]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: simplify allocation of driver-internal requests
[thirdparty/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
b4716185
CW
41#define RQ_BUG_ON(expr)
42
05394f39 43static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 44static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
c8725f3d 45static void
b4716185
CW
46i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47static void
48i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
61050808 49
c76ce038
CW
50static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52{
53 return HAS_LLC(dev) || level != I915_CACHE_NONE;
54}
55
2c22569b
CW
56static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57{
58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 return true;
60
61 return obj->pin_display;
62}
63
73aa808f
CW
64/* some bookkeeping */
65static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67{
c20e8355 68 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
69 dev_priv->mm.object_count++;
70 dev_priv->mm.object_memory += size;
c20e8355 71 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
72}
73
74static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76{
c20e8355 77 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
78 dev_priv->mm.object_count--;
79 dev_priv->mm.object_memory -= size;
c20e8355 80 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
81}
82
21dd3734 83static int
33196ded 84i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 85{
30dbf0c0
CW
86 int ret;
87
7abb690a
DV
88#define EXIT_COND (!i915_reset_in_progress(error) || \
89 i915_terminally_wedged(error))
1f83fee0 90 if (EXIT_COND)
30dbf0c0
CW
91 return 0;
92
0a6759c6
DV
93 /*
94 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 * userspace. If it takes that long something really bad is going on and
96 * we should simply try to bail out and fail as gracefully as possible.
97 */
1f83fee0
DV
98 ret = wait_event_interruptible_timeout(error->reset_queue,
99 EXIT_COND,
100 10*HZ);
0a6759c6
DV
101 if (ret == 0) {
102 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 return -EIO;
104 } else if (ret < 0) {
30dbf0c0 105 return ret;
0a6759c6 106 }
1f83fee0 107#undef EXIT_COND
30dbf0c0 108
21dd3734 109 return 0;
30dbf0c0
CW
110}
111
54cf91dc 112int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 113{
33196ded 114 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
115 int ret;
116
33196ded 117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
118 if (ret)
119 return ret;
120
121 ret = mutex_lock_interruptible(&dev->struct_mutex);
122 if (ret)
123 return ret;
124
23bc5982 125 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
126 return 0;
127}
30dbf0c0 128
5a125c3c
EA
129int
130i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 131 struct drm_file *file)
5a125c3c 132{
73aa808f 133 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 134 struct drm_i915_gem_get_aperture *args = data;
ca1543be
TU
135 struct i915_gtt *ggtt = &dev_priv->gtt;
136 struct i915_vma *vma;
6299f992 137 size_t pinned;
5a125c3c 138
6299f992 139 pinned = 0;
73aa808f 140 mutex_lock(&dev->struct_mutex);
ca1543be
TU
141 list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142 if (vma->pin_count)
143 pinned += vma->node.size;
144 list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145 if (vma->pin_count)
146 pinned += vma->node.size;
73aa808f 147 mutex_unlock(&dev->struct_mutex);
5a125c3c 148
853ba5d2 149 args->aper_size = dev_priv->gtt.base.total;
0206e353 150 args->aper_available_size = args->aper_size - pinned;
6299f992 151
5a125c3c
EA
152 return 0;
153}
154
6a2c4232
CW
155static int
156i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 157{
6a2c4232
CW
158 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 char *vaddr = obj->phys_handle->vaddr;
160 struct sg_table *st;
161 struct scatterlist *sg;
162 int i;
00731155 163
6a2c4232
CW
164 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 return -EINVAL;
166
167 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 struct page *page;
169 char *src;
170
171 page = shmem_read_mapping_page(mapping, i);
172 if (IS_ERR(page))
173 return PTR_ERR(page);
174
175 src = kmap_atomic(page);
176 memcpy(vaddr, src, PAGE_SIZE);
177 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 kunmap_atomic(src);
179
180 page_cache_release(page);
181 vaddr += PAGE_SIZE;
182 }
183
184 i915_gem_chipset_flush(obj->base.dev);
185
186 st = kmalloc(sizeof(*st), GFP_KERNEL);
187 if (st == NULL)
188 return -ENOMEM;
189
190 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 kfree(st);
192 return -ENOMEM;
193 }
194
195 sg = st->sgl;
196 sg->offset = 0;
197 sg->length = obj->base.size;
00731155 198
6a2c4232
CW
199 sg_dma_address(sg) = obj->phys_handle->busaddr;
200 sg_dma_len(sg) = obj->base.size;
201
202 obj->pages = st;
6a2c4232
CW
203 return 0;
204}
205
206static void
207i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208{
209 int ret;
210
211 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 212
6a2c4232
CW
213 ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 if (ret) {
215 /* In the event of a disaster, abandon all caches and
216 * hope for the best.
217 */
218 WARN_ON(ret != -EIO);
219 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 }
221
222 if (obj->madv == I915_MADV_DONTNEED)
223 obj->dirty = 0;
224
225 if (obj->dirty) {
00731155 226 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 227 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
228 int i;
229
230 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
231 struct page *page;
232 char *dst;
233
234 page = shmem_read_mapping_page(mapping, i);
235 if (IS_ERR(page))
236 continue;
237
238 dst = kmap_atomic(page);
239 drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 memcpy(dst, vaddr, PAGE_SIZE);
241 kunmap_atomic(dst);
242
243 set_page_dirty(page);
244 if (obj->madv == I915_MADV_WILLNEED)
00731155 245 mark_page_accessed(page);
6a2c4232 246 page_cache_release(page);
00731155
CW
247 vaddr += PAGE_SIZE;
248 }
6a2c4232 249 obj->dirty = 0;
00731155
CW
250 }
251
6a2c4232
CW
252 sg_free_table(obj->pages);
253 kfree(obj->pages);
6a2c4232
CW
254}
255
256static void
257i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258{
259 drm_pci_free(obj->base.dev, obj->phys_handle);
260}
261
262static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 .get_pages = i915_gem_object_get_pages_phys,
264 .put_pages = i915_gem_object_put_pages_phys,
265 .release = i915_gem_object_release_phys,
266};
267
268static int
269drop_pages(struct drm_i915_gem_object *obj)
270{
271 struct i915_vma *vma, *next;
272 int ret;
273
274 drm_gem_object_reference(&obj->base);
275 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276 if (i915_vma_unbind(vma))
277 break;
278
279 ret = i915_gem_object_put_pages(obj);
280 drm_gem_object_unreference(&obj->base);
281
282 return ret;
00731155
CW
283}
284
285int
286i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 int align)
288{
289 drm_dma_handle_t *phys;
6a2c4232 290 int ret;
00731155
CW
291
292 if (obj->phys_handle) {
293 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 return -EBUSY;
295
296 return 0;
297 }
298
299 if (obj->madv != I915_MADV_WILLNEED)
300 return -EFAULT;
301
302 if (obj->base.filp == NULL)
303 return -EINVAL;
304
6a2c4232
CW
305 ret = drop_pages(obj);
306 if (ret)
307 return ret;
308
00731155
CW
309 /* create a new object */
310 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 if (!phys)
312 return -ENOMEM;
313
00731155 314 obj->phys_handle = phys;
6a2c4232
CW
315 obj->ops = &i915_gem_phys_ops;
316
317 return i915_gem_object_get_pages(obj);
00731155
CW
318}
319
320static int
321i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 struct drm_i915_gem_pwrite *args,
323 struct drm_file *file_priv)
324{
325 struct drm_device *dev = obj->base.dev;
326 void *vaddr = obj->phys_handle->vaddr + args->offset;
327 char __user *user_data = to_user_ptr(args->data_ptr);
063e4e6b 328 int ret = 0;
6a2c4232
CW
329
330 /* We manually control the domain here and pretend that it
331 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 */
333 ret = i915_gem_object_wait_rendering(obj, false);
334 if (ret)
335 return ret;
00731155 336
77a0d1ca 337 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
338 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 unsigned long unwritten;
340
341 /* The physical object once assigned is fixed for the lifetime
342 * of the obj, so we can safely drop the lock and continue
343 * to access vaddr.
344 */
345 mutex_unlock(&dev->struct_mutex);
346 unwritten = copy_from_user(vaddr, user_data, args->size);
347 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
348 if (unwritten) {
349 ret = -EFAULT;
350 goto out;
351 }
00731155
CW
352 }
353
6a2c4232 354 drm_clflush_virt_range(vaddr, args->size);
00731155 355 i915_gem_chipset_flush(dev);
063e4e6b
PZ
356
357out:
de152b62 358 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 359 return ret;
00731155
CW
360}
361
42dcedd4
CW
362void *i915_gem_object_alloc(struct drm_device *dev)
363{
364 struct drm_i915_private *dev_priv = dev->dev_private;
efab6d8d 365 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
366}
367
368void i915_gem_object_free(struct drm_i915_gem_object *obj)
369{
370 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
efab6d8d 371 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
372}
373
ff72145b
DA
374static int
375i915_gem_create(struct drm_file *file,
376 struct drm_device *dev,
377 uint64_t size,
378 uint32_t *handle_p)
673a394b 379{
05394f39 380 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
381 int ret;
382 u32 handle;
673a394b 383
ff72145b 384 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
385 if (size == 0)
386 return -EINVAL;
673a394b
EA
387
388 /* Allocate the new object */
ff72145b 389 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
390 if (obj == NULL)
391 return -ENOMEM;
392
05394f39 393 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 394 /* drop reference from allocate - handle holds it now */
d861e338
DV
395 drm_gem_object_unreference_unlocked(&obj->base);
396 if (ret)
397 return ret;
202f2fef 398
ff72145b 399 *handle_p = handle;
673a394b
EA
400 return 0;
401}
402
ff72145b
DA
403int
404i915_gem_dumb_create(struct drm_file *file,
405 struct drm_device *dev,
406 struct drm_mode_create_dumb *args)
407{
408 /* have to work out size/pitch and return them */
de45eaf7 409 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
410 args->size = args->pitch * args->height;
411 return i915_gem_create(file, dev,
da6b51d0 412 args->size, &args->handle);
ff72145b
DA
413}
414
ff72145b
DA
415/**
416 * Creates a new mm object and returns a handle to it.
417 */
418int
419i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 struct drm_file *file)
421{
422 struct drm_i915_gem_create *args = data;
63ed2cb2 423
ff72145b 424 return i915_gem_create(file, dev,
da6b51d0 425 args->size, &args->handle);
ff72145b
DA
426}
427
8461d226
DV
428static inline int
429__copy_to_user_swizzled(char __user *cpu_vaddr,
430 const char *gpu_vaddr, int gpu_offset,
431 int length)
432{
433 int ret, cpu_offset = 0;
434
435 while (length > 0) {
436 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 int this_length = min(cacheline_end - gpu_offset, length);
438 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 gpu_vaddr + swizzled_gpu_offset,
442 this_length);
443 if (ret)
444 return ret + length;
445
446 cpu_offset += this_length;
447 gpu_offset += this_length;
448 length -= this_length;
449 }
450
451 return 0;
452}
453
8c59967c 454static inline int
4f0c7cfb
BW
455__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 const char __user *cpu_vaddr,
8c59967c
DV
457 int length)
458{
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 cpu_vaddr + cpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478}
479
4c914c0c
BV
480/*
481 * Pins the specified object's pages and synchronizes the object with
482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
483 * flush the object from the CPU cache.
484 */
485int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 int *needs_clflush)
487{
488 int ret;
489
490 *needs_clflush = 0;
491
492 if (!obj->base.filp)
493 return -EINVAL;
494
495 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 /* If we're not in the cpu read domain, set ourself into the gtt
497 * read domain and manually flush cachelines (if required). This
498 * optimizes for the case when the gpu will dirty the data
499 * anyway again before the next pread happens. */
500 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 obj->cache_level);
502 ret = i915_gem_object_wait_rendering(obj, true);
503 if (ret)
504 return ret;
505 }
506
507 ret = i915_gem_object_get_pages(obj);
508 if (ret)
509 return ret;
510
511 i915_gem_object_pin_pages(obj);
512
513 return ret;
514}
515
d174bd64
DV
516/* Per-page copy function for the shmem pread fastpath.
517 * Flushes invalid cachelines before reading the target if
518 * needs_clflush is set. */
eb01459f 519static int
d174bd64
DV
520shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 char __user *user_data,
522 bool page_do_bit17_swizzling, bool needs_clflush)
523{
524 char *vaddr;
525 int ret;
526
e7e58eb5 527 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
528 return -EINVAL;
529
530 vaddr = kmap_atomic(page);
531 if (needs_clflush)
532 drm_clflush_virt_range(vaddr + shmem_page_offset,
533 page_length);
534 ret = __copy_to_user_inatomic(user_data,
535 vaddr + shmem_page_offset,
536 page_length);
537 kunmap_atomic(vaddr);
538
f60d7f0c 539 return ret ? -EFAULT : 0;
d174bd64
DV
540}
541
23c18c71
DV
542static void
543shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 bool swizzled)
545{
e7e58eb5 546 if (unlikely(swizzled)) {
23c18c71
DV
547 unsigned long start = (unsigned long) addr;
548 unsigned long end = (unsigned long) addr + length;
549
550 /* For swizzling simply ensure that we always flush both
551 * channels. Lame, but simple and it works. Swizzled
552 * pwrite/pread is far from a hotpath - current userspace
553 * doesn't use it at all. */
554 start = round_down(start, 128);
555 end = round_up(end, 128);
556
557 drm_clflush_virt_range((void *)start, end - start);
558 } else {
559 drm_clflush_virt_range(addr, length);
560 }
561
562}
563
d174bd64
DV
564/* Only difference to the fast-path function is that this can handle bit17
565 * and uses non-atomic copy and kmap functions. */
566static int
567shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 char __user *user_data,
569 bool page_do_bit17_swizzling, bool needs_clflush)
570{
571 char *vaddr;
572 int ret;
573
574 vaddr = kmap(page);
575 if (needs_clflush)
23c18c71
DV
576 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 page_length,
578 page_do_bit17_swizzling);
d174bd64
DV
579
580 if (page_do_bit17_swizzling)
581 ret = __copy_to_user_swizzled(user_data,
582 vaddr, shmem_page_offset,
583 page_length);
584 else
585 ret = __copy_to_user(user_data,
586 vaddr + shmem_page_offset,
587 page_length);
588 kunmap(page);
589
f60d7f0c 590 return ret ? - EFAULT : 0;
d174bd64
DV
591}
592
eb01459f 593static int
dbf7bff0
DV
594i915_gem_shmem_pread(struct drm_device *dev,
595 struct drm_i915_gem_object *obj,
596 struct drm_i915_gem_pread *args,
597 struct drm_file *file)
eb01459f 598{
8461d226 599 char __user *user_data;
eb01459f 600 ssize_t remain;
8461d226 601 loff_t offset;
eb2c0c81 602 int shmem_page_offset, page_length, ret = 0;
8461d226 603 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 604 int prefaulted = 0;
8489731c 605 int needs_clflush = 0;
67d5a50c 606 struct sg_page_iter sg_iter;
eb01459f 607
2bb4629a 608 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
609 remain = args->size;
610
8461d226 611 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 612
4c914c0c 613 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
614 if (ret)
615 return ret;
616
8461d226 617 offset = args->offset;
eb01459f 618
67d5a50c
ID
619 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 offset >> PAGE_SHIFT) {
2db76d7c 621 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
622
623 if (remain <= 0)
624 break;
625
eb01459f
EA
626 /* Operation in this page
627 *
eb01459f 628 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
629 * page_length = bytes to copy for this page
630 */
c8cbbb8b 631 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
632 page_length = remain;
633 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 635
8461d226
DV
636 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 (page_to_phys(page) & (1 << 17)) != 0;
638
d174bd64
DV
639 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 user_data, page_do_bit17_swizzling,
641 needs_clflush);
642 if (ret == 0)
643 goto next_page;
dbf7bff0 644
dbf7bff0
DV
645 mutex_unlock(&dev->struct_mutex);
646
d330a953 647 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 648 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
649 /* Userspace is tricking us, but we've already clobbered
650 * its pages with the prefault and promised to write the
651 * data up to the first fault. Hence ignore any errors
652 * and just continue. */
653 (void)ret;
654 prefaulted = 1;
655 }
eb01459f 656
d174bd64
DV
657 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
eb01459f 660
dbf7bff0 661 mutex_lock(&dev->struct_mutex);
f60d7f0c 662
f60d7f0c 663 if (ret)
8461d226 664 goto out;
8461d226 665
17793c9a 666next_page:
eb01459f 667 remain -= page_length;
8461d226 668 user_data += page_length;
eb01459f
EA
669 offset += page_length;
670 }
671
4f27b75d 672out:
f60d7f0c
CW
673 i915_gem_object_unpin_pages(obj);
674
eb01459f
EA
675 return ret;
676}
677
673a394b
EA
678/**
679 * Reads data from the object referenced by handle.
680 *
681 * On error, the contents of *data are undefined.
682 */
683int
684i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 685 struct drm_file *file)
673a394b
EA
686{
687 struct drm_i915_gem_pread *args = data;
05394f39 688 struct drm_i915_gem_object *obj;
35b62a89 689 int ret = 0;
673a394b 690
51311d0a
CW
691 if (args->size == 0)
692 return 0;
693
694 if (!access_ok(VERIFY_WRITE,
2bb4629a 695 to_user_ptr(args->data_ptr),
51311d0a
CW
696 args->size))
697 return -EFAULT;
698
4f27b75d 699 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 700 if (ret)
4f27b75d 701 return ret;
673a394b 702
05394f39 703 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 704 if (&obj->base == NULL) {
1d7cfea1
CW
705 ret = -ENOENT;
706 goto unlock;
4f27b75d 707 }
673a394b 708
7dcd2499 709 /* Bounds check source. */
05394f39
CW
710 if (args->offset > obj->base.size ||
711 args->size > obj->base.size - args->offset) {
ce9d419d 712 ret = -EINVAL;
35b62a89 713 goto out;
ce9d419d
CW
714 }
715
1286ff73
DV
716 /* prime objects have no backing filp to GEM pread/pwrite
717 * pages from.
718 */
719 if (!obj->base.filp) {
720 ret = -EINVAL;
721 goto out;
722 }
723
db53a302
CW
724 trace_i915_gem_object_pread(obj, args->offset, args->size);
725
dbf7bff0 726 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 727
35b62a89 728out:
05394f39 729 drm_gem_object_unreference(&obj->base);
1d7cfea1 730unlock:
4f27b75d 731 mutex_unlock(&dev->struct_mutex);
eb01459f 732 return ret;
673a394b
EA
733}
734
0839ccb8
KP
735/* This is the fast write path which cannot handle
736 * page faults in the source data
9b7530cc 737 */
0839ccb8
KP
738
739static inline int
740fast_user_write(struct io_mapping *mapping,
741 loff_t page_base, int page_offset,
742 char __user *user_data,
743 int length)
9b7530cc 744{
4f0c7cfb
BW
745 void __iomem *vaddr_atomic;
746 void *vaddr;
0839ccb8 747 unsigned long unwritten;
9b7530cc 748
3e4d3af5 749 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
750 /* We can use the cpu mem copy function because this is X86. */
751 vaddr = (void __force*)vaddr_atomic + page_offset;
752 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 753 user_data, length);
3e4d3af5 754 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 755 return unwritten;
0839ccb8
KP
756}
757
3de09aa3
EA
758/**
759 * This is the fast pwrite path, where we copy the data directly from the
760 * user into the GTT, uncached.
761 */
673a394b 762static int
05394f39
CW
763i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 struct drm_i915_gem_object *obj,
3de09aa3 765 struct drm_i915_gem_pwrite *args,
05394f39 766 struct drm_file *file)
673a394b 767{
3e31c6c0 768 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 769 ssize_t remain;
0839ccb8 770 loff_t offset, page_base;
673a394b 771 char __user *user_data;
935aaa69
DV
772 int page_offset, page_length, ret;
773
1ec9e26d 774 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
775 if (ret)
776 goto out;
777
778 ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 if (ret)
780 goto out_unpin;
781
782 ret = i915_gem_object_put_fence(obj);
783 if (ret)
784 goto out_unpin;
673a394b 785
2bb4629a 786 user_data = to_user_ptr(args->data_ptr);
673a394b 787 remain = args->size;
673a394b 788
f343c5f6 789 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b 790
77a0d1ca 791 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
063e4e6b 792
673a394b
EA
793 while (remain > 0) {
794 /* Operation in this page
795 *
0839ccb8
KP
796 * page_base = page offset within aperture
797 * page_offset = offset within page
798 * page_length = bytes to copy for this page
673a394b 799 */
c8cbbb8b
CW
800 page_base = offset & PAGE_MASK;
801 page_offset = offset_in_page(offset);
0839ccb8
KP
802 page_length = remain;
803 if ((page_offset + remain) > PAGE_SIZE)
804 page_length = PAGE_SIZE - page_offset;
805
0839ccb8 806 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
807 * source page isn't available. Return the error and we'll
808 * retry in the slow path.
0839ccb8 809 */
5d4545ae 810 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
811 page_offset, user_data, page_length)) {
812 ret = -EFAULT;
063e4e6b 813 goto out_flush;
935aaa69 814 }
673a394b 815
0839ccb8
KP
816 remain -= page_length;
817 user_data += page_length;
818 offset += page_length;
673a394b 819 }
673a394b 820
063e4e6b 821out_flush:
de152b62 822 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
935aaa69 823out_unpin:
d7f46fc4 824 i915_gem_object_ggtt_unpin(obj);
935aaa69 825out:
3de09aa3 826 return ret;
673a394b
EA
827}
828
d174bd64
DV
829/* Per-page copy function for the shmem pwrite fastpath.
