]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Move idle checks before intel_engine_init_global_seqno()
[thirdparty/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
57822dc6 32#include "i915_gem_clflush.h"
eb82289a 33#include "i915_vgpu.h"
1c5d22f7 34#include "i915_trace.h"
652c393a 35#include "intel_drv.h"
5d723d7a 36#include "intel_frontbuffer.h"
0ccdacf6 37#include "intel_mocs.h"
6b5e90f5 38#include <linux/dma-fence-array.h>
fe3288b5 39#include <linux/kthread.h>
c13d87ea 40#include <linux/reservation.h>
5949eac4 41#include <linux/shmem_fs.h>
5a0e3ad6 42#include <linux/slab.h>
20e4933c 43#include <linux/stop_machine.h>
673a394b 44#include <linux/swap.h>
79e53945 45#include <linux/pci.h>
1286ff73 46#include <linux/dma-buf.h>
673a394b 47
fbbd37b3 48static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
61050808 49
2c22569b
CW
50static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
51{
e27ab73d 52 if (obj->cache_dirty)
b50a5371
AS
53 return false;
54
7fc92e96 55 if (!obj->cache_coherent)
2c22569b
CW
56 return true;
57
58 return obj->pin_display;
59}
60
4f1959ee 61static int
bb6dc8d9 62insert_mappable_node(struct i915_ggtt *ggtt,
4f1959ee
AS
63 struct drm_mm_node *node, u32 size)
64{
65 memset(node, 0, sizeof(*node));
4e64e553
CW
66 return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
67 size, 0, I915_COLOR_UNEVICTABLE,
68 0, ggtt->mappable_end,
69 DRM_MM_INSERT_LOW);
4f1959ee
AS
70}
71
72static void
73remove_mappable_node(struct drm_mm_node *node)
74{
75 drm_mm_remove_node(node);
76}
77
73aa808f
CW
78/* some bookkeeping */
79static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
3ef7f228 80 u64 size)
73aa808f 81{
c20e8355 82 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
83 dev_priv->mm.object_count++;
84 dev_priv->mm.object_memory += size;
c20e8355 85 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
86}
87
88static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
3ef7f228 89 u64 size)
73aa808f 90{
c20e8355 91 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
92 dev_priv->mm.object_count--;
93 dev_priv->mm.object_memory -= size;
c20e8355 94 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
95}
96
21dd3734 97static int
33196ded 98i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 99{
30dbf0c0
CW
100 int ret;
101
4c7d62c6
CW
102 might_sleep();
103
0a6759c6
DV
104 /*
105 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
106 * userspace. If it takes that long something really bad is going on and
107 * we should simply try to bail out and fail as gracefully as possible.
108 */
1f83fee0 109 ret = wait_event_interruptible_timeout(error->reset_queue,
8c185eca 110 !i915_reset_backoff(error),
b52992c0 111 I915_RESET_TIMEOUT);
0a6759c6
DV
112 if (ret == 0) {
113 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
114 return -EIO;
115 } else if (ret < 0) {
30dbf0c0 116 return ret;
d98c52cf
CW
117 } else {
118 return 0;
0a6759c6 119 }
30dbf0c0
CW
120}
121
54cf91dc 122int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 123{
fac5e23e 124 struct drm_i915_private *dev_priv = to_i915(dev);
76c1dec1
CW
125 int ret;
126
33196ded 127 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
128 if (ret)
129 return ret;
130
131 ret = mutex_lock_interruptible(&dev->struct_mutex);
132 if (ret)
133 return ret;
134
76c1dec1
CW
135 return 0;
136}
30dbf0c0 137
5a125c3c
EA
138int
139i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 140 struct drm_file *file)
5a125c3c 141{
72e96d64 142 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 143 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 144 struct drm_i915_gem_get_aperture *args = data;
ca1543be 145 struct i915_vma *vma;
ff8f7975 146 u64 pinned;
5a125c3c 147
ff8f7975 148 pinned = ggtt->base.reserved;
73aa808f 149 mutex_lock(&dev->struct_mutex);
1c7f4bca 150 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
20dfbde4 151 if (i915_vma_is_pinned(vma))
ca1543be 152 pinned += vma->node.size;
1c7f4bca 153 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
20dfbde4 154 if (i915_vma_is_pinned(vma))
ca1543be 155 pinned += vma->node.size;
73aa808f 156 mutex_unlock(&dev->struct_mutex);
5a125c3c 157
72e96d64 158 args->aper_size = ggtt->base.total;
0206e353 159 args->aper_available_size = args->aper_size - pinned;
6299f992 160
5a125c3c
EA
161 return 0;
162}
163
03ac84f1 164static struct sg_table *
6a2c4232 165i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 166{
93c76a3d 167 struct address_space *mapping = obj->base.filp->f_mapping;
dbb4351b 168 drm_dma_handle_t *phys;
6a2c4232
CW
169 struct sg_table *st;
170 struct scatterlist *sg;
dbb4351b 171 char *vaddr;
6a2c4232 172 int i;
00731155 173
6a2c4232 174 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
03ac84f1 175 return ERR_PTR(-EINVAL);
6a2c4232 176
dbb4351b
CW
177 /* Always aligning to the object size, allows a single allocation
178 * to handle all possible callers, and given typical object sizes,
179 * the alignment of the buddy allocation will naturally match.
180 */
181 phys = drm_pci_alloc(obj->base.dev,
182 obj->base.size,
183 roundup_pow_of_two(obj->base.size));
184 if (!phys)
185 return ERR_PTR(-ENOMEM);
186
187 vaddr = phys->vaddr;
6a2c4232
CW
188 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
189 struct page *page;
190 char *src;
191
192 page = shmem_read_mapping_page(mapping, i);
dbb4351b
CW
193 if (IS_ERR(page)) {
194 st = ERR_CAST(page);
195 goto err_phys;
196 }
6a2c4232
CW
197
198 src = kmap_atomic(page);
199 memcpy(vaddr, src, PAGE_SIZE);
200 drm_clflush_virt_range(vaddr, PAGE_SIZE);
201 kunmap_atomic(src);
202
09cbfeaf 203 put_page(page);
6a2c4232
CW
204 vaddr += PAGE_SIZE;
205 }
206
c033666a 207 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
208
209 st = kmalloc(sizeof(*st), GFP_KERNEL);
dbb4351b
CW
210 if (!st) {
211 st = ERR_PTR(-ENOMEM);
212 goto err_phys;
213 }
6a2c4232
CW
214
215 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
216 kfree(st);
dbb4351b
CW
217 st = ERR_PTR(-ENOMEM);
218 goto err_phys;
6a2c4232
CW
219 }
220
221 sg = st->sgl;
222 sg->offset = 0;
223 sg->length = obj->base.size;
00731155 224
dbb4351b 225 sg_dma_address(sg) = phys->busaddr;
6a2c4232
CW
226 sg_dma_len(sg) = obj->base.size;
227
dbb4351b
CW
228 obj->phys_handle = phys;
229 return st;
230
231err_phys:
232 drm_pci_free(obj->base.dev, phys);
03ac84f1 233 return st;
6a2c4232
CW
234}
235
e27ab73d
CW
236static void __start_cpu_write(struct drm_i915_gem_object *obj)
237{
238 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
239 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
240 if (cpu_write_needs_clflush(obj))
241 obj->cache_dirty = true;
242}
243
6a2c4232 244static void
2b3c8317 245__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
e5facdf9
CW
246 struct sg_table *pages,
247 bool needs_clflush)
6a2c4232 248{
a4f5ea64 249 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
00731155 250
a4f5ea64
CW
251 if (obj->mm.madv == I915_MADV_DONTNEED)
252 obj->mm.dirty = false;
6a2c4232 253
e5facdf9
CW
254 if (needs_clflush &&
255 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
7fc92e96 256 !obj->cache_coherent)
2b3c8317 257 drm_clflush_sg(pages);
03ac84f1 258
e27ab73d 259 __start_cpu_write(obj);
03ac84f1
CW
260}
261
262static void
263i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
264 struct sg_table *pages)
265{
e5facdf9 266 __i915_gem_object_release_shmem(obj, pages, false);
03ac84f1 267
a4f5ea64 268 if (obj->mm.dirty) {
93c76a3d 269 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232 270 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
271 int i;
272
273 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
274 struct page *page;
275 char *dst;
276
277 page = shmem_read_mapping_page(mapping, i);
278 if (IS_ERR(page))
279 continue;
280
281 dst = kmap_atomic(page);
282 drm_clflush_virt_range(vaddr, PAGE_SIZE);
283 memcpy(dst, vaddr, PAGE_SIZE);
284 kunmap_atomic(dst);
285
286 set_page_dirty(page);
a4f5ea64 287 if (obj->mm.madv == I915_MADV_WILLNEED)
00731155 288 mark_page_accessed(page);
09cbfeaf 289 put_page(page);
00731155
CW
290 vaddr += PAGE_SIZE;
291 }
a4f5ea64 292 obj->mm.dirty = false;
00731155
CW
293 }
294
03ac84f1
CW
295 sg_free_table(pages);
296 kfree(pages);
dbb4351b
CW
297
298 drm_pci_free(obj->base.dev, obj->phys_handle);
6a2c4232
CW
299}
300
301static void
302i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
303{
a4f5ea64 304 i915_gem_object_unpin_pages(obj);
6a2c4232
CW
305}
306
307static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
308 .get_pages = i915_gem_object_get_pages_phys,
309 .put_pages = i915_gem_object_put_pages_phys,
310 .release = i915_gem_object_release_phys,
311};
312
581ab1fe
CW
313static const struct drm_i915_gem_object_ops i915_gem_object_ops;
314
35a9611c 315int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
aa653a68
CW
316{
317 struct i915_vma *vma;
318 LIST_HEAD(still_in_list);
02bef8f9
CW
319 int ret;
320
321 lockdep_assert_held(&obj->base.dev->struct_mutex);
aa653a68 322
02bef8f9
CW
323 /* Closed vma are removed from the obj->vma_list - but they may
324 * still have an active binding on the object. To remove those we
325 * must wait for all rendering to complete to the object (as unbinding
326 * must anyway), and retire the requests.
aa653a68 327 */
e95433c7
CW
328 ret = i915_gem_object_wait(obj,
329 I915_WAIT_INTERRUPTIBLE |
330 I915_WAIT_LOCKED |
331 I915_WAIT_ALL,
332 MAX_SCHEDULE_TIMEOUT,
333 NULL);
02bef8f9
CW
334 if (ret)
335 return ret;
336
337 i915_gem_retire_requests(to_i915(obj->base.dev));
338
aa653a68
CW
339 while ((vma = list_first_entry_or_null(&obj->vma_list,
340 struct i915_vma,
341 obj_link))) {
342 list_move_tail(&vma->obj_link, &still_in_list);
343 ret = i915_vma_unbind(vma);
344 if (ret)
345 break;
346 }
347 list_splice(&still_in_list, &obj->vma_list);
348
349 return ret;
350}
351
e95433c7
CW
352static long
353i915_gem_object_wait_fence(struct dma_fence *fence,
354 unsigned int flags,
355 long timeout,
356 struct intel_rps_client *rps)
00e60f26 357{
e95433c7 358 struct drm_i915_gem_request *rq;
00e60f26 359
e95433c7 360 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
00e60f26 361
e95433c7
CW
362 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
363 return timeout;
364
365 if (!dma_fence_is_i915(fence))
366 return dma_fence_wait_timeout(fence,
367 flags & I915_WAIT_INTERRUPTIBLE,
368 timeout);
369
370 rq = to_request(fence);
371 if (i915_gem_request_completed(rq))
372 goto out;
373
374 /* This client is about to stall waiting for the GPU. In many cases
375 * this is undesirable and limits the throughput of the system, as
376 * many clients cannot continue processing user input/output whilst
377 * blocked. RPS autotuning may take tens of milliseconds to respond
378 * to the GPU load and thus incurs additional latency for the client.
379 * We can circumvent that by promoting the GPU frequency to maximum
380 * before we wait. This makes the GPU throttle up much more quickly
381 * (good for benchmarks and user experience, e.g. window animations),
382 * but at a cost of spending more power processing the workload
383 * (bad for battery). Not all clients even want their results
384 * immediately and for them we should just let the GPU select its own
385 * frequency to maximise efficiency. To prevent a single client from
386 * forcing the clocks too high for the whole system, we only allow
387 * each client to waitboost once in a busy period.
388 */
389 if (rps) {
390 if (INTEL_GEN(rq->i915) >= 6)
7b92c1bd 391 gen6_rps_boost(rq, rps);
e95433c7
CW
392 else
393 rps = NULL;
00e60f26
CW
394 }
395
e95433c7
CW
396 timeout = i915_wait_request(rq, flags, timeout);
397
398out:
399 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
400 i915_gem_request_retire_upto(rq);
401
e95433c7
CW
402 return timeout;
403}
404
405static long
406i915_gem_object_wait_reservation(struct reservation_object *resv,
407 unsigned int flags,
408 long timeout,
409 struct intel_rps_client *rps)
410{
e54ca977 411 unsigned int seq = __read_seqcount_begin(&resv->seq);
e95433c7 412 struct dma_fence *excl;
e54ca977 413 bool prune_fences = false;
e95433c7
CW
414
415 if (flags & I915_WAIT_ALL) {
416 struct dma_fence **shared;
417 unsigned int count, i;
00e60f26
CW
418 int ret;
419
e95433c7
CW
420 ret = reservation_object_get_fences_rcu(resv,
421 &excl, &count, &shared);
00e60f26
CW
422 if (ret)
423 return ret;
00e60f26 424
e95433c7
CW
425 for (i = 0; i < count; i++) {
426 timeout = i915_gem_object_wait_fence(shared[i],
427 flags, timeout,
428 rps);
d892e939 429 if (timeout < 0)
e95433c7 430 break;
00e60f26 431
e95433c7
CW
432 dma_fence_put(shared[i]);
433 }
434
435 for (; i < count; i++)
436 dma_fence_put(shared[i]);
437 kfree(shared);
e54ca977
CW
438
439 prune_fences = count && timeout >= 0;
e95433c7
CW
440 } else {
441 excl = reservation_object_get_excl_rcu(resv);
00e60f26
CW
442 }
443
e54ca977 444 if (excl && timeout >= 0) {
e95433c7 445 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
e54ca977
CW
446 prune_fences = timeout >= 0;
447 }
e95433c7
CW
448
449 dma_fence_put(excl);
450
03d1cac6
CW
451 /* Oportunistically prune the fences iff we know they have *all* been
452 * signaled and that the reservation object has not been changed (i.e.
453 * no new fences have been added).
454 */
e54ca977 455 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
03d1cac6
CW
456 if (reservation_object_trylock(resv)) {
457 if (!__read_seqcount_retry(&resv->seq, seq))
458 reservation_object_add_excl_fence(resv, NULL);
459 reservation_object_unlock(resv);
460 }
e54ca977
CW
461 }
462
e95433c7 463 return timeout;
00e60f26
CW
464}
465
6b5e90f5
CW
466static void __fence_set_priority(struct dma_fence *fence, int prio)
467{
468 struct drm_i915_gem_request *rq;
469 struct intel_engine_cs *engine;
470
471 if (!dma_fence_is_i915(fence))
472 return;
473
474 rq = to_request(fence);
475 engine = rq->engine;
476 if (!engine->schedule)
477 return;
478
479 engine->schedule(rq, prio);
480}
481
482static void fence_set_priority(struct dma_fence *fence, int prio)
483{
484 /* Recurse once into a fence-array */
485 if (dma_fence_is_array(fence)) {
486 struct dma_fence_array *array = to_dma_fence_array(fence);
487 int i;
488
489 for (i = 0; i < array->num_fences; i++)
490 __fence_set_priority(array->fences[i], prio);
491 } else {
492 __fence_set_priority(fence, prio);
493 }
494}
495
496int
497i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
498 unsigned int flags,
499 int prio)
500{
501 struct dma_fence *excl;
502
503 if (flags & I915_WAIT_ALL) {
504 struct dma_fence **shared;
505 unsigned int count, i;
506 int ret;
507
508 ret = reservation_object_get_fences_rcu(obj->resv,
509 &excl, &count, &shared);
510 if (ret)
511 return ret;
512
513 for (i = 0; i < count; i++) {
514 fence_set_priority(shared[i], prio);
515 dma_fence_put(shared[i]);
516 }
517
518 kfree(shared);
519 } else {
520 excl = reservation_object_get_excl_rcu(obj->resv);
521 }
522
523 if (excl) {
524 fence_set_priority(excl, prio);
525 dma_fence_put(excl);
526 }
527 return 0;
528}
529
e95433c7
CW
530/**
531 * Waits for rendering to the object to be completed
532 * @obj: i915 gem object
533 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
534 * @timeout: how long to wait
535 * @rps: client (user process) to charge for any waitboosting
00e60f26 536 */
e95433c7
CW
537int
538i915_gem_object_wait(struct drm_i915_gem_object *obj,
539 unsigned int flags,
540 long timeout,
541 struct intel_rps_client *rps)
00e60f26 542{
e95433c7
CW
543 might_sleep();
544#if IS_ENABLED(CONFIG_LOCKDEP)
545 GEM_BUG_ON(debug_locks &&
546 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
547 !!(flags & I915_WAIT_LOCKED));
548#endif
549 GEM_BUG_ON(timeout < 0);
00e60f26 550
d07f0e59
CW
551 timeout = i915_gem_object_wait_reservation(obj->resv,
552 flags, timeout,
553 rps);
e95433c7 554 return timeout < 0 ? timeout : 0;
00e60f26
CW
555}
556
557static struct intel_rps_client *to_rps_client(struct drm_file *file)
558{
559 struct drm_i915_file_private *fpriv = file->driver_priv;
560
561 return &fpriv->rps;
562}
563
00731155
CW
564int
565i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
566 int align)
567{
6a2c4232 568 int ret;
00731155 569
dbb4351b
CW
570 if (align > obj->base.size)
571 return -EINVAL;
00731155 572
dbb4351b 573 if (obj->ops == &i915_gem_phys_ops)
00731155 574 return 0;
00731155 575
a4f5ea64 576 if (obj->mm.madv != I915_MADV_WILLNEED)
00731155
CW
577 return -EFAULT;
578
579 if (obj->base.filp == NULL)
580 return -EINVAL;
581
4717ca9e
CW
582 ret = i915_gem_object_unbind(obj);
583 if (ret)
584 return ret;
585
548625ee 586 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
03ac84f1
CW
587 if (obj->mm.pages)
588 return -EBUSY;
6a2c4232 589
581ab1fe 590 GEM_BUG_ON(obj->ops != &i915_gem_object_ops);
6a2c4232
CW
591 obj->ops = &i915_gem_phys_ops;
592
581ab1fe
CW
593 ret = i915_gem_object_pin_pages(obj);
594 if (ret)
595 goto err_xfer;
596
597 return 0;
598
599err_xfer:
600 obj->ops = &i915_gem_object_ops;
601 return ret;
00731155
CW
602}
603
604static int
605i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
606 struct drm_i915_gem_pwrite *args,
03ac84f1 607 struct drm_file *file)
00731155 608{
00731155 609 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 610 char __user *user_data = u64_to_user_ptr(args->data_ptr);
6a2c4232
CW
611
612 /* We manually control the domain here and pretend that it
613 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
614 */
77a0d1ca 615 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
10466d2a
CW
616 if (copy_from_user(vaddr, user_data, args->size))
617 return -EFAULT;
00731155 618
6a2c4232 619 drm_clflush_virt_range(vaddr, args->size);
10466d2a 620 i915_gem_chipset_flush(to_i915(obj->base.dev));
063e4e6b 621
d59b21ec 622 intel_fb_obj_flush(obj, ORIGIN_CPU);
10466d2a 623 return 0;
00731155
CW
624}
625
187685cb 626void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
42dcedd4 627{
efab6d8d 628 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
629}
630
631void i915_gem_object_free(struct drm_i915_gem_object *obj)
632{
fac5e23e 633 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
efab6d8d 634 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
635}
636
ff72145b
DA
637static int
638i915_gem_create(struct drm_file *file,
12d79d78 639 struct drm_i915_private *dev_priv,
ff72145b
DA
640 uint64_t size,
641 uint32_t *handle_p)
673a394b 642{
05394f39 643 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
644 int ret;
645 u32 handle;
673a394b 646
ff72145b 647 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
648 if (size == 0)
649 return -EINVAL;
673a394b
EA
650
651 /* Allocate the new object */
12d79d78 652 obj = i915_gem_object_create(dev_priv, size);
fe3db79b
CW
653 if (IS_ERR(obj))
654 return PTR_ERR(obj);
673a394b 655
05394f39 656 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 657 /* drop reference from allocate - handle holds it now */
f0cd5182 658 i915_gem_object_put(obj);
d861e338
DV
659 if (ret)
660 return ret;
202f2fef 661
ff72145b 662 *handle_p = handle;
673a394b
EA
663 return 0;
664}
665
ff72145b
DA
666int
667i915_gem_dumb_create(struct drm_file *file,
668 struct drm_device *dev,
669 struct drm_mode_create_dumb *args)
670{
671 /* have to work out size/pitch and return them */
de45eaf7 672 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b 673 args->size = args->pitch * args->height;
12d79d78 674 return i915_gem_create(file, to_i915(dev),
da6b51d0 675 args->size, &args->handle);
ff72145b
DA
676}
677
e27ab73d
CW
678static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
679{
680 return !(obj->cache_level == I915_CACHE_NONE ||
681 obj->cache_level == I915_CACHE_WT);
682}
683
ff72145b
DA
684/**
685 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
686 * @dev: drm device pointer
687 * @data: ioctl data blob
688 * @file: drm file pointer
ff72145b
DA
689 */
690int
691i915_gem_create_ioctl(struct drm_device *dev, void *data,
692 struct drm_file *file)
693{
12d79d78 694 struct drm_i915_private *dev_priv = to_i915(dev);
ff72145b 695 struct drm_i915_gem_create *args = data;
63ed2cb2 696
12d79d78 697 i915_gem_flush_free_objects(dev_priv);
fbbd37b3 698
12d79d78 699 return i915_gem_create(file, dev_priv,
da6b51d0 700 args->size, &args->handle);
ff72145b
DA
701}
702
ef74921b
CW
703static inline enum fb_op_origin
704fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
705{
706 return (domain == I915_GEM_DOMAIN_GTT ?
707 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
708}
709
710static void
711flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
712{
713 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
714
715 if (!(obj->base.write_domain & flush_domains))
716 return;
717
718 /* No actual flushing is required for the GTT write domain. Writes
719 * to it "immediately" go to main memory as far as we know, so there's
720 * no chipset flush. It also doesn't land in render cache.
721 *
722 * However, we do have to enforce the order so that all writes through
723 * the GTT land before any writes to the device, such as updates to
724 * the GATT itself.
725 *
726 * We also have to wait a bit for the writes to land from the GTT.
727 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
728 * timing. This issue has only been observed when switching quickly
729 * between GTT writes and CPU reads from inside the kernel on recent hw,
730 * and it appears to only affect discrete GTT blocks (i.e. on LLC
731 * system agents we cannot reproduce this behaviour).
