]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Fix up vma alignment to be u64
[thirdparty/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
c13d87ea 32#include "i915_gem_dmabuf.h"
eb82289a 33#include "i915_vgpu.h"
1c5d22f7 34#include "i915_trace.h"
652c393a 35#include "intel_drv.h"
0ccdacf6 36#include "intel_mocs.h"
c13d87ea 37#include <linux/reservation.h>
5949eac4 38#include <linux/shmem_fs.h>
5a0e3ad6 39#include <linux/slab.h>
673a394b 40#include <linux/swap.h>
79e53945 41#include <linux/pci.h>
1286ff73 42#include <linux/dma-buf.h>
673a394b 43
05394f39 44static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 45static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
61050808 46
c76ce038
CW
47static bool cpu_cache_is_coherent(struct drm_device *dev,
48 enum i915_cache_level level)
49{
50 return HAS_LLC(dev) || level != I915_CACHE_NONE;
51}
52
2c22569b
CW
53static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
54{
b50a5371
AS
55 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
56 return false;
57
2c22569b
CW
58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 return true;
60
61 return obj->pin_display;
62}
63
4f1959ee
AS
64static int
65insert_mappable_node(struct drm_i915_private *i915,
66 struct drm_mm_node *node, u32 size)
67{
68 memset(node, 0, sizeof(*node));
69 return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
70 size, 0, 0, 0,
71 i915->ggtt.mappable_end,
72 DRM_MM_SEARCH_DEFAULT,
73 DRM_MM_CREATE_DEFAULT);
74}
75
76static void
77remove_mappable_node(struct drm_mm_node *node)
78{
79 drm_mm_remove_node(node);
80}
81
73aa808f
CW
82/* some bookkeeping */
83static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
84 size_t size)
85{
c20e8355 86 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
87 dev_priv->mm.object_count++;
88 dev_priv->mm.object_memory += size;
c20e8355 89 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
90}
91
92static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
93 size_t size)
94{
c20e8355 95 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
96 dev_priv->mm.object_count--;
97 dev_priv->mm.object_memory -= size;
c20e8355 98 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
99}
100
21dd3734 101static int
33196ded 102i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 103{
30dbf0c0
CW
104 int ret;
105
d98c52cf 106 if (!i915_reset_in_progress(error))
30dbf0c0
CW
107 return 0;
108
0a6759c6
DV
109 /*
110 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
111 * userspace. If it takes that long something really bad is going on and
112 * we should simply try to bail out and fail as gracefully as possible.
113 */
1f83fee0 114 ret = wait_event_interruptible_timeout(error->reset_queue,
d98c52cf 115 !i915_reset_in_progress(error),
1f83fee0 116 10*HZ);
0a6759c6
DV
117 if (ret == 0) {
118 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
119 return -EIO;
120 } else if (ret < 0) {
30dbf0c0 121 return ret;
d98c52cf
CW
122 } else {
123 return 0;
0a6759c6 124 }
30dbf0c0
CW
125}
126
54cf91dc 127int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 128{
fac5e23e 129 struct drm_i915_private *dev_priv = to_i915(dev);
76c1dec1
CW
130 int ret;
131
33196ded 132 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
133 if (ret)
134 return ret;
135
136 ret = mutex_lock_interruptible(&dev->struct_mutex);
137 if (ret)
138 return ret;
139
76c1dec1
CW
140 return 0;
141}
30dbf0c0 142
5a125c3c
EA
143int
144i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 145 struct drm_file *file)
5a125c3c 146{
72e96d64 147 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 148 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 149 struct drm_i915_gem_get_aperture *args = data;
ca1543be 150 struct i915_vma *vma;
6299f992 151 size_t pinned;
5a125c3c 152
6299f992 153 pinned = 0;
73aa808f 154 mutex_lock(&dev->struct_mutex);
1c7f4bca 155 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
ca1543be
TU
156 if (vma->pin_count)
157 pinned += vma->node.size;
1c7f4bca 158 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
ca1543be
TU
159 if (vma->pin_count)
160 pinned += vma->node.size;
73aa808f 161 mutex_unlock(&dev->struct_mutex);
5a125c3c 162
72e96d64 163 args->aper_size = ggtt->base.total;
0206e353 164 args->aper_available_size = args->aper_size - pinned;
6299f992 165
5a125c3c
EA
166 return 0;
167}
168
6a2c4232
CW
169static int
170i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 171{
6a2c4232
CW
172 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
173 char *vaddr = obj->phys_handle->vaddr;
174 struct sg_table *st;
175 struct scatterlist *sg;
176 int i;
00731155 177
6a2c4232
CW
178 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
179 return -EINVAL;
180
181 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
182 struct page *page;
183 char *src;
184
185 page = shmem_read_mapping_page(mapping, i);
186 if (IS_ERR(page))
187 return PTR_ERR(page);
188
189 src = kmap_atomic(page);
190 memcpy(vaddr, src, PAGE_SIZE);
191 drm_clflush_virt_range(vaddr, PAGE_SIZE);
192 kunmap_atomic(src);
193
09cbfeaf 194 put_page(page);
6a2c4232
CW
195 vaddr += PAGE_SIZE;
196 }
197
c033666a 198 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
199
200 st = kmalloc(sizeof(*st), GFP_KERNEL);
201 if (st == NULL)
202 return -ENOMEM;
203
204 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
205 kfree(st);
206 return -ENOMEM;
207 }
208
209 sg = st->sgl;
210 sg->offset = 0;
211 sg->length = obj->base.size;
00731155 212
6a2c4232
CW
213 sg_dma_address(sg) = obj->phys_handle->busaddr;
214 sg_dma_len(sg) = obj->base.size;
215
216 obj->pages = st;
6a2c4232
CW
217 return 0;
218}
219
220static void
221i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222{
223 int ret;
224
225 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 226
6a2c4232 227 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 228 if (WARN_ON(ret)) {
6a2c4232
CW
229 /* In the event of a disaster, abandon all caches and
230 * hope for the best.
231 */
6a2c4232
CW
232 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
233 }
234
235 if (obj->madv == I915_MADV_DONTNEED)
236 obj->dirty = 0;
237
238 if (obj->dirty) {
00731155 239 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 240 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
241 int i;
242
243 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
244 struct page *page;
245 char *dst;
246
247 page = shmem_read_mapping_page(mapping, i);
248 if (IS_ERR(page))
249 continue;
250
251 dst = kmap_atomic(page);
252 drm_clflush_virt_range(vaddr, PAGE_SIZE);
253 memcpy(dst, vaddr, PAGE_SIZE);
254 kunmap_atomic(dst);
255
256 set_page_dirty(page);
257 if (obj->madv == I915_MADV_WILLNEED)
00731155 258 mark_page_accessed(page);
09cbfeaf 259 put_page(page);
00731155
CW
260 vaddr += PAGE_SIZE;
261 }
6a2c4232 262 obj->dirty = 0;
00731155
CW
263 }
264
6a2c4232
CW
265 sg_free_table(obj->pages);
266 kfree(obj->pages);
6a2c4232
CW
267}
268
269static void
270i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
271{
272 drm_pci_free(obj->base.dev, obj->phys_handle);
273}
274
275static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
276 .get_pages = i915_gem_object_get_pages_phys,
277 .put_pages = i915_gem_object_put_pages_phys,
278 .release = i915_gem_object_release_phys,
279};
280
aa653a68
CW
281int
282i915_gem_object_unbind(struct drm_i915_gem_object *obj)
283{
284 struct i915_vma *vma;
285 LIST_HEAD(still_in_list);
286 int ret;
287
288 /* The vma will only be freed if it is marked as closed, and if we wait
289 * upon rendering to the vma, we may unbind anything in the list.
290 */
291 while ((vma = list_first_entry_or_null(&obj->vma_list,
292 struct i915_vma,
293 obj_link))) {
294 list_move_tail(&vma->obj_link, &still_in_list);
295 ret = i915_vma_unbind(vma);
296 if (ret)
297 break;
298 }
299 list_splice(&still_in_list, &obj->vma_list);
300
301 return ret;
302}
303
00731155
CW
304int
305i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
306 int align)
307{
308 drm_dma_handle_t *phys;
6a2c4232 309 int ret;
00731155
CW
310
311 if (obj->phys_handle) {
312 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
313 return -EBUSY;
314
315 return 0;
316 }
317
318 if (obj->madv != I915_MADV_WILLNEED)
319 return -EFAULT;
320
321 if (obj->base.filp == NULL)
322 return -EINVAL;
323
4717ca9e
CW
324 ret = i915_gem_object_unbind(obj);
325 if (ret)
326 return ret;
327
328 ret = i915_gem_object_put_pages(obj);
6a2c4232
CW
329 if (ret)
330 return ret;
331
00731155
CW
332 /* create a new object */
333 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
334 if (!phys)
335 return -ENOMEM;
336
00731155 337 obj->phys_handle = phys;
6a2c4232
CW
338 obj->ops = &i915_gem_phys_ops;
339
340 return i915_gem_object_get_pages(obj);
00731155
CW
341}
342
343static int
344i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
345 struct drm_i915_gem_pwrite *args,
346 struct drm_file *file_priv)
347{
348 struct drm_device *dev = obj->base.dev;
349 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 350 char __user *user_data = u64_to_user_ptr(args->data_ptr);
063e4e6b 351 int ret = 0;
6a2c4232
CW
352
353 /* We manually control the domain here and pretend that it
354 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
355 */
356 ret = i915_gem_object_wait_rendering(obj, false);
357 if (ret)
358 return ret;
00731155 359
77a0d1ca 360 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
361 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
362 unsigned long unwritten;
363
364 /* The physical object once assigned is fixed for the lifetime
365 * of the obj, so we can safely drop the lock and continue
366 * to access vaddr.
367 */
368 mutex_unlock(&dev->struct_mutex);
369 unwritten = copy_from_user(vaddr, user_data, args->size);
370 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
371 if (unwritten) {
372 ret = -EFAULT;
373 goto out;
374 }
00731155
CW
375 }
376
6a2c4232 377 drm_clflush_virt_range(vaddr, args->size);
c033666a 378 i915_gem_chipset_flush(to_i915(dev));
063e4e6b
PZ
379
380out:
de152b62 381 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 382 return ret;
00731155
CW
383}
384
42dcedd4
CW
385void *i915_gem_object_alloc(struct drm_device *dev)
386{
fac5e23e 387 struct drm_i915_private *dev_priv = to_i915(dev);
efab6d8d 388 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
389}
390
391void i915_gem_object_free(struct drm_i915_gem_object *obj)
392{
fac5e23e 393 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
efab6d8d 394 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
395}
396
ff72145b
DA
397static int
398i915_gem_create(struct drm_file *file,
399 struct drm_device *dev,
400 uint64_t size,
401 uint32_t *handle_p)
673a394b 402{
05394f39 403 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
404 int ret;
405 u32 handle;
673a394b 406
ff72145b 407 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
408 if (size == 0)
409 return -EINVAL;
673a394b
EA
410
411 /* Allocate the new object */
d37cd8a8 412 obj = i915_gem_object_create(dev, size);
fe3db79b
CW
413 if (IS_ERR(obj))
414 return PTR_ERR(obj);
673a394b 415
05394f39 416 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 417 /* drop reference from allocate - handle holds it now */
34911fd3 418 i915_gem_object_put_unlocked(obj);
d861e338
DV
419 if (ret)
420 return ret;
202f2fef 421
ff72145b 422 *handle_p = handle;
673a394b
EA
423 return 0;
424}
425
ff72145b
DA
426int
427i915_gem_dumb_create(struct drm_file *file,
428 struct drm_device *dev,
429 struct drm_mode_create_dumb *args)
430{
431 /* have to work out size/pitch and return them */
de45eaf7 432 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
433 args->size = args->pitch * args->height;
434 return i915_gem_create(file, dev,
da6b51d0 435 args->size, &args->handle);
ff72145b
DA
436}
437
ff72145b
DA
438/**
439 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
440 * @dev: drm device pointer
441 * @data: ioctl data blob
442 * @file: drm file pointer
ff72145b
DA
443 */
444int
445i915_gem_create_ioctl(struct drm_device *dev, void *data,
446 struct drm_file *file)
447{
448 struct drm_i915_gem_create *args = data;
63ed2cb2 449
ff72145b 450 return i915_gem_create(file, dev,
da6b51d0 451 args->size, &args->handle);
ff72145b
DA
452}
453
8461d226
DV
454static inline int
455__copy_to_user_swizzled(char __user *cpu_vaddr,
456 const char *gpu_vaddr, int gpu_offset,
457 int length)
458{
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_to_user(cpu_vaddr + cpu_offset,
467 gpu_vaddr + swizzled_gpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478}
479
8c59967c 480static inline int
4f0c7cfb
BW
481__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
482 const char __user *cpu_vaddr,
8c59967c
DV
483 int length)
484{
485 int ret, cpu_offset = 0;
486
487 while (length > 0) {
488 int cacheline_end = ALIGN(gpu_offset + 1, 64);
489 int this_length = min(cacheline_end - gpu_offset, length);
490 int swizzled_gpu_offset = gpu_offset ^ 64;
491
492 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
493 cpu_vaddr + cpu_offset,
494 this_length);
495 if (ret)
496 return ret + length;
497
498 cpu_offset += this_length;
499 gpu_offset += this_length;
500 length -= this_length;
501 }
502
503 return 0;
504}
505
4c914c0c
BV
506/*
507 * Pins the specified object's pages and synchronizes the object with
508 * GPU accesses. Sets needs_clflush to non-zero if the caller should
509 * flush the object from the CPU cache.
510 */
511int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
512 int *needs_clflush)
513{
514 int ret;
515
516 *needs_clflush = 0;
517
b9bcd14a 518 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4c914c0c
BV
519 return -EINVAL;
520
c13d87ea
CW
521 ret = i915_gem_object_wait_rendering(obj, true);
522 if (ret)
523 return ret;
524
4c914c0c
BV
525 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
526 /* If we're not in the cpu read domain, set ourself into the gtt
527 * read domain and manually flush cachelines (if required). This
528 * optimizes for the case when the gpu will dirty the data
529 * anyway again before the next pread happens. */
530 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
531 obj->cache_level);
4c914c0c
BV
532 }
533
534 ret = i915_gem_object_get_pages(obj);
535 if (ret)
536 return ret;
537
538 i915_gem_object_pin_pages(obj);
539
540 return ret;
541}
542
d174bd64
DV
543/* Per-page copy function for the shmem pread fastpath.
544 * Flushes invalid cachelines before reading the target if
545 * needs_clflush is set. */
eb01459f 546static int
d174bd64
DV
547shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
548 char __user *user_data,
549 bool page_do_bit17_swizzling, bool needs_clflush)
550{
551 char *vaddr;
552 int ret;
553
e7e58eb5 554 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
555 return -EINVAL;
556
557 vaddr = kmap_atomic(page);
558 if (needs_clflush)
559 drm_clflush_virt_range(vaddr + shmem_page_offset,
560 page_length);
561 ret = __copy_to_user_inatomic(user_data,
562 vaddr + shmem_page_offset,
563 page_length);
564 kunmap_atomic(vaddr);
565
f60d7f0c 566 return ret ? -EFAULT : 0;
d174bd64
DV
567}
568
23c18c71
DV
569static void
570shmem_clflush_swizzled_range(char *addr, unsigned long length,
571 bool swizzled)
572{
e7e58eb5 573 if (unlikely(swizzled)) {
23c18c71
DV
574 unsigned long start = (unsigned long) addr;
575 unsigned long end = (unsigned long) addr + length;
576
577 /* For swizzling simply ensure that we always flush both
578 * channels. Lame, but simple and it works. Swizzled
579 * pwrite/pread is far from a hotpath - current userspace
580 * doesn't use it at all. */
581 start = round_down(start, 128);
582 end = round_up(end, 128);
583
584 drm_clflush_virt_range((void *)start, end - start);
585 } else {
586 drm_clflush_virt_range(addr, length);
587 }
588
589}
590
d174bd64
DV
591/* Only difference to the fast-path function is that this can handle bit17
592 * and uses non-atomic copy and kmap functions. */
593static int
594shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
595 char __user *user_data,
596 bool page_do_bit17_swizzling, bool needs_clflush)
597{
598 char *vaddr;
599 int ret;
600
601 vaddr = kmap(page);
602 if (needs_clflush)
23c18c71
DV
603 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
604 page_length,
605 page_do_bit17_swizzling);
d174bd64
DV
606
607 if (page_do_bit17_swizzling)
608 ret = __copy_to_user_swizzled(user_data,
609 vaddr, shmem_page_offset,
610 page_length);
611 else
612 ret = __copy_to_user(user_data,
613 vaddr + shmem_page_offset,
614 page_length);
615 kunmap(page);
616
f60d7f0c 617 return ret ? - EFAULT : 0;
d174bd64
DV
618}
619
b50a5371
AS
620static inline unsigned long
621slow_user_access(struct io_mapping *mapping,
622 uint64_t page_base, int page_offset,
623 char __user *user_data,
624 unsigned long length, bool pwrite)
625{
626 void __iomem *ioaddr;
627 void *vaddr;
628 uint64_t unwritten;
629
630 ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
631 /* We can use the cpu mem copy function because this is X86. */
632 vaddr = (void __force *)ioaddr + page_offset;
633 if (pwrite)
634 unwritten = __copy_from_user(vaddr, user_data, length);
635 else
636 unwritten = __copy_to_user(user_data, vaddr, length);
637
638 io_mapping_unmap(ioaddr);
639 return unwritten;
640}
641
642static int
643i915_gem_gtt_pread(struct drm_device *dev,
644 struct drm_i915_gem_object *obj, uint64_t size,
645 uint64_t data_offset, uint64_t data_ptr)
646{
fac5e23e 647 struct drm_i915_private *dev_priv = to_i915(dev);
b50a5371
AS
648 struct i915_ggtt *ggtt = &dev_priv->ggtt;
649 struct drm_mm_node node;
650 char __user *user_data;
651 uint64_t remain;
652 uint64_t offset;
653 int ret;
654
655 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
656 if (ret) {
657 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
658 if (ret)
659 goto out;
660
661 ret = i915_gem_object_get_pages(obj);
662 if (ret) {
663 remove_mappable_node(&node);
664 goto out;
665 }
666
667 i915_gem_object_pin_pages(obj);
668 } else {
669 node.start = i915_gem_obj_ggtt_offset(obj);
670 node.allocated = false;
671 ret = i915_gem_object_put_fence(obj);
672 if (ret)
673 goto out_unpin;
674 }
675
676 ret = i915_gem_object_set_to_gtt_domain(obj, false);
677 if (ret)
678 goto out_unpin;
679
680 user_data = u64_to_user_ptr(data_ptr);
681 remain = size;
682 offset = data_offset;
683
684 mutex_unlock(&dev->struct_mutex);
685 if (likely(!i915.prefault_disable)) {
686 ret = fault_in_multipages_writeable(user_data, remain);
687 if (ret) {
688 mutex_lock(&dev->struct_mutex);
689 goto out_unpin;
690 }
691 }
692
693 while (remain > 0) {
694 /* Operation in this page
695 *
696 * page_base = page offset within aperture
697 * page_offset = offset within page
698 * page_length = bytes to copy for this page
699 */
700 u32 page_base = node.start;
701 unsigned page_offset = offset_in_page(offset);
702 unsigned page_length = PAGE_SIZE - page_offset;
703 page_length = remain < page_length ? remain : page_length;
704 if (node.allocated) {
705 wmb();
706 ggtt->base.insert_page(&ggtt->base,
707 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
708 node.start,
709 I915_CACHE_NONE, 0);
710 wmb();
711 } else {
712 page_base += offset & PAGE_MASK;
713 }
714 /* This is a slow read/write as it tries to read from
715 * and write to user memory which may result into page
716 * faults, and so we cannot perform this under struct_mutex.
717 */
718 if (slow_user_access(ggtt->mappable, page_base,
719 page_offset, user_data,
720 page_length, false)) {
721 ret = -EFAULT;
722 break;
723 }
724
725 remain -= page_length;
726 user_data += page_length;
727 offset += page_length;
728 }
729
730 mutex_lock(&dev->struct_mutex);
731 if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
732 /* The user has modified the object whilst we tried
733 * reading from it, and we now have no idea what domain
734 * the pages should be in. As we have just been touching
735 * them directly, flush everything back to the GTT
736 * domain.