830 * Flushes invalid cachelines before writing to the target if
831 * needs_clflush_before is set and flushes out any written cachelines after
832 * writing if needs_clflush is set. */
3043c60c 833static int
d174bd64
DV
834shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 char __user *user_data,
836 bool page_do_bit17_swizzling,
837 bool needs_clflush_before,
838 bool needs_clflush_after)
673a394b 839{
d174bd64 840 char *vaddr;
673a394b 841 int ret;
3de09aa3 842
e7e58eb5 843 if (unlikely(page_do_bit17_swizzling))
d174bd64 844 return -EINVAL;
3de09aa3 845
d174bd64
DV
846 vaddr = kmap_atomic(page);
847 if (needs_clflush_before)
848 drm_clflush_virt_range(vaddr + shmem_page_offset,
849 page_length);
c2831a94
CW
850 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 user_data, page_length);
d174bd64
DV
852 if (needs_clflush_after)
853 drm_clflush_virt_range(vaddr + shmem_page_offset,
854 page_length);
855 kunmap_atomic(vaddr);
3de09aa3 856
755d2218 857 return ret ? -EFAULT : 0;
3de09aa3
EA
858}
859
d174bd64
DV
860/* Only difference to the fast-path function is that this can handle bit17
861 * and uses non-atomic copy and kmap functions. */
3043c60c 862static int
d174bd64
DV
863shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 char __user *user_data,
865 bool page_do_bit17_swizzling,
866 bool needs_clflush_before,
867 bool needs_clflush_after)
673a394b 868{
d174bd64
DV
869 char *vaddr;
870 int ret;
e5281ccd 871
d174bd64 872 vaddr = kmap(page);
e7e58eb5 873 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
874 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 page_length,
876 page_do_bit17_swizzling);
d174bd64
DV
877 if (page_do_bit17_swizzling)
878 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
879 user_data,
880 page_length);
d174bd64
DV
881 else
882 ret = __copy_from_user(vaddr + shmem_page_offset,
883 user_data,
884 page_length);
885 if (needs_clflush_after)
23c18c71
DV
886 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 page_length,
888 page_do_bit17_swizzling);
d174bd64 889 kunmap(page);
40123c1f 890
755d2218 891 return ret ? -EFAULT : 0;
40123c1f
EA
892}
893
40123c1f 894static int
e244a443
DV
895i915_gem_shmem_pwrite(struct drm_device *dev,
896 struct drm_i915_gem_object *obj,
897 struct drm_i915_gem_pwrite *args,
898 struct drm_file *file)
40123c1f 899{
40123c1f 900 ssize_t remain;
8c59967c
DV
901 loff_t offset;
902 char __user *user_data;
eb2c0c81 903 int shmem_page_offset, page_length, ret = 0;
8c59967c 904 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 905 int hit_slowpath = 0;
58642885
DV
906 int needs_clflush_after = 0;
907 int needs_clflush_before = 0;
67d5a50c 908 struct sg_page_iter sg_iter;
40123c1f 909
2bb4629a 910 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
911 remain = args->size;
912
8c59967c 913 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 914
58642885
DV
915 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 /* If we're not in the cpu write domain, set ourself into the gtt
917 * write domain and manually flush cachelines (if required). This
918 * optimizes for the case when the gpu will use the data
919 * right away and we therefore have to clflush anyway. */
2c22569b 920 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
921 ret = i915_gem_object_wait_rendering(obj, false);
922 if (ret)
923 return ret;
58642885 924 }
c76ce038
CW
925 /* Same trick applies to invalidate partially written cachelines read
926 * before writing. */
927 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 needs_clflush_before =
929 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 930
755d2218
CW
931 ret = i915_gem_object_get_pages(obj);
932 if (ret)
933 return ret;
934
77a0d1ca 935 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 936
755d2218
CW
937 i915_gem_object_pin_pages(obj);
938
673a394b 939 offset = args->offset;
05394f39 940 obj->dirty = 1;
673a394b 941
67d5a50c
ID
942 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 offset >> PAGE_SHIFT) {
2db76d7c 944 struct page *page = sg_page_iter_page(&sg_iter);
58642885 945 int partial_cacheline_write;
e5281ccd 946
9da3da66
CW
947 if (remain <= 0)
948 break;
949
40123c1f
EA
950 /* Operation in this page
951 *
40123c1f 952 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
953 * page_length = bytes to copy for this page
954 */
c8cbbb8b 955 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
956
957 page_length = remain;
958 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 960
58642885
DV
961 /* If we don't overwrite a cacheline completely we need to be
962 * careful to have up-to-date data by first clflushing. Don't
963 * overcomplicate things and flush the entire patch. */
964 partial_cacheline_write = needs_clflush_before &&
965 ((shmem_page_offset | page_length)
966 & (boot_cpu_data.x86_clflush_size - 1));
967
8c59967c
DV
968 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 (page_to_phys(page) & (1 << 17)) != 0;
970
d174bd64
DV
971 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 user_data, page_do_bit17_swizzling,
973 partial_cacheline_write,
974 needs_clflush_after);
975 if (ret == 0)
976 goto next_page;
e244a443
DV
977
978 hit_slowpath = 1;
e244a443 979 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
980 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 user_data, page_do_bit17_swizzling,
982 partial_cacheline_write,
983 needs_clflush_after);
40123c1f 984
e244a443 985 mutex_lock(&dev->struct_mutex);
755d2218 986
755d2218 987 if (ret)
8c59967c 988 goto out;
8c59967c 989
17793c9a 990next_page:
40123c1f 991 remain -= page_length;
8c59967c 992 user_data += page_length;
40123c1f 993 offset += page_length;
673a394b
EA
994 }
995
fbd5a26d 996out:
755d2218
CW
997 i915_gem_object_unpin_pages(obj);
998
e244a443 999 if (hit_slowpath) {
8dcf015e
DV
1000 /*
1001 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 * cachelines in-line while writing and the object moved
1003 * out of the cpu write domain while we've dropped the lock.
1004 */
1005 if (!needs_clflush_after &&
1006 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6 1007 if (i915_gem_clflush_object(obj, obj->pin_display))
ed75a55b 1008 needs_clflush_after = true;
e244a443 1009 }
8c59967c 1010 }
673a394b 1011
58642885 1012 if (needs_clflush_after)
e76e9aeb 1013 i915_gem_chipset_flush(dev);
ed75a55b
VS
1014 else
1015 obj->cache_dirty = true;
58642885 1016
de152b62 1017 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1018 return ret;
673a394b
EA
1019}
1020
1021/**
1022 * Writes data to the object referenced by handle.
1023 *
1024 * On error, the contents of the buffer that were to be modified are undefined.
1025 */
1026int
1027i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1028 struct drm_file *file)
673a394b 1029{
5d77d9c5 1030 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1031 struct drm_i915_gem_pwrite *args = data;
05394f39 1032 struct drm_i915_gem_object *obj;
51311d0a
CW
1033 int ret;
1034
1035 if (args->size == 0)
1036 return 0;
1037
1038 if (!access_ok(VERIFY_READ,
2bb4629a 1039 to_user_ptr(args->data_ptr),
51311d0a
CW
1040 args->size))
1041 return -EFAULT;
1042
d330a953 1043 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1044 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045 args->size);
1046 if (ret)
1047 return -EFAULT;
1048 }
673a394b 1049
5d77d9c5
ID
1050 intel_runtime_pm_get(dev_priv);
1051
fbd5a26d 1052 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1053 if (ret)
5d77d9c5 1054 goto put_rpm;
1d7cfea1 1055
05394f39 1056 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1057 if (&obj->base == NULL) {
1d7cfea1
CW
1058 ret = -ENOENT;
1059 goto unlock;
fbd5a26d 1060 }
673a394b 1061
7dcd2499 1062 /* Bounds check destination. */
05394f39
CW
1063 if (args->offset > obj->base.size ||
1064 args->size > obj->base.size - args->offset) {
ce9d419d 1065 ret = -EINVAL;
35b62a89 1066 goto out;
ce9d419d
CW
1067 }
1068
1286ff73
DV
1069 /* prime objects have no backing filp to GEM pread/pwrite
1070 * pages from.
1071 */
1072 if (!obj->base.filp) {
1073 ret = -EINVAL;
1074 goto out;
1075 }
1076
db53a302
CW
1077 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
935aaa69 1079 ret = -EFAULT;
673a394b
EA
1080 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081 * it would end up going through the fenced access, and we'll get
1082 * different detiling behavior between reading and writing.
1083 * pread/pwrite currently are reading and writing from the CPU
1084 * perspective, requiring manual detiling by the client.
1085 */
2c22569b
CW
1086 if (obj->tiling_mode == I915_TILING_NONE &&
1087 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088 cpu_write_needs_clflush(obj)) {
fbd5a26d 1089 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1090 /* Note that the gtt paths might fail with non-page-backed user
1091 * pointers (e.g. gtt mappings when moving data between
1092 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1093 }
673a394b 1094
6a2c4232
CW
1095 if (ret == -EFAULT || ret == -ENOSPC) {
1096 if (obj->phys_handle)
1097 ret = i915_gem_phys_pwrite(obj, args, file);
1098 else
1099 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100 }
5c0480f2 1101
35b62a89 1102out:
05394f39 1103 drm_gem_object_unreference(&obj->base);
1d7cfea1 1104unlock:
fbd5a26d 1105 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1106put_rpm:
1107 intel_runtime_pm_put(dev_priv);
1108
673a394b
EA
1109 return ret;
1110}
1111
b361237b 1112int
33196ded 1113i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1114 bool interruptible)
1115{
1f83fee0 1116 if (i915_reset_in_progress(error)) {
b361237b
CW
1117 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118 * -EIO unconditionally for these. */
1119 if (!interruptible)
1120 return -EIO;
1121
1f83fee0
DV
1122 /* Recovery complete, but the reset failed ... */
1123 if (i915_terminally_wedged(error))
b361237b
CW
1124 return -EIO;
1125
6689c167
MA
1126 /*
1127 * Check if GPU Reset is in progress - we need intel_ring_begin
1128 * to work properly to reinit the hw state while the gpu is
1129 * still marked as reset-in-progress. Handle this with a flag.
1130 */
1131 if (!error->reload_in_reset)
1132 return -EAGAIN;
b361237b
CW
1133 }
1134
1135 return 0;
1136}
1137
094f9a54
CW
1138static void fake_irq(unsigned long data)
1139{
1140 wake_up_process((struct task_struct *)data);
1141}
1142
1143static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1144 struct intel_engine_cs *ring)
094f9a54
CW
1145{
1146 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147}
1148
ca5b721e
CW
1149static unsigned long local_clock_us(unsigned *cpu)
1150{
1151 unsigned long t;
1152
1153 /* Cheaply and approximately convert from nanoseconds to microseconds.
1154 * The result and subsequent calculations are also defined in the same
1155 * approximate microseconds units. The principal source of timing
1156 * error here is from the simple truncation.
1157 *
1158 * Note that local_clock() is only defined wrt to the current CPU;
1159 * the comparisons are no longer valid if we switch CPUs. Instead of
1160 * blocking preemption for the entire busywait, we can detect the CPU
1161 * switch and use that as indicator of system load and a reason to
1162 * stop busywaiting, see busywait_stop().
1163 */
1164 *cpu = get_cpu();
1165 t = local_clock() >> 10;
1166 put_cpu();
1167
1168 return t;
1169}
1170
1171static bool busywait_stop(unsigned long timeout, unsigned cpu)
1172{
1173 unsigned this_cpu;
1174
1175 if (time_after(local_clock_us(&this_cpu), timeout))
1176 return true;
1177
1178 return this_cpu != cpu;
1179}
1180
91b0c352 1181static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
b29c19b6 1182{
2def4ad9 1183 unsigned long timeout;
ca5b721e
CW
1184 unsigned cpu;
1185
1186 /* When waiting for high frequency requests, e.g. during synchronous
1187 * rendering split between the CPU and GPU, the finite amount of time
1188 * required to set up the irq and wait upon it limits the response
1189 * rate. By busywaiting on the request completion for a short while we
1190 * can service the high frequency waits as quick as possible. However,
1191 * if it is a slow request, we want to sleep as quickly as possible.
1192 * The tradeoff between waiting and sleeping is roughly the time it
1193 * takes to sleep on a request, on the order of a microsecond.
1194 */
2def4ad9 1195
821485dc 1196 if (req->ring->irq_refcount)
2def4ad9
CW
1197 return -EBUSY;
1198
821485dc
CW
1199 /* Only spin if we know the GPU is processing this request */
1200 if (!i915_gem_request_started(req, true))
1201 return -EAGAIN;
1202
ca5b721e 1203 timeout = local_clock_us(&cpu) + 5;
2def4ad9 1204 while (!need_resched()) {
eed29a5b 1205 if (i915_gem_request_completed(req, true))
2def4ad9
CW
1206 return 0;
1207
91b0c352
CW
1208 if (signal_pending_state(state, current))
1209 break;
1210
ca5b721e 1211 if (busywait_stop(timeout, cpu))
2def4ad9 1212 break;
b29c19b6 1213
2def4ad9
CW
1214 cpu_relax_lowlatency();
1215 }
821485dc 1216
eed29a5b 1217 if (i915_gem_request_completed(req, false))
2def4ad9
CW
1218 return 0;
1219
1220 return -EAGAIN;
b29c19b6
CW
1221}
1222
b361237b 1223/**
9c654818
JH
1224 * __i915_wait_request - wait until execution of request has finished
1225 * @req: duh!
1226 * @reset_counter: reset sequence associated with the given request
b361237b
CW
1227 * @interruptible: do an interruptible wait (normally yes)
1228 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1229 *
f69061be
DV
1230 * Note: It is of utmost importance that the passed in seqno and reset_counter
1231 * values have been read by the caller in an smp safe manner. Where read-side
1232 * locks are involved, it is sufficient to read the reset_counter before
1233 * unlocking the lock that protects the seqno. For lockless tricks, the
1234 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1235 * inserted.
1236 *
9c654818 1237 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1238 * errno with remaining time filled in timeout argument.
1239 */
9c654818 1240int __i915_wait_request(struct drm_i915_gem_request *req,
f69061be 1241 unsigned reset_counter,
b29c19b6 1242 bool interruptible,
5ed0bdf2 1243 s64 *timeout,
2e1b8730 1244 struct intel_rps_client *rps)
b361237b 1245{
9c654818 1246 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
3d13ef2e 1247 struct drm_device *dev = ring->dev;
3e31c6c0 1248 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1249 const bool irq_test_in_progress =
1250 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
91b0c352 1251 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
094f9a54 1252 DEFINE_WAIT(wait);
47e9766d 1253 unsigned long timeout_expire;
e0313db0 1254 s64 before = 0; /* Only to silence a compiler warning. */
b361237b
CW
1255 int ret;
1256
9df7575f 1257 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1258
b4716185
CW
1259 if (list_empty(&req->list))
1260 return 0;
1261
1b5a433a 1262 if (i915_gem_request_completed(req, true))
b361237b
CW
1263 return 0;
1264
bb6d1984
CW
1265 timeout_expire = 0;
1266 if (timeout) {
1267 if (WARN_ON(*timeout < 0))
1268 return -EINVAL;
1269
1270 if (*timeout == 0)
1271 return -ETIME;
1272
1273 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
e0313db0
TU
1274
1275 /*
1276 * Record current time in case interrupted by signal, or wedged.
1277 */
1278 before = ktime_get_raw_ns();
bb6d1984 1279 }
b361237b 1280
2e1b8730 1281 if (INTEL_INFO(dev_priv)->gen >= 6)
e61b9958 1282 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
b361237b 1283
74328ee5 1284 trace_i915_gem_request_wait_begin(req);
2def4ad9
CW
1285
1286 /* Optimistic spin for the next jiffie before touching IRQs */
91b0c352 1287 ret = __i915_spin_request(req, state);
2def4ad9
CW
1288 if (ret == 0)
1289 goto out;
1290
1291 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1292 ret = -ENODEV;
1293 goto out;
1294 }
1295
094f9a54
CW
1296 for (;;) {
1297 struct timer_list timer;
b361237b 1298
91b0c352 1299 prepare_to_wait(&ring->irq_queue, &wait, state);
b361237b 1300
f69061be
DV
1301 /* We need to check whether any gpu reset happened in between
1302 * the caller grabbing the seqno and now ... */
094f9a54
CW
1303 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1304 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1305 * is truely gone. */
1306 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1307 if (ret == 0)
1308 ret = -EAGAIN;
1309 break;
1310 }
f69061be 1311
1b5a433a 1312 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1313 ret = 0;
1314 break;
1315 }
b361237b 1316
91b0c352 1317 if (signal_pending_state(state, current)) {
094f9a54
CW
1318 ret = -ERESTARTSYS;
1319 break;
1320 }
1321
47e9766d 1322 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1323 ret = -ETIME;
1324 break;
1325 }
1326
1327 timer.function = NULL;
1328 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1329 unsigned long expire;
1330
094f9a54 1331 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1332 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1333 mod_timer(&timer, expire);
1334 }
1335
5035c275 1336 io_schedule();
094f9a54 1337
094f9a54
CW
1338 if (timer.function) {
1339 del_singleshot_timer_sync(&timer);
1340 destroy_timer_on_stack(&timer);
1341 }
1342 }
168c3f21
MK
1343 if (!irq_test_in_progress)
1344 ring->irq_put(ring);
094f9a54
CW
1345
1346 finish_wait(&ring->irq_queue, &wait);
b361237b 1347
2def4ad9 1348out:
2def4ad9
CW
1349 trace_i915_gem_request_wait_end(req);
1350
b361237b 1351 if (timeout) {
e0313db0 1352 s64 tres = *timeout - (ktime_get_raw_ns() - before);
5ed0bdf2
TG
1353
1354 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1355
1356 /*
1357 * Apparently ktime isn't accurate enough and occasionally has a
1358 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1359 * things up to make the test happy. We allow up to 1 jiffy.
1360 *
1361 * This is a regrssion from the timespec->ktime conversion.
1362 */
1363 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1364 *timeout = 0;
b361237b
CW
1365 }
1366
094f9a54 1367 return ret;
b361237b
CW
1368}
1369
fcfa423c
JH
1370int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1371 struct drm_file *file)
1372{
1373 struct drm_i915_private *dev_private;
1374 struct drm_i915_file_private *file_priv;
1375
1376 WARN_ON(!req || !file || req->file_priv);
1377
1378 if (!req || !file)
1379 return -EINVAL;
1380
1381 if (req->file_priv)
1382 return -EINVAL;
1383
1384 dev_private = req->ring->dev->dev_private;
1385 file_priv = file->driver_priv;
1386
1387 spin_lock(&file_priv->mm.lock);
1388 req->file_priv = file_priv;
1389 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1390 spin_unlock(&file_priv->mm.lock);
1391
1392 req->pid = get_pid(task_pid(current));
1393
1394 return 0;
1395}
1396
b4716185
CW
1397static inline void
1398i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1399{
1400 struct drm_i915_file_private *file_priv = request->file_priv;
1401
1402 if (!file_priv)
1403 return;
1404
1405 spin_lock(&file_priv->mm.lock);
1406 list_del(&request->client_list);
1407 request->file_priv = NULL;
1408 spin_unlock(&file_priv->mm.lock);
fcfa423c
JH
1409
1410 put_pid(request->pid);
1411 request->pid = NULL;
b4716185
CW
1412}
1413
1414static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1415{
1416 trace_i915_gem_request_retire(request);
1417
1418 /* We know the GPU must have read the request to have
1419 * sent us the seqno + interrupt, so use the position
1420 * of tail of the request to update the last known position
1421 * of the GPU head.
1422 *
1423 * Note this requires that we are always called in request
1424 * completion order.
1425 */
1426 request->ringbuf->last_retired_head = request->postfix;
1427
1428 list_del_init(&request->list);
1429 i915_gem_request_remove_from_client(request);
1430
b4716185
CW
1431 i915_gem_request_unreference(request);
1432}
1433
1434static void
1435__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1436{
1437 struct intel_engine_cs *engine = req->ring;
1438 struct drm_i915_gem_request *tmp;
1439
1440 lockdep_assert_held(&engine->dev->struct_mutex);
1441
1442 if (list_empty(&req->list))
1443 return;
1444
1445 do {
1446 tmp = list_first_entry(&engine->request_list,
1447 typeof(*tmp), list);
1448
1449 i915_gem_request_retire(tmp);
1450 } while (tmp != req);
1451
1452 WARN_ON(i915_verify_lists(engine->dev));
1453}
1454
b361237b 1455/**
a4b3a571 1456 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1457 * request and object lists appropriately for that event.
1458 */
1459int
a4b3a571 1460i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1461{
a4b3a571
DV
1462 struct drm_device *dev;
1463 struct drm_i915_private *dev_priv;
1464 bool interruptible;
b361237b
CW
1465 int ret;
1466
a4b3a571
DV
1467 BUG_ON(req == NULL);
1468
1469 dev = req->ring->dev;
1470 dev_priv = dev->dev_private;
1471 interruptible = dev_priv->mm.interruptible;
1472
b361237b 1473 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
b361237b 1474
33196ded 1475 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1476 if (ret)
1477 return ret;
1478
b4716185
CW
1479 ret = __i915_wait_request(req,
1480 atomic_read(&dev_priv->gpu_error.reset_counter),
9c654818 1481 interruptible, NULL, NULL);
b4716185
CW
1482 if (ret)
1483 return ret;
d26e3af8 1484
b4716185 1485 __i915_gem_request_retire__upto(req);
d26e3af8
CW
1486 return 0;
1487}
1488
b361237b
CW
1489/**
1490 * Ensures that all rendering to the object has completed and the object is
1491 * safe to unbind from the GTT or access from the CPU.