732 */
733 wmb();
734
735 switch (obj->base.write_domain) {
736 case I915_GEM_DOMAIN_GTT:
737 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
738 if (intel_runtime_pm_get_if_in_use(dev_priv)) {
739 spin_lock_irq(&dev_priv->uncore.lock);
740 POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
741 spin_unlock_irq(&dev_priv->uncore.lock);
742 intel_runtime_pm_put(dev_priv);
743 }
744 }
745
746 intel_fb_obj_flush(obj,
747 fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
748 break;
749
750 case I915_GEM_DOMAIN_CPU:
751 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
752 break;
e27ab73d
CW
753
754 case I915_GEM_DOMAIN_RENDER:
755 if (gpu_write_needs_clflush(obj))
756 obj->cache_dirty = true;
757 break;
ef74921b
CW
758 }
759
760 obj->base.write_domain = 0;
761}
762
8461d226
DV
763static inline int
764__copy_to_user_swizzled(char __user *cpu_vaddr,
765 const char *gpu_vaddr, int gpu_offset,
766 int length)
767{
768 int ret, cpu_offset = 0;
769
770 while (length > 0) {
771 int cacheline_end = ALIGN(gpu_offset + 1, 64);
772 int this_length = min(cacheline_end - gpu_offset, length);
773 int swizzled_gpu_offset = gpu_offset ^ 64;
774
775 ret = __copy_to_user(cpu_vaddr + cpu_offset,
776 gpu_vaddr + swizzled_gpu_offset,
777 this_length);
778 if (ret)
779 return ret + length;
780
781 cpu_offset += this_length;
782 gpu_offset += this_length;
783 length -= this_length;
784 }
785
786 return 0;
787}
788
8c59967c 789static inline int
4f0c7cfb
BW
790__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
791 const char __user *cpu_vaddr,
8c59967c
DV
792 int length)
793{
794 int ret, cpu_offset = 0;
795
796 while (length > 0) {
797 int cacheline_end = ALIGN(gpu_offset + 1, 64);
798 int this_length = min(cacheline_end - gpu_offset, length);
799 int swizzled_gpu_offset = gpu_offset ^ 64;
800
801 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
802 cpu_vaddr + cpu_offset,
803 this_length);
804 if (ret)
805 return ret + length;
806
807 cpu_offset += this_length;
808 gpu_offset += this_length;
809 length -= this_length;
810 }
811
812 return 0;
813}
814
4c914c0c
BV
815/*
816 * Pins the specified object's pages and synchronizes the object with
817 * GPU accesses. Sets needs_clflush to non-zero if the caller should
818 * flush the object from the CPU cache.
819 */
820int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
43394c7d 821 unsigned int *needs_clflush)
4c914c0c
BV
822{
823 int ret;
824
e95433c7 825 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c914c0c 826
e95433c7 827 *needs_clflush = 0;
43394c7d
CW
828 if (!i915_gem_object_has_struct_page(obj))
829 return -ENODEV;
4c914c0c 830
e95433c7
CW
831 ret = i915_gem_object_wait(obj,
832 I915_WAIT_INTERRUPTIBLE |
833 I915_WAIT_LOCKED,
834 MAX_SCHEDULE_TIMEOUT,
835 NULL);
c13d87ea
CW
836 if (ret)
837 return ret;
838
a4f5ea64 839 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
840 if (ret)
841 return ret;
842
7fc92e96 843 if (obj->cache_coherent || !static_cpu_has(X86_FEATURE_CLFLUSH)) {
7f5f95d8
CW
844 ret = i915_gem_object_set_to_cpu_domain(obj, false);
845 if (ret)
846 goto err_unpin;
847 else
848 goto out;
849 }
850
ef74921b 851 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
a314d5cb 852
43394c7d
CW
853 /* If we're not in the cpu read domain, set ourself into the gtt
854 * read domain and manually flush cachelines (if required). This
855 * optimizes for the case when the gpu will dirty the data
856 * anyway again before the next pread happens.
857 */
e27ab73d
CW
858 if (!obj->cache_dirty &&
859 !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
7f5f95d8 860 *needs_clflush = CLFLUSH_BEFORE;
4c914c0c 861
7f5f95d8 862out:
9764951e 863 /* return with the pages pinned */
43394c7d 864 return 0;
9764951e
CW
865
866err_unpin:
867 i915_gem_object_unpin_pages(obj);
868 return ret;
43394c7d
CW
869}
870
871int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
872 unsigned int *needs_clflush)
873{
874 int ret;
875
e95433c7
CW
876 lockdep_assert_held(&obj->base.dev->struct_mutex);
877
43394c7d
CW
878 *needs_clflush = 0;
879 if (!i915_gem_object_has_struct_page(obj))
880 return -ENODEV;
881
e95433c7
CW
882 ret = i915_gem_object_wait(obj,
883 I915_WAIT_INTERRUPTIBLE |
884 I915_WAIT_LOCKED |
885 I915_WAIT_ALL,
886 MAX_SCHEDULE_TIMEOUT,
887 NULL);
43394c7d
CW
888 if (ret)
889 return ret;
890
a4f5ea64 891 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
892 if (ret)
893 return ret;
894
7fc92e96 895 if (obj->cache_coherent || !static_cpu_has(X86_FEATURE_CLFLUSH)) {
7f5f95d8
CW
896 ret = i915_gem_object_set_to_cpu_domain(obj, true);
897 if (ret)
898 goto err_unpin;
899 else
900 goto out;
901 }
902
ef74921b 903 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
a314d5cb 904
43394c7d
CW
905 /* If we're not in the cpu write domain, set ourself into the
906 * gtt write domain and manually flush cachelines (as required).
907 * This optimizes for the case when the gpu will use the data
908 * right away and we therefore have to clflush anyway.
909 */
e27ab73d 910 if (!obj->cache_dirty) {
7f5f95d8 911 *needs_clflush |= CLFLUSH_AFTER;
43394c7d 912
e27ab73d
CW
913 /*
914 * Same trick applies to invalidate partially written
915 * cachelines read before writing.
916 */
917 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
918 *needs_clflush |= CLFLUSH_BEFORE;
919 }
43394c7d 920
7f5f95d8 921out:
43394c7d 922 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
a4f5ea64 923 obj->mm.dirty = true;
9764951e 924 /* return with the pages pinned */
43394c7d 925 return 0;
9764951e
CW
926
927err_unpin:
928 i915_gem_object_unpin_pages(obj);
929 return ret;
4c914c0c
BV
930}
931
23c18c71
DV
932static void
933shmem_clflush_swizzled_range(char *addr, unsigned long length,
934 bool swizzled)
935{
e7e58eb5 936 if (unlikely(swizzled)) {
23c18c71
DV
937 unsigned long start = (unsigned long) addr;
938 unsigned long end = (unsigned long) addr + length;
939
940 /* For swizzling simply ensure that we always flush both
941 * channels. Lame, but simple and it works. Swizzled
942 * pwrite/pread is far from a hotpath - current userspace
943 * doesn't use it at all. */
944 start = round_down(start, 128);
945 end = round_up(end, 128);
946
947 drm_clflush_virt_range((void *)start, end - start);
948 } else {
949 drm_clflush_virt_range(addr, length);
950 }
951
952}
953
d174bd64
DV
954/* Only difference to the fast-path function is that this can handle bit17
955 * and uses non-atomic copy and kmap functions. */
956static int
bb6dc8d9 957shmem_pread_slow(struct page *page, int offset, int length,
d174bd64
DV
958 char __user *user_data,
959 bool page_do_bit17_swizzling, bool needs_clflush)
960{
961 char *vaddr;
962 int ret;
963
964 vaddr = kmap(page);
965 if (needs_clflush)
bb6dc8d9 966 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 967 page_do_bit17_swizzling);
d174bd64
DV
968
969 if (page_do_bit17_swizzling)
bb6dc8d9 970 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
d174bd64 971 else
bb6dc8d9 972 ret = __copy_to_user(user_data, vaddr + offset, length);
d174bd64
DV
973 kunmap(page);
974
f60d7f0c 975 return ret ? - EFAULT : 0;
d174bd64
DV
976}
977
bb6dc8d9
CW
978static int
979shmem_pread(struct page *page, int offset, int length, char __user *user_data,
980 bool page_do_bit17_swizzling, bool needs_clflush)
981{
982 int ret;
983
984 ret = -ENODEV;
985 if (!page_do_bit17_swizzling) {
986 char *vaddr = kmap_atomic(page);
987
988 if (needs_clflush)
989 drm_clflush_virt_range(vaddr + offset, length);
990 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
991 kunmap_atomic(vaddr);
992 }
993 if (ret == 0)
994 return 0;
995
996 return shmem_pread_slow(page, offset, length, user_data,
997 page_do_bit17_swizzling, needs_clflush);
998}
999
1000static int
1001i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
1002 struct drm_i915_gem_pread *args)
1003{
1004 char __user *user_data;
1005 u64 remain;
1006 unsigned int obj_do_bit17_swizzling;
1007 unsigned int needs_clflush;
1008 unsigned int idx, offset;
1009 int ret;
1010
1011 obj_do_bit17_swizzling = 0;
1012 if (i915_gem_object_needs_bit17_swizzle(obj))
1013 obj_do_bit17_swizzling = BIT(17);
1014
1015 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1016 if (ret)
1017 return ret;
1018
1019 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1020 mutex_unlock(&obj->base.dev->struct_mutex);
1021 if (ret)
1022 return ret;
1023
1024 remain = args->size;
1025 user_data = u64_to_user_ptr(args->data_ptr);
1026 offset = offset_in_page(args->offset);
1027 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1028 struct page *page = i915_gem_object_get_page(obj, idx);
1029 int length;
1030
1031 length = remain;
1032 if (offset + length > PAGE_SIZE)
1033 length = PAGE_SIZE - offset;
1034
1035 ret = shmem_pread(page, offset, length, user_data,
1036 page_to_phys(page) & obj_do_bit17_swizzling,
1037 needs_clflush);
1038 if (ret)
1039 break;
1040
1041 remain -= length;
1042 user_data += length;
1043 offset = 0;
1044 }
1045
1046 i915_gem_obj_finish_shmem_access(obj);
1047 return ret;
1048}
1049
1050static inline bool
1051gtt_user_read(struct io_mapping *mapping,
1052 loff_t base, int offset,
1053 char __user *user_data, int length)
b50a5371 1054{
b50a5371 1055 void *vaddr;
bb6dc8d9 1056 unsigned long unwritten;
b50a5371 1057
b50a5371 1058 /* We can use the cpu mem copy function because this is X86. */
bb6dc8d9
CW
1059 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1060 unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1061 io_mapping_unmap_atomic(vaddr);
1062 if (unwritten) {
1063 vaddr = (void __force *)
1064 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1065 unwritten = copy_to_user(user_data, vaddr + offset, length);
1066 io_mapping_unmap(vaddr);
1067 }
b50a5371
AS
1068 return unwritten;
1069}
1070
1071static int
bb6dc8d9
CW
1072i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1073 const struct drm_i915_gem_pread *args)
b50a5371 1074{
bb6dc8d9
CW
1075 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1076 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 1077 struct drm_mm_node node;
bb6dc8d9
CW
1078 struct i915_vma *vma;
1079 void __user *user_data;
1080 u64 remain, offset;
b50a5371
AS
1081 int ret;
1082
bb6dc8d9
CW
1083 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1084 if (ret)
1085 return ret;
1086
1087 intel_runtime_pm_get(i915);
1088 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1089 PIN_MAPPABLE | PIN_NONBLOCK);
18034584
CW
1090 if (!IS_ERR(vma)) {
1091 node.start = i915_ggtt_offset(vma);
1092 node.allocated = false;
49ef5294 1093 ret = i915_vma_put_fence(vma);
18034584
CW
1094 if (ret) {
1095 i915_vma_unpin(vma);
1096 vma = ERR_PTR(ret);
1097 }
1098 }
058d88c4 1099 if (IS_ERR(vma)) {
bb6dc8d9 1100 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
b50a5371 1101 if (ret)
bb6dc8d9
CW
1102 goto out_unlock;
1103 GEM_BUG_ON(!node.allocated);
b50a5371
AS
1104 }
1105
1106 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1107 if (ret)
1108 goto out_unpin;
1109
bb6dc8d9 1110 mutex_unlock(&i915->drm.struct_mutex);
b50a5371 1111
bb6dc8d9
CW
1112 user_data = u64_to_user_ptr(args->data_ptr);
1113 remain = args->size;
1114 offset = args->offset;
b50a5371
AS
1115
1116 while (remain > 0) {
1117 /* Operation in this page
1118 *
1119 * page_base = page offset within aperture
1120 * page_offset = offset within page
1121 * page_length = bytes to copy for this page
1122 */
1123 u32 page_base = node.start;
1124 unsigned page_offset = offset_in_page(offset);
1125 unsigned page_length = PAGE_SIZE - page_offset;
1126 page_length = remain < page_length ? remain : page_length;
1127 if (node.allocated) {
1128 wmb();
1129 ggtt->base.insert_page(&ggtt->base,
1130 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
bb6dc8d9 1131 node.start, I915_CACHE_NONE, 0);
b50a5371
AS
1132 wmb();
1133 } else {
1134 page_base += offset & PAGE_MASK;
1135 }
bb6dc8d9
CW
1136
1137 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1138 user_data, page_length)) {
b50a5371
AS
1139 ret = -EFAULT;
1140 break;
1141 }
1142
1143 remain -= page_length;
1144 user_data += page_length;
1145 offset += page_length;
1146 }
1147
bb6dc8d9 1148 mutex_lock(&i915->drm.struct_mutex);
b50a5371
AS
1149out_unpin:
1150 if (node.allocated) {
1151 wmb();
1152 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1153 node.start, node.size);
b50a5371
AS
1154 remove_mappable_node(&node);
1155 } else {
058d88c4 1156 i915_vma_unpin(vma);
b50a5371 1157 }
bb6dc8d9
CW
1158out_unlock:
1159 intel_runtime_pm_put(i915);
1160 mutex_unlock(&i915->drm.struct_mutex);
f60d7f0c 1161
eb01459f
EA
1162 return ret;
1163}
1164
673a394b
EA
1165/**
1166 * Reads data from the object referenced by handle.
14bb2c11
TU
1167 * @dev: drm device pointer
1168 * @data: ioctl data blob
1169 * @file: drm file pointer
673a394b
EA
1170 *
1171 * On error, the contents of *data are undefined.
1172 */
1173int
1174i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 1175 struct drm_file *file)
673a394b
EA
1176{
1177 struct drm_i915_gem_pread *args = data;
05394f39 1178 struct drm_i915_gem_object *obj;
bb6dc8d9 1179 int ret;
673a394b 1180
51311d0a
CW
1181 if (args->size == 0)
1182 return 0;
1183
1184 if (!access_ok(VERIFY_WRITE,
3ed605bc 1185 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1186 args->size))
1187 return -EFAULT;
1188
03ac0642 1189 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1190 if (!obj)
1191 return -ENOENT;
673a394b 1192
7dcd2499 1193 /* Bounds check source. */
966d5bf5 1194 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
ce9d419d 1195 ret = -EINVAL;
bb6dc8d9 1196 goto out;
ce9d419d
CW
1197 }
1198
db53a302
CW
1199 trace_i915_gem_object_pread(obj, args->offset, args->size);
1200
e95433c7
CW
1201 ret = i915_gem_object_wait(obj,
1202 I915_WAIT_INTERRUPTIBLE,
1203 MAX_SCHEDULE_TIMEOUT,
1204 to_rps_client(file));
258a5ede 1205 if (ret)
bb6dc8d9 1206 goto out;
258a5ede 1207
bb6dc8d9 1208 ret = i915_gem_object_pin_pages(obj);
258a5ede 1209 if (ret)
bb6dc8d9 1210 goto out;
673a394b 1211
bb6dc8d9 1212 ret = i915_gem_shmem_pread(obj, args);
9c870d03 1213 if (ret == -EFAULT || ret == -ENODEV)
bb6dc8d9 1214 ret = i915_gem_gtt_pread(obj, args);
b50a5371 1215
bb6dc8d9
CW
1216 i915_gem_object_unpin_pages(obj);
1217out:
f0cd5182 1218 i915_gem_object_put(obj);
eb01459f 1219 return ret;
673a394b
EA
1220}
1221
0839ccb8
KP
1222/* This is the fast write path which cannot handle
1223 * page faults in the source data
9b7530cc 1224 */
0839ccb8 1225
fe115628
CW
1226static inline bool
1227ggtt_write(struct io_mapping *mapping,
1228 loff_t base, int offset,
1229 char __user *user_data, int length)
9b7530cc 1230{
4f0c7cfb 1231 void *vaddr;
0839ccb8 1232 unsigned long unwritten;
9b7530cc 1233
4f0c7cfb 1234 /* We can use the cpu mem copy function because this is X86. */
fe115628
CW
1235 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1236 unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
0839ccb8 1237 user_data, length);
fe115628
CW
1238 io_mapping_unmap_atomic(vaddr);
1239 if (unwritten) {
1240 vaddr = (void __force *)
1241 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1242 unwritten = copy_from_user(vaddr + offset, user_data, length);
1243 io_mapping_unmap(vaddr);
1244 }
bb6dc8d9 1245
bb6dc8d9
CW
1246 return unwritten;
1247}
1248
3de09aa3
EA
1249/**
1250 * This is the fast pwrite path, where we copy the data directly from the
1251 * user into the GTT, uncached.
fe115628 1252 * @obj: i915 GEM object
14bb2c11 1253 * @args: pwrite arguments structure
3de09aa3 1254 */
673a394b 1255static int
fe115628
CW
1256i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1257 const struct drm_i915_gem_pwrite *args)
673a394b 1258{
fe115628 1259 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4f1959ee
AS
1260 struct i915_ggtt *ggtt = &i915->ggtt;
1261 struct drm_mm_node node;
fe115628
CW
1262 struct i915_vma *vma;
1263 u64 remain, offset;
1264 void __user *user_data;
4f1959ee 1265 int ret;
b50a5371 1266
fe115628
CW
1267 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1268 if (ret)
1269 return ret;
935aaa69 1270
9c870d03 1271 intel_runtime_pm_get(i915);
058d88c4 1272 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
de895082 1273 PIN_MAPPABLE | PIN_NONBLOCK);
18034584
CW
1274 if (!IS_ERR(vma)) {
1275 node.start = i915_ggtt_offset(vma);
1276 node.allocated = false;
49ef5294 1277 ret = i915_vma_put_fence(vma);
18034584
CW
1278 if (ret) {
1279 i915_vma_unpin(vma);
1280 vma = ERR_PTR(ret);
1281 }
1282 }
058d88c4 1283 if (IS_ERR(vma)) {
bb6dc8d9 1284 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
4f1959ee 1285 if (ret)
fe115628
CW
1286 goto out_unlock;
1287 GEM_BUG_ON(!node.allocated);
4f1959ee 1288 }
935aaa69
DV
1289
1290 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1291 if (ret)
1292 goto out_unpin;
1293
fe115628
CW
1294 mutex_unlock(&i915->drm.struct_mutex);
1295
b19482d7 1296 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 1297
4f1959ee
AS
1298 user_data = u64_to_user_ptr(args->data_ptr);
1299 offset = args->offset;
1300 remain = args->size;
1301 while (remain) {
673a394b
EA
1302 /* Operation in this page
1303 *
0839ccb8
KP
1304 * page_base = page offset within aperture
1305 * page_offset = offset within page
1306 * page_length = bytes to copy for this page
673a394b 1307 */
4f1959ee 1308 u32 page_base = node.start;
bb6dc8d9
CW
1309 unsigned int page_offset = offset_in_page(offset);
1310 unsigned int page_length = PAGE_SIZE - page_offset;
4f1959ee
AS
1311 page_length = remain < page_length ? remain : page_length;
1312 if (node.allocated) {
1313 wmb(); /* flush the write before we modify the GGTT */
1314 ggtt->base.insert_page(&ggtt->base,
1315 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1316 node.start, I915_CACHE_NONE, 0);
1317 wmb(); /* flush modifications to the GGTT (insert_page) */
1318 } else {
1319 page_base += offset & PAGE_MASK;
1320 }
0839ccb8 1321 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
1322 * source page isn't available. Return the error and we'll
1323 * retry in the slow path.
b50a5371
AS
1324 * If the object is non-shmem backed, we retry again with the
1325 * path that handles page fault.
0839ccb8 1326 */
fe115628
CW
1327 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1328 user_data, page_length)) {
1329 ret = -EFAULT;
1330 break;
935aaa69 1331 }
673a394b 1332
0839ccb8
KP
1333 remain -= page_length;
1334 user_data += page_length;
1335 offset += page_length;
673a394b 1336 }
d59b21ec 1337 intel_fb_obj_flush(obj, ORIGIN_CPU);
fe115628
CW
1338
1339 mutex_lock(&i915->drm.struct_mutex);
935aaa69 1340out_unpin:
4f1959ee
AS
1341 if (node.allocated) {
1342 wmb();
1343 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1344 node.start, node.size);
4f1959ee
AS
1345 remove_mappable_node(&node);
1346 } else {
058d88c4 1347 i915_vma_unpin(vma);
4f1959ee 1348 }
fe115628 1349out_unlock:
9c870d03 1350 intel_runtime_pm_put(i915);
fe115628 1351 mutex_unlock(&i915->drm.struct_mutex);
3de09aa3 1352 return ret;
673a394b
EA
1353}
1354
3043c60c 1355static int
fe115628 1356shmem_pwrite_slow(struct page *page, int offset, int length,
d174bd64
DV
1357 char __user *user_data,
1358 bool page_do_bit17_swizzling,
1359 bool needs_clflush_before,
1360 bool needs_clflush_after)
673a394b 1361{
d174bd64
DV
1362 char *vaddr;
1363 int ret;
e5281ccd 1364
d174bd64 1365 vaddr = kmap(page);
e7e58eb5 1366 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
fe115628 1367 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1368 page_do_bit17_swizzling);
d174bd64 1369 if (page_do_bit17_swizzling)
fe115628
CW
1370 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1371 length);
d174bd64 1372 else
fe115628 1373 ret = __copy_from_user(vaddr + offset, user_data, length);
d174bd64 1374 if (needs_clflush_after)
fe115628 1375 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1376 page_do_bit17_swizzling);
d174bd64 1377 kunmap(page);
40123c1f 1378
755d2218 1379 return ret ? -EFAULT : 0;
40123c1f
EA
1380}
1381
fe115628
CW
1382/* Per-page copy function for the shmem pwrite fastpath.
1383 * Flushes invalid cachelines before writing to the target if
1384 * needs_clflush_before is set and flushes out any written cachelines after
1385 * writing if needs_clflush is set.
1386 */
40123c1f 1387static int
fe115628
CW
1388shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1389 bool page_do_bit17_swizzling,
1390 bool needs_clflush_before,
1391 bool needs_clflush_after)
40123c1f 1392{
fe115628
CW
1393 int ret;
1394
1395 ret = -ENODEV;
1396 if (!page_do_bit17_swizzling) {
1397 char *vaddr = kmap_atomic(page);
1398
1399 if (needs_clflush_before)
1400 drm_clflush_virt_range(vaddr + offset, len);
1401 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1402 if (needs_clflush_after)
1403 drm_clflush_virt_range(vaddr + offset, len);
1404
1405 kunmap_atomic(vaddr);
1406 }
1407 if (ret == 0)
1408 return ret;
1409
1410 return shmem_pwrite_slow(page, offset, len, user_data,
1411 page_do_bit17_swizzling,
1412 needs_clflush_before,
1413 needs_clflush_after);
1414}
1415
1416static int
1417i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1418 const struct drm_i915_gem_pwrite *args)
1419{
1420 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1421 void __user *user_data;
1422 u64 remain;
1423 unsigned int obj_do_bit17_swizzling;
1424 unsigned int partial_cacheline_write;
43394c7d 1425 unsigned int needs_clflush;
fe115628
CW
1426 unsigned int offset, idx;
1427 int ret;
40123c1f 1428
fe115628 1429 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
755d2218
CW
1430 if (ret)
1431 return ret;
1432
fe115628
CW
1433 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1434 mutex_unlock(&i915->drm.struct_mutex);
1435 if (ret)
1436 return ret;
673a394b 1437
fe115628
CW
1438 obj_do_bit17_swizzling = 0;
1439 if (i915_gem_object_needs_bit17_swizzle(obj))
1440 obj_do_bit17_swizzling = BIT(17);
e5281ccd 1441
fe115628
CW
1442 /* If we don't overwrite a cacheline completely we need to be
1443 * careful to have up-to-date data by first clflushing. Don't
1444 * overcomplicate things and flush the entire patch.
1445 */
1446 partial_cacheline_write = 0;
1447 if (needs_clflush & CLFLUSH_BEFORE)
1448 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
9da3da66 1449
fe115628
CW
1450 user_data = u64_to_user_ptr(args->data_ptr);
1451 remain = args->size;
1452 offset = offset_in_page(args->offset);
1453 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1454 struct page *page = i915_gem_object_get_page(obj, idx);
1455 int length;
40123c1f 1456
fe115628
CW
1457 length = remain;
1458 if (offset + length > PAGE_SIZE)
1459 length = PAGE_SIZE - offset;
755d2218 1460
fe115628
CW
1461 ret = shmem_pwrite(page, offset, length, user_data,
1462 page_to_phys(page) & obj_do_bit17_swizzling,
1463 (offset | length) & partial_cacheline_write,
1464 needs_clflush & CLFLUSH_AFTER);
755d2218 1465 if (ret)
fe115628 1466 break;
755d2218 1467
fe115628
CW
1468 remain -= length;
1469 user_data += length;
1470 offset = 0;
8c59967c 1471 }
673a394b 1472
d59b21ec 1473 intel_fb_obj_flush(obj, ORIGIN_CPU);
fe115628 1474 i915_gem_obj_finish_shmem_access(obj);
40123c1f 1475 return ret;
673a394b
EA
1476}
1477
1478/**
1479 * Writes data to the object referenced by handle.
