]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Remove forced stop ring on suspend/unload
[thirdparty/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
c13d87ea 32#include "i915_gem_dmabuf.h"
eb82289a 33#include "i915_vgpu.h"
1c5d22f7 34#include "i915_trace.h"
652c393a 35#include "intel_drv.h"
5d723d7a 36#include "intel_frontbuffer.h"
0ccdacf6 37#include "intel_mocs.h"
c13d87ea 38#include <linux/reservation.h>
5949eac4 39#include <linux/shmem_fs.h>
5a0e3ad6 40#include <linux/slab.h>
673a394b 41#include <linux/swap.h>
79e53945 42#include <linux/pci.h>
1286ff73 43#include <linux/dma-buf.h>
673a394b 44
05394f39 45static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 46static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
61050808 47
c76ce038
CW
48static bool cpu_cache_is_coherent(struct drm_device *dev,
49 enum i915_cache_level level)
50{
51 return HAS_LLC(dev) || level != I915_CACHE_NONE;
52}
53
2c22569b
CW
54static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
55{
b50a5371
AS
56 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
57 return false;
58
2c22569b
CW
59 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
60 return true;
61
62 return obj->pin_display;
63}
64
4f1959ee
AS
65static int
66insert_mappable_node(struct drm_i915_private *i915,
67 struct drm_mm_node *node, u32 size)
68{
69 memset(node, 0, sizeof(*node));
70 return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
71 size, 0, 0, 0,
72 i915->ggtt.mappable_end,
73 DRM_MM_SEARCH_DEFAULT,
74 DRM_MM_CREATE_DEFAULT);
75}
76
77static void
78remove_mappable_node(struct drm_mm_node *node)
79{
80 drm_mm_remove_node(node);
81}
82
73aa808f
CW
83/* some bookkeeping */
84static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
85 size_t size)
86{
c20e8355 87 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
88 dev_priv->mm.object_count++;
89 dev_priv->mm.object_memory += size;
c20e8355 90 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
91}
92
93static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
94 size_t size)
95{
c20e8355 96 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
97 dev_priv->mm.object_count--;
98 dev_priv->mm.object_memory -= size;
c20e8355 99 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
100}
101
21dd3734 102static int
33196ded 103i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 104{
30dbf0c0
CW
105 int ret;
106
d98c52cf 107 if (!i915_reset_in_progress(error))
30dbf0c0
CW
108 return 0;
109
0a6759c6
DV
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
1f83fee0 115 ret = wait_event_interruptible_timeout(error->reset_queue,
d98c52cf 116 !i915_reset_in_progress(error),
1f83fee0 117 10*HZ);
0a6759c6
DV
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
30dbf0c0 122 return ret;
d98c52cf
CW
123 } else {
124 return 0;
0a6759c6 125 }
30dbf0c0
CW
126}
127
54cf91dc 128int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 129{
fac5e23e 130 struct drm_i915_private *dev_priv = to_i915(dev);
76c1dec1
CW
131 int ret;
132
33196ded 133 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
134 if (ret)
135 return ret;
136
137 ret = mutex_lock_interruptible(&dev->struct_mutex);
138 if (ret)
139 return ret;
140
76c1dec1
CW
141 return 0;
142}
30dbf0c0 143
5a125c3c
EA
144int
145i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 146 struct drm_file *file)
5a125c3c 147{
72e96d64 148 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 149 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 150 struct drm_i915_gem_get_aperture *args = data;
ca1543be 151 struct i915_vma *vma;
6299f992 152 size_t pinned;
5a125c3c 153
6299f992 154 pinned = 0;
73aa808f 155 mutex_lock(&dev->struct_mutex);
1c7f4bca 156 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
20dfbde4 157 if (i915_vma_is_pinned(vma))
ca1543be 158 pinned += vma->node.size;
1c7f4bca 159 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
20dfbde4 160 if (i915_vma_is_pinned(vma))
ca1543be 161 pinned += vma->node.size;
73aa808f 162 mutex_unlock(&dev->struct_mutex);
5a125c3c 163
72e96d64 164 args->aper_size = ggtt->base.total;
0206e353 165 args->aper_available_size = args->aper_size - pinned;
6299f992 166
5a125c3c
EA
167 return 0;
168}
169
6a2c4232
CW
170static int
171i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 172{
6a2c4232
CW
173 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
174 char *vaddr = obj->phys_handle->vaddr;
175 struct sg_table *st;
176 struct scatterlist *sg;
177 int i;
00731155 178
6a2c4232
CW
179 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
180 return -EINVAL;
181
182 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
183 struct page *page;
184 char *src;
185
186 page = shmem_read_mapping_page(mapping, i);
187 if (IS_ERR(page))
188 return PTR_ERR(page);
189
190 src = kmap_atomic(page);
191 memcpy(vaddr, src, PAGE_SIZE);
192 drm_clflush_virt_range(vaddr, PAGE_SIZE);
193 kunmap_atomic(src);
194
09cbfeaf 195 put_page(page);
6a2c4232
CW
196 vaddr += PAGE_SIZE;
197 }
198
c033666a 199 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
200
201 st = kmalloc(sizeof(*st), GFP_KERNEL);
202 if (st == NULL)
203 return -ENOMEM;
204
205 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
206 kfree(st);
207 return -ENOMEM;
208 }
209
210 sg = st->sgl;
211 sg->offset = 0;
212 sg->length = obj->base.size;
00731155 213
6a2c4232
CW
214 sg_dma_address(sg) = obj->phys_handle->busaddr;
215 sg_dma_len(sg) = obj->base.size;
216
217 obj->pages = st;
6a2c4232
CW
218 return 0;
219}
220
221static void
222i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
223{
224 int ret;
225
226 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 227
6a2c4232 228 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 229 if (WARN_ON(ret)) {
6a2c4232
CW
230 /* In the event of a disaster, abandon all caches and
231 * hope for the best.
232 */
6a2c4232
CW
233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 }
235
236 if (obj->madv == I915_MADV_DONTNEED)
237 obj->dirty = 0;
238
239 if (obj->dirty) {
00731155 240 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 241 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
242 int i;
243
244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
245 struct page *page;
246 char *dst;
247
248 page = shmem_read_mapping_page(mapping, i);
249 if (IS_ERR(page))
250 continue;
251
252 dst = kmap_atomic(page);
253 drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 memcpy(dst, vaddr, PAGE_SIZE);
255 kunmap_atomic(dst);
256
257 set_page_dirty(page);
258 if (obj->madv == I915_MADV_WILLNEED)
00731155 259 mark_page_accessed(page);
09cbfeaf 260 put_page(page);
00731155
CW
261 vaddr += PAGE_SIZE;
262 }
6a2c4232 263 obj->dirty = 0;
00731155
CW
264 }
265
6a2c4232
CW
266 sg_free_table(obj->pages);
267 kfree(obj->pages);
6a2c4232
CW
268}
269
270static void
271i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
272{
273 drm_pci_free(obj->base.dev, obj->phys_handle);
274}
275
276static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
277 .get_pages = i915_gem_object_get_pages_phys,
278 .put_pages = i915_gem_object_put_pages_phys,
279 .release = i915_gem_object_release_phys,
280};
281
aa653a68
CW
282int
283i915_gem_object_unbind(struct drm_i915_gem_object *obj)
284{
285 struct i915_vma *vma;
286 LIST_HEAD(still_in_list);
287 int ret;
288
289 /* The vma will only be freed if it is marked as closed, and if we wait
290 * upon rendering to the vma, we may unbind anything in the list.
291 */
292 while ((vma = list_first_entry_or_null(&obj->vma_list,
293 struct i915_vma,
294 obj_link))) {
295 list_move_tail(&vma->obj_link, &still_in_list);
296 ret = i915_vma_unbind(vma);
297 if (ret)
298 break;
299 }
300 list_splice(&still_in_list, &obj->vma_list);
301
302 return ret;
303}
304
00e60f26
CW
305/**
306 * Ensures that all rendering to the object has completed and the object is
307 * safe to unbind from the GTT or access from the CPU.
308 * @obj: i915 gem object
309 * @readonly: waiting for just read access or read-write access
310 */
311int
312i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
313 bool readonly)
314{
315 struct reservation_object *resv;
316 struct i915_gem_active *active;
317 unsigned long active_mask;
318 int idx;
319
320 lockdep_assert_held(&obj->base.dev->struct_mutex);
321
322 if (!readonly) {
323 active = obj->last_read;
324 active_mask = i915_gem_object_get_active(obj);
325 } else {
326 active_mask = 1;
327 active = &obj->last_write;
328 }
329
330 for_each_active(active_mask, idx) {
331 int ret;
332
333 ret = i915_gem_active_wait(&active[idx],
334 &obj->base.dev->struct_mutex);
335 if (ret)
336 return ret;
337 }
338
339 resv = i915_gem_object_get_dmabuf_resv(obj);
340 if (resv) {
341 long err;
342
343 err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
344 MAX_SCHEDULE_TIMEOUT);
345 if (err < 0)
346 return err;
347 }
348
349 return 0;
350}
351
b8f9096d
CW
352/* A nonblocking variant of the above wait. Must be called prior to
353 * acquiring the mutex for the object, as the object state may change
354 * during this call. A reference must be held by the caller for the object.
00e60f26
CW
355 */
356static __must_check int
b8f9096d
CW
357__unsafe_wait_rendering(struct drm_i915_gem_object *obj,
358 struct intel_rps_client *rps,
359 bool readonly)
00e60f26 360{
00e60f26
CW
361 struct i915_gem_active *active;
362 unsigned long active_mask;
b8f9096d 363 int idx;
00e60f26 364
b8f9096d 365 active_mask = __I915_BO_ACTIVE(obj);
00e60f26
CW
366 if (!active_mask)
367 return 0;
368
369 if (!readonly) {
370 active = obj->last_read;
371 } else {
372 active_mask = 1;
373 active = &obj->last_write;
374 }
375
b8f9096d
CW
376 for_each_active(active_mask, idx) {
377 int ret;
00e60f26 378
b8f9096d
CW
379 ret = i915_gem_active_wait_unlocked(&active[idx],
380 true, NULL, rps);
381 if (ret)
382 return ret;
00e60f26
CW
383 }
384
b8f9096d 385 return 0;
00e60f26
CW
386}
387
388static struct intel_rps_client *to_rps_client(struct drm_file *file)
389{
390 struct drm_i915_file_private *fpriv = file->driver_priv;
391
392 return &fpriv->rps;
393}
394
00731155
CW
395int
396i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
397 int align)
398{
399 drm_dma_handle_t *phys;
6a2c4232 400 int ret;
00731155
CW
401
402 if (obj->phys_handle) {
403 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
404 return -EBUSY;
405
406 return 0;
407 }
408
409 if (obj->madv != I915_MADV_WILLNEED)
410 return -EFAULT;
411
412 if (obj->base.filp == NULL)
413 return -EINVAL;
414
4717ca9e
CW
415 ret = i915_gem_object_unbind(obj);
416 if (ret)
417 return ret;
418
419 ret = i915_gem_object_put_pages(obj);
6a2c4232
CW
420 if (ret)
421 return ret;
422
00731155
CW
423 /* create a new object */
424 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
425 if (!phys)
426 return -ENOMEM;
427
00731155 428 obj->phys_handle = phys;
6a2c4232
CW
429 obj->ops = &i915_gem_phys_ops;
430
431 return i915_gem_object_get_pages(obj);
00731155
CW
432}
433
434static int
435i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
436 struct drm_i915_gem_pwrite *args,
437 struct drm_file *file_priv)
438{
439 struct drm_device *dev = obj->base.dev;
440 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 441 char __user *user_data = u64_to_user_ptr(args->data_ptr);
063e4e6b 442 int ret = 0;
6a2c4232
CW
443
444 /* We manually control the domain here and pretend that it
445 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
446 */
447 ret = i915_gem_object_wait_rendering(obj, false);
448 if (ret)
449 return ret;
00731155 450
77a0d1ca 451 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
452 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
453 unsigned long unwritten;
454
455 /* The physical object once assigned is fixed for the lifetime
456 * of the obj, so we can safely drop the lock and continue
457 * to access vaddr.
458 */
459 mutex_unlock(&dev->struct_mutex);
460 unwritten = copy_from_user(vaddr, user_data, args->size);
461 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
462 if (unwritten) {
463 ret = -EFAULT;
464 goto out;
465 }
00731155
CW
466 }
467
6a2c4232 468 drm_clflush_virt_range(vaddr, args->size);
c033666a 469 i915_gem_chipset_flush(to_i915(dev));
063e4e6b
PZ
470
471out:
de152b62 472 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 473 return ret;
00731155
CW
474}
475
42dcedd4
CW
476void *i915_gem_object_alloc(struct drm_device *dev)
477{
fac5e23e 478 struct drm_i915_private *dev_priv = to_i915(dev);
efab6d8d 479 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
480}
481
482void i915_gem_object_free(struct drm_i915_gem_object *obj)
483{
fac5e23e 484 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
efab6d8d 485 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
486}
487
ff72145b
DA
488static int
489i915_gem_create(struct drm_file *file,
490 struct drm_device *dev,
491 uint64_t size,
492 uint32_t *handle_p)
673a394b 493{
05394f39 494 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
495 int ret;
496 u32 handle;
673a394b 497
ff72145b 498 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
499 if (size == 0)
500 return -EINVAL;
673a394b
EA
501
502 /* Allocate the new object */
d37cd8a8 503 obj = i915_gem_object_create(dev, size);
fe3db79b
CW
504 if (IS_ERR(obj))
505 return PTR_ERR(obj);
673a394b 506
05394f39 507 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 508 /* drop reference from allocate - handle holds it now */
34911fd3 509 i915_gem_object_put_unlocked(obj);
d861e338
DV
510 if (ret)
511 return ret;
202f2fef 512
ff72145b 513 *handle_p = handle;
673a394b
EA
514 return 0;
515}
516
ff72145b
DA
517int
518i915_gem_dumb_create(struct drm_file *file,
519 struct drm_device *dev,
520 struct drm_mode_create_dumb *args)
521{
522 /* have to work out size/pitch and return them */
de45eaf7 523 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
524 args->size = args->pitch * args->height;
525 return i915_gem_create(file, dev,
da6b51d0 526 args->size, &args->handle);
ff72145b
DA
527}
528
ff72145b
DA
529/**
530 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
531 * @dev: drm device pointer
532 * @data: ioctl data blob
533 * @file: drm file pointer
ff72145b
DA
534 */
535int
536i915_gem_create_ioctl(struct drm_device *dev, void *data,
537 struct drm_file *file)
538{
539 struct drm_i915_gem_create *args = data;
63ed2cb2 540
ff72145b 541 return i915_gem_create(file, dev,
da6b51d0 542 args->size, &args->handle);
ff72145b
DA
543}
544
8461d226
DV
545static inline int
546__copy_to_user_swizzled(char __user *cpu_vaddr,
547 const char *gpu_vaddr, int gpu_offset,
548 int length)
549{
550 int ret, cpu_offset = 0;
551
552 while (length > 0) {
553 int cacheline_end = ALIGN(gpu_offset + 1, 64);
554 int this_length = min(cacheline_end - gpu_offset, length);
555 int swizzled_gpu_offset = gpu_offset ^ 64;
556
557 ret = __copy_to_user(cpu_vaddr + cpu_offset,
558 gpu_vaddr + swizzled_gpu_offset,
559 this_length);
560 if (ret)
561 return ret + length;
562
563 cpu_offset += this_length;
564 gpu_offset += this_length;
565 length -= this_length;
566 }
567
568 return 0;
569}
570
8c59967c 571static inline int
4f0c7cfb
BW
572__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
573 const char __user *cpu_vaddr,
8c59967c
DV
574 int length)
575{
576 int ret, cpu_offset = 0;
577
578 while (length > 0) {
579 int cacheline_end = ALIGN(gpu_offset + 1, 64);
580 int this_length = min(cacheline_end - gpu_offset, length);
581 int swizzled_gpu_offset = gpu_offset ^ 64;
582
583 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
584 cpu_vaddr + cpu_offset,
585 this_length);
586 if (ret)
587 return ret + length;
588
589 cpu_offset += this_length;
590 gpu_offset += this_length;
591 length -= this_length;
592 }
593
594 return 0;
595}
596
4c914c0c
BV
597/*
598 * Pins the specified object's pages and synchronizes the object with
599 * GPU accesses. Sets needs_clflush to non-zero if the caller should
600 * flush the object from the CPU cache.