1492 */
2e2f351d 1493int
b361237b
CW
1494i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1495 bool readonly)
1496{
b4716185 1497 int ret, i;
b361237b 1498
b4716185 1499 if (!obj->active)
b361237b
CW
1500 return 0;
1501
b4716185
CW
1502 if (readonly) {
1503 if (obj->last_write_req != NULL) {
1504 ret = i915_wait_request(obj->last_write_req);
1505 if (ret)
1506 return ret;
b361237b 1507
b4716185
CW
1508 i = obj->last_write_req->ring->id;
1509 if (obj->last_read_req[i] == obj->last_write_req)
1510 i915_gem_object_retire__read(obj, i);
1511 else
1512 i915_gem_object_retire__write(obj);
1513 }
1514 } else {
1515 for (i = 0; i < I915_NUM_RINGS; i++) {
1516 if (obj->last_read_req[i] == NULL)
1517 continue;
1518
1519 ret = i915_wait_request(obj->last_read_req[i]);
1520 if (ret)
1521 return ret;
1522
1523 i915_gem_object_retire__read(obj, i);
1524 }
1525 RQ_BUG_ON(obj->active);
1526 }
1527
1528 return 0;
1529}
1530
1531static void
1532i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1533 struct drm_i915_gem_request *req)
1534{
1535 int ring = req->ring->id;
1536
1537 if (obj->last_read_req[ring] == req)
1538 i915_gem_object_retire__read(obj, ring);
1539 else if (obj->last_write_req == req)
1540 i915_gem_object_retire__write(obj);
1541
1542 __i915_gem_request_retire__upto(req);
b361237b
CW
1543}
1544
3236f57a
CW
1545/* A nonblocking variant of the above wait. This is a highly dangerous routine
1546 * as the object state may change during this call.
1547 */
1548static __must_check int
1549i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
2e1b8730 1550 struct intel_rps_client *rps,
3236f57a
CW
1551 bool readonly)
1552{
1553 struct drm_device *dev = obj->base.dev;
1554 struct drm_i915_private *dev_priv = dev->dev_private;
b4716185 1555 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
f69061be 1556 unsigned reset_counter;
b4716185 1557 int ret, i, n = 0;
3236f57a
CW
1558
1559 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1560 BUG_ON(!dev_priv->mm.interruptible);
1561
b4716185 1562 if (!obj->active)
3236f57a
CW
1563 return 0;
1564
33196ded 1565 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1566 if (ret)
1567 return ret;
1568
f69061be 1569 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
1570
1571 if (readonly) {
1572 struct drm_i915_gem_request *req;
1573
1574 req = obj->last_write_req;
1575 if (req == NULL)
1576 return 0;
1577
b4716185
CW
1578 requests[n++] = i915_gem_request_reference(req);
1579 } else {
1580 for (i = 0; i < I915_NUM_RINGS; i++) {
1581 struct drm_i915_gem_request *req;
1582
1583 req = obj->last_read_req[i];
1584 if (req == NULL)
1585 continue;
1586
b4716185
CW
1587 requests[n++] = i915_gem_request_reference(req);
1588 }
1589 }
1590
3236f57a 1591 mutex_unlock(&dev->struct_mutex);
b4716185
CW
1592 for (i = 0; ret == 0 && i < n; i++)
1593 ret = __i915_wait_request(requests[i], reset_counter, true,
2e1b8730 1594 NULL, rps);
3236f57a
CW
1595 mutex_lock(&dev->struct_mutex);
1596
b4716185
CW
1597 for (i = 0; i < n; i++) {
1598 if (ret == 0)
1599 i915_gem_object_retire_request(obj, requests[i]);
1600 i915_gem_request_unreference(requests[i]);
1601 }
1602
1603 return ret;
3236f57a
CW
1604}
1605
2e1b8730
CW
1606static struct intel_rps_client *to_rps_client(struct drm_file *file)
1607{
1608 struct drm_i915_file_private *fpriv = file->driver_priv;
1609 return &fpriv->rps;
1610}
1611
673a394b 1612/**
2ef7eeaa
EA
1613 * Called when user space prepares to use an object with the CPU, either
1614 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1615 */
1616int
1617i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1618 struct drm_file *file)
673a394b
EA
1619{
1620 struct drm_i915_gem_set_domain *args = data;
05394f39 1621 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1622 uint32_t read_domains = args->read_domains;
1623 uint32_t write_domain = args->write_domain;
673a394b
EA
1624 int ret;
1625
2ef7eeaa 1626 /* Only handle setting domains to types used by the CPU. */
21d509e3 1627 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1628 return -EINVAL;
1629
21d509e3 1630 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1631 return -EINVAL;
1632
1633 /* Having something in the write domain implies it's in the read
1634 * domain, and only that read domain. Enforce that in the request.
1635 */
1636 if (write_domain != 0 && read_domains != write_domain)
1637 return -EINVAL;
1638
76c1dec1 1639 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1640 if (ret)
76c1dec1 1641 return ret;
1d7cfea1 1642
05394f39 1643 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1644 if (&obj->base == NULL) {
1d7cfea1
CW
1645 ret = -ENOENT;
1646 goto unlock;
76c1dec1 1647 }
673a394b 1648
3236f57a
CW
1649 /* Try to flush the object off the GPU without holding the lock.
1650 * We will repeat the flush holding the lock in the normal manner
1651 * to catch cases where we are gazumped.
1652 */
6e4930f6 1653 ret = i915_gem_object_wait_rendering__nonblocking(obj,
2e1b8730 1654 to_rps_client(file),
6e4930f6 1655 !write_domain);
3236f57a
CW
1656 if (ret)
1657 goto unref;
1658
43566ded 1659 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1660 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1661 else
e47c68e9 1662 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1663
031b698a
DV
1664 if (write_domain != 0)
1665 intel_fb_obj_invalidate(obj,
1666 write_domain == I915_GEM_DOMAIN_GTT ?
1667 ORIGIN_GTT : ORIGIN_CPU);
1668
3236f57a 1669unref:
05394f39 1670 drm_gem_object_unreference(&obj->base);
1d7cfea1 1671unlock:
673a394b
EA
1672 mutex_unlock(&dev->struct_mutex);
1673 return ret;
1674}
1675
1676/**
1677 * Called when user space has done writes to this buffer
1678 */
1679int
1680i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1681 struct drm_file *file)
673a394b
EA
1682{
1683 struct drm_i915_gem_sw_finish *args = data;
05394f39 1684 struct drm_i915_gem_object *obj;
673a394b
EA
1685 int ret = 0;
1686
76c1dec1 1687 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1688 if (ret)
76c1dec1 1689 return ret;
1d7cfea1 1690
05394f39 1691 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1692 if (&obj->base == NULL) {
1d7cfea1
CW
1693 ret = -ENOENT;
1694 goto unlock;
673a394b
EA
1695 }
1696
673a394b 1697 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1698 if (obj->pin_display)
e62b59e4 1699 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1700
05394f39 1701 drm_gem_object_unreference(&obj->base);
1d7cfea1 1702unlock:
673a394b
EA
1703 mutex_unlock(&dev->struct_mutex);
1704 return ret;
1705}
1706
1707/**
1708 * Maps the contents of an object, returning the address it is mapped
1709 * into.
1710 *
1711 * While the mapping holds a reference on the contents of the object, it doesn't
1712 * imply a ref on the object itself.
34367381
DV
1713 *
1714 * IMPORTANT:
1715 *
1716 * DRM driver writers who look a this function as an example for how to do GEM
1717 * mmap support, please don't implement mmap support like here. The modern way
1718 * to implement DRM mmap support is with an mmap offset ioctl (like
1719 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1720 * That way debug tooling like valgrind will understand what's going on, hiding
1721 * the mmap call in a driver private ioctl will break that. The i915 driver only
1722 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1723 */
1724int
1725i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1726 struct drm_file *file)
673a394b
EA
1727{
1728 struct drm_i915_gem_mmap *args = data;
1729 struct drm_gem_object *obj;
673a394b
EA
1730 unsigned long addr;
1731
1816f923
AG
1732 if (args->flags & ~(I915_MMAP_WC))
1733 return -EINVAL;
1734
1735 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1736 return -ENODEV;
1737
05394f39 1738 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1739 if (obj == NULL)
bf79cb91 1740 return -ENOENT;
673a394b 1741
1286ff73
DV
1742 /* prime objects have no backing filp to GEM mmap
1743 * pages from.
1744 */
1745 if (!obj->filp) {
1746 drm_gem_object_unreference_unlocked(obj);
1747 return -EINVAL;
1748 }
1749
6be5ceb0 1750 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1751 PROT_READ | PROT_WRITE, MAP_SHARED,
1752 args->offset);
1816f923
AG
1753 if (args->flags & I915_MMAP_WC) {
1754 struct mm_struct *mm = current->mm;
1755 struct vm_area_struct *vma;
1756
1757 down_write(&mm->mmap_sem);
1758 vma = find_vma(mm, addr);
1759 if (vma)
1760 vma->vm_page_prot =
1761 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1762 else
1763 addr = -ENOMEM;
1764 up_write(&mm->mmap_sem);
1765 }
bc9025bd 1766 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1767 if (IS_ERR((void *)addr))
1768 return addr;
1769
1770 args->addr_ptr = (uint64_t) addr;
1771
1772 return 0;
1773}
1774
de151cf6
JB
1775/**
1776 * i915_gem_fault - fault a page into the GTT
d9072a3e
GT
1777 * @vma: VMA in question
1778 * @vmf: fault info
de151cf6
JB
1779 *
1780 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1781 * from userspace. The fault handler takes care of binding the object to
1782 * the GTT (if needed), allocating and programming a fence register (again,
1783 * only if needed based on whether the old reg is still valid or the object
1784 * is tiled) and inserting a new PTE into the faulting process.
1785 *
1786 * Note that the faulting process may involve evicting existing objects
1787 * from the GTT and/or fence registers to make room. So performance may
1788 * suffer if the GTT working set is large or there are few fence registers
1789 * left.
1790 */
1791int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1792{
05394f39
CW
1793 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1794 struct drm_device *dev = obj->base.dev;
3e31c6c0 1795 struct drm_i915_private *dev_priv = dev->dev_private;
c5ad54cf 1796 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
1797 pgoff_t page_offset;
1798 unsigned long pfn;
1799 int ret = 0;
0f973f27 1800 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1801
f65c9168
PZ
1802 intel_runtime_pm_get(dev_priv);
1803
de151cf6
JB
1804 /* We don't use vmf->pgoff since that has the fake offset */
1805 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1806 PAGE_SHIFT;
1807
d9bc7e9f
CW
1808 ret = i915_mutex_lock_interruptible(dev);
1809 if (ret)
1810 goto out;
a00b10c3 1811
db53a302
CW
1812 trace_i915_gem_object_fault(obj, page_offset, true, write);
1813
6e4930f6
CW
1814 /* Try to flush the object off the GPU first without holding the lock.
1815 * Upon reacquiring the lock, we will perform our sanity checks and then
1816 * repeat the flush holding the lock in the normal manner to catch cases
1817 * where we are gazumped.
1818 */
1819 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1820 if (ret)
1821 goto unlock;
1822
eb119bd6
CW
1823 /* Access to snoopable pages through the GTT is incoherent. */
1824 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1825 ret = -EFAULT;
eb119bd6
CW
1826 goto unlock;
1827 }
1828
c5ad54cf 1829 /* Use a partial view if the object is bigger than the aperture. */
e7ded2d7
JL
1830 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1831 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 1832 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1833
c5ad54cf
JL
1834 memset(&view, 0, sizeof(view));
1835 view.type = I915_GGTT_VIEW_PARTIAL;
1836 view.params.partial.offset = rounddown(page_offset, chunk_size);
1837 view.params.partial.size =
1838 min_t(unsigned int,
1839 chunk_size,
1840 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1841 view.params.partial.offset);
1842 }
1843
1844 /* Now pin it into the GTT if needed */
1845 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
c9839303
CW
1846 if (ret)
1847 goto unlock;
4a684a41 1848
c9839303
CW
1849 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1850 if (ret)
1851 goto unpin;
74898d7e 1852
06d98131 1853 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1854 if (ret)
c9839303 1855 goto unpin;
7d1c4804 1856
b90b91d8 1857 /* Finally, remap it using the new GTT offset */
c5ad54cf
JL
1858 pfn = dev_priv->gtt.mappable_base +
1859 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 1860 pfn >>= PAGE_SHIFT;
de151cf6 1861
c5ad54cf
JL
1862 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1863 /* Overriding existing pages in partial view does not cause
1864 * us any trouble as TLBs are still valid because the fault
1865 * is due to userspace losing part of the mapping or never
1866 * having accessed it before (at this partials' range).
1867 */
1868 unsigned long base = vma->vm_start +
1869 (view.params.partial.offset << PAGE_SHIFT);
1870 unsigned int i;
b90b91d8 1871
c5ad54cf
JL
1872 for (i = 0; i < view.params.partial.size; i++) {
1873 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
1874 if (ret)
1875 break;
1876 }
1877
1878 obj->fault_mappable = true;
c5ad54cf
JL
1879 } else {
1880 if (!obj->fault_mappable) {
1881 unsigned long size = min_t(unsigned long,
1882 vma->vm_end - vma->vm_start,
1883 obj->base.size);
1884 int i;
1885
1886 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1887 ret = vm_insert_pfn(vma,
1888 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1889 pfn + i);
1890 if (ret)
1891 break;
1892 }
1893
1894 obj->fault_mappable = true;
1895 } else
1896 ret = vm_insert_pfn(vma,
1897 (unsigned long)vmf->virtual_address,
1898 pfn + page_offset);
1899 }
c9839303 1900unpin:
c5ad54cf 1901 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 1902unlock:
de151cf6 1903 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1904out:
de151cf6 1905 switch (ret) {
d9bc7e9f 1906 case -EIO:
2232f031
DV
1907 /*
1908 * We eat errors when the gpu is terminally wedged to avoid
1909 * userspace unduly crashing (gl has no provisions for mmaps to
1910 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1911 * and so needs to be reported.
1912 */
1913 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1914 ret = VM_FAULT_SIGBUS;
1915 break;
1916 }
045e769a 1917 case -EAGAIN:
571c608d
DV
1918 /*
1919 * EAGAIN means the gpu is hung and we'll wait for the error
1920 * handler to reset everything when re-faulting in
1921 * i915_mutex_lock_interruptible.
d9bc7e9f 1922 */
c715089f
CW
1923 case 0:
1924 case -ERESTARTSYS:
bed636ab 1925 case -EINTR:
e79e0fe3
DR
1926 case -EBUSY:
1927 /*
1928 * EBUSY is ok: this just means that another thread
1929 * already did the job.
1930 */
f65c9168
PZ
1931 ret = VM_FAULT_NOPAGE;
1932 break;
de151cf6 1933 case -ENOMEM:
f65c9168
PZ
1934 ret = VM_FAULT_OOM;
1935 break;
a7c2e1aa 1936 case -ENOSPC:
45d67817 1937 case -EFAULT:
f65c9168
PZ
1938 ret = VM_FAULT_SIGBUS;
1939 break;
de151cf6 1940 default:
a7c2e1aa 1941 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1942 ret = VM_FAULT_SIGBUS;
1943 break;
de151cf6 1944 }
f65c9168
PZ
1945
1946 intel_runtime_pm_put(dev_priv);
1947 return ret;
de151cf6
JB
1948}
1949
901782b2
CW
1950/**
1951 * i915_gem_release_mmap - remove physical page mappings
1952 * @obj: obj in question
1953 *
af901ca1 1954 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1955 * relinquish ownership of the pages back to the system.
1956 *
1957 * It is vital that we remove the page mapping if we have mapped a tiled
1958 * object through the GTT and then lose the fence register due to
1959 * resource pressure. Similarly if the object has been moved out of the
1960 * aperture, than pages mapped into userspace must be revoked. Removing the
1961 * mapping will then trigger a page fault on the next user access, allowing
1962 * fixup by i915_gem_fault().
1963 */
d05ca301 1964void
05394f39 1965i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1966{
6299f992
CW
1967 if (!obj->fault_mappable)
1968 return;
901782b2 1969
6796cb16
DR
1970 drm_vma_node_unmap(&obj->base.vma_node,
1971 obj->base.dev->anon_inode->i_mapping);
6299f992 1972 obj->fault_mappable = false;
901782b2
CW
1973}
1974
eedd10f4
CW
1975void
1976i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1977{
1978 struct drm_i915_gem_object *obj;
1979
1980 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1981 i915_gem_release_mmap(obj);
1982}
1983
0fa87796 1984uint32_t
e28f8711 1985i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1986{
e28f8711 1987 uint32_t gtt_size;
92b88aeb
CW
1988
1989 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1990 tiling_mode == I915_TILING_NONE)
1991 return size;
92b88aeb
CW
1992
1993 /* Previous chips need a power-of-two fence region when tiling */
1994 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1995 gtt_size = 1024*1024;
92b88aeb 1996 else
e28f8711 1997 gtt_size = 512*1024;
92b88aeb 1998
e28f8711
CW
1999 while (gtt_size < size)
2000 gtt_size <<= 1;
92b88aeb 2001
e28f8711 2002 return gtt_size;
92b88aeb
CW
2003}
2004
de151cf6
JB
2005/**
2006 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2007 * @obj: object to check
2008 *
2009 * Return the required GTT alignment for an object, taking into account
5e783301 2010 * potential fence register mapping.
de151cf6 2011 */
d865110c
ID
2012uint32_t
2013i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2014 int tiling_mode, bool fenced)
de151cf6 2015{
de151cf6
JB
2016 /*
2017 * Minimum alignment is 4k (GTT page size), but might be greater
2018 * if a fence register is needed for the object.
2019 */
d865110c 2020 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 2021 tiling_mode == I915_TILING_NONE)
de151cf6
JB
2022 return 4096;
2023
a00b10c3
CW
2024 /*
2025 * Previous chips need to be aligned to the size of the smallest
2026 * fence register that can contain the object.
2027 */
e28f8711 2028 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
2029}
2030
d8cb5086
CW
2031static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2032{
2033 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2034 int ret;
2035
0de23977 2036 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
2037 return 0;
2038
da494d7c
DV
2039 dev_priv->mm.shrinker_no_lock_stealing = true;
2040
d8cb5086
CW
2041 ret = drm_gem_create_mmap_offset(&obj->base);
2042 if (ret != -ENOSPC)
da494d7c 2043 goto out;
d8cb5086
CW
2044
2045 /* Badly fragmented mmap space? The only way we can recover
2046 * space is by destroying unwanted objects. We can't randomly release
2047 * mmap_offsets as userspace expects them to be persistent for the
2048 * lifetime of the objects. The closest we can is to release the
2049 * offsets on purgeable objects by truncating it and marking it purged,
2050 * which prevents userspace from ever using that object again.
2051 */
21ab4e74
CW
2052 i915_gem_shrink(dev_priv,
2053 obj->base.size >> PAGE_SHIFT,
2054 I915_SHRINK_BOUND |
2055 I915_SHRINK_UNBOUND |
2056 I915_SHRINK_PURGEABLE);
d8cb5086
CW
2057 ret = drm_gem_create_mmap_offset(&obj->base);
2058 if (ret != -ENOSPC)
da494d7c 2059 goto out;
d8cb5086
CW
2060
2061 i915_gem_shrink_all(dev_priv);
da494d7c
DV
2062 ret = drm_gem_create_mmap_offset(&obj->base);
2063out:
2064 dev_priv->mm.shrinker_no_lock_stealing = false;
2065
2066 return ret;
d8cb5086
CW
2067}
2068
2069static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2070{
d8cb5086
CW
2071 drm_gem_free_mmap_offset(&obj->base);
2072}
2073
da6b51d0 2074int
ff72145b
DA
2075i915_gem_mmap_gtt(struct drm_file *file,
2076 struct drm_device *dev,
da6b51d0 2077 uint32_t handle,
ff72145b 2078 uint64_t *offset)
de151cf6 2079{
05394f39 2080 struct drm_i915_gem_object *obj;
de151cf6
JB
2081 int ret;
2082
76c1dec1 2083 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 2084 if (ret)
76c1dec1 2085 return ret;
de151cf6 2086
ff72145b 2087 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 2088 if (&obj->base == NULL) {
1d7cfea1
CW
2089 ret = -ENOENT;
2090 goto unlock;
2091 }
de151cf6 2092
05394f39 2093 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2094 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 2095 ret = -EFAULT;
1d7cfea1 2096 goto out;
ab18282d
CW
2097 }
2098
d8cb5086
CW
2099 ret = i915_gem_object_create_mmap_offset(obj);
2100 if (ret)
2101 goto out;
de151cf6 2102
0de23977 2103 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2104
1d7cfea1 2105out:
05394f39 2106 drm_gem_object_unreference(&obj->base);
1d7cfea1 2107unlock:
de151cf6 2108 mutex_unlock(&dev->struct_mutex);
1d7cfea1 2109 return ret;
de151cf6
JB
2110}
2111
ff72145b
DA
2112/**
2113 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2114 * @dev: DRM device
2115 * @data: GTT mapping ioctl data
2116 * @file: GEM object info
2117 *
2118 * Simply returns the fake offset to userspace so it can mmap it.
2119 * The mmap call will end up in drm_gem_mmap(), which will set things
2120 * up so we can get faults in the handler above.
2121 *
2122 * The fault handler will take care of binding the object into the GTT
2123 * (since it may have been evicted to make room for something), allocating
2124 * a fence register, and mapping the appropriate aperture address into
2125 * userspace.
2126 */
2127int
2128i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2129 struct drm_file *file)
2130{
2131 struct drm_i915_gem_mmap_gtt *args = data;
2132
da6b51d0 2133 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2134}
2135
225067ee
DV
2136/* Immediately discard the backing storage */
2137static void
2138i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2139{
4d6294bf 2140 i915_gem_object_free_mmap_offset(obj);
1286ff73 2141
4d6294bf
CW
2142 if (obj->base.filp == NULL)
2143 return;
e5281ccd 2144
225067ee
DV
2145 /* Our goal here is to return as much of the memory as
2146 * is possible back to the system as we are called from OOM.
2147 * To do this we must instruct the shmfs to drop all of its
2148 * backing pages, *now*.
