2c 805 drm_free_large(user_pages);
3de09aa3
EA
806
807 return ret;
808}
809
40123c1f
EA
810/**
811 * This is the fast shmem pwrite path, which attempts to directly
812 * copy_from_user into the kmapped pages backing the object.
813 */
3043c60c 814static int
05394f39
CW
815i915_gem_shmem_pwrite_fast(struct drm_device *dev,
816 struct drm_i915_gem_object *obj,
40123c1f 817 struct drm_i915_gem_pwrite *args,
05394f39 818 struct drm_file *file)
673a394b 819{
05394f39 820 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 821 ssize_t remain;
e5281ccd 822 loff_t offset;
40123c1f
EA
823 char __user *user_data;
824 int page_offset, page_length;
40123c1f
EA
825
826 user_data = (char __user *) (uintptr_t) args->data_ptr;
827 remain = args->size;
673a394b 828
40123c1f 829 offset = args->offset;
05394f39 830 obj->dirty = 1;
40123c1f
EA
831
832 while (remain > 0) {
e5281ccd
CW
833 struct page *page;
834 char *vaddr;
835 int ret;
836
40123c1f
EA
837 /* Operation in this page
838 *
40123c1f
EA
839 * page_offset = offset within page
840 * page_length = bytes to copy for this page
841 */
40123c1f
EA
842 page_offset = offset & (PAGE_SIZE-1);
843 page_length = remain;
844 if ((page_offset + remain) > PAGE_SIZE)
845 page_length = PAGE_SIZE - page_offset;
846
e5281ccd
CW
847 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
848 GFP_HIGHUSER | __GFP_RECLAIMABLE);
849 if (IS_ERR(page))
850 return PTR_ERR(page);
851
852 vaddr = kmap_atomic(page, KM_USER0);
853 ret = __copy_from_user_inatomic(vaddr + page_offset,
854 user_data,
855 page_length);
856 kunmap_atomic(vaddr, KM_USER0);
857
858 set_page_dirty(page);
859 mark_page_accessed(page);
860 page_cache_release(page);
861
862 /* If we get a fault while copying data, then (presumably) our
863 * source page isn't available. Return the error and we'll
864 * retry in the slow path.
865 */
866 if (ret)
fbd5a26d 867 return -EFAULT;
40123c1f
EA
868
869 remain -= page_length;
870 user_data += page_length;
871 offset += page_length;
872 }
873
fbd5a26d 874 return 0;
40123c1f
EA
875}
876
877/**
878 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
879 * the memory and maps it using kmap_atomic for copying.
880 *
881 * This avoids taking mmap_sem for faulting on the user's address while the
882 * struct_mutex is held.
883 */
884static int
05394f39
CW
885i915_gem_shmem_pwrite_slow(struct drm_device *dev,
886 struct drm_i915_gem_object *obj,
40123c1f 887 struct drm_i915_gem_pwrite *args,
05394f39 888 struct drm_file *file)
40123c1f 889{
05394f39 890 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f
EA
891 struct mm_struct *mm = current->mm;
892 struct page **user_pages;
893 ssize_t remain;
894 loff_t offset, pinned_pages, i;
895 loff_t first_data_page, last_data_page, num_pages;
e5281ccd 896 int shmem_page_offset;
40123c1f
EA
897 int data_page_index, data_page_offset;
898 int page_length;
899 int ret;
900 uint64_t data_ptr = args->data_ptr;
280b713b 901 int do_bit17_swizzling;
40123c1f
EA
902
903 remain = args->size;
904
905 /* Pin the user pages containing the data. We can't fault while
906 * holding the struct mutex, and all of the pwrite implementations
907 * want to hold it while dereferencing the user data.
908 */
909 first_data_page = data_ptr / PAGE_SIZE;
910 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
911 num_pages = last_data_page - first_data_page + 1;
912
4f27b75d 913 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
40123c1f
EA
914 if (user_pages == NULL)
915 return -ENOMEM;
916
fbd5a26d 917 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
918 down_read(&mm->mmap_sem);
919 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
920 num_pages, 0, 0, user_pages, NULL);
921 up_read(&mm->mmap_sem);
fbd5a26d 922 mutex_lock(&dev->struct_mutex);
40123c1f
EA
923 if (pinned_pages < num_pages) {
924 ret = -EFAULT;
fbd5a26d 925 goto out;
673a394b
EA
926 }
927
fbd5a26d 928 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
07f73f69 929 if (ret)
fbd5a26d 930 goto out;
40123c1f 931
fbd5a26d 932 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 933
673a394b 934 offset = args->offset;
05394f39 935 obj->dirty = 1;
673a394b 936
40123c1f 937 while (remain > 0) {
e5281ccd
CW
938 struct page *page;
939
40123c1f
EA
940 /* Operation in this page
941 *
40123c1f
EA
942 * shmem_page_offset = offset within page in shmem file
943 * data_page_index = page number in get_user_pages return
944 * data_page_offset = offset with data_page_index page.
945 * page_length = bytes to copy for this page
946 */
40123c1f
EA
947 shmem_page_offset = offset & ~PAGE_MASK;
948 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
949 data_page_offset = data_ptr & ~PAGE_MASK;
950
951 page_length = remain;
952 if ((shmem_page_offset + page_length) > PAGE_SIZE)
953 page_length = PAGE_SIZE - shmem_page_offset;
954 if ((data_page_offset + page_length) > PAGE_SIZE)
955 page_length = PAGE_SIZE - data_page_offset;
956
e5281ccd
CW
957 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
958 GFP_HIGHUSER | __GFP_RECLAIMABLE);
959 if (IS_ERR(page)) {
960 ret = PTR_ERR(page);
961 goto out;
962 }
963
280b713b 964 if (do_bit17_swizzling) {
e5281ccd 965 slow_shmem_bit17_copy(page,
280b713b
EA
966 shmem_page_offset,
967 user_pages[data_page_index],
968 data_page_offset,
99a03df5
CW
969 page_length,
970 0);
971 } else {
e5281ccd 972 slow_shmem_copy(page,
99a03df5
CW
973 shmem_page_offset,
974 user_pages[data_page_index],
975 data_page_offset,
976 page_length);
280b713b 977 }
40123c1f 978
e5281ccd
CW
979 set_page_dirty(page);
980 mark_page_accessed(page);
981 page_cache_release(page);
982
40123c1f
EA
983 remain -= page_length;
984 data_ptr += page_length;
985 offset += page_length;
673a394b
EA
986 }
987
fbd5a26d 988out:
40123c1f
EA
989 for (i = 0; i < pinned_pages; i++)
990 page_cache_release(user_pages[i]);
8e7d2b2c 991 drm_free_large(user_pages);
673a394b 992
40123c1f 993 return ret;
673a394b
EA
994}
995
996/**
997 * Writes data to the object referenced by handle.
998 *
999 * On error, the contents of the buffer that were to be modified are undefined.
1000 */
1001int
1002i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1003 struct drm_file *file)
673a394b
EA
1004{
1005 struct drm_i915_gem_pwrite *args = data;
05394f39 1006 struct drm_i915_gem_object *obj;
51311d0a
CW
1007 int ret;
1008
1009 if (args->size == 0)
1010 return 0;
1011
1012 if (!access_ok(VERIFY_READ,
1013 (char __user *)(uintptr_t)args->data_ptr,
1014 args->size))
1015 return -EFAULT;
1016
1017 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
1018 args->size);
1019 if (ret)
1020 return -EFAULT;
673a394b 1021
fbd5a26d 1022 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1023 if (ret)
fbd5a26d 1024 return ret;
1d7cfea1 1025
05394f39 1026 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1d7cfea1
CW
1027 if (obj == NULL) {
1028 ret = -ENOENT;
1029 goto unlock;
fbd5a26d 1030 }
673a394b 1031
7dcd2499 1032 /* Bounds check destination. */
05394f39
CW
1033 if (args->offset > obj->base.size ||
1034 args->size > obj->base.size - args->offset) {
ce9d419d 1035 ret = -EINVAL;
35b62a89 1036 goto out;
ce9d419d
CW
1037 }
1038
673a394b
EA
1039 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1040 * it would end up going through the fenced access, and we'll get
1041 * different detiling behavior between reading and writing.
1042 * pread/pwrite currently are reading and writing from the CPU
1043 * perspective, requiring manual detiling by the client.
1044 */
05394f39 1045 if (obj->phys_obj)
fbd5a26d 1046 ret = i915_gem_phys_pwrite(dev, obj, args, file);
05394f39
CW
1047 else if (obj->tiling_mode == I915_TILING_NONE &&
1048 obj->gtt_space &&
1049 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
75e9e915 1050 ret = i915_gem_object_pin(obj, 0, true);
fbd5a26d
CW
1051 if (ret)
1052 goto out;
1053
1054 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1055 if (ret)
1056 goto out_unpin;
1057
1058 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1059 if (ret == -EFAULT)
1060 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1061
1062out_unpin:
1063 i915_gem_object_unpin(obj);
40123c1f 1064 } else {
fbd5a26d
CW
1065 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1066 if (ret)
e5281ccd 1067 goto out;
673a394b 1068
fbd5a26d
CW
1069 ret = -EFAULT;
1070 if (!i915_gem_object_needs_bit17_swizzle(obj))
1071 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1072 if (ret == -EFAULT)
1073 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
fbd5a26d 1074 }
673a394b 1075
35b62a89 1076out:
05394f39 1077 drm_gem_object_unreference(&obj->base);
1d7cfea1 1078unlock:
fbd5a26d 1079 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1080 return ret;
1081}
1082
1083/**
2ef7eeaa
EA
1084 * Called when user space prepares to use an object with the CPU, either
1085 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1086 */
1087int
1088i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1089 struct drm_file *file)
673a394b 1090{
a09ba7fa 1091 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1092 struct drm_i915_gem_set_domain *args = data;
05394f39 1093 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1094 uint32_t read_domains = args->read_domains;
1095 uint32_t write_domain = args->write_domain;
673a394b
EA
1096 int ret;
1097
1098 if (!(dev->driver->driver_features & DRIVER_GEM))
1099 return -ENODEV;
1100
2ef7eeaa 1101 /* Only handle setting domains to types used by the CPU. */
21d509e3 1102 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1103 return -EINVAL;
1104
21d509e3 1105 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1106 return -EINVAL;
1107
1108 /* Having something in the write domain implies it's in the read
1109 * domain, and only that read domain. Enforce that in the request.
1110 */
1111 if (write_domain != 0 && read_domains != write_domain)
1112 return -EINVAL;
1113
76c1dec1 1114 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1115 if (ret)
76c1dec1 1116 return ret;
1d7cfea1 1117
05394f39 1118 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1d7cfea1
CW
1119 if (obj == NULL) {
1120 ret = -ENOENT;
1121 goto unlock;
76c1dec1 1122 }
673a394b 1123
652c393a
JB
1124 intel_mark_busy(dev, obj);
1125
2ef7eeaa
EA
1126 if (read_domains & I915_GEM_DOMAIN_GTT) {
1127 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1128
a09ba7fa
EA
1129 /* Update the LRU on the fence for the CPU access that's
1130 * about to occur.
1131 */
05394f39 1132 if (obj->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac 1133 struct drm_i915_fence_reg *reg =
05394f39 1134 &dev_priv->fence_regs[obj->fence_reg];
007cc8ac 1135 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1136 &dev_priv->mm.fence_list);
1137 }
1138
02354392
EA
1139 /* Silently promote "you're not bound, there was nothing to do"
1140 * to success, since the client was just asking us to
1141 * make sure everything was done.
1142 */
1143 if (ret == -EINVAL)
1144 ret = 0;
2ef7eeaa 1145 } else {
e47c68e9 1146 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1147 }
1148
7d1c4804 1149 /* Maintain LRU order of "inactive" objects */
05394f39
CW
1150 if (ret == 0 && i915_gem_object_is_inactive(obj))
1151 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1152
05394f39 1153 drm_gem_object_unreference(&obj->base);
1d7cfea1 1154unlock:
673a394b
EA
1155 mutex_unlock(&dev->struct_mutex);
1156 return ret;
1157}
1158
1159/**
1160 * Called when user space has done writes to this buffer
1161 */
1162int
1163i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1164 struct drm_file *file)
673a394b
EA
1165{
1166 struct drm_i915_gem_sw_finish *args = data;
05394f39 1167 struct drm_i915_gem_object *obj;
673a394b
EA
1168 int ret = 0;
1169
1170 if (!(dev->driver->driver_features & DRIVER_GEM))
1171 return -ENODEV;
1172
76c1dec1 1173 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1174 if (ret)
76c1dec1 1175 return ret;
1d7cfea1 1176
05394f39 1177 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
673a394b 1178 if (obj == NULL) {
1d7cfea1
CW
1179 ret = -ENOENT;
1180 goto unlock;
673a394b
EA
1181 }
1182
673a394b 1183 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1184 if (obj->pin_count)
e47c68e9
EA
1185 i915_gem_object_flush_cpu_write_domain(obj);
1186
05394f39 1187 drm_gem_object_unreference(&obj->base);
1d7cfea1 1188unlock:
673a394b
EA
1189 mutex_unlock(&dev->struct_mutex);
1190 return ret;
1191}
1192
1193/**
1194 * Maps the contents of an object, returning the address it is mapped
1195 * into.
1196 *
1197 * While the mapping holds a reference on the contents of the object, it doesn't
1198 * imply a ref on the object itself.
1199 */
1200int
1201i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1202 struct drm_file *file)
673a394b 1203{
da761a6e 1204 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1205 struct drm_i915_gem_mmap *args = data;
1206 struct drm_gem_object *obj;
1207 loff_t offset;
1208 unsigned long addr;
1209
1210 if (!(dev->driver->driver_features & DRIVER_GEM))
1211 return -ENODEV;
1212
05394f39 1213 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1214 if (obj == NULL)
bf79cb91 1215 return -ENOENT;
673a394b 1216
da761a6e
CW
1217 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1218 drm_gem_object_unreference_unlocked(obj);
1219 return -E2BIG;
1220 }
1221
673a394b
EA
1222 offset = args->offset;
1223
1224 down_write(&current->mm->mmap_sem);
1225 addr = do_mmap(obj->filp, 0, args->size,
1226 PROT_READ | PROT_WRITE, MAP_SHARED,
1227 args->offset);
1228 up_write(&current->mm->mmap_sem);
bc9025bd 1229 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1230 if (IS_ERR((void *)addr))
1231 return addr;
1232
1233 args->addr_ptr = (uint64_t) addr;
1234
1235 return 0;
1236}
1237
de151cf6
JB
1238/**
1239 * i915_gem_fault - fault a page into the GTT
1240 * vma: VMA in question
1241 * vmf: fault info
1242 *
1243 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1244 * from userspace. The fault handler takes care of binding the object to
1245 * the GTT (if needed), allocating and programming a fence register (again,
1246 * only if needed based on whether the old reg is still valid or the object
1247 * is tiled) and inserting a new PTE into the faulting process.
1248 *
1249 * Note that the faulting process may involve evicting existing objects
1250 * from the GTT and/or fence registers to make room. So performance may
1251 * suffer if the GTT working set is large or there are few fence registers
1252 * left.
1253 */
1254int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1255{
05394f39
CW
1256 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1257 struct drm_device *dev = obj->base.dev;
7d1c4804 1258 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1259 pgoff_t page_offset;
1260 unsigned long pfn;
1261 int ret = 0;
0f973f27 1262 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1263
1264 /* We don't use vmf->pgoff since that has the fake offset */
1265 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1266 PAGE_SHIFT;
1267
1268 /* Now bind it into the GTT if needed */
1269 mutex_lock(&dev->struct_mutex);
05394f39 1270 BUG_ON(obj->pin_count && !obj->pin_mappable);
a00b10c3 1271
919926ae
CW
1272 if (!obj->map_and_fenceable) {
1273 ret = i915_gem_object_unbind(obj);
1274 if (ret)
1275 goto unlock;
a00b10c3 1276 }
16e809ac 1277
05394f39 1278 if (!obj->gtt_space) {
75e9e915 1279 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1280 if (ret)
1281 goto unlock;
de151cf6
JB
1282 }
1283
4a684a41
CW
1284 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1285 if (ret)
1286 goto unlock;
1287
05394f39
CW
1288 if (!obj->fault_mappable) {
1289 obj->fault_mappable = true;
1290 i915_gem_info_update_mappable(dev_priv, obj, true);
fb7d516a
DV
1291 }
1292
de151cf6 1293 /* Need a new fence register? */
05394f39 1294 if (obj->tiling_mode != I915_TILING_NONE) {
2cf34d7b 1295 ret = i915_gem_object_get_fence_reg(obj, true);
c715089f
CW
1296 if (ret)
1297 goto unlock;
d9ddcb96 1298 }
de151cf6 1299
05394f39
CW
1300 if (i915_gem_object_is_inactive(obj))
1301 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1302
05394f39 1303 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1304 page_offset;
1305
1306 /* Finally, remap it using the new GTT offset */
1307 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1308unlock:
de151cf6
JB
1309 mutex_unlock(&dev->struct_mutex);
1310
1311 switch (ret) {
045e769a
CW
1312 case -EAGAIN:
1313 set_need_resched();
c715089f
CW
1314 case 0:
1315 case -ERESTARTSYS:
1316 return VM_FAULT_NOPAGE;
de151cf6 1317 case -ENOMEM:
de151cf6 1318 return VM_FAULT_OOM;
de151cf6 1319 default:
c715089f 1320 return VM_FAULT_SIGBUS;
de151cf6
JB
1321 }
1322}
1323
1324/**
1325 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1326 * @obj: obj in question
1327 *
1328 * GEM memory mapping works by handing back to userspace a fake mmap offset
1329 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1330 * up the object based on the offset and sets up the various memory mapping
1331 * structures.
1332 *
1333 * This routine allocates and attaches a fake offset for @obj.
1334 */
1335static int
05394f39 1336i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
de151cf6 1337{
05394f39 1338 struct drm_device *dev = obj->base.dev;
de151cf6 1339 struct drm_gem_mm *mm = dev->mm_private;
de151cf6 1340 struct drm_map_list *list;
f77d390c 1341 struct drm_local_map *map;
de151cf6
JB
1342 int ret = 0;
1343
1344 /* Set the object up for mmap'ing */
05394f39 1345 list = &obj->base.map_list;
9a298b2a 1346 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1347 if (!list->map)
1348 return -ENOMEM;
1349
1350 map = list->map;
1351 map->type = _DRM_GEM;
05394f39 1352 map->size = obj->base.size;
de151cf6
JB
1353 map->handle = obj;
1354
1355 /* Get a DRM GEM mmap offset allocated... */
1356 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
05394f39
CW
1357 obj->base.size / PAGE_SIZE,
1358 0, 0);
de151cf6 1359 if (!list->file_offset_node) {
05394f39
CW
1360 DRM_ERROR("failed to allocate offset for bo %d\n",
1361 obj->base.name);
9e0ae534 1362 ret = -ENOSPC;
de151cf6
JB
1363 goto out_free_list;
1364 }
1365
1366 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
05394f39
CW
1367 obj->base.size / PAGE_SIZE,
1368 0);
de151cf6
JB
1369 if (!list->file_offset_node) {
1370 ret = -ENOMEM;
1371 goto out_free_list;
1372 }
1373
1374 list->hash.key = list->file_offset_node->start;
9e0ae534
CW
1375 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1376 if (ret) {
de151cf6
JB
1377 DRM_ERROR("failed to add to map hash\n");
1378 goto out_free_mm;
1379 }
1380
de151cf6
JB
1381 return 0;
1382
1383out_free_mm:
1384 drm_mm_put_block(list->file_offset_node);
1385out_free_list:
9a298b2a 1386 kfree(list->map);
39a01d1f 1387 list->map = NULL;
de151cf6
JB
1388
1389 return ret;
1390}
1391
901782b2
CW
1392/**
1393 * i915_gem_release_mmap - remove physical page mappings
1394 * @obj: obj in question
1395 *
af901ca1 1396 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1397 * relinquish ownership of the pages back to the system.