601 */
602int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
603 int *needs_clflush)
604{
605 int ret;
606
607 *needs_clflush = 0;
608
b9bcd14a 609 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4c914c0c
BV
610 return -EINVAL;
611
c13d87ea
CW
612 ret = i915_gem_object_wait_rendering(obj, true);
613 if (ret)
614 return ret;
615
4c914c0c
BV
616 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
617 /* If we're not in the cpu read domain, set ourself into the gtt
618 * read domain and manually flush cachelines (if required). This
619 * optimizes for the case when the gpu will dirty the data
620 * anyway again before the next pread happens. */
621 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
622 obj->cache_level);
4c914c0c
BV
623 }
624
625 ret = i915_gem_object_get_pages(obj);
626 if (ret)
627 return ret;
628
629 i915_gem_object_pin_pages(obj);
630
631 return ret;
632}
633
d174bd64
DV
634/* Per-page copy function for the shmem pread fastpath.
635 * Flushes invalid cachelines before reading the target if
636 * needs_clflush is set. */
eb01459f 637static int
d174bd64
DV
638shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
639 char __user *user_data,
640 bool page_do_bit17_swizzling, bool needs_clflush)
641{
642 char *vaddr;
643 int ret;
644
e7e58eb5 645 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
646 return -EINVAL;
647
648 vaddr = kmap_atomic(page);
649 if (needs_clflush)
650 drm_clflush_virt_range(vaddr + shmem_page_offset,
651 page_length);
652 ret = __copy_to_user_inatomic(user_data,
653 vaddr + shmem_page_offset,
654 page_length);
655 kunmap_atomic(vaddr);
656
f60d7f0c 657 return ret ? -EFAULT : 0;
d174bd64
DV
658}
659
23c18c71
DV
660static void
661shmem_clflush_swizzled_range(char *addr, unsigned long length,
662 bool swizzled)
663{
e7e58eb5 664 if (unlikely(swizzled)) {
23c18c71
DV
665 unsigned long start = (unsigned long) addr;
666 unsigned long end = (unsigned long) addr + length;
667
668 /* For swizzling simply ensure that we always flush both
669 * channels. Lame, but simple and it works. Swizzled
670 * pwrite/pread is far from a hotpath - current userspace
671 * doesn't use it at all. */
672 start = round_down(start, 128);
673 end = round_up(end, 128);
674
675 drm_clflush_virt_range((void *)start, end - start);
676 } else {
677 drm_clflush_virt_range(addr, length);
678 }
679
680}
681
d174bd64
DV
682/* Only difference to the fast-path function is that this can handle bit17
683 * and uses non-atomic copy and kmap functions. */
684static int
685shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
686 char __user *user_data,
687 bool page_do_bit17_swizzling, bool needs_clflush)
688{
689 char *vaddr;
690 int ret;
691
692 vaddr = kmap(page);
693 if (needs_clflush)
23c18c71
DV
694 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
695 page_length,
696 page_do_bit17_swizzling);
d174bd64
DV
697
698 if (page_do_bit17_swizzling)
699 ret = __copy_to_user_swizzled(user_data,
700 vaddr, shmem_page_offset,
701 page_length);
702 else
703 ret = __copy_to_user(user_data,
704 vaddr + shmem_page_offset,
705 page_length);
706 kunmap(page);
707
f60d7f0c 708 return ret ? - EFAULT : 0;
d174bd64
DV
709}
710
b50a5371
AS
711static inline unsigned long
712slow_user_access(struct io_mapping *mapping,
713 uint64_t page_base, int page_offset,
714 char __user *user_data,
715 unsigned long length, bool pwrite)
716{
717 void __iomem *ioaddr;
718 void *vaddr;
719 uint64_t unwritten;
720
721 ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
722 /* We can use the cpu mem copy function because this is X86. */
723 vaddr = (void __force *)ioaddr + page_offset;
724 if (pwrite)
725 unwritten = __copy_from_user(vaddr, user_data, length);
726 else
727 unwritten = __copy_to_user(user_data, vaddr, length);
728
729 io_mapping_unmap(ioaddr);
730 return unwritten;
731}
732
733static int
734i915_gem_gtt_pread(struct drm_device *dev,
735 struct drm_i915_gem_object *obj, uint64_t size,
736 uint64_t data_offset, uint64_t data_ptr)
737{
fac5e23e 738 struct drm_i915_private *dev_priv = to_i915(dev);
b50a5371
AS
739 struct i915_ggtt *ggtt = &dev_priv->ggtt;
740 struct drm_mm_node node;
741 char __user *user_data;
742 uint64_t remain;
743 uint64_t offset;
744 int ret;
745
de895082 746 ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
b50a5371
AS
747 if (ret) {
748 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
749 if (ret)
750 goto out;
751
752 ret = i915_gem_object_get_pages(obj);
753 if (ret) {
754 remove_mappable_node(&node);
755 goto out;
756 }
757
758 i915_gem_object_pin_pages(obj);
759 } else {
760 node.start = i915_gem_obj_ggtt_offset(obj);
761 node.allocated = false;
762 ret = i915_gem_object_put_fence(obj);
763 if (ret)
764 goto out_unpin;
765 }
766
767 ret = i915_gem_object_set_to_gtt_domain(obj, false);
768 if (ret)
769 goto out_unpin;
770
771 user_data = u64_to_user_ptr(data_ptr);
772 remain = size;
773 offset = data_offset;
774
775 mutex_unlock(&dev->struct_mutex);
776 if (likely(!i915.prefault_disable)) {
777 ret = fault_in_multipages_writeable(user_data, remain);
778 if (ret) {
779 mutex_lock(&dev->struct_mutex);
780 goto out_unpin;
781 }
782 }
783
784 while (remain > 0) {
785 /* Operation in this page
786 *
787 * page_base = page offset within aperture
788 * page_offset = offset within page
789 * page_length = bytes to copy for this page
790 */
791 u32 page_base = node.start;
792 unsigned page_offset = offset_in_page(offset);
793 unsigned page_length = PAGE_SIZE - page_offset;
794 page_length = remain < page_length ? remain : page_length;
795 if (node.allocated) {
796 wmb();
797 ggtt->base.insert_page(&ggtt->base,
798 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
799 node.start,
800 I915_CACHE_NONE, 0);
801 wmb();
802 } else {
803 page_base += offset & PAGE_MASK;
804 }
805 /* This is a slow read/write as it tries to read from
806 * and write to user memory which may result into page
807 * faults, and so we cannot perform this under struct_mutex.
808 */
809 if (slow_user_access(ggtt->mappable, page_base,
810 page_offset, user_data,
811 page_length, false)) {
812 ret = -EFAULT;
813 break;
814 }
815
816 remain -= page_length;
817 user_data += page_length;
818 offset += page_length;
819 }
820
821 mutex_lock(&dev->struct_mutex);
822 if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
823 /* The user has modified the object whilst we tried
824 * reading from it, and we now have no idea what domain
825 * the pages should be in. As we have just been touching
826 * them directly, flush everything back to the GTT
827 * domain.
828 */
829 ret = i915_gem_object_set_to_gtt_domain(obj, false);
830 }
831
832out_unpin:
833 if (node.allocated) {
834 wmb();
835 ggtt->base.clear_range(&ggtt->base,
836 node.start, node.size,
837 true);
838 i915_gem_object_unpin_pages(obj);
839 remove_mappable_node(&node);
840 } else {
841 i915_gem_object_ggtt_unpin(obj);
842 }
843out:
844 return ret;
845}
846
eb01459f 847static int
dbf7bff0
DV
848i915_gem_shmem_pread(struct drm_device *dev,
849 struct drm_i915_gem_object *obj,
850 struct drm_i915_gem_pread *args,
851 struct drm_file *file)
eb01459f 852{
8461d226 853 char __user *user_data;
eb01459f 854 ssize_t remain;
8461d226 855 loff_t offset;
eb2c0c81 856 int shmem_page_offset, page_length, ret = 0;
8461d226 857 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 858 int prefaulted = 0;
8489731c 859 int needs_clflush = 0;
67d5a50c 860 struct sg_page_iter sg_iter;
eb01459f 861
6eae0059 862 if (!i915_gem_object_has_struct_page(obj))
b50a5371
AS
863 return -ENODEV;
864
3ed605bc 865 user_data = u64_to_user_ptr(args->data_ptr);
eb01459f
EA
866 remain = args->size;
867
8461d226 868 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 869
4c914c0c 870 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
871 if (ret)
872 return ret;
873
8461d226 874 offset = args->offset;
eb01459f 875
67d5a50c
ID
876 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
877 offset >> PAGE_SHIFT) {
2db76d7c 878 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
879
880 if (remain <= 0)
881 break;
882
eb01459f
EA
883 /* Operation in this page
884 *
eb01459f 885 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
886 * page_length = bytes to copy for this page
887 */
c8cbbb8b 888 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
889 page_length = remain;
890 if ((shmem_page_offset + page_length) > PAGE_SIZE)
891 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 892
8461d226
DV
893 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
894 (page_to_phys(page) & (1 << 17)) != 0;
895
d174bd64
DV
896 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
897 user_data, page_do_bit17_swizzling,
898 needs_clflush);
899 if (ret == 0)
900 goto next_page;
dbf7bff0 901
dbf7bff0
DV
902 mutex_unlock(&dev->struct_mutex);
903
d330a953 904 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 905 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
906 /* Userspace is tricking us, but we've already clobbered
907 * its pages with the prefault and promised to write the
908 * data up to the first fault. Hence ignore any errors
909 * and just continue. */
910 (void)ret;
911 prefaulted = 1;
912 }
eb01459f 913
d174bd64
DV
914 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
915 user_data, page_do_bit17_swizzling,
916 needs_clflush);
eb01459f 917
dbf7bff0 918 mutex_lock(&dev->struct_mutex);
f60d7f0c 919
f60d7f0c 920 if (ret)
8461d226 921 goto out;
8461d226 922
17793c9a 923next_page:
eb01459f 924 remain -= page_length;
8461d226 925 user_data += page_length;
eb01459f
EA
926 offset += page_length;
927 }
928
4f27b75d 929out:
f60d7f0c
CW
930 i915_gem_object_unpin_pages(obj);
931
eb01459f
EA
932 return ret;
933}
934
673a394b
EA
935/**
936 * Reads data from the object referenced by handle.
14bb2c11
TU
937 * @dev: drm device pointer
938 * @data: ioctl data blob
939 * @file: drm file pointer
673a394b
EA
940 *
941 * On error, the contents of *data are undefined.
942 */
943int
944i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 945 struct drm_file *file)
673a394b
EA
946{
947 struct drm_i915_gem_pread *args = data;
05394f39 948 struct drm_i915_gem_object *obj;
35b62a89 949 int ret = 0;
673a394b 950
51311d0a
CW
951 if (args->size == 0)
952 return 0;
953
954 if (!access_ok(VERIFY_WRITE,
3ed605bc 955 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
956 args->size))
957 return -EFAULT;
958
4f27b75d 959 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 960 if (ret)
4f27b75d 961 return ret;
673a394b 962
03ac0642
CW
963 obj = i915_gem_object_lookup(file, args->handle);
964 if (!obj) {
1d7cfea1
CW
965 ret = -ENOENT;
966 goto unlock;
4f27b75d 967 }
673a394b 968
7dcd2499 969 /* Bounds check source. */
05394f39
CW
970 if (args->offset > obj->base.size ||
971 args->size > obj->base.size - args->offset) {
ce9d419d 972 ret = -EINVAL;
35b62a89 973 goto out;
ce9d419d
CW
974 }
975
db53a302
CW
976 trace_i915_gem_object_pread(obj, args->offset, args->size);
977
dbf7bff0 978 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 979
b50a5371 980 /* pread for non shmem backed objects */
1dd5b6f2
CW
981 if (ret == -EFAULT || ret == -ENODEV) {
982 intel_runtime_pm_get(to_i915(dev));
b50a5371
AS
983 ret = i915_gem_gtt_pread(dev, obj, args->size,
984 args->offset, args->data_ptr);
1dd5b6f2
CW
985 intel_runtime_pm_put(to_i915(dev));
986 }
b50a5371 987
35b62a89 988out:
f8c417cd 989 i915_gem_object_put(obj);
1d7cfea1 990unlock:
4f27b75d 991 mutex_unlock(&dev->struct_mutex);
eb01459f 992 return ret;
673a394b
EA
993}
994
0839ccb8
KP
995/* This is the fast write path which cannot handle
996 * page faults in the source data
9b7530cc 997 */
0839ccb8
KP
998
999static inline int
1000fast_user_write(struct io_mapping *mapping,
1001 loff_t page_base, int page_offset,
1002 char __user *user_data,
1003 int length)
9b7530cc 1004{
4f0c7cfb
BW
1005 void __iomem *vaddr_atomic;
1006 void *vaddr;
0839ccb8 1007 unsigned long unwritten;
9b7530cc 1008
3e4d3af5 1009 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
1010 /* We can use the cpu mem copy function because this is X86. */
1011 vaddr = (void __force*)vaddr_atomic + page_offset;
1012 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 1013 user_data, length);
3e4d3af5 1014 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 1015 return unwritten;
0839ccb8
KP
1016}
1017
3de09aa3
EA
1018/**
1019 * This is the fast pwrite path, where we copy the data directly from the
1020 * user into the GTT, uncached.
62f90b38 1021 * @i915: i915 device private data
14bb2c11
TU
1022 * @obj: i915 gem object
1023 * @args: pwrite arguments structure
1024 * @file: drm file pointer
3de09aa3 1025 */
673a394b 1026static int
4f1959ee 1027i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
05394f39 1028 struct drm_i915_gem_object *obj,
3de09aa3 1029 struct drm_i915_gem_pwrite *args,
05394f39 1030 struct drm_file *file)
673a394b 1031{
4f1959ee 1032 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 1033 struct drm_device *dev = obj->base.dev;
4f1959ee
AS
1034 struct drm_mm_node node;
1035 uint64_t remain, offset;
673a394b 1036 char __user *user_data;
4f1959ee 1037 int ret;
b50a5371
AS
1038 bool hit_slow_path = false;
1039
1040 if (obj->tiling_mode != I915_TILING_NONE)
1041 return -EFAULT;
935aaa69 1042
de895082
CW
1043 ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1044 PIN_MAPPABLE | PIN_NONBLOCK);
4f1959ee
AS
1045 if (ret) {
1046 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
1047 if (ret)
1048 goto out;
1049
1050 ret = i915_gem_object_get_pages(obj);
1051 if (ret) {
1052 remove_mappable_node(&node);
1053 goto out;
1054 }
1055
1056 i915_gem_object_pin_pages(obj);
1057 } else {
1058 node.start = i915_gem_obj_ggtt_offset(obj);
1059 node.allocated = false;
b50a5371
AS
1060 ret = i915_gem_object_put_fence(obj);
1061 if (ret)
1062 goto out_unpin;
4f1959ee 1063 }
935aaa69
DV
1064
1065 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1066 if (ret)
1067 goto out_unpin;
1068
77a0d1ca 1069 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
4f1959ee 1070 obj->dirty = true;
063e4e6b 1071
4f1959ee
AS
1072 user_data = u64_to_user_ptr(args->data_ptr);
1073 offset = args->offset;
1074 remain = args->size;
1075 while (remain) {
673a394b
EA
1076 /* Operation in this page
1077 *
0839ccb8
KP
1078 * page_base = page offset within aperture
1079 * page_offset = offset within page
1080 * page_length = bytes to copy for this page
673a394b 1081 */
4f1959ee
AS
1082 u32 page_base = node.start;
1083 unsigned page_offset = offset_in_page(offset);
1084 unsigned page_length = PAGE_SIZE - page_offset;
1085 page_length = remain < page_length ? remain : page_length;
1086 if (node.allocated) {
1087 wmb(); /* flush the write before we modify the GGTT */
1088 ggtt->base.insert_page(&ggtt->base,
1089 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1090 node.start, I915_CACHE_NONE, 0);
1091 wmb(); /* flush modifications to the GGTT (insert_page) */
1092 } else {
1093 page_base += offset & PAGE_MASK;
1094 }
0839ccb8 1095 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
1096 * source page isn't available. Return the error and we'll
1097 * retry in the slow path.
b50a5371
AS
1098 * If the object is non-shmem backed, we retry again with the
1099 * path that handles page fault.