2149 */
5537252b 2150 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2151 obj->madv = __I915_MADV_PURGED;
2152}
e5281ccd 2153
5537252b
CW
2154/* Try to discard unwanted pages */
2155static void
2156i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2157{
5537252b
CW
2158 struct address_space *mapping;
2159
2160 switch (obj->madv) {
2161 case I915_MADV_DONTNEED:
2162 i915_gem_object_truncate(obj);
2163 case __I915_MADV_PURGED:
2164 return;
2165 }
2166
2167 if (obj->base.filp == NULL)
2168 return;
2169
2170 mapping = file_inode(obj->base.filp)->i_mapping,
2171 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2172}
2173
5cdf5881 2174static void
05394f39 2175i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2176{
90797e6d
ID
2177 struct sg_page_iter sg_iter;
2178 int ret;
1286ff73 2179
05394f39 2180 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2181
6c085a72
CW
2182 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2183 if (ret) {
2184 /* In the event of a disaster, abandon all caches and
2185 * hope for the best.
2186 */
2187 WARN_ON(ret != -EIO);
2c22569b 2188 i915_gem_clflush_object(obj, true);
6c085a72
CW
2189 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2190 }
2191
e2273302
ID
2192 i915_gem_gtt_finish_object(obj);
2193
6dacfd2f 2194 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2195 i915_gem_object_save_bit_17_swizzle(obj);
2196
05394f39
CW
2197 if (obj->madv == I915_MADV_DONTNEED)
2198 obj->dirty = 0;
3ef94daa 2199
90797e6d 2200 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 2201 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 2202
05394f39 2203 if (obj->dirty)
9da3da66 2204 set_page_dirty(page);
3ef94daa 2205
05394f39 2206 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2207 mark_page_accessed(page);
3ef94daa 2208
9da3da66 2209 page_cache_release(page);
3ef94daa 2210 }
05394f39 2211 obj->dirty = 0;
673a394b 2212
9da3da66
CW
2213 sg_free_table(obj->pages);
2214 kfree(obj->pages);
37e680a1 2215}
6c085a72 2216
dd624afd 2217int
37e680a1
CW
2218i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2219{
2220 const struct drm_i915_gem_object_ops *ops = obj->ops;
2221
2f745ad3 2222 if (obj->pages == NULL)
37e680a1
CW
2223 return 0;
2224
a5570178
CW
2225 if (obj->pages_pin_count)
2226 return -EBUSY;
2227
9843877d 2228 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2229
a2165e31
CW
2230 /* ->put_pages might need to allocate memory for the bit17 swizzle
2231 * array, hence protect them from being reaped by removing them from gtt
2232 * lists early. */
35c20a60 2233 list_del(&obj->global_list);
a2165e31 2234
37e680a1 2235 ops->put_pages(obj);
05394f39 2236 obj->pages = NULL;
37e680a1 2237
5537252b 2238 i915_gem_object_invalidate(obj);
6c085a72
CW
2239
2240 return 0;
2241}
2242
37e680a1 2243static int
6c085a72 2244i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2245{
6c085a72 2246 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2247 int page_count, i;
2248 struct address_space *mapping;
9da3da66
CW
2249 struct sg_table *st;
2250 struct scatterlist *sg;
90797e6d 2251 struct sg_page_iter sg_iter;
e5281ccd 2252 struct page *page;
90797e6d 2253 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2254 int ret;
6c085a72 2255 gfp_t gfp;
e5281ccd 2256
6c085a72
CW
2257 /* Assert that the object is not currently in any GPU domain. As it
2258 * wasn't in the GTT, there shouldn't be any way it could have been in
2259 * a GPU cache
2260 */
2261 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2262 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2263
9da3da66
CW
2264 st = kmalloc(sizeof(*st), GFP_KERNEL);
2265 if (st == NULL)
2266 return -ENOMEM;
2267
05394f39 2268 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2269 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2270 kfree(st);
e5281ccd 2271 return -ENOMEM;
9da3da66 2272 }
e5281ccd 2273
9da3da66
CW
2274 /* Get the list of pages out of our struct file. They'll be pinned
2275 * at this point until we release them.
2276 *
2277 * Fail silently without starting the shrinker
2278 */
496ad9aa 2279 mapping = file_inode(obj->base.filp)->i_mapping;
c62d2555 2280 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2281 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2282 sg = st->sgl;
2283 st->nents = 0;
2284 for (i = 0; i < page_count; i++) {
6c085a72
CW
2285 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2286 if (IS_ERR(page)) {
21ab4e74
CW
2287 i915_gem_shrink(dev_priv,
2288 page_count,
2289 I915_SHRINK_BOUND |
2290 I915_SHRINK_UNBOUND |
2291 I915_SHRINK_PURGEABLE);
6c085a72
CW
2292 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2293 }
2294 if (IS_ERR(page)) {
2295 /* We've tried hard to allocate the memory by reaping
2296 * our own buffer, now let the real VM do its job and
2297 * go down in flames if truly OOM.
2298 */
6c085a72 2299 i915_gem_shrink_all(dev_priv);
f461d1be 2300 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2301 if (IS_ERR(page)) {
2302 ret = PTR_ERR(page);
6c085a72 2303 goto err_pages;
e2273302 2304 }
6c085a72 2305 }
426729dc
KRW
2306#ifdef CONFIG_SWIOTLB
2307 if (swiotlb_nr_tbl()) {
2308 st->nents++;
2309 sg_set_page(sg, page, PAGE_SIZE, 0);
2310 sg = sg_next(sg);
2311 continue;
2312 }
2313#endif
90797e6d
ID
2314 if (!i || page_to_pfn(page) != last_pfn + 1) {
2315 if (i)
2316 sg = sg_next(sg);
2317 st->nents++;
2318 sg_set_page(sg, page, PAGE_SIZE, 0);
2319 } else {
2320 sg->length += PAGE_SIZE;
2321 }
2322 last_pfn = page_to_pfn(page);
3bbbe706
DV
2323
2324 /* Check that the i965g/gm workaround works. */
2325 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2326 }
426729dc
KRW
2327#ifdef CONFIG_SWIOTLB
2328 if (!swiotlb_nr_tbl())
2329#endif
2330 sg_mark_end(sg);
74ce6b6c
CW
2331 obj->pages = st;
2332
e2273302
ID
2333 ret = i915_gem_gtt_prepare_object(obj);
2334 if (ret)
2335 goto err_pages;
2336
6dacfd2f 2337 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2338 i915_gem_object_do_bit_17_swizzle(obj);
2339
656bfa3a
DV
2340 if (obj->tiling_mode != I915_TILING_NONE &&
2341 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2342 i915_gem_object_pin_pages(obj);
2343
e5281ccd
CW
2344 return 0;
2345
2346err_pages:
90797e6d
ID
2347 sg_mark_end(sg);
2348 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2349 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2350 sg_free_table(st);
2351 kfree(st);
0820baf3
CW
2352
2353 /* shmemfs first checks if there is enough memory to allocate the page
2354 * and reports ENOSPC should there be insufficient, along with the usual
2355 * ENOMEM for a genuine allocation failure.
2356 *
2357 * We use ENOSPC in our driver to mean that we have run out of aperture
2358 * space and so want to translate the error from shmemfs back to our
2359 * usual understanding of ENOMEM.
2360 */
e2273302
ID
2361 if (ret == -ENOSPC)
2362 ret = -ENOMEM;
2363
2364 return ret;
673a394b
EA
2365}
2366
37e680a1
CW
2367/* Ensure that the associated pages are gathered from the backing storage
2368 * and pinned into our object. i915_gem_object_get_pages() may be called
2369 * multiple times before they are released by a single call to
2370 * i915_gem_object_put_pages() - once the pages are no longer referenced
2371 * either as a result of memory pressure (reaping pages under the shrinker)
2372 * or as the object is itself released.
2373 */
2374int
2375i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2376{
2377 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2378 const struct drm_i915_gem_object_ops *ops = obj->ops;
2379 int ret;
2380
2f745ad3 2381 if (obj->pages)
37e680a1
CW
2382 return 0;
2383
43e28f09 2384 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2385 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2386 return -EFAULT;
43e28f09
CW
2387 }
2388
a5570178
CW
2389 BUG_ON(obj->pages_pin_count);
2390
37e680a1
CW
2391 ret = ops->get_pages(obj);
2392 if (ret)
2393 return ret;
2394
35c20a60 2395 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2396
2397 obj->get_page.sg = obj->pages->sgl;
2398 obj->get_page.last = 0;
2399
37e680a1 2400 return 0;
673a394b
EA
2401}
2402
b4716185 2403void i915_vma_move_to_active(struct i915_vma *vma,
b2af0376 2404 struct drm_i915_gem_request *req)
673a394b 2405{
b4716185 2406 struct drm_i915_gem_object *obj = vma->obj;
b2af0376
JH
2407 struct intel_engine_cs *ring;
2408
2409 ring = i915_gem_request_get_ring(req);
673a394b
EA
2410
2411 /* Add a reference if we're newly entering the active list. */
b4716185 2412 if (obj->active == 0)
05394f39 2413 drm_gem_object_reference(&obj->base);
b4716185 2414 obj->active |= intel_ring_flag(ring);
e35a41de 2415
b4716185 2416 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
b2af0376 2417 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
caea7476 2418
b4716185 2419 list_move_tail(&vma->mm_list, &vma->vm->active_list);
caea7476
CW
2420}
2421
b4716185
CW
2422static void
2423i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
e2d05a8b 2424{
b4716185
CW
2425 RQ_BUG_ON(obj->last_write_req == NULL);
2426 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2427
2428 i915_gem_request_assign(&obj->last_write_req, NULL);
de152b62 2429 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2430}
2431
caea7476 2432static void
b4716185 2433i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
ce44b0ea 2434{
feb822cf 2435 struct i915_vma *vma;
ce44b0ea 2436
b4716185
CW
2437 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2438 RQ_BUG_ON(!(obj->active & (1 << ring)));
2439
2440 list_del_init(&obj->ring_list[ring]);
2441 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2442
2443 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2444 i915_gem_object_retire__write(obj);
2445
2446 obj->active &= ~(1 << ring);
2447 if (obj->active)
2448 return;
caea7476 2449
6c246959
CW
2450 /* Bump our place on the bound list to keep it roughly in LRU order
2451 * so that we don't steal from recently used but inactive objects
2452 * (unless we are forced to ofc!)
2453 */
2454 list_move_tail(&obj->global_list,
2455 &to_i915(obj->base.dev)->mm.bound_list);
2456
fe14d5f4
TU
2457 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2458 if (!list_empty(&vma->mm_list))
2459 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
feb822cf 2460 }
caea7476 2461
97b2a6a1 2462 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476 2463 drm_gem_object_unreference(&obj->base);
c8725f3d
CW
2464}
2465
9d773091 2466static int
fca26bb4 2467i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2468{
9d773091 2469 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2470 struct intel_engine_cs *ring;
9d773091 2471 int ret, i, j;
53d227f2 2472
107f27a5 2473 /* Carefully retire all requests without writing to the rings */
9d773091 2474 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2475 ret = intel_ring_idle(ring);
2476 if (ret)
2477 return ret;
9d773091 2478 }
9d773091 2479 i915_gem_retire_requests(dev);
107f27a5
CW
2480
2481 /* Finally reset hw state */
9d773091 2482 for_each_ring(ring, dev_priv, i) {
fca26bb4 2483 intel_ring_init_seqno(ring, seqno);
498d2ac1 2484
ebc348b2
BW
2485 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2486 ring->semaphore.sync_seqno[j] = 0;
9d773091 2487 }
53d227f2 2488
9d773091 2489 return 0;
53d227f2
DV
2490}
2491
fca26bb4
MK
2492int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2493{
2494 struct drm_i915_private *dev_priv = dev->dev_private;
2495 int ret;
2496
2497 if (seqno == 0)
2498 return -EINVAL;
2499
2500 /* HWS page needs to be set less than what we
2501 * will inject to ring
2502 */
2503 ret = i915_gem_init_seqno(dev, seqno - 1);
2504 if (ret)
2505 return ret;
2506
2507 /* Carefully set the last_seqno value so that wrap
2508 * detection still works
2509 */
2510 dev_priv->next_seqno = seqno;
2511 dev_priv->last_seqno = seqno - 1;
2512 if (dev_priv->last_seqno == 0)
2513 dev_priv->last_seqno--;
2514
2515 return 0;
2516}
2517
9d773091
CW
2518int
2519i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2520{
9d773091
CW
2521 struct drm_i915_private *dev_priv = dev->dev_private;
2522
2523 /* reserve 0 for non-seqno */
2524 if (dev_priv->next_seqno == 0) {
fca26bb4 2525 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2526 if (ret)
2527 return ret;
53d227f2 2528
9d773091
CW
2529 dev_priv->next_seqno = 1;
2530 }
53d227f2 2531
f72b3435 2532 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2533 return 0;
53d227f2
DV
2534}
2535
bf7dc5b7
JH
2536/*
2537 * NB: This function is not allowed to fail. Doing so would mean the the
2538 * request is not being tracked for completion but the work itself is
2539 * going to happen on the hardware. This would be a Bad Thing(tm).
2540 */
75289874 2541void __i915_add_request(struct drm_i915_gem_request *request,
5b4a60c2
JH
2542 struct drm_i915_gem_object *obj,
2543 bool flush_caches)
673a394b 2544{
75289874
JH
2545 struct intel_engine_cs *ring;
2546 struct drm_i915_private *dev_priv;
48e29f55 2547 struct intel_ringbuffer *ringbuf;
6d3d8274 2548 u32 request_start;
3cce469c
CW
2549 int ret;
2550
48e29f55 2551 if (WARN_ON(request == NULL))
bf7dc5b7 2552 return;
48e29f55 2553
75289874
JH
2554 ring = request->ring;
2555 dev_priv = ring->dev->dev_private;
2556 ringbuf = request->ringbuf;
2557
29b1b415
JH
2558 /*
2559 * To ensure that this call will not fail, space for its emissions
2560 * should already have been reserved in the ring buffer. Let the ring
2561 * know that it is time to use that space up.
2562 */
2563 intel_ring_reserved_space_use(ringbuf);
2564
48e29f55 2565 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2566 /*
2567 * Emit any outstanding flushes - execbuf can fail to emit the flush
2568 * after having emitted the batchbuffer command. Hence we need to fix
2569 * things up similar to emitting the lazy request. The difference here
2570 * is that the flush _must_ happen before the next request, no matter
2571 * what.
2572 */
5b4a60c2
JH
2573 if (flush_caches) {
2574 if (i915.enable_execlists)
4866d729 2575 ret = logical_ring_flush_all_caches(request);
5b4a60c2 2576 else
4866d729 2577 ret = intel_ring_flush_all_caches(request);
5b4a60c2
JH
2578 /* Not allowed to fail! */
2579 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2580 }
cc889e0f 2581
a71d8d94
CW
2582 /* Record the position of the start of the request so that
2583 * should we detect the updated seqno part-way through the
2584 * GPU processing the request, we never over-estimate the
2585 * position of the head.
2586 */
6d3d8274 2587 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2588
bf7dc5b7 2589 if (i915.enable_execlists)
c4e76638 2590 ret = ring->emit_request(request);
bf7dc5b7 2591 else {
ee044a88 2592 ret = ring->add_request(request);
53292cdb
MT
2593
2594 request->tail = intel_ring_get_tail(ringbuf);
48e29f55 2595 }
bf7dc5b7
JH
2596 /* Not allowed to fail! */
2597 WARN(ret, "emit|add_request failed: %d!\n", ret);
673a394b 2598
7d736f4f 2599 request->head = request_start;
7d736f4f
MK
2600
2601 /* Whilst this request exists, batch_obj will be on the
2602 * active_list, and so will hold the active reference. Only when this
2603 * request is retired will the the batch_obj be moved onto the
2604 * inactive_list and lose its active reference. Hence we do not need
2605 * to explicitly hold another reference here.
2606 */
9a7e0c2a 2607 request->batch_obj = obj;
0e50e96b 2608
673a394b 2609 request->emitted_jiffies = jiffies;
821485dc 2610 request->previous_seqno = ring->last_submitted_seqno;
94f7bbe1 2611 ring->last_submitted_seqno = request->seqno;
852835f3 2612 list_add_tail(&request->list, &ring->request_list);
673a394b 2613
74328ee5 2614 trace_i915_gem_request_add(request);
db53a302 2615
87255483 2616 i915_queue_hangcheck(ring->dev);
10cd45b6 2617
87255483
DV
2618 queue_delayed_work(dev_priv->wq,
2619 &dev_priv->mm.retire_work,
2620 round_jiffies_up_relative(HZ));
2621 intel_mark_busy(dev_priv->dev);
cc889e0f 2622
29b1b415
JH
2623 /* Sanity check that the reserved size was large enough. */
2624 intel_ring_reserved_space_end(ringbuf);
673a394b
EA
2625}
2626
939fd762 2627static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2628 const struct intel_context *ctx)
be62acb4 2629{
44e2c070 2630 unsigned long elapsed;
be62acb4 2631
44e2c070
MK
2632 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2633
2634 if (ctx->hang_stats.banned)
be62acb4
MK
2635 return true;
2636
676fa572
CW
2637 if (ctx->hang_stats.ban_period_seconds &&
2638 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2639 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2640 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2641 return true;
88b4aa87
MK
2642 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2643 if (i915_stop_ring_allow_warn(dev_priv))
2644 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2645 return true;
3fac8978 2646 }
be62acb4
MK
2647 }
2648
2649 return false;
2650}
2651
939fd762 2652static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2653 struct intel_context *ctx,
b6b0fac0 2654 const bool guilty)
aa60c664 2655{
44e2c070
MK
2656 struct i915_ctx_hang_stats *hs;
2657
2658 if (WARN_ON(!ctx))
2659 return;
aa60c664 2660
44e2c070
MK
2661 hs = &ctx->hang_stats;
2662
2663 if (guilty) {
939fd762 2664 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2665 hs->batch_active++;
2666 hs->guilty_ts = get_seconds();
2667 } else {
2668 hs->batch_pending++;
aa60c664
MK
2669 }
2670}
2671
abfe262a
JH
2672void i915_gem_request_free(struct kref *req_ref)
2673{
2674 struct drm_i915_gem_request *req = container_of(req_ref,
2675 typeof(*req), ref);
2676 struct intel_context *ctx = req->ctx;
2677
fcfa423c
JH
2678 if (req->file_priv)
2679 i915_gem_request_remove_from_client(req);
2680
0794aed3
TD
2681 if (ctx) {
2682 if (i915.enable_execlists) {
8ba319da
MK
2683 if (ctx != req->ring->default_context)
2684 intel_lr_context_unpin(req);
0794aed3 2685 }
abfe262a 2686
dcb4c12a
OM
2687 i915_gem_context_unreference(ctx);
2688 }
abfe262a 2689
efab6d8d 2690 kmem_cache_free(req->i915->requests, req);
0e50e96b
MK
2691}
2692
26827088
DG
2693static inline int
2694__i915_gem_request_alloc(struct intel_engine_cs *ring,
2695 struct intel_context *ctx,
2696 struct drm_i915_gem_request **req_out)
6689cb2b 2697{
efab6d8d 2698 struct drm_i915_private *dev_priv = to_i915(ring->dev);
eed29a5b 2699 struct drm_i915_gem_request *req;
6689cb2b 2700 int ret;
6689cb2b 2701
217e46b5
JH
2702 if (!req_out)
2703 return -EINVAL;
2704
bccca494 2705 *req_out = NULL;
6689cb2b 2706
eed29a5b
DV
2707 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2708 if (req == NULL)
6689cb2b
JH
2709 return -ENOMEM;
2710
eed29a5b 2711 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
9a0c1e27
CW
2712 if (ret)
2713 goto err;
6689cb2b 2714
40e895ce
JH
2715 kref_init(&req->ref);
2716 req->i915 = dev_priv;
eed29a5b 2717 req->ring = ring;
40e895ce
JH
2718 req->ctx = ctx;
2719 i915_gem_context_reference(req->ctx);
6689cb2b
JH
2720
2721 if (i915.enable_execlists)
40e895ce 2722 ret = intel_logical_ring_alloc_request_extras(req);
6689cb2b 2723 else
eed29a5b 2724 ret = intel_ring_alloc_request_extras(req);
40e895ce
JH
2725 if (ret) {
2726 i915_gem_context_unreference(req->ctx);
9a0c1e27 2727 goto err;
40e895ce 2728 }
6689cb2b 2729
29b1b415
JH
2730 /*
2731 * Reserve space in the ring buffer for all the commands required to
2732 * eventually emit this request. This is to guarantee that the
2733 * i915_add_request() call can't fail. Note that the reserve may need
2734 * to be redone if the request is not actually submitted straight
2735 * away, e.g. because a GPU scheduler has deferred it.
29b1b415 2736 */
ccd98fe4
JH
2737 if (i915.enable_execlists)
2738 ret = intel_logical_ring_reserve_space(req);
2739 else
2740 ret = intel_ring_reserve_space(req);
2741 if (ret) {
2742 /*
2743 * At this point, the request is fully allocated even if not
2744 * fully prepared. Thus it can be cleaned up using the proper
2745 * free code.
2746 */
2747 i915_gem_request_cancel(req);
2748 return ret;
2749 }
29b1b415 2750
bccca494 2751 *req_out = req;
6689cb2b 2752 return 0;
9a0c1e27
CW
2753
2754err:
2755 kmem_cache_free(dev_priv->requests, req);
2756 return ret;
0e50e96b
MK
2757}
2758
26827088
DG
2759/**
2760 * i915_gem_request_alloc - allocate a request structure
2761 *
2762 * @engine: engine that we wish to issue the request on.
2763 * @ctx: context that the request will be associated with.
2764 * This can be NULL if the request is not directly related to
2765 * any specific user context, in which case this function will
2766 * choose an appropriate context to use.
2767 *
2768 * Returns a pointer to the allocated request if successful,
2769 * or an error code if not.