1398 *
1399 * It is vital that we remove the page mapping if we have mapped a tiled
1400 * object through the GTT and then lose the fence register due to
1401 * resource pressure. Similarly if the object has been moved out of the
1402 * aperture, than pages mapped into userspace must be revoked. Removing the
1403 * mapping will then trigger a page fault on the next user access, allowing
1404 * fixup by i915_gem_fault().
1405 */
d05ca301 1406void
05394f39 1407i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1408{
05394f39 1409 struct drm_device *dev = obj->base.dev;
fb7d516a 1410 struct drm_i915_private *dev_priv = dev->dev_private;
901782b2 1411
05394f39 1412 if (unlikely(obj->base.map_list.map && dev->dev_mapping))
901782b2 1413 unmap_mapping_range(dev->dev_mapping,
05394f39
CW
1414 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1415 obj->base.size, 1);
fb7d516a 1416
05394f39
CW
1417 if (obj->fault_mappable) {
1418 obj->fault_mappable = false;
1419 i915_gem_info_update_mappable(dev_priv, obj, false);
fb7d516a 1420 }
901782b2
CW
1421}
1422
ab00b3e5 1423static void
05394f39 1424i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
ab00b3e5 1425{
05394f39 1426 struct drm_device *dev = obj->base.dev;
ab00b3e5 1427 struct drm_gem_mm *mm = dev->mm_private;
05394f39 1428 struct drm_map_list *list = &obj->base.map_list;
ab00b3e5 1429
ab00b3e5 1430 drm_ht_remove_item(&mm->offset_hash, &list->hash);
39a01d1f
CW
1431 drm_mm_put_block(list->file_offset_node);
1432 kfree(list->map);
1433 list->map = NULL;
ab00b3e5
JB
1434}
1435
92b88aeb
CW
1436static uint32_t
1437i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
1438{
1439 struct drm_device *dev = obj->base.dev;
1440 uint32_t size;
1441
1442 if (INTEL_INFO(dev)->gen >= 4 ||
1443 obj->tiling_mode == I915_TILING_NONE)
1444 return obj->base.size;
1445
1446 /* Previous chips need a power-of-two fence region when tiling */
1447 if (INTEL_INFO(dev)->gen == 3)
1448 size = 1024*1024;
1449 else
1450 size = 512*1024;
1451
1452 while (size < obj->base.size)
1453 size <<= 1;
1454
1455 return size;
1456}
1457
de151cf6
JB
1458/**
1459 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1460 * @obj: object to check
1461 *
1462 * Return the required GTT alignment for an object, taking into account
5e783301 1463 * potential fence register mapping.
de151cf6
JB
1464 */
1465static uint32_t
05394f39 1466i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
de151cf6 1467{
05394f39 1468 struct drm_device *dev = obj->base.dev;
de151cf6
JB
1469
1470 /*
1471 * Minimum alignment is 4k (GTT page size), but might be greater
1472 * if a fence register is needed for the object.
1473 */
a00b10c3 1474 if (INTEL_INFO(dev)->gen >= 4 ||
05394f39 1475 obj->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1476 return 4096;
1477
a00b10c3
CW
1478 /*
1479 * Previous chips need to be aligned to the size of the smallest
1480 * fence register that can contain the object.
1481 */
05394f39 1482 return i915_gem_get_gtt_size(obj);
a00b10c3
CW
1483}
1484
5e783301
DV
1485/**
1486 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1487 * unfenced object
1488 * @obj: object to check
1489 *
1490 * Return the required GTT alignment for an object, only taking into account
1491 * unfenced tiled surface requirements.
1492 */
1493static uint32_t
05394f39 1494i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
5e783301 1495{
05394f39 1496 struct drm_device *dev = obj->base.dev;
5e783301
DV
1497 int tile_height;
1498
1499 /*
1500 * Minimum alignment is 4k (GTT page size) for sane hw.
1501 */
1502 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
05394f39 1503 obj->tiling_mode == I915_TILING_NONE)
5e783301
DV
1504 return 4096;
1505
1506 /*
1507 * Older chips need unfenced tiled buffers to be aligned to the left
1508 * edge of an even tile row (where tile rows are counted as if the bo is
1509 * placed in a fenced gtt region).
1510 */
1511 if (IS_GEN2(dev) ||
05394f39 1512 (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
5e783301
DV
1513 tile_height = 32;
1514 else
1515 tile_height = 8;
1516
05394f39 1517 return tile_height * obj->stride * 2;
5e783301
DV
1518}
1519
de151cf6
JB
1520/**
1521 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1522 * @dev: DRM device
1523 * @data: GTT mapping ioctl data
05394f39 1524 * @file: GEM object info
de151cf6
JB
1525 *
1526 * Simply returns the fake offset to userspace so it can mmap it.
1527 * The mmap call will end up in drm_gem_mmap(), which will set things
1528 * up so we can get faults in the handler above.
1529 *
1530 * The fault handler will take care of binding the object into the GTT
1531 * (since it may have been evicted to make room for something), allocating
1532 * a fence register, and mapping the appropriate aperture address into
1533 * userspace.
1534 */
1535int
1536i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
05394f39 1537 struct drm_file *file)
de151cf6 1538{
da761a6e 1539 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 1540 struct drm_i915_gem_mmap_gtt *args = data;
05394f39 1541 struct drm_i915_gem_object *obj;
de151cf6
JB
1542 int ret;
1543
1544 if (!(dev->driver->driver_features & DRIVER_GEM))
1545 return -ENODEV;
1546
76c1dec1 1547 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1548 if (ret)
76c1dec1 1549 return ret;
de151cf6 1550
05394f39 1551 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1d7cfea1
CW
1552 if (obj == NULL) {
1553 ret = -ENOENT;
1554 goto unlock;
1555 }
de151cf6 1556
05394f39 1557 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e
CW
1558 ret = -E2BIG;
1559 goto unlock;
1560 }
1561
05394f39 1562 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1563 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1564 ret = -EINVAL;
1565 goto out;
ab18282d
CW
1566 }
1567
05394f39 1568 if (!obj->base.map_list.map) {
de151cf6 1569 ret = i915_gem_create_mmap_offset(obj);
1d7cfea1
CW
1570 if (ret)
1571 goto out;
de151cf6
JB
1572 }
1573
05394f39 1574 args->offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1575
1d7cfea1 1576out:
05394f39 1577 drm_gem_object_unreference(&obj->base);
1d7cfea1 1578unlock:
de151cf6 1579 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1580 return ret;
de151cf6
JB
1581}
1582
e5281ccd 1583static int
05394f39 1584i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1585 gfp_t gfpmask)
1586{
e5281ccd
CW
1587 int page_count, i;
1588 struct address_space *mapping;
1589 struct inode *inode;
1590 struct page *page;
1591
1592 /* Get the list of pages out of our struct file. They'll be pinned
1593 * at this point until we release them.
1594 */
05394f39
CW
1595 page_count = obj->base.size / PAGE_SIZE;
1596 BUG_ON(obj->pages != NULL);
1597 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1598 if (obj->pages == NULL)
e5281ccd
CW
1599 return -ENOMEM;
1600
05394f39 1601 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd
CW
1602 mapping = inode->i_mapping;
1603 for (i = 0; i < page_count; i++) {
1604 page = read_cache_page_gfp(mapping, i,
1605 GFP_HIGHUSER |
1606 __GFP_COLD |
1607 __GFP_RECLAIMABLE |
1608 gfpmask);
1609 if (IS_ERR(page))
1610 goto err_pages;
1611
05394f39 1612 obj->pages[i] = page;
e5281ccd
CW
1613 }
1614
05394f39 1615 if (obj->tiling_mode != I915_TILING_NONE)
e5281ccd
CW
1616 i915_gem_object_do_bit_17_swizzle(obj);
1617
1618 return 0;
1619
1620err_pages:
1621 while (i--)
05394f39 1622 page_cache_release(obj->pages[i]);
e5281ccd 1623
05394f39
CW
1624 drm_free_large(obj->pages);
1625 obj->pages = NULL;
e5281ccd
CW
1626 return PTR_ERR(page);
1627}
1628
5cdf5881 1629static void
05394f39 1630i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1631{
05394f39 1632 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1633 int i;
1634
05394f39 1635 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1636
05394f39 1637 if (obj->tiling_mode != I915_TILING_NONE)
280b713b
EA
1638 i915_gem_object_save_bit_17_swizzle(obj);
1639
05394f39
CW
1640 if (obj->madv == I915_MADV_DONTNEED)
1641 obj->dirty = 0;
3ef94daa
CW
1642
1643 for (i = 0; i < page_count; i++) {
05394f39
CW
1644 if (obj->dirty)
1645 set_page_dirty(obj->pages[i]);
3ef94daa 1646
05394f39
CW
1647 if (obj->madv == I915_MADV_WILLNEED)
1648 mark_page_accessed(obj->pages[i]);
3ef94daa 1649
05394f39 1650 page_cache_release(obj->pages[i]);
3ef94daa 1651 }
05394f39 1652 obj->dirty = 0;
673a394b 1653
05394f39
CW
1654 drm_free_large(obj->pages);
1655 obj->pages = NULL;
673a394b
EA
1656}
1657
a56ba56c
CW
1658static uint32_t
1659i915_gem_next_request_seqno(struct drm_device *dev,
1660 struct intel_ring_buffer *ring)
1661{
1662 drm_i915_private_t *dev_priv = dev->dev_private;
5d97eb69 1663 return ring->outstanding_lazy_request = dev_priv->next_seqno;
a56ba56c
CW
1664}
1665
673a394b 1666static void
05394f39 1667i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
852835f3 1668 struct intel_ring_buffer *ring)
673a394b 1669{
05394f39 1670 struct drm_device *dev = obj->base.dev;
69dc4987 1671 struct drm_i915_private *dev_priv = dev->dev_private;
a56ba56c 1672 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
617dbe27 1673
852835f3 1674 BUG_ON(ring == NULL);
05394f39 1675 obj->ring = ring;
673a394b
EA
1676
1677 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1678 if (!obj->active) {
1679 drm_gem_object_reference(&obj->base);
1680 obj->active = 1;
673a394b 1681 }
e35a41de 1682
673a394b 1683 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1684 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1685 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1686
05394f39 1687 obj->last_rendering_seqno = seqno;
caea7476
CW
1688 if (obj->fenced_gpu_access) {
1689 struct drm_i915_fence_reg *reg;
1690
1691 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1692
1693 obj->last_fenced_seqno = seqno;
1694 obj->last_fenced_ring = ring;
1695
1696 reg = &dev_priv->fence_regs[obj->fence_reg];
1697 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1698 }
1699}
1700
1701static void
1702i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1703{
1704 list_del_init(&obj->ring_list);
1705 obj->last_rendering_seqno = 0;
1706 obj->last_fenced_seqno = 0;
673a394b
EA
1707}
1708
ce44b0ea 1709static void
05394f39 1710i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1711{
05394f39 1712 struct drm_device *dev = obj->base.dev;
ce44b0ea 1713 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1714
05394f39
CW
1715 BUG_ON(!obj->active);
1716 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1717
1718 i915_gem_object_move_off_active(obj);
1719}
1720
1721static void
1722i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1723{
1724 struct drm_device *dev = obj->base.dev;
1725 struct drm_i915_private *dev_priv = dev->dev_private;
1726
1727 if (obj->pin_count != 0)
1728 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1729 else
1730 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1731
1732 BUG_ON(!list_empty(&obj->gpu_write_list));
1733 BUG_ON(!obj->active);
1734 obj->ring = NULL;
1735
1736 i915_gem_object_move_off_active(obj);
1737 obj->fenced_gpu_access = false;
1738 obj->last_fenced_ring = NULL;
1739
1740 obj->active = 0;
1741 drm_gem_object_unreference(&obj->base);
1742
1743 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1744}
673a394b 1745
963b4836
CW
1746/* Immediately discard the backing storage */
1747static void
05394f39 1748i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1749{
bb6baf76 1750 struct inode *inode;
963b4836 1751
ae9fed6b
CW
1752 /* Our goal here is to return as much of the memory as
1753 * is possible back to the system as we are called from OOM.
1754 * To do this we must instruct the shmfs to drop all of its
1755 * backing pages, *now*. Here we mirror the actions taken
1756 * when by shmem_delete_inode() to release the backing store.
1757 */
05394f39 1758 inode = obj->base.filp->f_path.dentry->d_inode;
ae9fed6b
CW
1759 truncate_inode_pages(inode->i_mapping, 0);
1760 if (inode->i_op->truncate_range)
1761 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1762
05394f39 1763 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1764}
1765
1766static inline int
05394f39 1767i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1768{
05394f39 1769 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1770}
1771
63560396
DV
1772static void
1773i915_gem_process_flushing_list(struct drm_device *dev,
8a1a49f9 1774 uint32_t flush_domains,
852835f3 1775 struct intel_ring_buffer *ring)
63560396 1776{
05394f39 1777 struct drm_i915_gem_object *obj, *next;
63560396 1778
05394f39 1779 list_for_each_entry_safe(obj, next,
64193406 1780 &ring->gpu_write_list,
63560396 1781 gpu_write_list) {
05394f39
CW
1782 if (obj->base.write_domain & flush_domains) {
1783 uint32_t old_write_domain = obj->base.write_domain;
63560396 1784
05394f39
CW
1785 obj->base.write_domain = 0;
1786 list_del_init(&obj->gpu_write_list);
617dbe27 1787 i915_gem_object_move_to_active(obj, ring);
63560396 1788
63560396 1789 trace_i915_gem_object_change_domain(obj,
05394f39 1790 obj->base.read_domains,
63560396
DV
1791 old_write_domain);
1792 }
1793 }
1794}
8187a2b7 1795
3cce469c 1796int
8a1a49f9 1797i915_add_request(struct drm_device *dev,
f787a5f5 1798 struct drm_file *file,
8dc5d147 1799 struct drm_i915_gem_request *request,
8a1a49f9 1800 struct intel_ring_buffer *ring)
673a394b
EA
1801{
1802 drm_i915_private_t *dev_priv = dev->dev_private;
f787a5f5 1803 struct drm_i915_file_private *file_priv = NULL;
673a394b
EA
1804 uint32_t seqno;
1805 int was_empty;
3cce469c
CW
1806 int ret;
1807
1808 BUG_ON(request == NULL);
673a394b 1809
f787a5f5
CW
1810 if (file != NULL)
1811 file_priv = file->driver_priv;
b962442e 1812
3cce469c
CW
1813 ret = ring->add_request(ring, &seqno);
1814 if (ret)
1815 return ret;
673a394b 1816
a56ba56c 1817 ring->outstanding_lazy_request = false;
673a394b
EA
1818
1819 request->seqno = seqno;
852835f3 1820 request->ring = ring;
673a394b 1821 request->emitted_jiffies = jiffies;
852835f3
ZN
1822 was_empty = list_empty(&ring->request_list);
1823 list_add_tail(&request->list, &ring->request_list);
1824
f787a5f5 1825 if (file_priv) {
1c25595f 1826 spin_lock(&file_priv->mm.lock);
f787a5f5 1827 request->file_priv = file_priv;
b962442e 1828 list_add_tail(&request->client_list,
f787a5f5 1829 &file_priv->mm.request_list);
1c25595f 1830 spin_unlock(&file_priv->mm.lock);
b962442e 1831 }
673a394b 1832
f65d9421 1833 if (!dev_priv->mm.suspended) {
b3b079db
CW
1834 mod_timer(&dev_priv->hangcheck_timer,
1835 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1836 if (was_empty)
b3b079db
CW
1837 queue_delayed_work(dev_priv->wq,
1838 &dev_priv->mm.retire_work, HZ);
f65d9421 1839 }
3cce469c 1840 return 0;
673a394b
EA
1841}
1842
1843/**
1844 * Command execution barrier
1845 *
1846 * Ensures that all commands in the ring are finished
1847 * before signalling the CPU
1848 */
8a1a49f9 1849static void
852835f3 1850i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1851{
673a394b 1852 uint32_t flush_domains = 0;
673a394b
EA
1853
1854 /* The sampler always gets flushed on i965 (sigh) */
a6c45cf0 1855 if (INTEL_INFO(dev)->gen >= 4)
673a394b 1856 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3 1857
78501eac 1858 ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1859}
1860
f787a5f5
CW
1861static inline void
1862i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1863{
1c25595f 1864 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1865
1c25595f
CW
1866 if (!file_priv)
1867 return;
1c5d22f7 1868
1c25595f
CW
1869 spin_lock(&file_priv->mm.lock);
1870 list_del(&request->client_list);
1871 request->file_priv = NULL;
1872 spin_unlock(&file_priv->mm.lock);
673a394b 1873}
673a394b 1874
dfaae392
CW
1875static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1876 struct intel_ring_buffer *ring)
9375e446 1877{
dfaae392
CW
1878 while (!list_empty(&ring->request_list)) {
1879 struct drm_i915_gem_request *request;
673a394b 1880
dfaae392
CW
1881 request = list_first_entry(&ring->request_list,
1882 struct drm_i915_gem_request,
1883 list);
de151cf6 1884
dfaae392 1885 list_del(&request->list);
f787a5f5 1886 i915_gem_request_remove_from_client(request);
dfaae392
CW
1887 kfree(request);
1888 }
673a394b 1889
dfaae392 1890 while (!list_empty(&ring->active_list)) {
05394f39 1891 struct drm_i915_gem_object *obj;
9375e446 1892
05394f39
CW
1893 obj = list_first_entry(&ring->active_list,
1894 struct drm_i915_gem_object,
1895 ring_list);
9375e446 1896
05394f39
CW
1897 obj->base.write_domain = 0;
1898 list_del_init(&obj->gpu_write_list);
1899 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1900 }
1901}
1902
312817a3
CW
1903static void i915_gem_reset_fences(struct drm_device *dev)
1904{
1905 struct drm_i915_private *dev_priv = dev->dev_private;
1906 int i;
1907
1908 for (i = 0; i < 16; i++) {
1909 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1910 if (reg->obj)
1911 i915_gem_clear_fence_reg(reg->obj);
1912 }
1913}
1914
069efc1d 1915void i915_gem_reset(struct drm_device *dev)
673a394b 1916{
77f01230 1917 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1918 struct drm_i915_gem_object *obj;
673a394b 1919
dfaae392 1920 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
87acb0a5 1921 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
549f7365 1922 i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
dfaae392
CW
1923
1924 /* Remove anything from the flushing lists. The GPU cache is likely
1925 * to be lost on reset along with the data, so simply move the
1926 * lost bo to the inactive list.
1927 */
1928 while (!list_empty(&dev_priv->mm.flushing_list)) {
05394f39
CW
1929 obj= list_first_entry(&dev_priv->mm.flushing_list,
1930 struct drm_i915_gem_object,
1931 mm_list);
dfaae392 1932
05394f39
CW
1933 obj->base.write_domain = 0;
1934 list_del_init(&obj->gpu_write_list);
1935 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1936 }
1937
1938 /* Move everything out of the GPU domains to ensure we do any
1939 * necessary invalidation upon reuse.