0839ccb8 1100 */
72e96d64 1101 if (fast_user_write(ggtt->mappable, page_base,
935aaa69 1102 page_offset, user_data, page_length)) {
b50a5371
AS
1103 hit_slow_path = true;
1104 mutex_unlock(&dev->struct_mutex);
1105 if (slow_user_access(ggtt->mappable,
1106 page_base,
1107 page_offset, user_data,
1108 page_length, true)) {
1109 ret = -EFAULT;
1110 mutex_lock(&dev->struct_mutex);
1111 goto out_flush;
1112 }
1113
1114 mutex_lock(&dev->struct_mutex);
935aaa69 1115 }
673a394b 1116
0839ccb8
KP
1117 remain -= page_length;
1118 user_data += page_length;
1119 offset += page_length;
673a394b 1120 }
673a394b 1121
063e4e6b 1122out_flush:
b50a5371
AS
1123 if (hit_slow_path) {
1124 if (ret == 0 &&
1125 (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1126 /* The user has modified the object whilst we tried
1127 * reading from it, and we now have no idea what domain
1128 * the pages should be in. As we have just been touching
1129 * them directly, flush everything back to the GTT
1130 * domain.
1131 */
1132 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1133 }
1134 }
1135
de152b62 1136 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
935aaa69 1137out_unpin:
4f1959ee
AS
1138 if (node.allocated) {
1139 wmb();
1140 ggtt->base.clear_range(&ggtt->base,
1141 node.start, node.size,
1142 true);
1143 i915_gem_object_unpin_pages(obj);
1144 remove_mappable_node(&node);
1145 } else {
1146 i915_gem_object_ggtt_unpin(obj);
1147 }
935aaa69 1148out:
3de09aa3 1149 return ret;
673a394b
EA
1150}
1151
d174bd64
DV
1152/* Per-page copy function for the shmem pwrite fastpath.
1153 * Flushes invalid cachelines before writing to the target if
1154 * needs_clflush_before is set and flushes out any written cachelines after
1155 * writing if needs_clflush is set. */
3043c60c 1156static int
d174bd64
DV
1157shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1158 char __user *user_data,
1159 bool page_do_bit17_swizzling,
1160 bool needs_clflush_before,
1161 bool needs_clflush_after)
673a394b 1162{
d174bd64 1163 char *vaddr;
673a394b 1164 int ret;
3de09aa3 1165
e7e58eb5 1166 if (unlikely(page_do_bit17_swizzling))
d174bd64 1167 return -EINVAL;
3de09aa3 1168
d174bd64
DV
1169 vaddr = kmap_atomic(page);
1170 if (needs_clflush_before)
1171 drm_clflush_virt_range(vaddr + shmem_page_offset,
1172 page_length);
c2831a94
CW
1173 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1174 user_data, page_length);
d174bd64
DV
1175 if (needs_clflush_after)
1176 drm_clflush_virt_range(vaddr + shmem_page_offset,
1177 page_length);
1178 kunmap_atomic(vaddr);
3de09aa3 1179
755d2218 1180 return ret ? -EFAULT : 0;
3de09aa3
EA
1181}
1182
d174bd64
DV
1183/* Only difference to the fast-path function is that this can handle bit17
1184 * and uses non-atomic copy and kmap functions. */
3043c60c 1185static int
d174bd64
DV
1186shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1187 char __user *user_data,
1188 bool page_do_bit17_swizzling,
1189 bool needs_clflush_before,
1190 bool needs_clflush_after)
673a394b 1191{
d174bd64
DV
1192 char *vaddr;
1193 int ret;
e5281ccd 1194
d174bd64 1195 vaddr = kmap(page);
e7e58eb5 1196 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
1197 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1198 page_length,
1199 page_do_bit17_swizzling);
d174bd64
DV
1200 if (page_do_bit17_swizzling)
1201 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
1202 user_data,
1203 page_length);
d174bd64
DV
1204 else
1205 ret = __copy_from_user(vaddr + shmem_page_offset,
1206 user_data,
1207 page_length);
1208 if (needs_clflush_after)
23c18c71
DV
1209 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1210 page_length,
1211 page_do_bit17_swizzling);
d174bd64 1212 kunmap(page);
40123c1f 1213
755d2218 1214 return ret ? -EFAULT : 0;
40123c1f
EA
1215}
1216
40123c1f 1217static int
e244a443
DV
1218i915_gem_shmem_pwrite(struct drm_device *dev,
1219 struct drm_i915_gem_object *obj,
1220 struct drm_i915_gem_pwrite *args,
1221 struct drm_file *file)
40123c1f 1222{
40123c1f 1223 ssize_t remain;
8c59967c
DV
1224 loff_t offset;
1225 char __user *user_data;
eb2c0c81 1226 int shmem_page_offset, page_length, ret = 0;
8c59967c 1227 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 1228 int hit_slowpath = 0;
58642885
DV
1229 int needs_clflush_after = 0;
1230 int needs_clflush_before = 0;
67d5a50c 1231 struct sg_page_iter sg_iter;
40123c1f 1232
3ed605bc 1233 user_data = u64_to_user_ptr(args->data_ptr);
40123c1f
EA
1234 remain = args->size;
1235
8c59967c 1236 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 1237
c13d87ea
CW
1238 ret = i915_gem_object_wait_rendering(obj, false);
1239 if (ret)
1240 return ret;
1241
58642885
DV
1242 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1243 /* If we're not in the cpu write domain, set ourself into the gtt
1244 * write domain and manually flush cachelines (if required). This
1245 * optimizes for the case when the gpu will use the data
1246 * right away and we therefore have to clflush anyway. */
2c22569b 1247 needs_clflush_after = cpu_write_needs_clflush(obj);
58642885 1248 }
c76ce038
CW
1249 /* Same trick applies to invalidate partially written cachelines read
1250 * before writing. */
1251 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
1252 needs_clflush_before =
1253 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 1254
755d2218
CW
1255 ret = i915_gem_object_get_pages(obj);
1256 if (ret)
1257 return ret;
1258
77a0d1ca 1259 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 1260
755d2218
CW
1261 i915_gem_object_pin_pages(obj);
1262
673a394b 1263 offset = args->offset;
05394f39 1264 obj->dirty = 1;
673a394b 1265
67d5a50c
ID
1266 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1267 offset >> PAGE_SHIFT) {
2db76d7c 1268 struct page *page = sg_page_iter_page(&sg_iter);
58642885 1269 int partial_cacheline_write;
e5281ccd 1270
9da3da66
CW
1271 if (remain <= 0)
1272 break;
1273
40123c1f
EA
1274 /* Operation in this page
1275 *
40123c1f 1276 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
1277 * page_length = bytes to copy for this page
1278 */
c8cbbb8b 1279 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
1280
1281 page_length = remain;
1282 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1283 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 1284
58642885
DV
1285 /* If we don't overwrite a cacheline completely we need to be
1286 * careful to have up-to-date data by first clflushing. Don't
1287 * overcomplicate things and flush the entire patch. */
1288 partial_cacheline_write = needs_clflush_before &&
1289 ((shmem_page_offset | page_length)
1290 & (boot_cpu_data.x86_clflush_size - 1));
1291
8c59967c
DV
1292 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1293 (page_to_phys(page) & (1 << 17)) != 0;
1294
d174bd64
DV
1295 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1296 user_data, page_do_bit17_swizzling,
1297 partial_cacheline_write,
1298 needs_clflush_after);
1299 if (ret == 0)
1300 goto next_page;
e244a443
DV
1301
1302 hit_slowpath = 1;
e244a443 1303 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
1304 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1305 user_data, page_do_bit17_swizzling,
1306 partial_cacheline_write,
1307 needs_clflush_after);
40123c1f 1308
e244a443 1309 mutex_lock(&dev->struct_mutex);
755d2218 1310
755d2218 1311 if (ret)
8c59967c 1312 goto out;
8c59967c 1313
17793c9a 1314next_page:
40123c1f 1315 remain -= page_length;
8c59967c 1316 user_data += page_length;
40123c1f 1317 offset += page_length;
673a394b
EA
1318 }
1319
fbd5a26d 1320out:
755d2218
CW
1321 i915_gem_object_unpin_pages(obj);
1322
e244a443 1323 if (hit_slowpath) {
8dcf015e
DV
1324 /*
1325 * Fixup: Flush cpu caches in case we didn't flush the dirty
1326 * cachelines in-line while writing and the object moved
1327 * out of the cpu write domain while we've dropped the lock.
1328 */
1329 if (!needs_clflush_after &&
1330 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6 1331 if (i915_gem_clflush_object(obj, obj->pin_display))
ed75a55b 1332 needs_clflush_after = true;
e244a443 1333 }
8c59967c 1334 }
673a394b 1335
58642885 1336 if (needs_clflush_after)
c033666a 1337 i915_gem_chipset_flush(to_i915(dev));
ed75a55b
VS
1338 else
1339 obj->cache_dirty = true;
58642885 1340
de152b62 1341 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1342 return ret;
673a394b
EA
1343}
1344
1345/**
1346 * Writes data to the object referenced by handle.
14bb2c11
TU
1347 * @dev: drm device
1348 * @data: ioctl data blob
1349 * @file: drm file
673a394b
EA
1350 *
1351 * On error, the contents of the buffer that were to be modified are undefined.
1352 */
1353int
1354i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1355 struct drm_file *file)
673a394b 1356{
fac5e23e 1357 struct drm_i915_private *dev_priv = to_i915(dev);
673a394b 1358 struct drm_i915_gem_pwrite *args = data;
05394f39 1359 struct drm_i915_gem_object *obj;
51311d0a
CW
1360 int ret;
1361
1362 if (args->size == 0)
1363 return 0;
1364
1365 if (!access_ok(VERIFY_READ,
3ed605bc 1366 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1367 args->size))
1368 return -EFAULT;
1369
d330a953 1370 if (likely(!i915.prefault_disable)) {
3ed605bc 1371 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
0b74b508
XZ
1372 args->size);
1373 if (ret)
1374 return -EFAULT;
1375 }
673a394b 1376
5d77d9c5
ID
1377 intel_runtime_pm_get(dev_priv);
1378
fbd5a26d 1379 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1380 if (ret)
5d77d9c5 1381 goto put_rpm;
1d7cfea1 1382
03ac0642
CW
1383 obj = i915_gem_object_lookup(file, args->handle);
1384 if (!obj) {
1d7cfea1
CW
1385 ret = -ENOENT;
1386 goto unlock;
fbd5a26d 1387 }
673a394b 1388
7dcd2499 1389 /* Bounds check destination. */
05394f39
CW
1390 if (args->offset > obj->base.size ||
1391 args->size > obj->base.size - args->offset) {
ce9d419d 1392 ret = -EINVAL;
35b62a89 1393 goto out;
ce9d419d
CW
1394 }
1395
db53a302
CW
1396 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1397
935aaa69 1398 ret = -EFAULT;
673a394b
EA
1399 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1400 * it would end up going through the fenced access, and we'll get
1401 * different detiling behavior between reading and writing.
1402 * pread/pwrite currently are reading and writing from the CPU
1403 * perspective, requiring manual detiling by the client.
1404 */
6eae0059
CW
1405 if (!i915_gem_object_has_struct_page(obj) ||
1406 cpu_write_needs_clflush(obj)) {
4f1959ee 1407 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
935aaa69
DV
1408 /* Note that the gtt paths might fail with non-page-backed user
1409 * pointers (e.g. gtt mappings when moving data between
1410 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1411 }
673a394b 1412
d1054ee4 1413 if (ret == -EFAULT || ret == -ENOSPC) {
6a2c4232
CW
1414 if (obj->phys_handle)
1415 ret = i915_gem_phys_pwrite(obj, args, file);
6eae0059 1416 else if (i915_gem_object_has_struct_page(obj))
6a2c4232 1417 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
b50a5371
AS
1418 else
1419 ret = -ENODEV;
6a2c4232 1420 }
5c0480f2 1421
35b62a89 1422out:
f8c417cd 1423 i915_gem_object_put(obj);
1d7cfea1 1424unlock:
fbd5a26d 1425 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1426put_rpm:
1427 intel_runtime_pm_put(dev_priv);
1428
673a394b
EA
1429 return ret;
1430}
1431
aeecc969
CW
1432static enum fb_op_origin
1433write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1434{
1435 return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
1436 ORIGIN_GTT : ORIGIN_CPU;
1437}
1438
673a394b 1439/**
2ef7eeaa
EA
1440 * Called when user space prepares to use an object with the CPU, either
1441 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1442 * @dev: drm device
1443 * @data: ioctl data blob
1444 * @file: drm file
673a394b
EA
1445 */
1446int
1447i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1448 struct drm_file *file)
673a394b
EA
1449{
1450 struct drm_i915_gem_set_domain *args = data;
05394f39 1451 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1452 uint32_t read_domains = args->read_domains;
1453 uint32_t write_domain = args->write_domain;
673a394b
EA
1454 int ret;
1455
2ef7eeaa 1456 /* Only handle setting domains to types used by the CPU. */
b8f9096d 1457 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1458 return -EINVAL;
1459
1460 /* Having something in the write domain implies it's in the read
1461 * domain, and only that read domain. Enforce that in the request.
1462 */
1463 if (write_domain != 0 && read_domains != write_domain)
1464 return -EINVAL;
1465
03ac0642 1466 obj = i915_gem_object_lookup(file, args->handle);
b8f9096d
CW
1467 if (!obj)
1468 return -ENOENT;
673a394b 1469
3236f57a
CW
1470 /* Try to flush the object off the GPU without holding the lock.
1471 * We will repeat the flush holding the lock in the normal manner
1472 * to catch cases where we are gazumped.
1473 */
b8f9096d
CW
1474 ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain);
1475 if (ret)
1476 goto err;
1477
1478 ret = i915_mutex_lock_interruptible(dev);
3236f57a 1479 if (ret)
b8f9096d 1480 goto err;
3236f57a 1481
43566ded 1482 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1483 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1484 else
e47c68e9 1485 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1486
031b698a 1487 if (write_domain != 0)
aeecc969 1488 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
031b698a 1489
f8c417cd 1490 i915_gem_object_put(obj);
673a394b
EA
1491 mutex_unlock(&dev->struct_mutex);
1492 return ret;
b8f9096d
CW
1493
1494err:
1495 i915_gem_object_put_unlocked(obj);
1496 return ret;
673a394b
EA
1497}
1498
1499/**
1500 * Called when user space has done writes to this buffer
14bb2c11
TU
1501 * @dev: drm device
1502 * @data: ioctl data blob
1503 * @file: drm file
673a394b
EA
1504 */
1505int
1506i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1507 struct drm_file *file)
673a394b
EA
1508{
1509 struct drm_i915_gem_sw_finish *args = data;
05394f39 1510 struct drm_i915_gem_object *obj;
673a394b
EA
1511 int ret = 0;
1512
76c1dec1 1513 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1514 if (ret)
76c1dec1 1515 return ret;
1d7cfea1 1516
03ac0642
CW
1517 obj = i915_gem_object_lookup(file, args->handle);
1518 if (!obj) {
1d7cfea1
CW
1519 ret = -ENOENT;
1520 goto unlock;
673a394b
EA
1521 }
1522
673a394b 1523 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1524 if (obj->pin_display)
e62b59e4 1525 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1526
f8c417cd 1527 i915_gem_object_put(obj);
1d7cfea1 1528unlock:
673a394b
EA
1529 mutex_unlock(&dev->struct_mutex);
1530 return ret;
1531}
1532
1533/**
14bb2c11
TU
1534 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1535 * it is mapped to.