14bb2c11
TU
1480 * @dev: drm device
1481 * @data: ioctl data blob
1482 * @file: drm file
673a394b
EA
1483 *
1484 * On error, the contents of the buffer that were to be modified are undefined.
1485 */
1486int
1487i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1488 struct drm_file *file)
673a394b
EA
1489{
1490 struct drm_i915_gem_pwrite *args = data;
05394f39 1491 struct drm_i915_gem_object *obj;
51311d0a
CW
1492 int ret;
1493
1494 if (args->size == 0)
1495 return 0;
1496
1497 if (!access_ok(VERIFY_READ,
3ed605bc 1498 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1499 args->size))
1500 return -EFAULT;
1501
03ac0642 1502 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1503 if (!obj)
1504 return -ENOENT;
673a394b 1505
7dcd2499 1506 /* Bounds check destination. */
966d5bf5 1507 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
ce9d419d 1508 ret = -EINVAL;
258a5ede 1509 goto err;
ce9d419d
CW
1510 }
1511
db53a302
CW
1512 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1513
7c55e2c5
CW
1514 ret = -ENODEV;
1515 if (obj->ops->pwrite)
1516 ret = obj->ops->pwrite(obj, args);
1517 if (ret != -ENODEV)
1518 goto err;
1519
e95433c7
CW
1520 ret = i915_gem_object_wait(obj,
1521 I915_WAIT_INTERRUPTIBLE |
1522 I915_WAIT_ALL,
1523 MAX_SCHEDULE_TIMEOUT,
1524 to_rps_client(file));
258a5ede
CW
1525 if (ret)
1526 goto err;
1527
fe115628 1528 ret = i915_gem_object_pin_pages(obj);
258a5ede 1529 if (ret)
fe115628 1530 goto err;
258a5ede 1531
935aaa69 1532 ret = -EFAULT;
673a394b
EA
1533 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1534 * it would end up going through the fenced access, and we'll get
1535 * different detiling behavior between reading and writing.
1536 * pread/pwrite currently are reading and writing from the CPU
1537 * perspective, requiring manual detiling by the client.
1538 */
6eae0059 1539 if (!i915_gem_object_has_struct_page(obj) ||
9c870d03 1540 cpu_write_needs_clflush(obj))
935aaa69
DV
1541 /* Note that the gtt paths might fail with non-page-backed user
1542 * pointers (e.g. gtt mappings when moving data between
9c870d03
CW
1543 * textures). Fallback to the shmem path in that case.
1544 */
fe115628 1545 ret = i915_gem_gtt_pwrite_fast(obj, args);
673a394b 1546
d1054ee4 1547 if (ret == -EFAULT || ret == -ENOSPC) {
6a2c4232
CW
1548 if (obj->phys_handle)
1549 ret = i915_gem_phys_pwrite(obj, args, file);
b50a5371 1550 else
fe115628 1551 ret = i915_gem_shmem_pwrite(obj, args);
6a2c4232 1552 }
5c0480f2 1553
fe115628 1554 i915_gem_object_unpin_pages(obj);
258a5ede 1555err:
f0cd5182 1556 i915_gem_object_put(obj);
258a5ede 1557 return ret;
673a394b
EA
1558}
1559
40e62d5d
CW
1560static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1561{
1562 struct drm_i915_private *i915;
1563 struct list_head *list;
1564 struct i915_vma *vma;
1565
1566 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1567 if (!i915_vma_is_ggtt(vma))
28f412e0 1568 break;
40e62d5d
CW
1569
1570 if (i915_vma_is_active(vma))
1571 continue;
1572
1573 if (!drm_mm_node_allocated(&vma->node))
1574 continue;
1575
1576 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1577 }
1578
1579 i915 = to_i915(obj->base.dev);
1580 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
56cea323 1581 list_move_tail(&obj->global_link, list);
40e62d5d
CW
1582}
1583
673a394b 1584/**
2ef7eeaa
EA
1585 * Called when user space prepares to use an object with the CPU, either
1586 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1587 * @dev: drm device
1588 * @data: ioctl data blob
1589 * @file: drm file
673a394b
EA
1590 */
1591int
1592i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1593 struct drm_file *file)
673a394b
EA
1594{
1595 struct drm_i915_gem_set_domain *args = data;
05394f39 1596 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1597 uint32_t read_domains = args->read_domains;
1598 uint32_t write_domain = args->write_domain;
40e62d5d 1599 int err;
673a394b 1600
2ef7eeaa 1601 /* Only handle setting domains to types used by the CPU. */
b8f9096d 1602 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1603 return -EINVAL;
1604
1605 /* Having something in the write domain implies it's in the read
1606 * domain, and only that read domain. Enforce that in the request.
1607 */
1608 if (write_domain != 0 && read_domains != write_domain)
1609 return -EINVAL;
1610
03ac0642 1611 obj = i915_gem_object_lookup(file, args->handle);
b8f9096d
CW
1612 if (!obj)
1613 return -ENOENT;
673a394b 1614
3236f57a
CW
1615 /* Try to flush the object off the GPU without holding the lock.
1616 * We will repeat the flush holding the lock in the normal manner
1617 * to catch cases where we are gazumped.
1618 */
40e62d5d 1619 err = i915_gem_object_wait(obj,
e95433c7
CW
1620 I915_WAIT_INTERRUPTIBLE |
1621 (write_domain ? I915_WAIT_ALL : 0),
1622 MAX_SCHEDULE_TIMEOUT,
1623 to_rps_client(file));
40e62d5d 1624 if (err)
f0cd5182 1625 goto out;
b8f9096d 1626
40e62d5d
CW
1627 /* Flush and acquire obj->pages so that we are coherent through
1628 * direct access in memory with previous cached writes through
1629 * shmemfs and that our cache domain tracking remains valid.
1630 * For example, if the obj->filp was moved to swap without us
1631 * being notified and releasing the pages, we would mistakenly
1632 * continue to assume that the obj remained out of the CPU cached
1633 * domain.
1634 */
1635 err = i915_gem_object_pin_pages(obj);
1636 if (err)
f0cd5182 1637 goto out;
40e62d5d
CW
1638
1639 err = i915_mutex_lock_interruptible(dev);
1640 if (err)
f0cd5182 1641 goto out_unpin;
3236f57a 1642
e22d8e3c
CW
1643 if (read_domains & I915_GEM_DOMAIN_WC)
1644 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1645 else if (read_domains & I915_GEM_DOMAIN_GTT)
1646 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
43566ded 1647 else
e22d8e3c 1648 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
2ef7eeaa 1649
40e62d5d
CW
1650 /* And bump the LRU for this access */
1651 i915_gem_object_bump_inactive_ggtt(obj);
031b698a 1652
673a394b 1653 mutex_unlock(&dev->struct_mutex);
b8f9096d 1654
40e62d5d 1655 if (write_domain != 0)
ef74921b
CW
1656 intel_fb_obj_invalidate(obj,
1657 fb_write_origin(obj, write_domain));
40e62d5d 1658
f0cd5182 1659out_unpin:
40e62d5d 1660 i915_gem_object_unpin_pages(obj);
f0cd5182
CW
1661out:
1662 i915_gem_object_put(obj);
40e62d5d 1663 return err;
673a394b
EA
1664}
1665
1666/**
1667 * Called when user space has done writes to this buffer
14bb2c11
TU
1668 * @dev: drm device
1669 * @data: ioctl data blob
1670 * @file: drm file
673a394b
EA
1671 */
1672int
1673i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1674 struct drm_file *file)
673a394b
EA
1675{
1676 struct drm_i915_gem_sw_finish *args = data;
05394f39 1677 struct drm_i915_gem_object *obj;
1d7cfea1 1678
03ac0642 1679 obj = i915_gem_object_lookup(file, args->handle);
c21724cc
CW
1680 if (!obj)
1681 return -ENOENT;
673a394b 1682
673a394b 1683 /* Pinned buffers may be scanout, so flush the cache */
5a97bcc6 1684 i915_gem_object_flush_if_display(obj);
f0cd5182 1685 i915_gem_object_put(obj);
5a97bcc6
CW
1686
1687 return 0;
673a394b
EA
1688}
1689
1690/**
14bb2c11
TU
1691 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1692 * it is mapped to.
1693 * @dev: drm device
1694 * @data: ioctl data blob
1695 * @file: drm file
673a394b
EA
1696 *
1697 * While the mapping holds a reference on the contents of the object, it doesn't
1698 * imply a ref on the object itself.
34367381
DV
1699 *
1700 * IMPORTANT:
1701 *
1702 * DRM driver writers who look a this function as an example for how to do GEM
1703 * mmap support, please don't implement mmap support like here. The modern way
1704 * to implement DRM mmap support is with an mmap offset ioctl (like
1705 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1706 * That way debug tooling like valgrind will understand what's going on, hiding
1707 * the mmap call in a driver private ioctl will break that. The i915 driver only
1708 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1709 */
1710int
1711i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1712 struct drm_file *file)
673a394b
EA
1713{
1714 struct drm_i915_gem_mmap *args = data;
03ac0642 1715 struct drm_i915_gem_object *obj;
673a394b
EA
1716 unsigned long addr;
1717
1816f923
AG
1718 if (args->flags & ~(I915_MMAP_WC))
1719 return -EINVAL;
1720
568a58e5 1721 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1722 return -ENODEV;
1723
03ac0642
CW
1724 obj = i915_gem_object_lookup(file, args->handle);
1725 if (!obj)
bf79cb91 1726 return -ENOENT;
673a394b 1727
1286ff73
DV
1728 /* prime objects have no backing filp to GEM mmap
1729 * pages from.
1730 */
03ac0642 1731 if (!obj->base.filp) {
f0cd5182 1732 i915_gem_object_put(obj);
1286ff73
DV
1733 return -EINVAL;
1734 }
1735
03ac0642 1736 addr = vm_mmap(obj->base.filp, 0, args->size,
673a394b
EA
1737 PROT_READ | PROT_WRITE, MAP_SHARED,
1738 args->offset);
1816f923
AG
1739 if (args->flags & I915_MMAP_WC) {
1740 struct mm_struct *mm = current->mm;
1741 struct vm_area_struct *vma;
1742
80a89a5e 1743 if (down_write_killable(&mm->mmap_sem)) {
f0cd5182 1744 i915_gem_object_put(obj);
80a89a5e
MH
1745 return -EINTR;
1746 }
1816f923
AG
1747 vma = find_vma(mm, addr);
1748 if (vma)
1749 vma->vm_page_prot =
1750 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1751 else
1752 addr = -ENOMEM;
1753 up_write(&mm->mmap_sem);
aeecc969
CW
1754
1755 /* This may race, but that's ok, it only gets set */
50349247 1756 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1816f923 1757 }
f0cd5182 1758 i915_gem_object_put(obj);
673a394b
EA
1759 if (IS_ERR((void *)addr))
1760 return addr;
1761
1762 args->addr_ptr = (uint64_t) addr;
1763
1764 return 0;
1765}
1766
03af84fe
CW
1767static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1768{
6649a0b6 1769 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
03af84fe
CW
1770}
1771
4cc69075
CW
1772/**
1773 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1774 *
1775 * A history of the GTT mmap interface:
1776 *
1777 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1778 * aligned and suitable for fencing, and still fit into the available
1779 * mappable space left by the pinned display objects. A classic problem
1780 * we called the page-fault-of-doom where we would ping-pong between
1781 * two objects that could not fit inside the GTT and so the memcpy
1782 * would page one object in at the expense of the other between every
1783 * single byte.
1784 *
1785 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1786 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1787 * object is too large for the available space (or simply too large
1788 * for the mappable aperture!), a view is created instead and faulted
1789 * into userspace. (This view is aligned and sized appropriately for
1790 * fenced access.)
1791 *
e22d8e3c
CW
1792 * 2 - Recognise WC as a separate cache domain so that we can flush the
1793 * delayed writes via GTT before performing direct access via WC.
1794 *
4cc69075
CW
1795 * Restrictions:
1796 *
1797 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1798 * hangs on some architectures, corruption on others. An attempt to service
1799 * a GTT page fault from a snoopable object will generate a SIGBUS.
1800 *
1801 * * the object must be able to fit into RAM (physical memory, though no
1802 * limited to the mappable aperture).
1803 *
1804 *
1805 * Caveats:
1806 *
1807 * * a new GTT page fault will synchronize rendering from the GPU and flush
1808 * all data to system memory. Subsequent access will not be synchronized.
1809 *
1810 * * all mappings are revoked on runtime device suspend.
1811 *
1812 * * there are only 8, 16 or 32 fence registers to share between all users
1813 * (older machines require fence register for display and blitter access
1814 * as well). Contention of the fence registers will cause the previous users
1815 * to be unmapped and any new access will generate new page faults.
1816 *
1817 * * running out of memory while servicing a fault may generate a SIGBUS,
1818 * rather than the expected SIGSEGV.
1819 */
1820int i915_gem_mmap_gtt_version(void)
1821{
e22d8e3c 1822 return 2;
4cc69075
CW
1823}
1824
2d4281bb
CW
1825static inline struct i915_ggtt_view
1826compute_partial_view(struct drm_i915_gem_object *obj,
2d4281bb
CW
1827 pgoff_t page_offset,
1828 unsigned int chunk)
1829{
1830 struct i915_ggtt_view view;
1831
1832 if (i915_gem_object_is_tiled(obj))
1833 chunk = roundup(chunk, tile_row_pages(obj));
1834
2d4281bb 1835 view.type = I915_GGTT_VIEW_PARTIAL;
8bab1193
CW
1836 view.partial.offset = rounddown(page_offset, chunk);
1837 view.partial.size =
2d4281bb 1838 min_t(unsigned int, chunk,
8bab1193 1839 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
2d4281bb
CW
1840
1841 /* If the partial covers the entire object, just create a normal VMA. */
1842 if (chunk >= obj->base.size >> PAGE_SHIFT)
1843 view.type = I915_GGTT_VIEW_NORMAL;
1844
1845 return view;
1846}
1847
de151cf6
JB
1848/**
1849 * i915_gem_fault - fault a page into the GTT
d9072a3e 1850 * @vmf: fault info
de151cf6
JB
1851 *
1852 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1853 * from userspace. The fault handler takes care of binding the object to
1854 * the GTT (if needed), allocating and programming a fence register (again,
1855 * only if needed based on whether the old reg is still valid or the object
1856 * is tiled) and inserting a new PTE into the faulting process.
1857 *
1858 * Note that the faulting process may involve evicting existing objects
1859 * from the GTT and/or fence registers to make room. So performance may
1860 * suffer if the GTT working set is large or there are few fence registers
1861 * left.
4cc69075
CW
1862 *
1863 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1864 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
de151cf6 1865 */
11bac800 1866int i915_gem_fault(struct vm_fault *vmf)
de151cf6 1867{
03af84fe 1868#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
11bac800 1869 struct vm_area_struct *area = vmf->vma;
058d88c4 1870 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
05394f39 1871 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1872 struct drm_i915_private *dev_priv = to_i915(dev);
1873 struct i915_ggtt *ggtt = &dev_priv->ggtt;
b8f9096d 1874 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
058d88c4 1875 struct i915_vma *vma;
de151cf6 1876 pgoff_t page_offset;
82118877 1877 unsigned int flags;
b8f9096d 1878 int ret;
f65c9168 1879
de151cf6 1880 /* We don't use vmf->pgoff since that has the fake offset */
1a29d85e 1881 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
de151cf6 1882
db53a302
CW
1883 trace_i915_gem_object_fault(obj, page_offset, true, write);
1884
6e4930f6 1885 /* Try to flush the object off the GPU first without holding the lock.
b8f9096d 1886 * Upon acquiring the lock, we will perform our sanity checks and then
6e4930f6
CW
1887 * repeat the flush holding the lock in the normal manner to catch cases
1888 * where we are gazumped.
1889 */
e95433c7
CW
1890 ret = i915_gem_object_wait(obj,
1891 I915_WAIT_INTERRUPTIBLE,
1892 MAX_SCHEDULE_TIMEOUT,
1893 NULL);
6e4930f6 1894 if (ret)
b8f9096d
CW
1895 goto err;
1896
40e62d5d
CW
1897 ret = i915_gem_object_pin_pages(obj);
1898 if (ret)
1899 goto err;
1900
b8f9096d
CW
1901 intel_runtime_pm_get(dev_priv);
1902
1903 ret = i915_mutex_lock_interruptible(dev);
1904 if (ret)
1905 goto err_rpm;
6e4930f6 1906
eb119bd6 1907 /* Access to snoopable pages through the GTT is incoherent. */
0031fb96 1908 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
ddeff6ee 1909 ret = -EFAULT;
b8f9096d 1910 goto err_unlock;
eb119bd6
CW
1911 }
1912
82118877
CW
1913 /* If the object is smaller than a couple of partial vma, it is
1914 * not worth only creating a single partial vma - we may as well
1915 * clear enough space for the full object.
1916 */
1917 flags = PIN_MAPPABLE;
1918 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1919 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1920
a61007a8 1921 /* Now pin it into the GTT as needed */
82118877 1922 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
a61007a8 1923 if (IS_ERR(vma)) {
a61007a8 1924 /* Use a partial view if it is bigger than available space */
2d4281bb 1925 struct i915_ggtt_view view =
8201c1fa 1926 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
aa136d9d 1927
50349247
CW
1928 /* Userspace is now writing through an untracked VMA, abandon
1929 * all hope that the hardware is able to track future writes.
1930 */
1931 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1932
a61007a8
CW
1933 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1934 }
058d88c4
CW
1935 if (IS_ERR(vma)) {
1936 ret = PTR_ERR(vma);
b8f9096d 1937 goto err_unlock;
058d88c4 1938 }
4a684a41 1939
c9839303
CW
1940 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1941 if (ret)
b8f9096d 1942 goto err_unpin;
74898d7e 1943
49ef5294 1944 ret = i915_vma_get_fence(vma);
d9e86c0e 1945 if (ret)
b8f9096d 1946 goto err_unpin;
7d1c4804 1947
275f039d 1948 /* Mark as being mmapped into userspace for later revocation */
9c870d03 1949 assert_rpm_wakelock_held(dev_priv);
275f039d
CW
1950 if (list_empty(&obj->userfault_link))
1951 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
275f039d 1952
b90b91d8 1953 /* Finally, remap it using the new GTT offset */
c58305af 1954 ret = remap_io_mapping(area,
8bab1193 1955 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
c58305af
CW
1956 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1957 min_t(u64, vma->size, area->vm_end - area->vm_start),
1958 &ggtt->mappable);
a61007a8 1959
b8f9096d 1960err_unpin:
058d88c4 1961 __i915_vma_unpin(vma);
b8f9096d 1962err_unlock:
de151cf6 1963 mutex_unlock(&dev->struct_mutex);
b8f9096d
CW
1964err_rpm:
1965 intel_runtime_pm_put(dev_priv);
40e62d5d 1966 i915_gem_object_unpin_pages(obj);
b8f9096d 1967err:
de151cf6 1968 switch (ret) {
d9bc7e9f 1969 case -EIO:
2232f031
DV
1970 /*
1971 * We eat errors when the gpu is terminally wedged to avoid
1972 * userspace unduly crashing (gl has no provisions for mmaps to
1973 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1974 * and so needs to be reported.
1975 */
1976 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1977 ret = VM_FAULT_SIGBUS;
1978 break;
1979 }
045e769a 1980 case -EAGAIN:
571c608d
DV
1981 /*
1982 * EAGAIN means the gpu is hung and we'll wait for the error
1983 * handler to reset everything when re-faulting in
1984 * i915_mutex_lock_interruptible.
d9bc7e9f 1985 */
c715089f
CW
1986 case 0:
1987 case -ERESTARTSYS:
bed636ab 1988 case -EINTR:
e79e0fe3
DR
1989 case -EBUSY:
1990 /*
1991 * EBUSY is ok: this just means that another thread
1992 * already did the job.
1993 */
f65c9168
PZ
1994 ret = VM_FAULT_NOPAGE;
1995 break;
de151cf6 1996 case -ENOMEM:
f65c9168
PZ
1997 ret = VM_FAULT_OOM;
1998 break;
a7c2e1aa 1999 case -ENOSPC:
45d67817 2000 case -EFAULT:
f65c9168
PZ
2001 ret = VM_FAULT_SIGBUS;
2002 break;
de151cf6 2003 default:
a7c2e1aa 2004 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
2005 ret = VM_FAULT_SIGBUS;
2006 break;
de151cf6 2007 }
f65c9168 2008 return ret;
de151cf6
JB
2009}
2010
901782b2
CW
2011/**
2012 * i915_gem_release_mmap - remove physical page mappings
2013 * @obj: obj in question
2014 *
af901ca1 2015 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
2016 * relinquish ownership of the pages back to the system.
2017 *
2018 * It is vital that we remove the page mapping if we have mapped a tiled
2019 * object through the GTT and then lose the fence register due to
2020 * resource pressure. Similarly if the object has been moved out of the
2021 * aperture, than pages mapped into userspace must be revoked. Removing the
2022 * mapping will then trigger a page fault on the next user access, allowing
2023 * fixup by i915_gem_fault().
2024 */
d05ca301 2025void
05394f39 2026i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 2027{
275f039d 2028 struct drm_i915_private *i915 = to_i915(obj->base.dev);
275f039d 2029
349f2ccf
CW
2030 /* Serialisation between user GTT access and our code depends upon
2031 * revoking the CPU's PTE whilst the mutex is held. The next user
2032 * pagefault then has to wait until we release the mutex.
9c870d03
CW
2033 *
2034 * Note that RPM complicates somewhat by adding an additional
2035 * requirement that operations to the GGTT be made holding the RPM
2036 * wakeref.
349f2ccf 2037 */
275f039d 2038 lockdep_assert_held(&i915->drm.struct_mutex);
9c870d03 2039 intel_runtime_pm_get(i915);
349f2ccf 2040
3594a3e2 2041 if (list_empty(&obj->userfault_link))
9c870d03 2042 goto out;
901782b2 2043
3594a3e2 2044 list_del_init(&obj->userfault_link);
6796cb16
DR
2045 drm_vma_node_unmap(&obj->base.vma_node,
2046 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
2047
2048 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2049 * memory transactions from userspace before we return. The TLB
2050 * flushing implied above by changing the PTE above *should* be
2051 * sufficient, an extra barrier here just provides us with a bit
2052 * of paranoid documentation about our requirement to serialise
2053 * memory writes before touching registers / GSM.
2054 */
2055 wmb();
9c870d03
CW
2056
2057out:
2058 intel_runtime_pm_put(i915);
901782b2
CW
2059}
2060
7c108fd8 2061void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
eedd10f4 2062{
3594a3e2 2063 struct drm_i915_gem_object *obj, *on;
7c108fd8 2064 int i;
eedd10f4 2065
3594a3e2
CW
2066 /*
2067 * Only called during RPM suspend. All users of the userfault_list
2068 * must be holding an RPM wakeref to ensure that this can not
2069 * run concurrently with themselves (and use the struct_mutex for
2070 * protection between themselves).
2071 */
275f039d 2072
3594a3e2
CW
2073 list_for_each_entry_safe(obj, on,
2074 &dev_priv->mm.userfault_list, userfault_link) {
2075 list_del_init(&obj->userfault_link);
275f039d
CW
2076 drm_vma_node_unmap(&obj->base.vma_node,
2077 obj->base.dev->anon_inode->i_mapping);
275f039d 2078 }
7c108fd8
CW
2079
2080 /* The fence will be lost when the device powers down. If any were
2081 * in use by hardware (i.e. they are pinned), we should not be powering
2082 * down! All other fences will be reacquired by the user upon waking.
2083 */
2084 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2085 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2086
e0ec3ec6
CW
2087 /* Ideally we want to assert that the fence register is not
2088 * live at this point (i.e. that no piece of code will be
2089 * trying to write through fence + GTT, as that both violates
2090 * our tracking of activity and associated locking/barriers,
2091 * but also is illegal given that the hw is powered down).