2770 */
2771struct drm_i915_gem_request *
2772i915_gem_request_alloc(struct intel_engine_cs *engine,
2773 struct intel_context *ctx)
2774{
2775 struct drm_i915_gem_request *req;
2776 int err;
2777
2778 if (ctx == NULL)
2779 ctx = engine->default_context;
2780 err = __i915_gem_request_alloc(engine, ctx, &req);
2781 return err ? ERR_PTR(err) : req;
2782}
2783
29b1b415
JH
2784void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2785{
2786 intel_ring_reserved_space_cancel(req->ringbuf);
2787
2788 i915_gem_request_unreference(req);
2789}
2790
8d9fc7fd 2791struct drm_i915_gem_request *
a4872ba6 2792i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2793{
4db080f9
CW
2794 struct drm_i915_gem_request *request;
2795
2796 list_for_each_entry(request, &ring->request_list, list) {
1b5a433a 2797 if (i915_gem_request_completed(request, false))
4db080f9 2798 continue;
aa60c664 2799
b6b0fac0 2800 return request;
4db080f9 2801 }
b6b0fac0
MK
2802
2803 return NULL;
2804}
2805
2806static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2807 struct intel_engine_cs *ring)
b6b0fac0
MK
2808{
2809 struct drm_i915_gem_request *request;
2810 bool ring_hung;
2811
8d9fc7fd 2812 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2813
2814 if (request == NULL)
2815 return;
2816
2817 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2818
939fd762 2819 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2820
2821 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2822 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2823}
aa60c664 2824
4db080f9 2825static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2826 struct intel_engine_cs *ring)
4db080f9 2827{
608c1a52
CW
2828 struct intel_ringbuffer *buffer;
2829
dfaae392 2830 while (!list_empty(&ring->active_list)) {
05394f39 2831 struct drm_i915_gem_object *obj;
9375e446 2832
05394f39
CW
2833 obj = list_first_entry(&ring->active_list,
2834 struct drm_i915_gem_object,
b4716185 2835 ring_list[ring->id]);
9375e446 2836
b4716185 2837 i915_gem_object_retire__read(obj, ring->id);
673a394b 2838 }
1d62beea 2839
dcb4c12a
OM
2840 /*
2841 * Clear the execlists queue up before freeing the requests, as those
2842 * are the ones that keep the context and ringbuffer backing objects
2843 * pinned in place.
2844 */
dcb4c12a 2845
7de1691a
TE
2846 if (i915.enable_execlists) {
2847 spin_lock_irq(&ring->execlist_lock);
1197b4f2 2848
c5baa566
TE
2849 /* list_splice_tail_init checks for empty lists */
2850 list_splice_tail_init(&ring->execlist_queue,
2851 &ring->execlist_retired_req_list);
1197b4f2 2852
7de1691a 2853 spin_unlock_irq(&ring->execlist_lock);
c5baa566 2854 intel_execlists_retire_requests(ring);
dcb4c12a
OM
2855 }
2856
1d62beea
BW
2857 /*
2858 * We must free the requests after all the corresponding objects have
2859 * been moved off active lists. Which is the same order as the normal
2860 * retire_requests function does. This is important if object hold
2861 * implicit references on things like e.g. ppgtt address spaces through
2862 * the request.
2863 */
2864 while (!list_empty(&ring->request_list)) {
2865 struct drm_i915_gem_request *request;
2866
2867 request = list_first_entry(&ring->request_list,
2868 struct drm_i915_gem_request,
2869 list);
2870
b4716185 2871 i915_gem_request_retire(request);
1d62beea 2872 }
608c1a52
CW
2873
2874 /* Having flushed all requests from all queues, we know that all
2875 * ringbuffers must now be empty. However, since we do not reclaim
2876 * all space when retiring the request (to prevent HEADs colliding
2877 * with rapid ringbuffer wraparound) the amount of available space
2878 * upon reset is less than when we start. Do one more pass over
2879 * all the ringbuffers to reset last_retired_head.
2880 */
2881 list_for_each_entry(buffer, &ring->buffers, link) {
2882 buffer->last_retired_head = buffer->tail;
2883 intel_ring_update_space(buffer);
2884 }
673a394b
EA
2885}
2886
069efc1d 2887void i915_gem_reset(struct drm_device *dev)
673a394b 2888{
77f01230 2889 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2890 struct intel_engine_cs *ring;
1ec14ad3 2891 int i;
673a394b 2892
4db080f9
CW
2893 /*
2894 * Before we free the objects from the requests, we need to inspect
2895 * them for finding the guilty party. As the requests only borrow
2896 * their reference to the objects, the inspection must be done first.
2897 */
2898 for_each_ring(ring, dev_priv, i)
2899 i915_gem_reset_ring_status(dev_priv, ring);
2900
b4519513 2901 for_each_ring(ring, dev_priv, i)
4db080f9 2902 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2903
acce9ffa
BW
2904 i915_gem_context_reset(dev);
2905
19b2dbde 2906 i915_gem_restore_fences(dev);
b4716185
CW
2907
2908 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2909}
2910
2911/**
2912 * This function clears the request list as sequence numbers are passed.
2913 */
1cf0ba14 2914void
a4872ba6 2915i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2916{
db53a302 2917 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2918
832a3aad
CW
2919 /* Retire requests first as we use it above for the early return.
2920 * If we retire requests last, we may use a later seqno and so clear
2921 * the requests lists without clearing the active list, leading to
2922 * confusion.
e9103038 2923 */
852835f3 2924 while (!list_empty(&ring->request_list)) {
673a394b 2925 struct drm_i915_gem_request *request;
673a394b 2926
852835f3 2927 request = list_first_entry(&ring->request_list,
673a394b
EA
2928 struct drm_i915_gem_request,
2929 list);
673a394b 2930
1b5a433a 2931 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2932 break;
2933
b4716185 2934 i915_gem_request_retire(request);
b84d5f0c 2935 }
673a394b 2936
832a3aad
CW
2937 /* Move any buffers on the active list that are no longer referenced
2938 * by the ringbuffer to the flushing/inactive lists as appropriate,
2939 * before we free the context associated with the requests.
2940 */
2941 while (!list_empty(&ring->active_list)) {
2942 struct drm_i915_gem_object *obj;
2943
2944 obj = list_first_entry(&ring->active_list,
2945 struct drm_i915_gem_object,
b4716185 2946 ring_list[ring->id]);
832a3aad 2947
b4716185 2948 if (!list_empty(&obj->last_read_req[ring->id]->list))
832a3aad
CW
2949 break;
2950
b4716185 2951 i915_gem_object_retire__read(obj, ring->id);
832a3aad
CW
2952 }
2953
581c26e8
JH
2954 if (unlikely(ring->trace_irq_req &&
2955 i915_gem_request_completed(ring->trace_irq_req, true))) {
1ec14ad3 2956 ring->irq_put(ring);
581c26e8 2957 i915_gem_request_assign(&ring->trace_irq_req, NULL);
9d34e5db 2958 }
23bc5982 2959
db53a302 2960 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2961}
2962
b29c19b6 2963bool
b09a1fec
CW
2964i915_gem_retire_requests(struct drm_device *dev)
2965{
3e31c6c0 2966 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2967 struct intel_engine_cs *ring;
b29c19b6 2968 bool idle = true;
1ec14ad3 2969 int i;
b09a1fec 2970
b29c19b6 2971 for_each_ring(ring, dev_priv, i) {
b4519513 2972 i915_gem_retire_requests_ring(ring);
b29c19b6 2973 idle &= list_empty(&ring->request_list);
c86ee3a9
TD
2974 if (i915.enable_execlists) {
2975 unsigned long flags;
2976
2977 spin_lock_irqsave(&ring->execlist_lock, flags);
2978 idle &= list_empty(&ring->execlist_queue);
2979 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2980
2981 intel_execlists_retire_requests(ring);
2982 }
b29c19b6
CW
2983 }
2984
2985 if (idle)
2986 mod_delayed_work(dev_priv->wq,
2987 &dev_priv->mm.idle_work,
2988 msecs_to_jiffies(100));
2989
2990 return idle;
b09a1fec
CW
2991}
2992
75ef9da2 2993static void
673a394b
EA
2994i915_gem_retire_work_handler(struct work_struct *work)
2995{
b29c19b6
CW
2996 struct drm_i915_private *dev_priv =
2997 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2998 struct drm_device *dev = dev_priv->dev;
0a58705b 2999 bool idle;
673a394b 3000
891b48cf 3001 /* Come back later if the device is busy... */
b29c19b6
CW
3002 idle = false;
3003 if (mutex_trylock(&dev->struct_mutex)) {
3004 idle = i915_gem_retire_requests(dev);
3005 mutex_unlock(&dev->struct_mutex);
673a394b 3006 }
b29c19b6 3007 if (!idle)
bcb45086
CW
3008 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3009 round_jiffies_up_relative(HZ));
b29c19b6 3010}
0a58705b 3011
b29c19b6
CW
3012static void
3013i915_gem_idle_work_handler(struct work_struct *work)
3014{
3015 struct drm_i915_private *dev_priv =
3016 container_of(work, typeof(*dev_priv), mm.idle_work.work);
35c94185 3017 struct drm_device *dev = dev_priv->dev;
423795cb
CW
3018 struct intel_engine_cs *ring;
3019 int i;
b29c19b6 3020
423795cb
CW
3021 for_each_ring(ring, dev_priv, i)
3022 if (!list_empty(&ring->request_list))
3023 return;
35c94185 3024
30ecad77
DV
3025 /* we probably should sync with hangcheck here, using cancel_work_sync.
3026 * Also locking seems to be fubar here, ring->request_list is protected
3027 * by dev->struct_mutex. */
3028
35c94185
CW
3029 intel_mark_idle(dev);
3030
3031 if (mutex_trylock(&dev->struct_mutex)) {
3032 struct intel_engine_cs *ring;
3033 int i;
3034
3035 for_each_ring(ring, dev_priv, i)
3036 i915_gem_batch_pool_fini(&ring->batch_pool);
b29c19b6 3037
35c94185
CW
3038 mutex_unlock(&dev->struct_mutex);
3039 }
673a394b
EA
3040}
3041
30dfebf3
DV
3042/**
3043 * Ensures that an object will eventually get non-busy by flushing any required
3044 * write domains, emitting any outstanding lazy request and retiring and
3045 * completed requests.
3046 */
3047static int
3048i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3049{
a5ac0f90 3050 int i;
b4716185
CW
3051
3052 if (!obj->active)
3053 return 0;
30dfebf3 3054
b4716185
CW
3055 for (i = 0; i < I915_NUM_RINGS; i++) {
3056 struct drm_i915_gem_request *req;
41c52415 3057
b4716185
CW
3058 req = obj->last_read_req[i];
3059 if (req == NULL)
3060 continue;
3061
3062 if (list_empty(&req->list))
3063 goto retire;
3064
b4716185
CW
3065 if (i915_gem_request_completed(req, true)) {
3066 __i915_gem_request_retire__upto(req);
3067retire:
3068 i915_gem_object_retire__read(obj, i);
3069 }
30dfebf3
DV
3070 }
3071
3072 return 0;
3073}
3074
23ba4fd0
BW
3075/**
3076 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3077 * @DRM_IOCTL_ARGS: standard ioctl arguments
3078 *
3079 * Returns 0 if successful, else an error is returned with the remaining time in
3080 * the timeout parameter.
3081 * -ETIME: object is still busy after timeout
3082 * -ERESTARTSYS: signal interrupted the wait
3083 * -ENONENT: object doesn't exist
3084 * Also possible, but rare:
3085 * -EAGAIN: GPU wedged
3086 * -ENOMEM: damn
3087 * -ENODEV: Internal IRQ fail
3088 * -E?: The add request failed
3089 *
3090 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3091 * non-zero timeout parameter the wait ioctl will wait for the given number of
3092 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3093 * without holding struct_mutex the object may become re-busied before this
3094 * function completes. A similar but shorter * race condition exists in the busy
3095 * ioctl
3096 */
3097int
3098i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3099{
3e31c6c0 3100 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
3101 struct drm_i915_gem_wait *args = data;
3102 struct drm_i915_gem_object *obj;
b4716185 3103 struct drm_i915_gem_request *req[I915_NUM_RINGS];
f69061be 3104 unsigned reset_counter;
b4716185
CW
3105 int i, n = 0;
3106 int ret;
23ba4fd0 3107
11b5d511
DV
3108 if (args->flags != 0)
3109 return -EINVAL;
3110
23ba4fd0
BW
3111 ret = i915_mutex_lock_interruptible(dev);
3112 if (ret)
3113 return ret;
3114
3115 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3116 if (&obj->base == NULL) {
3117 mutex_unlock(&dev->struct_mutex);
3118 return -ENOENT;
3119 }
3120
30dfebf3
DV
3121 /* Need to make sure the object gets inactive eventually. */
3122 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
3123 if (ret)
3124 goto out;
3125
b4716185 3126 if (!obj->active)
97b2a6a1 3127 goto out;
23ba4fd0 3128
23ba4fd0 3129 /* Do this after OLR check to make sure we make forward progress polling
762e4583 3130 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 3131 */
762e4583 3132 if (args->timeout_ns == 0) {
23ba4fd0
BW
3133 ret = -ETIME;
3134 goto out;
3135 }
3136
3137 drm_gem_object_unreference(&obj->base);
f69061be 3138 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
3139
3140 for (i = 0; i < I915_NUM_RINGS; i++) {
3141 if (obj->last_read_req[i] == NULL)
3142 continue;
3143
3144 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3145 }
3146
23ba4fd0
BW
3147 mutex_unlock(&dev->struct_mutex);
3148
b4716185
CW
3149 for (i = 0; i < n; i++) {
3150 if (ret == 0)
3151 ret = __i915_wait_request(req[i], reset_counter, true,
3152 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
b6aa0873 3153 to_rps_client(file));
b4716185
CW
3154 i915_gem_request_unreference__unlocked(req[i]);
3155 }
ff865885 3156 return ret;
23ba4fd0
BW
3157
3158out:
3159 drm_gem_object_unreference(&obj->base);
3160 mutex_unlock(&dev->struct_mutex);
3161 return ret;
3162}
3163
b4716185
CW
3164static int
3165__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3166 struct intel_engine_cs *to,
91af127f
JH
3167 struct drm_i915_gem_request *from_req,
3168 struct drm_i915_gem_request **to_req)
b4716185
CW
3169{
3170 struct intel_engine_cs *from;
3171 int ret;
3172
91af127f 3173 from = i915_gem_request_get_ring(from_req);
b4716185
CW
3174 if (to == from)
3175 return 0;
3176
91af127f 3177 if (i915_gem_request_completed(from_req, true))
b4716185
CW
3178 return 0;
3179
b4716185 3180 if (!i915_semaphore_is_enabled(obj->base.dev)) {
a6f766f3 3181 struct drm_i915_private *i915 = to_i915(obj->base.dev);
91af127f 3182 ret = __i915_wait_request(from_req,
a6f766f3
CW
3183 atomic_read(&i915->gpu_error.reset_counter),
3184 i915->mm.interruptible,
3185 NULL,
3186 &i915->rps.semaphores);
b4716185
CW
3187 if (ret)
3188 return ret;
3189
91af127f 3190 i915_gem_object_retire_request(obj, from_req);
b4716185
CW
3191 } else {
3192 int idx = intel_ring_sync_index(from, to);
91af127f
JH
3193 u32 seqno = i915_gem_request_get_seqno(from_req);
3194
3195 WARN_ON(!to_req);
b4716185
CW
3196
3197 if (seqno <= from->semaphore.sync_seqno[idx])
3198 return 0;
3199
91af127f 3200 if (*to_req == NULL) {
26827088
DG
3201 struct drm_i915_gem_request *req;
3202
3203 req = i915_gem_request_alloc(to, NULL);
3204 if (IS_ERR(req))
3205 return PTR_ERR(req);
3206
3207 *to_req = req;
91af127f
JH
3208 }
3209
599d924c
JH
3210 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3211 ret = to->semaphore.sync_to(*to_req, from, seqno);
b4716185
CW
3212 if (ret)
3213 return ret;
3214
3215 /* We use last_read_req because sync_to()
3216 * might have just caused seqno wrap under
3217 * the radar.
3218 */
3219 from->semaphore.sync_seqno[idx] =
3220 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3221 }
3222
3223 return 0;
3224}
3225
5816d648
BW
3226/**
3227 * i915_gem_object_sync - sync an object to a ring.
3228 *
3229 * @obj: object which may be in use on another ring.
3230 * @to: ring we wish to use the object on. May be NULL.
91af127f
JH
3231 * @to_req: request we wish to use the object for. See below.
3232 * This will be allocated and returned if a request is
3233 * required but not passed in.
5816d648
BW
3234 *
3235 * This code is meant to abstract object synchronization with the GPU.
3236 * Calling with NULL implies synchronizing the object with the CPU
b4716185 3237 * rather than a particular GPU ring. Conceptually we serialise writes
91af127f 3238 * between engines inside the GPU. We only allow one engine to write
b4716185
CW
3239 * into a buffer at any time, but multiple readers. To ensure each has
3240 * a coherent view of memory, we must:
3241 *
3242 * - If there is an outstanding write request to the object, the new
3243 * request must wait for it to complete (either CPU or in hw, requests
3244 * on the same ring will be naturally ordered).
3245 *
3246 * - If we are a write request (pending_write_domain is set), the new
3247 * request must wait for outstanding read requests to complete.
5816d648 3248 *
91af127f
JH
3249 * For CPU synchronisation (NULL to) no request is required. For syncing with
3250 * rings to_req must be non-NULL. However, a request does not have to be
3251 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3252 * request will be allocated automatically and returned through *to_req. Note
3253 * that it is not guaranteed that commands will be emitted (because the system
3254 * might already be idle). Hence there is no need to create a request that
3255 * might never have any work submitted. Note further that if a request is
3256 * returned in *to_req, it is the responsibility of the caller to submit
3257 * that request (after potentially adding more work to it).
3258 *
5816d648
BW
3259 * Returns 0 if successful, else propagates up the lower layer error.
3260 */
2911a35b
BW
3261int
3262i915_gem_object_sync(struct drm_i915_gem_object *obj,
91af127f
JH
3263 struct intel_engine_cs *to,
3264 struct drm_i915_gem_request **to_req)
2911a35b 3265{
b4716185
CW
3266 const bool readonly = obj->base.pending_write_domain == 0;
3267 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3268 int ret, i, n;
41c52415 3269
b4716185 3270 if (!obj->active)
2911a35b
BW
3271 return 0;
3272
b4716185
CW
3273 if (to == NULL)
3274 return i915_gem_object_wait_rendering(obj, readonly);
2911a35b 3275
b4716185
CW
3276 n = 0;
3277 if (readonly) {
3278 if (obj->last_write_req)
3279 req[n++] = obj->last_write_req;
3280 } else {
3281 for (i = 0; i < I915_NUM_RINGS; i++)
3282 if (obj->last_read_req[i])
3283 req[n++] = obj->last_read_req[i];
3284 }
3285 for (i = 0; i < n; i++) {
91af127f 3286 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
b4716185
CW
3287 if (ret)
3288 return ret;
3289 }
2911a35b 3290
b4716185 3291 return 0;
2911a35b
BW
3292}
3293
b5ffc9bc
CW
3294static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3295{
3296 u32 old_write_domain, old_read_domains;
3297
b5ffc9bc
CW
3298 /* Force a pagefault for domain tracking on next user access */
3299 i915_gem_release_mmap(obj);
3300
b97c3d9c
KP
3301 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3302 return;
3303
97c809fd
CW
3304 /* Wait for any direct GTT access to complete */
3305 mb();
3306
b5ffc9bc
CW
3307 old_read_domains = obj->base.read_domains;
3308 old_write_domain = obj->base.write_domain;
3309
3310 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3311 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3312
3313 trace_i915_gem_object_change_domain(obj,
3314 old_read_domains,
3315 old_write_domain);
3316}
3317
e9f24d5f 3318static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
673a394b 3319{
07fe0b12 3320 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3321 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3322 int ret;
673a394b 3323
07fe0b12 3324 if (list_empty(&vma->vma_link))
673a394b
EA
3325 return 0;
3326
0ff501cb
DV
3327 if (!drm_mm_node_allocated(&vma->node)) {
3328 i915_gem_vma_destroy(vma);
0ff501cb
DV
3329 return 0;
3330 }
433544bd 3331
d7f46fc4 3332 if (vma->pin_count)
31d8d651 3333 return -EBUSY;
673a394b 3334
c4670ad0
CW
3335 BUG_ON(obj->pages == NULL);
3336
e9f24d5f
TU
3337 if (wait) {
3338 ret = i915_gem_object_wait_rendering(obj, false);
3339 if (ret)
3340 return ret;
3341 }
a8198eea 3342
fe14d5f4
TU
3343 if (i915_is_ggtt(vma->vm) &&
3344 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3345 i915_gem_object_finish_gtt(obj);
5323fd04 3346
8b1bc9b4
DV
3347 /* release the fence reg _after_ flushing */
3348 ret = i915_gem_object_put_fence(obj);
3349 if (ret)
3350 return ret;
3351 }
96b47b65 3352
07fe0b12 3353 trace_i915_vma_unbind(vma);
db53a302 3354
777dc5bb 3355 vma->vm->unbind_vma(vma);
5e562f1d 3356 vma->bound = 0;
6f65e29a 3357
64bf9303 3358 list_del_init(&vma->mm_list);
fe14d5f4
TU
3359 if (i915_is_ggtt(vma->vm)) {
3360 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3361 obj->map_and_fenceable = false;
3362 } else if (vma->ggtt_view.pages) {
3363 sg_free_table(vma->ggtt_view.pages);
3364 kfree(vma->ggtt_view.pages);
fe14d5f4 3365 }
016a65a3 3366 vma->ggtt_view.pages = NULL;
fe14d5f4 3367 }
673a394b 3368
2f633156
BW
3369 drm_mm_remove_node(&vma->node);
3370 i915_gem_vma_destroy(vma);
3371
3372 /* Since the unbound list is global, only move to that list if
b93dab6e 3373 * no more VMAs exist. */
e2273302 3374 if (list_empty(&obj->vma_list))
2f633156 3375 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 3376
70903c3b
CW
3377 /* And finally now the object is completely decoupled from this vma,
3378 * we can drop its hold on the backing storage and allow it to be
3379 * reaped by the shrinker.