737 */
738 ret = i915_gem_object_set_to_gtt_domain(obj, false);
739 }
740
741out_unpin:
742 if (node.allocated) {
743 wmb();
744 ggtt->base.clear_range(&ggtt->base,
745 node.start, node.size,
746 true);
747 i915_gem_object_unpin_pages(obj);
748 remove_mappable_node(&node);
749 } else {
750 i915_gem_object_ggtt_unpin(obj);
751 }
752out:
753 return ret;
754}
755
eb01459f 756static int
dbf7bff0
DV
757i915_gem_shmem_pread(struct drm_device *dev,
758 struct drm_i915_gem_object *obj,
759 struct drm_i915_gem_pread *args,
760 struct drm_file *file)
eb01459f 761{
8461d226 762 char __user *user_data;
eb01459f 763 ssize_t remain;
8461d226 764 loff_t offset;
eb2c0c81 765 int shmem_page_offset, page_length, ret = 0;
8461d226 766 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 767 int prefaulted = 0;
8489731c 768 int needs_clflush = 0;
67d5a50c 769 struct sg_page_iter sg_iter;
eb01459f 770
6eae0059 771 if (!i915_gem_object_has_struct_page(obj))
b50a5371
AS
772 return -ENODEV;
773
3ed605bc 774 user_data = u64_to_user_ptr(args->data_ptr);
eb01459f
EA
775 remain = args->size;
776
8461d226 777 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 778
4c914c0c 779 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
780 if (ret)
781 return ret;
782
8461d226 783 offset = args->offset;
eb01459f 784
67d5a50c
ID
785 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
786 offset >> PAGE_SHIFT) {
2db76d7c 787 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
788
789 if (remain <= 0)
790 break;
791
eb01459f
EA
792 /* Operation in this page
793 *
eb01459f 794 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
795 * page_length = bytes to copy for this page
796 */
c8cbbb8b 797 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
798 page_length = remain;
799 if ((shmem_page_offset + page_length) > PAGE_SIZE)
800 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 801
8461d226
DV
802 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
803 (page_to_phys(page) & (1 << 17)) != 0;
804
d174bd64
DV
805 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
806 user_data, page_do_bit17_swizzling,
807 needs_clflush);
808 if (ret == 0)
809 goto next_page;
dbf7bff0 810
dbf7bff0
DV
811 mutex_unlock(&dev->struct_mutex);
812
d330a953 813 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 814 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
815 /* Userspace is tricking us, but we've already clobbered
816 * its pages with the prefault and promised to write the
817 * data up to the first fault. Hence ignore any errors
818 * and just continue. */
819 (void)ret;
820 prefaulted = 1;
821 }
eb01459f 822
d174bd64
DV
823 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
824 user_data, page_do_bit17_swizzling,
825 needs_clflush);
eb01459f 826
dbf7bff0 827 mutex_lock(&dev->struct_mutex);
f60d7f0c 828
f60d7f0c 829 if (ret)
8461d226 830 goto out;
8461d226 831
17793c9a 832next_page:
eb01459f 833 remain -= page_length;
8461d226 834 user_data += page_length;
eb01459f
EA
835 offset += page_length;
836 }
837
4f27b75d 838out:
f60d7f0c
CW
839 i915_gem_object_unpin_pages(obj);
840
eb01459f
EA
841 return ret;
842}
843
673a394b
EA
844/**
845 * Reads data from the object referenced by handle.
14bb2c11
TU
846 * @dev: drm device pointer
847 * @data: ioctl data blob
848 * @file: drm file pointer
673a394b
EA
849 *
850 * On error, the contents of *data are undefined.
851 */
852int
853i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 854 struct drm_file *file)
673a394b
EA
855{
856 struct drm_i915_gem_pread *args = data;
05394f39 857 struct drm_i915_gem_object *obj;
35b62a89 858 int ret = 0;
673a394b 859
51311d0a
CW
860 if (args->size == 0)
861 return 0;
862
863 if (!access_ok(VERIFY_WRITE,
3ed605bc 864 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
865 args->size))
866 return -EFAULT;
867
4f27b75d 868 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 869 if (ret)
4f27b75d 870 return ret;
673a394b 871
03ac0642
CW
872 obj = i915_gem_object_lookup(file, args->handle);
873 if (!obj) {
1d7cfea1
CW
874 ret = -ENOENT;
875 goto unlock;
4f27b75d 876 }
673a394b 877
7dcd2499 878 /* Bounds check source. */
05394f39
CW
879 if (args->offset > obj->base.size ||
880 args->size > obj->base.size - args->offset) {
ce9d419d 881 ret = -EINVAL;
35b62a89 882 goto out;
ce9d419d
CW
883 }
884
db53a302
CW
885 trace_i915_gem_object_pread(obj, args->offset, args->size);
886
dbf7bff0 887 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 888
b50a5371 889 /* pread for non shmem backed objects */
1dd5b6f2
CW
890 if (ret == -EFAULT || ret == -ENODEV) {
891 intel_runtime_pm_get(to_i915(dev));
b50a5371
AS
892 ret = i915_gem_gtt_pread(dev, obj, args->size,
893 args->offset, args->data_ptr);
1dd5b6f2
CW
894 intel_runtime_pm_put(to_i915(dev));
895 }
b50a5371 896
35b62a89 897out:
f8c417cd 898 i915_gem_object_put(obj);
1d7cfea1 899unlock:
4f27b75d 900 mutex_unlock(&dev->struct_mutex);
eb01459f 901 return ret;
673a394b
EA
902}
903
0839ccb8
KP
904/* This is the fast write path which cannot handle
905 * page faults in the source data
9b7530cc 906 */
0839ccb8
KP
907
908static inline int
909fast_user_write(struct io_mapping *mapping,
910 loff_t page_base, int page_offset,
911 char __user *user_data,
912 int length)
9b7530cc 913{
4f0c7cfb
BW
914 void __iomem *vaddr_atomic;
915 void *vaddr;
0839ccb8 916 unsigned long unwritten;
9b7530cc 917
3e4d3af5 918 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
919 /* We can use the cpu mem copy function because this is X86. */
920 vaddr = (void __force*)vaddr_atomic + page_offset;
921 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 922 user_data, length);
3e4d3af5 923 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 924 return unwritten;
0839ccb8
KP
925}
926
3de09aa3
EA
927/**
928 * This is the fast pwrite path, where we copy the data directly from the
929 * user into the GTT, uncached.
62f90b38 930 * @i915: i915 device private data
14bb2c11
TU
931 * @obj: i915 gem object
932 * @args: pwrite arguments structure
933 * @file: drm file pointer
3de09aa3 934 */
673a394b 935static int
4f1959ee 936i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
05394f39 937 struct drm_i915_gem_object *obj,
3de09aa3 938 struct drm_i915_gem_pwrite *args,
05394f39 939 struct drm_file *file)
673a394b 940{
4f1959ee 941 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 942 struct drm_device *dev = obj->base.dev;
4f1959ee
AS
943 struct drm_mm_node node;
944 uint64_t remain, offset;
673a394b 945 char __user *user_data;
4f1959ee 946 int ret;
b50a5371
AS
947 bool hit_slow_path = false;
948
949 if (obj->tiling_mode != I915_TILING_NONE)
950 return -EFAULT;
935aaa69 951
1ec9e26d 952 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
4f1959ee
AS
953 if (ret) {
954 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
955 if (ret)
956 goto out;
957
958 ret = i915_gem_object_get_pages(obj);
959 if (ret) {
960 remove_mappable_node(&node);
961 goto out;
962 }
963
964 i915_gem_object_pin_pages(obj);
965 } else {
966 node.start = i915_gem_obj_ggtt_offset(obj);
967 node.allocated = false;
b50a5371
AS
968 ret = i915_gem_object_put_fence(obj);
969 if (ret)
970 goto out_unpin;
4f1959ee 971 }
935aaa69
DV
972
973 ret = i915_gem_object_set_to_gtt_domain(obj, true);
974 if (ret)
975 goto out_unpin;
976
77a0d1ca 977 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
4f1959ee 978 obj->dirty = true;
063e4e6b 979
4f1959ee
AS
980 user_data = u64_to_user_ptr(args->data_ptr);
981 offset = args->offset;
982 remain = args->size;
983 while (remain) {
673a394b
EA
984 /* Operation in this page
985 *
0839ccb8
KP
986 * page_base = page offset within aperture
987 * page_offset = offset within page
988 * page_length = bytes to copy for this page
673a394b 989 */
4f1959ee
AS
990 u32 page_base = node.start;
991 unsigned page_offset = offset_in_page(offset);
992 unsigned page_length = PAGE_SIZE - page_offset;
993 page_length = remain < page_length ? remain : page_length;
994 if (node.allocated) {
995 wmb(); /* flush the write before we modify the GGTT */
996 ggtt->base.insert_page(&ggtt->base,
997 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
998 node.start, I915_CACHE_NONE, 0);
999 wmb(); /* flush modifications to the GGTT (insert_page) */
1000 } else {
1001 page_base += offset & PAGE_MASK;
1002 }
0839ccb8 1003 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
1004 * source page isn't available. Return the error and we'll
1005 * retry in the slow path.
b50a5371
AS
1006 * If the object is non-shmem backed, we retry again with the
1007 * path that handles page fault.
0839ccb8 1008 */
72e96d64 1009 if (fast_user_write(ggtt->mappable, page_base,
935aaa69 1010 page_offset, user_data, page_length)) {
b50a5371
AS
1011 hit_slow_path = true;
1012 mutex_unlock(&dev->struct_mutex);
1013 if (slow_user_access(ggtt->mappable,
1014 page_base,
1015 page_offset, user_data,
1016 page_length, true)) {
1017 ret = -EFAULT;
1018 mutex_lock(&dev->struct_mutex);
1019 goto out_flush;
1020 }
1021
1022 mutex_lock(&dev->struct_mutex);
935aaa69 1023 }
673a394b 1024
0839ccb8
KP
1025 remain -= page_length;
1026 user_data += page_length;
1027 offset += page_length;
673a394b 1028 }
673a394b 1029
063e4e6b 1030out_flush:
b50a5371
AS
1031 if (hit_slow_path) {
1032 if (ret == 0 &&
1033 (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1034 /* The user has modified the object whilst we tried
1035 * reading from it, and we now have no idea what domain
1036 * the pages should be in. As we have just been touching
1037 * them directly, flush everything back to the GTT
1038 * domain.
1039 */
1040 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1041 }
1042 }
1043
de152b62 1044 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
935aaa69 1045out_unpin:
4f1959ee
AS
1046 if (node.allocated) {
1047 wmb();
1048 ggtt->base.clear_range(&ggtt->base,
1049 node.start, node.size,
1050 true);
1051 i915_gem_object_unpin_pages(obj);
1052 remove_mappable_node(&node);
1053 } else {
1054 i915_gem_object_ggtt_unpin(obj);
1055 }
935aaa69 1056out:
3de09aa3 1057 return ret;
673a394b
EA
1058}
1059
d174bd64
DV
1060/* Per-page copy function for the shmem pwrite fastpath.
1061 * Flushes invalid cachelines before writing to the target if
1062 * needs_clflush_before is set and flushes out any written cachelines after
1063 * writing if needs_clflush is set. */
3043c60c 1064static int
d174bd64
DV
1065shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1066 char __user *user_data,
1067 bool page_do_bit17_swizzling,
1068 bool needs_clflush_before,
1069 bool needs_clflush_after)
673a394b 1070{
d174bd64 1071 char *vaddr;
673a394b 1072 int ret;
3de09aa3 1073
e7e58eb5 1074 if (unlikely(page_do_bit17_swizzling))
d174bd64 1075 return -EINVAL;
3de09aa3 1076
d174bd64
DV
1077 vaddr = kmap_atomic(page);
1078 if (needs_clflush_before)
1079 drm_clflush_virt_range(vaddr + shmem_page_offset,
1080 page_length);
c2831a94
CW
1081 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1082 user_data, page_length);
d174bd64
DV
1083 if (needs_clflush_after)
1084 drm_clflush_virt_range(vaddr + shmem_page_offset,
1085 page_length);
1086 kunmap_atomic(vaddr);
3de09aa3 1087
755d2218 1088 return ret ? -EFAULT : 0;
3de09aa3
EA
1089}
1090
d174bd64
DV
1091/* Only difference to the fast-path function is that this can handle bit17
1092 * and uses non-atomic copy and kmap functions. */
3043c60c 1093static int
d174bd64
DV
1094shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1095 char __user *user_data,
1096 bool page_do_bit17_swizzling,
1097 bool needs_clflush_before,
1098 bool needs_clflush_after)
673a394b 1099{
d174bd64
DV
1100 char *vaddr;
1101 int ret;
e5281ccd 1102
d174bd64 1103 vaddr = kmap(page);
e7e58eb5 1104 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
1105 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1106 page_length,
1107 page_do_bit17_swizzling);
d174bd64
DV
1108 if (page_do_bit17_swizzling)
1109 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
1110 user_data,
1111 page_length);
d174bd64
DV
1112 else
1113 ret = __copy_from_user(vaddr + shmem_page_offset,
1114 user_data,
1115 page_length);
1116 if (needs_clflush_after)
23c18c71
DV
1117 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1118 page_length,
1119 page_do_bit17_swizzling);
d174bd64 1120 kunmap(page);
40123c1f 1121
755d2218 1122 return ret ? -EFAULT : 0;
40123c1f
EA
1123}
1124
40123c1f 1125static int
e244a443
DV
1126i915_gem_shmem_pwrite(struct drm_device *dev,
1127 struct drm_i915_gem_object *obj,
1128 struct drm_i915_gem_pwrite *args,
1129 struct drm_file *file)
40123c1f 1130{
40123c1f 1131 ssize_t remain;
8c59967c
DV
1132 loff_t offset;
1133 char __user *user_data;
eb2c0c81 1134 int shmem_page_offset, page_length, ret = 0;
8c59967c 1135 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 1136 int hit_slowpath = 0;
58642885
DV
1137 int needs_clflush_after = 0;
1138 int needs_clflush_before = 0;
67d5a50c 1139 struct sg_page_iter sg_iter;
40123c1f 1140
3ed605bc 1141 user_data = u64_to_user_ptr(args->data_ptr);
40123c1f
EA
1142 remain = args->size;
1143
8c59967c 1144 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 1145
c13d87ea
CW
1146 ret = i915_gem_object_wait_rendering(obj, false);
1147 if (ret)
1148 return ret;
1149
58642885
DV
1150 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1151 /* If we're not in the cpu write domain, set ourself into the gtt
1152 * write domain and manually flush cachelines (if required). This
1153 * optimizes for the case when the gpu will use the data
1154 * right away and we therefore have to clflush anyway. */
2c22569b 1155 needs_clflush_after = cpu_write_needs_clflush(obj);
58642885 1156 }
c76ce038
CW
1157 /* Same trick applies to invalidate partially written cachelines read
1158 * before writing. */
1159 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
1160 needs_clflush_before =
1161 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 1162
755d2218
CW
1163 ret = i915_gem_object_get_pages(obj);
1164 if (ret)
1165 return ret;
1166
77a0d1ca 1167 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 1168
755d2218
CW
1169 i915_gem_object_pin_pages(obj);
1170
673a394b 1171 offset = args->offset;
05394f39 1172 obj->dirty = 1;
673a394b 1173
67d5a50c
ID
1174 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1175 offset >> PAGE_SHIFT) {
2db76d7c 1176 struct page *page = sg_page_iter_page(&sg_iter);
58642885 1177 int partial_cacheline_write;
e5281ccd 1178
9da3da66
CW
1179 if (remain <= 0)
1180 break;
1181
40123c1f
EA
1182 /* Operation in this page
1183 *
40123c1f 1184 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
1185 * page_length = bytes to copy for this page
1186 */
c8cbbb8b 1187 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
1188
1189 page_length = remain;
1190 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1191 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 1192
58642885
DV
1193 /* If we don't overwrite a cacheline completely we need to be
1194 * careful to have up-to-date data by first clflushing. Don't
1195 * overcomplicate things and flush the entire patch. */
1196 partial_cacheline_write = needs_clflush_before &&
1197 ((shmem_page_offset | page_length)
1198 & (boot_cpu_data.x86_clflush_size - 1));
1199
8c59967c
DV
1200 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1201 (page_to_phys(page) & (1 << 17)) != 0;
1202
d174bd64
DV
1203 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1204 user_data, page_do_bit17_swizzling,
1205 partial_cacheline_write,
1206 needs_clflush_after);
1207 if (ret == 0)
1208 goto next_page;
e244a443
DV
1209
1210 hit_slowpath = 1;
e244a443 1211 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
1212 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1213 user_data, page_do_bit17_swizzling,
1214 partial_cacheline_write,
1215 needs_clflush_after);
40123c1f 1216
e244a443 1217 mutex_lock(&dev->struct_mutex);
755d2218 1218
755d2218 1219 if (ret)
8c59967c 1220 goto out;
8c59967c 1221
17793c9a 1222next_page:
40123c1f 1223 remain -= page_length;
8c59967c 1224 user_data += page_length;
40123c1f 1225 offset += page_length;
673a394b
EA
1226 }
1227
fbd5a26d 1228out:
755d2218
CW
1229 i915_gem_object_unpin_pages(obj);
1230
e244a443 1231 if (hit_slowpath) {
8dcf015e
DV
1232 /*
1233 * Fixup: Flush cpu caches in case we didn't flush the dirty
1234 * cachelines in-line while writing and the object moved
1235 * out of the cpu write domain while we've dropped the lock.
1236 */
1237 if (!needs_clflush_after &&
1238 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6 1239 if (i915_gem_clflush_object(obj, obj->pin_display))
ed75a55b 1240 needs_clflush_after = true;
e244a443 1241 }
8c59967c 1242 }
673a394b 1243
58642885 1244 if (needs_clflush_after)
c033666a 1245 i915_gem_chipset_flush(to_i915(dev));
ed75a55b
VS
1246 else
1247 obj->cache_dirty = true;
58642885 1248
de152b62 1249 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1250 return ret;
673a394b
EA
1251}
1252
1253/**
1254 * Writes data to the object referenced by handle.
14bb2c11
TU
1255 * @dev: drm device
1256 * @data: ioctl data blob
1257 * @file: drm file
673a394b
EA
1258 *
1259 * On error, the contents of the buffer that were to be modified are undefined.
1260 */
1261int
1262i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1263 struct drm_file *file)
673a394b 1264{
fac5e23e 1265 struct drm_i915_private *dev_priv = to_i915(dev);
673a394b 1266 struct drm_i915_gem_pwrite *args = data;
05394f39 1267 struct drm_i915_gem_object *obj;
51311d0a
CW
1268 int ret;
1269
1270 if (args->size == 0)
1271 return 0;
1272
1273 if (!access_ok(VERIFY_READ,
3ed605bc 1274 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1275 args->size))
1276 return -EFAULT;
1277
d330a953 1278 if (likely(!i915.prefault_disable)) {
3ed605bc 1279 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
0b74b508
XZ
1280 args->size);
1281 if (ret)
1282 return -EFAULT;
1283 }
673a394b 1284
5d77d9c5
ID
1285 intel_runtime_pm_get(dev_priv);
1286
fbd5a26d 1287 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1288 if (ret)
5d77d9c5 1289 goto put_rpm;
1d7cfea1 1290
03ac0642
CW
1291 obj = i915_gem_object_lookup(file, args->handle);
1292 if (!obj) {
1d7cfea1
CW
1293 ret = -ENOENT;
1294 goto unlock;
fbd5a26d 1295 }
673a394b 1296
7dcd2499 1297 /* Bounds check destination. */
05394f39
CW
1298 if (args->offset > obj->base.size ||
1299 args->size > obj->base.size - args->offset) {
ce9d419d 1300 ret = -EINVAL;
35b62a89 1301 goto out;
ce9d419d
CW
1302 }
1303
db53a302
CW
1304 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1305
935aaa69 1306 ret = -EFAULT;
673a394b
EA
1307 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1308 * it would end up going through the fenced access, and we'll get
1309 * different detiling behavior between reading and writing.
1310 * pread/pwrite currently are reading and writing from the CPU
1311 * perspective, requiring manual detiling by the client.
1312 */
6eae0059
CW
1313 if (!i915_gem_object_has_struct_page(obj) ||
1314 cpu_write_needs_clflush(obj)) {
4f1959ee 1315 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
935aaa69
DV
1316 /* Note that the gtt paths might fail with non-page-backed user
1317 * pointers (e.g. gtt mappings when moving data between
1318 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1319 }
673a394b 1320
d1054ee4 1321 if (ret == -EFAULT || ret == -ENOSPC) {
6a2c4232
CW
1322 if (obj->phys_handle)
1323 ret = i915_gem_phys_pwrite(obj, args, file);
6eae0059 1324 else if (i915_gem_object_has_struct_page(obj))
6a2c4232 1325 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
b50a5371
AS
1326 else
1327 ret = -ENODEV;
6a2c4232 1328 }
5c0480f2 1329
35b62a89 1330out:
f8c417cd 1331 i915_gem_object_put(obj);
1d7cfea1 1332unlock:
fbd5a26d 1333 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1334put_rpm:
1335 intel_runtime_pm_put(dev_priv);
1336
673a394b
EA
1337 return ret;
1338}
1339
b361237b
CW
1340/**
1341 * Ensures that all rendering to the object has completed and the object is
1342 * safe to unbind from the GTT or access from the CPU.