2092 *
2093 * Previously we used reg->pin_count as a "liveness" indicator.
2094 * That is not sufficient, and we need a more fine-grained
2095 * tool if we want to have a sanity check here.
2096 */
7c108fd8
CW
2097
2098 if (!reg->vma)
2099 continue;
2100
2101 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2102 reg->dirty = true;
2103 }
eedd10f4
CW
2104}
2105
d8cb5086
CW
2106static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2107{
fac5e23e 2108 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
f3f6184c 2109 int err;
da494d7c 2110
f3f6184c 2111 err = drm_gem_create_mmap_offset(&obj->base);
b42a13d9 2112 if (likely(!err))
f3f6184c 2113 return 0;
d8cb5086 2114
b42a13d9
CW
2115 /* Attempt to reap some mmap space from dead objects */
2116 do {
2117 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2118 if (err)
2119 break;
f3f6184c 2120
b42a13d9 2121 i915_gem_drain_freed_objects(dev_priv);
f3f6184c 2122 err = drm_gem_create_mmap_offset(&obj->base);
b42a13d9
CW
2123 if (!err)
2124 break;
2125
2126 } while (flush_delayed_work(&dev_priv->gt.retire_work));
da494d7c 2127
f3f6184c 2128 return err;
d8cb5086
CW
2129}
2130
2131static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2132{
d8cb5086
CW
2133 drm_gem_free_mmap_offset(&obj->base);
2134}
2135
da6b51d0 2136int
ff72145b
DA
2137i915_gem_mmap_gtt(struct drm_file *file,
2138 struct drm_device *dev,
da6b51d0 2139 uint32_t handle,
ff72145b 2140 uint64_t *offset)
de151cf6 2141{
05394f39 2142 struct drm_i915_gem_object *obj;
de151cf6
JB
2143 int ret;
2144
03ac0642 2145 obj = i915_gem_object_lookup(file, handle);
f3f6184c
CW
2146 if (!obj)
2147 return -ENOENT;
ab18282d 2148
d8cb5086 2149 ret = i915_gem_object_create_mmap_offset(obj);
f3f6184c
CW
2150 if (ret == 0)
2151 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2152
f0cd5182 2153 i915_gem_object_put(obj);
1d7cfea1 2154 return ret;
de151cf6
JB
2155}
2156
ff72145b
DA
2157/**
2158 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2159 * @dev: DRM device
2160 * @data: GTT mapping ioctl data
2161 * @file: GEM object info
2162 *
2163 * Simply returns the fake offset to userspace so it can mmap it.
2164 * The mmap call will end up in drm_gem_mmap(), which will set things
2165 * up so we can get faults in the handler above.
2166 *
2167 * The fault handler will take care of binding the object into the GTT
2168 * (since it may have been evicted to make room for something), allocating
2169 * a fence register, and mapping the appropriate aperture address into
2170 * userspace.
2171 */
2172int
2173i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2174 struct drm_file *file)
2175{
2176 struct drm_i915_gem_mmap_gtt *args = data;
2177
da6b51d0 2178 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2179}
2180
225067ee
DV
2181/* Immediately discard the backing storage */
2182static void
2183i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2184{
4d6294bf 2185 i915_gem_object_free_mmap_offset(obj);
1286ff73 2186
4d6294bf
CW
2187 if (obj->base.filp == NULL)
2188 return;
e5281ccd 2189
225067ee
DV
2190 /* Our goal here is to return as much of the memory as
2191 * is possible back to the system as we are called from OOM.
2192 * To do this we must instruct the shmfs to drop all of its
2193 * backing pages, *now*.
2194 */
5537252b 2195 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
a4f5ea64 2196 obj->mm.madv = __I915_MADV_PURGED;
4e5462ee 2197 obj->mm.pages = ERR_PTR(-EFAULT);
225067ee 2198}
e5281ccd 2199
5537252b 2200/* Try to discard unwanted pages */
03ac84f1 2201void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2202{
5537252b
CW
2203 struct address_space *mapping;
2204
1233e2db
CW
2205 lockdep_assert_held(&obj->mm.lock);
2206 GEM_BUG_ON(obj->mm.pages);
2207
a4f5ea64 2208 switch (obj->mm.madv) {
5537252b
CW
2209 case I915_MADV_DONTNEED:
2210 i915_gem_object_truncate(obj);
2211 case __I915_MADV_PURGED:
2212 return;
2213 }
2214
2215 if (obj->base.filp == NULL)
2216 return;
2217
93c76a3d 2218 mapping = obj->base.filp->f_mapping,
5537252b 2219 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2220}
2221
5cdf5881 2222static void
03ac84f1
CW
2223i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2224 struct sg_table *pages)
673a394b 2225{
85d1225e
DG
2226 struct sgt_iter sgt_iter;
2227 struct page *page;
1286ff73 2228
e5facdf9 2229 __i915_gem_object_release_shmem(obj, pages, true);
673a394b 2230
03ac84f1 2231 i915_gem_gtt_finish_pages(obj, pages);
e2273302 2232
6dacfd2f 2233 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2234 i915_gem_object_save_bit_17_swizzle(obj, pages);
280b713b 2235
03ac84f1 2236 for_each_sgt_page(page, sgt_iter, pages) {
a4f5ea64 2237 if (obj->mm.dirty)
9da3da66 2238 set_page_dirty(page);
3ef94daa 2239
a4f5ea64 2240 if (obj->mm.madv == I915_MADV_WILLNEED)
9da3da66 2241 mark_page_accessed(page);
3ef94daa 2242
09cbfeaf 2243 put_page(page);
3ef94daa 2244 }
a4f5ea64 2245 obj->mm.dirty = false;
673a394b 2246
03ac84f1
CW
2247 sg_free_table(pages);
2248 kfree(pages);
37e680a1 2249}
6c085a72 2250
96d77634
CW
2251static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2252{
2253 struct radix_tree_iter iter;
2254 void **slot;
2255
a4f5ea64
CW
2256 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2257 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
96d77634
CW
2258}
2259
548625ee
CW
2260void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2261 enum i915_mm_subclass subclass)
37e680a1 2262{
03ac84f1 2263 struct sg_table *pages;
37e680a1 2264
a4f5ea64 2265 if (i915_gem_object_has_pinned_pages(obj))
03ac84f1 2266 return;
a5570178 2267
15717de2 2268 GEM_BUG_ON(obj->bind_count);
1233e2db
CW
2269 if (!READ_ONCE(obj->mm.pages))
2270 return;
2271
2272 /* May be called by shrinker from within get_pages() (on another bo) */
548625ee 2273 mutex_lock_nested(&obj->mm.lock, subclass);
1233e2db
CW
2274 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2275 goto unlock;
3e123027 2276
a2165e31
CW
2277 /* ->put_pages might need to allocate memory for the bit17 swizzle
2278 * array, hence protect them from being reaped by removing them from gtt
2279 * lists early. */
03ac84f1
CW
2280 pages = fetch_and_zero(&obj->mm.pages);
2281 GEM_BUG_ON(!pages);
a2165e31 2282
a4f5ea64 2283 if (obj->mm.mapping) {
4b30cb23
CW
2284 void *ptr;
2285
0ce81788 2286 ptr = page_mask_bits(obj->mm.mapping);
4b30cb23
CW
2287 if (is_vmalloc_addr(ptr))
2288 vunmap(ptr);
fb8621d3 2289 else
4b30cb23
CW
2290 kunmap(kmap_to_page(ptr));
2291
a4f5ea64 2292 obj->mm.mapping = NULL;
0a798eb9
CW
2293 }
2294
96d77634
CW
2295 __i915_gem_object_reset_page_iter(obj);
2296
4e5462ee
CW
2297 if (!IS_ERR(pages))
2298 obj->ops->put_pages(obj, pages);
2299
1233e2db
CW
2300unlock:
2301 mutex_unlock(&obj->mm.lock);
6c085a72
CW
2302}
2303
935a2f77 2304static bool i915_sg_trim(struct sg_table *orig_st)
0c40ce13
TU
2305{
2306 struct sg_table new_st;
2307 struct scatterlist *sg, *new_sg;
2308 unsigned int i;
2309
2310 if (orig_st->nents == orig_st->orig_nents)
935a2f77 2311 return false;
0c40ce13 2312
8bfc478f 2313 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
935a2f77 2314 return false;
0c40ce13
TU
2315
2316 new_sg = new_st.sgl;
2317 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2318 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2319 /* called before being DMA mapped, no need to copy sg->dma_* */
2320 new_sg = sg_next(new_sg);
2321 }
c2dc6cc9 2322 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
0c40ce13
TU
2323
2324 sg_free_table(orig_st);
2325
2326 *orig_st = new_st;
935a2f77 2327 return true;
0c40ce13
TU
2328}
2329
03ac84f1 2330static struct sg_table *
6c085a72 2331i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2332{
fac5e23e 2333 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
d766ef53
CW
2334 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2335 unsigned long i;
e5281ccd 2336 struct address_space *mapping;
9da3da66
CW
2337 struct sg_table *st;
2338 struct scatterlist *sg;
85d1225e 2339 struct sgt_iter sgt_iter;
e5281ccd 2340 struct page *page;
90797e6d 2341 unsigned long last_pfn = 0; /* suppress gcc warning */
4ff340f0 2342 unsigned int max_segment;
4846bf0c 2343 gfp_t noreclaim;
e2273302 2344 int ret;
e5281ccd 2345
6c085a72
CW
2346 /* Assert that the object is not currently in any GPU domain. As it
2347 * wasn't in the GTT, there shouldn't be any way it could have been in
2348 * a GPU cache
2349 */
03ac84f1
CW
2350 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2351 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
6c085a72 2352
7453c549 2353 max_segment = swiotlb_max_segment();
871dfbd6 2354 if (!max_segment)
4ff340f0 2355 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
871dfbd6 2356
9da3da66
CW
2357 st = kmalloc(sizeof(*st), GFP_KERNEL);
2358 if (st == NULL)
03ac84f1 2359 return ERR_PTR(-ENOMEM);
9da3da66 2360
d766ef53 2361rebuild_st:
9da3da66 2362 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2363 kfree(st);
03ac84f1 2364 return ERR_PTR(-ENOMEM);
9da3da66 2365 }
e5281ccd 2366
9da3da66
CW
2367 /* Get the list of pages out of our struct file. They'll be pinned
2368 * at this point until we release them.
2369 *
2370 * Fail silently without starting the shrinker
2371 */
93c76a3d 2372 mapping = obj->base.filp->f_mapping;
0f6ab55d 2373 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
4846bf0c
CW
2374 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2375
90797e6d
ID
2376 sg = st->sgl;
2377 st->nents = 0;
2378 for (i = 0; i < page_count; i++) {
4846bf0c
CW
2379 const unsigned int shrink[] = {
2380 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2381 0,
2382 }, *s = shrink;
2383 gfp_t gfp = noreclaim;
2384
2385 do {
6c085a72 2386 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
4846bf0c
CW
2387 if (likely(!IS_ERR(page)))
2388 break;
2389
2390 if (!*s) {
2391 ret = PTR_ERR(page);
2392 goto err_sg;
2393 }
2394
2395 i915_gem_shrink(dev_priv, 2 * page_count, *s++);
2396 cond_resched();
24f8e00a 2397
6c085a72
CW
2398 /* We've tried hard to allocate the memory by reaping
2399 * our own buffer, now let the real VM do its job and
2400 * go down in flames if truly OOM.
24f8e00a
CW
2401 *
2402 * However, since graphics tend to be disposable,
2403 * defer the oom here by reporting the ENOMEM back
2404 * to userspace.
6c085a72 2405 */
4846bf0c
CW
2406 if (!*s) {
2407 /* reclaim and warn, but no oom */
2408 gfp = mapping_gfp_mask(mapping);
eaf41801
CW
2409
2410 /* Our bo are always dirty and so we require
2411 * kswapd to reclaim our pages (direct reclaim
2412 * does not effectively begin pageout of our
2413 * buffers on its own). However, direct reclaim
2414 * only waits for kswapd when under allocation
2415 * congestion. So as a result __GFP_RECLAIM is
2416 * unreliable and fails to actually reclaim our
2417 * dirty pages -- unless you try over and over
2418 * again with !__GFP_NORETRY. However, we still
2419 * want to fail this allocation rather than
2420 * trigger the out-of-memory killer and for
dbb32956 2421 * this we want __GFP_RETRY_MAYFAIL.
eaf41801 2422 */
dbb32956 2423 gfp |= __GFP_RETRY_MAYFAIL;
e2273302 2424 }
4846bf0c
CW
2425 } while (1);
2426
871dfbd6
CW
2427 if (!i ||
2428 sg->length >= max_segment ||
2429 page_to_pfn(page) != last_pfn + 1) {
90797e6d
ID
2430 if (i)
2431 sg = sg_next(sg);
2432 st->nents++;
2433 sg_set_page(sg, page, PAGE_SIZE, 0);
2434 } else {
2435 sg->length += PAGE_SIZE;
2436 }
2437 last_pfn = page_to_pfn(page);
3bbbe706
DV
2438
2439 /* Check that the i965g/gm workaround works. */
2440 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2441 }
871dfbd6 2442 if (sg) /* loop terminated early; short sg table */
426729dc 2443 sg_mark_end(sg);
74ce6b6c 2444
0c40ce13
TU
2445 /* Trim unused sg entries to avoid wasting memory. */
2446 i915_sg_trim(st);
2447
03ac84f1 2448 ret = i915_gem_gtt_prepare_pages(obj, st);
d766ef53
CW
2449 if (ret) {
2450 /* DMA remapping failed? One possible cause is that
2451 * it could not reserve enough large entries, asking
2452 * for PAGE_SIZE chunks instead may be helpful.
2453 */
2454 if (max_segment > PAGE_SIZE) {
2455 for_each_sgt_page(page, sgt_iter, st)
2456 put_page(page);
2457 sg_free_table(st);
2458
2459 max_segment = PAGE_SIZE;
2460 goto rebuild_st;
2461 } else {
2462 dev_warn(&dev_priv->drm.pdev->dev,
2463 "Failed to DMA remap %lu pages\n",
2464 page_count);
2465 goto err_pages;
2466 }
2467 }
e2273302 2468
6dacfd2f 2469 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2470 i915_gem_object_do_bit_17_swizzle(obj, st);
e5281ccd 2471
03ac84f1 2472 return st;
e5281ccd 2473
b17993b7 2474err_sg:
90797e6d 2475 sg_mark_end(sg);
b17993b7 2476err_pages:
85d1225e
DG
2477 for_each_sgt_page(page, sgt_iter, st)
2478 put_page(page);
9da3da66
CW
2479 sg_free_table(st);
2480 kfree(st);
0820baf3
CW
2481
2482 /* shmemfs first checks if there is enough memory to allocate the page
2483 * and reports ENOSPC should there be insufficient, along with the usual
2484 * ENOMEM for a genuine allocation failure.
2485 *
2486 * We use ENOSPC in our driver to mean that we have run out of aperture
2487 * space and so want to translate the error from shmemfs back to our
2488 * usual understanding of ENOMEM.
2489 */
e2273302
ID
2490 if (ret == -ENOSPC)
2491 ret = -ENOMEM;
2492
03ac84f1
CW
2493 return ERR_PTR(ret);
2494}
2495
2496void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2497 struct sg_table *pages)
2498{
1233e2db 2499 lockdep_assert_held(&obj->mm.lock);
03ac84f1
CW
2500
2501 obj->mm.get_page.sg_pos = pages->sgl;
2502 obj->mm.get_page.sg_idx = 0;
2503
2504 obj->mm.pages = pages;
2c3a3f44
CW
2505
2506 if (i915_gem_object_is_tiled(obj) &&
2507 to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2508 GEM_BUG_ON(obj->mm.quirked);
2509 __i915_gem_object_pin_pages(obj);
2510 obj->mm.quirked = true;
2511 }
03ac84f1
CW
2512}
2513
2514static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2515{
2516 struct sg_table *pages;
2517
2c3a3f44
CW
2518 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2519
03ac84f1
CW
2520 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2521 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2522 return -EFAULT;
2523 }
2524
2525 pages = obj->ops->get_pages(obj);
2526 if (unlikely(IS_ERR(pages)))
2527 return PTR_ERR(pages);
2528
2529 __i915_gem_object_set_pages(obj, pages);
2530 return 0;
673a394b
EA
2531}
2532
37e680a1 2533/* Ensure that the associated pages are gathered from the backing storage
1233e2db 2534 * and pinned into our object. i915_gem_object_pin_pages() may be called
37e680a1 2535 * multiple times before they are released by a single call to
1233e2db 2536 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
37e680a1
CW
2537 * either as a result of memory pressure (reaping pages under the shrinker)
2538 * or as the object is itself released.
2539 */
a4f5ea64 2540int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
37e680a1 2541{
03ac84f1 2542 int err;
37e680a1 2543
1233e2db
CW
2544 err = mutex_lock_interruptible(&obj->mm.lock);
2545 if (err)
2546 return err;
4c7d62c6 2547
4e5462ee 2548 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2c3a3f44
CW
2549 err = ____i915_gem_object_get_pages(obj);
2550 if (err)
2551 goto unlock;
37e680a1 2552
2c3a3f44
CW
2553 smp_mb__before_atomic();
2554 }
2555 atomic_inc(&obj->mm.pages_pin_count);
ee286370 2556
1233e2db
CW
2557unlock:
2558 mutex_unlock(&obj->mm.lock);
03ac84f1 2559 return err;
673a394b
EA
2560}
2561
dd6034c6 2562/* The 'mapping' part of i915_gem_object_pin_map() below */
d31d7cb1
CW
2563static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2564 enum i915_map_type type)
dd6034c6
DG
2565{
2566 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
a4f5ea64 2567 struct sg_table *sgt = obj->mm.pages;
85d1225e
DG
2568 struct sgt_iter sgt_iter;
2569 struct page *page;
b338fa47
DG
2570 struct page *stack_pages[32];
2571 struct page **pages = stack_pages;
dd6034c6 2572 unsigned long i = 0;
d31d7cb1 2573 pgprot_t pgprot;
dd6034c6
DG
2574 void *addr;
2575
2576 /* A single page can always be kmapped */
d31d7cb1 2577 if (n_pages == 1 && type == I915_MAP_WB)
dd6034c6
DG
2578 return kmap(sg_page(sgt->sgl));
2579
b338fa47
DG
2580 if (n_pages > ARRAY_SIZE(stack_pages)) {
2581 /* Too big for stack -- allocate temporary array instead */
2098105e 2582 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_TEMPORARY);
b338fa47
DG
2583 if (!pages)
2584 return NULL;
2585 }
dd6034c6 2586
85d1225e
DG
2587 for_each_sgt_page(page, sgt_iter, sgt)
2588 pages[i++] = page;
dd6034c6
DG
2589
2590 /* Check that we have the expected number of pages */
2591 GEM_BUG_ON(i != n_pages);
2592
d31d7cb1
CW
2593 switch (type) {
2594 case I915_MAP_WB:
2595 pgprot = PAGE_KERNEL;
2596 break;
2597 case I915_MAP_WC:
2598 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2599 break;
2600 }
2601 addr = vmap(pages, n_pages, 0, pgprot);
dd6034c6 2602
b338fa47 2603 if (pages != stack_pages)
2098105e 2604 kvfree(pages);
dd6034c6
DG
2605
2606 return addr;
2607}
2608
2609/* get, pin, and map the pages of the object into kernel space */
d31d7cb1
CW
2610void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2611 enum i915_map_type type)
0a798eb9 2612{
d31d7cb1
CW
2613 enum i915_map_type has_type;
2614 bool pinned;
2615 void *ptr;
0a798eb9
CW
2616 int ret;
2617
d31d7cb1 2618 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
0a798eb9 2619
1233e2db 2620 ret = mutex_lock_interruptible(&obj->mm.lock);
0a798eb9
CW
2621 if (ret)
2622 return ERR_PTR(ret);
2623
1233e2db
CW
2624 pinned = true;
2625 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
4e5462ee 2626 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2c3a3f44
CW
2627 ret = ____i915_gem_object_get_pages(obj);
2628 if (ret)
2629 goto err_unlock;
1233e2db 2630
2c3a3f44
CW
2631 smp_mb__before_atomic();
2632 }
2633 atomic_inc(&obj->mm.pages_pin_count);
1233e2db
CW
2634 pinned = false;
2635 }
2636 GEM_BUG_ON(!obj->mm.pages);
0a798eb9 2637
0ce81788 2638 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
d31d7cb1
CW
2639 if (ptr && has_type != type) {
2640 if (pinned) {
2641 ret = -EBUSY;
1233e2db 2642 goto err_unpin;
0a798eb9 2643 }
d31d7cb1
CW
2644
2645 if (is_vmalloc_addr(ptr))
2646 vunmap(ptr);
2647 else
2648 kunmap(kmap_to_page(ptr));
2649
a4f5ea64 2650 ptr = obj->mm.mapping = NULL;
0a798eb9
CW
2651 }
2652
d31d7cb1
CW
2653 if (!ptr) {
2654 ptr = i915_gem_object_map(obj, type);
2655 if (!ptr) {
2656 ret = -ENOMEM;
1233e2db 2657 goto err_unpin;
d31d7cb1
CW
2658 }
2659
0ce81788 2660 obj->mm.mapping = page_pack_bits(ptr, type);
d31d7cb1
CW
2661 }
2662
1233e2db
CW
2663out_unlock:
2664 mutex_unlock(&obj->mm.lock);
d31d7cb1
CW
2665 return ptr;
2666
1233e2db
CW
2667err_unpin:
2668 atomic_dec(&obj->mm.pages_pin_count);
2669err_unlock:
2670 ptr = ERR_PTR(ret);
2671 goto out_unlock;
0a798eb9
CW
2672}
2673
7c55e2c5
CW
2674static int
2675i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2676 const struct drm_i915_gem_pwrite *arg)
2677{
2678 struct address_space *mapping = obj->base.filp->f_mapping;
2679 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2680 u64 remain, offset;
2681 unsigned int pg;
2682
2683 /* Before we instantiate/pin the backing store for our use, we
2684 * can prepopulate the shmemfs filp efficiently using a write into
2685 * the pagecache. We avoid the penalty of instantiating all the
2686 * pages, important if the user is just writing to a few and never
2687 * uses the object on the GPU, and using a direct write into shmemfs
2688 * allows it to avoid the cost of retrieving a page (either swapin
2689 * or clearing-before-use) before it is overwritten.
2690 */
2691 if (READ_ONCE(obj->mm.pages))
2692 return -ENODEV;
2693
2694 /* Before the pages are instantiated the object is treated as being
2695 * in the CPU domain. The pages will be clflushed as required before
2696 * use, and we can freely write into the pages directly. If userspace
2697 * races pwrite with any other operation; corruption will ensue -
2698 * that is userspace's prerogative!
2699 */
2700
2701 remain = arg->size;
2702 offset = arg->offset;
2703 pg = offset_in_page(offset);
2704
2705 do {
2706 unsigned int len, unwritten;
2707 struct page *page;
2708 void *data, *vaddr;
2709 int err;
2710
2711 len = PAGE_SIZE - pg;
2712 if (len > remain)
2713 len = remain;
2714
2715 err = pagecache_write_begin(obj->base.filp, mapping,
2716 offset, len, 0,
2717 &page, &data);
2718 if (err < 0)
2719 return err;
2720
2721 vaddr = kmap(page);
2722 unwritten = copy_from_user(vaddr + pg, user_data, len);
2723 kunmap(page);
2724
2725 err = pagecache_write_end(obj->base.filp, mapping,
2726 offset, len, len - unwritten,
2727 page, data);
2728 if (err < 0)
2729 return err;
2730
2731 if (unwritten)
2732 return -EFAULT;
2733
2734 remain -= len;
2735 user_data += len;
2736 offset += len;
2737 pg = 0;
2738 } while (remain);
2739
2740 return 0;
2741}
2742
6095868a 2743static bool ban_context(const struct i915_gem_context *ctx)
be62acb4 2744{
6095868a
CW
2745 return (i915_gem_context_is_bannable(ctx) &&
2746 ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
be62acb4
MK
2747}
2748
e5e1fc47 2749static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
aa60c664 2750{
bc1d53c6 2751 ctx->guilty_count++;
6095868a
CW
2752 ctx->ban_score += CONTEXT_SCORE_GUILTY;
2753 if (ban_context(ctx))
2754 i915_gem_context_set_banned(ctx);
b083a087
MK
2755
2756 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
bc1d53c6 2757 ctx->name, ctx->ban_score,
6095868a 2758 yesno(i915_gem_context_is_banned(ctx)));
b083a087 2759
6095868a 2760 if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
b083a087
MK
2761 return;
2762
d9e9da64
CW
2763 ctx->file_priv->context_bans++;
2764 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2765 ctx->name, ctx->file_priv->context_bans);
e5e1fc47
MK
2766}
2767
2768static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2769{
bc1d53c6 2770 ctx->active_count++;
aa60c664
MK
2771}
2772
8d9fc7fd 2773struct drm_i915_gem_request *
0bc40be8 2774i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2775{
754c9fd5
CW
2776 struct drm_i915_gem_request *request, *active = NULL;
2777 unsigned long flags;
4db080f9 2778
f69a02c9
CW
2779 /* We are called by the error capture and reset at a random
2780 * point in time. In particular, note that neither is crucially
2781 * ordered with an interrupt. After a hang, the GPU is dead and we
2782 * assume that no more writes can happen (we waited long enough for
2783 * all writes that were in transaction to be flushed) - adding an
2784 * extra delay for a recent interrupt is pointless. Hence, we do
2785 * not need an engine->irq_seqno_barrier() before the seqno reads.