3380 */
3381 i915_gem_object_unpin_pages(obj);
3382
88241785 3383 return 0;
54cf91dc
CW
3384}
3385
e9f24d5f
TU
3386int i915_vma_unbind(struct i915_vma *vma)
3387{
3388 return __i915_vma_unbind(vma, true);
3389}
3390
3391int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3392{
3393 return __i915_vma_unbind(vma, false);
3394}
3395
b2da9fe5 3396int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3397{
3e31c6c0 3398 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3399 struct intel_engine_cs *ring;
1ec14ad3 3400 int ret, i;
4df2faf4 3401
4df2faf4 3402 /* Flush everything onto the inactive list. */
b4519513 3403 for_each_ring(ring, dev_priv, i) {
ecdb5fd8 3404 if (!i915.enable_execlists) {
73cfa865
JH
3405 struct drm_i915_gem_request *req;
3406
26827088
DG
3407 req = i915_gem_request_alloc(ring, NULL);
3408 if (IS_ERR(req))
3409 return PTR_ERR(req);
73cfa865 3410
ba01cc93 3411 ret = i915_switch_context(req);
73cfa865
JH
3412 if (ret) {
3413 i915_gem_request_cancel(req);
3414 return ret;
3415 }
3416
75289874 3417 i915_add_request_no_flush(req);
ecdb5fd8 3418 }
b6c7488d 3419
3e960501 3420 ret = intel_ring_idle(ring);
1ec14ad3
CW
3421 if (ret)
3422 return ret;
3423 }
4df2faf4 3424
b4716185 3425 WARN_ON(i915_verify_lists(dev));
8a1a49f9 3426 return 0;
4df2faf4
DV
3427}
3428
4144f9b5 3429static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3430 unsigned long cache_level)
3431{
4144f9b5 3432 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3433 struct drm_mm_node *other;
3434
4144f9b5
CW
3435 /*
3436 * On some machines we have to be careful when putting differing types
3437 * of snoopable memory together to avoid the prefetcher crossing memory
3438 * domains and dying. During vm initialisation, we decide whether or not
3439 * these constraints apply and set the drm_mm.color_adjust
3440 * appropriately.
42d6ab48 3441 */
4144f9b5 3442 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3443 return true;
3444
c6cfb325 3445 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3446 return true;
3447
3448 if (list_empty(&gtt_space->node_list))
3449 return true;
3450
3451 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3452 if (other->allocated && !other->hole_follows && other->color != cache_level)
3453 return false;
3454
3455 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3456 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3457 return false;
3458
3459 return true;
3460}
3461
673a394b 3462/**
91e6711e
JL
3463 * Finds free space in the GTT aperture and binds the object or a view of it
3464 * there.
673a394b 3465 */
262de145 3466static struct i915_vma *
07fe0b12
BW
3467i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3468 struct i915_address_space *vm,
ec7adb6e 3469 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3470 unsigned alignment,
ec7adb6e 3471 uint64_t flags)
673a394b 3472{
05394f39 3473 struct drm_device *dev = obj->base.dev;
3e31c6c0 3474 struct drm_i915_private *dev_priv = dev->dev_private;
65bd342f 3475 u32 fence_alignment, unfenced_alignment;
101b506a
MT
3476 u32 search_flag, alloc_flag;
3477 u64 start, end;
65bd342f 3478 u64 size, fence_size;
2f633156 3479 struct i915_vma *vma;
07f73f69 3480 int ret;
673a394b 3481
91e6711e
JL
3482 if (i915_is_ggtt(vm)) {
3483 u32 view_size;
3484
3485 if (WARN_ON(!ggtt_view))
3486 return ERR_PTR(-EINVAL);
ec7adb6e 3487
91e6711e
JL
3488 view_size = i915_ggtt_view_size(obj, ggtt_view);
3489
3490 fence_size = i915_gem_get_gtt_size(dev,
3491 view_size,
3492 obj->tiling_mode);
3493 fence_alignment = i915_gem_get_gtt_alignment(dev,
3494 view_size,
3495 obj->tiling_mode,
3496 true);
3497 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3498 view_size,
3499 obj->tiling_mode,
3500 false);
3501 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3502 } else {
3503 fence_size = i915_gem_get_gtt_size(dev,
3504 obj->base.size,
3505 obj->tiling_mode);
3506 fence_alignment = i915_gem_get_gtt_alignment(dev,
3507 obj->base.size,
3508 obj->tiling_mode,
3509 true);
3510 unfenced_alignment =
3511 i915_gem_get_gtt_alignment(dev,
3512 obj->base.size,
3513 obj->tiling_mode,
3514 false);
3515 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3516 }
a00b10c3 3517
101b506a
MT
3518 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3519 end = vm->total;
3520 if (flags & PIN_MAPPABLE)
3521 end = min_t(u64, end, dev_priv->gtt.mappable_end);
3522 if (flags & PIN_ZONE_4G)
48ea1e32 3523 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
101b506a 3524
673a394b 3525 if (alignment == 0)
1ec9e26d 3526 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3527 unfenced_alignment;
1ec9e26d 3528 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
91e6711e
JL
3529 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3530 ggtt_view ? ggtt_view->type : 0,
3531 alignment);
262de145 3532 return ERR_PTR(-EINVAL);
673a394b
EA
3533 }
3534
91e6711e
JL
3535 /* If binding the object/GGTT view requires more space than the entire
3536 * aperture has, reject it early before evicting everything in a vain
3537 * attempt to find space.
654fc607 3538 */
91e6711e 3539 if (size > end) {
65bd342f 3540 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
91e6711e
JL
3541 ggtt_view ? ggtt_view->type : 0,
3542 size,
1ec9e26d 3543 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3544 end);
262de145 3545 return ERR_PTR(-E2BIG);
654fc607
CW
3546 }
3547
37e680a1 3548 ret = i915_gem_object_get_pages(obj);
6c085a72 3549 if (ret)
262de145 3550 return ERR_PTR(ret);
6c085a72 3551
fbdda6fb
CW
3552 i915_gem_object_pin_pages(obj);
3553
ec7adb6e
JL
3554 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3555 i915_gem_obj_lookup_or_create_vma(obj, vm);
3556
262de145 3557 if (IS_ERR(vma))
bc6bc15b 3558 goto err_unpin;
2f633156 3559
506a8e87
CW
3560 if (flags & PIN_OFFSET_FIXED) {
3561 uint64_t offset = flags & PIN_OFFSET_MASK;
3562
3563 if (offset & (alignment - 1) || offset + size > end) {
3564 ret = -EINVAL;
3565 goto err_free_vma;
3566 }
3567 vma->node.start = offset;
3568 vma->node.size = size;
3569 vma->node.color = obj->cache_level;
3570 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3571 if (ret) {
3572 ret = i915_gem_evict_for_vma(vma);
3573 if (ret == 0)
3574 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3575 }
3576 if (ret)
3577 goto err_free_vma;
101b506a 3578 } else {
506a8e87
CW
3579 if (flags & PIN_HIGH) {
3580 search_flag = DRM_MM_SEARCH_BELOW;
3581 alloc_flag = DRM_MM_CREATE_TOP;
3582 } else {
3583 search_flag = DRM_MM_SEARCH_DEFAULT;
3584 alloc_flag = DRM_MM_CREATE_DEFAULT;
3585 }
101b506a 3586
0a9ae0d7 3587search_free:
506a8e87
CW
3588 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3589 size, alignment,
3590 obj->cache_level,
3591 start, end,
3592 search_flag,
3593 alloc_flag);
3594 if (ret) {
3595 ret = i915_gem_evict_something(dev, vm, size, alignment,
3596 obj->cache_level,
3597 start, end,
3598 flags);
3599 if (ret == 0)
3600 goto search_free;
9731129c 3601
506a8e87
CW
3602 goto err_free_vma;
3603 }
673a394b 3604 }
4144f9b5 3605 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3606 ret = -EINVAL;
bc6bc15b 3607 goto err_remove_node;
673a394b
EA
3608 }
3609
fe14d5f4 3610 trace_i915_vma_bind(vma, flags);
0875546c 3611 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4 3612 if (ret)
e2273302 3613 goto err_remove_node;
fe14d5f4 3614
35c20a60 3615 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3616 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3617
262de145 3618 return vma;
2f633156 3619
bc6bc15b 3620err_remove_node:
6286ef9b 3621 drm_mm_remove_node(&vma->node);
bc6bc15b 3622err_free_vma:
2f633156 3623 i915_gem_vma_destroy(vma);
262de145 3624 vma = ERR_PTR(ret);
bc6bc15b 3625err_unpin:
2f633156 3626 i915_gem_object_unpin_pages(obj);
262de145 3627 return vma;
673a394b
EA
3628}
3629
000433b6 3630bool
2c22569b
CW
3631i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3632 bool force)
673a394b 3633{
673a394b
EA
3634 /* If we don't have a page list set up, then we're not pinned
3635 * to GPU, and we can ignore the cache flush because it'll happen
3636 * again at bind time.
3637 */
05394f39 3638 if (obj->pages == NULL)
000433b6 3639 return false;
673a394b 3640
769ce464
ID
3641 /*
3642 * Stolen memory is always coherent with the GPU as it is explicitly
3643 * marked as wc by the system, or the system is cache-coherent.
3644 */
6a2c4232 3645 if (obj->stolen || obj->phys_handle)
000433b6 3646 return false;
769ce464 3647
9c23f7fc
CW
3648 /* If the GPU is snooping the contents of the CPU cache,
3649 * we do not need to manually clear the CPU cache lines. However,
3650 * the caches are only snooped when the render cache is
3651 * flushed/invalidated. As we always have to emit invalidations
3652 * and flushes when moving into and out of the RENDER domain, correct
3653 * snooping behaviour occurs naturally as the result of our domain
3654 * tracking.
3655 */
0f71979a
CW
3656 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3657 obj->cache_dirty = true;
000433b6 3658 return false;
0f71979a 3659 }
9c23f7fc 3660
1c5d22f7 3661 trace_i915_gem_object_clflush(obj);
9da3da66 3662 drm_clflush_sg(obj->pages);
0f71979a 3663 obj->cache_dirty = false;
000433b6
CW
3664
3665 return true;
e47c68e9
EA
3666}
3667
3668/** Flushes the GTT write domain for the object if it's dirty. */
3669static void
05394f39 3670i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3671{
1c5d22f7
CW
3672 uint32_t old_write_domain;
3673
05394f39 3674 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3675 return;
3676
63256ec5 3677 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3678 * to it immediately go to main memory as far as we know, so there's
3679 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3680 *
3681 * However, we do have to enforce the order so that all writes through
3682 * the GTT land before any writes to the device, such as updates to
3683 * the GATT itself.
e47c68e9 3684 */
63256ec5
CW
3685 wmb();
3686
05394f39
CW
3687 old_write_domain = obj->base.write_domain;
3688 obj->base.write_domain = 0;
1c5d22f7 3689
de152b62 3690 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
f99d7069 3691
1c5d22f7 3692 trace_i915_gem_object_change_domain(obj,
05394f39 3693 obj->base.read_domains,
1c5d22f7 3694 old_write_domain);
e47c68e9
EA
3695}
3696
3697/** Flushes the CPU write domain for the object if it's dirty. */
3698static void
e62b59e4 3699i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3700{
1c5d22f7 3701 uint32_t old_write_domain;
e47c68e9 3702
05394f39 3703 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3704 return;
3705
e62b59e4 3706 if (i915_gem_clflush_object(obj, obj->pin_display))
000433b6
CW
3707 i915_gem_chipset_flush(obj->base.dev);
3708
05394f39
CW
3709 old_write_domain = obj->base.write_domain;
3710 obj->base.write_domain = 0;
1c5d22f7 3711
de152b62 3712 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3713
1c5d22f7 3714 trace_i915_gem_object_change_domain(obj,
05394f39 3715 obj->base.read_domains,
1c5d22f7 3716 old_write_domain);
e47c68e9
EA
3717}
3718
2ef7eeaa
EA
3719/**
3720 * Moves a single object to the GTT read, and possibly write domain.
3721 *
3722 * This function returns when the move is complete, including waiting on
3723 * flushes to occur.
3724 */
79e53945 3725int
2021746e 3726i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3727{
1c5d22f7 3728 uint32_t old_write_domain, old_read_domains;
43566ded 3729 struct i915_vma *vma;
e47c68e9 3730 int ret;
2ef7eeaa 3731
8d7e3de1
CW
3732 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3733 return 0;
3734
0201f1ec 3735 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3736 if (ret)
3737 return ret;
3738
43566ded
CW
3739 /* Flush and acquire obj->pages so that we are coherent through
3740 * direct access in memory with previous cached writes through
3741 * shmemfs and that our cache domain tracking remains valid.
3742 * For example, if the obj->filp was moved to swap without us
3743 * being notified and releasing the pages, we would mistakenly
3744 * continue to assume that the obj remained out of the CPU cached
3745 * domain.
3746 */
3747 ret = i915_gem_object_get_pages(obj);
3748 if (ret)
3749 return ret;
3750
e62b59e4 3751 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3752
d0a57789
CW
3753 /* Serialise direct access to this object with the barriers for
3754 * coherent writes from the GPU, by effectively invalidating the
3755 * GTT domain upon first access.
3756 */
3757 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3758 mb();
3759
05394f39
CW
3760 old_write_domain = obj->base.write_domain;
3761 old_read_domains = obj->base.read_domains;
1c5d22f7 3762
e47c68e9
EA
3763 /* It should now be out of any other write domains, and we can update
3764 * the domain values for our changes.
3765 */
05394f39
CW
3766 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3767 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3768 if (write) {
05394f39
CW
3769 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3770 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3771 obj->dirty = 1;
2ef7eeaa
EA
3772 }
3773
1c5d22f7
CW
3774 trace_i915_gem_object_change_domain(obj,
3775 old_read_domains,
3776 old_write_domain);
3777
8325a09d 3778 /* And bump the LRU for this access */
43566ded
CW
3779 vma = i915_gem_obj_to_ggtt(obj);
3780 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
dc8cd1e7 3781 list_move_tail(&vma->mm_list,
43566ded 3782 &to_i915(obj->base.dev)->gtt.base.inactive_list);
8325a09d 3783
e47c68e9
EA
3784 return 0;
3785}
3786
ef55f92a
CW
3787/**
3788 * Changes the cache-level of an object across all VMA.
3789 *
3790 * After this function returns, the object will be in the new cache-level
3791 * across all GTT and the contents of the backing storage will be coherent,
3792 * with respect to the new cache-level. In order to keep the backing storage
3793 * coherent for all users, we only allow a single cache level to be set
3794 * globally on the object and prevent it from being changed whilst the
3795 * hardware is reading from the object. That is if the object is currently
3796 * on the scanout it will be set to uncached (or equivalent display
3797 * cache coherency) and all non-MOCS GPU access will also be uncached so
3798 * that all direct access to the scanout remains coherent.
3799 */
e4ffd173
CW
3800int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3801 enum i915_cache_level cache_level)
3802{
7bddb01f 3803 struct drm_device *dev = obj->base.dev;
df6f783a 3804 struct i915_vma *vma, *next;
ef55f92a 3805 bool bound = false;
ed75a55b 3806 int ret = 0;
e4ffd173
CW
3807
3808 if (obj->cache_level == cache_level)
ed75a55b 3809 goto out;
e4ffd173 3810
ef55f92a
CW
3811 /* Inspect the list of currently bound VMA and unbind any that would
3812 * be invalid given the new cache-level. This is principally to
3813 * catch the issue of the CS prefetch crossing page boundaries and
3814 * reading an invalid PTE on older architectures.
3815 */
df6f783a 3816 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
ef55f92a
CW
3817 if (!drm_mm_node_allocated(&vma->node))
3818 continue;
3819
3820 if (vma->pin_count) {
3821 DRM_DEBUG("can not change the cache level of pinned objects\n");
3822 return -EBUSY;
3823 }
3824
4144f9b5 3825 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3826 ret = i915_vma_unbind(vma);
3089c6f2
BW
3827 if (ret)
3828 return ret;
ef55f92a
CW
3829 } else
3830 bound = true;
42d6ab48
CW
3831 }
3832
ef55f92a
CW
3833 /* We can reuse the existing drm_mm nodes but need to change the
3834 * cache-level on the PTE. We could simply unbind them all and
3835 * rebind with the correct cache-level on next use. However since
3836 * we already have a valid slot, dma mapping, pages etc, we may as
3837 * rewrite the PTE in the belief that doing so tramples upon less
3838 * state and so involves less work.
3839 */
3840 if (bound) {
3841 /* Before we change the PTE, the GPU must not be accessing it.
3842 * If we wait upon the object, we know that all the bound
3843 * VMA are no longer active.
3844 */
2e2f351d 3845 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
3846 if (ret)
3847 return ret;
3848
ef55f92a
CW
3849 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3850 /* Access to snoopable pages through the GTT is
3851 * incoherent and on some machines causes a hard
3852 * lockup. Relinquish the CPU mmaping to force
3853 * userspace to refault in the pages and we can
3854 * then double check if the GTT mapping is still
3855 * valid for that pointer access.
3856 */
3857 i915_gem_release_mmap(obj);
3858
3859 /* As we no longer need a fence for GTT access,
3860 * we can relinquish it now (and so prevent having
3861 * to steal a fence from someone else on the next
3862 * fence request). Note GPU activity would have
3863 * dropped the fence as all snoopable access is
3864 * supposed to be linear.
3865 */
e4ffd173
CW
3866 ret = i915_gem_object_put_fence(obj);
3867 if (ret)
3868 return ret;
ef55f92a
CW
3869 } else {
3870 /* We either have incoherent backing store and
3871 * so no GTT access or the architecture is fully
3872 * coherent. In such cases, existing GTT mmaps
3873 * ignore the cache bit in the PTE and we can
3874 * rewrite it without confusing the GPU or having
3875 * to force userspace to fault back in its mmaps.
3876 */
e4ffd173
CW
3877 }
3878
ef55f92a
CW
3879 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3880 if (!drm_mm_node_allocated(&vma->node))
3881 continue;
3882
3883 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3884 if (ret)
3885 return ret;
3886 }
e4ffd173
CW
3887 }
3888
2c22569b
CW
3889 list_for_each_entry(vma, &obj->vma_list, vma_link)
3890 vma->node.color = cache_level;
3891 obj->cache_level = cache_level;
3892
ed75a55b 3893out:
ef55f92a
CW
3894 /* Flush the dirty CPU caches to the backing storage so that the
3895 * object is now coherent at its new cache level (with respect
3896 * to the access domain).
3897 */
0f71979a
CW
3898 if (obj->cache_dirty &&
3899 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3900 cpu_write_needs_clflush(obj)) {
3901 if (i915_gem_clflush_object(obj, true))
3902 i915_gem_chipset_flush(obj->base.dev);
e4ffd173
CW
3903 }
3904
e4ffd173
CW
3905 return 0;
3906}
3907
199adf40
BW
3908int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3909 struct drm_file *file)
e6994aee 3910{
199adf40 3911 struct drm_i915_gem_caching *args = data;
e6994aee 3912 struct drm_i915_gem_object *obj;
e6994aee
CW
3913
3914 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
432be69d
CW
3915 if (&obj->base == NULL)
3916 return -ENOENT;
e6994aee 3917
651d794f
CW
3918 switch (obj->cache_level) {
3919 case I915_CACHE_LLC:
3920 case I915_CACHE_L3_LLC:
3921 args->caching = I915_CACHING_CACHED;
3922 break;
3923
4257d3ba
CW
3924 case I915_CACHE_WT:
3925 args->caching = I915_CACHING_DISPLAY;
3926 break;
3927
651d794f
CW
3928 default:
3929 args->caching = I915_CACHING_NONE;
3930 break;
3931 }
e6994aee 3932
432be69d
CW
3933 drm_gem_object_unreference_unlocked(&obj->base);
3934 return 0;
e6994aee
CW
3935}
3936
199adf40
BW
3937int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3938 struct drm_file *file)
e6994aee 3939{
fd0fe6ac 3940 struct drm_i915_private *dev_priv = dev->dev_private;
199adf40 3941 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3942 struct drm_i915_gem_object *obj;
3943 enum i915_cache_level level;
3944 int ret;
3945
199adf40
BW
3946 switch (args->caching) {
3947 case I915_CACHING_NONE:
e6994aee
CW
3948 level = I915_CACHE_NONE;
3949 break;
199adf40 3950 case I915_CACHING_CACHED:
e5756c10
ID
3951 /*
3952 * Due to a HW issue on BXT A stepping, GPU stores via a
3953 * snooped mapping may leave stale data in a corresponding CPU
3954 * cacheline, whereas normally such cachelines would get
3955 * invalidated.
3956 */
e87a005d 3957 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
e5756c10
ID
3958 return -ENODEV;
3959
e6994aee
CW
3960 level = I915_CACHE_LLC;
3961 break;
4257d3ba
CW
3962 case I915_CACHING_DISPLAY:
3963 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3964 break;
e6994aee
CW
3965 default:
3966 return -EINVAL;
3967 }
3968
fd0fe6ac
ID
3969 intel_runtime_pm_get(dev_priv);
3970
3bc2913e
BW
3971 ret = i915_mutex_lock_interruptible(dev);
3972 if (ret)
fd0fe6ac 3973 goto rpm_put;
3bc2913e 3974
e6994aee
CW
3975 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3976 if (&obj->base == NULL) {
3977 ret = -ENOENT;
3978 goto unlock;
3979 }
3980
3981 ret = i915_gem_object_set_cache_level(obj, level);
3982
3983 drm_gem_object_unreference(&obj->base);
3984unlock:
3985 mutex_unlock(&dev->struct_mutex);
fd0fe6ac
ID
3986rpm_put:
3987 intel_runtime_pm_put(dev_priv);
3988
e6994aee
CW
3989 return ret;
3990}
3991
b9241ea3 3992/*
2da3b9b9
CW
3993 * Prepare buffer for display plane (scanout, cursors, etc).