1536 * @dev: drm device
1537 * @data: ioctl data blob
1538 * @file: drm file
673a394b
EA
1539 *
1540 * While the mapping holds a reference on the contents of the object, it doesn't
1541 * imply a ref on the object itself.
34367381
DV
1542 *
1543 * IMPORTANT:
1544 *
1545 * DRM driver writers who look a this function as an example for how to do GEM
1546 * mmap support, please don't implement mmap support like here. The modern way
1547 * to implement DRM mmap support is with an mmap offset ioctl (like
1548 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1549 * That way debug tooling like valgrind will understand what's going on, hiding
1550 * the mmap call in a driver private ioctl will break that. The i915 driver only
1551 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1552 */
1553int
1554i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1555 struct drm_file *file)
673a394b
EA
1556{
1557 struct drm_i915_gem_mmap *args = data;
03ac0642 1558 struct drm_i915_gem_object *obj;
673a394b
EA
1559 unsigned long addr;
1560
1816f923
AG
1561 if (args->flags & ~(I915_MMAP_WC))
1562 return -EINVAL;
1563
568a58e5 1564 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1565 return -ENODEV;
1566
03ac0642
CW
1567 obj = i915_gem_object_lookup(file, args->handle);
1568 if (!obj)
bf79cb91 1569 return -ENOENT;
673a394b 1570
1286ff73
DV
1571 /* prime objects have no backing filp to GEM mmap
1572 * pages from.
1573 */
03ac0642 1574 if (!obj->base.filp) {
34911fd3 1575 i915_gem_object_put_unlocked(obj);
1286ff73
DV
1576 return -EINVAL;
1577 }
1578
03ac0642 1579 addr = vm_mmap(obj->base.filp, 0, args->size,
673a394b
EA
1580 PROT_READ | PROT_WRITE, MAP_SHARED,
1581 args->offset);
1816f923
AG
1582 if (args->flags & I915_MMAP_WC) {
1583 struct mm_struct *mm = current->mm;
1584 struct vm_area_struct *vma;
1585
80a89a5e 1586 if (down_write_killable(&mm->mmap_sem)) {
34911fd3 1587 i915_gem_object_put_unlocked(obj);
80a89a5e
MH
1588 return -EINTR;
1589 }
1816f923
AG
1590 vma = find_vma(mm, addr);
1591 if (vma)
1592 vma->vm_page_prot =
1593 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1594 else
1595 addr = -ENOMEM;
1596 up_write(&mm->mmap_sem);
aeecc969
CW
1597
1598 /* This may race, but that's ok, it only gets set */
03ac0642 1599 WRITE_ONCE(obj->has_wc_mmap, true);
1816f923 1600 }
34911fd3 1601 i915_gem_object_put_unlocked(obj);
673a394b
EA
1602 if (IS_ERR((void *)addr))
1603 return addr;
1604
1605 args->addr_ptr = (uint64_t) addr;
1606
1607 return 0;
1608}
1609
de151cf6
JB
1610/**
1611 * i915_gem_fault - fault a page into the GTT
d9072a3e
GT
1612 * @vma: VMA in question
1613 * @vmf: fault info
de151cf6
JB
1614 *
1615 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1616 * from userspace. The fault handler takes care of binding the object to
1617 * the GTT (if needed), allocating and programming a fence register (again,
1618 * only if needed based on whether the old reg is still valid or the object
1619 * is tiled) and inserting a new PTE into the faulting process.
1620 *
1621 * Note that the faulting process may involve evicting existing objects
1622 * from the GTT and/or fence registers to make room. So performance may
1623 * suffer if the GTT working set is large or there are few fence registers
1624 * left.
1625 */
1626int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1627{
05394f39
CW
1628 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1629 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1630 struct drm_i915_private *dev_priv = to_i915(dev);
1631 struct i915_ggtt *ggtt = &dev_priv->ggtt;
c5ad54cf 1632 struct i915_ggtt_view view = i915_ggtt_view_normal;
b8f9096d 1633 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1634 pgoff_t page_offset;
1635 unsigned long pfn;
b8f9096d 1636 int ret;
f65c9168 1637
de151cf6
JB
1638 /* We don't use vmf->pgoff since that has the fake offset */
1639 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1640 PAGE_SHIFT;
1641
db53a302
CW
1642 trace_i915_gem_object_fault(obj, page_offset, true, write);
1643
6e4930f6 1644 /* Try to flush the object off the GPU first without holding the lock.
b8f9096d 1645 * Upon acquiring the lock, we will perform our sanity checks and then
6e4930f6
CW
1646 * repeat the flush holding the lock in the normal manner to catch cases
1647 * where we are gazumped.
1648 */
b8f9096d 1649 ret = __unsafe_wait_rendering(obj, NULL, !write);
6e4930f6 1650 if (ret)
b8f9096d
CW
1651 goto err;
1652
1653 intel_runtime_pm_get(dev_priv);
1654
1655 ret = i915_mutex_lock_interruptible(dev);
1656 if (ret)
1657 goto err_rpm;
6e4930f6 1658
eb119bd6
CW
1659 /* Access to snoopable pages through the GTT is incoherent. */
1660 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1661 ret = -EFAULT;
b8f9096d 1662 goto err_unlock;
eb119bd6
CW
1663 }
1664
c5ad54cf 1665 /* Use a partial view if the object is bigger than the aperture. */
72e96d64 1666 if (obj->base.size >= ggtt->mappable_end &&
e7ded2d7 1667 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 1668 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1669
c5ad54cf
JL
1670 memset(&view, 0, sizeof(view));
1671 view.type = I915_GGTT_VIEW_PARTIAL;
1672 view.params.partial.offset = rounddown(page_offset, chunk_size);
1673 view.params.partial.size =
1674 min_t(unsigned int,
1675 chunk_size,
1676 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1677 view.params.partial.offset);
1678 }
1679
1680 /* Now pin it into the GTT if needed */
91b2db6f 1681 ret = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
c9839303 1682 if (ret)
b8f9096d 1683 goto err_unlock;
4a684a41 1684
c9839303
CW
1685 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1686 if (ret)
b8f9096d 1687 goto err_unpin;
74898d7e 1688
06d98131 1689 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1690 if (ret)
b8f9096d 1691 goto err_unpin;
7d1c4804 1692
b90b91d8 1693 /* Finally, remap it using the new GTT offset */
72e96d64 1694 pfn = ggtt->mappable_base +
c5ad54cf 1695 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 1696 pfn >>= PAGE_SHIFT;
de151cf6 1697
c5ad54cf
JL
1698 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1699 /* Overriding existing pages in partial view does not cause
1700 * us any trouble as TLBs are still valid because the fault
1701 * is due to userspace losing part of the mapping or never
1702 * having accessed it before (at this partials' range).
1703 */
1704 unsigned long base = vma->vm_start +
1705 (view.params.partial.offset << PAGE_SHIFT);
1706 unsigned int i;
b90b91d8 1707
c5ad54cf
JL
1708 for (i = 0; i < view.params.partial.size; i++) {
1709 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
1710 if (ret)
1711 break;
1712 }
1713
1714 obj->fault_mappable = true;
c5ad54cf
JL
1715 } else {
1716 if (!obj->fault_mappable) {
1717 unsigned long size = min_t(unsigned long,
1718 vma->vm_end - vma->vm_start,
1719 obj->base.size);
1720 int i;
1721
1722 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1723 ret = vm_insert_pfn(vma,
1724 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1725 pfn + i);
1726 if (ret)
1727 break;
1728 }
1729
1730 obj->fault_mappable = true;
1731 } else
1732 ret = vm_insert_pfn(vma,
1733 (unsigned long)vmf->virtual_address,
1734 pfn + page_offset);
1735 }
b8f9096d 1736err_unpin:
c5ad54cf 1737 i915_gem_object_ggtt_unpin_view(obj, &view);
b8f9096d 1738err_unlock:
de151cf6 1739 mutex_unlock(&dev->struct_mutex);
b8f9096d
CW
1740err_rpm:
1741 intel_runtime_pm_put(dev_priv);
1742err:
de151cf6 1743 switch (ret) {
d9bc7e9f 1744 case -EIO:
2232f031
DV
1745 /*
1746 * We eat errors when the gpu is terminally wedged to avoid
1747 * userspace unduly crashing (gl has no provisions for mmaps to
1748 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1749 * and so needs to be reported.
1750 */
1751 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1752 ret = VM_FAULT_SIGBUS;
1753 break;
1754 }
045e769a 1755 case -EAGAIN:
571c608d
DV
1756 /*
1757 * EAGAIN means the gpu is hung and we'll wait for the error
1758 * handler to reset everything when re-faulting in
1759 * i915_mutex_lock_interruptible.
d9bc7e9f 1760 */
c715089f
CW
1761 case 0:
1762 case -ERESTARTSYS:
bed636ab 1763 case -EINTR:
e79e0fe3
DR
1764 case -EBUSY:
1765 /*
1766 * EBUSY is ok: this just means that another thread
1767 * already did the job.
1768 */
f65c9168
PZ
1769 ret = VM_FAULT_NOPAGE;
1770 break;
de151cf6 1771 case -ENOMEM:
f65c9168
PZ
1772 ret = VM_FAULT_OOM;
1773 break;
a7c2e1aa 1774 case -ENOSPC:
45d67817 1775 case -EFAULT:
f65c9168
PZ
1776 ret = VM_FAULT_SIGBUS;
1777 break;
de151cf6 1778 default:
a7c2e1aa 1779 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1780 ret = VM_FAULT_SIGBUS;
1781 break;
de151cf6 1782 }
f65c9168 1783 return ret;
de151cf6
JB
1784}
1785
901782b2
CW
1786/**
1787 * i915_gem_release_mmap - remove physical page mappings
1788 * @obj: obj in question
1789 *
af901ca1 1790 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1791 * relinquish ownership of the pages back to the system.
1792 *
1793 * It is vital that we remove the page mapping if we have mapped a tiled
1794 * object through the GTT and then lose the fence register due to
1795 * resource pressure. Similarly if the object has been moved out of the
1796 * aperture, than pages mapped into userspace must be revoked. Removing the
1797 * mapping will then trigger a page fault on the next user access, allowing
1798 * fixup by i915_gem_fault().
1799 */
d05ca301 1800void
05394f39 1801i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1802{
349f2ccf
CW
1803 /* Serialisation between user GTT access and our code depends upon
1804 * revoking the CPU's PTE whilst the mutex is held. The next user
1805 * pagefault then has to wait until we release the mutex.
1806 */
1807 lockdep_assert_held(&obj->base.dev->struct_mutex);
1808
6299f992
CW
1809 if (!obj->fault_mappable)
1810 return;
901782b2 1811
6796cb16
DR
1812 drm_vma_node_unmap(&obj->base.vma_node,
1813 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
1814
1815 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1816 * memory transactions from userspace before we return. The TLB
1817 * flushing implied above by changing the PTE above *should* be
1818 * sufficient, an extra barrier here just provides us with a bit
1819 * of paranoid documentation about our requirement to serialise
1820 * memory writes before touching registers / GSM.
1821 */
1822 wmb();
1823
6299f992 1824 obj->fault_mappable = false;
901782b2
CW
1825}
1826
eedd10f4
CW
1827void
1828i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1829{
1830 struct drm_i915_gem_object *obj;
1831
1832 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1833 i915_gem_release_mmap(obj);
1834}
1835
ad1a7d20
CW
1836/**
1837 * i915_gem_get_ggtt_size - return required global GTT size for an object
a9f1481f 1838 * @dev_priv: i915 device
ad1a7d20
CW
1839 * @size: object size
1840 * @tiling_mode: tiling mode
1841 *
1842 * Return the required global GTT size for an object, taking into account
1843 * potential fence register mapping.
1844 */
a9f1481f
CW
1845u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
1846 u64 size, int tiling_mode)
92b88aeb 1847{
ad1a7d20 1848 u64 ggtt_size;
92b88aeb 1849
ad1a7d20
CW
1850 GEM_BUG_ON(size == 0);
1851
a9f1481f 1852 if (INTEL_GEN(dev_priv) >= 4 ||
e28f8711
CW
1853 tiling_mode == I915_TILING_NONE)
1854 return size;
92b88aeb
CW
1855
1856 /* Previous chips need a power-of-two fence region when tiling */
a9f1481f 1857 if (IS_GEN3(dev_priv))
ad1a7d20 1858 ggtt_size = 1024*1024;
92b88aeb 1859 else
ad1a7d20 1860 ggtt_size = 512*1024;
92b88aeb 1861
ad1a7d20
CW
1862 while (ggtt_size < size)
1863 ggtt_size <<= 1;
92b88aeb 1864
ad1a7d20 1865 return ggtt_size;
92b88aeb
CW
1866}
1867
de151cf6 1868/**
ad1a7d20 1869 * i915_gem_get_ggtt_alignment - return required global GTT alignment
a9f1481f 1870 * @dev_priv: i915 device
14bb2c11
TU
1871 * @size: object size
1872 * @tiling_mode: tiling mode
ad1a7d20 1873 * @fenced: is fenced alignment required or not
de151cf6 1874 *
ad1a7d20 1875 * Return the required global GTT alignment for an object, taking into account
5e783301 1876 * potential fence register mapping.
de151cf6 1877 */
a9f1481f 1878u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
ad1a7d20 1879 int tiling_mode, bool fenced)
de151cf6 1880{
ad1a7d20
CW
1881 GEM_BUG_ON(size == 0);
1882
de151cf6
JB
1883 /*
1884 * Minimum alignment is 4k (GTT page size), but might be greater
1885 * if a fence register is needed for the object.
1886 */
a9f1481f 1887 if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
e28f8711 1888 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1889 return 4096;
1890
a00b10c3
CW
1891 /*
1892 * Previous chips need to be aligned to the size of the smallest
1893 * fence register that can contain the object.
1894 */
a9f1481f 1895 return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
a00b10c3
CW
1896}
1897
d8cb5086
CW
1898static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1899{
fac5e23e 1900 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
d8cb5086
CW
1901 int ret;
1902
da494d7c
DV
1903 dev_priv->mm.shrinker_no_lock_stealing = true;
1904
d8cb5086
CW
1905 ret = drm_gem_create_mmap_offset(&obj->base);
1906 if (ret != -ENOSPC)
da494d7c 1907 goto out;
d8cb5086
CW
1908
1909 /* Badly fragmented mmap space? The only way we can recover
1910 * space is by destroying unwanted objects. We can't randomly release
1911 * mmap_offsets as userspace expects them to be persistent for the
1912 * lifetime of the objects. The closest we can is to release the
1913 * offsets on purgeable objects by truncating it and marking it purged,
1914 * which prevents userspace from ever using that object again.