2786 */
754c9fd5 2787 spin_lock_irqsave(&engine->timeline->lock, flags);
73cb9701 2788 list_for_each_entry(request, &engine->timeline->requests, link) {
754c9fd5
CW
2789 if (__i915_gem_request_completed(request,
2790 request->global_seqno))
4db080f9 2791 continue;
aa60c664 2792
36193acd 2793 GEM_BUG_ON(request->engine != engine);
c00122f3
CW
2794 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2795 &request->fence.flags));
754c9fd5
CW
2796
2797 active = request;
2798 break;
4db080f9 2799 }
754c9fd5 2800 spin_unlock_irqrestore(&engine->timeline->lock, flags);
b6b0fac0 2801
754c9fd5 2802 return active;
b6b0fac0
MK
2803}
2804
bf2f0436
MK
2805static bool engine_stalled(struct intel_engine_cs *engine)
2806{
2807 if (!engine->hangcheck.stalled)
2808 return false;
2809
2810 /* Check for possible seqno movement after hang declaration */
2811 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2812 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2813 return false;
2814 }
2815
2816 return true;
2817}
2818
a1ef70e1
MT
2819/*
2820 * Ensure irq handler finishes, and not run again.
2821 * Also return the active request so that we only search for it once.
2822 */
2823struct drm_i915_gem_request *
2824i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2825{
2826 struct drm_i915_gem_request *request = NULL;
2827
2828 /* Prevent the signaler thread from updating the request
2829 * state (by calling dma_fence_signal) as we are processing
2830 * the reset. The write from the GPU of the seqno is
2831 * asynchronous and the signaler thread may see a different
2832 * value to us and declare the request complete, even though
2833 * the reset routine have picked that request as the active
2834 * (incomplete) request. This conflict is not handled
2835 * gracefully!
2836 */
2837 kthread_park(engine->breadcrumbs.signaler);
2838
2839 /* Prevent request submission to the hardware until we have
2840 * completed the reset in i915_gem_reset_finish(). If a request
2841 * is completed by one engine, it may then queue a request
2842 * to a second via its engine->irq_tasklet *just* as we are
2843 * calling engine->init_hw() and also writing the ELSP.
2844 * Turning off the engine->irq_tasklet until the reset is over
2845 * prevents the race.
2846 */
2847 tasklet_kill(&engine->irq_tasklet);
2848 tasklet_disable(&engine->irq_tasklet);
2849
2850 if (engine->irq_seqno_barrier)
2851 engine->irq_seqno_barrier(engine);
2852
2853 if (engine_stalled(engine)) {
2854 request = i915_gem_find_active_request(engine);
2855 if (request && request->fence.error == -EIO)
2856 request = ERR_PTR(-EIO); /* Previous reset failed! */
2857 }
2858
2859 return request;
2860}
2861
0e178aef 2862int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
4c965543
CW
2863{
2864 struct intel_engine_cs *engine;
a1ef70e1 2865 struct drm_i915_gem_request *request;
4c965543 2866 enum intel_engine_id id;
0e178aef 2867 int err = 0;
4c965543 2868
0e178aef 2869 for_each_engine(engine, dev_priv, id) {
a1ef70e1
MT
2870 request = i915_gem_reset_prepare_engine(engine);
2871 if (IS_ERR(request)) {
2872 err = PTR_ERR(request);
2873 continue;
0e178aef 2874 }
c64992e0
MT
2875
2876 engine->hangcheck.active_request = request;
0e178aef
CW
2877 }
2878
4c965543 2879 i915_gem_revoke_fences(dev_priv);
0e178aef
CW
2880
2881 return err;
4c965543
CW
2882}
2883
36193acd 2884static void skip_request(struct drm_i915_gem_request *request)
821ed7df
CW
2885{
2886 void *vaddr = request->ring->vaddr;
2887 u32 head;
2888
2889 /* As this request likely depends on state from the lost
2890 * context, clear out all the user operations leaving the
2891 * breadcrumb at the end (so we get the fence notifications).
2892 */
2893 head = request->head;
2894 if (request->postfix < head) {
2895 memset(vaddr + head, 0, request->ring->size - head);
2896 head = 0;
2897 }
2898 memset(vaddr + head, 0, request->postfix - head);
c0d5f32c
CW
2899
2900 dma_fence_set_error(&request->fence, -EIO);
821ed7df
CW
2901}
2902
36193acd
MK
2903static void engine_skip_context(struct drm_i915_gem_request *request)
2904{
2905 struct intel_engine_cs *engine = request->engine;
2906 struct i915_gem_context *hung_ctx = request->ctx;
2907 struct intel_timeline *timeline;
2908 unsigned long flags;
2909
2910 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2911
2912 spin_lock_irqsave(&engine->timeline->lock, flags);
2913 spin_lock(&timeline->lock);
2914
2915 list_for_each_entry_continue(request, &engine->timeline->requests, link)
2916 if (request->ctx == hung_ctx)
2917 skip_request(request);
2918
2919 list_for_each_entry(request, &timeline->requests, link)
2920 skip_request(request);
2921
2922 spin_unlock(&timeline->lock);
2923 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2924}
2925
61da5362
MK
2926/* Returns true if the request was guilty of hang */
2927static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
2928{
2929 /* Read once and return the resolution */
c64992e0 2930 const bool guilty = !i915_gem_request_completed(request);
61da5362 2931
71895a08
MK
2932 /* The guilty request will get skipped on a hung engine.
2933 *
2934 * Users of client default contexts do not rely on logical
2935 * state preserved between batches so it is safe to execute
2936 * queued requests following the hang. Non default contexts
2937 * rely on preserved state, so skipping a batch loses the
2938 * evolution of the state and it needs to be considered corrupted.
2939 * Executing more queued batches on top of corrupted state is
2940 * risky. But we take the risk by trying to advance through
2941 * the queued requests in order to make the client behaviour
2942 * more predictable around resets, by not throwing away random
2943 * amount of batches it has prepared for execution. Sophisticated
2944 * clients can use gem_reset_stats_ioctl and dma fence status
2945 * (exported via sync_file info ioctl on explicit fences) to observe
2946 * when it loses the context state and should rebuild accordingly.
2947 *
2948 * The context ban, and ultimately the client ban, mechanism are safety
2949 * valves if client submission ends up resulting in nothing more than
2950 * subsequent hangs.
2951 */
2952
61da5362
MK
2953 if (guilty) {
2954 i915_gem_context_mark_guilty(request->ctx);
2955 skip_request(request);
2956 } else {
2957 i915_gem_context_mark_innocent(request->ctx);
2958 dma_fence_set_error(&request->fence, -EAGAIN);
2959 }
2960
2961 return guilty;
2962}
2963
a1ef70e1
MT
2964void i915_gem_reset_engine(struct intel_engine_cs *engine,
2965 struct drm_i915_gem_request *request)
b6b0fac0 2966{
c0dcb203
CW
2967 if (request && i915_gem_reset_request(request)) {
2968 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2969 engine->name, request->global_seqno);
821ed7df 2970
c0dcb203
CW
2971 /* If this context is now banned, skip all pending requests. */
2972 if (i915_gem_context_is_banned(request->ctx))
2973 engine_skip_context(request);
2974 }
821ed7df
CW
2975
2976 /* Setup the CS to resume from the breadcrumb of the hung request */
2977 engine->reset_hw(engine, request);
4db080f9 2978}
aa60c664 2979
d8027093 2980void i915_gem_reset(struct drm_i915_private *dev_priv)
4db080f9 2981{
821ed7df 2982 struct intel_engine_cs *engine;
3b3f1650 2983 enum intel_engine_id id;
608c1a52 2984
4c7d62c6
CW
2985 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2986
821ed7df
CW
2987 i915_gem_retire_requests(dev_priv);
2988
2ae55738
CW
2989 for_each_engine(engine, dev_priv, id) {
2990 struct i915_gem_context *ctx;
2991
c64992e0 2992 i915_gem_reset_engine(engine, engine->hangcheck.active_request);
2ae55738
CW
2993 ctx = fetch_and_zero(&engine->last_retired_context);
2994 if (ctx)
2995 engine->context_unpin(engine, ctx);
2996 }
821ed7df 2997
4362f4f6 2998 i915_gem_restore_fences(dev_priv);
f2a91d1a
CW
2999
3000 if (dev_priv->gt.awake) {
3001 intel_sanitize_gt_powersave(dev_priv);
3002 intel_enable_gt_powersave(dev_priv);
3003 if (INTEL_GEN(dev_priv) >= 6)
3004 gen6_rps_busy(dev_priv);
3005 }
821ed7df
CW
3006}
3007
a1ef70e1
MT
3008void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3009{
3010 tasklet_enable(&engine->irq_tasklet);
3011 kthread_unpark(engine->breadcrumbs.signaler);
3012}
3013
d8027093
CW
3014void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3015{
1f7b847d
CW
3016 struct intel_engine_cs *engine;
3017 enum intel_engine_id id;
3018
d8027093 3019 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1f7b847d 3020
fe3288b5 3021 for_each_engine(engine, dev_priv, id) {
c64992e0 3022 engine->hangcheck.active_request = NULL;
a1ef70e1 3023 i915_gem_reset_finish_engine(engine);
fe3288b5 3024 }
d8027093
CW
3025}
3026
821ed7df
CW
3027static void nop_submit_request(struct drm_i915_gem_request *request)
3028{
3cd9442f 3029 dma_fence_set_error(&request->fence, -EIO);
3dcf93f7
CW
3030 i915_gem_request_submit(request);
3031 intel_engine_init_global_seqno(request->engine, request->global_seqno);
821ed7df
CW
3032}
3033
2a20d6f8 3034static void engine_set_wedged(struct intel_engine_cs *engine)
821ed7df 3035{
3cd9442f
CW
3036 struct drm_i915_gem_request *request;
3037 unsigned long flags;
3038
20e4933c
CW
3039 /* We need to be sure that no thread is running the old callback as
3040 * we install the nop handler (otherwise we would submit a request
3041 * to hardware that will never complete). In order to prevent this
3042 * race, we wait until the machine is idle before making the swap
3043 * (using stop_machine()).
3044 */
821ed7df 3045 engine->submit_request = nop_submit_request;
70c2a24d 3046
3cd9442f
CW
3047 /* Mark all executing requests as skipped */
3048 spin_lock_irqsave(&engine->timeline->lock, flags);
3049 list_for_each_entry(request, &engine->timeline->requests, link)
36703e79
CW
3050 if (!i915_gem_request_completed(request))
3051 dma_fence_set_error(&request->fence, -EIO);
3cd9442f
CW
3052 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3053
dcb4c12a
OM
3054 /*
3055 * Clear the execlists queue up before freeing the requests, as those
3056 * are the ones that keep the context and ringbuffer backing objects
3057 * pinned in place.
3058 */
dcb4c12a 3059
7de1691a 3060 if (i915.enable_execlists) {
77f0d0e9 3061 struct execlist_port *port = engine->execlist_port;
663f71e7 3062 unsigned long flags;
77f0d0e9 3063 unsigned int n;
663f71e7
CW
3064
3065 spin_lock_irqsave(&engine->timeline->lock, flags);
3066
77f0d0e9
CW
3067 for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
3068 i915_gem_request_put(port_request(&port[n]));
70c2a24d 3069 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
20311bd3
CW
3070 engine->execlist_queue = RB_ROOT;
3071 engine->execlist_first = NULL;
663f71e7
CW
3072
3073 spin_unlock_irqrestore(&engine->timeline->lock, flags);
4ee056f4
CW
3074
3075 /* The port is checked prior to scheduling a tasklet, but
3076 * just in case we have suspended the tasklet to do the
3077 * wedging make sure that when it wakes, it decides there
3078 * is no work to do by clearing the irq_posted bit.
3079 */
3080 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
dcb4c12a 3081 }
5e32d748
CW
3082
3083 /* Mark all pending requests as complete so that any concurrent
3084 * (lockless) lookup doesn't try and wait upon the request as we
3085 * reset it.
3086 */
3087 intel_engine_init_global_seqno(engine,
3088 intel_engine_last_submit(engine));
673a394b
EA
3089}
3090
20e4933c 3091static int __i915_gem_set_wedged_BKL(void *data)
673a394b 3092{
20e4933c 3093 struct drm_i915_private *i915 = data;
e2f80391 3094 struct intel_engine_cs *engine;
3b3f1650 3095 enum intel_engine_id id;
673a394b 3096
36703e79 3097 set_bit(I915_WEDGED, &i915->gpu_error.flags);
20e4933c 3098 for_each_engine(engine, i915, id)
2a20d6f8 3099 engine_set_wedged(engine);
20e4933c
CW
3100
3101 return 0;
3102}
3103
3104void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
3105{
20e4933c 3106 stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
673a394b
EA
3107}
3108
2e8f9d32
CW
3109bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3110{
3111 struct i915_gem_timeline *tl;
3112 int i;
3113
3114 lockdep_assert_held(&i915->drm.struct_mutex);
3115 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3116 return true;
3117
3118 /* Before unwedging, make sure that all pending operations
3119 * are flushed and errored out - we may have requests waiting upon
3120 * third party fences. We marked all inflight requests as EIO, and
3121 * every execbuf since returned EIO, for consistency we want all
3122 * the currently pending requests to also be marked as EIO, which
3123 * is done inside our nop_submit_request - and so we must wait.
3124 *
3125 * No more can be submitted until we reset the wedged bit.
3126 */
3127 list_for_each_entry(tl, &i915->gt.timelines, link) {
3128 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3129 struct drm_i915_gem_request *rq;
3130
3131 rq = i915_gem_active_peek(&tl->engine[i].last_request,
3132 &i915->drm.struct_mutex);
3133 if (!rq)
3134 continue;
3135
3136 /* We can't use our normal waiter as we want to
3137 * avoid recursively trying to handle the current
3138 * reset. The basic dma_fence_default_wait() installs
3139 * a callback for dma_fence_signal(), which is
3140 * triggered by our nop handler (indirectly, the
3141 * callback enables the signaler thread which is
3142 * woken by the nop_submit_request() advancing the seqno
3143 * and when the seqno passes the fence, the signaler
3144 * then signals the fence waking us up).
3145 */
3146 if (dma_fence_default_wait(&rq->fence, true,
3147 MAX_SCHEDULE_TIMEOUT) < 0)
3148 return false;
3149 }
3150 }
3151
3152 /* Undo nop_submit_request. We prevent all new i915 requests from
3153 * being queued (by disallowing execbuf whilst wedged) so having
3154 * waited for all active requests above, we know the system is idle
3155 * and do not have to worry about a thread being inside
3156 * engine->submit_request() as we swap over. So unlike installing
3157 * the nop_submit_request on reset, we can do this from normal
3158 * context and do not require stop_machine().
3159 */
3160 intel_engines_reset_default_submission(i915);
36703e79 3161 i915_gem_contexts_lost(i915);
2e8f9d32
CW
3162
3163 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3164 clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3165
3166 return true;
3167}
3168
75ef9da2 3169static void
673a394b
EA
3170i915_gem_retire_work_handler(struct work_struct *work)
3171{
b29c19b6 3172 struct drm_i915_private *dev_priv =
67d97da3 3173 container_of(work, typeof(*dev_priv), gt.retire_work.work);
91c8a326 3174 struct drm_device *dev = &dev_priv->drm;
673a394b 3175
891b48cf 3176 /* Come back later if the device is busy... */
b29c19b6 3177 if (mutex_trylock(&dev->struct_mutex)) {
67d97da3 3178 i915_gem_retire_requests(dev_priv);
b29c19b6 3179 mutex_unlock(&dev->struct_mutex);
673a394b 3180 }
67d97da3
CW
3181
3182 /* Keep the retire handler running until we are finally idle.
3183 * We do not need to do this test under locking as in the worst-case
3184 * we queue the retire worker once too often.
3185 */
c9615613
CW
3186 if (READ_ONCE(dev_priv->gt.awake)) {
3187 i915_queue_hangcheck(dev_priv);
67d97da3
CW
3188 queue_delayed_work(dev_priv->wq,
3189 &dev_priv->gt.retire_work,
bcb45086 3190 round_jiffies_up_relative(HZ));
c9615613 3191 }
b29c19b6 3192}
0a58705b 3193
b29c19b6
CW
3194static void
3195i915_gem_idle_work_handler(struct work_struct *work)
3196{
3197 struct drm_i915_private *dev_priv =
67d97da3 3198 container_of(work, typeof(*dev_priv), gt.idle_work.work);
91c8a326 3199 struct drm_device *dev = &dev_priv->drm;
67d97da3
CW
3200 bool rearm_hangcheck;
3201
3202 if (!READ_ONCE(dev_priv->gt.awake))
3203 return;
3204
0cb5670b
ID
3205 /*
3206 * Wait for last execlists context complete, but bail out in case a
3207 * new request is submitted.
3208 */
8490ae20 3209 wait_for(intel_engines_are_idle(dev_priv), 10);
28176ef4 3210 if (READ_ONCE(dev_priv->gt.active_requests))
67d97da3
CW
3211 return;
3212
3213 rearm_hangcheck =
3214 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3215
3216 if (!mutex_trylock(&dev->struct_mutex)) {
3217 /* Currently busy, come back later */
3218 mod_delayed_work(dev_priv->wq,
3219 &dev_priv->gt.idle_work,
3220 msecs_to_jiffies(50));
3221 goto out_rearm;
3222 }
3223
93c97dc1
ID
3224 /*
3225 * New request retired after this work handler started, extend active
3226 * period until next instance of the work.
3227 */
3228 if (work_pending(work))
3229 goto out_unlock;
3230
28176ef4 3231 if (dev_priv->gt.active_requests)
67d97da3 3232 goto out_unlock;
b29c19b6 3233
05425249 3234 if (wait_for(intel_engines_are_idle(dev_priv), 10))
0cb5670b
ID
3235 DRM_ERROR("Timeout waiting for engines to idle\n");
3236
6c067579 3237 intel_engines_mark_idle(dev_priv);
47979480 3238 i915_gem_timelines_mark_idle(dev_priv);
35c94185 3239
67d97da3
CW
3240 GEM_BUG_ON(!dev_priv->gt.awake);
3241 dev_priv->gt.awake = false;
3242 rearm_hangcheck = false;
30ecad77 3243
67d97da3
CW
3244 if (INTEL_GEN(dev_priv) >= 6)
3245 gen6_rps_idle(dev_priv);
3246 intel_runtime_pm_put(dev_priv);
3247out_unlock:
3248 mutex_unlock(&dev->struct_mutex);
b29c19b6 3249
67d97da3
CW
3250out_rearm:
3251 if (rearm_hangcheck) {
3252 GEM_BUG_ON(!dev_priv->gt.awake);
3253 i915_queue_hangcheck(dev_priv);
35c94185 3254 }
673a394b
EA
3255}
3256
b1f788c6
CW
3257void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3258{
3259 struct drm_i915_gem_object *obj = to_intel_bo(gem);
3260 struct drm_i915_file_private *fpriv = file->driver_priv;
3261 struct i915_vma *vma, *vn;
3262
3263 mutex_lock(&obj->base.dev->struct_mutex);
3264 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
3265 if (vma->vm->file == fpriv)
3266 i915_vma_close(vma);
f8a7fde4 3267
4ff4b44c
CW
3268 vma = obj->vma_hashed;
3269 if (vma && vma->ctx->file_priv == fpriv)
3270 i915_vma_unlink_ctx(vma);
3271
f8a7fde4
CW
3272 if (i915_gem_object_is_active(obj) &&
3273 !i915_gem_object_has_active_reference(obj)) {
3274 i915_gem_object_set_active_reference(obj);
3275 i915_gem_object_get(obj);
3276 }
b1f788c6
CW
3277 mutex_unlock(&obj->base.dev->struct_mutex);
3278}
3279
e95433c7
CW
3280static unsigned long to_wait_timeout(s64 timeout_ns)
3281{
3282 if (timeout_ns < 0)
3283 return MAX_SCHEDULE_TIMEOUT;
3284
3285 if (timeout_ns == 0)
3286 return 0;
3287
3288 return nsecs_to_jiffies_timeout(timeout_ns);
3289}
3290
23ba4fd0
BW
3291/**
3292 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
3293 * @dev: drm device pointer
3294 * @data: ioctl data blob
3295 * @file: drm file pointer
23ba4fd0
BW
3296 *
3297 * Returns 0 if successful, else an error is returned with the remaining time in
3298 * the timeout parameter.
3299 * -ETIME: object is still busy after timeout
3300 * -ERESTARTSYS: signal interrupted the wait
3301 * -ENONENT: object doesn't exist
3302 * Also possible, but rare:
3303 * -EAGAIN: GPU wedged
3304 * -ENOMEM: damn
3305 * -ENODEV: Internal IRQ fail
3306 * -E?: The add request failed
3307 *
3308 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3309 * non-zero timeout parameter the wait ioctl will wait for the given number of
3310 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3311 * without holding struct_mutex the object may become re-busied before this
3312 * function completes. A similar but shorter * race condition exists in the busy
3313 * ioctl
3314 */
3315int
3316i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3317{
3318 struct drm_i915_gem_wait *args = data;
3319 struct drm_i915_gem_object *obj;
e95433c7
CW
3320 ktime_t start;
3321 long ret;
23ba4fd0 3322
11b5d511
DV
3323 if (args->flags != 0)
3324 return -EINVAL;
3325
03ac0642 3326 obj = i915_gem_object_lookup(file, args->bo_handle);
033d549b 3327 if (!obj)
23ba4fd0 3328 return -ENOENT;
23ba4fd0 3329
e95433c7
CW
3330 start = ktime_get();
3331
3332 ret = i915_gem_object_wait(obj,
3333 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3334 to_wait_timeout(args->timeout_ns),
3335 to_rps_client(file));
3336
3337 if (args->timeout_ns > 0) {
3338 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3339 if (args->timeout_ns < 0)
3340 args->timeout_ns = 0;
c1d2061b
CW
3341
3342 /*
3343 * Apparently ktime isn't accurate enough and occasionally has a
3344 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3345 * things up to make the test happy. We allow up to 1 jiffy.
3346 *
3347 * This is a regression from the timespec->ktime conversion.