1940 */
05394f39 1941 list_for_each_entry(obj,
77f01230 1942 &dev_priv->mm.inactive_list,
69dc4987 1943 mm_list)
77f01230 1944 {
05394f39 1945 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1946 }
069efc1d
CW
1947
1948 /* The fence registers are invalidated so clear them out */
312817a3 1949 i915_gem_reset_fences(dev);
673a394b
EA
1950}
1951
1952/**
1953 * This function clears the request list as sequence numbers are passed.
1954 */
b09a1fec
CW
1955static void
1956i915_gem_retire_requests_ring(struct drm_device *dev,
1957 struct intel_ring_buffer *ring)
673a394b
EA
1958{
1959 drm_i915_private_t *dev_priv = dev->dev_private;
1960 uint32_t seqno;
1961
b84d5f0c
CW
1962 if (!ring->status_page.page_addr ||
1963 list_empty(&ring->request_list))
6c0594a3
KW
1964 return;
1965
23bc5982 1966 WARN_ON(i915_verify_lists(dev));
673a394b 1967
78501eac 1968 seqno = ring->get_seqno(ring);
852835f3 1969 while (!list_empty(&ring->request_list)) {
673a394b 1970 struct drm_i915_gem_request *request;
673a394b 1971
852835f3 1972 request = list_first_entry(&ring->request_list,
673a394b
EA
1973 struct drm_i915_gem_request,
1974 list);
673a394b 1975
dfaae392 1976 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1977 break;
1978
1979 trace_i915_gem_request_retire(dev, request->seqno);
1980
1981 list_del(&request->list);
f787a5f5 1982 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1983 kfree(request);
1984 }
673a394b 1985
b84d5f0c
CW
1986 /* Move any buffers on the active list that are no longer referenced
1987 * by the ringbuffer to the flushing/inactive lists as appropriate.
1988 */
1989 while (!list_empty(&ring->active_list)) {
05394f39 1990 struct drm_i915_gem_object *obj;
b84d5f0c 1991
05394f39
CW
1992 obj= list_first_entry(&ring->active_list,
1993 struct drm_i915_gem_object,
1994 ring_list);
673a394b 1995
05394f39 1996 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
673a394b 1997 break;
b84d5f0c 1998
05394f39 1999 if (obj->base.write_domain != 0)
b84d5f0c
CW
2000 i915_gem_object_move_to_flushing(obj);
2001 else
2002 i915_gem_object_move_to_inactive(obj);
673a394b 2003 }
9d34e5db
CW
2004
2005 if (unlikely (dev_priv->trace_irq_seqno &&
2006 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
78501eac 2007 ring->user_irq_put(ring);
9d34e5db
CW
2008 dev_priv->trace_irq_seqno = 0;
2009 }
23bc5982
CW
2010
2011 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2012}
2013
b09a1fec
CW
2014void
2015i915_gem_retire_requests(struct drm_device *dev)
2016{
2017 drm_i915_private_t *dev_priv = dev->dev_private;
2018
be72615b 2019 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
05394f39 2020 struct drm_i915_gem_object *obj, *next;
be72615b
CW
2021
2022 /* We must be careful that during unbind() we do not
2023 * accidentally infinitely recurse into retire requests.
2024 * Currently:
2025 * retire -> free -> unbind -> wait -> retire_ring
2026 */
05394f39 2027 list_for_each_entry_safe(obj, next,
be72615b 2028 &dev_priv->mm.deferred_free_list,
69dc4987 2029 mm_list)
05394f39 2030 i915_gem_free_object_tail(obj);
be72615b
CW
2031 }
2032
b09a1fec 2033 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
87acb0a5 2034 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
549f7365 2035 i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
b09a1fec
CW
2036}
2037
75ef9da2 2038static void
673a394b
EA
2039i915_gem_retire_work_handler(struct work_struct *work)
2040{
2041 drm_i915_private_t *dev_priv;
2042 struct drm_device *dev;
2043
2044 dev_priv = container_of(work, drm_i915_private_t,
2045 mm.retire_work.work);
2046 dev = dev_priv->dev;
2047
891b48cf
CW
2048 /* Come back later if the device is busy... */
2049 if (!mutex_trylock(&dev->struct_mutex)) {
2050 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2051 return;
2052 }
2053
b09a1fec 2054 i915_gem_retire_requests(dev);
d1b851fc 2055
6dbe2772 2056 if (!dev_priv->mm.suspended &&
d1b851fc 2057 (!list_empty(&dev_priv->render_ring.request_list) ||
549f7365
CW
2058 !list_empty(&dev_priv->bsd_ring.request_list) ||
2059 !list_empty(&dev_priv->blt_ring.request_list)))
9c9fe1f8 2060 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
2061 mutex_unlock(&dev->struct_mutex);
2062}
2063
5a5a0c64 2064int
852835f3 2065i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
8a1a49f9 2066 bool interruptible, struct intel_ring_buffer *ring)
673a394b
EA
2067{
2068 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 2069 u32 ier;
673a394b
EA
2070 int ret = 0;
2071
2072 BUG_ON(seqno == 0);
2073
ba1234d1 2074 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0
CW
2075 return -EAGAIN;
2076
5d97eb69 2077 if (seqno == ring->outstanding_lazy_request) {
3cce469c
CW
2078 struct drm_i915_gem_request *request;
2079
2080 request = kzalloc(sizeof(*request), GFP_KERNEL);
2081 if (request == NULL)
e35a41de 2082 return -ENOMEM;
3cce469c
CW
2083
2084 ret = i915_add_request(dev, NULL, request, ring);
2085 if (ret) {
2086 kfree(request);
2087 return ret;
2088 }
2089
2090 seqno = request->seqno;
e35a41de 2091 }
ffed1d09 2092
78501eac 2093 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
bad720ff 2094 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
2095 ier = I915_READ(DEIER) | I915_READ(GTIER);
2096 else
2097 ier = I915_READ(IER);
802c7eb6
JB
2098 if (!ier) {
2099 DRM_ERROR("something (likely vbetool) disabled "
2100 "interrupts, re-enabling\n");
2101 i915_driver_irq_preinstall(dev);
2102 i915_driver_irq_postinstall(dev);
2103 }
2104
1c5d22f7
CW
2105 trace_i915_gem_request_wait_begin(dev, seqno);
2106
b2223497 2107 ring->waiting_seqno = seqno;
78501eac 2108 ring->user_irq_get(ring);
48764bf4 2109 if (interruptible)
852835f3 2110 ret = wait_event_interruptible(ring->irq_queue,
78501eac 2111 i915_seqno_passed(ring->get_seqno(ring), seqno)
852835f3 2112 || atomic_read(&dev_priv->mm.wedged));
48764bf4 2113 else
852835f3 2114 wait_event(ring->irq_queue,
78501eac 2115 i915_seqno_passed(ring->get_seqno(ring), seqno)
852835f3 2116 || atomic_read(&dev_priv->mm.wedged));
48764bf4 2117
78501eac 2118 ring->user_irq_put(ring);
b2223497 2119 ring->waiting_seqno = 0;
1c5d22f7
CW
2120
2121 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 2122 }
ba1234d1 2123 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 2124 ret = -EAGAIN;
673a394b
EA
2125
2126 if (ret && ret != -ERESTARTSYS)
8bff917c 2127 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
78501eac 2128 __func__, ret, seqno, ring->get_seqno(ring),
8bff917c 2129 dev_priv->next_seqno);
673a394b
EA
2130
2131 /* Directly dispatch request retiring. While we have the work queue
2132 * to handle this, the waiter on a request often wants an associated
2133 * buffer to have made it to the inactive list, and we would need
2134 * a separate wait queue to handle that.
2135 */
2136 if (ret == 0)
b09a1fec 2137 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
2138
2139 return ret;
2140}
2141
48764bf4
DV
2142/**
2143 * Waits for a sequence number to be signaled, and cleans up the
2144 * request and object lists appropriately for that event.
2145 */
2146static int
852835f3 2147i915_wait_request(struct drm_device *dev, uint32_t seqno,
a56ba56c 2148 struct intel_ring_buffer *ring)
48764bf4 2149{
852835f3 2150 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
2151}
2152
20f0cd55 2153static void
9220434a
CW
2154i915_gem_flush_ring(struct drm_device *dev,
2155 struct intel_ring_buffer *ring,
2156 uint32_t invalidate_domains,
2157 uint32_t flush_domains)
2158{
78501eac 2159 ring->flush(ring, invalidate_domains, flush_domains);
9220434a
CW
2160 i915_gem_process_flushing_list(dev, flush_domains, ring);
2161}
2162
8187a2b7
ZN
2163static void
2164i915_gem_flush(struct drm_device *dev,
2165 uint32_t invalidate_domains,
9220434a
CW
2166 uint32_t flush_domains,
2167 uint32_t flush_rings)
8187a2b7
ZN
2168{
2169 drm_i915_private_t *dev_priv = dev->dev_private;
8bff917c 2170
8187a2b7 2171 if (flush_domains & I915_GEM_DOMAIN_CPU)
40ce6575 2172 intel_gtt_chipset_flush();
8bff917c 2173
9220434a
CW
2174 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2175 if (flush_rings & RING_RENDER)
05394f39 2176 i915_gem_flush_ring(dev, &dev_priv->render_ring,
9220434a
CW
2177 invalidate_domains, flush_domains);
2178 if (flush_rings & RING_BSD)
05394f39 2179 i915_gem_flush_ring(dev, &dev_priv->bsd_ring,
9220434a 2180 invalidate_domains, flush_domains);
549f7365 2181 if (flush_rings & RING_BLT)
05394f39 2182 i915_gem_flush_ring(dev, &dev_priv->blt_ring,
549f7365 2183 invalidate_domains, flush_domains);
9220434a 2184 }
8187a2b7
ZN
2185}
2186
673a394b
EA
2187/**
2188 * Ensures that all rendering to the object has completed and the object is
2189 * safe to unbind from the GTT or access from the CPU.
2190 */
2191static int
05394f39 2192i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
2cf34d7b 2193 bool interruptible)
673a394b 2194{
05394f39 2195 struct drm_device *dev = obj->base.dev;
673a394b
EA
2196 int ret;
2197
e47c68e9
EA
2198 /* This function only exists to support waiting for existing rendering,
2199 * not for emitting required flushes.
673a394b 2200 */
05394f39 2201 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2202
2203 /* If there is rendering queued on the buffer being evicted, wait for
2204 * it.
2205 */
05394f39 2206 if (obj->active) {
2cf34d7b 2207 ret = i915_do_wait_request(dev,
05394f39 2208 obj->last_rendering_seqno,
2cf34d7b 2209 interruptible,
05394f39 2210 obj->ring);
2cf34d7b 2211 if (ret)
673a394b
EA
2212 return ret;
2213 }
2214
2215 return 0;
2216}
2217
2218/**
2219 * Unbinds an object from the GTT aperture.
2220 */
0f973f27 2221int
05394f39 2222i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2223{
05394f39 2224 struct drm_device *dev = obj->base.dev;
73aa808f 2225 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
2226 int ret = 0;
2227
05394f39 2228 if (obj->gtt_space == NULL)
673a394b
EA
2229 return 0;
2230
05394f39 2231 if (obj->pin_count != 0) {
673a394b
EA
2232 DRM_ERROR("Attempting to unbind pinned buffer\n");
2233 return -EINVAL;
2234 }
2235
5323fd04
EA
2236 /* blow away mappings if mapped through GTT */
2237 i915_gem_release_mmap(obj);
2238
673a394b
EA
2239 /* Move the object to the CPU domain to ensure that
2240 * any possible CPU writes while it's not in the GTT
2241 * are flushed when we go to remap it. This will
2242 * also ensure that all pending GPU writes are finished
2243 * before we unbind.
2244 */
e47c68e9 2245 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2246 if (ret == -ERESTARTSYS)
673a394b 2247 return ret;
8dc1775d
CW
2248 /* Continue on if we fail due to EIO, the GPU is hung so we
2249 * should be safe and we need to cleanup or else we might
2250 * cause memory corruption through use-after-free.
2251 */
812ed492
CW
2252 if (ret) {
2253 i915_gem_clflush_object(obj);
05394f39 2254 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2255 }
673a394b 2256
96b47b65 2257 /* release the fence reg _after_ flushing */
05394f39 2258 if (obj->fence_reg != I915_FENCE_REG_NONE)
96b47b65
DV
2259 i915_gem_clear_fence_reg(obj);
2260
7c2e6fdf 2261 i915_gem_gtt_unbind_object(obj);
673a394b 2262
e5281ccd 2263 i915_gem_object_put_pages_gtt(obj);
673a394b 2264
05394f39
CW
2265 i915_gem_info_remove_gtt(dev_priv, obj);
2266 list_del_init(&obj->mm_list);
75e9e915 2267 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2268 obj->map_and_fenceable = true;
673a394b 2269
05394f39
CW
2270 drm_mm_put_block(obj->gtt_space);
2271 obj->gtt_space = NULL;
2272 obj->gtt_offset = 0;
673a394b 2273
05394f39 2274 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2275 i915_gem_object_truncate(obj);
2276
1c5d22f7
CW
2277 trace_i915_gem_object_unbind(obj);
2278
8dc1775d 2279 return ret;
673a394b
EA
2280}
2281
a56ba56c
CW
2282static int i915_ring_idle(struct drm_device *dev,
2283 struct intel_ring_buffer *ring)
2284{
395b70be 2285 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2286 return 0;
2287
05394f39 2288 i915_gem_flush_ring(dev, ring,
a56ba56c
CW
2289 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2290 return i915_wait_request(dev,
2291 i915_gem_next_request_seqno(dev, ring),
2292 ring);
2293}
2294
b47eb4a2 2295int
4df2faf4
DV
2296i915_gpu_idle(struct drm_device *dev)
2297{
2298 drm_i915_private_t *dev_priv = dev->dev_private;
2299 bool lists_empty;
852835f3 2300 int ret;
4df2faf4 2301
d1b851fc 2302 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
395b70be 2303 list_empty(&dev_priv->mm.active_list));
4df2faf4
DV
2304 if (lists_empty)
2305 return 0;
2306
2307 /* Flush everything onto the inactive list. */
a56ba56c 2308 ret = i915_ring_idle(dev, &dev_priv->render_ring);
8a1a49f9
DV
2309 if (ret)
2310 return ret;
d1b851fc 2311
87acb0a5
CW
2312 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2313 if (ret)
2314 return ret;
d1b851fc 2315
549f7365
CW
2316 ret = i915_ring_idle(dev, &dev_priv->blt_ring);
2317 if (ret)
2318 return ret;
4df2faf4 2319
8a1a49f9 2320 return 0;
4df2faf4
DV
2321}
2322
c6642782
DV
2323static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2324 struct intel_ring_buffer *pipelined)
4e901fdc 2325{
05394f39 2326 struct drm_device *dev = obj->base.dev;
4e901fdc 2327 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2328 u32 size = obj->gtt_space->size;
2329 int regnum = obj->fence_reg;
4e901fdc
EA
2330 uint64_t val;
2331
05394f39 2332 val = (uint64_t)((obj->gtt_offset + size - 4096) &
c6642782 2333 0xfffff000) << 32;
05394f39
CW
2334 val |= obj->gtt_offset & 0xfffff000;
2335 val |= (uint64_t)((obj->stride / 128) - 1) <<
4e901fdc
EA
2336 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2337
05394f39 2338 if (obj->tiling_mode == I915_TILING_Y)
4e901fdc
EA
2339 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2340 val |= I965_FENCE_REG_VALID;
2341
c6642782
DV
2342 if (pipelined) {
2343 int ret = intel_ring_begin(pipelined, 6);
2344 if (ret)
2345 return ret;
2346
2347 intel_ring_emit(pipelined, MI_NOOP);
2348 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2349 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2350 intel_ring_emit(pipelined, (u32)val);
2351 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2352 intel_ring_emit(pipelined, (u32)(val >> 32));
2353 intel_ring_advance(pipelined);
2354 } else
2355 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2356
2357 return 0;
4e901fdc
EA
2358}
2359
c6642782
DV
2360static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2361 struct intel_ring_buffer *pipelined)
de151cf6 2362{
05394f39 2363 struct drm_device *dev = obj->base.dev;
de151cf6 2364 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2365 u32 size = obj->gtt_space->size;
2366 int regnum = obj->fence_reg;
de151cf6
JB
2367 uint64_t val;
2368
05394f39 2369 val = (uint64_t)((obj->gtt_offset + size - 4096) &
de151cf6 2370 0xfffff000) << 32;
05394f39
CW
2371 val |= obj->gtt_offset & 0xfffff000;
2372 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2373 if (obj->tiling_mode == I915_TILING_Y)
de151cf6
JB
2374 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2375 val |= I965_FENCE_REG_VALID;
2376
c6642782
DV
2377 if (pipelined) {
2378 int ret = intel_ring_begin(pipelined, 6);
2379 if (ret)
2380 return ret;
2381
2382 intel_ring_emit(pipelined, MI_NOOP);
2383 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2384 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2385 intel_ring_emit(pipelined, (u32)val);
2386 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2387 intel_ring_emit(pipelined, (u32)(val >> 32));
2388 intel_ring_advance(pipelined);
2389 } else
2390 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2391
2392 return 0;
de151cf6
JB
2393}
2394
c6642782
DV
2395static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2396 struct intel_ring_buffer *pipelined)
de151cf6 2397{
05394f39 2398 struct drm_device *dev = obj->base.dev;
de151cf6 2399 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39 2400 u32 size = obj->gtt_space->size;
c6642782 2401 u32 fence_reg, val, pitch_val;
0f973f27 2402 int tile_width;
de151cf6 2403
c6642782
DV
2404 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2405 (size & -size) != size ||
2406 (obj->gtt_offset & (size - 1)),
2407 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2408 obj->gtt_offset, obj->map_and_fenceable, size))
2409 return -EINVAL;
de151cf6 2410
c6642782 2411 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
0f973f27 2412 tile_width = 128;
de151cf6 2413 else
0f973f27
JB
2414 tile_width = 512;
2415
2416 /* Note: pitch better be a power of two tile widths */
05394f39 2417 pitch_val = obj->stride / tile_width;
0f973f27 2418 pitch_val = ffs(pitch_val) - 1;
de151cf6 2419
05394f39
CW
2420 val = obj->gtt_offset;
2421 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2422 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
a00b10c3 2423 val |= I915_FENCE_SIZE_BITS(size);
de151cf6
JB
2424 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2425 val |= I830_FENCE_REG_VALID;
2426
05394f39 2427 fence_reg = obj->fence_reg;
a00b10c3
CW
2428 if (fence_reg < 8)
2429 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f 2430 else
a00b10c3 2431 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
c6642782
DV
2432
2433 if (pipelined) {
2434 int ret = intel_ring_begin(pipelined, 4);
2435 if (ret)
2436 return ret;
2437
2438 intel_ring_emit(pipelined, MI_NOOP);
2439 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2440 intel_ring_emit(pipelined, fence_reg);
2441 intel_ring_emit(pipelined, val);
2442 intel_ring_advance(pipelined);
2443 } else
2444 I915_WRITE(fence_reg, val);
2445
2446 return 0;
de151cf6
JB
2447}
2448
c6642782
DV
2449static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2450 struct intel_ring_buffer *pipelined)
de151cf6 2451{
05394f39 2452 struct drm_device *dev = obj->base.dev;
de151cf6 2453 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2454 u32 size = obj->gtt_space->size;
2455 int regnum = obj->fence_reg;
de151cf6
JB
2456 uint32_t val;
2457 uint32_t pitch_val;
2458
c6642782
DV
2459 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2460 (size & -size) != size ||
2461 (obj->gtt_offset & (size - 1)),
2462 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2463 obj->gtt_offset, size))
2464 return -EINVAL;
de151cf6 2465
05394f39 2466 pitch_val = obj->stride / 128;
e76a16de 2467 pitch_val = ffs(pitch_val) - 1;
e76a16de 2468
05394f39
CW
2469 val = obj->gtt_offset;
2470 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2471 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
c6642782 2472 val |= I830_FENCE_SIZE_BITS(size);
de151cf6
JB
2473 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2474 val |= I830_FENCE_REG_VALID;
2475
c6642782
DV
2476 if (pipelined) {
2477 int ret = intel_ring_begin(pipelined, 4);
2478 if (ret)
2479 return ret;
2480
2481 intel_ring_emit(pipelined, MI_NOOP);
2482 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2483 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2484 intel_ring_emit(pipelined, val);
2485 intel_ring_advance(pipelined);
2486 } else
2487 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2488
2489 return 0;
de151cf6
JB
2490}
2491
2cf34d7b
CW
2492static int i915_find_fence_reg(struct drm_device *dev,
2493 bool interruptible)
ae3db24a 2494{
ae3db24a 2495 struct drm_i915_private *dev_priv = dev->dev_private;
a00b10c3 2496 struct drm_i915_fence_reg *reg;
05394f39 2497 struct drm_i915_gem_object *obj = NULL;
ae3db24a
DV
2498 int i, avail, ret;
2499
2500 /* First try to find a free reg */
2501 avail = 0;
2502 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2503 reg = &dev_priv->fence_regs[i];
2504 if (!reg->obj)
2505 return i;
2506
05394f39
CW
2507 if (!reg->obj->pin_count)
2508 avail++;
ae3db24a
DV
2509 }
2510
2511 if (avail == 0)
2512 return -ENOSPC;
2513
2514 /* None available, try to steal one or wait for a user to finish */
a00b10c3 2515 avail = I915_FENCE_REG_NONE;
007cc8ac
DV
2516 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2517 lru_list) {
05394f39
CW
2518 obj = reg->obj;
2519 if (obj->pin_count)
ae3db24a
DV
2520 continue;
2521
2522 /* found one! */
05394f39 2523 avail = obj->fence_reg;
ae3db24a
DV
2524 break;
2525 }
2526
a00b10c3 2527 BUG_ON(avail == I915_FENCE_REG_NONE);
ae3db24a
DV
2528
2529 /* We only have a reference on obj from the active list. put_fence_reg
2530 * might drop that one, causing a use-after-free in it. So hold a
2531 * private reference to obj like the other callers of put_fence_reg
2532 * (set_tiling ioctl) do. */
05394f39
CW
2533 drm_gem_object_reference(&obj->base);
2534 ret = i915_gem_object_put_fence_reg(obj, interruptible);
2535 drm_gem_object_unreference(&obj->base);
ae3db24a
DV
2536 if (ret != 0)
2537 return ret;
2538
a00b10c3 2539 return avail;
ae3db24a
DV
2540}
2541
de151cf6
JB
2542/**
2543 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2544 * @obj: object to map through a fence reg
2545 *
2546 * When mapping objects through the GTT, userspace wants to be able to write
2547 * to them without having to worry about swizzling if the object is tiled.