1915 */
21ab4e74
CW
1916 i915_gem_shrink(dev_priv,
1917 obj->base.size >> PAGE_SHIFT,
1918 I915_SHRINK_BOUND |
1919 I915_SHRINK_UNBOUND |
1920 I915_SHRINK_PURGEABLE);
d8cb5086
CW
1921 ret = drm_gem_create_mmap_offset(&obj->base);
1922 if (ret != -ENOSPC)
da494d7c 1923 goto out;
d8cb5086
CW
1924
1925 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1926 ret = drm_gem_create_mmap_offset(&obj->base);
1927out:
1928 dev_priv->mm.shrinker_no_lock_stealing = false;
1929
1930 return ret;
d8cb5086
CW
1931}
1932
1933static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1934{
d8cb5086
CW
1935 drm_gem_free_mmap_offset(&obj->base);
1936}
1937
da6b51d0 1938int
ff72145b
DA
1939i915_gem_mmap_gtt(struct drm_file *file,
1940 struct drm_device *dev,
da6b51d0 1941 uint32_t handle,
ff72145b 1942 uint64_t *offset)
de151cf6 1943{
05394f39 1944 struct drm_i915_gem_object *obj;
de151cf6
JB
1945 int ret;
1946
76c1dec1 1947 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1948 if (ret)
76c1dec1 1949 return ret;
de151cf6 1950
03ac0642
CW
1951 obj = i915_gem_object_lookup(file, handle);
1952 if (!obj) {
1d7cfea1
CW
1953 ret = -ENOENT;
1954 goto unlock;
1955 }
de151cf6 1956
05394f39 1957 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1958 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1959 ret = -EFAULT;
1d7cfea1 1960 goto out;
ab18282d
CW
1961 }
1962
d8cb5086
CW
1963 ret = i915_gem_object_create_mmap_offset(obj);
1964 if (ret)
1965 goto out;
de151cf6 1966
0de23977 1967 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1968
1d7cfea1 1969out:
f8c417cd 1970 i915_gem_object_put(obj);
1d7cfea1 1971unlock:
de151cf6 1972 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1973 return ret;
de151cf6
JB
1974}
1975
ff72145b
DA
1976/**
1977 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1978 * @dev: DRM device
1979 * @data: GTT mapping ioctl data
1980 * @file: GEM object info
1981 *
1982 * Simply returns the fake offset to userspace so it can mmap it.
1983 * The mmap call will end up in drm_gem_mmap(), which will set things
1984 * up so we can get faults in the handler above.
1985 *
1986 * The fault handler will take care of binding the object into the GTT
1987 * (since it may have been evicted to make room for something), allocating
1988 * a fence register, and mapping the appropriate aperture address into
1989 * userspace.
1990 */
1991int
1992i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1993 struct drm_file *file)
1994{
1995 struct drm_i915_gem_mmap_gtt *args = data;
1996
da6b51d0 1997 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
1998}
1999
225067ee
DV
2000/* Immediately discard the backing storage */
2001static void
2002i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2003{
4d6294bf 2004 i915_gem_object_free_mmap_offset(obj);
1286ff73 2005
4d6294bf
CW
2006 if (obj->base.filp == NULL)
2007 return;
e5281ccd 2008
225067ee
DV
2009 /* Our goal here is to return as much of the memory as
2010 * is possible back to the system as we are called from OOM.
2011 * To do this we must instruct the shmfs to drop all of its
2012 * backing pages, *now*.
2013 */
5537252b 2014 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2015 obj->madv = __I915_MADV_PURGED;
2016}
e5281ccd 2017
5537252b
CW
2018/* Try to discard unwanted pages */
2019static void
2020i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2021{
5537252b
CW
2022 struct address_space *mapping;
2023
2024 switch (obj->madv) {
2025 case I915_MADV_DONTNEED:
2026 i915_gem_object_truncate(obj);
2027 case __I915_MADV_PURGED:
2028 return;
2029 }
2030
2031 if (obj->base.filp == NULL)
2032 return;
2033
2034 mapping = file_inode(obj->base.filp)->i_mapping,
2035 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2036}
2037
5cdf5881 2038static void
05394f39 2039i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2040{
85d1225e
DG
2041 struct sgt_iter sgt_iter;
2042 struct page *page;
90797e6d 2043 int ret;
1286ff73 2044
05394f39 2045 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2046
6c085a72 2047 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 2048 if (WARN_ON(ret)) {
6c085a72
CW
2049 /* In the event of a disaster, abandon all caches and
2050 * hope for the best.
2051 */
2c22569b 2052 i915_gem_clflush_object(obj, true);
6c085a72
CW
2053 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2054 }
2055
e2273302
ID
2056 i915_gem_gtt_finish_object(obj);
2057
6dacfd2f 2058 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2059 i915_gem_object_save_bit_17_swizzle(obj);
2060
05394f39
CW
2061 if (obj->madv == I915_MADV_DONTNEED)
2062 obj->dirty = 0;
3ef94daa 2063
85d1225e 2064 for_each_sgt_page(page, sgt_iter, obj->pages) {
05394f39 2065 if (obj->dirty)
9da3da66 2066 set_page_dirty(page);
3ef94daa 2067
05394f39 2068 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2069 mark_page_accessed(page);
3ef94daa 2070
09cbfeaf 2071 put_page(page);
3ef94daa 2072 }
05394f39 2073 obj->dirty = 0;
673a394b 2074
9da3da66
CW
2075 sg_free_table(obj->pages);
2076 kfree(obj->pages);
37e680a1 2077}
6c085a72 2078
dd624afd 2079int
37e680a1
CW
2080i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2081{
2082 const struct drm_i915_gem_object_ops *ops = obj->ops;
2083
2f745ad3 2084 if (obj->pages == NULL)
37e680a1
CW
2085 return 0;
2086
a5570178
CW
2087 if (obj->pages_pin_count)
2088 return -EBUSY;
2089
15717de2 2090 GEM_BUG_ON(obj->bind_count);
3e123027 2091
a2165e31
CW
2092 /* ->put_pages might need to allocate memory for the bit17 swizzle
2093 * array, hence protect them from being reaped by removing them from gtt
2094 * lists early. */
35c20a60 2095 list_del(&obj->global_list);
a2165e31 2096
0a798eb9 2097 if (obj->mapping) {
fb8621d3
CW
2098 if (is_vmalloc_addr(obj->mapping))
2099 vunmap(obj->mapping);
2100 else
2101 kunmap(kmap_to_page(obj->mapping));
0a798eb9
CW
2102 obj->mapping = NULL;
2103 }
2104
37e680a1 2105 ops->put_pages(obj);
05394f39 2106 obj->pages = NULL;
37e680a1 2107
5537252b 2108 i915_gem_object_invalidate(obj);
6c085a72
CW
2109
2110 return 0;
2111}
2112
37e680a1 2113static int
6c085a72 2114i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2115{
fac5e23e 2116 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
e5281ccd
CW
2117 int page_count, i;
2118 struct address_space *mapping;
9da3da66
CW
2119 struct sg_table *st;
2120 struct scatterlist *sg;
85d1225e 2121 struct sgt_iter sgt_iter;
e5281ccd 2122 struct page *page;
90797e6d 2123 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2124 int ret;
6c085a72 2125 gfp_t gfp;
e5281ccd 2126
6c085a72
CW
2127 /* Assert that the object is not currently in any GPU domain. As it
2128 * wasn't in the GTT, there shouldn't be any way it could have been in
2129 * a GPU cache
2130 */
2131 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2132 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2133
9da3da66
CW
2134 st = kmalloc(sizeof(*st), GFP_KERNEL);
2135 if (st == NULL)
2136 return -ENOMEM;
2137
05394f39 2138 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2139 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2140 kfree(st);
e5281ccd 2141 return -ENOMEM;
9da3da66 2142 }
e5281ccd 2143
9da3da66
CW
2144 /* Get the list of pages out of our struct file. They'll be pinned
2145 * at this point until we release them.
2146 *
2147 * Fail silently without starting the shrinker
2148 */
496ad9aa 2149 mapping = file_inode(obj->base.filp)->i_mapping;
c62d2555 2150 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2151 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2152 sg = st->sgl;
2153 st->nents = 0;
2154 for (i = 0; i < page_count; i++) {
6c085a72
CW
2155 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2156 if (IS_ERR(page)) {
21ab4e74
CW
2157 i915_gem_shrink(dev_priv,
2158 page_count,
2159 I915_SHRINK_BOUND |
2160 I915_SHRINK_UNBOUND |
2161 I915_SHRINK_PURGEABLE);
6c085a72
CW
2162 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2163 }
2164 if (IS_ERR(page)) {
2165 /* We've tried hard to allocate the memory by reaping
2166 * our own buffer, now let the real VM do its job and
2167 * go down in flames if truly OOM.
2168 */
6c085a72 2169 i915_gem_shrink_all(dev_priv);
f461d1be 2170 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2171 if (IS_ERR(page)) {
2172 ret = PTR_ERR(page);
6c085a72 2173 goto err_pages;
e2273302 2174 }
6c085a72 2175 }
426729dc
KRW
2176#ifdef CONFIG_SWIOTLB
2177 if (swiotlb_nr_tbl()) {
2178 st->nents++;
2179 sg_set_page(sg, page, PAGE_SIZE, 0);
2180 sg = sg_next(sg);
2181 continue;
2182 }
2183#endif
90797e6d
ID
2184 if (!i || page_to_pfn(page) != last_pfn + 1) {
2185 if (i)
2186 sg = sg_next(sg);
2187 st->nents++;
2188 sg_set_page(sg, page, PAGE_SIZE, 0);
2189 } else {
2190 sg->length += PAGE_SIZE;
2191 }
2192 last_pfn = page_to_pfn(page);
3bbbe706
DV
2193
2194 /* Check that the i965g/gm workaround works. */
2195 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2196 }
426729dc
KRW
2197#ifdef CONFIG_SWIOTLB
2198 if (!swiotlb_nr_tbl())
2199#endif
2200 sg_mark_end(sg);
74ce6b6c
CW
2201 obj->pages = st;
2202
e2273302
ID
2203 ret = i915_gem_gtt_prepare_object(obj);
2204 if (ret)
2205 goto err_pages;
2206
6dacfd2f 2207 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2208 i915_gem_object_do_bit_17_swizzle(obj);
2209
656bfa3a
DV
2210 if (obj->tiling_mode != I915_TILING_NONE &&
2211 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2212 i915_gem_object_pin_pages(obj);
2213
e5281ccd
CW
2214 return 0;
2215
2216err_pages:
90797e6d 2217 sg_mark_end(sg);
85d1225e
DG
2218 for_each_sgt_page(page, sgt_iter, st)
2219 put_page(page);
9da3da66
CW
2220 sg_free_table(st);
2221 kfree(st);
0820baf3
CW
2222
2223 /* shmemfs first checks if there is enough memory to allocate the page
2224 * and reports ENOSPC should there be insufficient, along with the usual
2225 * ENOMEM for a genuine allocation failure.
2226 *
2227 * We use ENOSPC in our driver to mean that we have run out of aperture
2228 * space and so want to translate the error from shmemfs back to our
2229 * usual understanding of ENOMEM.
2230 */
e2273302
ID
2231 if (ret == -ENOSPC)
2232 ret = -ENOMEM;
2233
2234 return ret;
673a394b
EA
2235}
2236
37e680a1
CW
2237/* Ensure that the associated pages are gathered from the backing storage
2238 * and pinned into our object. i915_gem_object_get_pages() may be called
2239 * multiple times before they are released by a single call to
2240 * i915_gem_object_put_pages() - once the pages are no longer referenced
2241 * either as a result of memory pressure (reaping pages under the shrinker)
2242 * or as the object is itself released.
2243 */
2244int
2245i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2246{
fac5e23e 2247 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
37e680a1
CW
2248 const struct drm_i915_gem_object_ops *ops = obj->ops;
2249 int ret;
2250
2f745ad3 2251 if (obj->pages)
37e680a1
CW
2252 return 0;
2253
43e28f09 2254 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2255 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2256 return -EFAULT;
43e28f09
CW
2257 }
2258
a5570178
CW
2259 BUG_ON(obj->pages_pin_count);
2260
37e680a1
CW
2261 ret = ops->get_pages(obj);
2262 if (ret)
2263 return ret;
2264
35c20a60 2265 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2266
2267 obj->get_page.sg = obj->pages->sgl;
2268 obj->get_page.last = 0;
2269
37e680a1 2270 return 0;
673a394b
EA
2271}
2272
dd6034c6
DG
2273/* The 'mapping' part of i915_gem_object_pin_map() below */
2274static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
2275{
2276 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2277 struct sg_table *sgt = obj->pages;
85d1225e
DG
2278 struct sgt_iter sgt_iter;
2279 struct page *page;
b338fa47
DG
2280 struct page *stack_pages[32];
2281 struct page **pages = stack_pages;
dd6034c6
DG
2282 unsigned long i = 0;
2283 void *addr;
2284
2285 /* A single page can always be kmapped */
2286 if (n_pages == 1)
2287 return kmap(sg_page(sgt->sgl));
2288
b338fa47
DG
2289 if (n_pages > ARRAY_SIZE(stack_pages)) {
2290 /* Too big for stack -- allocate temporary array instead */
2291 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2292 if (!pages)
2293 return NULL;
2294 }
dd6034c6 2295
85d1225e
DG
2296 for_each_sgt_page(page, sgt_iter, sgt)
2297 pages[i++] = page;
dd6034c6
DG
2298
2299 /* Check that we have the expected number of pages */
2300 GEM_BUG_ON(i != n_pages);
2301
2302 addr = vmap(pages, n_pages, 0, PAGE_KERNEL);
2303
b338fa47
DG
2304 if (pages != stack_pages)
2305 drm_free_large(pages);
dd6034c6
DG
2306
2307 return addr;
2308}
2309
2310/* get, pin, and map the pages of the object into kernel space */
0a798eb9
CW
2311void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2312{
2313 int ret;
2314
2315 lockdep_assert_held(&obj->base.dev->struct_mutex);
2316
2317 ret = i915_gem_object_get_pages(obj);
2318 if (ret)
2319 return ERR_PTR(ret);
2320
2321 i915_gem_object_pin_pages(obj);
2322
dd6034c6
DG
2323 if (!obj->mapping) {
2324 obj->mapping = i915_gem_object_map(obj);
2325 if (!obj->mapping) {
0a798eb9
CW
2326 i915_gem_object_unpin_pages(obj);
2327 return ERR_PTR(-ENOMEM);
2328 }
2329 }
2330
2331 return obj->mapping;
2332}
2333
b4716185 2334static void
fa545cbf
CW
2335i915_gem_object_retire__write(struct i915_gem_active *active,
2336 struct drm_i915_gem_request *request)
e2d05a8b 2337{
fa545cbf
CW
2338 struct drm_i915_gem_object *obj =
2339 container_of(active, struct drm_i915_gem_object, last_write);
b4716185 2340
de152b62 2341 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2342}
2343
caea7476 2344static void
fa545cbf
CW
2345i915_gem_object_retire__read(struct i915_gem_active *active,
2346 struct drm_i915_gem_request *request)
ce44b0ea 2347{
fa545cbf
CW
2348 int idx = request->engine->id;
2349 struct drm_i915_gem_object *obj =
2350 container_of(active, struct drm_i915_gem_object, last_read[idx]);
ce44b0ea 2351
573adb39 2352 GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
b4716185 2353
573adb39
CW
2354 i915_gem_object_clear_active(obj, idx);
2355 if (i915_gem_object_is_active(obj))
b4716185 2356 return;
caea7476 2357
6c246959
CW
2358 /* Bump our place on the bound list to keep it roughly in LRU order
2359 * so that we don't steal from recently used but inactive objects
2360 * (unless we are forced to ofc!)