3348 */
3349 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3350 args->timeout_ns = 0;
b4716185
CW
3351 }
3352
f0cd5182 3353 i915_gem_object_put(obj);
ff865885 3354 return ret;
23ba4fd0
BW
3355}
3356
73cb9701 3357static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
4df2faf4 3358{
73cb9701 3359 int ret, i;
4df2faf4 3360
73cb9701
CW
3361 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3362 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3363 if (ret)
3364 return ret;
3365 }
62e63007 3366
73cb9701
CW
3367 return 0;
3368}
3369
25112b64
CW
3370static int wait_for_engine(struct intel_engine_cs *engine, int timeout_ms)
3371{
3372 return wait_for(intel_engine_is_idle(engine), timeout_ms);
3373}
3374
3375static int wait_for_engines(struct drm_i915_private *i915)
3376{
3377 struct intel_engine_cs *engine;
3378 enum intel_engine_id id;
3379
3380 for_each_engine(engine, i915, id) {
3381 if (GEM_WARN_ON(wait_for_engine(engine, 50))) {
3382 i915_gem_set_wedged(i915);
3383 return -EIO;
3384 }
3385
3386 GEM_BUG_ON(intel_engine_get_seqno(engine) !=
3387 intel_engine_last_submit(engine));
3388 }
3389
3390 return 0;
3391}
3392
73cb9701
CW
3393int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3394{
73cb9701
CW
3395 int ret;
3396
863e9fde
CW
3397 /* If the device is asleep, we have no requests outstanding */
3398 if (!READ_ONCE(i915->gt.awake))
3399 return 0;
3400
9caa34aa
CW
3401 if (flags & I915_WAIT_LOCKED) {
3402 struct i915_gem_timeline *tl;
3403
3404 lockdep_assert_held(&i915->drm.struct_mutex);
3405
3406 list_for_each_entry(tl, &i915->gt.timelines, link) {
3407 ret = wait_for_timeline(tl, flags);
3408 if (ret)
3409 return ret;
3410 }
72022a70
CW
3411
3412 i915_gem_retire_requests(i915);
3413 GEM_BUG_ON(i915->gt.active_requests);
25112b64
CW
3414
3415 ret = wait_for_engines(i915);
9caa34aa
CW
3416 } else {
3417 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
1ec14ad3 3418 }
4df2faf4 3419
25112b64 3420 return ret;
4df2faf4
DV
3421}
3422
5a97bcc6
CW
3423static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3424{
e27ab73d
CW
3425 /*
3426 * We manually flush the CPU domain so that we can override and
3427 * force the flush for the display, and perform it asyncrhonously.
3428 */
3429 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3430 if (obj->cache_dirty)
3431 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
5a97bcc6
CW
3432 obj->base.write_domain = 0;
3433}
3434
3435void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3436{
3437 if (!READ_ONCE(obj->pin_display))
3438 return;
3439
3440 mutex_lock(&obj->base.dev->struct_mutex);
3441 __i915_gem_object_flush_for_display(obj);
3442 mutex_unlock(&obj->base.dev->struct_mutex);
3443}
3444
e22d8e3c
CW
3445/**
3446 * Moves a single object to the WC read, and possibly write domain.
3447 * @obj: object to act on
3448 * @write: ask for write access or read only
3449 *
3450 * This function returns when the move is complete, including waiting on
3451 * flushes to occur.
3452 */
3453int
3454i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3455{
3456 int ret;
3457
3458 lockdep_assert_held(&obj->base.dev->struct_mutex);
3459
3460 ret = i915_gem_object_wait(obj,
3461 I915_WAIT_INTERRUPTIBLE |
3462 I915_WAIT_LOCKED |
3463 (write ? I915_WAIT_ALL : 0),
3464 MAX_SCHEDULE_TIMEOUT,
3465 NULL);
3466 if (ret)
3467 return ret;
3468
3469 if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3470 return 0;
3471
3472 /* Flush and acquire obj->pages so that we are coherent through
3473 * direct access in memory with previous cached writes through
3474 * shmemfs and that our cache domain tracking remains valid.
3475 * For example, if the obj->filp was moved to swap without us
3476 * being notified and releasing the pages, we would mistakenly
3477 * continue to assume that the obj remained out of the CPU cached
3478 * domain.
3479 */
3480 ret = i915_gem_object_pin_pages(obj);
3481 if (ret)
3482 return ret;
3483
3484 flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3485
3486 /* Serialise direct access to this object with the barriers for
3487 * coherent writes from the GPU, by effectively invalidating the
3488 * WC domain upon first access.
3489 */
3490 if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3491 mb();
3492
3493 /* It should now be out of any other write domains, and we can update
3494 * the domain values for our changes.
3495 */
3496 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3497 obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3498 if (write) {
3499 obj->base.read_domains = I915_GEM_DOMAIN_WC;
3500 obj->base.write_domain = I915_GEM_DOMAIN_WC;
3501 obj->mm.dirty = true;
3502 }
3503
3504 i915_gem_object_unpin_pages(obj);
3505 return 0;
3506}
3507
2ef7eeaa
EA
3508/**
3509 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3510 * @obj: object to act on
3511 * @write: ask for write access or read only
2ef7eeaa
EA
3512 *
3513 * This function returns when the move is complete, including waiting on
3514 * flushes to occur.
3515 */
79e53945 3516int
2021746e 3517i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3518{
e47c68e9 3519 int ret;
2ef7eeaa 3520
e95433c7 3521 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3522
e95433c7
CW
3523 ret = i915_gem_object_wait(obj,
3524 I915_WAIT_INTERRUPTIBLE |
3525 I915_WAIT_LOCKED |
3526 (write ? I915_WAIT_ALL : 0),
3527 MAX_SCHEDULE_TIMEOUT,
3528 NULL);
88241785
CW
3529 if (ret)
3530 return ret;
3531
c13d87ea
CW
3532 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3533 return 0;
3534
43566ded
CW
3535 /* Flush and acquire obj->pages so that we are coherent through
3536 * direct access in memory with previous cached writes through
3537 * shmemfs and that our cache domain tracking remains valid.
3538 * For example, if the obj->filp was moved to swap without us
3539 * being notified and releasing the pages, we would mistakenly
3540 * continue to assume that the obj remained out of the CPU cached
3541 * domain.
3542 */
a4f5ea64 3543 ret = i915_gem_object_pin_pages(obj);
43566ded
CW
3544 if (ret)
3545 return ret;
3546
ef74921b 3547 flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
1c5d22f7 3548
d0a57789
CW
3549 /* Serialise direct access to this object with the barriers for
3550 * coherent writes from the GPU, by effectively invalidating the
3551 * GTT domain upon first access.
3552 */
3553 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3554 mb();
3555
e47c68e9
EA
3556 /* It should now be out of any other write domains, and we can update
3557 * the domain values for our changes.
3558 */
40e62d5d 3559 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 3560 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3561 if (write) {
05394f39
CW
3562 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3563 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
a4f5ea64 3564 obj->mm.dirty = true;
2ef7eeaa
EA
3565 }
3566
a4f5ea64 3567 i915_gem_object_unpin_pages(obj);
e47c68e9
EA
3568 return 0;
3569}
3570
ef55f92a
CW
3571/**
3572 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
3573 * @obj: object to act on
3574 * @cache_level: new cache level to set for the object
ef55f92a
CW
3575 *
3576 * After this function returns, the object will be in the new cache-level
3577 * across all GTT and the contents of the backing storage will be coherent,
3578 * with respect to the new cache-level. In order to keep the backing storage
3579 * coherent for all users, we only allow a single cache level to be set
3580 * globally on the object and prevent it from being changed whilst the
3581 * hardware is reading from the object. That is if the object is currently
3582 * on the scanout it will be set to uncached (or equivalent display
3583 * cache coherency) and all non-MOCS GPU access will also be uncached so
3584 * that all direct access to the scanout remains coherent.
3585 */
e4ffd173
CW
3586int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3587 enum i915_cache_level cache_level)
3588{
aa653a68 3589 struct i915_vma *vma;
a6a7cc4b 3590 int ret;
e4ffd173 3591
4c7d62c6
CW
3592 lockdep_assert_held(&obj->base.dev->struct_mutex);
3593
e4ffd173 3594 if (obj->cache_level == cache_level)
a6a7cc4b 3595 return 0;
e4ffd173 3596
ef55f92a
CW
3597 /* Inspect the list of currently bound VMA and unbind any that would
3598 * be invalid given the new cache-level. This is principally to
3599 * catch the issue of the CS prefetch crossing page boundaries and
3600 * reading an invalid PTE on older architectures.
3601 */
aa653a68
CW
3602restart:
3603 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3604 if (!drm_mm_node_allocated(&vma->node))
3605 continue;
3606
20dfbde4 3607 if (i915_vma_is_pinned(vma)) {
ef55f92a
CW
3608 DRM_DEBUG("can not change the cache level of pinned objects\n");
3609 return -EBUSY;
3610 }
3611
aa653a68
CW
3612 if (i915_gem_valid_gtt_space(vma, cache_level))
3613 continue;
3614
3615 ret = i915_vma_unbind(vma);
3616 if (ret)
3617 return ret;
3618
3619 /* As unbinding may affect other elements in the
3620 * obj->vma_list (due to side-effects from retiring
3621 * an active vma), play safe and restart the iterator.
3622 */
3623 goto restart;
42d6ab48
CW
3624 }
3625
ef55f92a
CW
3626 /* We can reuse the existing drm_mm nodes but need to change the
3627 * cache-level on the PTE. We could simply unbind them all and
3628 * rebind with the correct cache-level on next use. However since
3629 * we already have a valid slot, dma mapping, pages etc, we may as
3630 * rewrite the PTE in the belief that doing so tramples upon less
3631 * state and so involves less work.
3632 */
15717de2 3633 if (obj->bind_count) {
ef55f92a
CW
3634 /* Before we change the PTE, the GPU must not be accessing it.
3635 * If we wait upon the object, we know that all the bound
3636 * VMA are no longer active.
3637 */
e95433c7
CW
3638 ret = i915_gem_object_wait(obj,
3639 I915_WAIT_INTERRUPTIBLE |
3640 I915_WAIT_LOCKED |
3641 I915_WAIT_ALL,
3642 MAX_SCHEDULE_TIMEOUT,
3643 NULL);
e4ffd173
CW
3644 if (ret)
3645 return ret;
3646
0031fb96
TU
3647 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3648 cache_level != I915_CACHE_NONE) {
ef55f92a
CW
3649 /* Access to snoopable pages through the GTT is
3650 * incoherent and on some machines causes a hard
3651 * lockup. Relinquish the CPU mmaping to force
3652 * userspace to refault in the pages and we can
3653 * then double check if the GTT mapping is still
3654 * valid for that pointer access.
3655 */
3656 i915_gem_release_mmap(obj);
3657
3658 /* As we no longer need a fence for GTT access,
3659 * we can relinquish it now (and so prevent having
3660 * to steal a fence from someone else on the next
3661 * fence request). Note GPU activity would have
3662 * dropped the fence as all snoopable access is
3663 * supposed to be linear.
3664 */
49ef5294
CW
3665 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3666 ret = i915_vma_put_fence(vma);
3667 if (ret)
3668 return ret;
3669 }
ef55f92a
CW
3670 } else {
3671 /* We either have incoherent backing store and
3672 * so no GTT access or the architecture is fully
3673 * coherent. In such cases, existing GTT mmaps
3674 * ignore the cache bit in the PTE and we can
3675 * rewrite it without confusing the GPU or having
3676 * to force userspace to fault back in its mmaps.
3677 */
e4ffd173
CW
3678 }
3679
1c7f4bca 3680 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3681 if (!drm_mm_node_allocated(&vma->node))
3682 continue;
3683
3684 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3685 if (ret)
3686 return ret;
3687 }
e4ffd173
CW
3688 }
3689
1c7f4bca 3690 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
3691 vma->node.color = cache_level;
3692 obj->cache_level = cache_level;
7fc92e96 3693 obj->cache_coherent = i915_gem_object_is_coherent(obj);
e27ab73d 3694 obj->cache_dirty = true; /* Always invalidate stale cachelines */
2c22569b 3695
e4ffd173
CW
3696 return 0;
3697}
3698
199adf40
BW
3699int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3700 struct drm_file *file)
e6994aee 3701{
199adf40 3702 struct drm_i915_gem_caching *args = data;
e6994aee 3703 struct drm_i915_gem_object *obj;
fbbd37b3 3704 int err = 0;
e6994aee 3705
fbbd37b3
CW
3706 rcu_read_lock();
3707 obj = i915_gem_object_lookup_rcu(file, args->handle);
3708 if (!obj) {
3709 err = -ENOENT;
3710 goto out;
3711 }
e6994aee 3712
651d794f
CW
3713 switch (obj->cache_level) {
3714 case I915_CACHE_LLC:
3715 case I915_CACHE_L3_LLC:
3716 args->caching = I915_CACHING_CACHED;
3717 break;
3718
4257d3ba
CW
3719 case I915_CACHE_WT:
3720 args->caching = I915_CACHING_DISPLAY;
3721 break;
3722
651d794f
CW
3723 default:
3724 args->caching = I915_CACHING_NONE;
3725 break;
3726 }
fbbd37b3
CW
3727out:
3728 rcu_read_unlock();
3729 return err;
e6994aee
CW
3730}
3731
199adf40
BW
3732int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3733 struct drm_file *file)
e6994aee 3734{
9c870d03 3735 struct drm_i915_private *i915 = to_i915(dev);
199adf40 3736 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3737 struct drm_i915_gem_object *obj;
3738 enum i915_cache_level level;
d65415df 3739 int ret = 0;
e6994aee 3740
199adf40
BW
3741 switch (args->caching) {
3742 case I915_CACHING_NONE:
e6994aee
CW
3743 level = I915_CACHE_NONE;
3744 break;
199adf40 3745 case I915_CACHING_CACHED:
e5756c10
ID
3746 /*
3747 * Due to a HW issue on BXT A stepping, GPU stores via a
3748 * snooped mapping may leave stale data in a corresponding CPU
3749 * cacheline, whereas normally such cachelines would get
3750 * invalidated.
3751 */
9c870d03 3752 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
e5756c10
ID
3753 return -ENODEV;
3754
e6994aee
CW
3755 level = I915_CACHE_LLC;
3756 break;
4257d3ba 3757 case I915_CACHING_DISPLAY:
9c870d03 3758 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4257d3ba 3759 break;
e6994aee
CW
3760 default:
3761 return -EINVAL;
3762 }
3763
d65415df
CW
3764 obj = i915_gem_object_lookup(file, args->handle);
3765 if (!obj)
3766 return -ENOENT;
3767
3768 if (obj->cache_level == level)
3769 goto out;
3770
3771 ret = i915_gem_object_wait(obj,
3772 I915_WAIT_INTERRUPTIBLE,
3773 MAX_SCHEDULE_TIMEOUT,
3774 to_rps_client(file));
3bc2913e 3775 if (ret)
d65415df 3776 goto out;
3bc2913e 3777
d65415df
CW
3778 ret = i915_mutex_lock_interruptible(dev);
3779 if (ret)
3780 goto out;
e6994aee
CW
3781
3782 ret = i915_gem_object_set_cache_level(obj, level);
e6994aee 3783 mutex_unlock(&dev->struct_mutex);
d65415df
CW
3784
3785out:
3786 i915_gem_object_put(obj);
e6994aee
CW
3787 return ret;
3788}
3789
b9241ea3 3790/*
2da3b9b9
CW
3791 * Prepare buffer for display plane (scanout, cursors, etc).
3792 * Can be called from an uninterruptible phase (modesetting) and allows
3793 * any flushes to be pipelined (for pageflips).
b9241ea3 3794 */
058d88c4 3795struct i915_vma *
2da3b9b9
CW
3796i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3797 u32 alignment,
e6617330 3798 const struct i915_ggtt_view *view)
b9241ea3 3799{
058d88c4 3800 struct i915_vma *vma;
b9241ea3
ZW
3801 int ret;
3802
4c7d62c6
CW
3803 lockdep_assert_held(&obj->base.dev->struct_mutex);
3804
cc98b413
CW
3805 /* Mark the pin_display early so that we account for the
3806 * display coherency whilst setting up the cache domains.
3807 */
8a0c39b1 3808 obj->pin_display++;
cc98b413 3809
a7ef0640
EA
3810 /* The display engine is not coherent with the LLC cache on gen6. As
3811 * a result, we make sure that the pinning that is about to occur is
3812 * done with uncached PTEs. This is lowest common denominator for all
3813 * chipsets.
3814 *
3815 * However for gen6+, we could do better by using the GFDT bit instead
3816 * of uncaching, which would allow us to flush all the LLC-cached data
3817 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3818 */
651d794f 3819 ret = i915_gem_object_set_cache_level(obj,
8652744b
TU
3820 HAS_WT(to_i915(obj->base.dev)) ?
3821 I915_CACHE_WT : I915_CACHE_NONE);
058d88c4
CW
3822 if (ret) {
3823 vma = ERR_PTR(ret);
cc98b413 3824 goto err_unpin_display;
058d88c4 3825 }
a7ef0640 3826
2da3b9b9
CW
3827 /* As the user may map the buffer once pinned in the display plane
3828 * (e.g. libkms for the bootup splash), we have to ensure that we
2efb813d
CW
3829 * always use map_and_fenceable for all scanout buffers. However,
3830 * it may simply be too big to fit into mappable, in which case
3831 * put it anyway and hope that userspace can cope (but always first
3832 * try to preserve the existing ABI).
2da3b9b9 3833 */
2efb813d 3834 vma = ERR_PTR(-ENOSPC);
47a8e3f6 3835 if (!view || view->type == I915_GGTT_VIEW_NORMAL)
2efb813d
CW
3836 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3837 PIN_MAPPABLE | PIN_NONBLOCK);
767a222e
CW
3838 if (IS_ERR(vma)) {
3839 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3840 unsigned int flags;
3841
3842 /* Valleyview is definitely limited to scanning out the first
3843 * 512MiB. Lets presume this behaviour was inherited from the
3844 * g4x display engine and that all earlier gen are similarly
3845 * limited. Testing suggests that it is a little more
3846 * complicated than this. For example, Cherryview appears quite
3847 * happy to scanout from anywhere within its global aperture.
3848 */
3849 flags = 0;
3850 if (HAS_GMCH_DISPLAY(i915))
3851 flags = PIN_MAPPABLE;
3852 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3853 }
058d88c4 3854 if (IS_ERR(vma))
cc98b413 3855 goto err_unpin_display;
2da3b9b9 3856
d8923dcf
CW
3857 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3858
a6a7cc4b 3859 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
5a97bcc6 3860 __i915_gem_object_flush_for_display(obj);
d59b21ec 3861 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
b118c1e3 3862
2da3b9b9
CW
3863 /* It should now be out of any other write domains, and we can update
3864 * the domain values for our changes.
3865 */
05394f39 3866 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3 3867
058d88c4 3868 return vma;
cc98b413
CW
3869
3870err_unpin_display:
8a0c39b1 3871 obj->pin_display--;
058d88c4 3872 return vma;
cc98b413
CW
3873}
3874
3875void
058d88c4 3876i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
cc98b413 3877{
49d73912 3878 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4c7d62c6 3879
058d88c4 3880 if (WARN_ON(vma->obj->pin_display == 0))
8a0c39b1
TU
3881 return;
3882
d8923dcf 3883 if (--vma->obj->pin_display == 0)
f51455d4 3884 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
e6617330 3885
383d5823 3886 /* Bump the LRU to try and avoid premature eviction whilst flipping */
befedbb7 3887 i915_gem_object_bump_inactive_ggtt(vma->obj);
383d5823 3888
058d88c4 3889 i915_vma_unpin(vma);
b9241ea3
ZW
3890}
3891
e47c68e9
EA
3892/**
3893 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
3894 * @obj: object to act on
3895 * @write: requesting write or read-only access
e47c68e9
EA
3896 *
3897 * This function returns when the move is complete, including waiting on
3898 * flushes to occur.
3899 */
dabdfe02 3900int
919926ae 3901i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3902{
e47c68e9
EA
3903 int ret;
3904
e95433c7 3905 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3906
e95433c7
CW
3907 ret = i915_gem_object_wait(obj,
3908 I915_WAIT_INTERRUPTIBLE |
3909 I915_WAIT_LOCKED |
3910 (write ? I915_WAIT_ALL : 0),
3911 MAX_SCHEDULE_TIMEOUT,
3912 NULL);
88241785
CW
3913 if (ret)
3914 return ret;
3915
ef74921b 3916 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
2ef7eeaa 3917
e47c68e9 3918 /* Flush the CPU cache if it's still invalid. */
05394f39 3919 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
57822dc6 3920 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
05394f39 3921 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3922 }
3923
3924 /* It should now be out of any other write domains, and we can update
3925 * the domain values for our changes.
3926 */
e27ab73d 3927 GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e47c68e9
EA
3928
3929 /* If we're writing through the CPU, then the GPU read domains will
3930 * need to be invalidated at next use.
3931 */
e27ab73d
CW
3932 if (write)
3933 __start_cpu_write(obj);
2ef7eeaa
EA
3934
3935 return 0;
3936}
3937
673a394b
EA
3938/* Throttle our rendering by waiting until the ring has completed our requests
3939 * emitted over 20 msec ago.
3940 *
b962442e
EA
3941 * Note that if we were to use the current jiffies each time around the loop,
3942 * we wouldn't escape the function with any frames outstanding if the time to
3943 * render a frame was over 20ms.
3944 *
673a394b
EA
3945 * This should get us reasonable parallelism between CPU and GPU but also
3946 * relatively low latency when blocking on a particular request to finish.
3947 */
40a5f0de 3948static int
f787a5f5 3949i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3950{
fac5e23e 3951 struct drm_i915_private *dev_priv = to_i915(dev);
f787a5f5 3952 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 3953 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 3954 struct drm_i915_gem_request *request, *target = NULL;
e95433c7 3955 long ret;
93533c29 3956
f4457ae7
CW
3957 /* ABI: return -EIO if already wedged */
3958 if (i915_terminally_wedged(&dev_priv->gpu_error))
3959 return -EIO;
e110e8d6 3960
1c25595f 3961 spin_lock(&file_priv->mm.lock);
c8659efa 3962 list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
b962442e
EA
3963 if (time_after_eq(request->emitted_jiffies, recent_enough))
3964 break;
40a5f0de 3965
c8659efa
CW
3966 if (target) {
3967 list_del(&target->client_link);
3968 target->file_priv = NULL;
3969 }
fcfa423c 3970
54fb2411 3971 target = request;
b962442e 3972 }
ff865885 3973 if (target)
e8a261ea 3974 i915_gem_request_get(target);
1c25595f 3975 spin_unlock(&file_priv->mm.lock);
40a5f0de 3976
54fb2411 3977 if (target == NULL)
f787a5f5 3978 return 0;
2bc43b5c 3979
e95433c7
CW
3980 ret = i915_wait_request(target,
3981 I915_WAIT_INTERRUPTIBLE,
3982 MAX_SCHEDULE_TIMEOUT);
e8a261ea 3983 i915_gem_request_put(target);
ff865885 3984
e95433c7 3985 return ret < 0 ? ret : 0;
40a5f0de
EA
3986}
3987
058d88c4 3988struct i915_vma *
ec7adb6e
JL
3989i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3990 const struct i915_ggtt_view *view,
91b2db6f 3991 u64 size,
2ffffd0f
CW
3992 u64 alignment,
3993 u64 flags)
ec7adb6e 3994{
ad16d2ed
CW
3995 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3996 struct i915_address_space *vm = &dev_priv->ggtt.base;
59bfa124
CW
3997 struct i915_vma *vma;
3998 int ret;
72e96d64 3999
4c7d62c6
CW
4000 lockdep_assert_held(&obj->base.dev->struct_mutex);
4001
718659a6 4002 vma = i915_vma_instance(obj, vm, view);
e0216b76 4003 if (unlikely(IS_ERR(vma)))
058d88c4 4004 return vma;
59bfa124
CW
4005
4006 if (i915_vma_misplaced(vma, size, alignment, flags)) {
4007 if (flags & PIN_NONBLOCK &&
4008 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
058d88c4 4009 return ERR_PTR(-ENOSPC);
59bfa124 4010
ad16d2ed 4011 if (flags & PIN_MAPPABLE) {
ad16d2ed
CW
4012 /* If the required space is larger than the available
4013 * aperture, we will not able to find a slot for the
4014 * object and unbinding the object now will be in
4015 * vain. Worse, doing so may cause us to ping-pong
4016 * the object in and out of the Global GTT and
4017 * waste a lot of cycles under the mutex.
4018 */
944397f0 4019 if (vma->fence_size > dev_priv->ggtt.mappable_end)
ad16d2ed
CW
4020 return ERR_PTR(-E2BIG);
4021
4022 /* If NONBLOCK is set the caller is optimistically
4023 * trying to cache the full object within the mappable
4024 * aperture, and *must* have a fallback in place for
4025 * situations where we cannot bind the object. We
4026 * can be a little more lax here and use the fallback
4027 * more often to avoid costly migrations of ourselves
4028 * and other objects within the aperture.