14bb2c11
TU
1343 * @obj: i915 gem object
1344 * @readonly: waiting for read access or write
b361237b 1345 */
2e2f351d 1346int
b361237b
CW
1347i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1348 bool readonly)
1349{
c13d87ea 1350 struct reservation_object *resv;
8cac6f6c
CW
1351 struct i915_gem_active *active;
1352 unsigned long active_mask;
1353 int idx, ret;
b361237b 1354
8cac6f6c
CW
1355 lockdep_assert_held(&obj->base.dev->struct_mutex);
1356
1357 if (!readonly) {
1358 active = obj->last_read;
1359 active_mask = obj->active;
b4716185 1360 } else {
8cac6f6c
CW
1361 active_mask = 1;
1362 active = &obj->last_write;
1363 }
b4716185 1364
8cac6f6c 1365 for_each_active(active_mask, idx) {
fa545cbf
CW
1366 ret = i915_gem_active_wait(&active[idx],
1367 &obj->base.dev->struct_mutex);
8cac6f6c
CW
1368 if (ret)
1369 return ret;
b4716185
CW
1370 }
1371
c13d87ea
CW
1372 resv = i915_gem_object_get_dmabuf_resv(obj);
1373 if (resv) {
1374 long err;
1375
1376 err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
1377 MAX_SCHEDULE_TIMEOUT);
1378 if (err < 0)
1379 return err;
1380 }
1381
b4716185
CW
1382 return 0;
1383}
1384
3236f57a
CW
1385/* A nonblocking variant of the above wait. This is a highly dangerous routine
1386 * as the object state may change during this call.
1387 */
1388static __must_check int
1389i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
2e1b8730 1390 struct intel_rps_client *rps,
3236f57a
CW
1391 bool readonly)
1392{
1393 struct drm_device *dev = obj->base.dev;
fac5e23e 1394 struct drm_i915_private *dev_priv = to_i915(dev);
666796da 1395 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
8cac6f6c
CW
1396 struct i915_gem_active *active;
1397 unsigned long active_mask;
b4716185 1398 int ret, i, n = 0;
3236f57a
CW
1399
1400 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1401 BUG_ON(!dev_priv->mm.interruptible);
1402
8cac6f6c
CW
1403 active_mask = obj->active;
1404 if (!active_mask)
3236f57a
CW
1405 return 0;
1406
8cac6f6c
CW
1407 if (!readonly) {
1408 active = obj->last_read;
b4716185 1409 } else {
8cac6f6c
CW
1410 active_mask = 1;
1411 active = &obj->last_write;
1412 }
b4716185 1413
8cac6f6c
CW
1414 for_each_active(active_mask, i) {
1415 struct drm_i915_gem_request *req;
b4716185 1416
8cac6f6c
CW
1417 req = i915_gem_active_get(&active[i],
1418 &obj->base.dev->struct_mutex);
1419 if (req)
27c01aae 1420 requests[n++] = req;
b4716185
CW
1421 }
1422
3236f57a 1423 mutex_unlock(&dev->struct_mutex);
299259a3 1424 ret = 0;
b4716185 1425 for (i = 0; ret == 0 && i < n; i++)
776f3236 1426 ret = i915_wait_request(requests[i], true, NULL, rps);
3236f57a
CW
1427 mutex_lock(&dev->struct_mutex);
1428
fa545cbf 1429 for (i = 0; i < n; i++)
e8a261ea 1430 i915_gem_request_put(requests[i]);
b4716185
CW
1431
1432 return ret;
3236f57a
CW
1433}
1434
2e1b8730
CW
1435static struct intel_rps_client *to_rps_client(struct drm_file *file)
1436{
1437 struct drm_i915_file_private *fpriv = file->driver_priv;
1438 return &fpriv->rps;
1439}
1440
aeecc969
CW
1441static enum fb_op_origin
1442write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1443{
1444 return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
1445 ORIGIN_GTT : ORIGIN_CPU;
1446}
1447
673a394b 1448/**
2ef7eeaa
EA
1449 * Called when user space prepares to use an object with the CPU, either
1450 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1451 * @dev: drm device
1452 * @data: ioctl data blob
1453 * @file: drm file
673a394b
EA
1454 */
1455int
1456i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1457 struct drm_file *file)
673a394b
EA
1458{
1459 struct drm_i915_gem_set_domain *args = data;
05394f39 1460 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1461 uint32_t read_domains = args->read_domains;
1462 uint32_t write_domain = args->write_domain;
673a394b
EA
1463 int ret;
1464
2ef7eeaa 1465 /* Only handle setting domains to types used by the CPU. */
21d509e3 1466 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1467 return -EINVAL;
1468
21d509e3 1469 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1470 return -EINVAL;
1471
1472 /* Having something in the write domain implies it's in the read
1473 * domain, and only that read domain. Enforce that in the request.
1474 */
1475 if (write_domain != 0 && read_domains != write_domain)
1476 return -EINVAL;
1477
76c1dec1 1478 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1479 if (ret)
76c1dec1 1480 return ret;
1d7cfea1 1481
03ac0642
CW
1482 obj = i915_gem_object_lookup(file, args->handle);
1483 if (!obj) {
1d7cfea1
CW
1484 ret = -ENOENT;
1485 goto unlock;
76c1dec1 1486 }
673a394b 1487
3236f57a
CW
1488 /* Try to flush the object off the GPU without holding the lock.
1489 * We will repeat the flush holding the lock in the normal manner
1490 * to catch cases where we are gazumped.
1491 */
6e4930f6 1492 ret = i915_gem_object_wait_rendering__nonblocking(obj,
2e1b8730 1493 to_rps_client(file),
6e4930f6 1494 !write_domain);
3236f57a
CW
1495 if (ret)
1496 goto unref;
1497
43566ded 1498 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1499 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1500 else
e47c68e9 1501 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1502
031b698a 1503 if (write_domain != 0)
aeecc969 1504 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
031b698a 1505
3236f57a 1506unref:
f8c417cd 1507 i915_gem_object_put(obj);
1d7cfea1 1508unlock:
673a394b
EA
1509 mutex_unlock(&dev->struct_mutex);
1510 return ret;
1511}
1512
1513/**
1514 * Called when user space has done writes to this buffer
14bb2c11
TU
1515 * @dev: drm device
1516 * @data: ioctl data blob
1517 * @file: drm file
673a394b
EA
1518 */
1519int
1520i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1521 struct drm_file *file)
673a394b
EA
1522{
1523 struct drm_i915_gem_sw_finish *args = data;
05394f39 1524 struct drm_i915_gem_object *obj;
673a394b
EA
1525 int ret = 0;
1526
76c1dec1 1527 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1528 if (ret)
76c1dec1 1529 return ret;
1d7cfea1 1530
03ac0642
CW
1531 obj = i915_gem_object_lookup(file, args->handle);
1532 if (!obj) {
1d7cfea1
CW
1533 ret = -ENOENT;
1534 goto unlock;
673a394b
EA
1535 }
1536
673a394b 1537 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1538 if (obj->pin_display)
e62b59e4 1539 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1540
f8c417cd 1541 i915_gem_object_put(obj);
1d7cfea1 1542unlock:
673a394b
EA
1543 mutex_unlock(&dev->struct_mutex);
1544 return ret;
1545}
1546
1547/**
14bb2c11
TU
1548 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1549 * it is mapped to.
1550 * @dev: drm device
1551 * @data: ioctl data blob
1552 * @file: drm file
673a394b
EA
1553 *
1554 * While the mapping holds a reference on the contents of the object, it doesn't
1555 * imply a ref on the object itself.
34367381
DV
1556 *
1557 * IMPORTANT:
1558 *
1559 * DRM driver writers who look a this function as an example for how to do GEM
1560 * mmap support, please don't implement mmap support like here. The modern way
1561 * to implement DRM mmap support is with an mmap offset ioctl (like
1562 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1563 * That way debug tooling like valgrind will understand what's going on, hiding
1564 * the mmap call in a driver private ioctl will break that. The i915 driver only
1565 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1566 */
1567int
1568i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1569 struct drm_file *file)
673a394b
EA
1570{
1571 struct drm_i915_gem_mmap *args = data;
03ac0642 1572 struct drm_i915_gem_object *obj;
673a394b
EA
1573 unsigned long addr;
1574
1816f923
AG
1575 if (args->flags & ~(I915_MMAP_WC))
1576 return -EINVAL;
1577
568a58e5 1578 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1579 return -ENODEV;
1580
03ac0642
CW
1581 obj = i915_gem_object_lookup(file, args->handle);
1582 if (!obj)
bf79cb91 1583 return -ENOENT;
673a394b 1584
1286ff73
DV
1585 /* prime objects have no backing filp to GEM mmap
1586 * pages from.
1587 */
03ac0642 1588 if (!obj->base.filp) {
34911fd3 1589 i915_gem_object_put_unlocked(obj);
1286ff73
DV
1590 return -EINVAL;
1591 }
1592
03ac0642 1593 addr = vm_mmap(obj->base.filp, 0, args->size,
673a394b
EA
1594 PROT_READ | PROT_WRITE, MAP_SHARED,
1595 args->offset);
1816f923
AG
1596 if (args->flags & I915_MMAP_WC) {
1597 struct mm_struct *mm = current->mm;
1598 struct vm_area_struct *vma;
1599
80a89a5e 1600 if (down_write_killable(&mm->mmap_sem)) {
34911fd3 1601 i915_gem_object_put_unlocked(obj);
80a89a5e
MH
1602 return -EINTR;
1603 }
1816f923
AG
1604 vma = find_vma(mm, addr);
1605 if (vma)
1606 vma->vm_page_prot =
1607 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1608 else
1609 addr = -ENOMEM;
1610 up_write(&mm->mmap_sem);
aeecc969
CW
1611
1612 /* This may race, but that's ok, it only gets set */
03ac0642 1613 WRITE_ONCE(obj->has_wc_mmap, true);
1816f923 1614 }
34911fd3 1615 i915_gem_object_put_unlocked(obj);
673a394b
EA
1616 if (IS_ERR((void *)addr))
1617 return addr;
1618
1619 args->addr_ptr = (uint64_t) addr;
1620
1621 return 0;
1622}
1623
de151cf6
JB
1624/**
1625 * i915_gem_fault - fault a page into the GTT
d9072a3e
GT
1626 * @vma: VMA in question
1627 * @vmf: fault info
de151cf6
JB
1628 *
1629 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1630 * from userspace. The fault handler takes care of binding the object to
1631 * the GTT (if needed), allocating and programming a fence register (again,
1632 * only if needed based on whether the old reg is still valid or the object
1633 * is tiled) and inserting a new PTE into the faulting process.
1634 *
1635 * Note that the faulting process may involve evicting existing objects
1636 * from the GTT and/or fence registers to make room. So performance may
1637 * suffer if the GTT working set is large or there are few fence registers
1638 * left.
1639 */
1640int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1641{
05394f39
CW
1642 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1643 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1644 struct drm_i915_private *dev_priv = to_i915(dev);
1645 struct i915_ggtt *ggtt = &dev_priv->ggtt;
c5ad54cf 1646 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
1647 pgoff_t page_offset;
1648 unsigned long pfn;
1649 int ret = 0;
0f973f27 1650 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1651
f65c9168
PZ
1652 intel_runtime_pm_get(dev_priv);
1653
de151cf6
JB
1654 /* We don't use vmf->pgoff since that has the fake offset */
1655 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1656 PAGE_SHIFT;
1657
d9bc7e9f
CW
1658 ret = i915_mutex_lock_interruptible(dev);
1659 if (ret)
1660 goto out;
a00b10c3 1661
db53a302
CW
1662 trace_i915_gem_object_fault(obj, page_offset, true, write);
1663
6e4930f6
CW
1664 /* Try to flush the object off the GPU first without holding the lock.
1665 * Upon reacquiring the lock, we will perform our sanity checks and then
1666 * repeat the flush holding the lock in the normal manner to catch cases
1667 * where we are gazumped.
1668 */
1669 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1670 if (ret)
1671 goto unlock;
1672
eb119bd6
CW
1673 /* Access to snoopable pages through the GTT is incoherent. */
1674 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1675 ret = -EFAULT;
eb119bd6
CW
1676 goto unlock;
1677 }
1678
c5ad54cf 1679 /* Use a partial view if the object is bigger than the aperture. */
72e96d64 1680 if (obj->base.size >= ggtt->mappable_end &&
e7ded2d7 1681 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 1682 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1683
c5ad54cf
JL
1684 memset(&view, 0, sizeof(view));
1685 view.type = I915_GGTT_VIEW_PARTIAL;
1686 view.params.partial.offset = rounddown(page_offset, chunk_size);
1687 view.params.partial.size =
1688 min_t(unsigned int,
1689 chunk_size,
1690 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1691 view.params.partial.offset);
1692 }
1693
1694 /* Now pin it into the GTT if needed */
1695 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
c9839303
CW
1696 if (ret)
1697 goto unlock;
4a684a41 1698
c9839303
CW
1699 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1700 if (ret)
1701 goto unpin;
74898d7e 1702
06d98131 1703 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1704 if (ret)
c9839303 1705 goto unpin;
7d1c4804 1706
b90b91d8 1707 /* Finally, remap it using the new GTT offset */
72e96d64 1708 pfn = ggtt->mappable_base +
c5ad54cf 1709 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 1710 pfn >>= PAGE_SHIFT;
de151cf6 1711
c5ad54cf
JL
1712 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1713 /* Overriding existing pages in partial view does not cause
1714 * us any trouble as TLBs are still valid because the fault
1715 * is due to userspace losing part of the mapping or never
1716 * having accessed it before (at this partials' range).
1717 */
1718 unsigned long base = vma->vm_start +
1719 (view.params.partial.offset << PAGE_SHIFT);
1720 unsigned int i;
b90b91d8 1721
c5ad54cf
JL
1722 for (i = 0; i < view.params.partial.size; i++) {
1723 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
1724 if (ret)
1725 break;
1726 }
1727
1728 obj->fault_mappable = true;
c5ad54cf
JL
1729 } else {
1730 if (!obj->fault_mappable) {
1731 unsigned long size = min_t(unsigned long,
1732 vma->vm_end - vma->vm_start,
1733 obj->base.size);
1734 int i;
1735
1736 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1737 ret = vm_insert_pfn(vma,
1738 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1739 pfn + i);
1740 if (ret)
1741 break;
1742 }
1743
1744 obj->fault_mappable = true;
1745 } else
1746 ret = vm_insert_pfn(vma,
1747 (unsigned long)vmf->virtual_address,
1748 pfn + page_offset);
1749 }
c9839303 1750unpin:
c5ad54cf 1751 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 1752unlock:
de151cf6 1753 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1754out:
de151cf6 1755 switch (ret) {
d9bc7e9f 1756 case -EIO:
2232f031
DV
1757 /*
1758 * We eat errors when the gpu is terminally wedged to avoid
1759 * userspace unduly crashing (gl has no provisions for mmaps to
1760 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1761 * and so needs to be reported.
1762 */
1763 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1764 ret = VM_FAULT_SIGBUS;
1765 break;
1766 }
045e769a 1767 case -EAGAIN:
571c608d
DV
1768 /*
1769 * EAGAIN means the gpu is hung and we'll wait for the error
1770 * handler to reset everything when re-faulting in
1771 * i915_mutex_lock_interruptible.
d9bc7e9f 1772 */
c715089f
CW
1773 case 0:
1774 case -ERESTARTSYS:
bed636ab 1775 case -EINTR:
e79e0fe3
DR
1776 case -EBUSY:
1777 /*
1778 * EBUSY is ok: this just means that another thread
1779 * already did the job.
1780 */
f65c9168
PZ
1781 ret = VM_FAULT_NOPAGE;
1782 break;
de151cf6 1783 case -ENOMEM:
f65c9168
PZ
1784 ret = VM_FAULT_OOM;
1785 break;
a7c2e1aa 1786 case -ENOSPC:
45d67817 1787 case -EFAULT:
f65c9168
PZ
1788 ret = VM_FAULT_SIGBUS;
1789 break;
de151cf6 1790 default:
a7c2e1aa 1791 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1792 ret = VM_FAULT_SIGBUS;
1793 break;
de151cf6 1794 }
f65c9168
PZ
1795
1796 intel_runtime_pm_put(dev_priv);
1797 return ret;
de151cf6
JB
1798}
1799
901782b2
CW
1800/**
1801 * i915_gem_release_mmap - remove physical page mappings
1802 * @obj: obj in question
1803 *
af901ca1 1804 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1805 * relinquish ownership of the pages back to the system.
1806 *
1807 * It is vital that we remove the page mapping if we have mapped a tiled
1808 * object through the GTT and then lose the fence register due to
1809 * resource pressure. Similarly if the object has been moved out of the
1810 * aperture, than pages mapped into userspace must be revoked. Removing the
1811 * mapping will then trigger a page fault on the next user access, allowing
1812 * fixup by i915_gem_fault().
1813 */
d05ca301 1814void
05394f39 1815i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1816{
349f2ccf
CW
1817 /* Serialisation between user GTT access and our code depends upon
1818 * revoking the CPU's PTE whilst the mutex is held. The next user
1819 * pagefault then has to wait until we release the mutex.
1820 */
1821 lockdep_assert_held(&obj->base.dev->struct_mutex);
1822
6299f992
CW
1823 if (!obj->fault_mappable)
1824 return;
901782b2 1825
6796cb16
DR
1826 drm_vma_node_unmap(&obj->base.vma_node,
1827 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
1828
1829 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1830 * memory transactions from userspace before we return. The TLB
1831 * flushing implied above by changing the PTE above *should* be
1832 * sufficient, an extra barrier here just provides us with a bit
1833 * of paranoid documentation about our requirement to serialise
1834 * memory writes before touching registers / GSM.
1835 */
1836 wmb();
1837
6299f992 1838 obj->fault_mappable = false;
901782b2
CW
1839}
1840
eedd10f4
CW
1841void
1842i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1843{
1844 struct drm_i915_gem_object *obj;
1845
1846 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1847 i915_gem_release_mmap(obj);
1848}
1849
0fa87796 1850uint32_t
e28f8711 1851i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1852{
e28f8711 1853 uint32_t gtt_size;
92b88aeb
CW
1854
1855 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1856 tiling_mode == I915_TILING_NONE)
1857 return size;
92b88aeb
CW
1858
1859 /* Previous chips need a power-of-two fence region when tiling */
7e22dbbb 1860 if (IS_GEN3(dev))
e28f8711 1861 gtt_size = 1024*1024;
92b88aeb 1862 else
e28f8711 1863 gtt_size = 512*1024;
92b88aeb 1864
e28f8711
CW
1865 while (gtt_size < size)
1866 gtt_size <<= 1;
92b88aeb 1867
e28f8711 1868 return gtt_size;
92b88aeb
CW
1869}
1870
de151cf6
JB
1871/**
1872 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
14bb2c11
TU
1873 * @dev: drm device
1874 * @size: object size
1875 * @tiling_mode: tiling mode
1876 * @fenced: is fenced alignemned required or not
de151cf6
JB
1877 *
1878 * Return the required GTT alignment for an object, taking into account
5e783301 1879 * potential fence register mapping.
de151cf6 1880 */
d865110c
ID
1881uint32_t
1882i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1883 int tiling_mode, bool fenced)
de151cf6 1884{
de151cf6
JB
1885 /*
1886 * Minimum alignment is 4k (GTT page size), but might be greater
1887 * if a fence register is needed for the object.
1888 */
d865110c 1889 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1890 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1891 return 4096;
1892
a00b10c3
CW
1893 /*
1894 * Previous chips need to be aligned to the size of the smallest
1895 * fence register that can contain the object.
1896 */
e28f8711 1897 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1898}
1899
d8cb5086
CW
1900static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1901{
fac5e23e 1902 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
d8cb5086
CW
1903 int ret;
1904
da494d7c
DV
1905 dev_priv->mm.shrinker_no_lock_stealing = true;
1906
d8cb5086
CW
1907 ret = drm_gem_create_mmap_offset(&obj->base);
1908 if (ret != -ENOSPC)
da494d7c 1909 goto out;
d8cb5086
CW
1910
1911 /* Badly fragmented mmap space? The only way we can recover
1912 * space is by destroying unwanted objects. We can't randomly release
1913 * mmap_offsets as userspace expects them to be persistent for the
1914 * lifetime of the objects. The closest we can is to release the
1915 * offsets on purgeable objects by truncating it and marking it purged,
1916 * which prevents userspace from ever using that object again.