2361 */
b0decaf7
CW
2362 if (obj->bind_count)
2363 list_move_tail(&obj->global_list,
2364 &request->i915->mm.bound_list);
caea7476 2365
f8c417cd 2366 i915_gem_object_put(obj);
c8725f3d
CW
2367}
2368
7b4d3a16 2369static bool i915_context_is_banned(const struct i915_gem_context *ctx)
be62acb4 2370{
44e2c070 2371 unsigned long elapsed;
be62acb4 2372
44e2c070 2373 if (ctx->hang_stats.banned)
be62acb4
MK
2374 return true;
2375
7b4d3a16 2376 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
676fa572
CW
2377 if (ctx->hang_stats.ban_period_seconds &&
2378 elapsed <= ctx->hang_stats.ban_period_seconds) {
7b4d3a16
CW
2379 DRM_DEBUG("context hanging too fast, banning!\n");
2380 return true;
be62acb4
MK
2381 }
2382
2383 return false;
2384}
2385
7b4d3a16 2386static void i915_set_reset_status(struct i915_gem_context *ctx,
b6b0fac0 2387 const bool guilty)
aa60c664 2388{
7b4d3a16 2389 struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
44e2c070
MK
2390
2391 if (guilty) {
7b4d3a16 2392 hs->banned = i915_context_is_banned(ctx);
44e2c070
MK
2393 hs->batch_active++;
2394 hs->guilty_ts = get_seconds();
2395 } else {
2396 hs->batch_pending++;
aa60c664
MK
2397 }
2398}
2399
8d9fc7fd 2400struct drm_i915_gem_request *
0bc40be8 2401i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2402{
4db080f9
CW
2403 struct drm_i915_gem_request *request;
2404
f69a02c9
CW
2405 /* We are called by the error capture and reset at a random
2406 * point in time. In particular, note that neither is crucially
2407 * ordered with an interrupt. After a hang, the GPU is dead and we
2408 * assume that no more writes can happen (we waited long enough for
2409 * all writes that were in transaction to be flushed) - adding an
2410 * extra delay for a recent interrupt is pointless. Hence, we do
2411 * not need an engine->irq_seqno_barrier() before the seqno reads.
2412 */
efdf7c06 2413 list_for_each_entry(request, &engine->request_list, link) {
f69a02c9 2414 if (i915_gem_request_completed(request))
4db080f9 2415 continue;
aa60c664 2416
b6b0fac0 2417 return request;
4db080f9 2418 }
b6b0fac0
MK
2419
2420 return NULL;
2421}
2422
7b4d3a16 2423static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
b6b0fac0
MK
2424{
2425 struct drm_i915_gem_request *request;
2426 bool ring_hung;
2427
0bc40be8 2428 request = i915_gem_find_active_request(engine);
b6b0fac0
MK
2429 if (request == NULL)
2430 return;
2431
0bc40be8 2432 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
b6b0fac0 2433
7b4d3a16 2434 i915_set_reset_status(request->ctx, ring_hung);
efdf7c06 2435 list_for_each_entry_continue(request, &engine->request_list, link)
7b4d3a16 2436 i915_set_reset_status(request->ctx, false);
4db080f9 2437}
aa60c664 2438
7b4d3a16 2439static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
4db080f9 2440{
7e37f889 2441 struct intel_ring *ring;
608c1a52 2442
c4b0930b
CW
2443 /* Mark all pending requests as complete so that any concurrent
2444 * (lockless) lookup doesn't try and wait upon the request as we
2445 * reset it.
2446 */
7e37f889 2447 intel_engine_init_seqno(engine, engine->last_submitted_seqno);
c4b0930b 2448
dcb4c12a
OM
2449 /*
2450 * Clear the execlists queue up before freeing the requests, as those
2451 * are the ones that keep the context and ringbuffer backing objects
2452 * pinned in place.
2453 */
dcb4c12a 2454
7de1691a 2455 if (i915.enable_execlists) {
27af5eea
TU
2456 /* Ensure irq handler finishes or is cancelled. */
2457 tasklet_kill(&engine->irq_tasklet);
1197b4f2 2458
e39d42fa 2459 intel_execlists_cancel_requests(engine);
dcb4c12a
OM
2460 }
2461
1d62beea
BW
2462 /*
2463 * We must free the requests after all the corresponding objects have
2464 * been moved off active lists. Which is the same order as the normal
2465 * retire_requests function does. This is important if object hold
2466 * implicit references on things like e.g. ppgtt address spaces through
2467 * the request.
2468 */
05235c53 2469 if (!list_empty(&engine->request_list)) {
1d62beea
BW
2470 struct drm_i915_gem_request *request;
2471
05235c53
CW
2472 request = list_last_entry(&engine->request_list,
2473 struct drm_i915_gem_request,
efdf7c06 2474 link);
1d62beea 2475
05235c53 2476 i915_gem_request_retire_upto(request);
1d62beea 2477 }
608c1a52
CW
2478
2479 /* Having flushed all requests from all queues, we know that all
2480 * ringbuffers must now be empty. However, since we do not reclaim
2481 * all space when retiring the request (to prevent HEADs colliding
2482 * with rapid ringbuffer wraparound) the amount of available space
2483 * upon reset is less than when we start. Do one more pass over
2484 * all the ringbuffers to reset last_retired_head.
2485 */
7e37f889
CW
2486 list_for_each_entry(ring, &engine->buffers, link) {
2487 ring->last_retired_head = ring->tail;
2488 intel_ring_update_space(ring);
608c1a52 2489 }
2ed53a94 2490
b913b33c 2491 engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
673a394b
EA
2492}
2493
069efc1d 2494void i915_gem_reset(struct drm_device *dev)
673a394b 2495{
fac5e23e 2496 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 2497 struct intel_engine_cs *engine;
673a394b 2498
4db080f9
CW
2499 /*
2500 * Before we free the objects from the requests, we need to inspect
2501 * them for finding the guilty party. As the requests only borrow
2502 * their reference to the objects, the inspection must be done first.
2503 */
b4ac5afc 2504 for_each_engine(engine, dev_priv)
7b4d3a16 2505 i915_gem_reset_engine_status(engine);
4db080f9 2506
b4ac5afc 2507 for_each_engine(engine, dev_priv)
7b4d3a16 2508 i915_gem_reset_engine_cleanup(engine);
b913b33c 2509 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
dfaae392 2510
acce9ffa
BW
2511 i915_gem_context_reset(dev);
2512
19b2dbde 2513 i915_gem_restore_fences(dev);
673a394b
EA
2514}
2515
75ef9da2 2516static void
673a394b
EA
2517i915_gem_retire_work_handler(struct work_struct *work)
2518{
b29c19b6 2519 struct drm_i915_private *dev_priv =
67d97da3 2520 container_of(work, typeof(*dev_priv), gt.retire_work.work);
91c8a326 2521 struct drm_device *dev = &dev_priv->drm;
673a394b 2522
891b48cf 2523 /* Come back later if the device is busy... */
b29c19b6 2524 if (mutex_trylock(&dev->struct_mutex)) {
67d97da3 2525 i915_gem_retire_requests(dev_priv);
b29c19b6 2526 mutex_unlock(&dev->struct_mutex);
673a394b 2527 }
67d97da3
CW
2528
2529 /* Keep the retire handler running until we are finally idle.
2530 * We do not need to do this test under locking as in the worst-case
2531 * we queue the retire worker once too often.
2532 */
c9615613
CW
2533 if (READ_ONCE(dev_priv->gt.awake)) {
2534 i915_queue_hangcheck(dev_priv);
67d97da3
CW
2535 queue_delayed_work(dev_priv->wq,
2536 &dev_priv->gt.retire_work,
bcb45086 2537 round_jiffies_up_relative(HZ));
c9615613 2538 }
b29c19b6 2539}
0a58705b 2540
b29c19b6
CW
2541static void
2542i915_gem_idle_work_handler(struct work_struct *work)
2543{
2544 struct drm_i915_private *dev_priv =
67d97da3 2545 container_of(work, typeof(*dev_priv), gt.idle_work.work);
91c8a326 2546 struct drm_device *dev = &dev_priv->drm;
b4ac5afc 2547 struct intel_engine_cs *engine;
67d97da3
CW
2548 unsigned int stuck_engines;
2549 bool rearm_hangcheck;
2550
2551 if (!READ_ONCE(dev_priv->gt.awake))
2552 return;
2553
2554 if (READ_ONCE(dev_priv->gt.active_engines))
2555 return;
2556
2557 rearm_hangcheck =
2558 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2559
2560 if (!mutex_trylock(&dev->struct_mutex)) {
2561 /* Currently busy, come back later */
2562 mod_delayed_work(dev_priv->wq,
2563 &dev_priv->gt.idle_work,
2564 msecs_to_jiffies(50));
2565 goto out_rearm;
2566 }
2567
2568 if (dev_priv->gt.active_engines)
2569 goto out_unlock;
b29c19b6 2570
b4ac5afc 2571 for_each_engine(engine, dev_priv)
67d97da3 2572 i915_gem_batch_pool_fini(&engine->batch_pool);
35c94185 2573
67d97da3
CW
2574 GEM_BUG_ON(!dev_priv->gt.awake);
2575 dev_priv->gt.awake = false;
2576 rearm_hangcheck = false;
30ecad77 2577
2529d570
CW
2578 /* As we have disabled hangcheck, we need to unstick any waiters still
2579 * hanging around. However, as we may be racing against the interrupt
2580 * handler or the waiters themselves, we skip enabling the fake-irq.
2581 */
67d97da3 2582 stuck_engines = intel_kick_waiters(dev_priv);
2529d570
CW
2583 if (unlikely(stuck_engines))
2584 DRM_DEBUG_DRIVER("kicked stuck waiters (%x)...missed irq?\n",
2585 stuck_engines);
35c94185 2586
67d97da3
CW
2587 if (INTEL_GEN(dev_priv) >= 6)
2588 gen6_rps_idle(dev_priv);
2589 intel_runtime_pm_put(dev_priv);
2590out_unlock:
2591 mutex_unlock(&dev->struct_mutex);
b29c19b6 2592
67d97da3
CW
2593out_rearm:
2594 if (rearm_hangcheck) {
2595 GEM_BUG_ON(!dev_priv->gt.awake);
2596 i915_queue_hangcheck(dev_priv);
35c94185 2597 }
673a394b
EA
2598}
2599
b1f788c6
CW
2600void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2601{
2602 struct drm_i915_gem_object *obj = to_intel_bo(gem);
2603 struct drm_i915_file_private *fpriv = file->driver_priv;
2604 struct i915_vma *vma, *vn;
2605
2606 mutex_lock(&obj->base.dev->struct_mutex);
2607 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2608 if (vma->vm->file == fpriv)
2609 i915_vma_close(vma);
2610 mutex_unlock(&obj->base.dev->struct_mutex);
2611}
2612
23ba4fd0
BW
2613/**
2614 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
2615 * @dev: drm device pointer
2616 * @data: ioctl data blob
2617 * @file: drm file pointer
23ba4fd0
BW
2618 *
2619 * Returns 0 if successful, else an error is returned with the remaining time in
2620 * the timeout parameter.
2621 * -ETIME: object is still busy after timeout
2622 * -ERESTARTSYS: signal interrupted the wait
2623 * -ENONENT: object doesn't exist
2624 * Also possible, but rare:
2625 * -EAGAIN: GPU wedged
2626 * -ENOMEM: damn
2627 * -ENODEV: Internal IRQ fail
2628 * -E?: The add request failed
2629 *
2630 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2631 * non-zero timeout parameter the wait ioctl will wait for the given number of
2632 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2633 * without holding struct_mutex the object may become re-busied before this
2634 * function completes. A similar but shorter * race condition exists in the busy
2635 * ioctl
2636 */
2637int
2638i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2639{
2640 struct drm_i915_gem_wait *args = data;
2641 struct drm_i915_gem_object *obj;
27c01aae 2642 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
b4716185
CW
2643 int i, n = 0;
2644 int ret;
23ba4fd0 2645
11b5d511
DV
2646 if (args->flags != 0)
2647 return -EINVAL;
2648
23ba4fd0
BW
2649 ret = i915_mutex_lock_interruptible(dev);
2650 if (ret)
2651 return ret;
2652
03ac0642
CW
2653 obj = i915_gem_object_lookup(file, args->bo_handle);
2654 if (!obj) {
23ba4fd0
BW
2655 mutex_unlock(&dev->struct_mutex);
2656 return -ENOENT;
2657 }
2658
573adb39 2659 if (!i915_gem_object_is_active(obj))
97b2a6a1 2660 goto out;
23ba4fd0 2661
666796da 2662 for (i = 0; i < I915_NUM_ENGINES; i++) {
27c01aae 2663 struct drm_i915_gem_request *req;
b4716185 2664
d72d908b
CW
2665 req = i915_gem_active_get(&obj->last_read[i],
2666 &obj->base.dev->struct_mutex);
27c01aae
CW
2667 if (req)
2668 requests[n++] = req;
b4716185
CW
2669 }
2670
21c310f2
CW
2671out:
2672 i915_gem_object_put(obj);
23ba4fd0
BW
2673 mutex_unlock(&dev->struct_mutex);
2674
b4716185
CW
2675 for (i = 0; i < n; i++) {
2676 if (ret == 0)
776f3236
CW
2677 ret = i915_wait_request(requests[i], true,
2678 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2679 to_rps_client(file));
27c01aae 2680 i915_gem_request_put(requests[i]);
b4716185 2681 }
ff865885 2682 return ret;
23ba4fd0
BW
2683}
2684
b4716185 2685static int
fa545cbf 2686__i915_gem_object_sync(struct drm_i915_gem_request *to,
8e637178 2687 struct drm_i915_gem_request *from)
b4716185 2688{
b4716185
CW
2689 int ret;
2690
8e637178 2691 if (to->engine == from->engine)
b4716185
CW
2692 return 0;
2693
39df9190 2694 if (!i915.semaphores) {
776f3236
CW
2695 ret = i915_wait_request(from,
2696 from->i915->mm.interruptible,
2697 NULL,
2698 NO_WAITBOOST);
b4716185
CW
2699 if (ret)
2700 return ret;
b4716185 2701 } else {
8e637178 2702 int idx = intel_engine_sync_index(from->engine, to->engine);
ddf07be7 2703 if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
b4716185
CW
2704 return 0;
2705
8e637178 2706 trace_i915_gem_ring_sync_to(to, from);
ddf07be7 2707 ret = to->engine->semaphore.sync_to(to, from);
b4716185
CW
2708 if (ret)
2709 return ret;
2710
ddf07be7 2711 from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
b4716185
CW
2712 }
2713
2714 return 0;
2715}
2716
5816d648
BW
2717/**
2718 * i915_gem_object_sync - sync an object to a ring.
2719 *
2720 * @obj: object which may be in use on another ring.
8e637178 2721 * @to: request we are wishing to use
5816d648
BW
2722 *
2723 * This code is meant to abstract object synchronization with the GPU.
8e637178
CW
2724 * Conceptually we serialise writes between engines inside the GPU.
2725 * We only allow one engine to write into a buffer at any time, but
2726 * multiple readers. To ensure each has a coherent view of memory, we must:
b4716185
CW
2727 *
2728 * - If there is an outstanding write request to the object, the new
2729 * request must wait for it to complete (either CPU or in hw, requests
2730 * on the same ring will be naturally ordered).
2731 *
2732 * - If we are a write request (pending_write_domain is set), the new
2733 * request must wait for outstanding read requests to complete.
5816d648
BW
2734 *
2735 * Returns 0 if successful, else propagates up the lower layer error.