2548 *
2549 * This function walks the fence regs looking for a free one for @obj,
2550 * stealing one if it can't find any.
2551 *
2552 * It then sets up the reg based on the object's properties: address, pitch
2553 * and tiling format.
2554 */
8c4b8c3f 2555int
05394f39 2556i915_gem_object_get_fence_reg(struct drm_i915_gem_object *obj,
2cf34d7b 2557 bool interruptible)
de151cf6 2558{
05394f39 2559 struct drm_device *dev = obj->base.dev;
79e53945 2560 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 2561 struct drm_i915_fence_reg *reg = NULL;
c6642782 2562 struct intel_ring_buffer *pipelined = NULL;
ae3db24a 2563 int ret;
de151cf6 2564
a09ba7fa 2565 /* Just update our place in the LRU if our fence is getting used. */
05394f39
CW
2566 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2567 reg = &dev_priv->fence_regs[obj->fence_reg];
007cc8ac 2568 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2569 return 0;
2570 }
2571
05394f39 2572 switch (obj->tiling_mode) {
de151cf6
JB
2573 case I915_TILING_NONE:
2574 WARN(1, "allocating a fence for non-tiled object?\n");
2575 break;
2576 case I915_TILING_X:
05394f39 2577 if (!obj->stride)
0f973f27 2578 return -EINVAL;
05394f39 2579 WARN((obj->stride & (512 - 1)),
0f973f27 2580 "object 0x%08x is X tiled but has non-512B pitch\n",
05394f39 2581 obj->gtt_offset);
de151cf6
JB
2582 break;
2583 case I915_TILING_Y:
05394f39 2584 if (!obj->stride)
0f973f27 2585 return -EINVAL;
05394f39 2586 WARN((obj->stride & (128 - 1)),
0f973f27 2587 "object 0x%08x is Y tiled but has non-128B pitch\n",
05394f39 2588 obj->gtt_offset);
de151cf6
JB
2589 break;
2590 }
2591
2cf34d7b 2592 ret = i915_find_fence_reg(dev, interruptible);
ae3db24a
DV
2593 if (ret < 0)
2594 return ret;
de151cf6 2595
05394f39
CW
2596 obj->fence_reg = ret;
2597 reg = &dev_priv->fence_regs[obj->fence_reg];
007cc8ac 2598 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2599
de151cf6
JB
2600 reg->obj = obj;
2601
e259befd
CW
2602 switch (INTEL_INFO(dev)->gen) {
2603 case 6:
c6642782 2604 ret = sandybridge_write_fence_reg(obj, pipelined);
e259befd
CW
2605 break;
2606 case 5:
2607 case 4:
c6642782 2608 ret = i965_write_fence_reg(obj, pipelined);
e259befd
CW
2609 break;
2610 case 3:
c6642782 2611 ret = i915_write_fence_reg(obj, pipelined);
e259befd
CW
2612 break;
2613 case 2:
c6642782 2614 ret = i830_write_fence_reg(obj, pipelined);
e259befd
CW
2615 break;
2616 }
d9ddcb96 2617
a00b10c3 2618 trace_i915_gem_object_get_fence(obj,
05394f39
CW
2619 obj->fence_reg,
2620 obj->tiling_mode);
c6642782 2621 return ret;
de151cf6
JB
2622}
2623
2624/**
2625 * i915_gem_clear_fence_reg - clear out fence register info
2626 * @obj: object to clear
2627 *
2628 * Zeroes out the fence register itself and clears out the associated
05394f39 2629 * data structures in dev_priv and obj.
de151cf6
JB
2630 */
2631static void
05394f39 2632i915_gem_clear_fence_reg(struct drm_i915_gem_object *obj)
de151cf6 2633{
05394f39 2634 struct drm_device *dev = obj->base.dev;
79e53945 2635 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39 2636 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[obj->fence_reg];
e259befd 2637 uint32_t fence_reg;
de151cf6 2638
e259befd
CW
2639 switch (INTEL_INFO(dev)->gen) {
2640 case 6:
4e901fdc 2641 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
05394f39 2642 (obj->fence_reg * 8), 0);
e259befd
CW
2643 break;
2644 case 5:
2645 case 4:
05394f39 2646 I915_WRITE64(FENCE_REG_965_0 + (obj->fence_reg * 8), 0);
e259befd
CW
2647 break;
2648 case 3:
05394f39
CW
2649 if (obj->fence_reg >= 8)
2650 fence_reg = FENCE_REG_945_8 + (obj->fence_reg - 8) * 4;
dc529a4f 2651 else
e259befd 2652 case 2:
05394f39 2653 fence_reg = FENCE_REG_830_0 + obj->fence_reg * 4;
dc529a4f
EA
2654
2655 I915_WRITE(fence_reg, 0);
e259befd 2656 break;
dc529a4f 2657 }
de151cf6 2658
007cc8ac 2659 reg->obj = NULL;
05394f39 2660 obj->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2661 list_del_init(&reg->lru_list);
de151cf6
JB
2662}
2663
52dc7d32
CW
2664/**
2665 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2666 * to the buffer to finish, and then resets the fence register.
2667 * @obj: tiled object holding a fence register.
2cf34d7b 2668 * @bool: whether the wait upon the fence is interruptible
52dc7d32
CW
2669 *
2670 * Zeroes out the fence register itself and clears out the associated
05394f39 2671 * data structures in dev_priv and obj.
52dc7d32
CW
2672 */
2673int
05394f39 2674i915_gem_object_put_fence_reg(struct drm_i915_gem_object *obj,
2cf34d7b 2675 bool interruptible)
52dc7d32 2676{
05394f39 2677 struct drm_device *dev = obj->base.dev;
caea7476 2678 int ret;
52dc7d32 2679
05394f39 2680 if (obj->fence_reg == I915_FENCE_REG_NONE)
52dc7d32
CW
2681 return 0;
2682
10ae9bd2
DV
2683 /* If we've changed tiling, GTT-mappings of the object
2684 * need to re-fault to ensure that the correct fence register
2685 * setup is in place.
2686 */
2687 i915_gem_release_mmap(obj);
2688
52dc7d32
CW
2689 /* On the i915, GPU access to tiled buffers is via a fence,
2690 * therefore we must wait for any outstanding access to complete
2691 * before clearing the fence.
2692 */
caea7476 2693 if (obj->fenced_gpu_access) {
919926ae 2694 ret = i915_gem_object_flush_gpu_write_domain(obj, NULL);
0bc23aad 2695 if (ret)
2dafb1e0
CW
2696 return ret;
2697
caea7476
CW
2698 obj->fenced_gpu_access = false;
2699 }
2700
2701 if (obj->last_fenced_seqno) {
2702 ret = i915_do_wait_request(dev,
2703 obj->last_fenced_seqno,
2704 interruptible,
2705 obj->last_fenced_ring);
0bc23aad 2706 if (ret)
52dc7d32 2707 return ret;
53640e1d 2708
caea7476 2709 obj->last_fenced_seqno = false;
52dc7d32
CW
2710 }
2711
4a726612 2712 i915_gem_object_flush_gtt_write_domain(obj);
0bc23aad 2713 i915_gem_clear_fence_reg(obj);
52dc7d32
CW
2714
2715 return 0;
2716}
2717
673a394b
EA
2718/**
2719 * Finds free space in the GTT aperture and binds the object there.
2720 */
2721static int
05394f39 2722i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2723 unsigned alignment,
75e9e915 2724 bool map_and_fenceable)
673a394b 2725{
05394f39 2726 struct drm_device *dev = obj->base.dev;
673a394b 2727 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2728 struct drm_mm_node *free_space;
a00b10c3 2729 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2730 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2731 bool mappable, fenceable;
07f73f69 2732 int ret;
673a394b 2733
05394f39 2734 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2735 DRM_ERROR("Attempting to bind a purgeable object\n");
2736 return -EINVAL;
2737 }
2738
05394f39
CW
2739 fence_size = i915_gem_get_gtt_size(obj);
2740 fence_alignment = i915_gem_get_gtt_alignment(obj);
2741 unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
a00b10c3 2742
673a394b 2743 if (alignment == 0)
5e783301
DV
2744 alignment = map_and_fenceable ? fence_alignment :
2745 unfenced_alignment;
75e9e915 2746 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2747 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2748 return -EINVAL;
2749 }
2750
05394f39 2751 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2752
654fc607
CW
2753 /* If the object is bigger than the entire aperture, reject it early
2754 * before evicting everything in a vain attempt to find space.
2755 */
05394f39 2756 if (obj->base.size >
75e9e915 2757 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2758 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2759 return -E2BIG;
2760 }
2761
673a394b 2762 search_free:
75e9e915 2763 if (map_and_fenceable)
920afa77
DV
2764 free_space =
2765 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2766 size, alignment, 0,
920afa77
DV
2767 dev_priv->mm.gtt_mappable_end,
2768 0);
2769 else
2770 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2771 size, alignment, 0);
920afa77
DV
2772
2773 if (free_space != NULL) {
75e9e915 2774 if (map_and_fenceable)
05394f39 2775 obj->gtt_space =
920afa77 2776 drm_mm_get_block_range_generic(free_space,
a00b10c3 2777 size, alignment, 0,
920afa77
DV
2778 dev_priv->mm.gtt_mappable_end,
2779 0);
2780 else
05394f39 2781 obj->gtt_space =
a00b10c3 2782 drm_mm_get_block(free_space, size, alignment);
920afa77 2783 }
05394f39 2784 if (obj->gtt_space == NULL) {
673a394b
EA
2785 /* If the gtt is empty and we're still having trouble
2786 * fitting our object in, we're out of memory.
2787 */
75e9e915
DV
2788 ret = i915_gem_evict_something(dev, size, alignment,
2789 map_and_fenceable);
9731129c 2790 if (ret)
673a394b 2791 return ret;
9731129c 2792
673a394b
EA
2793 goto search_free;
2794 }
2795
e5281ccd 2796 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2797 if (ret) {
05394f39
CW
2798 drm_mm_put_block(obj->gtt_space);
2799 obj->gtt_space = NULL;
07f73f69
CW
2800
2801 if (ret == -ENOMEM) {
2802 /* first try to clear up some space from the GTT */
a00b10c3 2803 ret = i915_gem_evict_something(dev, size,
75e9e915
DV
2804 alignment,
2805 map_and_fenceable);
07f73f69 2806 if (ret) {
07f73f69 2807 /* now try to shrink everyone else */
4bdadb97
CW
2808 if (gfpmask) {
2809 gfpmask = 0;
2810 goto search_free;
07f73f69
CW
2811 }
2812
2813 return ret;
2814 }
2815
2816 goto search_free;
2817 }
2818
673a394b
EA
2819 return ret;
2820 }
2821
7c2e6fdf
DV
2822 ret = i915_gem_gtt_bind_object(obj);
2823 if (ret) {
e5281ccd 2824 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2825 drm_mm_put_block(obj->gtt_space);
2826 obj->gtt_space = NULL;
07f73f69 2827
a00b10c3 2828 ret = i915_gem_evict_something(dev, size,
75e9e915 2829 alignment, map_and_fenceable);
9731129c 2830 if (ret)
07f73f69 2831 return ret;
07f73f69
CW
2832
2833 goto search_free;
673a394b 2834 }
673a394b 2835
05394f39 2836 obj->gtt_offset = obj->gtt_space->start;
fb7d516a 2837
bf1a1092 2838 /* keep track of bounds object by adding it to the inactive list */
05394f39
CW
2839 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2840 i915_gem_info_add_gtt(dev_priv, obj);
bf1a1092 2841
673a394b
EA
2842 /* Assert that the object is not currently in any GPU domain. As it
2843 * wasn't in the GTT, there shouldn't be any way it could have been in
2844 * a GPU cache
2845 */
05394f39
CW
2846 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2847 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2848
05394f39 2849 trace_i915_gem_object_bind(obj, obj->gtt_offset, map_and_fenceable);
1c5d22f7 2850
75e9e915 2851 fenceable =
05394f39
CW
2852 obj->gtt_space->size == fence_size &&
2853 (obj->gtt_space->start & (fence_alignment -1)) == 0;
a00b10c3 2854
75e9e915 2855 mappable =
05394f39 2856 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2857
05394f39 2858 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2859
673a394b
EA
2860 return 0;
2861}
2862
2863void
05394f39 2864i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2865{
673a394b
EA
2866 /* If we don't have a page list set up, then we're not pinned
2867 * to GPU, and we can ignore the cache flush because it'll happen
2868 * again at bind time.
2869 */
05394f39 2870 if (obj->pages == NULL)
673a394b
EA
2871 return;
2872
1c5d22f7 2873 trace_i915_gem_object_clflush(obj);
cfa16a0d 2874
05394f39 2875 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2876}
2877
e47c68e9 2878/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2879static int
05394f39 2880i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj,
919926ae 2881 struct intel_ring_buffer *pipelined)
e47c68e9 2882{
05394f39 2883 struct drm_device *dev = obj->base.dev;
e47c68e9 2884
05394f39 2885 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2886 return 0;
e47c68e9
EA
2887
2888 /* Queue the GPU write cache flushing we need. */
05394f39
CW
2889 i915_gem_flush_ring(dev, obj->ring, 0, obj->base.write_domain);
2890 BUG_ON(obj->base.write_domain);
1c5d22f7 2891
919926ae 2892 if (pipelined && pipelined == obj->ring)
ba3d8d74
DV
2893 return 0;
2894
2cf34d7b 2895 return i915_gem_object_wait_rendering(obj, true);
e47c68e9
EA
2896}
2897
2898/** Flushes the GTT write domain for the object if it's dirty. */
2899static void
05394f39 2900i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2901{
1c5d22f7
CW
2902 uint32_t old_write_domain;
2903
05394f39 2904 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2905 return;
2906
2907 /* No actual flushing is required for the GTT write domain. Writes
2908 * to it immediately go to main memory as far as we know, so there's
2909 * no chipset flush. It also doesn't land in render cache.
2910 */
4a684a41
CW
2911 i915_gem_release_mmap(obj);
2912
05394f39
CW
2913 old_write_domain = obj->base.write_domain;
2914 obj->base.write_domain = 0;
1c5d22f7
CW
2915
2916 trace_i915_gem_object_change_domain(obj,
05394f39 2917 obj->base.read_domains,
1c5d22f7 2918 old_write_domain);
e47c68e9
EA
2919}
2920
2921/** Flushes the CPU write domain for the object if it's dirty. */
2922static void
05394f39 2923i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2924{
1c5d22f7 2925 uint32_t old_write_domain;
e47c68e9 2926
05394f39 2927 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2928 return;
2929
2930 i915_gem_clflush_object(obj);
40ce6575 2931 intel_gtt_chipset_flush();
05394f39
CW
2932 old_write_domain = obj->base.write_domain;
2933 obj->base.write_domain = 0;
1c5d22f7
CW
2934
2935 trace_i915_gem_object_change_domain(obj,
05394f39 2936 obj->base.read_domains,
1c5d22f7 2937 old_write_domain);
e47c68e9
EA
2938}
2939
2ef7eeaa
EA
2940/**
2941 * Moves a single object to the GTT read, and possibly write domain.
2942 *
2943 * This function returns when the move is complete, including waiting on
2944 * flushes to occur.
2945 */
79e53945 2946int
2021746e 2947i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2948{
1c5d22f7 2949 uint32_t old_write_domain, old_read_domains;
e47c68e9 2950 int ret;
2ef7eeaa 2951
02354392 2952 /* Not valid to be called on unbound objects. */
05394f39 2953 if (obj->gtt_space == NULL)
02354392
EA
2954 return -EINVAL;
2955
919926ae 2956 ret = i915_gem_object_flush_gpu_write_domain(obj, NULL);
2dafb1e0
CW
2957 if (ret != 0)
2958 return ret;
2959
7213342d 2960 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2961
ba3d8d74 2962 if (write) {
2cf34d7b 2963 ret = i915_gem_object_wait_rendering(obj, true);
ba3d8d74
DV
2964 if (ret)
2965 return ret;
ba3d8d74 2966 }
e47c68e9 2967
05394f39
CW
2968 old_write_domain = obj->base.write_domain;
2969 old_read_domains = obj->base.read_domains;
1c5d22f7 2970
e47c68e9
EA
2971 /* It should now be out of any other write domains, and we can update
2972 * the domain values for our changes.
2973 */
05394f39
CW
2974 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2975 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2976 if (write) {
05394f39
CW
2977 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2978 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2979 obj->dirty = 1;
2ef7eeaa
EA
2980 }
2981
1c5d22f7
CW
2982 trace_i915_gem_object_change_domain(obj,
2983 old_read_domains,
2984 old_write_domain);
2985
e47c68e9
EA
2986 return 0;
2987}
2988
b9241ea3
ZW
2989/*
2990 * Prepare buffer for display plane. Use uninterruptible for possible flush
2991 * wait, as in modesetting process we're not supposed to be interrupted.