1917 */
21ab4e74
CW
1918 i915_gem_shrink(dev_priv,
1919 obj->base.size >> PAGE_SHIFT,
1920 I915_SHRINK_BOUND |
1921 I915_SHRINK_UNBOUND |
1922 I915_SHRINK_PURGEABLE);
d8cb5086
CW
1923 ret = drm_gem_create_mmap_offset(&obj->base);
1924 if (ret != -ENOSPC)
da494d7c 1925 goto out;
d8cb5086
CW
1926
1927 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1928 ret = drm_gem_create_mmap_offset(&obj->base);
1929out:
1930 dev_priv->mm.shrinker_no_lock_stealing = false;
1931
1932 return ret;
d8cb5086
CW
1933}
1934
1935static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1936{
d8cb5086
CW
1937 drm_gem_free_mmap_offset(&obj->base);
1938}
1939
da6b51d0 1940int
ff72145b
DA
1941i915_gem_mmap_gtt(struct drm_file *file,
1942 struct drm_device *dev,
da6b51d0 1943 uint32_t handle,
ff72145b 1944 uint64_t *offset)
de151cf6 1945{
05394f39 1946 struct drm_i915_gem_object *obj;
de151cf6
JB
1947 int ret;
1948
76c1dec1 1949 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1950 if (ret)
76c1dec1 1951 return ret;
de151cf6 1952
03ac0642
CW
1953 obj = i915_gem_object_lookup(file, handle);
1954 if (!obj) {
1d7cfea1
CW
1955 ret = -ENOENT;
1956 goto unlock;
1957 }
de151cf6 1958
05394f39 1959 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1960 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1961 ret = -EFAULT;
1d7cfea1 1962 goto out;
ab18282d
CW
1963 }
1964
d8cb5086
CW
1965 ret = i915_gem_object_create_mmap_offset(obj);
1966 if (ret)
1967 goto out;
de151cf6 1968
0de23977 1969 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1970
1d7cfea1 1971out:
f8c417cd 1972 i915_gem_object_put(obj);
1d7cfea1 1973unlock:
de151cf6 1974 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1975 return ret;
de151cf6
JB
1976}
1977
ff72145b
DA
1978/**
1979 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1980 * @dev: DRM device
1981 * @data: GTT mapping ioctl data
1982 * @file: GEM object info
1983 *
1984 * Simply returns the fake offset to userspace so it can mmap it.
1985 * The mmap call will end up in drm_gem_mmap(), which will set things
1986 * up so we can get faults in the handler above.
1987 *
1988 * The fault handler will take care of binding the object into the GTT
1989 * (since it may have been evicted to make room for something), allocating
1990 * a fence register, and mapping the appropriate aperture address into
1991 * userspace.
1992 */
1993int
1994i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1995 struct drm_file *file)
1996{
1997 struct drm_i915_gem_mmap_gtt *args = data;
1998
da6b51d0 1999 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2000}
2001
225067ee
DV
2002/* Immediately discard the backing storage */
2003static void
2004i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2005{
4d6294bf 2006 i915_gem_object_free_mmap_offset(obj);
1286ff73 2007
4d6294bf
CW
2008 if (obj->base.filp == NULL)
2009 return;
e5281ccd 2010
225067ee
DV
2011 /* Our goal here is to return as much of the memory as
2012 * is possible back to the system as we are called from OOM.
2013 * To do this we must instruct the shmfs to drop all of its
2014 * backing pages, *now*.
2015 */
5537252b 2016 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2017 obj->madv = __I915_MADV_PURGED;
2018}
e5281ccd 2019
5537252b
CW
2020/* Try to discard unwanted pages */
2021static void
2022i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2023{
5537252b
CW
2024 struct address_space *mapping;
2025
2026 switch (obj->madv) {
2027 case I915_MADV_DONTNEED:
2028 i915_gem_object_truncate(obj);
2029 case __I915_MADV_PURGED:
2030 return;
2031 }
2032
2033 if (obj->base.filp == NULL)
2034 return;
2035
2036 mapping = file_inode(obj->base.filp)->i_mapping,
2037 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2038}
2039
5cdf5881 2040static void
05394f39 2041i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2042{
85d1225e
DG
2043 struct sgt_iter sgt_iter;
2044 struct page *page;
90797e6d 2045 int ret;
1286ff73 2046
05394f39 2047 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2048
6c085a72 2049 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 2050 if (WARN_ON(ret)) {
6c085a72
CW
2051 /* In the event of a disaster, abandon all caches and
2052 * hope for the best.
2053 */
2c22569b 2054 i915_gem_clflush_object(obj, true);
6c085a72
CW
2055 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2056 }
2057
e2273302
ID
2058 i915_gem_gtt_finish_object(obj);
2059
6dacfd2f 2060 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2061 i915_gem_object_save_bit_17_swizzle(obj);
2062
05394f39
CW
2063 if (obj->madv == I915_MADV_DONTNEED)
2064 obj->dirty = 0;
3ef94daa 2065
85d1225e 2066 for_each_sgt_page(page, sgt_iter, obj->pages) {
05394f39 2067 if (obj->dirty)
9da3da66 2068 set_page_dirty(page);
3ef94daa 2069
05394f39 2070 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2071 mark_page_accessed(page);
3ef94daa 2072
09cbfeaf 2073 put_page(page);
3ef94daa 2074 }
05394f39 2075 obj->dirty = 0;
673a394b 2076
9da3da66
CW
2077 sg_free_table(obj->pages);
2078 kfree(obj->pages);
37e680a1 2079}
6c085a72 2080
dd624afd 2081int
37e680a1
CW
2082i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2083{
2084 const struct drm_i915_gem_object_ops *ops = obj->ops;
2085
2f745ad3 2086 if (obj->pages == NULL)
37e680a1
CW
2087 return 0;
2088
a5570178
CW
2089 if (obj->pages_pin_count)
2090 return -EBUSY;
2091
15717de2 2092 GEM_BUG_ON(obj->bind_count);
3e123027 2093
a2165e31
CW
2094 /* ->put_pages might need to allocate memory for the bit17 swizzle
2095 * array, hence protect them from being reaped by removing them from gtt
2096 * lists early. */
35c20a60 2097 list_del(&obj->global_list);
a2165e31 2098
0a798eb9 2099 if (obj->mapping) {
fb8621d3
CW
2100 if (is_vmalloc_addr(obj->mapping))
2101 vunmap(obj->mapping);
2102 else
2103 kunmap(kmap_to_page(obj->mapping));
0a798eb9
CW
2104 obj->mapping = NULL;
2105 }
2106
37e680a1 2107 ops->put_pages(obj);
05394f39 2108 obj->pages = NULL;
37e680a1 2109
5537252b 2110 i915_gem_object_invalidate(obj);
6c085a72
CW
2111
2112 return 0;
2113}
2114
37e680a1 2115static int
6c085a72 2116i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2117{
fac5e23e 2118 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
e5281ccd
CW
2119 int page_count, i;
2120 struct address_space *mapping;
9da3da66
CW
2121 struct sg_table *st;
2122 struct scatterlist *sg;
85d1225e 2123 struct sgt_iter sgt_iter;
e5281ccd 2124 struct page *page;
90797e6d 2125 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2126 int ret;
6c085a72 2127 gfp_t gfp;
e5281ccd 2128
6c085a72
CW
2129 /* Assert that the object is not currently in any GPU domain. As it
2130 * wasn't in the GTT, there shouldn't be any way it could have been in
2131 * a GPU cache
2132 */
2133 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2134 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2135
9da3da66
CW
2136 st = kmalloc(sizeof(*st), GFP_KERNEL);
2137 if (st == NULL)
2138 return -ENOMEM;
2139
05394f39 2140 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2141 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2142 kfree(st);
e5281ccd 2143 return -ENOMEM;
9da3da66 2144 }
e5281ccd 2145
9da3da66
CW
2146 /* Get the list of pages out of our struct file. They'll be pinned
2147 * at this point until we release them.
2148 *
2149 * Fail silently without starting the shrinker
2150 */
496ad9aa 2151 mapping = file_inode(obj->base.filp)->i_mapping;
c62d2555 2152 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2153 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2154 sg = st->sgl;
2155 st->nents = 0;
2156 for (i = 0; i < page_count; i++) {
6c085a72
CW
2157 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2158 if (IS_ERR(page)) {
21ab4e74
CW
2159 i915_gem_shrink(dev_priv,
2160 page_count,
2161 I915_SHRINK_BOUND |
2162 I915_SHRINK_UNBOUND |
2163 I915_SHRINK_PURGEABLE);
6c085a72
CW
2164 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2165 }
2166 if (IS_ERR(page)) {
2167 /* We've tried hard to allocate the memory by reaping
2168 * our own buffer, now let the real VM do its job and
2169 * go down in flames if truly OOM.
2170 */
6c085a72 2171 i915_gem_shrink_all(dev_priv);
f461d1be 2172 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2173 if (IS_ERR(page)) {
2174 ret = PTR_ERR(page);
6c085a72 2175 goto err_pages;
e2273302 2176 }
6c085a72 2177 }
426729dc
KRW
2178#ifdef CONFIG_SWIOTLB
2179 if (swiotlb_nr_tbl()) {
2180 st->nents++;
2181 sg_set_page(sg, page, PAGE_SIZE, 0);
2182 sg = sg_next(sg);
2183 continue;
2184 }
2185#endif
90797e6d
ID
2186 if (!i || page_to_pfn(page) != last_pfn + 1) {
2187 if (i)
2188 sg = sg_next(sg);
2189 st->nents++;
2190 sg_set_page(sg, page, PAGE_SIZE, 0);
2191 } else {
2192 sg->length += PAGE_SIZE;
2193 }
2194 last_pfn = page_to_pfn(page);
3bbbe706
DV
2195
2196 /* Check that the i965g/gm workaround works. */
2197 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2198 }
426729dc
KRW
2199#ifdef CONFIG_SWIOTLB
2200 if (!swiotlb_nr_tbl())
2201#endif
2202 sg_mark_end(sg);
74ce6b6c
CW
2203 obj->pages = st;
2204
e2273302
ID
2205 ret = i915_gem_gtt_prepare_object(obj);
2206 if (ret)
2207 goto err_pages;
2208
6dacfd2f 2209 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2210 i915_gem_object_do_bit_17_swizzle(obj);
2211
656bfa3a
DV
2212 if (obj->tiling_mode != I915_TILING_NONE &&
2213 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2214 i915_gem_object_pin_pages(obj);
2215
e5281ccd
CW
2216 return 0;
2217
2218err_pages:
90797e6d 2219 sg_mark_end(sg);
85d1225e
DG
2220 for_each_sgt_page(page, sgt_iter, st)
2221 put_page(page);
9da3da66
CW
2222 sg_free_table(st);
2223 kfree(st);
0820baf3
CW
2224
2225 /* shmemfs first checks if there is enough memory to allocate the page
2226 * and reports ENOSPC should there be insufficient, along with the usual
2227 * ENOMEM for a genuine allocation failure.
2228 *
2229 * We use ENOSPC in our driver to mean that we have run out of aperture
2230 * space and so want to translate the error from shmemfs back to our
2231 * usual understanding of ENOMEM.
2232 */
e2273302
ID
2233 if (ret == -ENOSPC)
2234 ret = -ENOMEM;
2235
2236 return ret;
673a394b
EA
2237}
2238
37e680a1
CW
2239/* Ensure that the associated pages are gathered from the backing storage
2240 * and pinned into our object. i915_gem_object_get_pages() may be called
2241 * multiple times before they are released by a single call to
2242 * i915_gem_object_put_pages() - once the pages are no longer referenced
2243 * either as a result of memory pressure (reaping pages under the shrinker)
2244 * or as the object is itself released.
2245 */
2246int
2247i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2248{
fac5e23e 2249 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
37e680a1
CW
2250 const struct drm_i915_gem_object_ops *ops = obj->ops;
2251 int ret;
2252
2f745ad3 2253 if (obj->pages)
37e680a1
CW
2254 return 0;
2255
43e28f09 2256 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2257 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2258 return -EFAULT;
43e28f09
CW
2259 }
2260
a5570178
CW
2261 BUG_ON(obj->pages_pin_count);
2262
37e680a1
CW
2263 ret = ops->get_pages(obj);
2264 if (ret)
2265 return ret;
2266
35c20a60 2267 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2268
2269 obj->get_page.sg = obj->pages->sgl;
2270 obj->get_page.last = 0;
2271
37e680a1 2272 return 0;
673a394b
EA
2273}
2274
dd6034c6
DG
2275/* The 'mapping' part of i915_gem_object_pin_map() below */
2276static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
2277{
2278 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2279 struct sg_table *sgt = obj->pages;
85d1225e
DG
2280 struct sgt_iter sgt_iter;
2281 struct page *page;
b338fa47
DG
2282 struct page *stack_pages[32];
2283 struct page **pages = stack_pages;
dd6034c6
DG
2284 unsigned long i = 0;
2285 void *addr;
2286
2287 /* A single page can always be kmapped */
2288 if (n_pages == 1)
2289 return kmap(sg_page(sgt->sgl));
2290
b338fa47
DG
2291 if (n_pages > ARRAY_SIZE(stack_pages)) {
2292 /* Too big for stack -- allocate temporary array instead */
2293 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2294 if (!pages)
2295 return NULL;
2296 }
dd6034c6 2297
85d1225e
DG
2298 for_each_sgt_page(page, sgt_iter, sgt)
2299 pages[i++] = page;
dd6034c6
DG
2300
2301 /* Check that we have the expected number of pages */
2302 GEM_BUG_ON(i != n_pages);
2303
2304 addr = vmap(pages, n_pages, 0, PAGE_KERNEL);
2305
b338fa47
DG
2306 if (pages != stack_pages)
2307 drm_free_large(pages);
dd6034c6
DG
2308
2309 return addr;
2310}
2311
2312/* get, pin, and map the pages of the object into kernel space */
0a798eb9
CW
2313void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2314{
2315 int ret;
2316
2317 lockdep_assert_held(&obj->base.dev->struct_mutex);
2318
2319 ret = i915_gem_object_get_pages(obj);
2320 if (ret)
2321 return ERR_PTR(ret);
2322
2323 i915_gem_object_pin_pages(obj);
2324
dd6034c6
DG
2325 if (!obj->mapping) {
2326 obj->mapping = i915_gem_object_map(obj);
2327 if (!obj->mapping) {
0a798eb9
CW
2328 i915_gem_object_unpin_pages(obj);
2329 return ERR_PTR(-ENOMEM);
2330 }
2331 }
2332
2333 return obj->mapping;
2334}
2335
b4716185 2336static void
fa545cbf
CW
2337i915_gem_object_retire__write(struct i915_gem_active *active,
2338 struct drm_i915_gem_request *request)
e2d05a8b 2339{
fa545cbf
CW
2340 struct drm_i915_gem_object *obj =
2341 container_of(active, struct drm_i915_gem_object, last_write);
b4716185 2342
de152b62 2343 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2344}
2345
caea7476 2346static void
fa545cbf
CW
2347i915_gem_object_retire__read(struct i915_gem_active *active,
2348 struct drm_i915_gem_request *request)
ce44b0ea 2349{
fa545cbf
CW
2350 int idx = request->engine->id;
2351 struct drm_i915_gem_object *obj =
2352 container_of(active, struct drm_i915_gem_object, last_read[idx]);
ce44b0ea 2353
fa545cbf 2354 GEM_BUG_ON((obj->active & (1 << idx)) == 0);
b4716185 2355
7e21d648 2356 obj->active &= ~(1 << idx);
b4716185
CW
2357 if (obj->active)
2358 return;
caea7476 2359
6c246959
CW
2360 /* Bump our place on the bound list to keep it roughly in LRU order
2361 * so that we don't steal from recently used but inactive objects
2362 * (unless we are forced to ofc!)
2363 */
b0decaf7
CW
2364 if (obj->bind_count)
2365 list_move_tail(&obj->global_list,
2366 &request->i915->mm.bound_list);
caea7476 2367
f8c417cd 2368 i915_gem_object_put(obj);
c8725f3d
CW
2369}
2370
7b4d3a16 2371static bool i915_context_is_banned(const struct i915_gem_context *ctx)
be62acb4 2372{
44e2c070 2373 unsigned long elapsed;
be62acb4 2374
44e2c070 2375 if (ctx->hang_stats.banned)
be62acb4
MK
2376 return true;
2377
7b4d3a16 2378 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
676fa572
CW
2379 if (ctx->hang_stats.ban_period_seconds &&
2380 elapsed <= ctx->hang_stats.ban_period_seconds) {
7b4d3a16
CW
2381 DRM_DEBUG("context hanging too fast, banning!\n");
2382 return true;
be62acb4
MK
2383 }
2384
2385 return false;
2386}
2387
7b4d3a16 2388static void i915_set_reset_status(struct i915_gem_context *ctx,
b6b0fac0 2389 const bool guilty)
aa60c664 2390{
7b4d3a16 2391 struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
44e2c070
MK
2392
2393 if (guilty) {
7b4d3a16 2394 hs->banned = i915_context_is_banned(ctx);
44e2c070
MK
2395 hs->batch_active++;
2396 hs->guilty_ts = get_seconds();
2397 } else {
2398 hs->batch_pending++;
aa60c664
MK
2399 }
2400}
2401
8d9fc7fd 2402struct drm_i915_gem_request *
0bc40be8 2403i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2404{
4db080f9
CW
2405 struct drm_i915_gem_request *request;
2406
f69a02c9
CW
2407 /* We are called by the error capture and reset at a random
2408 * point in time. In particular, note that neither is crucially
2409 * ordered with an interrupt. After a hang, the GPU is dead and we
2410 * assume that no more writes can happen (we waited long enough for
2411 * all writes that were in transaction to be flushed) - adding an
2412 * extra delay for a recent interrupt is pointless. Hence, we do
2413 * not need an engine->irq_seqno_barrier() before the seqno reads.
2414 */
efdf7c06 2415 list_for_each_entry(request, &engine->request_list, link) {
f69a02c9 2416 if (i915_gem_request_completed(request))
4db080f9 2417 continue;
aa60c664 2418
b6b0fac0 2419 return request;
4db080f9 2420 }
b6b0fac0
MK
2421
2422 return NULL;
2423}
2424
7b4d3a16 2425static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
b6b0fac0
MK
2426{
2427 struct drm_i915_gem_request *request;
2428 bool ring_hung;
2429
0bc40be8 2430 request = i915_gem_find_active_request(engine);
b6b0fac0
MK
2431 if (request == NULL)
2432 return;
2433
0bc40be8 2434 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
b6b0fac0 2435
7b4d3a16 2436 i915_set_reset_status(request->ctx, ring_hung);
efdf7c06 2437 list_for_each_entry_continue(request, &engine->request_list, link)
7b4d3a16 2438 i915_set_reset_status(request->ctx, false);
4db080f9 2439}
aa60c664 2440
7b4d3a16 2441static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
4db080f9 2442{
7e37f889 2443 struct intel_ring *ring;
608c1a52 2444
c4b0930b
CW
2445 /* Mark all pending requests as complete so that any concurrent
2446 * (lockless) lookup doesn't try and wait upon the request as we
2447 * reset it.
2448 */
7e37f889 2449 intel_engine_init_seqno(engine, engine->last_submitted_seqno);
c4b0930b 2450
dcb4c12a
OM
2451 /*
2452 * Clear the execlists queue up before freeing the requests, as those
2453 * are the ones that keep the context and ringbuffer backing objects
2454 * pinned in place.
2455 */
dcb4c12a 2456
7de1691a 2457 if (i915.enable_execlists) {
27af5eea
TU
2458 /* Ensure irq handler finishes or is cancelled. */
2459 tasklet_kill(&engine->irq_tasklet);
1197b4f2 2460
e39d42fa 2461 intel_execlists_cancel_requests(engine);
dcb4c12a
OM
2462 }
2463
1d62beea
BW
2464 /*
2465 * We must free the requests after all the corresponding objects have
2466 * been moved off active lists. Which is the same order as the normal
2467 * retire_requests function does. This is important if object hold
2468 * implicit references on things like e.g. ppgtt address spaces through
2469 * the request.