2736 */
2911a35b
BW
2737int
2738i915_gem_object_sync(struct drm_i915_gem_object *obj,
8e637178 2739 struct drm_i915_gem_request *to)
2911a35b 2740{
8cac6f6c
CW
2741 struct i915_gem_active *active;
2742 unsigned long active_mask;
2743 int idx;
41c52415 2744
8cac6f6c 2745 lockdep_assert_held(&obj->base.dev->struct_mutex);
2911a35b 2746
573adb39 2747 active_mask = i915_gem_object_get_active(obj);
8cac6f6c
CW
2748 if (!active_mask)
2749 return 0;
27c01aae 2750
8cac6f6c
CW
2751 if (obj->base.pending_write_domain) {
2752 active = obj->last_read;
b4716185 2753 } else {
8cac6f6c
CW
2754 active_mask = 1;
2755 active = &obj->last_write;
b4716185 2756 }
8cac6f6c
CW
2757
2758 for_each_active(active_mask, idx) {
2759 struct drm_i915_gem_request *request;
2760 int ret;
2761
2762 request = i915_gem_active_peek(&active[idx],
2763 &obj->base.dev->struct_mutex);
2764 if (!request)
2765 continue;
2766
fa545cbf 2767 ret = __i915_gem_object_sync(to, request);
b4716185
CW
2768 if (ret)
2769 return ret;
2770 }
2911a35b 2771
b4716185 2772 return 0;
2911a35b
BW
2773}
2774
b5ffc9bc
CW
2775static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2776{
2777 u32 old_write_domain, old_read_domains;
2778
b5ffc9bc
CW
2779 /* Force a pagefault for domain tracking on next user access */
2780 i915_gem_release_mmap(obj);
2781
b97c3d9c
KP
2782 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2783 return;
2784
b5ffc9bc
CW
2785 old_read_domains = obj->base.read_domains;
2786 old_write_domain = obj->base.write_domain;
2787
2788 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2789 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2790
2791 trace_i915_gem_object_change_domain(obj,
2792 old_read_domains,
2793 old_write_domain);
2794}
2795
8ef8561f
CW
2796static void __i915_vma_iounmap(struct i915_vma *vma)
2797{
20dfbde4 2798 GEM_BUG_ON(i915_vma_is_pinned(vma));
8ef8561f
CW
2799
2800 if (vma->iomap == NULL)
2801 return;
2802
2803 io_mapping_unmap(vma->iomap);
2804 vma->iomap = NULL;
2805}
2806
df0e9a28 2807int i915_vma_unbind(struct i915_vma *vma)
673a394b 2808{
07fe0b12 2809 struct drm_i915_gem_object *obj = vma->obj;
b0decaf7 2810 unsigned long active;
43e28f09 2811 int ret;
673a394b 2812
b0decaf7
CW
2813 /* First wait upon any activity as retiring the request may
2814 * have side-effects such as unpinning or even unbinding this vma.
2815 */
2816 active = i915_vma_get_active(vma);
df0e9a28 2817 if (active) {
b0decaf7
CW
2818 int idx;
2819
b1f788c6
CW
2820 /* When a closed VMA is retired, it is unbound - eek.
2821 * In order to prevent it from being recursively closed,
2822 * take a pin on the vma so that the second unbind is
2823 * aborted.
2824 */
20dfbde4 2825 __i915_vma_pin(vma);
b1f788c6 2826
b0decaf7
CW
2827 for_each_active(active, idx) {
2828 ret = i915_gem_active_retire(&vma->last_read[idx],
2829 &vma->vm->dev->struct_mutex);
2830 if (ret)
b1f788c6 2831 break;
b0decaf7
CW
2832 }
2833
20dfbde4 2834 __i915_vma_unpin(vma);
b1f788c6
CW
2835 if (ret)
2836 return ret;
2837
b0decaf7
CW
2838 GEM_BUG_ON(i915_vma_is_active(vma));
2839 }
2840
20dfbde4 2841 if (i915_vma_is_pinned(vma))
b0decaf7
CW
2842 return -EBUSY;
2843
b1f788c6
CW
2844 if (!drm_mm_node_allocated(&vma->node))
2845 goto destroy;
433544bd 2846
15717de2
CW
2847 GEM_BUG_ON(obj->bind_count == 0);
2848 GEM_BUG_ON(!obj->pages);
c4670ad0 2849
3272db53
CW
2850 if (i915_vma_is_ggtt(vma) &&
2851 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 2852 i915_gem_object_finish_gtt(obj);
5323fd04 2853
8b1bc9b4
DV
2854 /* release the fence reg _after_ flushing */
2855 ret = i915_gem_object_put_fence(obj);
2856 if (ret)
2857 return ret;
8ef8561f
CW
2858
2859 __i915_vma_iounmap(vma);
8b1bc9b4 2860 }
96b47b65 2861
50e046b6
CW
2862 if (likely(!vma->vm->closed)) {
2863 trace_i915_vma_unbind(vma);
2864 vma->vm->unbind_vma(vma);
2865 }
3272db53 2866 vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
6f65e29a 2867
50e046b6
CW
2868 drm_mm_remove_node(&vma->node);
2869 list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
2870
3272db53 2871 if (i915_vma_is_ggtt(vma)) {
fe14d5f4
TU
2872 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
2873 obj->map_and_fenceable = false;
2874 } else if (vma->ggtt_view.pages) {
2875 sg_free_table(vma->ggtt_view.pages);
2876 kfree(vma->ggtt_view.pages);
fe14d5f4 2877 }
016a65a3 2878 vma->ggtt_view.pages = NULL;
fe14d5f4 2879 }
673a394b 2880
2f633156 2881 /* Since the unbound list is global, only move to that list if
b93dab6e 2882 * no more VMAs exist. */
15717de2
CW
2883 if (--obj->bind_count == 0)
2884 list_move_tail(&obj->global_list,
2885 &to_i915(obj->base.dev)->mm.unbound_list);
673a394b 2886
70903c3b
CW
2887 /* And finally now the object is completely decoupled from this vma,
2888 * we can drop its hold on the backing storage and allow it to be
2889 * reaped by the shrinker.
2890 */
2891 i915_gem_object_unpin_pages(obj);
2892
b1f788c6 2893destroy:
3272db53 2894 if (unlikely(i915_vma_is_closed(vma)))
b1f788c6
CW
2895 i915_vma_destroy(vma);
2896
88241785 2897 return 0;
54cf91dc
CW
2898}
2899
6e5a5beb 2900int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
4df2faf4 2901{
e2f80391 2902 struct intel_engine_cs *engine;
b4ac5afc 2903 int ret;
4df2faf4 2904
91c8a326 2905 lockdep_assert_held(&dev_priv->drm.struct_mutex);
6e5a5beb 2906
b4ac5afc 2907 for_each_engine(engine, dev_priv) {
62e63007
CW
2908 if (engine->last_context == NULL)
2909 continue;
2910
666796da 2911 ret = intel_engine_idle(engine);
1ec14ad3
CW
2912 if (ret)
2913 return ret;
2914 }
4df2faf4 2915
8a1a49f9 2916 return 0;
4df2faf4
DV
2917}
2918
4144f9b5 2919static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
2920 unsigned long cache_level)
2921{
4144f9b5 2922 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
2923 struct drm_mm_node *other;
2924
4144f9b5
CW
2925 /*
2926 * On some machines we have to be careful when putting differing types
2927 * of snoopable memory together to avoid the prefetcher crossing memory
2928 * domains and dying. During vm initialisation, we decide whether or not
2929 * these constraints apply and set the drm_mm.color_adjust
2930 * appropriately.
42d6ab48 2931 */
4144f9b5 2932 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
2933 return true;
2934
c6cfb325 2935 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
2936 return true;
2937
2938 if (list_empty(&gtt_space->node_list))
2939 return true;
2940
2941 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2942 if (other->allocated && !other->hole_follows && other->color != cache_level)
2943 return false;
2944
2945 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2946 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2947 return false;
2948
2949 return true;
2950}
2951
673a394b 2952/**
59bfa124
CW
2953 * i915_vma_insert - finds a slot for the vma in its address space
2954 * @vma: the vma
91b2db6f 2955 * @size: requested size in bytes (can be larger than the VMA)
59bfa124 2956 * @alignment: required alignment
14bb2c11 2957 * @flags: mask of PIN_* flags to use
59bfa124
CW
2958 *
2959 * First we try to allocate some free space that meets the requirements for
2960 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
2961 * preferrably the oldest idle entry to make room for the new VMA.
2962 *
2963 * Returns:
2964 * 0 on success, negative error code otherwise.
673a394b 2965 */
59bfa124
CW
2966static int
2967i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
673a394b 2968{
59bfa124
CW
2969 struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
2970 struct drm_i915_gem_object *obj = vma->obj;
de180033
CW
2971 u64 start, end;
2972 u64 min_alignment;
07f73f69 2973 int ret;
673a394b 2974
3272db53 2975 GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
59bfa124 2976 GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
de180033
CW
2977
2978 size = max(size, vma->size);
2979 if (flags & PIN_MAPPABLE)
2980 size = i915_gem_get_ggtt_size(dev_priv, size, obj->tiling_mode);
2981
2982 min_alignment =
2983 i915_gem_get_ggtt_alignment(dev_priv, size, obj->tiling_mode,
2984 flags & PIN_MAPPABLE);
2985 if (alignment == 0)
2986 alignment = min_alignment;
2987 if (alignment & (min_alignment - 1)) {
2988 DRM_DEBUG("Invalid object alignment requested %llu, minimum %llu\n",
2989 alignment, min_alignment);
59bfa124 2990 return -EINVAL;
91e6711e 2991 }
a00b10c3 2992
101b506a 2993 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
de180033
CW
2994
2995 end = vma->vm->total;
101b506a 2996 if (flags & PIN_MAPPABLE)
91b2db6f 2997 end = min_t(u64, end, dev_priv->ggtt.mappable_end);
101b506a 2998 if (flags & PIN_ZONE_4G)
48ea1e32 2999 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
101b506a 3000
91e6711e
JL
3001 /* If binding the object/GGTT view requires more space than the entire
3002 * aperture has, reject it early before evicting everything in a vain
3003 * attempt to find space.
654fc607 3004 */
91e6711e 3005 if (size > end) {
de180033 3006 DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
91b2db6f 3007 size, obj->base.size,
1ec9e26d 3008 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3009 end);
59bfa124 3010 return -E2BIG;
654fc607
CW
3011 }
3012
37e680a1 3013 ret = i915_gem_object_get_pages(obj);
6c085a72 3014 if (ret)
59bfa124 3015 return ret;
6c085a72 3016
fbdda6fb
CW
3017 i915_gem_object_pin_pages(obj);
3018
506a8e87 3019 if (flags & PIN_OFFSET_FIXED) {
59bfa124 3020 u64 offset = flags & PIN_OFFSET_MASK;
de180033 3021 if (offset & (alignment - 1) || offset > end - size) {
506a8e87 3022 ret = -EINVAL;
de180033 3023 goto err_unpin;
506a8e87 3024 }
de180033 3025
506a8e87
CW
3026 vma->node.start = offset;
3027 vma->node.size = size;
3028 vma->node.color = obj->cache_level;
de180033 3029 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
506a8e87
CW
3030 if (ret) {
3031 ret = i915_gem_evict_for_vma(vma);
3032 if (ret == 0)
de180033
CW
3033 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3034 if (ret)
3035 goto err_unpin;
506a8e87 3036 }
101b506a 3037 } else {
de180033
CW
3038 u32 search_flag, alloc_flag;
3039
506a8e87
CW
3040 if (flags & PIN_HIGH) {
3041 search_flag = DRM_MM_SEARCH_BELOW;
3042 alloc_flag = DRM_MM_CREATE_TOP;
3043 } else {
3044 search_flag = DRM_MM_SEARCH_DEFAULT;
3045 alloc_flag = DRM_MM_CREATE_DEFAULT;
3046 }
101b506a 3047
954c4691
CW
3048 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3049 * so we know that we always have a minimum alignment of 4096.
3050 * The drm_mm range manager is optimised to return results
3051 * with zero alignment, so where possible use the optimal
3052 * path.
3053 */
3054 if (alignment <= 4096)
3055 alignment = 0;
3056
0a9ae0d7 3057search_free:
de180033
CW
3058 ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
3059 &vma->node,
506a8e87
CW
3060 size, alignment,
3061 obj->cache_level,
3062 start, end,
3063 search_flag,
3064 alloc_flag);
3065 if (ret) {
de180033 3066 ret = i915_gem_evict_something(vma->vm, size, alignment,
506a8e87
CW
3067 obj->cache_level,
3068 start, end,
3069 flags);
3070 if (ret == 0)
3071 goto search_free;
9731129c 3072
de180033 3073 goto err_unpin;
506a8e87 3074 }
673a394b 3075 }
37508589 3076 GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
673a394b 3077
35c20a60 3078 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
de180033 3079 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
15717de2 3080 obj->bind_count++;
bf1a1092 3081
59bfa124 3082 return 0;
2f633156 3083
bc6bc15b 3084err_unpin:
2f633156 3085 i915_gem_object_unpin_pages(obj);
59bfa124 3086 return ret;
673a394b
EA
3087}
3088
000433b6 3089bool
2c22569b
CW
3090i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3091 bool force)
673a394b 3092{
673a394b
EA
3093 /* If we don't have a page list set up, then we're not pinned
3094 * to GPU, and we can ignore the cache flush because it'll happen
3095 * again at bind time.
3096 */
05394f39 3097 if (obj->pages == NULL)
000433b6 3098 return false;
673a394b 3099
769ce464
ID
3100 /*
3101 * Stolen memory is always coherent with the GPU as it is explicitly
3102 * marked as wc by the system, or the system is cache-coherent.
3103 */
6a2c4232 3104 if (obj->stolen || obj->phys_handle)
000433b6 3105 return false;
769ce464 3106
9c23f7fc
CW
3107 /* If the GPU is snooping the contents of the CPU cache,
3108 * we do not need to manually clear the CPU cache lines. However,
3109 * the caches are only snooped when the render cache is
3110 * flushed/invalidated. As we always have to emit invalidations
3111 * and flushes when moving into and out of the RENDER domain, correct
3112 * snooping behaviour occurs naturally as the result of our domain
3113 * tracking.
3114 */
0f71979a
CW
3115 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3116 obj->cache_dirty = true;
000433b6 3117 return false;
0f71979a 3118 }
9c23f7fc 3119
1c5d22f7 3120 trace_i915_gem_object_clflush(obj);
9da3da66 3121 drm_clflush_sg(obj->pages);
0f71979a 3122 obj->cache_dirty = false;
000433b6
CW
3123
3124 return true;
e47c68e9
EA
3125}
3126
3127/** Flushes the GTT write domain for the object if it's dirty. */
3128static void
05394f39 3129i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3130{
1c5d22f7
CW
3131 uint32_t old_write_domain;
3132
05394f39 3133 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3134 return;
3135
63256ec5 3136 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3137 * to it immediately go to main memory as far as we know, so there's
3138 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3139 *
3140 * However, we do have to enforce the order so that all writes through
3141 * the GTT land before any writes to the device, such as updates to
3142 * the GATT itself.
e47c68e9 3143 */
63256ec5
CW
3144 wmb();
3145
05394f39
CW
3146 old_write_domain = obj->base.write_domain;
3147 obj->base.write_domain = 0;
1c5d22f7 3148
de152b62 3149 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
f99d7069 3150
1c5d22f7 3151 trace_i915_gem_object_change_domain(obj,
05394f39 3152 obj->base.read_domains,
1c5d22f7 3153 old_write_domain);
e47c68e9
EA
3154}
3155
3156/** Flushes the CPU write domain for the object if it's dirty. */
3157static void
e62b59e4 3158i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3159{
1c5d22f7 3160 uint32_t old_write_domain;
e47c68e9 3161
05394f39 3162 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3163 return;
3164
e62b59e4 3165 if (i915_gem_clflush_object(obj, obj->pin_display))
c033666a 3166 i915_gem_chipset_flush(to_i915(obj->base.dev));
000433b6 3167
05394f39
CW
3168 old_write_domain = obj->base.write_domain;
3169 obj->base.write_domain = 0;
1c5d22f7 3170
de152b62 3171 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3172
1c5d22f7 3173 trace_i915_gem_object_change_domain(obj,
05394f39 3174 obj->base.read_domains,
1c5d22f7 3175 old_write_domain);
e47c68e9
EA
3176}
3177
2ef7eeaa
EA
3178/**
3179 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3180 * @obj: object to act on
3181 * @write: ask for write access or read only
2ef7eeaa
EA
3182 *
3183 * This function returns when the move is complete, including waiting on
3184 * flushes to occur.