2992 */
2993int
05394f39 2994i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
919926ae 2995 struct intel_ring_buffer *pipelined)
b9241ea3 2996{
ba3d8d74 2997 uint32_t old_read_domains;
b9241ea3
ZW
2998 int ret;
2999
3000 /* Not valid to be called on unbound objects. */
05394f39 3001 if (obj->gtt_space == NULL)
b9241ea3
ZW
3002 return -EINVAL;
3003
919926ae 3004 ret = i915_gem_object_flush_gpu_write_domain(obj, pipelined);
2dafb1e0
CW
3005 if (ret)
3006 return ret;
b9241ea3 3007
ced270fa
CW
3008 /* Currently, we are always called from an non-interruptible context. */
3009 if (!pipelined) {
3010 ret = i915_gem_object_wait_rendering(obj, false);
3011 if (ret)
b9241ea3
ZW
3012 return ret;
3013 }
3014
b118c1e3
CW
3015 i915_gem_object_flush_cpu_write_domain(obj);
3016
05394f39
CW
3017 old_read_domains = obj->base.read_domains;
3018 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3019
3020 trace_i915_gem_object_change_domain(obj,
3021 old_read_domains,
05394f39 3022 obj->base.write_domain);
b9241ea3
ZW
3023
3024 return 0;
3025}
3026
85345517
CW
3027int
3028i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
3029 bool interruptible)
3030{
3031 if (!obj->active)
3032 return 0;
3033
3034 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
05394f39 3035 i915_gem_flush_ring(obj->base.dev, obj->ring,
85345517
CW
3036 0, obj->base.write_domain);
3037
05394f39 3038 return i915_gem_object_wait_rendering(obj, interruptible);
85345517
CW
3039}
3040
e47c68e9
EA
3041/**
3042 * Moves a single object to the CPU read, and possibly write domain.
3043 *
3044 * This function returns when the move is complete, including waiting on
3045 * flushes to occur.
3046 */
3047static int
919926ae 3048i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3049{
1c5d22f7 3050 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3051 int ret;
3052
ba3d8d74 3053 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
3054 if (ret != 0)
3055 return ret;
2ef7eeaa 3056
e47c68e9 3057 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3058
e47c68e9
EA
3059 /* If we have a partially-valid cache of the object in the CPU,
3060 * finish invalidating it and free the per-page flags.
2ef7eeaa 3061 */
e47c68e9 3062 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 3063
7213342d 3064 if (write) {
2cf34d7b 3065 ret = i915_gem_object_wait_rendering(obj, true);
7213342d
CW
3066 if (ret)
3067 return ret;
3068 }
3069
05394f39
CW
3070 old_write_domain = obj->base.write_domain;
3071 old_read_domains = obj->base.read_domains;
1c5d22f7 3072
e47c68e9 3073 /* Flush the CPU cache if it's still invalid. */
05394f39 3074 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3075 i915_gem_clflush_object(obj);
2ef7eeaa 3076
05394f39 3077 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3078 }
3079
3080 /* It should now be out of any other write domains, and we can update
3081 * the domain values for our changes.
3082 */
05394f39 3083 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3084
3085 /* If we're writing through the CPU, then the GPU read domains will
3086 * need to be invalidated at next use.
3087 */
3088 if (write) {
05394f39
CW
3089 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3090 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3091 }
2ef7eeaa 3092
1c5d22f7
CW
3093 trace_i915_gem_object_change_domain(obj,
3094 old_read_domains,
3095 old_write_domain);
3096
2ef7eeaa
EA
3097 return 0;
3098}
3099
673a394b
EA
3100/*
3101 * Set the next domain for the specified object. This
3102 * may not actually perform the necessary flushing/invaliding though,
3103 * as that may want to be batched with other set_domain operations
3104 *
3105 * This is (we hope) the only really tricky part of gem. The goal
3106 * is fairly simple -- track which caches hold bits of the object
3107 * and make sure they remain coherent. A few concrete examples may
3108 * help to explain how it works. For shorthand, we use the notation
3109 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
3110 * a pair of read and write domain masks.
3111 *
3112 * Case 1: the batch buffer
3113 *
3114 * 1. Allocated
3115 * 2. Written by CPU
3116 * 3. Mapped to GTT
3117 * 4. Read by GPU
3118 * 5. Unmapped from GTT
3119 * 6. Freed
3120 *
3121 * Let's take these a step at a time
3122 *
3123 * 1. Allocated
3124 * Pages allocated from the kernel may still have
3125 * cache contents, so we set them to (CPU, CPU) always.
3126 * 2. Written by CPU (using pwrite)
3127 * The pwrite function calls set_domain (CPU, CPU) and
3128 * this function does nothing (as nothing changes)
3129 * 3. Mapped by GTT
3130 * This function asserts that the object is not
3131 * currently in any GPU-based read or write domains
3132 * 4. Read by GPU
3133 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3134 * As write_domain is zero, this function adds in the
3135 * current read domains (CPU+COMMAND, 0).
3136 * flush_domains is set to CPU.
3137 * invalidate_domains is set to COMMAND
3138 * clflush is run to get data out of the CPU caches
3139 * then i915_dev_set_domain calls i915_gem_flush to
3140 * emit an MI_FLUSH and drm_agp_chipset_flush
3141 * 5. Unmapped from GTT
3142 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3143 * flush_domains and invalidate_domains end up both zero
3144 * so no flushing/invalidating happens
3145 * 6. Freed
3146 * yay, done
3147 *
3148 * Case 2: The shared render buffer
3149 *
3150 * 1. Allocated
3151 * 2. Mapped to GTT
3152 * 3. Read/written by GPU
3153 * 4. set_domain to (CPU,CPU)
3154 * 5. Read/written by CPU
3155 * 6. Read/written by GPU
3156 *
3157 * 1. Allocated
3158 * Same as last example, (CPU, CPU)
3159 * 2. Mapped to GTT
3160 * Nothing changes (assertions find that it is not in the GPU)
3161 * 3. Read/written by GPU
3162 * execbuffer calls set_domain (RENDER, RENDER)
3163 * flush_domains gets CPU
3164 * invalidate_domains gets GPU
3165 * clflush (obj)
3166 * MI_FLUSH and drm_agp_chipset_flush
3167 * 4. set_domain (CPU, CPU)
3168 * flush_domains gets GPU
3169 * invalidate_domains gets CPU
3170 * wait_rendering (obj) to make sure all drawing is complete.
3171 * This will include an MI_FLUSH to get the data from GPU
3172 * to memory
3173 * clflush (obj) to invalidate the CPU cache
3174 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3175 * 5. Read/written by CPU
3176 * cache lines are loaded and dirtied
3177 * 6. Read written by GPU
3178 * Same as last GPU access
3179 *
3180 * Case 3: The constant buffer
3181 *
3182 * 1. Allocated
3183 * 2. Written by CPU
3184 * 3. Read by GPU
3185 * 4. Updated (written) by CPU again
3186 * 5. Read by GPU
3187 *
3188 * 1. Allocated
3189 * (CPU, CPU)
3190 * 2. Written by CPU
3191 * (CPU, CPU)
3192 * 3. Read by GPU
3193 * (CPU+RENDER, 0)
3194 * flush_domains = CPU
3195 * invalidate_domains = RENDER
3196 * clflush (obj)
3197 * MI_FLUSH
3198 * drm_agp_chipset_flush
3199 * 4. Updated (written) by CPU again
3200 * (CPU, CPU)
3201 * flush_domains = 0 (no previous write domain)
3202 * invalidate_domains = 0 (no new read domains)
3203 * 5. Read by GPU
3204 * (CPU+RENDER, 0)
3205 * flush_domains = CPU
3206 * invalidate_domains = RENDER
3207 * clflush (obj)
3208 * MI_FLUSH
3209 * drm_agp_chipset_flush
3210 */
c0d90829 3211static void
05394f39 3212i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
0f8c6d7c
CW
3213 struct intel_ring_buffer *ring,
3214 struct change_domains *cd)
673a394b 3215{
05394f39 3216 uint32_t invalidate_domains = 0, flush_domains = 0;
652c393a 3217
673a394b
EA
3218 /*
3219 * If the object isn't moving to a new write domain,
3220 * let the object stay in multiple read domains
3221 */
05394f39
CW
3222 if (obj->base.pending_write_domain == 0)
3223 obj->base.pending_read_domains |= obj->base.read_domains;
673a394b
EA
3224
3225 /*
3226 * Flush the current write domain if
3227 * the new read domains don't match. Invalidate
3228 * any read domains which differ from the old
3229 * write domain
3230 */
05394f39 3231 if (obj->base.write_domain &&
caea7476
CW
3232 (((obj->base.write_domain != obj->base.pending_read_domains ||
3233 obj->ring != ring)) ||
3234 (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
05394f39 3235 flush_domains |= obj->base.write_domain;
8b0e378a 3236 invalidate_domains |=
05394f39 3237 obj->base.pending_read_domains & ~obj->base.write_domain;
673a394b
EA
3238 }
3239 /*
3240 * Invalidate any read caches which may have
3241 * stale data. That is, any new read domains.
3242 */
05394f39 3243 invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
3d2a812a 3244 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
673a394b 3245 i915_gem_clflush_object(obj);
673a394b 3246
4a684a41
CW
3247 /* blow away mappings if mapped through GTT */
3248 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
3249 i915_gem_release_mmap(obj);
3250
efbeed96
EA
3251 /* The actual obj->write_domain will be updated with
3252 * pending_write_domain after we emit the accumulated flush for all
3253 * of our domain changes in execbuffers (which clears objects'
3254 * write_domains). So if we have a current write domain that we
3255 * aren't changing, set pending_write_domain to that.
3256 */
05394f39
CW
3257 if (flush_domains == 0 && obj->base.pending_write_domain == 0)
3258 obj->base.pending_write_domain = obj->base.write_domain;
673a394b 3259
0f8c6d7c
CW
3260 cd->invalidate_domains |= invalidate_domains;
3261 cd->flush_domains |= flush_domains;
b6651458 3262 if (flush_domains & I915_GEM_GPU_DOMAINS)
05394f39 3263 cd->flush_rings |= obj->ring->id;
b6651458 3264 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
0f8c6d7c 3265 cd->flush_rings |= ring->id;
673a394b
EA
3266}
3267
3268/**
e47c68e9 3269 * Moves the object from a partially CPU read to a full one.
673a394b 3270 *
e47c68e9
EA
3271 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3272 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3273 */
e47c68e9 3274static void
05394f39 3275i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
673a394b 3276{
05394f39 3277 if (!obj->page_cpu_valid)
e47c68e9
EA
3278 return;
3279
3280 /* If we're partially in the CPU read domain, finish moving it in.
3281 */
05394f39 3282 if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3283 int i;
3284
05394f39
CW
3285 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3286 if (obj->page_cpu_valid[i])
e47c68e9 3287 continue;
05394f39 3288 drm_clflush_pages(obj->pages + i, 1);
e47c68e9 3289 }
e47c68e9
EA
3290 }
3291
3292 /* Free the page_cpu_valid mappings which are now stale, whether
3293 * or not we've got I915_GEM_DOMAIN_CPU.
3294 */
05394f39
CW
3295 kfree(obj->page_cpu_valid);
3296 obj->page_cpu_valid = NULL;
e47c68e9
EA
3297}
3298
3299/**
3300 * Set the CPU read domain on a range of the object.
3301 *
3302 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3303 * not entirely valid. The page_cpu_valid member of the object flags which
3304 * pages have been flushed, and will be respected by
3305 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3306 * of the whole object.
3307 *
3308 * This function returns when the move is complete, including waiting on
3309 * flushes to occur.
3310 */
3311static int
05394f39 3312i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
e47c68e9
EA
3313 uint64_t offset, uint64_t size)
3314{
1c5d22f7 3315 uint32_t old_read_domains;
e47c68e9 3316 int i, ret;
673a394b 3317
05394f39 3318 if (offset == 0 && size == obj->base.size)
e47c68e9 3319 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3320
ba3d8d74 3321 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9 3322 if (ret != 0)
6a47baa6 3323 return ret;
e47c68e9
EA
3324 i915_gem_object_flush_gtt_write_domain(obj);
3325
3326 /* If we're already fully in the CPU read domain, we're done. */
05394f39
CW
3327 if (obj->page_cpu_valid == NULL &&
3328 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
e47c68e9 3329 return 0;
673a394b 3330
e47c68e9
EA
3331 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3332 * newly adding I915_GEM_DOMAIN_CPU
3333 */
05394f39
CW
3334 if (obj->page_cpu_valid == NULL) {
3335 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3336 GFP_KERNEL);
3337 if (obj->page_cpu_valid == NULL)
e47c68e9 3338 return -ENOMEM;
05394f39
CW
3339 } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3340 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
673a394b
EA
3341
3342 /* Flush the cache on any pages that are still invalid from the CPU's
3343 * perspective.
3344 */
e47c68e9
EA
3345 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3346 i++) {
05394f39 3347 if (obj->page_cpu_valid[i])
673a394b
EA
3348 continue;
3349
05394f39 3350 drm_clflush_pages(obj->pages + i, 1);
673a394b 3351
05394f39 3352 obj->page_cpu_valid[i] = 1;
673a394b
EA
3353 }
3354
e47c68e9
EA
3355 /* It should now be out of any other write domains, and we can update
3356 * the domain values for our changes.
3357 */
05394f39 3358 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9 3359
05394f39
CW
3360 old_read_domains = obj->base.read_domains;
3361 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
e47c68e9 3362
1c5d22f7
CW
3363 trace_i915_gem_object_change_domain(obj,
3364 old_read_domains,
05394f39 3365 obj->base.write_domain);
1c5d22f7 3366
673a394b
EA
3367 return 0;
3368}
3369
673a394b 3370static int
bcf50e27
CW
3371i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
3372 struct drm_file *file_priv,
3373 struct drm_i915_gem_exec_object2 *entry,
3374 struct drm_i915_gem_relocation_entry *reloc)
673a394b 3375{
9af90d19 3376 struct drm_device *dev = obj->base.dev;
bcf50e27
CW
3377 struct drm_gem_object *target_obj;
3378 uint32_t target_offset;
3379 int ret = -EINVAL;
673a394b 3380
bcf50e27
CW
3381 target_obj = drm_gem_object_lookup(dev, file_priv,
3382 reloc->target_handle);
3383 if (target_obj == NULL)
3384 return -ENOENT;
673a394b 3385
bcf50e27 3386 target_offset = to_intel_bo(target_obj)->gtt_offset;
76446cac 3387
bcf50e27
CW
3388#if WATCH_RELOC
3389 DRM_INFO("%s: obj %p offset %08x target %d "
3390 "read %08x write %08x gtt %08x "
3391 "presumed %08x delta %08x\n",
3392 __func__,
3393 obj,
3394 (int) reloc->offset,
3395 (int) reloc->target_handle,
3396 (int) reloc->read_domains,
3397 (int) reloc->write_domain,
3398 (int) target_offset,
3399 (int) reloc->presumed_offset,
3400 reloc->delta);
3401#endif
673a394b 3402
bcf50e27
CW
3403 /* The target buffer should have appeared before us in the
3404 * exec_object list, so it should have a GTT space bound by now.
3405 */
3406 if (target_offset == 0) {
3407 DRM_ERROR("No GTT space found for object %d\n",
3408 reloc->target_handle);
3409 goto err;
3410 }
9af90d19 3411
bcf50e27
CW
3412 /* Validate that the target is in a valid r/w GPU domain */
3413 if (reloc->write_domain & (reloc->write_domain - 1)) {
3414 DRM_ERROR("reloc with multiple write domains: "
3415 "obj %p target %d offset %d "
3416 "read %08x write %08x",
3417 obj, reloc->target_handle,
3418 (int) reloc->offset,
3419 reloc->read_domains,
3420 reloc->write_domain);
3421 goto err;
3422 }
3423 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3424 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3425 DRM_ERROR("reloc with read/write CPU domains: "
3426 "obj %p target %d offset %d "
3427 "read %08x write %08x",
3428 obj, reloc->target_handle,
3429 (int) reloc->offset,
3430 reloc->read_domains,
3431 reloc->write_domain);
3432 goto err;
3433 }
3434 if (reloc->write_domain && target_obj->pending_write_domain &&
3435 reloc->write_domain != target_obj->pending_write_domain) {
3436 DRM_ERROR("Write domain conflict: "
3437 "obj %p target %d offset %d "
3438 "new %08x old %08x\n",
3439 obj, reloc->target_handle,
3440 (int) reloc->offset,
3441 reloc->write_domain,
3442 target_obj->pending_write_domain);
3443 goto err;
3444 }
673a394b 3445
bcf50e27
CW
3446 target_obj->pending_read_domains |= reloc->read_domains;
3447 target_obj->pending_write_domain |= reloc->write_domain;
8542a0bb 3448
bcf50e27
CW
3449 /* If the relocation already has the right value in it, no
3450 * more work needs to be done.