2470 */
05235c53 2471 if (!list_empty(&engine->request_list)) {
1d62beea
BW
2472 struct drm_i915_gem_request *request;
2473
05235c53
CW
2474 request = list_last_entry(&engine->request_list,
2475 struct drm_i915_gem_request,
efdf7c06 2476 link);
1d62beea 2477
05235c53 2478 i915_gem_request_retire_upto(request);
1d62beea 2479 }
608c1a52
CW
2480
2481 /* Having flushed all requests from all queues, we know that all
2482 * ringbuffers must now be empty. However, since we do not reclaim
2483 * all space when retiring the request (to prevent HEADs colliding
2484 * with rapid ringbuffer wraparound) the amount of available space
2485 * upon reset is less than when we start. Do one more pass over
2486 * all the ringbuffers to reset last_retired_head.
2487 */
7e37f889
CW
2488 list_for_each_entry(ring, &engine->buffers, link) {
2489 ring->last_retired_head = ring->tail;
2490 intel_ring_update_space(ring);
608c1a52 2491 }
2ed53a94 2492
b913b33c 2493 engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
673a394b
EA
2494}
2495
069efc1d 2496void i915_gem_reset(struct drm_device *dev)
673a394b 2497{
fac5e23e 2498 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 2499 struct intel_engine_cs *engine;
673a394b 2500
4db080f9
CW
2501 /*
2502 * Before we free the objects from the requests, we need to inspect
2503 * them for finding the guilty party. As the requests only borrow
2504 * their reference to the objects, the inspection must be done first.
2505 */
b4ac5afc 2506 for_each_engine(engine, dev_priv)
7b4d3a16 2507 i915_gem_reset_engine_status(engine);
4db080f9 2508
b4ac5afc 2509 for_each_engine(engine, dev_priv)
7b4d3a16 2510 i915_gem_reset_engine_cleanup(engine);
b913b33c 2511 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
dfaae392 2512
acce9ffa
BW
2513 i915_gem_context_reset(dev);
2514
19b2dbde 2515 i915_gem_restore_fences(dev);
673a394b
EA
2516}
2517
75ef9da2 2518static void
673a394b
EA
2519i915_gem_retire_work_handler(struct work_struct *work)
2520{
b29c19b6 2521 struct drm_i915_private *dev_priv =
67d97da3 2522 container_of(work, typeof(*dev_priv), gt.retire_work.work);
91c8a326 2523 struct drm_device *dev = &dev_priv->drm;
673a394b 2524
891b48cf 2525 /* Come back later if the device is busy... */
b29c19b6 2526 if (mutex_trylock(&dev->struct_mutex)) {
67d97da3 2527 i915_gem_retire_requests(dev_priv);
b29c19b6 2528 mutex_unlock(&dev->struct_mutex);
673a394b 2529 }
67d97da3
CW
2530
2531 /* Keep the retire handler running until we are finally idle.
2532 * We do not need to do this test under locking as in the worst-case
2533 * we queue the retire worker once too often.
2534 */
c9615613
CW
2535 if (READ_ONCE(dev_priv->gt.awake)) {
2536 i915_queue_hangcheck(dev_priv);
67d97da3
CW
2537 queue_delayed_work(dev_priv->wq,
2538 &dev_priv->gt.retire_work,
bcb45086 2539 round_jiffies_up_relative(HZ));
c9615613 2540 }
b29c19b6 2541}
0a58705b 2542
b29c19b6
CW
2543static void
2544i915_gem_idle_work_handler(struct work_struct *work)
2545{
2546 struct drm_i915_private *dev_priv =
67d97da3 2547 container_of(work, typeof(*dev_priv), gt.idle_work.work);
91c8a326 2548 struct drm_device *dev = &dev_priv->drm;
b4ac5afc 2549 struct intel_engine_cs *engine;
67d97da3
CW
2550 unsigned int stuck_engines;
2551 bool rearm_hangcheck;
2552
2553 if (!READ_ONCE(dev_priv->gt.awake))
2554 return;
2555
2556 if (READ_ONCE(dev_priv->gt.active_engines))
2557 return;
2558
2559 rearm_hangcheck =
2560 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2561
2562 if (!mutex_trylock(&dev->struct_mutex)) {
2563 /* Currently busy, come back later */
2564 mod_delayed_work(dev_priv->wq,
2565 &dev_priv->gt.idle_work,
2566 msecs_to_jiffies(50));
2567 goto out_rearm;
2568 }
2569
2570 if (dev_priv->gt.active_engines)
2571 goto out_unlock;
b29c19b6 2572
b4ac5afc 2573 for_each_engine(engine, dev_priv)
67d97da3 2574 i915_gem_batch_pool_fini(&engine->batch_pool);
35c94185 2575
67d97da3
CW
2576 GEM_BUG_ON(!dev_priv->gt.awake);
2577 dev_priv->gt.awake = false;
2578 rearm_hangcheck = false;
30ecad77 2579
2529d570
CW
2580 /* As we have disabled hangcheck, we need to unstick any waiters still
2581 * hanging around. However, as we may be racing against the interrupt
2582 * handler or the waiters themselves, we skip enabling the fake-irq.
2583 */
67d97da3 2584 stuck_engines = intel_kick_waiters(dev_priv);
2529d570
CW
2585 if (unlikely(stuck_engines))
2586 DRM_DEBUG_DRIVER("kicked stuck waiters (%x)...missed irq?\n",
2587 stuck_engines);
35c94185 2588
67d97da3
CW
2589 if (INTEL_GEN(dev_priv) >= 6)
2590 gen6_rps_idle(dev_priv);
2591 intel_runtime_pm_put(dev_priv);
2592out_unlock:
2593 mutex_unlock(&dev->struct_mutex);
b29c19b6 2594
67d97da3
CW
2595out_rearm:
2596 if (rearm_hangcheck) {
2597 GEM_BUG_ON(!dev_priv->gt.awake);
2598 i915_queue_hangcheck(dev_priv);
35c94185 2599 }
673a394b
EA
2600}
2601
b1f788c6
CW
2602void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2603{
2604 struct drm_i915_gem_object *obj = to_intel_bo(gem);
2605 struct drm_i915_file_private *fpriv = file->driver_priv;
2606 struct i915_vma *vma, *vn;
2607
2608 mutex_lock(&obj->base.dev->struct_mutex);
2609 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2610 if (vma->vm->file == fpriv)
2611 i915_vma_close(vma);
2612 mutex_unlock(&obj->base.dev->struct_mutex);
2613}
2614
23ba4fd0
BW
2615/**
2616 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
2617 * @dev: drm device pointer
2618 * @data: ioctl data blob
2619 * @file: drm file pointer
23ba4fd0
BW
2620 *
2621 * Returns 0 if successful, else an error is returned with the remaining time in
2622 * the timeout parameter.
2623 * -ETIME: object is still busy after timeout
2624 * -ERESTARTSYS: signal interrupted the wait
2625 * -ENONENT: object doesn't exist
2626 * Also possible, but rare:
2627 * -EAGAIN: GPU wedged
2628 * -ENOMEM: damn
2629 * -ENODEV: Internal IRQ fail
2630 * -E?: The add request failed
2631 *
2632 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2633 * non-zero timeout parameter the wait ioctl will wait for the given number of
2634 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2635 * without holding struct_mutex the object may become re-busied before this
2636 * function completes. A similar but shorter * race condition exists in the busy
2637 * ioctl
2638 */
2639int
2640i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2641{
2642 struct drm_i915_gem_wait *args = data;
2643 struct drm_i915_gem_object *obj;
27c01aae 2644 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
b4716185
CW
2645 int i, n = 0;
2646 int ret;
23ba4fd0 2647
11b5d511
DV
2648 if (args->flags != 0)
2649 return -EINVAL;
2650
23ba4fd0
BW
2651 ret = i915_mutex_lock_interruptible(dev);
2652 if (ret)
2653 return ret;
2654
03ac0642
CW
2655 obj = i915_gem_object_lookup(file, args->bo_handle);
2656 if (!obj) {
23ba4fd0
BW
2657 mutex_unlock(&dev->struct_mutex);
2658 return -ENOENT;
2659 }
2660
b4716185 2661 if (!obj->active)
97b2a6a1 2662 goto out;
23ba4fd0 2663
666796da 2664 for (i = 0; i < I915_NUM_ENGINES; i++) {
27c01aae 2665 struct drm_i915_gem_request *req;
b4716185 2666
d72d908b
CW
2667 req = i915_gem_active_get(&obj->last_read[i],
2668 &obj->base.dev->struct_mutex);
27c01aae
CW
2669 if (req)
2670 requests[n++] = req;
b4716185
CW
2671 }
2672
21c310f2
CW
2673out:
2674 i915_gem_object_put(obj);
23ba4fd0
BW
2675 mutex_unlock(&dev->struct_mutex);
2676
b4716185
CW
2677 for (i = 0; i < n; i++) {
2678 if (ret == 0)
776f3236
CW
2679 ret = i915_wait_request(requests[i], true,
2680 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2681 to_rps_client(file));
27c01aae 2682 i915_gem_request_put(requests[i]);
b4716185 2683 }
ff865885 2684 return ret;
23ba4fd0
BW
2685}
2686
b4716185 2687static int
fa545cbf 2688__i915_gem_object_sync(struct drm_i915_gem_request *to,
8e637178 2689 struct drm_i915_gem_request *from)
b4716185 2690{
b4716185
CW
2691 int ret;
2692
8e637178 2693 if (to->engine == from->engine)
b4716185
CW
2694 return 0;
2695
39df9190 2696 if (!i915.semaphores) {
776f3236
CW
2697 ret = i915_wait_request(from,
2698 from->i915->mm.interruptible,
2699 NULL,
2700 NO_WAITBOOST);
b4716185
CW
2701 if (ret)
2702 return ret;
b4716185 2703 } else {
8e637178 2704 int idx = intel_engine_sync_index(from->engine, to->engine);
ddf07be7 2705 if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
b4716185
CW
2706 return 0;
2707
8e637178 2708 trace_i915_gem_ring_sync_to(to, from);
ddf07be7 2709 ret = to->engine->semaphore.sync_to(to, from);
b4716185
CW
2710 if (ret)
2711 return ret;
2712
ddf07be7 2713 from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
b4716185
CW
2714 }
2715
2716 return 0;
2717}
2718
5816d648
BW
2719/**
2720 * i915_gem_object_sync - sync an object to a ring.
2721 *
2722 * @obj: object which may be in use on another ring.
8e637178 2723 * @to: request we are wishing to use
5816d648
BW
2724 *
2725 * This code is meant to abstract object synchronization with the GPU.
8e637178
CW
2726 * Conceptually we serialise writes between engines inside the GPU.
2727 * We only allow one engine to write into a buffer at any time, but
2728 * multiple readers. To ensure each has a coherent view of memory, we must:
b4716185
CW
2729 *
2730 * - If there is an outstanding write request to the object, the new
2731 * request must wait for it to complete (either CPU or in hw, requests
2732 * on the same ring will be naturally ordered).
2733 *
2734 * - If we are a write request (pending_write_domain is set), the new
2735 * request must wait for outstanding read requests to complete.
5816d648
BW
2736 *
2737 * Returns 0 if successful, else propagates up the lower layer error.
2738 */
2911a35b
BW
2739int
2740i915_gem_object_sync(struct drm_i915_gem_object *obj,
8e637178 2741 struct drm_i915_gem_request *to)
2911a35b 2742{
8cac6f6c
CW
2743 struct i915_gem_active *active;
2744 unsigned long active_mask;
2745 int idx;
41c52415 2746
8cac6f6c 2747 lockdep_assert_held(&obj->base.dev->struct_mutex);
2911a35b 2748
8cac6f6c
CW
2749 active_mask = obj->active;
2750 if (!active_mask)
2751 return 0;
27c01aae 2752
8cac6f6c
CW
2753 if (obj->base.pending_write_domain) {
2754 active = obj->last_read;
b4716185 2755 } else {
8cac6f6c
CW
2756 active_mask = 1;
2757 active = &obj->last_write;
b4716185 2758 }
8cac6f6c
CW
2759
2760 for_each_active(active_mask, idx) {
2761 struct drm_i915_gem_request *request;
2762 int ret;
2763
2764 request = i915_gem_active_peek(&active[idx],
2765 &obj->base.dev->struct_mutex);
2766 if (!request)
2767 continue;
2768
fa545cbf 2769 ret = __i915_gem_object_sync(to, request);
b4716185
CW
2770 if (ret)
2771 return ret;
2772 }
2911a35b 2773
b4716185 2774 return 0;
2911a35b
BW
2775}
2776
b5ffc9bc
CW
2777static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2778{
2779 u32 old_write_domain, old_read_domains;
2780
b5ffc9bc
CW
2781 /* Force a pagefault for domain tracking on next user access */
2782 i915_gem_release_mmap(obj);
2783
b97c3d9c
KP
2784 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2785 return;
2786
b5ffc9bc
CW
2787 old_read_domains = obj->base.read_domains;
2788 old_write_domain = obj->base.write_domain;
2789
2790 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2791 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2792
2793 trace_i915_gem_object_change_domain(obj,
2794 old_read_domains,
2795 old_write_domain);
2796}
2797
8ef8561f
CW
2798static void __i915_vma_iounmap(struct i915_vma *vma)
2799{
2800 GEM_BUG_ON(vma->pin_count);
2801
2802 if (vma->iomap == NULL)
2803 return;
2804
2805 io_mapping_unmap(vma->iomap);
2806 vma->iomap = NULL;
2807}
2808
df0e9a28 2809int i915_vma_unbind(struct i915_vma *vma)
673a394b 2810{
07fe0b12 2811 struct drm_i915_gem_object *obj = vma->obj;
b0decaf7 2812 unsigned long active;
43e28f09 2813 int ret;
673a394b 2814
b0decaf7
CW
2815 /* First wait upon any activity as retiring the request may
2816 * have side-effects such as unpinning or even unbinding this vma.
2817 */
2818 active = i915_vma_get_active(vma);
df0e9a28 2819 if (active) {
b0decaf7
CW
2820 int idx;
2821
b1f788c6
CW
2822 /* When a closed VMA is retired, it is unbound - eek.
2823 * In order to prevent it from being recursively closed,
2824 * take a pin on the vma so that the second unbind is
2825 * aborted.
2826 */
2827 vma->pin_count++;
2828
b0decaf7
CW
2829 for_each_active(active, idx) {
2830 ret = i915_gem_active_retire(&vma->last_read[idx],
2831 &vma->vm->dev->struct_mutex);
2832 if (ret)
b1f788c6 2833 break;
b0decaf7
CW
2834 }
2835
b1f788c6
CW
2836 vma->pin_count--;
2837 if (ret)
2838 return ret;
2839
b0decaf7
CW
2840 GEM_BUG_ON(i915_vma_is_active(vma));
2841 }
2842
2843 if (vma->pin_count)
2844 return -EBUSY;
2845
b1f788c6
CW
2846 if (!drm_mm_node_allocated(&vma->node))
2847 goto destroy;
433544bd 2848
15717de2
CW
2849 GEM_BUG_ON(obj->bind_count == 0);
2850 GEM_BUG_ON(!obj->pages);
c4670ad0 2851
596c5923 2852 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 2853 i915_gem_object_finish_gtt(obj);
5323fd04 2854
8b1bc9b4
DV
2855 /* release the fence reg _after_ flushing */
2856 ret = i915_gem_object_put_fence(obj);
2857 if (ret)
2858 return ret;
8ef8561f
CW
2859
2860 __i915_vma_iounmap(vma);
8b1bc9b4 2861 }
96b47b65 2862
50e046b6
CW
2863 if (likely(!vma->vm->closed)) {
2864 trace_i915_vma_unbind(vma);
2865 vma->vm->unbind_vma(vma);
2866 }
5e562f1d 2867 vma->bound = 0;
6f65e29a 2868
50e046b6
CW
2869 drm_mm_remove_node(&vma->node);
2870 list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
2871
596c5923 2872 if (vma->is_ggtt) {
fe14d5f4
TU
2873 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
2874 obj->map_and_fenceable = false;
2875 } else if (vma->ggtt_view.pages) {
2876 sg_free_table(vma->ggtt_view.pages);
2877 kfree(vma->ggtt_view.pages);
fe14d5f4 2878 }
016a65a3 2879 vma->ggtt_view.pages = NULL;
fe14d5f4 2880 }
673a394b 2881
2f633156 2882 /* Since the unbound list is global, only move to that list if
b93dab6e 2883 * no more VMAs exist. */
15717de2
CW
2884 if (--obj->bind_count == 0)
2885 list_move_tail(&obj->global_list,
2886 &to_i915(obj->base.dev)->mm.unbound_list);
673a394b 2887
70903c3b
CW
2888 /* And finally now the object is completely decoupled from this vma,
2889 * we can drop its hold on the backing storage and allow it to be
2890 * reaped by the shrinker.
2891 */
2892 i915_gem_object_unpin_pages(obj);
2893
b1f788c6
CW
2894destroy:
2895 if (unlikely(vma->closed))
2896 i915_vma_destroy(vma);
2897
88241785 2898 return 0;
54cf91dc
CW
2899}
2900
6e5a5beb 2901int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
4df2faf4 2902{
e2f80391 2903 struct intel_engine_cs *engine;
b4ac5afc 2904 int ret;
4df2faf4 2905
91c8a326 2906 lockdep_assert_held(&dev_priv->drm.struct_mutex);
6e5a5beb 2907
b4ac5afc 2908 for_each_engine(engine, dev_priv) {
62e63007
CW
2909 if (engine->last_context == NULL)
2910 continue;
2911
666796da 2912 ret = intel_engine_idle(engine);
1ec14ad3
CW
2913 if (ret)
2914 return ret;
2915 }
4df2faf4 2916
8a1a49f9 2917 return 0;
4df2faf4
DV
2918}
2919
4144f9b5 2920static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
2921 unsigned long cache_level)
2922{
4144f9b5 2923 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
2924 struct drm_mm_node *other;
2925
4144f9b5
CW
2926 /*
2927 * On some machines we have to be careful when putting differing types
2928 * of snoopable memory together to avoid the prefetcher crossing memory
2929 * domains and dying. During vm initialisation, we decide whether or not
2930 * these constraints apply and set the drm_mm.color_adjust
2931 * appropriately.
42d6ab48 2932 */
4144f9b5 2933 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
2934 return true;
2935
c6cfb325 2936 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
2937 return true;
2938
2939 if (list_empty(&gtt_space->node_list))
2940 return true;
2941
2942 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2943 if (other->allocated && !other->hole_follows && other->color != cache_level)
2944 return false;
2945
2946 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2947 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2948 return false;
2949
2950 return true;
2951}
2952
673a394b 2953/**
91e6711e
JL
2954 * Finds free space in the GTT aperture and binds the object or a view of it
2955 * there.
14bb2c11
TU
2956 * @obj: object to bind
2957 * @vm: address space to bind into
2958 * @ggtt_view: global gtt view if applicable
2959 * @alignment: requested alignment
2960 * @flags: mask of PIN_* flags to use
673a394b 2961 */
262de145 2962static struct i915_vma *
07fe0b12
BW
2963i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
2964 struct i915_address_space *vm,
ec7adb6e 2965 const struct i915_ggtt_view *ggtt_view,
2ffffd0f
CW
2966 u64 alignment,
2967 u64 flags)
673a394b 2968{
05394f39 2969 struct drm_device *dev = obj->base.dev;
72e96d64
JL
2970 struct drm_i915_private *dev_priv = to_i915(dev);
2971 struct i915_ggtt *ggtt = &dev_priv->ggtt;
65bd342f 2972 u32 fence_alignment, unfenced_alignment;
101b506a
MT
2973 u32 search_flag, alloc_flag;
2974 u64 start, end;
65bd342f 2975 u64 size, fence_size;
2f633156 2976 struct i915_vma *vma;
07f73f69 2977 int ret;
673a394b 2978
91e6711e
JL
2979 if (i915_is_ggtt(vm)) {
2980 u32 view_size;
2981
2982 if (WARN_ON(!ggtt_view))
2983 return ERR_PTR(-EINVAL);
ec7adb6e 2984
91e6711e
JL
2985 view_size = i915_ggtt_view_size(obj, ggtt_view);
2986
2987 fence_size = i915_gem_get_gtt_size(dev,
2988 view_size,
2989 obj->tiling_mode);
2990 fence_alignment = i915_gem_get_gtt_alignment(dev,
2991 view_size,
2992 obj->tiling_mode,
2993 true);
2994 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
2995 view_size,
2996 obj->tiling_mode,
2997 false);
2998 size = flags & PIN_MAPPABLE ? fence_size : view_size;
2999 } else {
3000 fence_size = i915_gem_get_gtt_size(dev,
3001 obj->base.size,
3002 obj->tiling_mode);
3003 fence_alignment = i915_gem_get_gtt_alignment(dev,
3004 obj->base.size,
3005 obj->tiling_mode,
3006 true);
3007 unfenced_alignment =
3008 i915_gem_get_gtt_alignment(dev,
3009 obj->base.size,
3010 obj->tiling_mode,
3011 false);
3012 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3013 }
a00b10c3 3014
101b506a
MT
3015 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3016 end = vm->total;
3017 if (flags & PIN_MAPPABLE)
72e96d64 3018 end = min_t(u64, end, ggtt->mappable_end);
101b506a 3019 if (flags & PIN_ZONE_4G)
48ea1e32 3020 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
101b506a 3021
673a394b 3022 if (alignment == 0)
1ec9e26d 3023 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3024 unfenced_alignment;
1ec9e26d 3025 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
2ffffd0f 3026 DRM_DEBUG("Invalid object (view type=%u) alignment requested %llx\n",
91e6711e
JL
3027 ggtt_view ? ggtt_view->type : 0,
3028 alignment);
262de145 3029 return ERR_PTR(-EINVAL);
673a394b
EA
3030 }
3031
91e6711e
JL
3032 /* If binding the object/GGTT view requires more space than the entire
3033 * aperture has, reject it early before evicting everything in a vain
3034 * attempt to find space.