4029 *
4030 * Half-the-aperture is used as a simple heuristic.
4031 * More interesting would to do search for a free
4032 * block prior to making the commitment to unbind.
4033 * That caters for the self-harm case, and with a
4034 * little more heuristics (e.g. NOFAULT, NOEVICT)
4035 * we could try to minimise harm to others.
4036 */
4037 if (flags & PIN_NONBLOCK &&
944397f0 4038 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
ad16d2ed
CW
4039 return ERR_PTR(-ENOSPC);
4040 }
4041
59bfa124
CW
4042 WARN(i915_vma_is_pinned(vma),
4043 "bo is already pinned in ggtt with incorrect alignment:"
05a20d09
CW
4044 " offset=%08x, req.alignment=%llx,"
4045 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4046 i915_ggtt_offset(vma), alignment,
59bfa124 4047 !!(flags & PIN_MAPPABLE),
05a20d09 4048 i915_vma_is_map_and_fenceable(vma));
59bfa124
CW
4049 ret = i915_vma_unbind(vma);
4050 if (ret)
058d88c4 4051 return ERR_PTR(ret);
59bfa124
CW
4052 }
4053
058d88c4
CW
4054 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4055 if (ret)
4056 return ERR_PTR(ret);
ec7adb6e 4057
058d88c4 4058 return vma;
673a394b
EA
4059}
4060
edf6b76f 4061static __always_inline unsigned int __busy_read_flag(unsigned int id)
3fdc13c7
CW
4062{
4063 /* Note that we could alias engines in the execbuf API, but
4064 * that would be very unwise as it prevents userspace from
4065 * fine control over engine selection. Ahem.
4066 *
4067 * This should be something like EXEC_MAX_ENGINE instead of
4068 * I915_NUM_ENGINES.
4069 */
4070 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4071 return 0x10000 << id;
4072}
4073
4074static __always_inline unsigned int __busy_write_id(unsigned int id)
4075{
70cb472c
CW
4076 /* The uABI guarantees an active writer is also amongst the read
4077 * engines. This would be true if we accessed the activity tracking
4078 * under the lock, but as we perform the lookup of the object and
4079 * its activity locklessly we can not guarantee that the last_write
4080 * being active implies that we have set the same engine flag from
4081 * last_read - hence we always set both read and write busy for
4082 * last_write.
4083 */
4084 return id | __busy_read_flag(id);
3fdc13c7
CW
4085}
4086
edf6b76f 4087static __always_inline unsigned int
d07f0e59 4088__busy_set_if_active(const struct dma_fence *fence,
3fdc13c7
CW
4089 unsigned int (*flag)(unsigned int id))
4090{
d07f0e59 4091 struct drm_i915_gem_request *rq;
3fdc13c7 4092
d07f0e59
CW
4093 /* We have to check the current hw status of the fence as the uABI
4094 * guarantees forward progress. We could rely on the idle worker
4095 * to eventually flush us, but to minimise latency just ask the
4096 * hardware.
1255501d 4097 *
d07f0e59 4098 * Note we only report on the status of native fences.
1255501d 4099 */
d07f0e59
CW
4100 if (!dma_fence_is_i915(fence))
4101 return 0;
4102
4103 /* opencode to_request() in order to avoid const warnings */
4104 rq = container_of(fence, struct drm_i915_gem_request, fence);
4105 if (i915_gem_request_completed(rq))
4106 return 0;
4107
1d39f281 4108 return flag(rq->engine->uabi_id);
3fdc13c7
CW
4109}
4110
edf6b76f 4111static __always_inline unsigned int
d07f0e59 4112busy_check_reader(const struct dma_fence *fence)
3fdc13c7 4113{
d07f0e59 4114 return __busy_set_if_active(fence, __busy_read_flag);
3fdc13c7
CW
4115}
4116
edf6b76f 4117static __always_inline unsigned int
d07f0e59 4118busy_check_writer(const struct dma_fence *fence)
3fdc13c7 4119{
d07f0e59
CW
4120 if (!fence)
4121 return 0;
4122
4123 return __busy_set_if_active(fence, __busy_write_id);
3fdc13c7
CW
4124}
4125
673a394b
EA
4126int
4127i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4128 struct drm_file *file)
673a394b
EA
4129{
4130 struct drm_i915_gem_busy *args = data;
05394f39 4131 struct drm_i915_gem_object *obj;
d07f0e59
CW
4132 struct reservation_object_list *list;
4133 unsigned int seq;
fbbd37b3 4134 int err;
673a394b 4135
d07f0e59 4136 err = -ENOENT;
fbbd37b3
CW
4137 rcu_read_lock();
4138 obj = i915_gem_object_lookup_rcu(file, args->handle);
d07f0e59 4139 if (!obj)
fbbd37b3 4140 goto out;
d1b851fc 4141
d07f0e59
CW
4142 /* A discrepancy here is that we do not report the status of
4143 * non-i915 fences, i.e. even though we may report the object as idle,
4144 * a call to set-domain may still stall waiting for foreign rendering.
4145 * This also means that wait-ioctl may report an object as busy,
4146 * where busy-ioctl considers it idle.
4147 *
4148 * We trade the ability to warn of foreign fences to report on which
4149 * i915 engines are active for the object.
4150 *
4151 * Alternatively, we can trade that extra information on read/write
4152 * activity with
4153 * args->busy =
4154 * !reservation_object_test_signaled_rcu(obj->resv, true);
4155 * to report the overall busyness. This is what the wait-ioctl does.
4156 *
4157 */
4158retry:
4159 seq = raw_read_seqcount(&obj->resv->seq);
426960be 4160
d07f0e59
CW
4161 /* Translate the exclusive fence to the READ *and* WRITE engine */
4162 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3fdc13c7 4163
d07f0e59
CW
4164 /* Translate shared fences to READ set of engines */
4165 list = rcu_dereference(obj->resv->fence);
4166 if (list) {
4167 unsigned int shared_count = list->shared_count, i;
3fdc13c7 4168
d07f0e59
CW
4169 for (i = 0; i < shared_count; ++i) {
4170 struct dma_fence *fence =
4171 rcu_dereference(list->shared[i]);
4172
4173 args->busy |= busy_check_reader(fence);
4174 }
426960be 4175 }
673a394b 4176
d07f0e59
CW
4177 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4178 goto retry;
4179
4180 err = 0;
fbbd37b3
CW
4181out:
4182 rcu_read_unlock();
4183 return err;
673a394b
EA
4184}
4185
4186int
4187i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4188 struct drm_file *file_priv)
4189{
0206e353 4190 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4191}
4192
3ef94daa
CW
4193int
4194i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4195 struct drm_file *file_priv)
4196{
fac5e23e 4197 struct drm_i915_private *dev_priv = to_i915(dev);
3ef94daa 4198 struct drm_i915_gem_madvise *args = data;
05394f39 4199 struct drm_i915_gem_object *obj;
1233e2db 4200 int err;
3ef94daa
CW
4201
4202 switch (args->madv) {
4203 case I915_MADV_DONTNEED:
4204 case I915_MADV_WILLNEED:
4205 break;
4206 default:
4207 return -EINVAL;
4208 }
4209
03ac0642 4210 obj = i915_gem_object_lookup(file_priv, args->handle);
1233e2db
CW
4211 if (!obj)
4212 return -ENOENT;
4213
4214 err = mutex_lock_interruptible(&obj->mm.lock);
4215 if (err)
4216 goto out;
3ef94daa 4217
a4f5ea64 4218 if (obj->mm.pages &&
3e510a8e 4219 i915_gem_object_is_tiled(obj) &&
656bfa3a 4220 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
bc0629a7
CW
4221 if (obj->mm.madv == I915_MADV_WILLNEED) {
4222 GEM_BUG_ON(!obj->mm.quirked);
a4f5ea64 4223 __i915_gem_object_unpin_pages(obj);
bc0629a7
CW
4224 obj->mm.quirked = false;
4225 }
4226 if (args->madv == I915_MADV_WILLNEED) {
2c3a3f44 4227 GEM_BUG_ON(obj->mm.quirked);
a4f5ea64 4228 __i915_gem_object_pin_pages(obj);
bc0629a7
CW
4229 obj->mm.quirked = true;
4230 }
656bfa3a
DV
4231 }
4232
a4f5ea64
CW
4233 if (obj->mm.madv != __I915_MADV_PURGED)
4234 obj->mm.madv = args->madv;
3ef94daa 4235
6c085a72 4236 /* if the object is no longer attached, discard its backing storage */
a4f5ea64 4237 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
2d7ef395
CW
4238 i915_gem_object_truncate(obj);
4239
a4f5ea64 4240 args->retained = obj->mm.madv != __I915_MADV_PURGED;
1233e2db 4241 mutex_unlock(&obj->mm.lock);
bb6baf76 4242
1233e2db 4243out:
f8c417cd 4244 i915_gem_object_put(obj);
1233e2db 4245 return err;
3ef94daa
CW
4246}
4247
5b8c8aec
CW
4248static void
4249frontbuffer_retire(struct i915_gem_active *active,
4250 struct drm_i915_gem_request *request)
4251{
4252 struct drm_i915_gem_object *obj =
4253 container_of(active, typeof(*obj), frontbuffer_write);
4254
d59b21ec 4255 intel_fb_obj_flush(obj, ORIGIN_CS);
5b8c8aec
CW
4256}
4257
37e680a1
CW
4258void i915_gem_object_init(struct drm_i915_gem_object *obj,
4259 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4260{
1233e2db
CW
4261 mutex_init(&obj->mm.lock);
4262
56cea323 4263 INIT_LIST_HEAD(&obj->global_link);
275f039d 4264 INIT_LIST_HEAD(&obj->userfault_link);
2f633156 4265 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4266 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4267
37e680a1
CW
4268 obj->ops = ops;
4269
d07f0e59
CW
4270 reservation_object_init(&obj->__builtin_resv);
4271 obj->resv = &obj->__builtin_resv;
4272
50349247 4273 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
5b8c8aec 4274 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
a4f5ea64
CW
4275
4276 obj->mm.madv = I915_MADV_WILLNEED;
4277 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4278 mutex_init(&obj->mm.get_page.lock);
0327d6ba 4279
f19ec8cb 4280 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
0327d6ba
CW
4281}
4282
37e680a1 4283static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3599a91c
TU
4284 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4285 I915_GEM_OBJECT_IS_SHRINKABLE,
7c55e2c5 4286
37e680a1
CW
4287 .get_pages = i915_gem_object_get_pages_gtt,
4288 .put_pages = i915_gem_object_put_pages_gtt,
7c55e2c5
CW
4289
4290 .pwrite = i915_gem_object_pwrite_gtt,
37e680a1
CW
4291};
4292
b4bcbe2a 4293struct drm_i915_gem_object *
12d79d78 4294i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
ac52bc56 4295{
c397b908 4296 struct drm_i915_gem_object *obj;
5949eac4 4297 struct address_space *mapping;
1a240d4d 4298 gfp_t mask;
fe3db79b 4299 int ret;
ac52bc56 4300
b4bcbe2a
CW
4301 /* There is a prevalence of the assumption that we fit the object's
4302 * page count inside a 32bit _signed_ variable. Let's document this and
4303 * catch if we ever need to fix it. In the meantime, if you do spot
4304 * such a local variable, please consider fixing!
4305 */
7a3ee5de 4306 if (size >> PAGE_SHIFT > INT_MAX)
b4bcbe2a
CW
4307 return ERR_PTR(-E2BIG);
4308
4309 if (overflows_type(size, obj->base.size))
4310 return ERR_PTR(-E2BIG);
4311
187685cb 4312 obj = i915_gem_object_alloc(dev_priv);
c397b908 4313 if (obj == NULL)
fe3db79b 4314 return ERR_PTR(-ENOMEM);
673a394b 4315
12d79d78 4316 ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
fe3db79b
CW
4317 if (ret)
4318 goto fail;
673a394b 4319
bed1ea95 4320 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
c0f86832 4321 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
bed1ea95
CW
4322 /* 965gm cannot relocate objects above 4GiB. */
4323 mask &= ~__GFP_HIGHMEM;
4324 mask |= __GFP_DMA32;
4325 }
4326
93c76a3d 4327 mapping = obj->base.filp->f_mapping;
bed1ea95 4328 mapping_set_gfp_mask(mapping, mask);
4846bf0c 4329 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
5949eac4 4330
37e680a1 4331 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4332
c397b908
DV
4333 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4334 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4335
0031fb96 4336 if (HAS_LLC(dev_priv)) {
3d29b842 4337 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4338 * cache) for about a 10% performance improvement
4339 * compared to uncached. Graphics requests other than
4340 * display scanout are coherent with the CPU in
4341 * accessing this cache. This means in this mode we
4342 * don't need to clflush on the CPU side, and on the
4343 * GPU side we only need to flush internal caches to
4344 * get data visible to the CPU.
4345 *
4346 * However, we maintain the display planes as UC, and so
4347 * need to rebind when first used as such.
4348 */
4349 obj->cache_level = I915_CACHE_LLC;
4350 } else
4351 obj->cache_level = I915_CACHE_NONE;
4352
7fc92e96
CW
4353 obj->cache_coherent = i915_gem_object_is_coherent(obj);
4354 obj->cache_dirty = !obj->cache_coherent;
e27ab73d 4355
d861e338
DV
4356 trace_i915_gem_object_create(obj);
4357
05394f39 4358 return obj;
fe3db79b
CW
4359
4360fail:
4361 i915_gem_object_free(obj);
fe3db79b 4362 return ERR_PTR(ret);
c397b908
DV
4363}
4364
340fbd8c
CW
4365static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4366{
4367 /* If we are the last user of the backing storage (be it shmemfs
4368 * pages or stolen etc), we know that the pages are going to be
4369 * immediately released. In this case, we can then skip copying
4370 * back the contents from the GPU.
4371 */
4372
a4f5ea64 4373 if (obj->mm.madv != I915_MADV_WILLNEED)
340fbd8c
CW
4374 return false;
4375
4376 if (obj->base.filp == NULL)
4377 return true;
4378
4379 /* At first glance, this looks racy, but then again so would be
4380 * userspace racing mmap against close. However, the first external
4381 * reference to the filp can only be obtained through the
4382 * i915_gem_mmap_ioctl() which safeguards us against the user
4383 * acquiring such a reference whilst we are in the middle of
4384 * freeing the object.
4385 */
4386 return atomic_long_read(&obj->base.filp->f_count) == 1;
4387}
4388
fbbd37b3
CW
4389static void __i915_gem_free_objects(struct drm_i915_private *i915,
4390 struct llist_node *freed)
673a394b 4391{
fbbd37b3 4392 struct drm_i915_gem_object *obj, *on;
673a394b 4393
fbbd37b3
CW
4394 mutex_lock(&i915->drm.struct_mutex);
4395 intel_runtime_pm_get(i915);
4396 llist_for_each_entry(obj, freed, freed) {
4397 struct i915_vma *vma, *vn;
4398
4399 trace_i915_gem_object_destroy(obj);
4400
4401 GEM_BUG_ON(i915_gem_object_is_active(obj));
4402 list_for_each_entry_safe(vma, vn,
4403 &obj->vma_list, obj_link) {
fbbd37b3
CW
4404 GEM_BUG_ON(i915_vma_is_active(vma));
4405 vma->flags &= ~I915_VMA_PIN_MASK;
4406 i915_vma_close(vma);
4407 }
db6c2b41
CW
4408 GEM_BUG_ON(!list_empty(&obj->vma_list));
4409 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
fbbd37b3 4410
56cea323 4411 list_del(&obj->global_link);
fbbd37b3
CW
4412 }
4413 intel_runtime_pm_put(i915);
4414 mutex_unlock(&i915->drm.struct_mutex);
4415
f2be9d68
CW
4416 cond_resched();
4417
fbbd37b3
CW
4418 llist_for_each_entry_safe(obj, on, freed, freed) {
4419 GEM_BUG_ON(obj->bind_count);
4420 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4421
4422 if (obj->ops->release)
4423 obj->ops->release(obj);
f65c9168 4424
fbbd37b3
CW
4425 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4426 atomic_set(&obj->mm.pages_pin_count, 0);
548625ee 4427 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
fbbd37b3
CW
4428 GEM_BUG_ON(obj->mm.pages);
4429
4430 if (obj->base.import_attach)
4431 drm_prime_gem_destroy(&obj->base, NULL);
4432
d07f0e59 4433 reservation_object_fini(&obj->__builtin_resv);
fbbd37b3
CW
4434 drm_gem_object_release(&obj->base);
4435 i915_gem_info_remove_obj(i915, obj->base.size);
4436
4437 kfree(obj->bit_17);
4438 i915_gem_object_free(obj);
4439 }
4440}
4441
4442static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4443{
4444 struct llist_node *freed;
4445
4446 freed = llist_del_all(&i915->mm.free_list);
4447 if (unlikely(freed))
4448 __i915_gem_free_objects(i915, freed);
4449}
4450
4451static void __i915_gem_free_work(struct work_struct *work)
4452{
4453 struct drm_i915_private *i915 =
4454 container_of(work, struct drm_i915_private, mm.free_work);
4455 struct llist_node *freed;
26e12f89 4456
b1f788c6
CW
4457 /* All file-owned VMA should have been released by this point through
4458 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4459 * However, the object may also be bound into the global GTT (e.g.
4460 * older GPUs without per-process support, or for direct access through
4461 * the GTT either for the user or for scanout). Those VMA still need to
4462 * unbound now.
4463 */
1488fc08 4464
5ad08be7 4465 while ((freed = llist_del_all(&i915->mm.free_list))) {
fbbd37b3 4466 __i915_gem_free_objects(i915, freed);
5ad08be7
CW
4467 if (need_resched())
4468 break;
4469 }
fbbd37b3 4470}
a071fa00 4471
fbbd37b3
CW
4472static void __i915_gem_free_object_rcu(struct rcu_head *head)
4473{
4474 struct drm_i915_gem_object *obj =
4475 container_of(head, typeof(*obj), rcu);
4476 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4477
4478 /* We can't simply use call_rcu() from i915_gem_free_object()
4479 * as we need to block whilst unbinding, and the call_rcu
4480 * task may be called from softirq context. So we take a
4481 * detour through a worker.
4482 */
4483 if (llist_add(&obj->freed, &i915->mm.free_list))
4484 schedule_work(&i915->mm.free_work);
4485}
656bfa3a 4486
fbbd37b3
CW
4487void i915_gem_free_object(struct drm_gem_object *gem_obj)
4488{
4489 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
a4f5ea64 4490
bc0629a7
CW
4491 if (obj->mm.quirked)
4492 __i915_gem_object_unpin_pages(obj);
4493
340fbd8c 4494 if (discard_backing_storage(obj))
a4f5ea64 4495 obj->mm.madv = I915_MADV_DONTNEED;
de151cf6 4496
fbbd37b3
CW
4497 /* Before we free the object, make sure any pure RCU-only
4498 * read-side critical sections are complete, e.g.
4499 * i915_gem_busy_ioctl(). For the corresponding synchronized
4500 * lookup see i915_gem_object_lookup_rcu().
4501 */
4502 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
673a394b
EA
4503}
4504
f8a7fde4
CW
4505void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4506{
4507 lockdep_assert_held(&obj->base.dev->struct_mutex);
4508
4509 GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4510 if (i915_gem_object_is_active(obj))
4511 i915_gem_object_set_active_reference(obj);
4512 else
4513 i915_gem_object_put(obj);
4514}
4515
3033acab
CW
4516static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4517{
4518 struct intel_engine_cs *engine;
4519 enum intel_engine_id id;
4520
4521 for_each_engine(engine, dev_priv, id)
f131e356
CW
4522 GEM_BUG_ON(engine->last_retired_context &&
4523 !i915_gem_context_is_kernel(engine->last_retired_context));
3033acab
CW
4524}
4525
24145517
CW
4526void i915_gem_sanitize(struct drm_i915_private *i915)
4527{
4528 /*
4529 * If we inherit context state from the BIOS or earlier occupants
4530 * of the GPU, the GPU may be in an inconsistent state when we
4531 * try to take over. The only way to remove the earlier state
4532 * is by resetting. However, resetting on earlier gen is tricky as
4533 * it may impact the display and we are uncertain about the stability
ea117b8d 4534 * of the reset, so this could be applied to even earlier gen.
24145517 4535 */
ea117b8d 4536 if (INTEL_GEN(i915) >= 5) {
24145517
CW
4537 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4538 WARN_ON(reset && reset != -ENODEV);
4539 }
4540}
4541
bf9e8429 4542int i915_gem_suspend(struct drm_i915_private *dev_priv)
29105ccc 4543{
bf9e8429 4544 struct drm_device *dev = &dev_priv->drm;
dcff85c8 4545 int ret;
28dfe52a 4546
c998e8a0 4547 intel_runtime_pm_get(dev_priv);
54b4f68f
CW
4548 intel_suspend_gt_powersave(dev_priv);
4549
45c5f202 4550 mutex_lock(&dev->struct_mutex);
5ab57c70
CW
4551
4552 /* We have to flush all the executing contexts to main memory so
4553 * that they can saved in the hibernation image. To ensure the last
4554 * context image is coherent, we have to switch away from it. That
4555 * leaves the dev_priv->kernel_context still active when
4556 * we actually suspend, and its image in memory may not match the GPU
4557 * state. Fortunately, the kernel_context is disposable and we do
4558 * not rely on its state.
4559 */
4560 ret = i915_gem_switch_to_kernel_context(dev_priv);
4561 if (ret)
c998e8a0 4562 goto err_unlock;
5ab57c70 4563
22dd3bb9
CW
4564 ret = i915_gem_wait_for_idle(dev_priv,
4565 I915_WAIT_INTERRUPTIBLE |
4566 I915_WAIT_LOCKED);
f7403347 4567 if (ret)
c998e8a0 4568 goto err_unlock;
f7403347 4569
3033acab 4570 assert_kernel_context_is_current(dev_priv);
829a0af2 4571 i915_gem_contexts_lost(dev_priv);
45c5f202
CW
4572 mutex_unlock(&dev->struct_mutex);
4573
63987bfe
SAK
4574 intel_guc_suspend(dev_priv);
4575
737b1506 4576 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
67d97da3 4577 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
bdeb9785
CW
4578
4579 /* As the idle_work is rearming if it detects a race, play safe and
4580 * repeat the flush until it is definitely idle.
4581 */
4582 while (flush_delayed_work(&dev_priv->gt.idle_work))
4583 ;
4584
bdcf120b
CW
4585 /* Assert that we sucessfully flushed all the work and
4586 * reset the GPU back to its idle, low power state.
4587 */
67d97da3 4588 WARN_ON(dev_priv->gt.awake);
05425249 4589 WARN_ON(!intel_engines_are_idle(dev_priv));
bdcf120b 4590
1c777c5d
ID
4591 /*
4592 * Neither the BIOS, ourselves or any other kernel
4593 * expects the system to be in execlists mode on startup,
4594 * so we need to reset the GPU back to legacy mode. And the only
4595 * known way to disable logical contexts is through a GPU reset.
4596 *
4597 * So in order to leave the system in a known default configuration,
4598 * always reset the GPU upon unload and suspend. Afterwards we then
4599 * clean up the GEM state tracking, flushing off the requests and
4600 * leaving the system in a known idle state.
4601 *
4602 * Note that is of the upmost importance that the GPU is idle and
4603 * all stray writes are flushed *before* we dismantle the backing
4604 * storage for the pinned objects.
4605 *
4606 * However, since we are uncertain that resetting the GPU on older
4607 * machines is a good idea, we don't - just in case it leaves the
4608 * machine in an unusable condition.
4609 */
24145517 4610 i915_gem_sanitize(dev_priv);
c998e8a0 4611 goto out_rpm_put;
1c777c5d 4612
c998e8a0 4613err_unlock:
45c5f202 4614 mutex_unlock(&dev->struct_mutex);
c998e8a0
CW
4615out_rpm_put:
4616 intel_runtime_pm_put(dev_priv);
45c5f202 4617 return ret;
673a394b
EA
4618}
4619
bf9e8429 4620void i915_gem_resume(struct drm_i915_private *dev_priv)
5ab57c70 4621{
bf9e8429 4622 struct drm_device *dev = &dev_priv->drm;
5ab57c70 4623
31ab49ab
ID
4624 WARN_ON(dev_priv->gt.awake);
4625
5ab57c70 4626 mutex_lock(&dev->struct_mutex);
275a991c 4627 i915_gem_restore_gtt_mappings(dev_priv);
5ab57c70
CW
4628
4629 /* As we didn't flush the kernel context before suspend, we cannot
4630 * guarantee that the context image is complete. So let's just reset
4631 * it and start again.