3451 */
3452 if (target_offset == reloc->presumed_offset)
3453 goto out;
673a394b 3454
bcf50e27
CW
3455 /* Check that the relocation address is valid... */
3456 if (reloc->offset > obj->base.size - 4) {
3457 DRM_ERROR("Relocation beyond object bounds: "
3458 "obj %p target %d offset %d size %d.\n",
3459 obj, reloc->target_handle,
3460 (int) reloc->offset,
3461 (int) obj->base.size);
3462 goto err;
3463 }
3464 if (reloc->offset & 3) {
3465 DRM_ERROR("Relocation not 4-byte aligned: "
3466 "obj %p target %d offset %d.\n",
3467 obj, reloc->target_handle,
3468 (int) reloc->offset);
3469 goto err;
3470 }
673a394b 3471
bcf50e27
CW
3472 /* and points to somewhere within the target object. */
3473 if (reloc->delta >= target_obj->size) {
3474 DRM_ERROR("Relocation beyond target object bounds: "
3475 "obj %p target %d delta %d size %d.\n",
3476 obj, reloc->target_handle,
3477 (int) reloc->delta,
3478 (int) target_obj->size);
3479 goto err;
3480 }
673a394b 3481
bcf50e27
CW
3482 reloc->delta += target_offset;
3483 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3484 uint32_t page_offset = reloc->offset & ~PAGE_MASK;
3485 char *vaddr;
673a394b 3486
bcf50e27
CW
3487 vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
3488 *(uint32_t *)(vaddr + page_offset) = reloc->delta;
3489 kunmap_atomic(vaddr);
3490 } else {
3491 struct drm_i915_private *dev_priv = dev->dev_private;
3492 uint32_t __iomem *reloc_entry;
3493 void __iomem *reloc_page;
8542a0bb 3494
05394f39 3495 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
bcf50e27
CW
3496 if (ret)
3497 goto err;
673a394b 3498
bcf50e27
CW
3499 /* Map the page containing the relocation we're going to perform. */
3500 reloc->offset += obj->gtt_offset;
3501 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3502 reloc->offset & PAGE_MASK);
3503 reloc_entry = (uint32_t __iomem *)
3504 (reloc_page + (reloc->offset & ~PAGE_MASK));
3505 iowrite32(reloc->delta, reloc_entry);
3506 io_mapping_unmap_atomic(reloc_page);
3507 }
673a394b 3508
bcf50e27
CW
3509 /* and update the user's relocation entry */
3510 reloc->presumed_offset = target_offset;
b962442e 3511
bcf50e27
CW
3512out:
3513 ret = 0;
3514err:
3515 drm_gem_object_unreference(target_obj);
3516 return ret;
3517}
b962442e 3518
bcf50e27
CW
3519static int
3520i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
3521 struct drm_file *file_priv,
3522 struct drm_i915_gem_exec_object2 *entry)
3523{
3524 struct drm_i915_gem_relocation_entry __user *user_relocs;
3525 int i, ret;
3526
3527 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3528 for (i = 0; i < entry->relocation_count; i++) {
3529 struct drm_i915_gem_relocation_entry reloc;
3530
3531 if (__copy_from_user_inatomic(&reloc,
3532 user_relocs+i,
3533 sizeof(reloc)))
3534 return -EFAULT;
3535
3536 ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &reloc);
3537 if (ret)
3538 return ret;
b962442e 3539
b5dc608c 3540 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
bcf50e27
CW
3541 &reloc.presumed_offset,
3542 sizeof(reloc.presumed_offset)))
3543 return -EFAULT;
b962442e 3544 }
b962442e 3545
bcf50e27
CW
3546 return 0;
3547}
3548
3549static int
3550i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
3551 struct drm_file *file_priv,
3552 struct drm_i915_gem_exec_object2 *entry,
3553 struct drm_i915_gem_relocation_entry *relocs)
3554{
3555 int i, ret;
3556
3557 for (i = 0; i < entry->relocation_count; i++) {
3558 ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &relocs[i]);
3559 if (ret)
3560 return ret;
3561 }
3562
3563 return 0;
673a394b
EA
3564}
3565
40a5f0de 3566static int
bcf50e27
CW
3567i915_gem_execbuffer_relocate(struct drm_device *dev,
3568 struct drm_file *file,
05394f39 3569 struct drm_i915_gem_object **object_list,
bcf50e27
CW
3570 struct drm_i915_gem_exec_object2 *exec_list,
3571 int count)
3572{
3573 int i, ret;
3574
3575 for (i = 0; i < count; i++) {
05394f39 3576 struct drm_i915_gem_object *obj = object_list[i];
bcf50e27
CW
3577 obj->base.pending_read_domains = 0;
3578 obj->base.pending_write_domain = 0;
3579 ret = i915_gem_execbuffer_relocate_object(obj, file,
3580 &exec_list[i]);
3581 if (ret)
3582 return ret;
3583 }
3584
3585 return 0;
673a394b
EA
3586}
3587
40a5f0de 3588static int
bcf50e27
CW
3589i915_gem_execbuffer_reserve(struct drm_device *dev,
3590 struct drm_file *file,
05394f39 3591 struct drm_i915_gem_object **object_list,
bcf50e27
CW
3592 struct drm_i915_gem_exec_object2 *exec_list,
3593 int count)
40a5f0de 3594{
9af90d19 3595 int ret, i, retry;
40a5f0de 3596
a7a09aeb
CW
3597 /* Attempt to pin all of the buffers into the GTT.
3598 * This is done in 3 phases:
3599 *
3600 * 1a. Unbind all objects that do not match the GTT constraints for
3601 * the execbuffer (fenceable, mappable, alignment etc).
3602 * 1b. Increment pin count for already bound objects.
3603 * 2. Bind new objects.
3604 * 3. Decrement pin count.
3605 *
3606 * This avoid unnecessary unbinding of later objects in order to makr
3607 * room for the earlier objects *unless* we need to defragment.
3608 */
5eac3ab4
CW
3609 retry = 0;
3610 do {
9af90d19 3611 ret = 0;
a7a09aeb
CW
3612
3613 /* Unbind any ill-fitting objects or pin. */
9af90d19 3614 for (i = 0; i < count; i++) {
05394f39 3615 struct drm_i915_gem_object *obj = object_list[i];
a7a09aeb
CW
3616 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
3617 bool need_fence, need_mappable;
3618
3619 if (!obj->gtt_space)
3620 continue;
3621
3622 need_fence =
9af90d19
CW
3623 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3624 obj->tiling_mode != I915_TILING_NONE;
a7a09aeb 3625 need_mappable =
16e809ac
DV
3626 entry->relocation_count ? true : need_fence;
3627
a7a09aeb
CW
3628 if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
3629 (need_mappable && !obj->map_and_fenceable))
05394f39 3630 ret = i915_gem_object_unbind(obj);
a7a09aeb
CW
3631 else
3632 ret = i915_gem_object_pin(obj,
3633 entry->alignment,
3634 need_mappable);
3635 if (ret) {
3636 count = i;
3637 goto err;
3638 }
3639 }
3640
3641 /* Bind fresh objects */
3642 for (i = 0; i < count; i++) {
3643 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
3644 struct drm_i915_gem_object *obj = object_list[i];
3645 bool need_fence;
3646
3647 need_fence =
3648 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3649 obj->tiling_mode != I915_TILING_NONE;
3650
3651 if (!obj->gtt_space) {
3652 bool need_mappable =
3653 entry->relocation_count ? true : need_fence;
3654
3655 ret = i915_gem_object_pin(obj,
3656 entry->alignment,
3657 need_mappable);
9af90d19
CW
3658 if (ret)
3659 break;
3660 }
40a5f0de 3661
9af90d19 3662 if (need_fence) {
05394f39 3663 ret = i915_gem_object_get_fence_reg(obj, true);
a7a09aeb 3664 if (ret)
9af90d19 3665 break;
40a5f0de 3666
caea7476 3667 obj->pending_fenced_gpu_access = true;
9af90d19 3668 }
40a5f0de 3669
9af90d19 3670 entry->offset = obj->gtt_offset;
40a5f0de
EA
3671 }
3672
a7a09aeb
CW
3673err: /* Decrement pin count for bound objects */
3674 for (i = 0; i < count; i++) {
3675 struct drm_i915_gem_object *obj = object_list[i];
3676 if (obj->gtt_space)
3677 i915_gem_object_unpin(obj);
3678 }
9af90d19 3679
5eac3ab4 3680 if (ret != -ENOSPC || retry > 1)
9af90d19
CW
3681 return ret;
3682
5eac3ab4
CW
3683 /* First attempt, just clear anything that is purgeable.
3684 * Second attempt, clear the entire GTT.
3685 */
3686 ret = i915_gem_evict_everything(dev, retry == 0);
9af90d19
CW
3687 if (ret)
3688 return ret;
40a5f0de 3689
5eac3ab4
CW
3690 retry++;
3691 } while (1);
40a5f0de
EA
3692}
3693
bcf50e27
CW
3694static int
3695i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
3696 struct drm_file *file,
05394f39 3697 struct drm_i915_gem_object **object_list,
bcf50e27
CW
3698 struct drm_i915_gem_exec_object2 *exec_list,
3699 int count)
3700{
3701 struct drm_i915_gem_relocation_entry *reloc;
3702 int i, total, ret;
3703
05394f39
CW
3704 for (i = 0; i < count; i++)
3705 object_list[i]->in_execbuffer = false;
bcf50e27
CW
3706
3707 mutex_unlock(&dev->struct_mutex);
3708
3709 total = 0;
3710 for (i = 0; i < count; i++)
3711 total += exec_list[i].relocation_count;
3712
3713 reloc = drm_malloc_ab(total, sizeof(*reloc));
3714 if (reloc == NULL) {
3715 mutex_lock(&dev->struct_mutex);
3716 return -ENOMEM;
3717 }
3718
3719 total = 0;
3720 for (i = 0; i < count; i++) {
3721 struct drm_i915_gem_relocation_entry __user *user_relocs;
3722
3723 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3724
3725 if (copy_from_user(reloc+total, user_relocs,
3726 exec_list[i].relocation_count *
3727 sizeof(*reloc))) {
3728 ret = -EFAULT;
3729 mutex_lock(&dev->struct_mutex);
3730 goto err;
3731 }
3732
3733 total += exec_list[i].relocation_count;
3734 }
3735
3736 ret = i915_mutex_lock_interruptible(dev);
3737 if (ret) {
3738 mutex_lock(&dev->struct_mutex);
3739 goto err;
3740 }
3741
3742 ret = i915_gem_execbuffer_reserve(dev, file,
3743 object_list, exec_list,
3744 count);
3745 if (ret)
3746 goto err;
3747
3748 total = 0;
3749 for (i = 0; i < count; i++) {
05394f39 3750 struct drm_i915_gem_object *obj = object_list[i];
bcf50e27
CW
3751 obj->base.pending_read_domains = 0;
3752 obj->base.pending_write_domain = 0;
3753 ret = i915_gem_execbuffer_relocate_object_slow(obj, file,
3754 &exec_list[i],
3755 reloc + total);
3756 if (ret)
3757 goto err;
3758
3759 total += exec_list[i].relocation_count;
3760 }
3761
3762 /* Leave the user relocations as are, this is the painfully slow path,
3763 * and we want to avoid the complication of dropping the lock whilst
3764 * having buffers reserved in the aperture and so causing spurious
3765 * ENOSPC for random operations.
3766 */
3767
3768err:
3769 drm_free_large(reloc);
3770 return ret;
3771}
3772
13b29289
CW
3773static int
3774i915_gem_execbuffer_move_to_gpu(struct drm_device *dev,
3775 struct drm_file *file,
3776 struct intel_ring_buffer *ring,
05394f39 3777 struct drm_i915_gem_object **objects,
13b29289
CW
3778 int count)
3779{
0f8c6d7c 3780 struct change_domains cd;
13b29289
CW
3781 int ret, i;
3782
0f8c6d7c
CW
3783 cd.invalidate_domains = 0;
3784 cd.flush_domains = 0;
3785 cd.flush_rings = 0;
13b29289 3786 for (i = 0; i < count; i++)
0f8c6d7c 3787 i915_gem_object_set_to_gpu_domain(objects[i], ring, &cd);
13b29289 3788
0f8c6d7c 3789 if (cd.invalidate_domains | cd.flush_domains) {
13b29289
CW
3790#if WATCH_EXEC
3791 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3792 __func__,
0f8c6d7c
CW
3793 cd.invalidate_domains,
3794 cd.flush_domains);
13b29289 3795#endif
05394f39 3796 i915_gem_flush(dev,
0f8c6d7c
CW
3797 cd.invalidate_domains,
3798 cd.flush_domains,
3799 cd.flush_rings);
13b29289
CW
3800 }
3801
3802 for (i = 0; i < count; i++) {
05394f39 3803 struct drm_i915_gem_object *obj = objects[i];
13b29289
CW
3804 /* XXX replace with semaphores */
3805 if (obj->ring && ring != obj->ring) {
05394f39 3806 ret = i915_gem_object_wait_rendering(obj, true);
13b29289
CW
3807 if (ret)
3808 return ret;
3809 }
3810 }
3811
3812 return 0;
3813}
3814
673a394b
EA
3815/* Throttle our rendering by waiting until the ring has completed our requests
3816 * emitted over 20 msec ago.
3817 *
b962442e
EA
3818 * Note that if we were to use the current jiffies each time around the loop,
3819 * we wouldn't escape the function with any frames outstanding if the time to
3820 * render a frame was over 20ms.
3821 *
673a394b
EA
3822 * This should get us reasonable parallelism between CPU and GPU but also
3823 * relatively low latency when blocking on a particular request to finish.
3824 */
40a5f0de 3825static int
f787a5f5 3826i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3827{
f787a5f5
CW
3828 struct drm_i915_private *dev_priv = dev->dev_private;
3829 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3830 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3831 struct drm_i915_gem_request *request;
3832 struct intel_ring_buffer *ring = NULL;
3833 u32 seqno = 0;
3834 int ret;
93533c29 3835
1c25595f 3836 spin_lock(&file_priv->mm.lock);
f787a5f5 3837 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3838 if (time_after_eq(request->emitted_jiffies, recent_enough))
3839 break;
40a5f0de 3840
f787a5f5
CW
3841 ring = request->ring;
3842 seqno = request->seqno;
b962442e 3843 }
1c25595f 3844 spin_unlock(&file_priv->mm.lock);
40a5f0de 3845
f787a5f5
CW
3846 if (seqno == 0)
3847 return 0;
2bc43b5c 3848
f787a5f5 3849 ret = 0;
78501eac 3850 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3851 /* And wait for the seqno passing without holding any locks and
3852 * causing extra latency for others. This is safe as the irq
3853 * generation is designed to be run atomically and so is
3854 * lockless.
3855 */
78501eac 3856 ring->user_irq_get(ring);
f787a5f5 3857 ret = wait_event_interruptible(ring->irq_queue,
78501eac 3858 i915_seqno_passed(ring->get_seqno(ring), seqno)
f787a5f5 3859 || atomic_read(&dev_priv->mm.wedged));
78501eac 3860 ring->user_irq_put(ring);
40a5f0de 3861
f787a5f5
CW
3862 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3863 ret = -EIO;
40a5f0de
EA
3864 }
3865
f787a5f5
CW
3866 if (ret == 0)
3867 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3868
3869 return ret;
3870}
3871
83d60795 3872static int
2549d6c2
CW
3873i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3874 uint64_t exec_offset)
83d60795
CW
3875{
3876 uint32_t exec_start, exec_len;
3877
3878 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3879 exec_len = (uint32_t) exec->batch_len;
3880
3881 if ((exec_start | exec_len) & 0x7)
3882 return -EINVAL;
3883
3884 if (!exec_start)
3885 return -EINVAL;
3886
3887 return 0;
3888}
3889
6b95a207 3890static int
2549d6c2
CW
3891validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3892 int count)
6b95a207 3893{
2549d6c2 3894 int i;
6b95a207 3895
2549d6c2
CW
3896 for (i = 0; i < count; i++) {
3897 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
d1d78830 3898 int length; /* limited by fault_in_pages_readable() */
6b95a207 3899
d1d78830
CW
3900 /* First check for malicious input causing overflow */
3901 if (exec[i].relocation_count >
3902 INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
3903 return -EINVAL;
6b95a207 3904
d1d78830
CW
3905 length = exec[i].relocation_count *
3906 sizeof(struct drm_i915_gem_relocation_entry);
2549d6c2
CW
3907 if (!access_ok(VERIFY_READ, ptr, length))
3908 return -EFAULT;
40a5f0de 3909
b5dc608c
CW
3910 /* we may also need to update the presumed offsets */
3911 if (!access_ok(VERIFY_WRITE, ptr, length))
3912 return -EFAULT;
3913
2549d6c2
CW
3914 if (fault_in_pages_readable(ptr, length))
3915 return -EFAULT;
6b95a207 3916 }
6b95a207 3917
83d60795 3918 return 0;
6b95a207
KH
3919}
3920
8dc5d147 3921static int
76446cac 3922i915_gem_do_execbuffer(struct drm_device *dev, void *data,
9af90d19 3923 struct drm_file *file,
76446cac
JB
3924 struct drm_i915_gem_execbuffer2 *args,
3925 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3926{
3927 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
3928 struct drm_i915_gem_object **object_list = NULL;
3929 struct drm_i915_gem_object *batch_obj;
201361a5 3930 struct drm_clip_rect *cliprects = NULL;
8dc5d147 3931 struct drm_i915_gem_request *request = NULL;
9af90d19 3932 int ret, i, flips;
673a394b 3933 uint64_t exec_offset;
673a394b 3934
852835f3
ZN
3935 struct intel_ring_buffer *ring = NULL;
3936
30dbf0c0
CW
3937 ret = i915_gem_check_is_wedged(dev);
3938 if (ret)
3939 return ret;
3940
2549d6c2
CW
3941 ret = validate_exec_list(exec_list, args->buffer_count);
3942 if (ret)
3943 return ret;
3944
673a394b
EA
3945#if WATCH_EXEC
3946 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3947 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3948#endif
549f7365
CW
3949 switch (args->flags & I915_EXEC_RING_MASK) {
3950 case I915_EXEC_DEFAULT:
3951 case I915_EXEC_RENDER:
3952 ring = &dev_priv->render_ring;
3953 break;
3954 case I915_EXEC_BSD:
d1b851fc 3955 if (!HAS_BSD(dev)) {
549f7365 3956 DRM_ERROR("execbuf with invalid ring (BSD)\n");
d1b851fc
ZN
3957 return -EINVAL;
3958 }
3959 ring = &dev_priv->bsd_ring;
549f7365
CW
3960 break;
3961 case I915_EXEC_BLT:
3962 if (!HAS_BLT(dev)) {
3963 DRM_ERROR("execbuf with invalid ring (BLT)\n");
3964 return -EINVAL;
3965 }
3966 ring = &dev_priv->blt_ring;
3967 break;
3968 default:
3969 DRM_ERROR("execbuf with unknown ring: %d\n",
3970 (int)(args->flags & I915_EXEC_RING_MASK));
3971 return -EINVAL;
d1b851fc
ZN
3972 }
3973
4f481ed2
EA
3974 if (args->buffer_count < 1) {
3975 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3976 return -EINVAL;
3977 }
c8e0f93a 3978 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3979 if (object_list == NULL) {
3980 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3981 args->buffer_count);
3982 ret = -ENOMEM;
3983 goto pre_mutex_err;
3984 }
673a394b 3985
201361a5 3986 if (args->num_cliprects != 0) {
9a298b2a
EA
3987 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3988 GFP_KERNEL);
a40e8d31
OA
3989 if (cliprects == NULL) {
3990 ret = -ENOMEM;
201361a5 3991 goto pre_mutex_err;
a40e8d31 3992 }
201361a5
EA
3993
3994 ret = copy_from_user(cliprects,
3995 (struct drm_clip_rect __user *)
3996 (uintptr_t) args->cliprects_ptr,
3997 sizeof(*cliprects) * args->num_cliprects);
3998 if (ret != 0) {
3999 DRM_ERROR("copy %d cliprects failed: %d\n",
4000 args->num_cliprects, ret);
c877cdce 4001 ret = -EFAULT;
201361a5
EA
4002 goto pre_mutex_err;
4003 }
4004 }
4005
8dc5d147
CW
4006 request = kzalloc(sizeof(*request), GFP_KERNEL);
4007 if (request == NULL) {
4008 ret = -ENOMEM;
40a5f0de 4009 goto pre_mutex_err;
8dc5d147 4010 }
40a5f0de 4011
76c1dec1
CW
4012 ret = i915_mutex_lock_interruptible(dev);
4013 if (ret)
a198bc80 4014 goto pre_mutex_err;
673a394b
EA
4015
4016 if (dev_priv->mm.suspended) {
673a394b 4017 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
4018 ret = -EBUSY;
4019 goto pre_mutex_err;
673a394b
EA
4020 }
4021
ac94a962 4022 /* Look up object handles */
673a394b 4023 for (i = 0; i < args->buffer_count; i++) {
05394f39 4024 struct drm_i915_gem_object *obj;
7e318e18 4025
05394f39
CW
4026 obj = to_intel_bo (drm_gem_object_lookup(dev, file,
4027 exec_list[i].handle));
4028 if (obj == NULL) {
673a394b
EA
4029 DRM_ERROR("Invalid object handle %d at index %d\n",
4030 exec_list[i].handle, i);
0ce907f8 4031 /* prevent error path from reading uninitialized data */
05394f39 4032 args->buffer_count = i;
bf79cb91 4033 ret = -ENOENT;
673a394b
EA
4034 goto err;
4035 }
05394f39 4036 object_list[i] = obj;
b70d11da 4037
05394f39 4038 if (obj->in_execbuffer) {
b70d11da 4039 DRM_ERROR("Object %p appears more than once in object list\n",
05394f39 4040 obj);
0ce907f8
CW
4041 /* prevent error path from reading uninitialized data */
4042 args->buffer_count = i + 1;
bf79cb91 4043 ret = -EINVAL;
b70d11da
KH
4044 goto err;
4045 }
05394f39 4046 obj->in_execbuffer = true;
caea7476 4047 obj->pending_fenced_gpu_access = false;
ac94a962 4048 }
673a394b 4049
9af90d19 4050 /* Move the objects en-masse into the GTT, evicting if necessary. */
bcf50e27
CW
4051 ret = i915_gem_execbuffer_reserve(dev, file,
4052 object_list, exec_list,
4053 args->buffer_count);
9af90d19
CW
4054 if (ret)
4055 goto err;
ac94a962 4056
9af90d19 4057 /* The objects are in their final locations, apply the relocations. */
bcf50e27
CW
4058 ret = i915_gem_execbuffer_relocate(dev, file,
4059 object_list, exec_list,
4060 args->buffer_count);
4061 if (ret) {
4062 if (ret == -EFAULT) {
4063 ret = i915_gem_execbuffer_relocate_slow(dev, file,
4064 object_list,
4065 exec_list,
4066 args->buffer_count);
4067 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
4068 }
9af90d19 4069 if (ret)
ac94a962 4070 goto err;
673a394b
EA
4071 }
4072
4073 /* Set the pending read domains for the batch buffer to COMMAND */
4074 batch_obj = object_list[args->buffer_count-1];
05394f39 4075 if (batch_obj->base.pending_write_domain) {
5f26a2c7
CW
4076 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
4077 ret = -EINVAL;
4078 goto err;
4079 }
05394f39 4080 batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 4081
9af90d19 4082 /* Sanity check the batch buffer */
05394f39 4083 exec_offset = batch_obj->gtt_offset;
9af90d19 4084 ret = i915_gem_check_execbuffer(args, exec_offset);
83d60795
CW
4085 if (ret != 0) {
4086 DRM_ERROR("execbuf with invalid offset/length\n");
4087 goto err;
4088 }
4089
13b29289
CW
4090 ret = i915_gem_execbuffer_move_to_gpu(dev, file, ring,
4091 object_list, args->buffer_count);
4092 if (ret)
4093 goto err;
673a394b 4094
673a394b
EA
4095#if WATCH_COHERENCY
4096 for (i = 0; i < args->buffer_count; i++) {
4097 i915_gem_object_check_coherency(object_list[i],
4098 exec_list[i].handle);
4099 }
4100#endif
4101
673a394b 4102#if WATCH_EXEC
6911a9b8 4103 i915_gem_dump_object(batch_obj,
673a394b
EA
4104 args->batch_len,
4105 __func__,
4106 ~0);
4107#endif
4108
e59f2bac
CW
4109 /* Check for any pending flips. As we only maintain a flip queue depth
4110 * of 1, we can simply insert a WAIT for the next display flip prior
4111 * to executing the batch and avoid stalling the CPU.