654fc607 3035 */
91e6711e 3036 if (size > end) {
65bd342f 3037 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
91e6711e
JL
3038 ggtt_view ? ggtt_view->type : 0,
3039 size,
1ec9e26d 3040 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3041 end);
262de145 3042 return ERR_PTR(-E2BIG);
654fc607
CW
3043 }
3044
37e680a1 3045 ret = i915_gem_object_get_pages(obj);
6c085a72 3046 if (ret)
262de145 3047 return ERR_PTR(ret);
6c085a72 3048
fbdda6fb
CW
3049 i915_gem_object_pin_pages(obj);
3050
ec7adb6e
JL
3051 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3052 i915_gem_obj_lookup_or_create_vma(obj, vm);
3053
262de145 3054 if (IS_ERR(vma))
bc6bc15b 3055 goto err_unpin;
2f633156 3056
506a8e87
CW
3057 if (flags & PIN_OFFSET_FIXED) {
3058 uint64_t offset = flags & PIN_OFFSET_MASK;
3059
3060 if (offset & (alignment - 1) || offset + size > end) {
3061 ret = -EINVAL;
b1f788c6 3062 goto err_vma;
506a8e87
CW
3063 }
3064 vma->node.start = offset;
3065 vma->node.size = size;
3066 vma->node.color = obj->cache_level;
3067 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3068 if (ret) {
3069 ret = i915_gem_evict_for_vma(vma);
3070 if (ret == 0)
3071 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3072 }
3073 if (ret)
b1f788c6 3074 goto err_vma;
101b506a 3075 } else {
506a8e87
CW
3076 if (flags & PIN_HIGH) {
3077 search_flag = DRM_MM_SEARCH_BELOW;
3078 alloc_flag = DRM_MM_CREATE_TOP;
3079 } else {
3080 search_flag = DRM_MM_SEARCH_DEFAULT;
3081 alloc_flag = DRM_MM_CREATE_DEFAULT;
3082 }
101b506a 3083
0a9ae0d7 3084search_free:
506a8e87
CW
3085 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3086 size, alignment,
3087 obj->cache_level,
3088 start, end,
3089 search_flag,
3090 alloc_flag);
3091 if (ret) {
e522ac23 3092 ret = i915_gem_evict_something(vm, size, alignment,
506a8e87
CW
3093 obj->cache_level,
3094 start, end,
3095 flags);
3096 if (ret == 0)
3097 goto search_free;
9731129c 3098
b1f788c6 3099 goto err_vma;
506a8e87 3100 }
673a394b 3101 }
4144f9b5 3102 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3103 ret = -EINVAL;
bc6bc15b 3104 goto err_remove_node;
673a394b
EA
3105 }
3106
fe14d5f4 3107 trace_i915_vma_bind(vma, flags);
0875546c 3108 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4 3109 if (ret)
e2273302 3110 goto err_remove_node;
fe14d5f4 3111
35c20a60 3112 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
50e046b6 3113 list_move_tail(&vma->vm_link, &vm->inactive_list);
15717de2 3114 obj->bind_count++;
bf1a1092 3115
262de145 3116 return vma;
2f633156 3117
bc6bc15b 3118err_remove_node:
6286ef9b 3119 drm_mm_remove_node(&vma->node);
b1f788c6 3120err_vma:
262de145 3121 vma = ERR_PTR(ret);
bc6bc15b 3122err_unpin:
2f633156 3123 i915_gem_object_unpin_pages(obj);
262de145 3124 return vma;
673a394b
EA
3125}
3126
000433b6 3127bool
2c22569b
CW
3128i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3129 bool force)
673a394b 3130{
673a394b
EA
3131 /* If we don't have a page list set up, then we're not pinned
3132 * to GPU, and we can ignore the cache flush because it'll happen
3133 * again at bind time.
3134 */
05394f39 3135 if (obj->pages == NULL)
000433b6 3136 return false;
673a394b 3137
769ce464
ID
3138 /*
3139 * Stolen memory is always coherent with the GPU as it is explicitly
3140 * marked as wc by the system, or the system is cache-coherent.
3141 */
6a2c4232 3142 if (obj->stolen || obj->phys_handle)
000433b6 3143 return false;
769ce464 3144
9c23f7fc
CW
3145 /* If the GPU is snooping the contents of the CPU cache,
3146 * we do not need to manually clear the CPU cache lines. However,
3147 * the caches are only snooped when the render cache is
3148 * flushed/invalidated. As we always have to emit invalidations
3149 * and flushes when moving into and out of the RENDER domain, correct
3150 * snooping behaviour occurs naturally as the result of our domain
3151 * tracking.
3152 */
0f71979a
CW
3153 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3154 obj->cache_dirty = true;
000433b6 3155 return false;
0f71979a 3156 }
9c23f7fc 3157
1c5d22f7 3158 trace_i915_gem_object_clflush(obj);
9da3da66 3159 drm_clflush_sg(obj->pages);
0f71979a 3160 obj->cache_dirty = false;
000433b6
CW
3161
3162 return true;
e47c68e9
EA
3163}
3164
3165/** Flushes the GTT write domain for the object if it's dirty. */
3166static void
05394f39 3167i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3168{
1c5d22f7
CW
3169 uint32_t old_write_domain;
3170
05394f39 3171 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3172 return;
3173
63256ec5 3174 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3175 * to it immediately go to main memory as far as we know, so there's
3176 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3177 *
3178 * However, we do have to enforce the order so that all writes through
3179 * the GTT land before any writes to the device, such as updates to
3180 * the GATT itself.
e47c68e9 3181 */
63256ec5
CW
3182 wmb();
3183
05394f39
CW
3184 old_write_domain = obj->base.write_domain;
3185 obj->base.write_domain = 0;
1c5d22f7 3186
de152b62 3187 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
f99d7069 3188
1c5d22f7 3189 trace_i915_gem_object_change_domain(obj,
05394f39 3190 obj->base.read_domains,
1c5d22f7 3191 old_write_domain);
e47c68e9
EA
3192}
3193
3194/** Flushes the CPU write domain for the object if it's dirty. */
3195static void
e62b59e4 3196i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3197{
1c5d22f7 3198 uint32_t old_write_domain;
e47c68e9 3199
05394f39 3200 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3201 return;
3202
e62b59e4 3203 if (i915_gem_clflush_object(obj, obj->pin_display))
c033666a 3204 i915_gem_chipset_flush(to_i915(obj->base.dev));
000433b6 3205
05394f39
CW
3206 old_write_domain = obj->base.write_domain;
3207 obj->base.write_domain = 0;
1c5d22f7 3208
de152b62 3209 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3210
1c5d22f7 3211 trace_i915_gem_object_change_domain(obj,
05394f39 3212 obj->base.read_domains,
1c5d22f7 3213 old_write_domain);
e47c68e9
EA
3214}
3215
2ef7eeaa
EA
3216/**
3217 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3218 * @obj: object to act on
3219 * @write: ask for write access or read only
2ef7eeaa
EA
3220 *
3221 * This function returns when the move is complete, including waiting on
3222 * flushes to occur.
3223 */
79e53945 3224int
2021746e 3225i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3226{
1c5d22f7 3227 uint32_t old_write_domain, old_read_domains;
43566ded 3228 struct i915_vma *vma;
e47c68e9 3229 int ret;
2ef7eeaa 3230
0201f1ec 3231 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3232 if (ret)
3233 return ret;
3234
c13d87ea
CW
3235 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3236 return 0;
3237
43566ded
CW
3238 /* Flush and acquire obj->pages so that we are coherent through
3239 * direct access in memory with previous cached writes through
3240 * shmemfs and that our cache domain tracking remains valid.
3241 * For example, if the obj->filp was moved to swap without us
3242 * being notified and releasing the pages, we would mistakenly
3243 * continue to assume that the obj remained out of the CPU cached
3244 * domain.
3245 */
3246 ret = i915_gem_object_get_pages(obj);
3247 if (ret)
3248 return ret;
3249
e62b59e4 3250 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3251
d0a57789
CW
3252 /* Serialise direct access to this object with the barriers for
3253 * coherent writes from the GPU, by effectively invalidating the
3254 * GTT domain upon first access.
3255 */
3256 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3257 mb();
3258
05394f39
CW
3259 old_write_domain = obj->base.write_domain;
3260 old_read_domains = obj->base.read_domains;
1c5d22f7 3261
e47c68e9
EA
3262 /* It should now be out of any other write domains, and we can update
3263 * the domain values for our changes.
3264 */
05394f39
CW
3265 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3266 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3267 if (write) {
05394f39
CW
3268 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3269 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3270 obj->dirty = 1;
2ef7eeaa
EA
3271 }
3272
1c5d22f7
CW
3273 trace_i915_gem_object_change_domain(obj,
3274 old_read_domains,
3275 old_write_domain);
3276
8325a09d 3277 /* And bump the LRU for this access */
43566ded 3278 vma = i915_gem_obj_to_ggtt(obj);
b0decaf7
CW
3279 if (vma &&
3280 drm_mm_node_allocated(&vma->node) &&
3281 !i915_vma_is_active(vma))
3282 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
8325a09d 3283
e47c68e9
EA
3284 return 0;
3285}
3286
ef55f92a
CW
3287/**
3288 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
3289 * @obj: object to act on
3290 * @cache_level: new cache level to set for the object
ef55f92a
CW
3291 *
3292 * After this function returns, the object will be in the new cache-level
3293 * across all GTT and the contents of the backing storage will be coherent,
3294 * with respect to the new cache-level. In order to keep the backing storage
3295 * coherent for all users, we only allow a single cache level to be set
3296 * globally on the object and prevent it from being changed whilst the
3297 * hardware is reading from the object. That is if the object is currently
3298 * on the scanout it will be set to uncached (or equivalent display
3299 * cache coherency) and all non-MOCS GPU access will also be uncached so
3300 * that all direct access to the scanout remains coherent.
3301 */
e4ffd173
CW
3302int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3303 enum i915_cache_level cache_level)
3304{
aa653a68 3305 struct i915_vma *vma;
ed75a55b 3306 int ret = 0;
e4ffd173
CW
3307
3308 if (obj->cache_level == cache_level)
ed75a55b 3309 goto out;
e4ffd173 3310
ef55f92a
CW
3311 /* Inspect the list of currently bound VMA and unbind any that would
3312 * be invalid given the new cache-level. This is principally to
3313 * catch the issue of the CS prefetch crossing page boundaries and
3314 * reading an invalid PTE on older architectures.
3315 */
aa653a68
CW
3316restart:
3317 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3318 if (!drm_mm_node_allocated(&vma->node))
3319 continue;
3320
3321 if (vma->pin_count) {
3322 DRM_DEBUG("can not change the cache level of pinned objects\n");
3323 return -EBUSY;
3324 }
3325
aa653a68
CW
3326 if (i915_gem_valid_gtt_space(vma, cache_level))
3327 continue;
3328
3329 ret = i915_vma_unbind(vma);
3330 if (ret)
3331 return ret;
3332
3333 /* As unbinding may affect other elements in the
3334 * obj->vma_list (due to side-effects from retiring
3335 * an active vma), play safe and restart the iterator.
3336 */
3337 goto restart;
42d6ab48
CW
3338 }
3339
ef55f92a
CW
3340 /* We can reuse the existing drm_mm nodes but need to change the
3341 * cache-level on the PTE. We could simply unbind them all and
3342 * rebind with the correct cache-level on next use. However since
3343 * we already have a valid slot, dma mapping, pages etc, we may as
3344 * rewrite the PTE in the belief that doing so tramples upon less
3345 * state and so involves less work.
3346 */
15717de2 3347 if (obj->bind_count) {
ef55f92a
CW
3348 /* Before we change the PTE, the GPU must not be accessing it.
3349 * If we wait upon the object, we know that all the bound
3350 * VMA are no longer active.
3351 */
2e2f351d 3352 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
3353 if (ret)
3354 return ret;
3355
aa653a68 3356 if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
ef55f92a
CW
3357 /* Access to snoopable pages through the GTT is
3358 * incoherent and on some machines causes a hard
3359 * lockup. Relinquish the CPU mmaping to force
3360 * userspace to refault in the pages and we can
3361 * then double check if the GTT mapping is still
3362 * valid for that pointer access.
3363 */
3364 i915_gem_release_mmap(obj);
3365
3366 /* As we no longer need a fence for GTT access,
3367 * we can relinquish it now (and so prevent having
3368 * to steal a fence from someone else on the next
3369 * fence request). Note GPU activity would have
3370 * dropped the fence as all snoopable access is
3371 * supposed to be linear.
3372 */
e4ffd173
CW
3373 ret = i915_gem_object_put_fence(obj);
3374 if (ret)
3375 return ret;
ef55f92a
CW
3376 } else {
3377 /* We either have incoherent backing store and
3378 * so no GTT access or the architecture is fully
3379 * coherent. In such cases, existing GTT mmaps
3380 * ignore the cache bit in the PTE and we can
3381 * rewrite it without confusing the GPU or having
3382 * to force userspace to fault back in its mmaps.
3383 */
e4ffd173
CW
3384 }
3385
1c7f4bca 3386 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3387 if (!drm_mm_node_allocated(&vma->node))
3388 continue;
3389
3390 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3391 if (ret)
3392 return ret;
3393 }
e4ffd173
CW
3394 }
3395
1c7f4bca 3396 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
3397 vma->node.color = cache_level;
3398 obj->cache_level = cache_level;
3399
ed75a55b 3400out:
ef55f92a
CW
3401 /* Flush the dirty CPU caches to the backing storage so that the
3402 * object is now coherent at its new cache level (with respect
3403 * to the access domain).
3404 */
b50a5371 3405 if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
0f71979a 3406 if (i915_gem_clflush_object(obj, true))
c033666a 3407 i915_gem_chipset_flush(to_i915(obj->base.dev));
e4ffd173
CW
3408 }
3409
e4ffd173
CW
3410 return 0;
3411}
3412
199adf40
BW
3413int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3414 struct drm_file *file)
e6994aee 3415{
199adf40 3416 struct drm_i915_gem_caching *args = data;
e6994aee 3417 struct drm_i915_gem_object *obj;
e6994aee 3418
03ac0642
CW
3419 obj = i915_gem_object_lookup(file, args->handle);
3420 if (!obj)
432be69d 3421 return -ENOENT;
e6994aee 3422
651d794f
CW
3423 switch (obj->cache_level) {
3424 case I915_CACHE_LLC:
3425 case I915_CACHE_L3_LLC:
3426 args->caching = I915_CACHING_CACHED;
3427 break;
3428
4257d3ba
CW
3429 case I915_CACHE_WT:
3430 args->caching = I915_CACHING_DISPLAY;
3431 break;
3432
651d794f
CW
3433 default:
3434 args->caching = I915_CACHING_NONE;
3435 break;
3436 }
e6994aee 3437
34911fd3 3438 i915_gem_object_put_unlocked(obj);
432be69d 3439 return 0;
e6994aee
CW
3440}
3441
199adf40
BW
3442int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3443 struct drm_file *file)
e6994aee 3444{
fac5e23e 3445 struct drm_i915_private *dev_priv = to_i915(dev);
199adf40 3446 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3447 struct drm_i915_gem_object *obj;
3448 enum i915_cache_level level;
3449 int ret;
3450
199adf40
BW
3451 switch (args->caching) {
3452 case I915_CACHING_NONE:
e6994aee
CW
3453 level = I915_CACHE_NONE;
3454 break;
199adf40 3455 case I915_CACHING_CACHED:
e5756c10
ID
3456 /*
3457 * Due to a HW issue on BXT A stepping, GPU stores via a
3458 * snooped mapping may leave stale data in a corresponding CPU
3459 * cacheline, whereas normally such cachelines would get
3460 * invalidated.
3461 */
ca377809 3462 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
e5756c10
ID
3463 return -ENODEV;
3464
e6994aee
CW
3465 level = I915_CACHE_LLC;
3466 break;
4257d3ba
CW
3467 case I915_CACHING_DISPLAY:
3468 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3469 break;
e6994aee
CW
3470 default:
3471 return -EINVAL;
3472 }
3473
fd0fe6ac
ID
3474 intel_runtime_pm_get(dev_priv);
3475
3bc2913e
BW
3476 ret = i915_mutex_lock_interruptible(dev);
3477 if (ret)
fd0fe6ac 3478 goto rpm_put;
3bc2913e 3479
03ac0642
CW
3480 obj = i915_gem_object_lookup(file, args->handle);
3481 if (!obj) {
e6994aee
CW
3482 ret = -ENOENT;
3483 goto unlock;
3484 }
3485
3486 ret = i915_gem_object_set_cache_level(obj, level);
3487
f8c417cd 3488 i915_gem_object_put(obj);
e6994aee
CW
3489unlock:
3490 mutex_unlock(&dev->struct_mutex);
fd0fe6ac
ID
3491rpm_put:
3492 intel_runtime_pm_put(dev_priv);
3493
e6994aee
CW
3494 return ret;
3495}
3496
b9241ea3 3497/*
2da3b9b9
CW
3498 * Prepare buffer for display plane (scanout, cursors, etc).
3499 * Can be called from an uninterruptible phase (modesetting) and allows
3500 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3501 */
3502int
2da3b9b9
CW
3503i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3504 u32 alignment,
e6617330 3505 const struct i915_ggtt_view *view)
b9241ea3 3506{
2da3b9b9 3507 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3508 int ret;
3509
cc98b413
CW
3510 /* Mark the pin_display early so that we account for the
3511 * display coherency whilst setting up the cache domains.
3512 */
8a0c39b1 3513 obj->pin_display++;
cc98b413 3514
a7ef0640
EA
3515 /* The display engine is not coherent with the LLC cache on gen6. As
3516 * a result, we make sure that the pinning that is about to occur is
3517 * done with uncached PTEs. This is lowest common denominator for all
3518 * chipsets.
3519 *
3520 * However for gen6+, we could do better by using the GFDT bit instead
3521 * of uncaching, which would allow us to flush all the LLC-cached data
3522 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3523 */
651d794f
CW
3524 ret = i915_gem_object_set_cache_level(obj,
3525 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3526 if (ret)
cc98b413 3527 goto err_unpin_display;
a7ef0640 3528
2da3b9b9
CW
3529 /* As the user may map the buffer once pinned in the display plane
3530 * (e.g. libkms for the bootup splash), we have to ensure that we
3531 * always use map_and_fenceable for all scanout buffers.
3532 */
50470bb0
TU
3533 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3534 view->type == I915_GGTT_VIEW_NORMAL ?
3535 PIN_MAPPABLE : 0);
2da3b9b9 3536 if (ret)
cc98b413 3537 goto err_unpin_display;
2da3b9b9 3538
e62b59e4 3539 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 3540
2da3b9b9 3541 old_write_domain = obj->base.write_domain;
05394f39 3542 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3543
3544 /* It should now be out of any other write domains, and we can update
3545 * the domain values for our changes.
3546 */
e5f1d962 3547 obj->base.write_domain = 0;
05394f39 3548 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3549
3550 trace_i915_gem_object_change_domain(obj,
3551 old_read_domains,
2da3b9b9 3552 old_write_domain);
b9241ea3
ZW
3553
3554 return 0;
cc98b413
CW
3555
3556err_unpin_display:
8a0c39b1 3557 obj->pin_display--;
cc98b413
CW
3558 return ret;
3559}
3560
3561void
e6617330
TU
3562i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3563 const struct i915_ggtt_view *view)
cc98b413 3564{
8a0c39b1
TU
3565 if (WARN_ON(obj->pin_display == 0))
3566 return;
3567
e6617330
TU
3568 i915_gem_object_ggtt_unpin_view(obj, view);
3569
8a0c39b1 3570 obj->pin_display--;
b9241ea3
ZW
3571}
3572
e47c68e9
EA
3573/**
3574 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
3575 * @obj: object to act on
3576 * @write: requesting write or read-only access
e47c68e9
EA
3577 *
3578 * This function returns when the move is complete, including waiting on
3579 * flushes to occur.