4632 */
821ed7df 4633 dev_priv->gt.resume(dev_priv);
5ab57c70
CW
4634
4635 mutex_unlock(&dev->struct_mutex);
4636}
4637
c6be607a 4638void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
f691e2f4 4639{
c6be607a 4640 if (INTEL_GEN(dev_priv) < 5 ||
f691e2f4
DV
4641 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4642 return;
4643
4644 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4645 DISP_TILE_SURFACE_SWIZZLING);
4646
5db94019 4647 if (IS_GEN5(dev_priv))
11782b02
DV
4648 return;
4649
f691e2f4 4650 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5db94019 4651 if (IS_GEN6(dev_priv))
6b26c86d 4652 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5db94019 4653 else if (IS_GEN7(dev_priv))
6b26c86d 4654 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5db94019 4655 else if (IS_GEN8(dev_priv))
31a5336e 4656 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4657 else
4658 BUG();
f691e2f4 4659}
e21af88d 4660
50a0bc90 4661static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
81e7f200 4662{
81e7f200
VS
4663 I915_WRITE(RING_CTL(base), 0);
4664 I915_WRITE(RING_HEAD(base), 0);
4665 I915_WRITE(RING_TAIL(base), 0);
4666 I915_WRITE(RING_START(base), 0);
4667}
4668
50a0bc90 4669static void init_unused_rings(struct drm_i915_private *dev_priv)
81e7f200 4670{
50a0bc90
TU
4671 if (IS_I830(dev_priv)) {
4672 init_unused_ring(dev_priv, PRB1_BASE);
4673 init_unused_ring(dev_priv, SRB0_BASE);
4674 init_unused_ring(dev_priv, SRB1_BASE);
4675 init_unused_ring(dev_priv, SRB2_BASE);
4676 init_unused_ring(dev_priv, SRB3_BASE);
4677 } else if (IS_GEN2(dev_priv)) {
4678 init_unused_ring(dev_priv, SRB0_BASE);
4679 init_unused_ring(dev_priv, SRB1_BASE);
4680 } else if (IS_GEN3(dev_priv)) {
4681 init_unused_ring(dev_priv, PRB1_BASE);
4682 init_unused_ring(dev_priv, PRB2_BASE);
81e7f200
VS
4683 }
4684}
4685
20a8a74a 4686static int __i915_gem_restart_engines(void *data)
4fc7c971 4687{
20a8a74a 4688 struct drm_i915_private *i915 = data;
e2f80391 4689 struct intel_engine_cs *engine;
3b3f1650 4690 enum intel_engine_id id;
20a8a74a
CW
4691 int err;
4692
4693 for_each_engine(engine, i915, id) {
4694 err = engine->init_hw(engine);
4695 if (err)
4696 return err;
4697 }
4698
4699 return 0;
4700}
4701
4702int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4703{
d200cda6 4704 int ret;
4fc7c971 4705
de867c20
CW
4706 dev_priv->gt.last_init_time = ktime_get();
4707
5e4f5189
CW
4708 /* Double layer security blanket, see i915_gem_init() */
4709 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4710
0031fb96 4711 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4712 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4713
772c2a51 4714 if (IS_HASWELL(dev_priv))
50a0bc90 4715 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
0bf21347 4716 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4717
6e266956 4718 if (HAS_PCH_NOP(dev_priv)) {
fd6b8f43 4719 if (IS_IVYBRIDGE(dev_priv)) {
6ba844b0
DV
4720 u32 temp = I915_READ(GEN7_MSG_CTL);
4721 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4722 I915_WRITE(GEN7_MSG_CTL, temp);
c6be607a 4723 } else if (INTEL_GEN(dev_priv) >= 7) {
6ba844b0
DV
4724 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4725 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4726 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4727 }
88a2b2a3
BW
4728 }
4729
c6be607a 4730 i915_gem_init_swizzling(dev_priv);
4fc7c971 4731
d5abdfda
DV
4732 /*
4733 * At least 830 can leave some of the unused rings
4734 * "active" (ie. head != tail) after resume which
4735 * will prevent c3 entry. Makes sure all unused rings
4736 * are totally idle.
4737 */
50a0bc90 4738 init_unused_rings(dev_priv);
d5abdfda 4739
ed54c1a1 4740 BUG_ON(!dev_priv->kernel_context);
90638cc1 4741
c6be607a 4742 ret = i915_ppgtt_init_hw(dev_priv);
4ad2fd88
JH
4743 if (ret) {
4744 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4745 goto out;
4746 }
4747
4748 /* Need to do basic initialisation of all rings first: */
20a8a74a
CW
4749 ret = __i915_gem_restart_engines(dev_priv);
4750 if (ret)
4751 goto out;
99433931 4752
bf9e8429 4753 intel_mocs_init_l3cc_table(dev_priv);
0ccdacf6 4754
b8991403
OM
4755 /* We can't enable contexts until all firmware is loaded */
4756 ret = intel_uc_init_hw(dev_priv);
4757 if (ret)
4758 goto out;
33a732f4 4759
5e4f5189
CW
4760out:
4761 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4762 return ret;
8187a2b7
ZN
4763}
4764
39df9190
CW
4765bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4766{
4767 if (INTEL_INFO(dev_priv)->gen < 6)
4768 return false;
4769
4770 /* TODO: make semaphores and Execlists play nicely together */
4771 if (i915.enable_execlists)
4772 return false;
4773
4774 if (value >= 0)
4775 return value;
4776
39df9190 4777 /* Enable semaphores on SNB when IO remapping is off */
80debff8 4778 if (IS_GEN6(dev_priv) && intel_vtd_active())
39df9190 4779 return false;
39df9190
CW
4780
4781 return true;
4782}
4783
bf9e8429 4784int i915_gem_init(struct drm_i915_private *dev_priv)
1070a42b 4785{
1070a42b
CW
4786 int ret;
4787
bf9e8429 4788 mutex_lock(&dev_priv->drm.struct_mutex);
d62b4892 4789
94312828 4790 dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
57822dc6 4791
a83014d3 4792 if (!i915.enable_execlists) {
821ed7df 4793 dev_priv->gt.resume = intel_legacy_submission_resume;
7e37f889 4794 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
454afebd 4795 } else {
821ed7df 4796 dev_priv->gt.resume = intel_lr_context_resume;
117897f4 4797 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
a83014d3
OM
4798 }
4799
5e4f5189
CW
4800 /* This is just a security blanket to placate dragons.
4801 * On some systems, we very sporadically observe that the first TLBs
4802 * used by the CS may be stale, despite us poking the TLB reset. If
4803 * we hold the forcewake during initialisation these problems
4804 * just magically go away.
4805 */
4806 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4807
8a2421bd
CW
4808 ret = i915_gem_init_userptr(dev_priv);
4809 if (ret)
4810 goto out_unlock;
f6b9d5ca
CW
4811
4812 ret = i915_gem_init_ggtt(dev_priv);
4813 if (ret)
4814 goto out_unlock;
d62b4892 4815
829a0af2 4816 ret = i915_gem_contexts_init(dev_priv);
7bcc3777
JN
4817 if (ret)
4818 goto out_unlock;
2fa48d8d 4819
bf9e8429 4820 ret = intel_engines_init(dev_priv);
35a57ffb 4821 if (ret)
7bcc3777 4822 goto out_unlock;
2fa48d8d 4823
bf9e8429 4824 ret = i915_gem_init_hw(dev_priv);
60990320 4825 if (ret == -EIO) {
7e21d648 4826 /* Allow engine initialisation to fail by marking the GPU as
60990320
CW
4827 * wedged. But we only want to do this where the GPU is angry,
4828 * for all other failure, such as an allocation failure, bail.
4829 */
4830 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
821ed7df 4831 i915_gem_set_wedged(dev_priv);
60990320 4832 ret = 0;
1070a42b 4833 }
7bcc3777
JN
4834
4835out_unlock:
5e4f5189 4836 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
bf9e8429 4837 mutex_unlock(&dev_priv->drm.struct_mutex);
1070a42b 4838
60990320 4839 return ret;
1070a42b
CW
4840}
4841
24145517
CW
4842void i915_gem_init_mmio(struct drm_i915_private *i915)
4843{
4844 i915_gem_sanitize(i915);
4845}
4846
8187a2b7 4847void
cb15d9f8 4848i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
8187a2b7 4849{
e2f80391 4850 struct intel_engine_cs *engine;
3b3f1650 4851 enum intel_engine_id id;
8187a2b7 4852
3b3f1650 4853 for_each_engine(engine, dev_priv, id)
117897f4 4854 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
4855}
4856
40ae4e16
ID
4857void
4858i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4859{
49ef5294 4860 int i;
40ae4e16
ID
4861
4862 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4863 !IS_CHERRYVIEW(dev_priv))
4864 dev_priv->num_fence_regs = 32;
73f67aa8
JN
4865 else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4866 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4867 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
40ae4e16
ID
4868 dev_priv->num_fence_regs = 16;
4869 else
4870 dev_priv->num_fence_regs = 8;
4871
c033666a 4872 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
4873 dev_priv->num_fence_regs =
4874 I915_READ(vgtif_reg(avail_rs.fence_num));
4875
4876 /* Initialize fence registers to zero */
49ef5294
CW
4877 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4878 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4879
4880 fence->i915 = dev_priv;
4881 fence->id = i;
4882 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4883 }
4362f4f6 4884 i915_gem_restore_fences(dev_priv);
40ae4e16 4885
4362f4f6 4886 i915_gem_detect_bit_6_swizzle(dev_priv);
40ae4e16
ID
4887}
4888
73cb9701 4889int
cb15d9f8 4890i915_gem_load_init(struct drm_i915_private *dev_priv)
673a394b 4891{
a933568e 4892 int err = -ENOMEM;
42dcedd4 4893
a933568e
TU
4894 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4895 if (!dev_priv->objects)
73cb9701 4896 goto err_out;
73cb9701 4897
a933568e
TU
4898 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4899 if (!dev_priv->vmas)
73cb9701 4900 goto err_objects;
73cb9701 4901
a933568e
TU
4902 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4903 SLAB_HWCACHE_ALIGN |
4904 SLAB_RECLAIM_ACCOUNT |
5f0d5a3a 4905 SLAB_TYPESAFE_BY_RCU);
a933568e 4906 if (!dev_priv->requests)
73cb9701 4907 goto err_vmas;
73cb9701 4908
52e54209
CW
4909 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4910 SLAB_HWCACHE_ALIGN |
4911 SLAB_RECLAIM_ACCOUNT);
4912 if (!dev_priv->dependencies)
4913 goto err_requests;
4914
c5cf9a91
CW
4915 dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
4916 if (!dev_priv->priorities)
4917 goto err_dependencies;
4918
73cb9701
CW
4919 mutex_lock(&dev_priv->drm.struct_mutex);
4920 INIT_LIST_HEAD(&dev_priv->gt.timelines);
bb89485e 4921 err = i915_gem_timeline_init__global(dev_priv);
73cb9701
CW
4922 mutex_unlock(&dev_priv->drm.struct_mutex);
4923 if (err)
c5cf9a91 4924 goto err_priorities;
673a394b 4925
fbbd37b3
CW
4926 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4927 init_llist_head(&dev_priv->mm.free_list);
6c085a72
CW
4928 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4929 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4930 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
275f039d 4931 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
67d97da3 4932 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
673a394b 4933 i915_gem_retire_work_handler);
67d97da3 4934 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
b29c19b6 4935 i915_gem_idle_work_handler);
1f15b76f 4936 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1f83fee0 4937 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4938
6f633402
JL
4939 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4940
b5add959 4941 spin_lock_init(&dev_priv->fb_tracking.lock);
73cb9701
CW
4942
4943 return 0;
4944
c5cf9a91
CW
4945err_priorities:
4946 kmem_cache_destroy(dev_priv->priorities);
52e54209
CW
4947err_dependencies:
4948 kmem_cache_destroy(dev_priv->dependencies);
73cb9701
CW
4949err_requests:
4950 kmem_cache_destroy(dev_priv->requests);
4951err_vmas:
4952 kmem_cache_destroy(dev_priv->vmas);
4953err_objects:
4954 kmem_cache_destroy(dev_priv->objects);
4955err_out:
4956 return err;
673a394b 4957}
71acb5eb 4958
cb15d9f8 4959void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
d64aa096 4960{
c4d4c1c6 4961 i915_gem_drain_freed_objects(dev_priv);
7d5d59e5 4962 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
c4d4c1c6 4963 WARN_ON(dev_priv->mm.object_count);
7d5d59e5 4964
ea84aa77
MA
4965 mutex_lock(&dev_priv->drm.struct_mutex);
4966 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4967 WARN_ON(!list_empty(&dev_priv->gt.timelines));
4968 mutex_unlock(&dev_priv->drm.struct_mutex);
4969
c5cf9a91 4970 kmem_cache_destroy(dev_priv->priorities);
52e54209 4971 kmem_cache_destroy(dev_priv->dependencies);
d64aa096
ID
4972 kmem_cache_destroy(dev_priv->requests);
4973 kmem_cache_destroy(dev_priv->vmas);
4974 kmem_cache_destroy(dev_priv->objects);
0eafec6d
CW
4975
4976 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4977 rcu_barrier();
d64aa096
ID
4978}
4979
6a800eab
CW
4980int i915_gem_freeze(struct drm_i915_private *dev_priv)
4981{
d0aa301a
CW
4982 /* Discard all purgeable objects, let userspace recover those as
4983 * required after resuming.
4984 */
6a800eab 4985 i915_gem_shrink_all(dev_priv);
6a800eab 4986
6a800eab
CW
4987 return 0;
4988}
4989
461fb99c
CW
4990int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4991{
4992 struct drm_i915_gem_object *obj;
7aab2d53
CW
4993 struct list_head *phases[] = {
4994 &dev_priv->mm.unbound_list,
4995 &dev_priv->mm.bound_list,
4996 NULL
4997 }, **p;
461fb99c
CW
4998
4999 /* Called just before we write the hibernation image.
5000 *
5001 * We need to update the domain tracking to reflect that the CPU
5002 * will be accessing all the pages to create and restore from the
5003 * hibernation, and so upon restoration those pages will be in the
5004 * CPU domain.
5005 *
5006 * To make sure the hibernation image contains the latest state,
5007 * we update that state just before writing out the image.
7aab2d53
CW
5008 *
5009 * To try and reduce the hibernation image, we manually shrink
d0aa301a 5010 * the objects as well, see i915_gem_freeze()
461fb99c
CW
5011 */
5012
6a800eab 5013 i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
17b93c40 5014 i915_gem_drain_freed_objects(dev_priv);
461fb99c 5015
d0aa301a 5016 mutex_lock(&dev_priv->drm.struct_mutex);
7aab2d53 5017 for (p = phases; *p; p++) {
e27ab73d
CW
5018 list_for_each_entry(obj, *p, global_link)
5019 __start_cpu_write(obj);
461fb99c 5020 }
6a800eab 5021 mutex_unlock(&dev_priv->drm.struct_mutex);
461fb99c
CW
5022
5023 return 0;
5024}
5025
f787a5f5 5026void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5027{
f787a5f5 5028 struct drm_i915_file_private *file_priv = file->driver_priv;
15f7bbc7 5029 struct drm_i915_gem_request *request;
b962442e
EA
5030
5031 /* Clean up our request list when the client is going away, so that
5032 * later retire_requests won't dereference our soon-to-be-gone
5033 * file_priv.
5034 */
1c25595f 5035 spin_lock(&file_priv->mm.lock);
c8659efa 5036 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
f787a5f5 5037 request->file_priv = NULL;
1c25595f 5038 spin_unlock(&file_priv->mm.lock);
b29c19b6
CW
5039}
5040
829a0af2 5041int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
b29c19b6
CW
5042{
5043 struct drm_i915_file_private *file_priv;
e422b888 5044 int ret;
b29c19b6 5045
c4c29d7b 5046 DRM_DEBUG("\n");
b29c19b6
CW
5047
5048 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5049 if (!file_priv)
5050 return -ENOMEM;
5051
5052 file->driver_priv = file_priv;
829a0af2 5053 file_priv->dev_priv = i915;
ab0e7ff9 5054 file_priv->file = file;
b29c19b6
CW
5055
5056 spin_lock_init(&file_priv->mm.lock);
5057 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5058
c80ff16e 5059 file_priv->bsd_engine = -1;
de1add36 5060
829a0af2 5061 ret = i915_gem_context_open(i915, file);
e422b888
BW
5062 if (ret)
5063 kfree(file_priv);
b29c19b6 5064
e422b888 5065 return ret;
b29c19b6
CW
5066}
5067
b680c37a
DV
5068/**
5069 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
5070 * @old: current GEM buffer for the frontbuffer slots
5071 * @new: new GEM buffer for the frontbuffer slots
5072 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
5073 *
5074 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5075 * from @old and setting them in @new. Both @old and @new can be NULL.
5076 */
a071fa00
DV
5077void i915_gem_track_fb(struct drm_i915_gem_object *old,
5078 struct drm_i915_gem_object *new,
5079 unsigned frontbuffer_bits)
5080{
faf5bf0a
CW
5081 /* Control of individual bits within the mask are guarded by
5082 * the owning plane->mutex, i.e. we can never see concurrent
5083 * manipulation of individual bits. But since the bitfield as a whole
5084 * is updated using RMW, we need to use atomics in order to update
5085 * the bits.
5086 */
5087 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5088 sizeof(atomic_t) * BITS_PER_BYTE);
5089
a071fa00 5090 if (old) {
faf5bf0a
CW
5091 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5092 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
a071fa00
DV
5093 }
5094
5095 if (new) {
faf5bf0a
CW
5096 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5097 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
a071fa00
DV
5098 }
5099}
5100
ea70299d
DG
5101/* Allocate a new GEM object and fill it with the supplied data */
5102struct drm_i915_gem_object *
12d79d78 5103i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
ea70299d
DG
5104 const void *data, size_t size)
5105{
5106 struct drm_i915_gem_object *obj;
be062fa4
CW
5107 struct file *file;
5108 size_t offset;
5109 int err;
ea70299d 5110
12d79d78 5111 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
fe3db79b 5112 if (IS_ERR(obj))
ea70299d
DG
5113 return obj;
5114
ce8ff099 5115 GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
ea70299d 5116
be062fa4
CW
5117 file = obj->base.filp;
5118 offset = 0;
5119 do {
5120 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5121 struct page *page;
5122 void *pgdata, *vaddr;
ea70299d 5123
be062fa4
CW
5124 err = pagecache_write_begin(file, file->f_mapping,
5125 offset, len, 0,
5126 &page, &pgdata);
5127 if (err < 0)
5128 goto fail;
ea70299d 5129
be062fa4
CW
5130 vaddr = kmap(page);
5131 memcpy(vaddr, data, len);
5132 kunmap(page);
5133
5134 err = pagecache_write_end(file, file->f_mapping,
5135 offset, len, len,
5136 page, pgdata);
5137 if (err < 0)
5138 goto fail;
5139
5140 size -= len;
5141 data += len;
5142 offset += len;
5143 } while (size);
ea70299d
DG
5144
5145 return obj;
5146
5147fail:
f8c417cd 5148 i915_gem_object_put(obj);
be062fa4 5149 return ERR_PTR(err);
ea70299d 5150}
96d77634
CW
5151
5152struct scatterlist *
5153i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5154 unsigned int n,
5155 unsigned int *offset)
5156{
a4f5ea64 5157 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
96d77634
CW
5158 struct scatterlist *sg;
5159 unsigned int idx, count;
5160
5161 might_sleep();
5162 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
a4f5ea64 5163 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
96d77634
CW
5164
5165 /* As we iterate forward through the sg, we record each entry in a
5166 * radixtree for quick repeated (backwards) lookups. If we have seen
5167 * this index previously, we will have an entry for it.
5168 *
5169 * Initial lookup is O(N), but this is amortized to O(1) for
5170 * sequential page access (where each new request is consecutive
5171 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5172 * i.e. O(1) with a large constant!
5173 */
5174 if (n < READ_ONCE(iter->sg_idx))
5175 goto lookup;
5176
5177 mutex_lock(&iter->lock);
5178
5179 /* We prefer to reuse the last sg so that repeated lookup of this
5180 * (or the subsequent) sg are fast - comparing against the last
5181 * sg is faster than going through the radixtree.
5182 */
5183
5184 sg = iter->sg_pos;
5185 idx = iter->sg_idx;
5186 count = __sg_page_count(sg);
5187
5188 while (idx + count <= n) {
5189 unsigned long exception, i;
5190 int ret;
5191
5192 /* If we cannot allocate and insert this entry, or the
5193 * individual pages from this range, cancel updating the
5194 * sg_idx so that on this lookup we are forced to linearly
5195 * scan onwards, but on future lookups we will try the
5196 * insertion again (in which case we need to be careful of
5197 * the error return reporting that we have already inserted
5198 * this index).
5199 */
5200 ret = radix_tree_insert(&iter->radix, idx, sg);
5201 if (ret && ret != -EEXIST)
5202 goto scan;
5203
5204 exception =
5205 RADIX_TREE_EXCEPTIONAL_ENTRY |
5206 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5207 for (i = 1; i < count; i++) {
5208 ret = radix_tree_insert(&iter->radix, idx + i,
5209 (void *)exception);
5210 if (ret && ret != -EEXIST)
5211 goto scan;
5212 }
5213
5214 idx += count;
5215 sg = ____sg_next(sg);
5216 count = __sg_page_count(sg);
5217 }
5218
5219scan:
5220 iter->sg_pos = sg;
5221 iter->sg_idx = idx;
5222
5223 mutex_unlock(&iter->lock);
5224
5225 if (unlikely(n < idx)) /* insertion completed by another thread */
5226 goto lookup;
5227
5228 /* In case we failed to insert the entry into the radixtree, we need
5229 * to look beyond the current sg.
5230 */
5231 while (idx + count <= n) {
5232 idx += count;
5233 sg = ____sg_next(sg);
5234 count = __sg_page_count(sg);
5235 }
5236
5237 *offset = n - idx;
5238 return sg;
5239
5240lookup:
5241 rcu_read_lock();
5242
5243 sg = radix_tree_lookup(&iter->radix, n);
5244 GEM_BUG_ON(!sg);
5245
5246 /* If this index is in the middle of multi-page sg entry,
5247 * the radixtree will contain an exceptional entry that points
5248 * to the start of that range. We will return the pointer to
5249 * the base page and the offset of this page within the
5250 * sg entry's range.
5251 */
5252 *offset = 0;
5253 if (unlikely(radix_tree_exception(sg))) {
5254 unsigned long base =
5255 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5256
5257 sg = radix_tree_lookup(&iter->radix, base);
5258 GEM_BUG_ON(!sg);
5259
5260 *offset = n - base;
5261 }
5262
5263 rcu_read_unlock();
5264
5265 return sg;
5266}
5267
5268struct page *
5269i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5270{
5271 struct scatterlist *sg;
5272 unsigned int offset;
5273
5274 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5275
5276 sg = i915_gem_object_get_sg(obj, n, &offset);
5277 return nth_page(sg_page(sg), offset);
5278}
5279
5280/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5281struct page *
5282i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5283 unsigned int n)
5284{
5285 struct page *page;
5286
5287 page = i915_gem_object_get_page(obj, n);
a4f5ea64 5288 if (!obj->mm.dirty)
96d77634
CW
5289 set_page_dirty(page);
5290
5291 return page;
5292}
5293
5294dma_addr_t
5295i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5296 unsigned long n)
5297{
5298 struct scatterlist *sg;
5299 unsigned int offset;
5300
5301 sg = i915_gem_object_get_sg(obj, n, &offset);
5302 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5303}
935a2f77
CW
5304
5305#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5306#include "selftests/scatterlist.c"
66d9cb5d 5307#include "selftests/mock_gem_device.c"
44653988 5308#include "selftests/huge_gem_object.c"
8335fd65 5309#include "selftests/i915_gem_object.c"
17059450 5310#include "selftests/i915_gem_coherency.c"
935a2f77 5311#endif