3994 * Can be called from an uninterruptible phase (modesetting) and allows
3995 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3996 */
3997int
2da3b9b9
CW
3998i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3999 u32 alignment,
e6617330 4000 const struct i915_ggtt_view *view)
b9241ea3 4001{
2da3b9b9 4002 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
4003 int ret;
4004
cc98b413
CW
4005 /* Mark the pin_display early so that we account for the
4006 * display coherency whilst setting up the cache domains.
4007 */
8a0c39b1 4008 obj->pin_display++;
cc98b413 4009
a7ef0640
EA
4010 /* The display engine is not coherent with the LLC cache on gen6. As
4011 * a result, we make sure that the pinning that is about to occur is
4012 * done with uncached PTEs. This is lowest common denominator for all
4013 * chipsets.
4014 *
4015 * However for gen6+, we could do better by using the GFDT bit instead
4016 * of uncaching, which would allow us to flush all the LLC-cached data
4017 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4018 */
651d794f
CW
4019 ret = i915_gem_object_set_cache_level(obj,
4020 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 4021 if (ret)
cc98b413 4022 goto err_unpin_display;
a7ef0640 4023
2da3b9b9
CW
4024 /* As the user may map the buffer once pinned in the display plane
4025 * (e.g. libkms for the bootup splash), we have to ensure that we
4026 * always use map_and_fenceable for all scanout buffers.
4027 */
50470bb0
TU
4028 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4029 view->type == I915_GGTT_VIEW_NORMAL ?
4030 PIN_MAPPABLE : 0);
2da3b9b9 4031 if (ret)
cc98b413 4032 goto err_unpin_display;
2da3b9b9 4033
e62b59e4 4034 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 4035
2da3b9b9 4036 old_write_domain = obj->base.write_domain;
05394f39 4037 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
4038
4039 /* It should now be out of any other write domains, and we can update
4040 * the domain values for our changes.
4041 */
e5f1d962 4042 obj->base.write_domain = 0;
05394f39 4043 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
4044
4045 trace_i915_gem_object_change_domain(obj,
4046 old_read_domains,
2da3b9b9 4047 old_write_domain);
b9241ea3
ZW
4048
4049 return 0;
cc98b413
CW
4050
4051err_unpin_display:
8a0c39b1 4052 obj->pin_display--;
cc98b413
CW
4053 return ret;
4054}
4055
4056void
e6617330
TU
4057i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4058 const struct i915_ggtt_view *view)
cc98b413 4059{
8a0c39b1
TU
4060 if (WARN_ON(obj->pin_display == 0))
4061 return;
4062
e6617330
TU
4063 i915_gem_object_ggtt_unpin_view(obj, view);
4064
8a0c39b1 4065 obj->pin_display--;
b9241ea3
ZW
4066}
4067
e47c68e9
EA
4068/**
4069 * Moves a single object to the CPU read, and possibly write domain.
4070 *
4071 * This function returns when the move is complete, including waiting on
4072 * flushes to occur.
4073 */
dabdfe02 4074int
919926ae 4075i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4076{
1c5d22f7 4077 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4078 int ret;
4079
8d7e3de1
CW
4080 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4081 return 0;
4082
0201f1ec 4083 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4084 if (ret)
4085 return ret;
4086
e47c68e9 4087 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4088
05394f39
CW
4089 old_write_domain = obj->base.write_domain;
4090 old_read_domains = obj->base.read_domains;
1c5d22f7 4091
e47c68e9 4092 /* Flush the CPU cache if it's still invalid. */
05394f39 4093 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4094 i915_gem_clflush_object(obj, false);
2ef7eeaa 4095
05394f39 4096 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4097 }
4098
4099 /* It should now be out of any other write domains, and we can update
4100 * the domain values for our changes.
4101 */
05394f39 4102 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4103
4104 /* If we're writing through the CPU, then the GPU read domains will
4105 * need to be invalidated at next use.
4106 */
4107 if (write) {
05394f39
CW
4108 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4109 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4110 }
2ef7eeaa 4111
1c5d22f7
CW
4112 trace_i915_gem_object_change_domain(obj,
4113 old_read_domains,
4114 old_write_domain);
4115
2ef7eeaa
EA
4116 return 0;
4117}
4118
673a394b
EA
4119/* Throttle our rendering by waiting until the ring has completed our requests
4120 * emitted over 20 msec ago.
4121 *
b962442e
EA
4122 * Note that if we were to use the current jiffies each time around the loop,
4123 * we wouldn't escape the function with any frames outstanding if the time to
4124 * render a frame was over 20ms.
4125 *
673a394b
EA
4126 * This should get us reasonable parallelism between CPU and GPU but also
4127 * relatively low latency when blocking on a particular request to finish.
4128 */
40a5f0de 4129static int
f787a5f5 4130i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4131{
f787a5f5
CW
4132 struct drm_i915_private *dev_priv = dev->dev_private;
4133 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4134 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 4135 struct drm_i915_gem_request *request, *target = NULL;
f69061be 4136 unsigned reset_counter;
f787a5f5 4137 int ret;
93533c29 4138
308887aa
DV
4139 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4140 if (ret)
4141 return ret;
4142
4143 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4144 if (ret)
4145 return ret;
e110e8d6 4146
1c25595f 4147 spin_lock(&file_priv->mm.lock);
f787a5f5 4148 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4149 if (time_after_eq(request->emitted_jiffies, recent_enough))
4150 break;
40a5f0de 4151
fcfa423c
JH
4152 /*
4153 * Note that the request might not have been submitted yet.
4154 * In which case emitted_jiffies will be zero.
4155 */
4156 if (!request->emitted_jiffies)
4157 continue;
4158
54fb2411 4159 target = request;
b962442e 4160 }
f69061be 4161 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885
JH
4162 if (target)
4163 i915_gem_request_reference(target);
1c25595f 4164 spin_unlock(&file_priv->mm.lock);
40a5f0de 4165
54fb2411 4166 if (target == NULL)
f787a5f5 4167 return 0;
2bc43b5c 4168
9c654818 4169 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
f787a5f5
CW
4170 if (ret == 0)
4171 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4172
41037f9f 4173 i915_gem_request_unreference__unlocked(target);
ff865885 4174
40a5f0de
EA
4175 return ret;
4176}
4177
d23db88c
CW
4178static bool
4179i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4180{
4181 struct drm_i915_gem_object *obj = vma->obj;
4182
4183 if (alignment &&
4184 vma->node.start & (alignment - 1))
4185 return true;
4186
4187 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4188 return true;
4189
4190 if (flags & PIN_OFFSET_BIAS &&
4191 vma->node.start < (flags & PIN_OFFSET_MASK))
4192 return true;
4193
506a8e87
CW
4194 if (flags & PIN_OFFSET_FIXED &&
4195 vma->node.start != (flags & PIN_OFFSET_MASK))
4196 return true;
4197
d23db88c
CW
4198 return false;
4199}
4200
d0710abb
CW
4201void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4202{
4203 struct drm_i915_gem_object *obj = vma->obj;
4204 bool mappable, fenceable;
4205 u32 fence_size, fence_alignment;
4206
4207 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4208 obj->base.size,
4209 obj->tiling_mode);
4210 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4211 obj->base.size,
4212 obj->tiling_mode,
4213 true);
4214
4215 fenceable = (vma->node.size == fence_size &&
4216 (vma->node.start & (fence_alignment - 1)) == 0);
4217
4218 mappable = (vma->node.start + fence_size <=
4219 to_i915(obj->base.dev)->gtt.mappable_end);
4220
4221 obj->map_and_fenceable = mappable && fenceable;
4222}
4223
ec7adb6e
JL
4224static int
4225i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4226 struct i915_address_space *vm,
4227 const struct i915_ggtt_view *ggtt_view,
4228 uint32_t alignment,
4229 uint64_t flags)
673a394b 4230{
6e7186af 4231 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4232 struct i915_vma *vma;
ef79e17c 4233 unsigned bound;
673a394b
EA
4234 int ret;
4235
6e7186af
BW
4236 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4237 return -ENODEV;
4238
bf3d149b 4239 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4240 return -EINVAL;
07fe0b12 4241
c826c449
CW
4242 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4243 return -EINVAL;
4244
ec7adb6e
JL
4245 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4246 return -EINVAL;
4247
4248 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4249 i915_gem_obj_to_vma(obj, vm);
4250
4251 if (IS_ERR(vma))
4252 return PTR_ERR(vma);
4253
07fe0b12 4254 if (vma) {
d7f46fc4
BW
4255 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4256 return -EBUSY;
4257
d23db88c 4258 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4259 WARN(vma->pin_count,
ec7adb6e 4260 "bo is already pinned in %s with incorrect alignment:"
088e0df4 4261 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4262 " obj->map_and_fenceable=%d\n",
ec7adb6e 4263 ggtt_view ? "ggtt" : "ppgtt",
088e0df4
MT
4264 upper_32_bits(vma->node.start),
4265 lower_32_bits(vma->node.start),
fe14d5f4 4266 alignment,
d23db88c 4267 !!(flags & PIN_MAPPABLE),
05394f39 4268 obj->map_and_fenceable);
07fe0b12 4269 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4270 if (ret)
4271 return ret;
8ea99c92
DV
4272
4273 vma = NULL;
ac0c6b5a
CW
4274 }
4275 }
4276
ef79e17c 4277 bound = vma ? vma->bound : 0;
8ea99c92 4278 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
ec7adb6e
JL
4279 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4280 flags);
262de145
DV
4281 if (IS_ERR(vma))
4282 return PTR_ERR(vma);
0875546c
DV
4283 } else {
4284 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
4285 if (ret)
4286 return ret;
4287 }
74898d7e 4288
91e6711e
JL
4289 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4290 (bound ^ vma->bound) & GLOBAL_BIND) {
d0710abb 4291 __i915_vma_set_map_and_fenceable(vma);
91e6711e
JL
4292 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4293 }
ef79e17c 4294
8ea99c92 4295 vma->pin_count++;
673a394b
EA
4296 return 0;
4297}
4298
ec7adb6e
JL
4299int
4300i915_gem_object_pin(struct drm_i915_gem_object *obj,
4301 struct i915_address_space *vm,
4302 uint32_t alignment,
4303 uint64_t flags)
4304{
4305 return i915_gem_object_do_pin(obj, vm,
4306 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4307 alignment, flags);
4308}
4309
4310int
4311i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4312 const struct i915_ggtt_view *view,
4313 uint32_t alignment,
4314 uint64_t flags)
4315{
4316 if (WARN_ONCE(!view, "no view specified"))
4317 return -EINVAL;
4318
4319 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
6fafab76 4320 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4321}
4322
673a394b 4323void
e6617330
TU
4324i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4325 const struct i915_ggtt_view *view)
673a394b 4326{
e6617330 4327 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4328
d7f46fc4 4329 BUG_ON(!vma);
e6617330 4330 WARN_ON(vma->pin_count == 0);
9abc4648 4331 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4332
30154650 4333 --vma->pin_count;
673a394b
EA
4334}
4335
673a394b
EA
4336int
4337i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4338 struct drm_file *file)
673a394b
EA
4339{
4340 struct drm_i915_gem_busy *args = data;
05394f39 4341 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4342 int ret;
4343
76c1dec1 4344 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4345 if (ret)
76c1dec1 4346 return ret;
673a394b 4347
05394f39 4348 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4349 if (&obj->base == NULL) {
1d7cfea1
CW
4350 ret = -ENOENT;
4351 goto unlock;
673a394b 4352 }
d1b851fc 4353
0be555b6
CW
4354 /* Count all active objects as busy, even if they are currently not used
4355 * by the gpu. Users of this interface expect objects to eventually
4356 * become non-busy without any further actions, therefore emit any
4357 * necessary flushes here.
c4de0a5d 4358 */
30dfebf3 4359 ret = i915_gem_object_flush_active(obj);
b4716185
CW
4360 if (ret)
4361 goto unref;
0be555b6 4362
b4716185
CW
4363 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4364 args->busy = obj->active << 16;
4365 if (obj->last_write_req)
4366 args->busy |= obj->last_write_req->ring->id;
673a394b 4367
b4716185 4368unref:
05394f39 4369 drm_gem_object_unreference(&obj->base);
1d7cfea1 4370unlock:
673a394b 4371 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4372 return ret;
673a394b
EA
4373}
4374
4375int
4376i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4377 struct drm_file *file_priv)
4378{
0206e353 4379 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4380}
4381
3ef94daa
CW
4382int
4383i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4384 struct drm_file *file_priv)
4385{
656bfa3a 4386 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4387 struct drm_i915_gem_madvise *args = data;
05394f39 4388 struct drm_i915_gem_object *obj;
76c1dec1 4389 int ret;
3ef94daa
CW
4390
4391 switch (args->madv) {
4392 case I915_MADV_DONTNEED:
4393 case I915_MADV_WILLNEED:
4394 break;
4395 default:
4396 return -EINVAL;
4397 }
4398
1d7cfea1
CW
4399 ret = i915_mutex_lock_interruptible(dev);
4400 if (ret)
4401 return ret;
4402
05394f39 4403 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4404 if (&obj->base == NULL) {
1d7cfea1
CW
4405 ret = -ENOENT;
4406 goto unlock;
3ef94daa 4407 }
3ef94daa 4408
d7f46fc4 4409 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4410 ret = -EINVAL;
4411 goto out;
3ef94daa
CW
4412 }
4413
656bfa3a
DV
4414 if (obj->pages &&
4415 obj->tiling_mode != I915_TILING_NONE &&
4416 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4417 if (obj->madv == I915_MADV_WILLNEED)
4418 i915_gem_object_unpin_pages(obj);
4419 if (args->madv == I915_MADV_WILLNEED)
4420 i915_gem_object_pin_pages(obj);
4421 }
4422
05394f39
CW
4423 if (obj->madv != __I915_MADV_PURGED)
4424 obj->madv = args->madv;
3ef94daa 4425
6c085a72 4426 /* if the object is no longer attached, discard its backing storage */
be6a0376 4427 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4428 i915_gem_object_truncate(obj);
4429
05394f39 4430 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4431
1d7cfea1 4432out:
05394f39 4433 drm_gem_object_unreference(&obj->base);
1d7cfea1 4434unlock:
3ef94daa 4435 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4436 return ret;
3ef94daa
CW
4437}
4438
37e680a1
CW
4439void i915_gem_object_init(struct drm_i915_gem_object *obj,
4440 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4441{
b4716185
CW
4442 int i;
4443
35c20a60 4444 INIT_LIST_HEAD(&obj->global_list);
b4716185
CW
4445 for (i = 0; i < I915_NUM_RINGS; i++)
4446 INIT_LIST_HEAD(&obj->ring_list[i]);
b25cb2f8 4447 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4448 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4449 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4450
37e680a1
CW
4451 obj->ops = ops;
4452
0327d6ba
CW
4453 obj->fence_reg = I915_FENCE_REG_NONE;
4454 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4455
4456 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4457}
4458
37e680a1
CW
4459static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4460 .get_pages = i915_gem_object_get_pages_gtt,
4461 .put_pages = i915_gem_object_put_pages_gtt,
4462};
4463
05394f39
CW
4464struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4465 size_t size)
ac52bc56 4466{
c397b908 4467 struct drm_i915_gem_object *obj;
5949eac4 4468 struct address_space *mapping;
1a240d4d 4469 gfp_t mask;
ac52bc56 4470
42dcedd4 4471 obj = i915_gem_object_alloc(dev);
c397b908
DV
4472 if (obj == NULL)
4473 return NULL;
673a394b 4474
c397b908 4475 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4476 i915_gem_object_free(obj);
c397b908
DV
4477 return NULL;
4478 }
673a394b 4479
bed1ea95
CW
4480 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4481 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4482 /* 965gm cannot relocate objects above 4GiB. */
4483 mask &= ~__GFP_HIGHMEM;
4484 mask |= __GFP_DMA32;
4485 }
4486
496ad9aa 4487 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4488 mapping_set_gfp_mask(mapping, mask);
5949eac4 4489
37e680a1 4490 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4491
c397b908
DV
4492 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4493 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4494
3d29b842
ED
4495 if (HAS_LLC(dev)) {
4496 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4497 * cache) for about a 10% performance improvement
4498 * compared to uncached. Graphics requests other than
4499 * display scanout are coherent with the CPU in
4500 * accessing this cache. This means in this mode we
4501 * don't need to clflush on the CPU side, and on the
4502 * GPU side we only need to flush internal caches to
4503 * get data visible to the CPU.
4504 *
4505 * However, we maintain the display planes as UC, and so
4506 * need to rebind when first used as such.
4507 */
4508 obj->cache_level = I915_CACHE_LLC;
4509 } else
4510 obj->cache_level = I915_CACHE_NONE;
4511
d861e338
DV
4512 trace_i915_gem_object_create(obj);
4513
05394f39 4514 return obj;
c397b908
DV
4515}
4516
340fbd8c
CW
4517static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4518{
4519 /* If we are the last user of the backing storage (be it shmemfs
4520 * pages or stolen etc), we know that the pages are going to be
4521 * immediately released. In this case, we can then skip copying
4522 * back the contents from the GPU.
4523 */
4524
4525 if (obj->madv != I915_MADV_WILLNEED)
4526 return false;
4527
4528 if (obj->base.filp == NULL)
4529 return true;
4530
4531 /* At first glance, this looks racy, but then again so would be
4532 * userspace racing mmap against close. However, the first external
4533 * reference to the filp can only be obtained through the
4534 * i915_gem_mmap_ioctl() which safeguards us against the user
4535 * acquiring such a reference whilst we are in the middle of
4536 * freeing the object.
4537 */
4538 return atomic_long_read(&obj->base.filp->f_count) == 1;
4539}
4540
1488fc08 4541void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4542{
1488fc08 4543 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4544 struct drm_device *dev = obj->base.dev;
3e31c6c0 4545 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4546 struct i915_vma *vma, *next;
673a394b 4547
f65c9168
PZ
4548 intel_runtime_pm_get(dev_priv);
4549
26e12f89
CW
4550 trace_i915_gem_object_destroy(obj);
4551
07fe0b12 4552 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4553 int ret;
4554
4555 vma->pin_count = 0;
4556 ret = i915_vma_unbind(vma);
07fe0b12
BW
4557 if (WARN_ON(ret == -ERESTARTSYS)) {
4558 bool was_interruptible;
1488fc08 4559
07fe0b12
BW
4560 was_interruptible = dev_priv->mm.interruptible;
4561 dev_priv->mm.interruptible = false;
1488fc08 4562
07fe0b12 4563 WARN_ON(i915_vma_unbind(vma));
1488fc08 4564
07fe0b12
BW
4565 dev_priv->mm.interruptible = was_interruptible;
4566 }
1488fc08
CW
4567 }
4568
1d64ae71
BW
4569 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4570 * before progressing. */
4571 if (obj->stolen)
4572 i915_gem_object_unpin_pages(obj);
4573
a071fa00
DV
4574 WARN_ON(obj->frontbuffer_bits);
4575
656bfa3a
DV
4576 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4577 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4578 obj->tiling_mode != I915_TILING_NONE)
4579 i915_gem_object_unpin_pages(obj);
4580
401c29f6
BW
4581 if (WARN_ON(obj->pages_pin_count))
4582 obj->pages_pin_count = 0;
340fbd8c 4583 if (discard_backing_storage(obj))
5537252b 4584 obj->madv = I915_MADV_DONTNEED;
37e680a1 4585 i915_gem_object_put_pages(obj);
d8cb5086 4586 i915_gem_object_free_mmap_offset(obj);
de151cf6 4587
9da3da66
CW
4588 BUG_ON(obj->pages);
4589
2f745ad3
CW
4590 if (obj->base.import_attach)
4591 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4592
5cc9ed4b
CW
4593 if (obj->ops->release)
4594 obj->ops->release(obj);
4595
05394f39
CW
4596 drm_gem_object_release(&obj->base);
4597 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4598
05394f39 4599 kfree(obj->bit_17);
42dcedd4 4600 i915_gem_object_free(obj);
f65c9168
PZ
4601
4602 intel_runtime_pm_put(dev_priv);
673a394b
EA
4603}
4604
ec7adb6e
JL
4605struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4606 struct i915_address_space *vm)
e656a6cb
DV
4607{
4608 struct i915_vma *vma;
ec7adb6e 4609 list_for_each_entry(vma, &obj->vma_list, vma_link) {
1b683729
TU
4610 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4611 vma->vm == vm)
e656a6cb 4612 return vma;
ec7adb6e
JL
4613 }
4614 return NULL;
4615}
4616
4617struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4618 const struct i915_ggtt_view *view)
4619{
4620 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4621 struct i915_vma *vma;
e656a6cb 4622
ec7adb6e
JL
4623 if (WARN_ONCE(!view, "no view specified"))
4624 return ERR_PTR(-EINVAL);
4625
4626 list_for_each_entry(vma, &obj->vma_list, vma_link)
9abc4648
JL
4627 if (vma->vm == ggtt &&
4628 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4629 return vma;
e656a6cb
DV
4630 return NULL;
4631}
4632
2f633156
BW
4633void i915_gem_vma_destroy(struct i915_vma *vma)
4634{
b9d06dd9 4635 struct i915_address_space *vm = NULL;
2f633156 4636 WARN_ON(vma->node.allocated);
aaa05667
CW
4637
4638 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4639 if (!list_empty(&vma->exec_list))
4640 return;
4641
b9d06dd9 4642 vm = vma->vm;
b9d06dd9 4643
841cd773
DV
4644 if (!i915_is_ggtt(vm))
4645 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4646
8b9c2b94 4647 list_del(&vma->vma_link);
b93dab6e 4648
e20d2ab7 4649 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
2f633156
BW
4650}
4651
e3efda49
CW
4652static void
4653i915_gem_stop_ringbuffers(struct drm_device *dev)
4654{
4655 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4656 struct intel_engine_cs *ring;
e3efda49
CW
4657 int i;
4658
4659 for_each_ring(ring, dev_priv, i)
a83014d3 4660 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4661}
4662
29105ccc 4663int
45c5f202 4664i915_gem_suspend(struct drm_device *dev)
29105ccc 4665{
3e31c6c0 4666 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4667 int ret = 0;
28dfe52a 4668
45c5f202 4669 mutex_lock(&dev->struct_mutex);
b2da9fe5 4670 ret = i915_gpu_idle(dev);
f7403347 4671 if (ret)
45c5f202 4672 goto err;
f7403347 4673
b2da9fe5 4674 i915_gem_retire_requests(dev);
673a394b 4675
e3efda49 4676 i915_gem_stop_ringbuffers(dev);
45c5f202
CW
4677 mutex_unlock(&dev->struct_mutex);
4678
737b1506 4679 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4680 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4681 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4682
bdcf120b
CW
4683 /* Assert that we sucessfully flushed all the work and
4684 * reset the GPU back to its idle, low power state.