4112 */
4113 flips = 0;
4114 for (i = 0; i < args->buffer_count; i++) {
05394f39
CW
4115 if (object_list[i]->base.write_domain)
4116 flips |= atomic_read(&object_list[i]->pending_flip);
e59f2bac
CW
4117 }
4118 if (flips) {
4119 int plane, flip_mask;
4120
4121 for (plane = 0; flips >> plane; plane++) {
4122 if (((flips >> plane) & 1) == 0)
4123 continue;
4124
4125 if (plane)
4126 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
4127 else
4128 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
4129
e1f99ce6
CW
4130 ret = intel_ring_begin(ring, 2);
4131 if (ret)
4132 goto err;
4133
78501eac
CW
4134 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
4135 intel_ring_emit(ring, MI_NOOP);
4136 intel_ring_advance(ring);
e59f2bac
CW
4137 }
4138 }
4139
673a394b 4140 /* Exec the batchbuffer */
78501eac 4141 ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
673a394b
EA
4142 if (ret) {
4143 DRM_ERROR("dispatch failed %d\n", ret);
4144 goto err;
4145 }
4146
673a394b 4147 for (i = 0; i < args->buffer_count; i++) {
05394f39 4148 struct drm_i915_gem_object *obj = object_list[i];
673a394b 4149
05394f39
CW
4150 obj->base.read_domains = obj->base.pending_read_domains;
4151 obj->base.write_domain = obj->base.pending_write_domain;
caea7476 4152 obj->fenced_gpu_access = obj->pending_fenced_gpu_access;
7e318e18 4153
617dbe27 4154 i915_gem_object_move_to_active(obj, ring);
05394f39
CW
4155 if (obj->base.write_domain) {
4156 obj->dirty = 1;
4157 list_move_tail(&obj->gpu_write_list,
64193406 4158 &ring->gpu_write_list);
7e318e18
CW
4159 intel_mark_busy(dev, obj);
4160 }
4161
4162 trace_i915_gem_object_change_domain(obj,
05394f39
CW
4163 obj->base.read_domains,
4164 obj->base.write_domain);
673a394b 4165 }
673a394b 4166
7e318e18
CW
4167 /*
4168 * Ensure that the commands in the batch buffer are
4169 * finished before the interrupt fires
4170 */
4171 i915_retire_commands(dev, ring);
4172
3cce469c 4173 if (i915_add_request(dev, file, request, ring))
5d97eb69 4174 i915_gem_next_request_seqno(dev, ring);
3cce469c
CW
4175 else
4176 request = NULL;
673a394b 4177
673a394b 4178err:
b70d11da 4179 for (i = 0; i < args->buffer_count; i++) {
05394f39
CW
4180 object_list[i]->in_execbuffer = false;
4181 drm_gem_object_unreference(&object_list[i]->base);
b70d11da 4182 }
673a394b 4183
673a394b
EA
4184 mutex_unlock(&dev->struct_mutex);
4185
93533c29 4186pre_mutex_err:
8e7d2b2c 4187 drm_free_large(object_list);
9a298b2a 4188 kfree(cliprects);
8dc5d147 4189 kfree(request);
673a394b
EA
4190
4191 return ret;
4192}
4193
76446cac
JB
4194/*
4195 * Legacy execbuffer just creates an exec2 list from the original exec object
4196 * list array and passes it to the real function.
4197 */
4198int
4199i915_gem_execbuffer(struct drm_device *dev, void *data,
05394f39 4200 struct drm_file *file)
76446cac
JB
4201{
4202 struct drm_i915_gem_execbuffer *args = data;
4203 struct drm_i915_gem_execbuffer2 exec2;
4204 struct drm_i915_gem_exec_object *exec_list = NULL;
4205 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4206 int ret, i;
4207
4208#if WATCH_EXEC
4209 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4210 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4211#endif
4212
4213 if (args->buffer_count < 1) {
4214 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4215 return -EINVAL;
4216 }
4217
4218 /* Copy in the exec list from userland */
4219 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4220 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4221 if (exec_list == NULL || exec2_list == NULL) {
4222 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4223 args->buffer_count);
4224 drm_free_large(exec_list);
4225 drm_free_large(exec2_list);
4226 return -ENOMEM;
4227 }
4228 ret = copy_from_user(exec_list,
4229 (struct drm_i915_relocation_entry __user *)
4230 (uintptr_t) args->buffers_ptr,
4231 sizeof(*exec_list) * args->buffer_count);
4232 if (ret != 0) {
4233 DRM_ERROR("copy %d exec entries failed %d\n",
4234 args->buffer_count, ret);
4235 drm_free_large(exec_list);
4236 drm_free_large(exec2_list);
4237 return -EFAULT;
4238 }
4239
4240 for (i = 0; i < args->buffer_count; i++) {
4241 exec2_list[i].handle = exec_list[i].handle;
4242 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4243 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4244 exec2_list[i].alignment = exec_list[i].alignment;
4245 exec2_list[i].offset = exec_list[i].offset;
a6c45cf0 4246 if (INTEL_INFO(dev)->gen < 4)
76446cac
JB
4247 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4248 else
4249 exec2_list[i].flags = 0;
4250 }
4251
4252 exec2.buffers_ptr = args->buffers_ptr;
4253 exec2.buffer_count = args->buffer_count;
4254 exec2.batch_start_offset = args->batch_start_offset;
4255 exec2.batch_len = args->batch_len;
4256 exec2.DR1 = args->DR1;
4257 exec2.DR4 = args->DR4;
4258 exec2.num_cliprects = args->num_cliprects;
4259 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 4260 exec2.flags = I915_EXEC_RENDER;
76446cac 4261
05394f39 4262 ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
76446cac
JB
4263 if (!ret) {
4264 /* Copy the new buffer offsets back to the user's exec list. */
4265 for (i = 0; i < args->buffer_count; i++)
4266 exec_list[i].offset = exec2_list[i].offset;
4267 /* ... and back out to userspace */
4268 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4269 (uintptr_t) args->buffers_ptr,
4270 exec_list,
4271 sizeof(*exec_list) * args->buffer_count);
4272 if (ret) {
4273 ret = -EFAULT;
4274 DRM_ERROR("failed to copy %d exec entries "
4275 "back to user (%d)\n",
4276 args->buffer_count, ret);
4277 }
76446cac
JB
4278 }
4279
4280 drm_free_large(exec_list);
4281 drm_free_large(exec2_list);
4282 return ret;
4283}
4284
4285int
4286i915_gem_execbuffer2(struct drm_device *dev, void *data,
05394f39 4287 struct drm_file *file)
76446cac
JB
4288{
4289 struct drm_i915_gem_execbuffer2 *args = data;
4290 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4291 int ret;
4292
4293#if WATCH_EXEC
4294 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4295 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4296#endif
4297
4298 if (args->buffer_count < 1) {
4299 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4300 return -EINVAL;
4301 }
4302
4303 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4304 if (exec2_list == NULL) {
4305 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4306 args->buffer_count);
4307 return -ENOMEM;
4308 }
4309 ret = copy_from_user(exec2_list,
4310 (struct drm_i915_relocation_entry __user *)
4311 (uintptr_t) args->buffers_ptr,
4312 sizeof(*exec2_list) * args->buffer_count);
4313 if (ret != 0) {
4314 DRM_ERROR("copy %d exec entries failed %d\n",
4315 args->buffer_count, ret);
4316 drm_free_large(exec2_list);
4317 return -EFAULT;
4318 }
4319
05394f39 4320 ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
76446cac
JB
4321 if (!ret) {
4322 /* Copy the new buffer offsets back to the user's exec list. */
4323 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4324 (uintptr_t) args->buffers_ptr,
4325 exec2_list,
4326 sizeof(*exec2_list) * args->buffer_count);
4327 if (ret) {
4328 ret = -EFAULT;
4329 DRM_ERROR("failed to copy %d exec entries "
4330 "back to user (%d)\n",
4331 args->buffer_count, ret);
4332 }
4333 }
4334
4335 drm_free_large(exec2_list);
4336 return ret;
4337}
4338
673a394b 4339int
05394f39
CW
4340i915_gem_object_pin(struct drm_i915_gem_object *obj,
4341 uint32_t alignment,
75e9e915 4342 bool map_and_fenceable)
673a394b 4343{
05394f39 4344 struct drm_device *dev = obj->base.dev;
f13d3f73 4345 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
4346 int ret;
4347
05394f39 4348 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 4349 WARN_ON(i915_verify_lists(dev));
ac0c6b5a 4350
05394f39
CW
4351 if (obj->gtt_space != NULL) {
4352 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
4353 (map_and_fenceable && !obj->map_and_fenceable)) {
4354 WARN(obj->pin_count,
ae7d49d8 4355 "bo is already pinned with incorrect alignment:"
75e9e915
DV
4356 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
4357 " obj->map_and_fenceable=%d\n",
05394f39 4358 obj->gtt_offset, alignment,
75e9e915 4359 map_and_fenceable,
05394f39 4360 obj->map_and_fenceable);
ac0c6b5a
CW
4361 ret = i915_gem_object_unbind(obj);
4362 if (ret)
4363 return ret;
4364 }
4365 }
4366
05394f39 4367 if (obj->gtt_space == NULL) {
a00b10c3 4368 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 4369 map_and_fenceable);
9731129c 4370 if (ret)
673a394b 4371 return ret;
22c344e9 4372 }
76446cac 4373
05394f39
CW
4374 if (obj->pin_count++ == 0) {
4375 i915_gem_info_add_pin(dev_priv, obj, map_and_fenceable);
4376 if (!obj->active)
4377 list_move_tail(&obj->mm_list,
f13d3f73 4378 &dev_priv->mm.pinned_list);
673a394b 4379 }
05394f39 4380 BUG_ON(!obj->pin_mappable && map_and_fenceable);
673a394b 4381
23bc5982 4382 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4383 return 0;
4384}
4385
4386void
05394f39 4387i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 4388{
05394f39 4389 struct drm_device *dev = obj->base.dev;
673a394b 4390 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 4391
23bc5982 4392 WARN_ON(i915_verify_lists(dev));
05394f39
CW
4393 BUG_ON(obj->pin_count == 0);
4394 BUG_ON(obj->gtt_space == NULL);
673a394b 4395
05394f39
CW
4396 if (--obj->pin_count == 0) {
4397 if (!obj->active)
4398 list_move_tail(&obj->mm_list,
673a394b 4399 &dev_priv->mm.inactive_list);
05394f39 4400 i915_gem_info_remove_pin(dev_priv, obj);
673a394b 4401 }
23bc5982 4402 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4403}
4404
4405int
4406i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 4407 struct drm_file *file)
673a394b
EA
4408{
4409 struct drm_i915_gem_pin *args = data;
05394f39 4410 struct drm_i915_gem_object *obj;
673a394b
EA
4411 int ret;
4412
1d7cfea1
CW
4413 ret = i915_mutex_lock_interruptible(dev);
4414 if (ret)
4415 return ret;
673a394b 4416
05394f39 4417 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
673a394b 4418 if (obj == NULL) {
1d7cfea1
CW
4419 ret = -ENOENT;
4420 goto unlock;
673a394b 4421 }
673a394b 4422
05394f39 4423 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 4424 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
4425 ret = -EINVAL;
4426 goto out;
3ef94daa
CW
4427 }
4428
05394f39 4429 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
4430 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4431 args->handle);
1d7cfea1
CW
4432 ret = -EINVAL;
4433 goto out;
79e53945
JB
4434 }
4435
05394f39
CW
4436 obj->user_pin_count++;
4437 obj->pin_filp = file;
4438 if (obj->user_pin_count == 1) {
75e9e915 4439 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
4440 if (ret)
4441 goto out;
673a394b
EA
4442 }
4443
4444 /* XXX - flush the CPU caches for pinned objects
4445 * as the X server doesn't manage domains yet
4446 */
e47c68e9 4447 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 4448 args->offset = obj->gtt_offset;
1d7cfea1 4449out:
05394f39 4450 drm_gem_object_unreference(&obj->base);
1d7cfea1 4451unlock:
673a394b 4452 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4453 return ret;
673a394b
EA
4454}
4455
4456int
4457i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 4458 struct drm_file *file)
673a394b
EA
4459{
4460 struct drm_i915_gem_pin *args = data;
05394f39 4461 struct drm_i915_gem_object *obj;
76c1dec1 4462 int ret;
673a394b 4463
1d7cfea1
CW
4464 ret = i915_mutex_lock_interruptible(dev);
4465 if (ret)
4466 return ret;
673a394b 4467
05394f39 4468 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
673a394b 4469 if (obj == NULL) {
1d7cfea1
CW
4470 ret = -ENOENT;
4471 goto unlock;
673a394b 4472 }
76c1dec1 4473
05394f39 4474 if (obj->pin_filp != file) {
79e53945
JB
4475 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4476 args->handle);
1d7cfea1
CW
4477 ret = -EINVAL;
4478 goto out;
79e53945 4479 }
05394f39
CW
4480 obj->user_pin_count--;
4481 if (obj->user_pin_count == 0) {
4482 obj->pin_filp = NULL;
79e53945
JB
4483 i915_gem_object_unpin(obj);
4484 }
673a394b 4485
1d7cfea1 4486out:
05394f39 4487 drm_gem_object_unreference(&obj->base);
1d7cfea1 4488unlock:
673a394b 4489 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4490 return ret;
673a394b
EA
4491}
4492
4493int
4494i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4495 struct drm_file *file)
673a394b
EA
4496{
4497 struct drm_i915_gem_busy *args = data;
05394f39 4498 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4499 int ret;
4500
76c1dec1 4501 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4502 if (ret)
76c1dec1 4503 return ret;
673a394b 4504
05394f39 4505 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
673a394b 4506 if (obj == NULL) {
1d7cfea1
CW
4507 ret = -ENOENT;
4508 goto unlock;
673a394b 4509 }
d1b851fc 4510
0be555b6
CW
4511 /* Count all active objects as busy, even if they are currently not used
4512 * by the gpu. Users of this interface expect objects to eventually
4513 * become non-busy without any further actions, therefore emit any
4514 * necessary flushes here.
c4de0a5d 4515 */
05394f39 4516 args->busy = obj->active;
0be555b6
CW
4517 if (args->busy) {
4518 /* Unconditionally flush objects, even when the gpu still uses this
4519 * object. Userspace calling this function indicates that it wants to
4520 * use this buffer rather sooner than later, so issuing the required
4521 * flush earlier is beneficial.
4522 */
05394f39
CW
4523 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
4524 i915_gem_flush_ring(dev, obj->ring,
4525 0, obj->base.write_domain);
0be555b6
CW
4526
4527 /* Update the active list for the hardware's current position.
4528 * Otherwise this only updates on a delayed timer or when irqs
4529 * are actually unmasked, and our working set ends up being
4530 * larger than required.