3580 */
dabdfe02 3581int
919926ae 3582i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3583{
1c5d22f7 3584 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3585 int ret;
3586
0201f1ec 3587 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3588 if (ret)
3589 return ret;
3590
c13d87ea
CW
3591 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3592 return 0;
3593
e47c68e9 3594 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3595
05394f39
CW
3596 old_write_domain = obj->base.write_domain;
3597 old_read_domains = obj->base.read_domains;
1c5d22f7 3598
e47c68e9 3599 /* Flush the CPU cache if it's still invalid. */
05394f39 3600 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3601 i915_gem_clflush_object(obj, false);
2ef7eeaa 3602
05394f39 3603 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3604 }
3605
3606 /* It should now be out of any other write domains, and we can update
3607 * the domain values for our changes.
3608 */
05394f39 3609 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3610
3611 /* If we're writing through the CPU, then the GPU read domains will
3612 * need to be invalidated at next use.
3613 */
3614 if (write) {
05394f39
CW
3615 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3616 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3617 }
2ef7eeaa 3618
1c5d22f7
CW
3619 trace_i915_gem_object_change_domain(obj,
3620 old_read_domains,
3621 old_write_domain);
3622
2ef7eeaa
EA
3623 return 0;
3624}
3625
673a394b
EA
3626/* Throttle our rendering by waiting until the ring has completed our requests
3627 * emitted over 20 msec ago.
3628 *
b962442e
EA
3629 * Note that if we were to use the current jiffies each time around the loop,
3630 * we wouldn't escape the function with any frames outstanding if the time to
3631 * render a frame was over 20ms.
3632 *
673a394b
EA
3633 * This should get us reasonable parallelism between CPU and GPU but also
3634 * relatively low latency when blocking on a particular request to finish.
3635 */
40a5f0de 3636static int
f787a5f5 3637i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3638{
fac5e23e 3639 struct drm_i915_private *dev_priv = to_i915(dev);
f787a5f5 3640 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 3641 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 3642 struct drm_i915_gem_request *request, *target = NULL;
f787a5f5 3643 int ret;
93533c29 3644
308887aa
DV
3645 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3646 if (ret)
3647 return ret;
3648
f4457ae7
CW
3649 /* ABI: return -EIO if already wedged */
3650 if (i915_terminally_wedged(&dev_priv->gpu_error))
3651 return -EIO;
e110e8d6 3652
1c25595f 3653 spin_lock(&file_priv->mm.lock);
f787a5f5 3654 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3655 if (time_after_eq(request->emitted_jiffies, recent_enough))
3656 break;
40a5f0de 3657
fcfa423c
JH
3658 /*
3659 * Note that the request might not have been submitted yet.
3660 * In which case emitted_jiffies will be zero.
3661 */
3662 if (!request->emitted_jiffies)
3663 continue;
3664
54fb2411 3665 target = request;
b962442e 3666 }
ff865885 3667 if (target)
e8a261ea 3668 i915_gem_request_get(target);
1c25595f 3669 spin_unlock(&file_priv->mm.lock);
40a5f0de 3670
54fb2411 3671 if (target == NULL)
f787a5f5 3672 return 0;
2bc43b5c 3673
776f3236 3674 ret = i915_wait_request(target, true, NULL, NULL);
e8a261ea 3675 i915_gem_request_put(target);
ff865885 3676
40a5f0de
EA
3677 return ret;
3678}
3679
d23db88c 3680static bool
2ffffd0f 3681i915_vma_misplaced(struct i915_vma *vma, u64 alignment, u64 flags)
d23db88c
CW
3682{
3683 struct drm_i915_gem_object *obj = vma->obj;
3684
3685 if (alignment &&
3686 vma->node.start & (alignment - 1))
3687 return true;
3688
3689 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
3690 return true;
3691
3692 if (flags & PIN_OFFSET_BIAS &&
3693 vma->node.start < (flags & PIN_OFFSET_MASK))
3694 return true;
3695
506a8e87
CW
3696 if (flags & PIN_OFFSET_FIXED &&
3697 vma->node.start != (flags & PIN_OFFSET_MASK))
3698 return true;
3699
d23db88c
CW
3700 return false;
3701}
3702
d0710abb
CW
3703void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
3704{
3705 struct drm_i915_gem_object *obj = vma->obj;
3706 bool mappable, fenceable;
3707 u32 fence_size, fence_alignment;
3708
3709 fence_size = i915_gem_get_gtt_size(obj->base.dev,
3710 obj->base.size,
3711 obj->tiling_mode);
3712 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
3713 obj->base.size,
3714 obj->tiling_mode,
3715 true);
3716
3717 fenceable = (vma->node.size == fence_size &&
3718 (vma->node.start & (fence_alignment - 1)) == 0);
3719
3720 mappable = (vma->node.start + fence_size <=
62106b4f 3721 to_i915(obj->base.dev)->ggtt.mappable_end);
d0710abb
CW
3722
3723 obj->map_and_fenceable = mappable && fenceable;
3724}
3725
ec7adb6e
JL
3726static int
3727i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
3728 struct i915_address_space *vm,
3729 const struct i915_ggtt_view *ggtt_view,
2ffffd0f
CW
3730 u64 alignment,
3731 u64 flags)
673a394b 3732{
fac5e23e 3733 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
07fe0b12 3734 struct i915_vma *vma;
ef79e17c 3735 unsigned bound;
673a394b
EA
3736 int ret;
3737
6e7186af
BW
3738 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
3739 return -ENODEV;
3740
bf3d149b 3741 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 3742 return -EINVAL;
07fe0b12 3743
c826c449
CW
3744 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
3745 return -EINVAL;
3746
ec7adb6e
JL
3747 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3748 return -EINVAL;
3749
3750 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
3751 i915_gem_obj_to_vma(obj, vm);
3752
07fe0b12 3753 if (vma) {
d7f46fc4
BW
3754 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3755 return -EBUSY;
3756
d23db88c 3757 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 3758 WARN(vma->pin_count,
ec7adb6e 3759 "bo is already pinned in %s with incorrect alignment:"
2ffffd0f 3760 " offset=%08x %08x, req.alignment=%llx, req.map_and_fenceable=%d,"
75e9e915 3761 " obj->map_and_fenceable=%d\n",
ec7adb6e 3762 ggtt_view ? "ggtt" : "ppgtt",
088e0df4
MT
3763 upper_32_bits(vma->node.start),
3764 lower_32_bits(vma->node.start),
fe14d5f4 3765 alignment,
d23db88c 3766 !!(flags & PIN_MAPPABLE),
05394f39 3767 obj->map_and_fenceable);
07fe0b12 3768 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
3769 if (ret)
3770 return ret;
8ea99c92
DV
3771
3772 vma = NULL;
ac0c6b5a
CW
3773 }
3774 }
3775
ef79e17c 3776 bound = vma ? vma->bound : 0;
8ea99c92 3777 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
ec7adb6e
JL
3778 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
3779 flags);
262de145
DV
3780 if (IS_ERR(vma))
3781 return PTR_ERR(vma);
0875546c
DV
3782 } else {
3783 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
3784 if (ret)
3785 return ret;
3786 }
74898d7e 3787
91e6711e
JL
3788 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
3789 (bound ^ vma->bound) & GLOBAL_BIND) {
d0710abb 3790 __i915_vma_set_map_and_fenceable(vma);
91e6711e
JL
3791 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3792 }
ef79e17c 3793
8ea99c92 3794 vma->pin_count++;
673a394b
EA
3795 return 0;
3796}
3797
ec7adb6e
JL
3798int
3799i915_gem_object_pin(struct drm_i915_gem_object *obj,
3800 struct i915_address_space *vm,
2ffffd0f
CW
3801 u64 alignment,
3802 u64 flags)
ec7adb6e
JL
3803{
3804 return i915_gem_object_do_pin(obj, vm,
3805 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
3806 alignment, flags);
3807}
3808
3809int
3810i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3811 const struct i915_ggtt_view *view,
2ffffd0f
CW
3812 u64 alignment,
3813 u64 flags)
ec7adb6e 3814{
72e96d64
JL
3815 struct drm_device *dev = obj->base.dev;
3816 struct drm_i915_private *dev_priv = to_i915(dev);
3817 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3818
ade7daa1 3819 BUG_ON(!view);
ec7adb6e 3820
72e96d64 3821 return i915_gem_object_do_pin(obj, &ggtt->base, view,
6fafab76 3822 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
3823}
3824
673a394b 3825void
e6617330
TU
3826i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
3827 const struct i915_ggtt_view *view)
673a394b 3828{
e6617330 3829 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 3830
e6617330 3831 WARN_ON(vma->pin_count == 0);
9abc4648 3832 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 3833
30154650 3834 --vma->pin_count;
673a394b
EA
3835}
3836
673a394b
EA
3837int
3838i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3839 struct drm_file *file)
673a394b
EA
3840{
3841 struct drm_i915_gem_busy *args = data;
05394f39 3842 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3843 int ret;
3844
76c1dec1 3845 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3846 if (ret)
76c1dec1 3847 return ret;
673a394b 3848
03ac0642
CW
3849 obj = i915_gem_object_lookup(file, args->handle);
3850 if (!obj) {
1d7cfea1
CW
3851 ret = -ENOENT;
3852 goto unlock;
673a394b 3853 }
d1b851fc 3854
0be555b6
CW
3855 /* Count all active objects as busy, even if they are currently not used
3856 * by the gpu. Users of this interface expect objects to eventually
21c310f2 3857 * become non-busy without any further actions.
c4de0a5d 3858 */
426960be
CW
3859 args->busy = 0;
3860 if (obj->active) {
27c01aae 3861 struct drm_i915_gem_request *req;
426960be
CW
3862 int i;
3863
666796da 3864 for (i = 0; i < I915_NUM_ENGINES; i++) {
d72d908b
CW
3865 req = i915_gem_active_peek(&obj->last_read[i],
3866 &obj->base.dev->struct_mutex);
426960be 3867 if (req)
4a570db5 3868 args->busy |= 1 << (16 + req->engine->exec_id);
426960be 3869 }
d72d908b
CW
3870 req = i915_gem_active_peek(&obj->last_write,
3871 &obj->base.dev->struct_mutex);
27c01aae
CW
3872 if (req)
3873 args->busy |= req->engine->exec_id;
426960be 3874 }
673a394b 3875
f8c417cd 3876 i915_gem_object_put(obj);
1d7cfea1 3877unlock:
673a394b 3878 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3879 return ret;
673a394b
EA
3880}
3881
3882int
3883i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3884 struct drm_file *file_priv)
3885{
0206e353 3886 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3887}
3888
3ef94daa
CW
3889int
3890i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3891 struct drm_file *file_priv)
3892{
fac5e23e 3893 struct drm_i915_private *dev_priv = to_i915(dev);
3ef94daa 3894 struct drm_i915_gem_madvise *args = data;
05394f39 3895 struct drm_i915_gem_object *obj;
76c1dec1 3896 int ret;
3ef94daa
CW
3897
3898 switch (args->madv) {
3899 case I915_MADV_DONTNEED:
3900 case I915_MADV_WILLNEED:
3901 break;
3902 default:
3903 return -EINVAL;
3904 }
3905
1d7cfea1
CW
3906 ret = i915_mutex_lock_interruptible(dev);
3907 if (ret)
3908 return ret;
3909
03ac0642
CW
3910 obj = i915_gem_object_lookup(file_priv, args->handle);
3911 if (!obj) {
1d7cfea1
CW
3912 ret = -ENOENT;
3913 goto unlock;
3ef94daa 3914 }
3ef94daa 3915
d7f46fc4 3916 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
3917 ret = -EINVAL;
3918 goto out;
3ef94daa
CW
3919 }
3920
656bfa3a
DV
3921 if (obj->pages &&
3922 obj->tiling_mode != I915_TILING_NONE &&
3923 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3924 if (obj->madv == I915_MADV_WILLNEED)
3925 i915_gem_object_unpin_pages(obj);
3926 if (args->madv == I915_MADV_WILLNEED)
3927 i915_gem_object_pin_pages(obj);
3928 }
3929
05394f39
CW
3930 if (obj->madv != __I915_MADV_PURGED)
3931 obj->madv = args->madv;
3ef94daa 3932
6c085a72 3933 /* if the object is no longer attached, discard its backing storage */
be6a0376 3934 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
3935 i915_gem_object_truncate(obj);
3936
05394f39 3937 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3938
1d7cfea1 3939out:
f8c417cd 3940 i915_gem_object_put(obj);
1d7cfea1 3941unlock:
3ef94daa 3942 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3943 return ret;
3ef94daa
CW
3944}
3945
37e680a1
CW
3946void i915_gem_object_init(struct drm_i915_gem_object *obj,
3947 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3948{
b4716185
CW
3949 int i;
3950
35c20a60 3951 INIT_LIST_HEAD(&obj->global_list);
666796da 3952 for (i = 0; i < I915_NUM_ENGINES; i++)
fa545cbf
CW
3953 init_request_active(&obj->last_read[i],
3954 i915_gem_object_retire__read);
3955 init_request_active(&obj->last_write,
3956 i915_gem_object_retire__write);
3957 init_request_active(&obj->last_fence, NULL);
b25cb2f8 3958 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 3959 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 3960 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 3961
37e680a1
CW
3962 obj->ops = ops;
3963
0327d6ba
CW
3964 obj->fence_reg = I915_FENCE_REG_NONE;
3965 obj->madv = I915_MADV_WILLNEED;
0327d6ba 3966
f19ec8cb 3967 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
0327d6ba
CW
3968}
3969
37e680a1 3970static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
de472664 3971 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
37e680a1
CW
3972 .get_pages = i915_gem_object_get_pages_gtt,
3973 .put_pages = i915_gem_object_put_pages_gtt,
3974};
3975
d37cd8a8 3976struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
05394f39 3977 size_t size)
ac52bc56 3978{
c397b908 3979 struct drm_i915_gem_object *obj;
5949eac4 3980 struct address_space *mapping;
1a240d4d 3981 gfp_t mask;
fe3db79b 3982 int ret;
ac52bc56 3983
42dcedd4 3984 obj = i915_gem_object_alloc(dev);
c397b908 3985 if (obj == NULL)
fe3db79b 3986 return ERR_PTR(-ENOMEM);
673a394b 3987
fe3db79b
CW
3988 ret = drm_gem_object_init(dev, &obj->base, size);
3989 if (ret)
3990 goto fail;
673a394b 3991
bed1ea95
CW
3992 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3993 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3994 /* 965gm cannot relocate objects above 4GiB. */
3995 mask &= ~__GFP_HIGHMEM;
3996 mask |= __GFP_DMA32;
3997 }
3998
496ad9aa 3999 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4000 mapping_set_gfp_mask(mapping, mask);
5949eac4 4001
37e680a1 4002 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4003
c397b908
DV
4004 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4005 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4006
3d29b842
ED
4007 if (HAS_LLC(dev)) {
4008 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4009 * cache) for about a 10% performance improvement
4010 * compared to uncached. Graphics requests other than
4011 * display scanout are coherent with the CPU in
4012 * accessing this cache. This means in this mode we
4013 * don't need to clflush on the CPU side, and on the
4014 * GPU side we only need to flush internal caches to
4015 * get data visible to the CPU.
4016 *
4017 * However, we maintain the display planes as UC, and so
4018 * need to rebind when first used as such.
4019 */
4020 obj->cache_level = I915_CACHE_LLC;
4021 } else
4022 obj->cache_level = I915_CACHE_NONE;
4023
d861e338
DV
4024 trace_i915_gem_object_create(obj);
4025
05394f39 4026 return obj;
fe3db79b
CW
4027
4028fail:
4029 i915_gem_object_free(obj);
4030
4031 return ERR_PTR(ret);
c397b908
DV
4032}
4033
340fbd8c
CW
4034static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4035{
4036 /* If we are the last user of the backing storage (be it shmemfs
4037 * pages or stolen etc), we know that the pages are going to be
4038 * immediately released. In this case, we can then skip copying
4039 * back the contents from the GPU.
4040 */
4041
4042 if (obj->madv != I915_MADV_WILLNEED)
4043 return false;
4044
4045 if (obj->base.filp == NULL)
4046 return true;
4047
4048 /* At first glance, this looks racy, but then again so would be
4049 * userspace racing mmap against close. However, the first external
4050 * reference to the filp can only be obtained through the
4051 * i915_gem_mmap_ioctl() which safeguards us against the user
4052 * acquiring such a reference whilst we are in the middle of
4053 * freeing the object.
4054 */
4055 return atomic_long_read(&obj->base.filp->f_count) == 1;
4056}
4057
1488fc08 4058void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4059{
1488fc08 4060 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4061 struct drm_device *dev = obj->base.dev;
fac5e23e 4062 struct drm_i915_private *dev_priv = to_i915(dev);
07fe0b12 4063 struct i915_vma *vma, *next;
673a394b 4064
f65c9168
PZ
4065 intel_runtime_pm_get(dev_priv);
4066
26e12f89
CW
4067 trace_i915_gem_object_destroy(obj);
4068
b1f788c6
CW
4069 /* All file-owned VMA should have been released by this point through
4070 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4071 * However, the object may also be bound into the global GTT (e.g.
4072 * older GPUs without per-process support, or for direct access through
4073 * the GTT either for the user or for scanout). Those VMA still need to
4074 * unbound now.
4075 */
1c7f4bca 4076 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
b1f788c6
CW
4077 GEM_BUG_ON(!vma->is_ggtt);
4078 GEM_BUG_ON(i915_vma_is_active(vma));
d7f46fc4 4079 vma->pin_count = 0;
b1f788c6 4080 i915_vma_close(vma);
1488fc08 4081 }
15717de2 4082 GEM_BUG_ON(obj->bind_count);
1488fc08 4083
1d64ae71
BW
4084 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4085 * before progressing. */
4086 if (obj->stolen)
4087 i915_gem_object_unpin_pages(obj);
4088
a071fa00
DV
4089 WARN_ON(obj->frontbuffer_bits);
4090
656bfa3a
DV
4091 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4092 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4093 obj->tiling_mode != I915_TILING_NONE)
4094 i915_gem_object_unpin_pages(obj);
4095
401c29f6
BW
4096 if (WARN_ON(obj->pages_pin_count))
4097 obj->pages_pin_count = 0;
340fbd8c 4098 if (discard_backing_storage(obj))
5537252b 4099 obj->madv = I915_MADV_DONTNEED;
37e680a1 4100 i915_gem_object_put_pages(obj);
de151cf6 4101
9da3da66
CW
4102 BUG_ON(obj->pages);
4103
2f745ad3
CW
4104 if (obj->base.import_attach)
4105 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4106
5cc9ed4b
CW
4107 if (obj->ops->release)
4108 obj->ops->release(obj);
4109
05394f39
CW
4110 drm_gem_object_release(&obj->base);
4111 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4112
05394f39 4113 kfree(obj->bit_17);
42dcedd4 4114 i915_gem_object_free(obj);
f65c9168
PZ
4115
4116 intel_runtime_pm_put(dev_priv);
673a394b
EA
4117}
4118
ec7adb6e
JL
4119struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4120 struct i915_address_space *vm)
e656a6cb
DV
4121{
4122 struct i915_vma *vma;
1c7f4bca 4123 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1b683729
TU
4124 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4125 vma->vm == vm)
e656a6cb 4126 return vma;
ec7adb6e
JL
4127 }
4128 return NULL;
4129}
4130
4131struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4132 const struct i915_ggtt_view *view)
4133{
ec7adb6e 4134 struct i915_vma *vma;
e656a6cb 4135
598b9ec8 4136 GEM_BUG_ON(!view);
ec7adb6e 4137
1c7f4bca 4138 list_for_each_entry(vma, &obj->vma_list, obj_link)
598b9ec8 4139 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4140 return vma;
e656a6cb
DV
4141 return NULL;
4142}
4143
e3efda49 4144static void
117897f4 4145i915_gem_stop_engines(struct drm_device *dev)
e3efda49 4146{
fac5e23e 4147 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4148 struct intel_engine_cs *engine;
e3efda49 4149
b4ac5afc 4150 for_each_engine(engine, dev_priv)
117897f4 4151 dev_priv->gt.stop_engine(engine);
e3efda49
CW
4152}
4153
29105ccc 4154int
45c5f202 4155i915_gem_suspend(struct drm_device *dev)
29105ccc 4156{
fac5e23e 4157 struct drm_i915_private *dev_priv = to_i915(dev);
45c5f202 4158 int ret = 0;
28dfe52a 4159
54b4f68f
CW
4160 intel_suspend_gt_powersave(dev_priv);
4161
45c5f202 4162 mutex_lock(&dev->struct_mutex);
5ab57c70
CW
4163
4164 /* We have to flush all the executing contexts to main memory so
4165 * that they can saved in the hibernation image. To ensure the last
4166 * context image is coherent, we have to switch away from it. That
4167 * leaves the dev_priv->kernel_context still active when
4168 * we actually suspend, and its image in memory may not match the GPU
4169 * state. Fortunately, the kernel_context is disposable and we do
4170 * not rely on its state.