4685 */
4686 WARN_ON(dev_priv->mm.busy);
4687
673a394b 4688 return 0;
45c5f202
CW
4689
4690err:
4691 mutex_unlock(&dev->struct_mutex);
4692 return ret;
673a394b
EA
4693}
4694
6909a666 4695int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
b9524a1e 4696{
6909a666 4697 struct intel_engine_cs *ring = req->ring;
c3787e2e 4698 struct drm_device *dev = ring->dev;
3e31c6c0 4699 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6 4700 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4701 int i, ret;
b9524a1e 4702
040d2baa 4703 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4704 return 0;
b9524a1e 4705
5fb9de1a 4706 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
c3787e2e
BW
4707 if (ret)
4708 return ret;
b9524a1e 4709
c3787e2e
BW
4710 /*
4711 * Note: We do not worry about the concurrent register cacheline hang
4712 * here because no other code should access these registers other than
4713 * at initialization time.
4714 */
6fa1c5f1 4715 for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
c3787e2e 4716 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
f92a9162 4717 intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i));
6fa1c5f1 4718 intel_ring_emit(ring, remap_info[i]);
b9524a1e
BW
4719 }
4720
c3787e2e 4721 intel_ring_advance(ring);
b9524a1e 4722
c3787e2e 4723 return ret;
b9524a1e
BW
4724}
4725
f691e2f4
DV
4726void i915_gem_init_swizzling(struct drm_device *dev)
4727{
3e31c6c0 4728 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4729
11782b02 4730 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4731 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4732 return;
4733
4734 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4735 DISP_TILE_SURFACE_SWIZZLING);
4736
11782b02
DV
4737 if (IS_GEN5(dev))
4738 return;
4739
f691e2f4
DV
4740 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4741 if (IS_GEN6(dev))
6b26c86d 4742 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4743 else if (IS_GEN7(dev))
6b26c86d 4744 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4745 else if (IS_GEN8(dev))
4746 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4747 else
4748 BUG();
f691e2f4 4749}
e21af88d 4750
81e7f200
VS
4751static void init_unused_ring(struct drm_device *dev, u32 base)
4752{
4753 struct drm_i915_private *dev_priv = dev->dev_private;
4754
4755 I915_WRITE(RING_CTL(base), 0);
4756 I915_WRITE(RING_HEAD(base), 0);
4757 I915_WRITE(RING_TAIL(base), 0);
4758 I915_WRITE(RING_START(base), 0);
4759}
4760
4761static void init_unused_rings(struct drm_device *dev)
4762{
4763 if (IS_I830(dev)) {
4764 init_unused_ring(dev, PRB1_BASE);
4765 init_unused_ring(dev, SRB0_BASE);
4766 init_unused_ring(dev, SRB1_BASE);
4767 init_unused_ring(dev, SRB2_BASE);
4768 init_unused_ring(dev, SRB3_BASE);
4769 } else if (IS_GEN2(dev)) {
4770 init_unused_ring(dev, SRB0_BASE);
4771 init_unused_ring(dev, SRB1_BASE);
4772 } else if (IS_GEN3(dev)) {
4773 init_unused_ring(dev, PRB1_BASE);
4774 init_unused_ring(dev, PRB2_BASE);
4775 }
4776}
4777
a83014d3 4778int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4779{
4fc7c971 4780 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4781 int ret;
68f95ba9 4782
5c1143bb 4783 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4784 if (ret)
b6913e4b 4785 return ret;
68f95ba9
CW
4786
4787 if (HAS_BSD(dev)) {
5c1143bb 4788 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4789 if (ret)
4790 goto cleanup_render_ring;
d1b851fc 4791 }
68f95ba9 4792
d39398f5 4793 if (HAS_BLT(dev)) {
549f7365
CW
4794 ret = intel_init_blt_ring_buffer(dev);
4795 if (ret)
4796 goto cleanup_bsd_ring;
4797 }
4798
9a8a2213
BW
4799 if (HAS_VEBOX(dev)) {
4800 ret = intel_init_vebox_ring_buffer(dev);
4801 if (ret)
4802 goto cleanup_blt_ring;
4803 }
4804
845f74a7
ZY
4805 if (HAS_BSD2(dev)) {
4806 ret = intel_init_bsd2_ring_buffer(dev);
4807 if (ret)
4808 goto cleanup_vebox_ring;
4809 }
9a8a2213 4810
4fc7c971
BW
4811 return 0;
4812
9a8a2213
BW
4813cleanup_vebox_ring:
4814 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4815cleanup_blt_ring:
4816 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4817cleanup_bsd_ring:
4818 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4819cleanup_render_ring:
4820 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4821
4822 return ret;
4823}
4824
4825int
4826i915_gem_init_hw(struct drm_device *dev)
4827{
3e31c6c0 4828 struct drm_i915_private *dev_priv = dev->dev_private;
35a57ffb 4829 struct intel_engine_cs *ring;
4ad2fd88 4830 int ret, i, j;
4fc7c971
BW
4831
4832 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4833 return -EIO;
4834
5e4f5189
CW
4835 /* Double layer security blanket, see i915_gem_init() */
4836 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4837
59124506 4838 if (dev_priv->ellc_size)
05e21cc4 4839 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4840
0bf21347
VS
4841 if (IS_HASWELL(dev))
4842 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4843 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4844
88a2b2a3 4845 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4846 if (IS_IVYBRIDGE(dev)) {
4847 u32 temp = I915_READ(GEN7_MSG_CTL);
4848 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4849 I915_WRITE(GEN7_MSG_CTL, temp);
4850 } else if (INTEL_INFO(dev)->gen >= 7) {
4851 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4852 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4853 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4854 }
88a2b2a3
BW
4855 }
4856
4fc7c971
BW
4857 i915_gem_init_swizzling(dev);
4858
d5abdfda
DV
4859 /*
4860 * At least 830 can leave some of the unused rings
4861 * "active" (ie. head != tail) after resume which
4862 * will prevent c3 entry. Makes sure all unused rings
4863 * are totally idle.
4864 */
4865 init_unused_rings(dev);
4866
90638cc1
JH
4867 BUG_ON(!dev_priv->ring[RCS].default_context);
4868
4ad2fd88
JH
4869 ret = i915_ppgtt_init_hw(dev);
4870 if (ret) {
4871 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4872 goto out;
4873 }
4874
4875 /* Need to do basic initialisation of all rings first: */
35a57ffb
DV
4876 for_each_ring(ring, dev_priv, i) {
4877 ret = ring->init_hw(ring);
4878 if (ret)
5e4f5189 4879 goto out;
35a57ffb 4880 }
99433931 4881
33a732f4 4882 /* We can't enable contexts until all firmware is loaded */
87bcdd2e
JB
4883 if (HAS_GUC_UCODE(dev)) {
4884 ret = intel_guc_ucode_load(dev);
4885 if (ret) {
9f9e539f
DV
4886 DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4887 ret = -EIO;
4888 goto out;
87bcdd2e 4889 }
33a732f4
AD
4890 }
4891
e84fe803
NH
4892 /*
4893 * Increment the next seqno by 0x100 so we have a visible break
4894 * on re-initialisation
4895 */
4896 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4897 if (ret)
4898 goto out;
4899
4ad2fd88
JH
4900 /* Now it is safe to go back round and do everything else: */
4901 for_each_ring(ring, dev_priv, i) {
dc4be607
JH
4902 struct drm_i915_gem_request *req;
4903
26827088
DG
4904 req = i915_gem_request_alloc(ring, NULL);
4905 if (IS_ERR(req)) {
4906 ret = PTR_ERR(req);
dc4be607
JH
4907 i915_gem_cleanup_ringbuffer(dev);
4908 goto out;
4909 }
4910
4ad2fd88
JH
4911 if (ring->id == RCS) {
4912 for (j = 0; j < NUM_L3_SLICES(dev); j++)
6909a666 4913 i915_gem_l3_remap(req, j);
4ad2fd88 4914 }
c3787e2e 4915
b3dd6b96 4916 ret = i915_ppgtt_init_ring(req);
4ad2fd88
JH
4917 if (ret && ret != -EIO) {
4918 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
dc4be607 4919 i915_gem_request_cancel(req);
4ad2fd88
JH
4920 i915_gem_cleanup_ringbuffer(dev);
4921 goto out;
4922 }
82460d97 4923
b3dd6b96 4924 ret = i915_gem_context_enable(req);
90638cc1
JH
4925 if (ret && ret != -EIO) {
4926 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
dc4be607 4927 i915_gem_request_cancel(req);
90638cc1
JH
4928 i915_gem_cleanup_ringbuffer(dev);
4929 goto out;
4930 }
dc4be607 4931
75289874 4932 i915_add_request_no_flush(req);
b7c36d25 4933 }
e21af88d 4934
5e4f5189
CW
4935out:
4936 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4937 return ret;
8187a2b7
ZN
4938}
4939
1070a42b
CW
4940int i915_gem_init(struct drm_device *dev)
4941{
4942 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4943 int ret;
4944
127f1003
OM
4945 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4946 i915.enable_execlists);
4947
1070a42b 4948 mutex_lock(&dev->struct_mutex);
d62b4892 4949
a83014d3 4950 if (!i915.enable_execlists) {
f3dc74c0 4951 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
a83014d3
OM
4952 dev_priv->gt.init_rings = i915_gem_init_rings;
4953 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4954 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd 4955 } else {
f3dc74c0 4956 dev_priv->gt.execbuf_submit = intel_execlists_submission;
454afebd
OM
4957 dev_priv->gt.init_rings = intel_logical_rings_init;
4958 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4959 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
4960 }
4961
5e4f5189
CW
4962 /* This is just a security blanket to placate dragons.
4963 * On some systems, we very sporadically observe that the first TLBs
4964 * used by the CS may be stale, despite us poking the TLB reset. If
4965 * we hold the forcewake during initialisation these problems
4966 * just magically go away.
4967 */
4968 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4969
6c5566a8 4970 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
4971 if (ret)
4972 goto out_unlock;
6c5566a8 4973
d7e5008f 4974 i915_gem_init_global_gtt(dev);
d62b4892 4975
2fa48d8d 4976 ret = i915_gem_context_init(dev);
7bcc3777
JN
4977 if (ret)
4978 goto out_unlock;
2fa48d8d 4979
35a57ffb
DV
4980 ret = dev_priv->gt.init_rings(dev);
4981 if (ret)
7bcc3777 4982 goto out_unlock;
2fa48d8d 4983
1070a42b 4984 ret = i915_gem_init_hw(dev);
60990320
CW
4985 if (ret == -EIO) {
4986 /* Allow ring initialisation to fail by marking the GPU as
4987 * wedged. But we only want to do this where the GPU is angry,
4988 * for all other failure, such as an allocation failure, bail.
4989 */
4990 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
805de8f4 4991 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
60990320 4992 ret = 0;
1070a42b 4993 }
7bcc3777
JN
4994
4995out_unlock:
5e4f5189 4996 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4997 mutex_unlock(&dev->struct_mutex);
1070a42b 4998
60990320 4999 return ret;
1070a42b
CW
5000}
5001
8187a2b7
ZN
5002void
5003i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5004{
3e31c6c0 5005 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 5006 struct intel_engine_cs *ring;
1ec14ad3 5007 int i;
8187a2b7 5008
b4519513 5009 for_each_ring(ring, dev_priv, i)
a83014d3 5010 dev_priv->gt.cleanup_ring(ring);
a647828a
NB
5011
5012 if (i915.enable_execlists)
5013 /*
5014 * Neither the BIOS, ourselves or any other kernel
5015 * expects the system to be in execlists mode on startup,
5016 * so we need to reset the GPU back to legacy mode.
5017 */
5018 intel_gpu_reset(dev);
8187a2b7
ZN
5019}
5020
64193406 5021static void
a4872ba6 5022init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
5023{
5024 INIT_LIST_HEAD(&ring->active_list);
5025 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
5026}
5027
673a394b
EA
5028void
5029i915_gem_load(struct drm_device *dev)
5030{
3e31c6c0 5031 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
5032 int i;
5033
efab6d8d 5034 dev_priv->objects =
42dcedd4
CW
5035 kmem_cache_create("i915_gem_object",
5036 sizeof(struct drm_i915_gem_object), 0,
5037 SLAB_HWCACHE_ALIGN,
5038 NULL);
e20d2ab7
CW
5039 dev_priv->vmas =
5040 kmem_cache_create("i915_gem_vma",
5041 sizeof(struct i915_vma), 0,
5042 SLAB_HWCACHE_ALIGN,
5043 NULL);
efab6d8d
CW
5044 dev_priv->requests =
5045 kmem_cache_create("i915_gem_request",
5046 sizeof(struct drm_i915_gem_request), 0,
5047 SLAB_HWCACHE_ALIGN,
5048 NULL);
673a394b 5049
fc8c067e 5050 INIT_LIST_HEAD(&dev_priv->vm_list);
a33afea5 5051 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
5052 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5053 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 5054 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
5055 for (i = 0; i < I915_NUM_RINGS; i++)
5056 init_ring_lists(&dev_priv->ring[i]);
4b9de737 5057 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 5058 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
5059 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5060 i915_gem_retire_work_handler);
b29c19b6
CW
5061 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5062 i915_gem_idle_work_handler);
1f83fee0 5063 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5064
72bfa19c
CW
5065 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5066
666a4537 5067 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
42b5aeab
VS
5068 dev_priv->num_fence_regs = 32;
5069 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
5070 dev_priv->num_fence_regs = 16;
5071 else
5072 dev_priv->num_fence_regs = 8;
5073
eb82289a
YZ
5074 if (intel_vgpu_active(dev))
5075 dev_priv->num_fence_regs =
5076 I915_READ(vgtif_reg(avail_rs.fence_num));
5077
e84fe803
NH
5078 /*
5079 * Set initial sequence number for requests.
5080 * Using this number allows the wraparound to happen early,
5081 * catching any obvious problems.
5082 */
5083 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5084 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5085
b5aa8a0f 5086 /* Initialize fence registers to zero */
19b2dbde
CW
5087 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5088 i915_gem_restore_fences(dev);
10ed13e4 5089
673a394b 5090 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 5091 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5092
ce453d81
CW
5093 dev_priv->mm.interruptible = true;
5094
be6a0376 5095 i915_gem_shrinker_init(dev_priv);
f99d7069
DV
5096
5097 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5098}
71acb5eb 5099
f787a5f5 5100void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5101{
f787a5f5 5102 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
5103
5104 /* Clean up our request list when the client is going away, so that
5105 * later retire_requests won't dereference our soon-to-be-gone
5106 * file_priv.
5107 */
1c25595f 5108 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5109 while (!list_empty(&file_priv->mm.request_list)) {
5110 struct drm_i915_gem_request *request;
5111
5112 request = list_first_entry(&file_priv->mm.request_list,
5113 struct drm_i915_gem_request,
5114 client_list);
5115 list_del(&request->client_list);
5116 request->file_priv = NULL;
5117 }
1c25595f 5118 spin_unlock(&file_priv->mm.lock);
b29c19b6 5119
2e1b8730 5120 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 5121 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 5122 list_del(&file_priv->rps.link);
8d3afd7d 5123 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 5124 }
b29c19b6
CW
5125}
5126
5127int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5128{
5129 struct drm_i915_file_private *file_priv;
e422b888 5130 int ret;
b29c19b6
CW
5131
5132 DRM_DEBUG_DRIVER("\n");
5133
5134 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5135 if (!file_priv)
5136 return -ENOMEM;
5137
5138 file->driver_priv = file_priv;
5139 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5140 file_priv->file = file;
2e1b8730 5141 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
5142
5143 spin_lock_init(&file_priv->mm.lock);
5144 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5145
e422b888
BW
5146 ret = i915_gem_context_open(dev, file);
5147 if (ret)
5148 kfree(file_priv);
b29c19b6 5149
e422b888 5150 return ret;
b29c19b6
CW
5151}
5152
b680c37a
DV
5153/**
5154 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
5155 * @old: current GEM buffer for the frontbuffer slots
5156 * @new: new GEM buffer for the frontbuffer slots
5157 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
5158 *
5159 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5160 * from @old and setting them in @new. Both @old and @new can be NULL.
5161 */
a071fa00
DV
5162void i915_gem_track_fb(struct drm_i915_gem_object *old,
5163 struct drm_i915_gem_object *new,
5164 unsigned frontbuffer_bits)
5165{
5166 if (old) {
5167 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5168 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5169 old->frontbuffer_bits &= ~frontbuffer_bits;
5170 }
5171
5172 if (new) {
5173 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5174 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5175 new->frontbuffer_bits |= frontbuffer_bits;
5176 }
5177}
5178
a70a3148 5179/* All the new VM stuff */
088e0df4
MT
5180u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5181 struct i915_address_space *vm)
a70a3148
BW
5182{
5183 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5184 struct i915_vma *vma;
5185
896ab1a5 5186 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5187
a70a3148 5188 list_for_each_entry(vma, &o->vma_list, vma_link) {
ec7adb6e
JL
5189 if (i915_is_ggtt(vma->vm) &&
5190 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5191 continue;
5192 if (vma->vm == vm)
a70a3148 5193 return vma->node.start;
a70a3148 5194 }
ec7adb6e 5195
f25748ea
DV
5196 WARN(1, "%s vma for this object not found.\n",
5197 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5198 return -1;
5199}
5200
088e0df4
MT
5201u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5202 const struct i915_ggtt_view *view)
a70a3148 5203{
ec7adb6e 5204 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
a70a3148
BW
5205 struct i915_vma *vma;
5206
5207 list_for_each_entry(vma, &o->vma_list, vma_link)
9abc4648
JL
5208 if (vma->vm == ggtt &&
5209 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
5210 return vma->node.start;
5211
5678ad73 5212 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
5213 return -1;
5214}
5215
5216bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5217 struct i915_address_space *vm)
5218{
5219 struct i915_vma *vma;
5220
5221 list_for_each_entry(vma, &o->vma_list, vma_link) {
5222 if (i915_is_ggtt(vma->vm) &&
5223 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5224 continue;
5225 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5226 return true;
5227 }
5228
5229 return false;
5230}
5231
5232bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 5233 const struct i915_ggtt_view *view)
ec7adb6e
JL
5234{
5235 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5236 struct i915_vma *vma;
5237
5238 list_for_each_entry(vma, &o->vma_list, vma_link)
5239 if (vma->vm == ggtt &&
9abc4648 5240 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 5241 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5242 return true;
5243
5244 return false;
5245}
5246
5247bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5248{
5a1d5eb0 5249 struct i915_vma *vma;
a70a3148 5250
5a1d5eb0
CW
5251 list_for_each_entry(vma, &o->vma_list, vma_link)
5252 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5253 return true;
5254
5255 return false;
5256}
5257
5258unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5259 struct i915_address_space *vm)
5260{
5261 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5262 struct i915_vma *vma;
5263
896ab1a5 5264 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5265
5266 BUG_ON(list_empty(&o->vma_list));
5267
ec7adb6e
JL
5268 list_for_each_entry(vma, &o->vma_list, vma_link) {
5269 if (i915_is_ggtt(vma->vm) &&
5270 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5271 continue;
a70a3148
BW
5272 if (vma->vm == vm)
5273 return vma->node.size;
ec7adb6e 5274 }
a70a3148
BW
5275 return 0;
5276}
5277
ec7adb6e 5278bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
5279{
5280 struct i915_vma *vma;
a6631ae1 5281 list_for_each_entry(vma, &obj->vma_list, vma_link)
ec7adb6e
JL
5282 if (vma->pin_count > 0)
5283 return true;
a6631ae1 5284
ec7adb6e 5285 return false;
5c2abbea 5286}
ea70299d 5287
033908ae
DG
5288/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5289struct page *
5290i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5291{
5292 struct page *page;
5293
5294 /* Only default objects have per-page dirty tracking */
5295 if (WARN_ON(obj->ops != &i915_gem_object_ops))
5296 return NULL;
5297
5298 page = i915_gem_object_get_page(obj, n);
5299 set_page_dirty(page);
5300 return page;
5301}
5302
ea70299d
DG
5303/* Allocate a new GEM object and fill it with the supplied data */
5304struct drm_i915_gem_object *
5305i915_gem_object_create_from_data(struct drm_device *dev,
5306 const void *data, size_t size)
5307{
5308 struct drm_i915_gem_object *obj;
5309 struct sg_table *sg;
5310 size_t bytes;
5311 int ret;
5312
5313 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5314 if (IS_ERR_OR_NULL(obj))
5315 return obj;
5316
5317 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5318 if (ret)
5319 goto fail;
5320
5321 ret = i915_gem_object_get_pages(obj);
5322 if (ret)
5323 goto fail;
5324
5325 i915_gem_object_pin_pages(obj);
5326 sg = obj->pages;
5327 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
9e7d18c0 5328 obj->dirty = 1; /* Backing store is now out of date */
ea70299d
DG
5329 i915_gem_object_unpin_pages(obj);
5330
5331 if (WARN_ON(bytes != size)) {
5332 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5333 ret = -EFAULT;
5334 goto fail;
5335 }
5336
5337 return obj;
5338
5339fail:
5340 drm_gem_object_unreference(&obj->base);
5341 return ERR_PTR(ret);
5342}