4531 */
05394f39 4532 i915_gem_retire_requests_ring(dev, obj->ring);
0be555b6 4533
05394f39 4534 args->busy = obj->active;
0be555b6 4535 }
673a394b 4536
05394f39 4537 drm_gem_object_unreference(&obj->base);
1d7cfea1 4538unlock:
673a394b 4539 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4540 return ret;
673a394b
EA
4541}
4542
4543int
4544i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4545 struct drm_file *file_priv)
4546{
4547 return i915_gem_ring_throttle(dev, file_priv);
4548}
4549
3ef94daa
CW
4550int
4551i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4552 struct drm_file *file_priv)
4553{
4554 struct drm_i915_gem_madvise *args = data;
05394f39 4555 struct drm_i915_gem_object *obj;
76c1dec1 4556 int ret;
3ef94daa
CW
4557
4558 switch (args->madv) {
4559 case I915_MADV_DONTNEED:
4560 case I915_MADV_WILLNEED:
4561 break;
4562 default:
4563 return -EINVAL;
4564 }
4565
1d7cfea1
CW
4566 ret = i915_mutex_lock_interruptible(dev);
4567 if (ret)
4568 return ret;
4569
05394f39 4570 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3ef94daa 4571 if (obj == NULL) {
1d7cfea1
CW
4572 ret = -ENOENT;
4573 goto unlock;
3ef94daa 4574 }
3ef94daa 4575
05394f39 4576 if (obj->pin_count) {
1d7cfea1
CW
4577 ret = -EINVAL;
4578 goto out;
3ef94daa
CW
4579 }
4580
05394f39
CW
4581 if (obj->madv != __I915_MADV_PURGED)
4582 obj->madv = args->madv;
3ef94daa 4583
2d7ef395 4584 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
4585 if (i915_gem_object_is_purgeable(obj) &&
4586 obj->gtt_space == NULL)
2d7ef395
CW
4587 i915_gem_object_truncate(obj);
4588
05394f39 4589 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4590
1d7cfea1 4591out:
05394f39 4592 drm_gem_object_unreference(&obj->base);
1d7cfea1 4593unlock:
3ef94daa 4594 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4595 return ret;
3ef94daa
CW
4596}
4597
05394f39
CW
4598struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4599 size_t size)
ac52bc56 4600{
73aa808f 4601 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 4602 struct drm_i915_gem_object *obj;
ac52bc56 4603
c397b908
DV
4604 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4605 if (obj == NULL)
4606 return NULL;
673a394b 4607
c397b908
DV
4608 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4609 kfree(obj);
4610 return NULL;
4611 }
673a394b 4612
73aa808f
CW
4613 i915_gem_info_add_obj(dev_priv, size);
4614
c397b908
DV
4615 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4616 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4617
c397b908 4618 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4619 obj->base.driver_private = NULL;
c397b908 4620 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 4621 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 4622 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 4623 INIT_LIST_HEAD(&obj->ring_list);
c397b908 4624 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4625 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
4626 /* Avoid an unnecessary call to unbind on the first bind. */
4627 obj->map_and_fenceable = true;
de151cf6 4628
05394f39 4629 return obj;
c397b908
DV
4630}
4631
4632int i915_gem_init_object(struct drm_gem_object *obj)
4633{
4634 BUG();
de151cf6 4635
673a394b
EA
4636 return 0;
4637}
4638
05394f39 4639static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
673a394b 4640{
05394f39 4641 struct drm_device *dev = obj->base.dev;
be72615b 4642 drm_i915_private_t *dev_priv = dev->dev_private;
be72615b 4643 int ret;
673a394b 4644
be72615b
CW
4645 ret = i915_gem_object_unbind(obj);
4646 if (ret == -ERESTARTSYS) {
05394f39 4647 list_move(&obj->mm_list,
be72615b
CW
4648 &dev_priv->mm.deferred_free_list);
4649 return;
4650 }
673a394b 4651
05394f39 4652 if (obj->base.map_list.map)
7e616158 4653 i915_gem_free_mmap_offset(obj);
de151cf6 4654
05394f39
CW
4655 drm_gem_object_release(&obj->base);
4656 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4657
05394f39
CW
4658 kfree(obj->page_cpu_valid);
4659 kfree(obj->bit_17);
4660 kfree(obj);
673a394b
EA
4661}
4662
05394f39 4663void i915_gem_free_object(struct drm_gem_object *gem_obj)
be72615b 4664{
05394f39
CW
4665 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4666 struct drm_device *dev = obj->base.dev;
be72615b
CW
4667
4668 trace_i915_gem_object_destroy(obj);
4669
05394f39 4670 while (obj->pin_count > 0)
be72615b
CW
4671 i915_gem_object_unpin(obj);
4672
05394f39 4673 if (obj->phys_obj)
be72615b
CW
4674 i915_gem_detach_phys_object(dev, obj);
4675
4676 i915_gem_free_object_tail(obj);
4677}
4678
29105ccc
CW
4679int
4680i915_gem_idle(struct drm_device *dev)
4681{
4682 drm_i915_private_t *dev_priv = dev->dev_private;
4683 int ret;
28dfe52a 4684
29105ccc 4685 mutex_lock(&dev->struct_mutex);
1c5d22f7 4686
87acb0a5 4687 if (dev_priv->mm.suspended) {
29105ccc
CW
4688 mutex_unlock(&dev->struct_mutex);
4689 return 0;
28dfe52a
EA
4690 }
4691
29105ccc 4692 ret = i915_gpu_idle(dev);
6dbe2772
KP
4693 if (ret) {
4694 mutex_unlock(&dev->struct_mutex);
673a394b 4695 return ret;
6dbe2772 4696 }
673a394b 4697
29105ccc
CW
4698 /* Under UMS, be paranoid and evict. */
4699 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
5eac3ab4 4700 ret = i915_gem_evict_inactive(dev, false);
29105ccc
CW
4701 if (ret) {
4702 mutex_unlock(&dev->struct_mutex);
4703 return ret;
4704 }
4705 }
4706
312817a3
CW
4707 i915_gem_reset_fences(dev);
4708
29105ccc
CW
4709 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4710 * We need to replace this with a semaphore, or something.
4711 * And not confound mm.suspended!
4712 */
4713 dev_priv->mm.suspended = 1;
bc0c7f14 4714 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
4715
4716 i915_kernel_lost_context(dev);
6dbe2772 4717 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4718
6dbe2772
KP
4719 mutex_unlock(&dev->struct_mutex);
4720
29105ccc
CW
4721 /* Cancel the retire work handler, which should be idle now. */
4722 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4723
673a394b
EA
4724 return 0;
4725}
4726
8187a2b7
ZN
4727int
4728i915_gem_init_ringbuffer(struct drm_device *dev)
4729{
4730 drm_i915_private_t *dev_priv = dev->dev_private;
4731 int ret;
68f95ba9 4732
5c1143bb 4733 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4734 if (ret)
b6913e4b 4735 return ret;
68f95ba9
CW
4736
4737 if (HAS_BSD(dev)) {
5c1143bb 4738 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4739 if (ret)
4740 goto cleanup_render_ring;
d1b851fc 4741 }
68f95ba9 4742
549f7365
CW
4743 if (HAS_BLT(dev)) {
4744 ret = intel_init_blt_ring_buffer(dev);
4745 if (ret)
4746 goto cleanup_bsd_ring;
4747 }
4748
6f392d54
CW
4749 dev_priv->next_seqno = 1;
4750
68f95ba9
CW
4751 return 0;
4752
549f7365 4753cleanup_bsd_ring:
78501eac 4754 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
68f95ba9 4755cleanup_render_ring:
78501eac 4756 intel_cleanup_ring_buffer(&dev_priv->render_ring);
8187a2b7
ZN
4757 return ret;
4758}
4759
4760void
4761i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4762{
4763 drm_i915_private_t *dev_priv = dev->dev_private;
4764
78501eac
CW
4765 intel_cleanup_ring_buffer(&dev_priv->render_ring);
4766 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4767 intel_cleanup_ring_buffer(&dev_priv->blt_ring);
8187a2b7
ZN
4768}
4769
673a394b
EA
4770int
4771i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4772 struct drm_file *file_priv)
4773{
4774 drm_i915_private_t *dev_priv = dev->dev_private;
4775 int ret;
4776
79e53945
JB
4777 if (drm_core_check_feature(dev, DRIVER_MODESET))
4778 return 0;
4779
ba1234d1 4780 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4781 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4782 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4783 }
4784
673a394b 4785 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4786 dev_priv->mm.suspended = 0;
4787
4788 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4789 if (ret != 0) {
4790 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4791 return ret;
d816f6ac 4792 }
9bb2d6f9 4793
69dc4987 4794 BUG_ON(!list_empty(&dev_priv->mm.active_list));
852835f3 4795 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
87acb0a5 4796 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
549f7365 4797 BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
673a394b
EA
4798 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4799 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4800 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
87acb0a5 4801 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
549f7365 4802 BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
673a394b 4803 mutex_unlock(&dev->struct_mutex);
dbb19d30 4804
5f35308b
CW
4805 ret = drm_irq_install(dev);
4806 if (ret)
4807 goto cleanup_ringbuffer;
dbb19d30 4808
673a394b 4809 return 0;
5f35308b
CW
4810
4811cleanup_ringbuffer:
4812 mutex_lock(&dev->struct_mutex);
4813 i915_gem_cleanup_ringbuffer(dev);
4814 dev_priv->mm.suspended = 1;
4815 mutex_unlock(&dev->struct_mutex);
4816
4817 return ret;
673a394b
EA
4818}
4819
4820int
4821i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4822 struct drm_file *file_priv)
4823{
79e53945
JB
4824 if (drm_core_check_feature(dev, DRIVER_MODESET))
4825 return 0;
4826
dbb19d30 4827 drm_irq_uninstall(dev);
e6890f6f 4828 return i915_gem_idle(dev);
673a394b
EA
4829}
4830
4831void
4832i915_gem_lastclose(struct drm_device *dev)
4833{
4834 int ret;
673a394b 4835
e806b495
EA
4836 if (drm_core_check_feature(dev, DRIVER_MODESET))
4837 return;
4838
6dbe2772
KP
4839 ret = i915_gem_idle(dev);
4840 if (ret)
4841 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4842}
4843
64193406
CW
4844static void
4845init_ring_lists(struct intel_ring_buffer *ring)
4846{
4847 INIT_LIST_HEAD(&ring->active_list);
4848 INIT_LIST_HEAD(&ring->request_list);
4849 INIT_LIST_HEAD(&ring->gpu_write_list);
4850}
4851
673a394b
EA
4852void
4853i915_gem_load(struct drm_device *dev)
4854{
b5aa8a0f 4855 int i;
673a394b
EA
4856 drm_i915_private_t *dev_priv = dev->dev_private;
4857
69dc4987 4858 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
4859 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4860 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 4861 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 4862 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4863 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
93a37f20 4864 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
64193406
CW
4865 init_ring_lists(&dev_priv->render_ring);
4866 init_ring_lists(&dev_priv->bsd_ring);
4867 init_ring_lists(&dev_priv->blt_ring);
007cc8ac
DV
4868 for (i = 0; i < 16; i++)
4869 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4870 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4871 i915_gem_retire_work_handler);
30dbf0c0 4872 init_completion(&dev_priv->error_completion);
31169714 4873
94400120
DA
4874 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4875 if (IS_GEN3(dev)) {
4876 u32 tmp = I915_READ(MI_ARB_STATE);
4877 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4878 /* arb state is a masked write, so set bit + bit in mask */
4879 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4880 I915_WRITE(MI_ARB_STATE, tmp);
4881 }
4882 }
4883
de151cf6 4884 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4885 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4886 dev_priv->fence_reg_start = 3;
de151cf6 4887
a6c45cf0 4888 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4889 dev_priv->num_fence_regs = 16;
4890 else
4891 dev_priv->num_fence_regs = 8;
4892
b5aa8a0f 4893 /* Initialize fence registers to zero */
a6c45cf0
CW
4894 switch (INTEL_INFO(dev)->gen) {
4895 case 6:
4896 for (i = 0; i < 16; i++)
4897 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4898 break;
4899 case 5:
4900 case 4:
b5aa8a0f
GH
4901 for (i = 0; i < 16; i++)
4902 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
a6c45cf0
CW
4903 break;
4904 case 3:
b5aa8a0f
GH
4905 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4906 for (i = 0; i < 8; i++)
4907 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
a6c45cf0
CW
4908 case 2:
4909 for (i = 0; i < 8; i++)
4910 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4911 break;
b5aa8a0f 4912 }
673a394b 4913 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4914 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71
CW
4915
4916 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4917 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4918 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4919}
71acb5eb
DA
4920
4921/*
4922 * Create a physically contiguous memory object for this object
4923 * e.g. for cursor + overlay regs
4924 */
995b6762
CW
4925static int i915_gem_init_phys_object(struct drm_device *dev,
4926 int id, int size, int align)
71acb5eb
DA
4927{
4928 drm_i915_private_t *dev_priv = dev->dev_private;
4929 struct drm_i915_gem_phys_object *phys_obj;
4930 int ret;
4931
4932 if (dev_priv->mm.phys_objs[id - 1] || !size)
4933 return 0;
4934
9a298b2a 4935 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4936 if (!phys_obj)
4937 return -ENOMEM;
4938
4939 phys_obj->id = id;
4940
6eeefaf3 4941 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4942 if (!phys_obj->handle) {
4943 ret = -ENOMEM;
4944 goto kfree_obj;
4945 }
4946#ifdef CONFIG_X86
4947 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4948#endif
4949
4950 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4951
4952 return 0;
4953kfree_obj:
9a298b2a 4954 kfree(phys_obj);
71acb5eb
DA
4955 return ret;
4956}
4957
995b6762 4958static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4959{
4960 drm_i915_private_t *dev_priv = dev->dev_private;
4961 struct drm_i915_gem_phys_object *phys_obj;
4962
4963 if (!dev_priv->mm.phys_objs[id - 1])
4964 return;
4965
4966 phys_obj = dev_priv->mm.phys_objs[id - 1];
4967 if (phys_obj->cur_obj) {
4968 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4969 }
4970
4971#ifdef CONFIG_X86
4972 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4973#endif
4974 drm_pci_free(dev, phys_obj->handle);
4975 kfree(phys_obj);
4976 dev_priv->mm.phys_objs[id - 1] = NULL;
4977}
4978
4979void i915_gem_free_all_phys_object(struct drm_device *dev)
4980{
4981 int i;
4982
260883c8 4983 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4984 i915_gem_free_phys_object(dev, i);
4985}
4986
4987void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4988 struct drm_i915_gem_object *obj)
71acb5eb 4989{
05394f39 4990 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 4991 char *vaddr;
71acb5eb 4992 int i;
71acb5eb
DA
4993 int page_count;
4994
05394f39 4995 if (!obj->phys_obj)
71acb5eb 4996 return;
05394f39 4997 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4998
05394f39 4999 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 5000 for (i = 0; i < page_count; i++) {
e5281ccd
CW
5001 struct page *page = read_cache_page_gfp(mapping, i,
5002 GFP_HIGHUSER | __GFP_RECLAIMABLE);
5003 if (!IS_ERR(page)) {
5004 char *dst = kmap_atomic(page);
5005 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
5006 kunmap_atomic(dst);
5007
5008 drm_clflush_pages(&page, 1);
5009
5010 set_page_dirty(page);
5011 mark_page_accessed(page);
5012 page_cache_release(page);
5013 }
71acb5eb 5014 }
40ce6575 5015 intel_gtt_chipset_flush();
d78b47b9 5016
05394f39
CW
5017 obj->phys_obj->cur_obj = NULL;
5018 obj->phys_obj = NULL;
71acb5eb
DA
5019}
5020
5021int
5022i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 5023 struct drm_i915_gem_object *obj,
6eeefaf3
CW
5024 int id,
5025 int align)
71acb5eb 5026{
05394f39 5027 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 5028 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
5029 int ret = 0;
5030 int page_count;
5031 int i;
5032
5033 if (id > I915_MAX_PHYS_OBJECT)
5034 return -EINVAL;
5035
05394f39
CW
5036 if (obj->phys_obj) {
5037 if (obj->phys_obj->id == id)
71acb5eb
DA
5038 return 0;
5039 i915_gem_detach_phys_object(dev, obj);
5040 }
5041
71acb5eb
DA
5042 /* create a new object */
5043 if (!dev_priv->mm.phys_objs[id - 1]) {
5044 ret = i915_gem_init_phys_object(dev, id,
05394f39 5045 obj->base.size, align);
71acb5eb 5046 if (ret) {
05394f39
CW
5047 DRM_ERROR("failed to init phys object %d size: %zu\n",
5048 id, obj->base.size);
e5281ccd 5049 return ret;
71acb5eb
DA
5050 }
5051 }
5052
5053 /* bind to the object */
05394f39
CW
5054 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
5055 obj->phys_obj->cur_obj = obj;
71acb5eb 5056
05394f39 5057 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
5058
5059 for (i = 0; i < page_count; i++) {
e5281ccd
CW
5060 struct page *page;
5061 char *dst, *src;
5062
5063 page = read_cache_page_gfp(mapping, i,
5064 GFP_HIGHUSER | __GFP_RECLAIMABLE);
5065 if (IS_ERR(page))
5066 return PTR_ERR(page);
71acb5eb 5067
ff75b9bc 5068 src = kmap_atomic(page);
05394f39 5069 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 5070 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 5071 kunmap_atomic(src);
71acb5eb 5072
e5281ccd
CW
5073 mark_page_accessed(page);
5074 page_cache_release(page);
5075 }
d78b47b9 5076
71acb5eb 5077 return 0;
71acb5eb
DA
5078}
5079
5080static int
05394f39
CW
5081i915_gem_phys_pwrite(struct drm_device *dev,
5082 struct drm_i915_gem_object *obj,
71acb5eb
DA
5083 struct drm_i915_gem_pwrite *args,
5084 struct drm_file *file_priv)
5085{
05394f39 5086 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 5087 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 5088
b47b30cc
CW
5089 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
5090 unsigned long unwritten;
5091
5092 /* The physical object once assigned is fixed for the lifetime
5093 * of the obj, so we can safely drop the lock and continue
5094 * to access vaddr.
5095 */
5096 mutex_unlock(&dev->struct_mutex);
5097 unwritten = copy_from_user(vaddr, user_data, args->size);
5098 mutex_lock(&dev->struct_mutex);
5099 if (unwritten)
5100 return -EFAULT;
5101 }
71acb5eb 5102
40ce6575 5103 intel_gtt_chipset_flush();
71acb5eb
DA
5104 return 0;
5105}
b962442e 5106
f787a5f5 5107void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5108{
f787a5f5 5109 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
5110
5111 /* Clean up our request list when the client is going away, so that
5112 * later retire_requests won't dereference our soon-to-be-gone
5113 * file_priv.
5114 */
1c25595f 5115 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5116 while (!list_empty(&file_priv->mm.request_list)) {
5117 struct drm_i915_gem_request *request;
5118
5119 request = list_first_entry(&file_priv->mm.request_list,
5120 struct drm_i915_gem_request,
5121 client_list);
5122 list_del(&request->client_list);
5123 request->file_priv = NULL;
5124 }
1c25595f 5125 spin_unlock(&file_priv->mm.lock);
b962442e 5126}
31169714 5127
1637ef41
CW
5128static int
5129i915_gpu_is_active(struct drm_device *dev)
5130{
5131 drm_i915_private_t *dev_priv = dev->dev_private;
5132 int lists_empty;
5133
1637ef41 5134 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 5135 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
5136
5137 return !lists_empty;
5138}
5139
31169714 5140static int
17250b71
CW
5141i915_gem_inactive_shrink(struct shrinker *shrinker,
5142 int nr_to_scan,
5143 gfp_t gfp_mask)
31169714 5144{
17250b71
CW
5145 struct drm_i915_private *dev_priv =
5146 container_of(shrinker,
5147 struct drm_i915_private,
5148 mm.inactive_shrinker);
5149 struct drm_device *dev = dev_priv->dev;
5150 struct drm_i915_gem_object *obj, *next;
5151 int cnt;
5152
5153 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 5154 return 0;
31169714
CW
5155
5156 /* "fast-path" to count number of available objects */
5157 if (nr_to_scan == 0) {
17250b71
CW
5158 cnt = 0;
5159 list_for_each_entry(obj,
5160 &dev_priv->mm.inactive_list,
5161 mm_list)
5162 cnt++;
5163 mutex_unlock(&dev->struct_mutex);
5164 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
5165 }
5166
1637ef41 5167rescan:
31169714 5168 /* first scan for clean buffers */
17250b71 5169 i915_gem_retire_requests(dev);
31169714 5170
17250b71
CW
5171 list_for_each_entry_safe(obj, next,
5172 &dev_priv->mm.inactive_list,
5173 mm_list) {
5174 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
5175 if (i915_gem_object_unbind(obj) == 0 &&
5176 --nr_to_scan == 0)
17250b71 5177 break;
31169714 5178 }
31169714
CW
5179 }
5180
5181 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
5182 cnt = 0;
5183 list_for_each_entry_safe(obj, next,
5184 &dev_priv->mm.inactive_list,
5185 mm_list) {
2021746e
CW
5186 if (nr_to_scan &&
5187 i915_gem_object_unbind(obj) == 0)
17250b71 5188 nr_to_scan--;
2021746e 5189 else
17250b71
CW
5190 cnt++;
5191 }
5192
5193 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
5194 /*
5195 * We are desperate for pages, so as a last resort, wait
5196 * for the GPU to finish and discard whatever we can.
5197 * This has a dramatic impact to reduce the number of
5198 * OOM-killer events whilst running the GPU aggressively.
5199 */
17250b71 5200 if (i915_gpu_idle(dev) == 0)
1637ef41
CW
5201 goto rescan;
5202 }
17250b71
CW
5203 mutex_unlock(&dev->struct_mutex);
5204 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 5205}