4171 */
4172 ret = i915_gem_switch_to_kernel_context(dev_priv);
4173 if (ret)
4174 goto err;
4175
6e5a5beb 4176 ret = i915_gem_wait_for_idle(dev_priv);
f7403347 4177 if (ret)
45c5f202 4178 goto err;
f7403347 4179
c033666a 4180 i915_gem_retire_requests(dev_priv);
673a394b 4181
5ab57c70
CW
4182 /* Note that rather than stopping the engines, all we have to do
4183 * is assert that every RING_HEAD == RING_TAIL (all execution complete)
4184 * and similar for all logical context images (to ensure they are
4185 * all ready for hibernation).
4186 */
117897f4 4187 i915_gem_stop_engines(dev);
b2e862d0 4188 i915_gem_context_lost(dev_priv);
45c5f202
CW
4189 mutex_unlock(&dev->struct_mutex);
4190
737b1506 4191 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
67d97da3
CW
4192 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4193 flush_delayed_work(&dev_priv->gt.idle_work);
29105ccc 4194
bdcf120b
CW
4195 /* Assert that we sucessfully flushed all the work and
4196 * reset the GPU back to its idle, low power state.
4197 */
67d97da3 4198 WARN_ON(dev_priv->gt.awake);
bdcf120b 4199
673a394b 4200 return 0;
45c5f202
CW
4201
4202err:
4203 mutex_unlock(&dev->struct_mutex);
4204 return ret;
673a394b
EA
4205}
4206
5ab57c70
CW
4207void i915_gem_resume(struct drm_device *dev)
4208{
4209 struct drm_i915_private *dev_priv = to_i915(dev);
4210
4211 mutex_lock(&dev->struct_mutex);
4212 i915_gem_restore_gtt_mappings(dev);
4213
4214 /* As we didn't flush the kernel context before suspend, we cannot
4215 * guarantee that the context image is complete. So let's just reset
4216 * it and start again.
4217 */
4218 if (i915.enable_execlists)
4219 intel_lr_context_reset(dev_priv, dev_priv->kernel_context);
4220
4221 mutex_unlock(&dev->struct_mutex);
4222}
4223
f691e2f4
DV
4224void i915_gem_init_swizzling(struct drm_device *dev)
4225{
fac5e23e 4226 struct drm_i915_private *dev_priv = to_i915(dev);
f691e2f4 4227
11782b02 4228 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4229 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4230 return;
4231
4232 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4233 DISP_TILE_SURFACE_SWIZZLING);
4234
11782b02
DV
4235 if (IS_GEN5(dev))
4236 return;
4237
f691e2f4
DV
4238 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4239 if (IS_GEN6(dev))
6b26c86d 4240 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4241 else if (IS_GEN7(dev))
6b26c86d 4242 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4243 else if (IS_GEN8(dev))
4244 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4245 else
4246 BUG();
f691e2f4 4247}
e21af88d 4248
81e7f200
VS
4249static void init_unused_ring(struct drm_device *dev, u32 base)
4250{
fac5e23e 4251 struct drm_i915_private *dev_priv = to_i915(dev);
81e7f200
VS
4252
4253 I915_WRITE(RING_CTL(base), 0);
4254 I915_WRITE(RING_HEAD(base), 0);
4255 I915_WRITE(RING_TAIL(base), 0);
4256 I915_WRITE(RING_START(base), 0);
4257}
4258
4259static void init_unused_rings(struct drm_device *dev)
4260{
4261 if (IS_I830(dev)) {
4262 init_unused_ring(dev, PRB1_BASE);
4263 init_unused_ring(dev, SRB0_BASE);
4264 init_unused_ring(dev, SRB1_BASE);
4265 init_unused_ring(dev, SRB2_BASE);
4266 init_unused_ring(dev, SRB3_BASE);
4267 } else if (IS_GEN2(dev)) {
4268 init_unused_ring(dev, SRB0_BASE);
4269 init_unused_ring(dev, SRB1_BASE);
4270 } else if (IS_GEN3(dev)) {
4271 init_unused_ring(dev, PRB1_BASE);
4272 init_unused_ring(dev, PRB2_BASE);
4273 }
4274}
4275
4fc7c971
BW
4276int
4277i915_gem_init_hw(struct drm_device *dev)
4278{
fac5e23e 4279 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4280 struct intel_engine_cs *engine;
d200cda6 4281 int ret;
4fc7c971 4282
5e4f5189
CW
4283 /* Double layer security blanket, see i915_gem_init() */
4284 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4285
3accaf7e 4286 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4287 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4288
0bf21347
VS
4289 if (IS_HASWELL(dev))
4290 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4291 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4292
88a2b2a3 4293 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4294 if (IS_IVYBRIDGE(dev)) {
4295 u32 temp = I915_READ(GEN7_MSG_CTL);
4296 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4297 I915_WRITE(GEN7_MSG_CTL, temp);
4298 } else if (INTEL_INFO(dev)->gen >= 7) {
4299 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4300 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4301 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4302 }
88a2b2a3
BW
4303 }
4304
4fc7c971
BW
4305 i915_gem_init_swizzling(dev);
4306
d5abdfda
DV
4307 /*
4308 * At least 830 can leave some of the unused rings
4309 * "active" (ie. head != tail) after resume which
4310 * will prevent c3 entry. Makes sure all unused rings
4311 * are totally idle.
4312 */
4313 init_unused_rings(dev);
4314
ed54c1a1 4315 BUG_ON(!dev_priv->kernel_context);
90638cc1 4316
4ad2fd88
JH
4317 ret = i915_ppgtt_init_hw(dev);
4318 if (ret) {
4319 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4320 goto out;
4321 }
4322
4323 /* Need to do basic initialisation of all rings first: */
b4ac5afc 4324 for_each_engine(engine, dev_priv) {
e2f80391 4325 ret = engine->init_hw(engine);
35a57ffb 4326 if (ret)
5e4f5189 4327 goto out;
35a57ffb 4328 }
99433931 4329
0ccdacf6
PA
4330 intel_mocs_init_l3cc_table(dev);
4331
33a732f4 4332 /* We can't enable contexts until all firmware is loaded */
e556f7c1
DG
4333 ret = intel_guc_setup(dev);
4334 if (ret)
4335 goto out;
33a732f4 4336
5e4f5189
CW
4337out:
4338 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4339 return ret;
8187a2b7
ZN
4340}
4341
39df9190
CW
4342bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4343{
4344 if (INTEL_INFO(dev_priv)->gen < 6)
4345 return false;
4346
4347 /* TODO: make semaphores and Execlists play nicely together */
4348 if (i915.enable_execlists)
4349 return false;
4350
4351 if (value >= 0)
4352 return value;
4353
4354#ifdef CONFIG_INTEL_IOMMU
4355 /* Enable semaphores on SNB when IO remapping is off */
4356 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4357 return false;
4358#endif
4359
4360 return true;
4361}
4362
1070a42b
CW
4363int i915_gem_init(struct drm_device *dev)
4364{
fac5e23e 4365 struct drm_i915_private *dev_priv = to_i915(dev);
1070a42b
CW
4366 int ret;
4367
1070a42b 4368 mutex_lock(&dev->struct_mutex);
d62b4892 4369
a83014d3 4370 if (!i915.enable_execlists) {
7e37f889
CW
4371 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4372 dev_priv->gt.stop_engine = intel_engine_stop;
454afebd 4373 } else {
117897f4
TU
4374 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4375 dev_priv->gt.stop_engine = intel_logical_ring_stop;
a83014d3
OM
4376 }
4377
5e4f5189
CW
4378 /* This is just a security blanket to placate dragons.
4379 * On some systems, we very sporadically observe that the first TLBs
4380 * used by the CS may be stale, despite us poking the TLB reset. If
4381 * we hold the forcewake during initialisation these problems
4382 * just magically go away.
4383 */
4384 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4385
72778cb2 4386 i915_gem_init_userptr(dev_priv);
f6b9d5ca
CW
4387
4388 ret = i915_gem_init_ggtt(dev_priv);
4389 if (ret)
4390 goto out_unlock;
d62b4892 4391
2fa48d8d 4392 ret = i915_gem_context_init(dev);
7bcc3777
JN
4393 if (ret)
4394 goto out_unlock;
2fa48d8d 4395
8b3e2d36 4396 ret = intel_engines_init(dev);
35a57ffb 4397 if (ret)
7bcc3777 4398 goto out_unlock;
2fa48d8d 4399
1070a42b 4400 ret = i915_gem_init_hw(dev);
60990320 4401 if (ret == -EIO) {
7e21d648 4402 /* Allow engine initialisation to fail by marking the GPU as
60990320
CW
4403 * wedged. But we only want to do this where the GPU is angry,
4404 * for all other failure, such as an allocation failure, bail.
4405 */
4406 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
805de8f4 4407 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
60990320 4408 ret = 0;
1070a42b 4409 }
7bcc3777
JN
4410
4411out_unlock:
5e4f5189 4412 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4413 mutex_unlock(&dev->struct_mutex);
1070a42b 4414
60990320 4415 return ret;
1070a42b
CW
4416}
4417
8187a2b7 4418void
117897f4 4419i915_gem_cleanup_engines(struct drm_device *dev)
8187a2b7 4420{
fac5e23e 4421 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4422 struct intel_engine_cs *engine;
8187a2b7 4423
b4ac5afc 4424 for_each_engine(engine, dev_priv)
117897f4 4425 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
4426}
4427
64193406 4428static void
666796da 4429init_engine_lists(struct intel_engine_cs *engine)
64193406 4430{
0bc40be8 4431 INIT_LIST_HEAD(&engine->request_list);
64193406
CW
4432}
4433
40ae4e16
ID
4434void
4435i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4436{
91c8a326 4437 struct drm_device *dev = &dev_priv->drm;
40ae4e16
ID
4438
4439 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4440 !IS_CHERRYVIEW(dev_priv))
4441 dev_priv->num_fence_regs = 32;
4442 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4443 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4444 dev_priv->num_fence_regs = 16;
4445 else
4446 dev_priv->num_fence_regs = 8;
4447
c033666a 4448 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
4449 dev_priv->num_fence_regs =
4450 I915_READ(vgtif_reg(avail_rs.fence_num));
4451
4452 /* Initialize fence registers to zero */
4453 i915_gem_restore_fences(dev);
4454
4455 i915_gem_detect_bit_6_swizzle(dev);
4456}
4457
673a394b 4458void
d64aa096 4459i915_gem_load_init(struct drm_device *dev)
673a394b 4460{
fac5e23e 4461 struct drm_i915_private *dev_priv = to_i915(dev);
42dcedd4
CW
4462 int i;
4463
efab6d8d 4464 dev_priv->objects =
42dcedd4
CW
4465 kmem_cache_create("i915_gem_object",
4466 sizeof(struct drm_i915_gem_object), 0,
4467 SLAB_HWCACHE_ALIGN,
4468 NULL);
e20d2ab7
CW
4469 dev_priv->vmas =
4470 kmem_cache_create("i915_gem_vma",
4471 sizeof(struct i915_vma), 0,
4472 SLAB_HWCACHE_ALIGN,
4473 NULL);
efab6d8d
CW
4474 dev_priv->requests =
4475 kmem_cache_create("i915_gem_request",
4476 sizeof(struct drm_i915_gem_request), 0,
4477 SLAB_HWCACHE_ALIGN,
4478 NULL);
673a394b 4479
a33afea5 4480 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4481 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4482 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4483 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
666796da
TU
4484 for (i = 0; i < I915_NUM_ENGINES; i++)
4485 init_engine_lists(&dev_priv->engine[i]);
4b9de737 4486 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4487 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
67d97da3 4488 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
673a394b 4489 i915_gem_retire_work_handler);
67d97da3 4490 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
b29c19b6 4491 i915_gem_idle_work_handler);
1f15b76f 4492 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1f83fee0 4493 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4494
72bfa19c
CW
4495 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4496
19b2dbde 4497 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
10ed13e4 4498
6b95a207 4499 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4500
ce453d81
CW
4501 dev_priv->mm.interruptible = true;
4502
f99d7069 4503 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 4504}
71acb5eb 4505
d64aa096
ID
4506void i915_gem_load_cleanup(struct drm_device *dev)
4507{
4508 struct drm_i915_private *dev_priv = to_i915(dev);
4509
4510 kmem_cache_destroy(dev_priv->requests);
4511 kmem_cache_destroy(dev_priv->vmas);
4512 kmem_cache_destroy(dev_priv->objects);
4513}
4514
461fb99c
CW
4515int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4516{
4517 struct drm_i915_gem_object *obj;
4518
4519 /* Called just before we write the hibernation image.
4520 *
4521 * We need to update the domain tracking to reflect that the CPU
4522 * will be accessing all the pages to create and restore from the
4523 * hibernation, and so upon restoration those pages will be in the
4524 * CPU domain.
4525 *
4526 * To make sure the hibernation image contains the latest state,
4527 * we update that state just before writing out the image.
4528 */
4529
4530 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
4531 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4532 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4533 }
4534
4535 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4536 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4537 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4538 }
4539
4540 return 0;
4541}
4542
f787a5f5 4543void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4544{
f787a5f5 4545 struct drm_i915_file_private *file_priv = file->driver_priv;
15f7bbc7 4546 struct drm_i915_gem_request *request;
b962442e
EA
4547
4548 /* Clean up our request list when the client is going away, so that
4549 * later retire_requests won't dereference our soon-to-be-gone
4550 * file_priv.
4551 */
1c25595f 4552 spin_lock(&file_priv->mm.lock);
15f7bbc7 4553 list_for_each_entry(request, &file_priv->mm.request_list, client_list)
f787a5f5 4554 request->file_priv = NULL;
1c25595f 4555 spin_unlock(&file_priv->mm.lock);
b29c19b6 4556
2e1b8730 4557 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 4558 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 4559 list_del(&file_priv->rps.link);
8d3afd7d 4560 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 4561 }
b29c19b6
CW
4562}
4563
4564int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4565{
4566 struct drm_i915_file_private *file_priv;
e422b888 4567 int ret;
b29c19b6
CW
4568
4569 DRM_DEBUG_DRIVER("\n");
4570
4571 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4572 if (!file_priv)
4573 return -ENOMEM;
4574
4575 file->driver_priv = file_priv;
f19ec8cb 4576 file_priv->dev_priv = to_i915(dev);
ab0e7ff9 4577 file_priv->file = file;
2e1b8730 4578 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
4579
4580 spin_lock_init(&file_priv->mm.lock);
4581 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 4582
c80ff16e 4583 file_priv->bsd_engine = -1;
de1add36 4584
e422b888
BW
4585 ret = i915_gem_context_open(dev, file);
4586 if (ret)
4587 kfree(file_priv);
b29c19b6 4588
e422b888 4589 return ret;
b29c19b6
CW
4590}
4591
b680c37a
DV
4592/**
4593 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
4594 * @old: current GEM buffer for the frontbuffer slots
4595 * @new: new GEM buffer for the frontbuffer slots
4596 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
4597 *
4598 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4599 * from @old and setting them in @new. Both @old and @new can be NULL.
4600 */
a071fa00
DV
4601void i915_gem_track_fb(struct drm_i915_gem_object *old,
4602 struct drm_i915_gem_object *new,
4603 unsigned frontbuffer_bits)
4604{
4605 if (old) {
4606 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
4607 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
4608 old->frontbuffer_bits &= ~frontbuffer_bits;
4609 }
4610
4611 if (new) {
4612 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
4613 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
4614 new->frontbuffer_bits |= frontbuffer_bits;
4615 }
4616}
4617
a70a3148 4618/* All the new VM stuff */
088e0df4
MT
4619u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
4620 struct i915_address_space *vm)
a70a3148 4621{
fac5e23e 4622 struct drm_i915_private *dev_priv = to_i915(o->base.dev);
a70a3148
BW
4623 struct i915_vma *vma;
4624
896ab1a5 4625 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 4626
1c7f4bca 4627 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 4628 if (vma->is_ggtt &&
ec7adb6e
JL
4629 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4630 continue;
4631 if (vma->vm == vm)
a70a3148 4632 return vma->node.start;
a70a3148 4633 }
ec7adb6e 4634
f25748ea
DV
4635 WARN(1, "%s vma for this object not found.\n",
4636 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
4637 return -1;
4638}
4639
088e0df4
MT
4640u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
4641 const struct i915_ggtt_view *view)
a70a3148
BW
4642{
4643 struct i915_vma *vma;
4644
1c7f4bca 4645 list_for_each_entry(vma, &o->vma_list, obj_link)
8aac2220 4646 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
4647 return vma->node.start;
4648
5678ad73 4649 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
4650 return -1;
4651}
4652
4653bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4654 struct i915_address_space *vm)
4655{
4656 struct i915_vma *vma;
4657
1c7f4bca 4658 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 4659 if (vma->is_ggtt &&
ec7adb6e
JL
4660 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4661 continue;
4662 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4663 return true;
4664 }
4665
4666 return false;
4667}
4668
4669bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 4670 const struct i915_ggtt_view *view)
ec7adb6e 4671{
ec7adb6e
JL
4672 struct i915_vma *vma;
4673
1c7f4bca 4674 list_for_each_entry(vma, &o->vma_list, obj_link)
ff5ec22d 4675 if (vma->is_ggtt &&
9abc4648 4676 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 4677 drm_mm_node_allocated(&vma->node))
a70a3148
BW
4678 return true;
4679
4680 return false;
4681}
4682
8da32727 4683unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
a70a3148 4684{
a70a3148
BW
4685 struct i915_vma *vma;
4686
8da32727 4687 GEM_BUG_ON(list_empty(&o->vma_list));
a70a3148 4688
1c7f4bca 4689 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 4690 if (vma->is_ggtt &&
8da32727 4691 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
a70a3148 4692 return vma->node.size;
ec7adb6e 4693 }
8da32727 4694
a70a3148
BW
4695 return 0;
4696}
4697
ec7adb6e 4698bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
4699{
4700 struct i915_vma *vma;
1c7f4bca 4701 list_for_each_entry(vma, &obj->vma_list, obj_link)
ec7adb6e
JL
4702 if (vma->pin_count > 0)
4703 return true;
a6631ae1 4704
ec7adb6e 4705 return false;
5c2abbea 4706}
ea70299d 4707
033908ae
DG
4708/* Like i915_gem_object_get_page(), but mark the returned page dirty */
4709struct page *
4710i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
4711{
4712 struct page *page;
4713
4714 /* Only default objects have per-page dirty tracking */
b9bcd14a 4715 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
033908ae
DG
4716 return NULL;
4717
4718 page = i915_gem_object_get_page(obj, n);
4719 set_page_dirty(page);
4720 return page;
4721}
4722
ea70299d
DG
4723/* Allocate a new GEM object and fill it with the supplied data */
4724struct drm_i915_gem_object *
4725i915_gem_object_create_from_data(struct drm_device *dev,
4726 const void *data, size_t size)
4727{
4728 struct drm_i915_gem_object *obj;
4729 struct sg_table *sg;
4730 size_t bytes;
4731 int ret;
4732
d37cd8a8 4733 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
fe3db79b 4734 if (IS_ERR(obj))
ea70299d
DG
4735 return obj;
4736
4737 ret = i915_gem_object_set_to_cpu_domain(obj, true);
4738 if (ret)
4739 goto fail;
4740
4741 ret = i915_gem_object_get_pages(obj);
4742 if (ret)
4743 goto fail;
4744
4745 i915_gem_object_pin_pages(obj);
4746 sg = obj->pages;
4747 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
9e7d18c0 4748 obj->dirty = 1; /* Backing store is now out of date */
ea70299d
DG
4749 i915_gem_object_unpin_pages(obj);
4750
4751 if (WARN_ON(bytes != size)) {
4752 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4753 ret = -EFAULT;
4754 goto fail;
4755 }
4756
4757 return obj;
4758
4759fail:
f8c417cd 4760 i915_gem_object_put(obj);
ea70299d
DG
4761 return ERR_PTR(ret);
4762}