3185 */
79e53945 3186int
2021746e 3187i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3188{
1c5d22f7 3189 uint32_t old_write_domain, old_read_domains;
43566ded 3190 struct i915_vma *vma;
e47c68e9 3191 int ret;
2ef7eeaa 3192
0201f1ec 3193 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3194 if (ret)
3195 return ret;
3196
c13d87ea
CW
3197 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3198 return 0;
3199
43566ded
CW
3200 /* Flush and acquire obj->pages so that we are coherent through
3201 * direct access in memory with previous cached writes through
3202 * shmemfs and that our cache domain tracking remains valid.
3203 * For example, if the obj->filp was moved to swap without us
3204 * being notified and releasing the pages, we would mistakenly
3205 * continue to assume that the obj remained out of the CPU cached
3206 * domain.
3207 */
3208 ret = i915_gem_object_get_pages(obj);
3209 if (ret)
3210 return ret;
3211
e62b59e4 3212 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3213
d0a57789
CW
3214 /* Serialise direct access to this object with the barriers for
3215 * coherent writes from the GPU, by effectively invalidating the
3216 * GTT domain upon first access.
3217 */
3218 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3219 mb();
3220
05394f39
CW
3221 old_write_domain = obj->base.write_domain;
3222 old_read_domains = obj->base.read_domains;
1c5d22f7 3223
e47c68e9
EA
3224 /* It should now be out of any other write domains, and we can update
3225 * the domain values for our changes.
3226 */
05394f39
CW
3227 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3228 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3229 if (write) {
05394f39
CW
3230 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3231 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3232 obj->dirty = 1;
2ef7eeaa
EA
3233 }
3234
1c5d22f7
CW
3235 trace_i915_gem_object_change_domain(obj,
3236 old_read_domains,
3237 old_write_domain);
3238
8325a09d 3239 /* And bump the LRU for this access */
43566ded 3240 vma = i915_gem_obj_to_ggtt(obj);
b0decaf7
CW
3241 if (vma &&
3242 drm_mm_node_allocated(&vma->node) &&
3243 !i915_vma_is_active(vma))
3244 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
8325a09d 3245
e47c68e9
EA
3246 return 0;
3247}
3248
ef55f92a
CW
3249/**
3250 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
3251 * @obj: object to act on
3252 * @cache_level: new cache level to set for the object
ef55f92a
CW
3253 *
3254 * After this function returns, the object will be in the new cache-level
3255 * across all GTT and the contents of the backing storage will be coherent,
3256 * with respect to the new cache-level. In order to keep the backing storage
3257 * coherent for all users, we only allow a single cache level to be set
3258 * globally on the object and prevent it from being changed whilst the
3259 * hardware is reading from the object. That is if the object is currently
3260 * on the scanout it will be set to uncached (or equivalent display
3261 * cache coherency) and all non-MOCS GPU access will also be uncached so
3262 * that all direct access to the scanout remains coherent.
3263 */
e4ffd173
CW
3264int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3265 enum i915_cache_level cache_level)
3266{
aa653a68 3267 struct i915_vma *vma;
ed75a55b 3268 int ret = 0;
e4ffd173
CW
3269
3270 if (obj->cache_level == cache_level)
ed75a55b 3271 goto out;
e4ffd173 3272
ef55f92a
CW
3273 /* Inspect the list of currently bound VMA and unbind any that would
3274 * be invalid given the new cache-level. This is principally to
3275 * catch the issue of the CS prefetch crossing page boundaries and
3276 * reading an invalid PTE on older architectures.
3277 */
aa653a68
CW
3278restart:
3279 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3280 if (!drm_mm_node_allocated(&vma->node))
3281 continue;
3282
20dfbde4 3283 if (i915_vma_is_pinned(vma)) {
ef55f92a
CW
3284 DRM_DEBUG("can not change the cache level of pinned objects\n");
3285 return -EBUSY;
3286 }
3287
aa653a68
CW
3288 if (i915_gem_valid_gtt_space(vma, cache_level))
3289 continue;
3290
3291 ret = i915_vma_unbind(vma);
3292 if (ret)
3293 return ret;
3294
3295 /* As unbinding may affect other elements in the
3296 * obj->vma_list (due to side-effects from retiring
3297 * an active vma), play safe and restart the iterator.
3298 */
3299 goto restart;
42d6ab48
CW
3300 }
3301
ef55f92a
CW
3302 /* We can reuse the existing drm_mm nodes but need to change the
3303 * cache-level on the PTE. We could simply unbind them all and
3304 * rebind with the correct cache-level on next use. However since
3305 * we already have a valid slot, dma mapping, pages etc, we may as
3306 * rewrite the PTE in the belief that doing so tramples upon less
3307 * state and so involves less work.
3308 */
15717de2 3309 if (obj->bind_count) {
ef55f92a
CW
3310 /* Before we change the PTE, the GPU must not be accessing it.
3311 * If we wait upon the object, we know that all the bound
3312 * VMA are no longer active.
3313 */
2e2f351d 3314 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
3315 if (ret)
3316 return ret;
3317
aa653a68 3318 if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
ef55f92a
CW
3319 /* Access to snoopable pages through the GTT is
3320 * incoherent and on some machines causes a hard
3321 * lockup. Relinquish the CPU mmaping to force
3322 * userspace to refault in the pages and we can
3323 * then double check if the GTT mapping is still
3324 * valid for that pointer access.
3325 */
3326 i915_gem_release_mmap(obj);
3327
3328 /* As we no longer need a fence for GTT access,
3329 * we can relinquish it now (and so prevent having
3330 * to steal a fence from someone else on the next
3331 * fence request). Note GPU activity would have
3332 * dropped the fence as all snoopable access is
3333 * supposed to be linear.
3334 */
e4ffd173
CW
3335 ret = i915_gem_object_put_fence(obj);
3336 if (ret)
3337 return ret;
ef55f92a
CW
3338 } else {
3339 /* We either have incoherent backing store and
3340 * so no GTT access or the architecture is fully
3341 * coherent. In such cases, existing GTT mmaps
3342 * ignore the cache bit in the PTE and we can
3343 * rewrite it without confusing the GPU or having
3344 * to force userspace to fault back in its mmaps.
3345 */
e4ffd173
CW
3346 }
3347
1c7f4bca 3348 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3349 if (!drm_mm_node_allocated(&vma->node))
3350 continue;
3351
3352 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3353 if (ret)
3354 return ret;
3355 }
e4ffd173
CW
3356 }
3357
1c7f4bca 3358 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
3359 vma->node.color = cache_level;
3360 obj->cache_level = cache_level;
3361
ed75a55b 3362out:
ef55f92a
CW
3363 /* Flush the dirty CPU caches to the backing storage so that the
3364 * object is now coherent at its new cache level (with respect
3365 * to the access domain).
3366 */
b50a5371 3367 if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
0f71979a 3368 if (i915_gem_clflush_object(obj, true))
c033666a 3369 i915_gem_chipset_flush(to_i915(obj->base.dev));
e4ffd173
CW
3370 }
3371
e4ffd173
CW
3372 return 0;
3373}
3374
199adf40
BW
3375int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3376 struct drm_file *file)
e6994aee 3377{
199adf40 3378 struct drm_i915_gem_caching *args = data;
e6994aee 3379 struct drm_i915_gem_object *obj;
e6994aee 3380
03ac0642
CW
3381 obj = i915_gem_object_lookup(file, args->handle);
3382 if (!obj)
432be69d 3383 return -ENOENT;
e6994aee 3384
651d794f
CW
3385 switch (obj->cache_level) {
3386 case I915_CACHE_LLC:
3387 case I915_CACHE_L3_LLC:
3388 args->caching = I915_CACHING_CACHED;
3389 break;
3390
4257d3ba
CW
3391 case I915_CACHE_WT:
3392 args->caching = I915_CACHING_DISPLAY;
3393 break;
3394
651d794f
CW
3395 default:
3396 args->caching = I915_CACHING_NONE;
3397 break;
3398 }
e6994aee 3399
34911fd3 3400 i915_gem_object_put_unlocked(obj);
432be69d 3401 return 0;
e6994aee
CW
3402}
3403
199adf40
BW
3404int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3405 struct drm_file *file)
e6994aee 3406{
fac5e23e 3407 struct drm_i915_private *dev_priv = to_i915(dev);
199adf40 3408 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3409 struct drm_i915_gem_object *obj;
3410 enum i915_cache_level level;
3411 int ret;
3412
199adf40
BW
3413 switch (args->caching) {
3414 case I915_CACHING_NONE:
e6994aee
CW
3415 level = I915_CACHE_NONE;
3416 break;
199adf40 3417 case I915_CACHING_CACHED:
e5756c10
ID
3418 /*
3419 * Due to a HW issue on BXT A stepping, GPU stores via a
3420 * snooped mapping may leave stale data in a corresponding CPU
3421 * cacheline, whereas normally such cachelines would get
3422 * invalidated.
3423 */
ca377809 3424 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
e5756c10
ID
3425 return -ENODEV;
3426
e6994aee
CW
3427 level = I915_CACHE_LLC;
3428 break;
4257d3ba
CW
3429 case I915_CACHING_DISPLAY:
3430 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3431 break;
e6994aee
CW
3432 default:
3433 return -EINVAL;
3434 }
3435
fd0fe6ac
ID
3436 intel_runtime_pm_get(dev_priv);
3437
3bc2913e
BW
3438 ret = i915_mutex_lock_interruptible(dev);
3439 if (ret)
fd0fe6ac 3440 goto rpm_put;
3bc2913e 3441
03ac0642
CW
3442 obj = i915_gem_object_lookup(file, args->handle);
3443 if (!obj) {
e6994aee
CW
3444 ret = -ENOENT;
3445 goto unlock;
3446 }
3447
3448 ret = i915_gem_object_set_cache_level(obj, level);
3449
f8c417cd 3450 i915_gem_object_put(obj);
e6994aee
CW
3451unlock:
3452 mutex_unlock(&dev->struct_mutex);
fd0fe6ac
ID
3453rpm_put:
3454 intel_runtime_pm_put(dev_priv);
3455
e6994aee
CW
3456 return ret;
3457}
3458
b9241ea3 3459/*
2da3b9b9
CW
3460 * Prepare buffer for display plane (scanout, cursors, etc).
3461 * Can be called from an uninterruptible phase (modesetting) and allows
3462 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3463 */
3464int
2da3b9b9
CW
3465i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3466 u32 alignment,
e6617330 3467 const struct i915_ggtt_view *view)
b9241ea3 3468{
2da3b9b9 3469 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3470 int ret;
3471
cc98b413
CW
3472 /* Mark the pin_display early so that we account for the
3473 * display coherency whilst setting up the cache domains.
3474 */
8a0c39b1 3475 obj->pin_display++;
cc98b413 3476
a7ef0640
EA
3477 /* The display engine is not coherent with the LLC cache on gen6. As
3478 * a result, we make sure that the pinning that is about to occur is
3479 * done with uncached PTEs. This is lowest common denominator for all
3480 * chipsets.
3481 *
3482 * However for gen6+, we could do better by using the GFDT bit instead
3483 * of uncaching, which would allow us to flush all the LLC-cached data
3484 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3485 */
651d794f
CW
3486 ret = i915_gem_object_set_cache_level(obj,
3487 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3488 if (ret)
cc98b413 3489 goto err_unpin_display;
a7ef0640 3490
2da3b9b9
CW
3491 /* As the user may map the buffer once pinned in the display plane
3492 * (e.g. libkms for the bootup splash), we have to ensure that we
3493 * always use map_and_fenceable for all scanout buffers.
3494 */
91b2db6f 3495 ret = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
50470bb0
TU
3496 view->type == I915_GGTT_VIEW_NORMAL ?
3497 PIN_MAPPABLE : 0);
2da3b9b9 3498 if (ret)
cc98b413 3499 goto err_unpin_display;
2da3b9b9 3500
e62b59e4 3501 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 3502
2da3b9b9 3503 old_write_domain = obj->base.write_domain;
05394f39 3504 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3505
3506 /* It should now be out of any other write domains, and we can update
3507 * the domain values for our changes.
3508 */
e5f1d962 3509 obj->base.write_domain = 0;
05394f39 3510 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3511
3512 trace_i915_gem_object_change_domain(obj,
3513 old_read_domains,
2da3b9b9 3514 old_write_domain);
b9241ea3
ZW
3515
3516 return 0;
cc98b413
CW
3517
3518err_unpin_display:
8a0c39b1 3519 obj->pin_display--;
cc98b413
CW
3520 return ret;
3521}
3522
3523void
e6617330
TU
3524i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3525 const struct i915_ggtt_view *view)
cc98b413 3526{
8a0c39b1
TU
3527 if (WARN_ON(obj->pin_display == 0))
3528 return;
3529
e6617330
TU
3530 i915_gem_object_ggtt_unpin_view(obj, view);
3531
8a0c39b1 3532 obj->pin_display--;
b9241ea3
ZW
3533}
3534
e47c68e9
EA
3535/**
3536 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
3537 * @obj: object to act on
3538 * @write: requesting write or read-only access
e47c68e9
EA
3539 *
3540 * This function returns when the move is complete, including waiting on
3541 * flushes to occur.
3542 */
dabdfe02 3543int
919926ae 3544i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3545{
1c5d22f7 3546 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3547 int ret;
3548
0201f1ec 3549 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3550 if (ret)
3551 return ret;
3552
c13d87ea
CW
3553 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3554 return 0;
3555
e47c68e9 3556 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3557
05394f39
CW
3558 old_write_domain = obj->base.write_domain;
3559 old_read_domains = obj->base.read_domains;
1c5d22f7 3560
e47c68e9 3561 /* Flush the CPU cache if it's still invalid. */
05394f39 3562 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3563 i915_gem_clflush_object(obj, false);
2ef7eeaa 3564
05394f39 3565 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3566 }
3567
3568 /* It should now be out of any other write domains, and we can update
3569 * the domain values for our changes.
3570 */
05394f39 3571 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3572
3573 /* If we're writing through the CPU, then the GPU read domains will
3574 * need to be invalidated at next use.
3575 */
3576 if (write) {
05394f39
CW
3577 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3578 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3579 }
2ef7eeaa 3580
1c5d22f7
CW
3581 trace_i915_gem_object_change_domain(obj,
3582 old_read_domains,
3583 old_write_domain);
3584
2ef7eeaa
EA
3585 return 0;
3586}
3587
673a394b
EA
3588/* Throttle our rendering by waiting until the ring has completed our requests
3589 * emitted over 20 msec ago.
3590 *
b962442e
EA
3591 * Note that if we were to use the current jiffies each time around the loop,
3592 * we wouldn't escape the function with any frames outstanding if the time to
3593 * render a frame was over 20ms.
3594 *
673a394b
EA
3595 * This should get us reasonable parallelism between CPU and GPU but also
3596 * relatively low latency when blocking on a particular request to finish.
3597 */
40a5f0de 3598static int
f787a5f5 3599i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3600{
fac5e23e 3601 struct drm_i915_private *dev_priv = to_i915(dev);
f787a5f5 3602 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 3603 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 3604 struct drm_i915_gem_request *request, *target = NULL;
f787a5f5 3605 int ret;
93533c29 3606
308887aa
DV
3607 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3608 if (ret)
3609 return ret;
3610
f4457ae7
CW
3611 /* ABI: return -EIO if already wedged */
3612 if (i915_terminally_wedged(&dev_priv->gpu_error))
3613 return -EIO;
e110e8d6 3614
1c25595f 3615 spin_lock(&file_priv->mm.lock);
f787a5f5 3616 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3617 if (time_after_eq(request->emitted_jiffies, recent_enough))
3618 break;
40a5f0de 3619
fcfa423c
JH
3620 /*
3621 * Note that the request might not have been submitted yet.
3622 * In which case emitted_jiffies will be zero.
3623 */
3624 if (!request->emitted_jiffies)
3625 continue;
3626
54fb2411 3627 target = request;
b962442e 3628 }
ff865885 3629 if (target)
e8a261ea 3630 i915_gem_request_get(target);
1c25595f 3631 spin_unlock(&file_priv->mm.lock);
40a5f0de 3632
54fb2411 3633 if (target == NULL)
f787a5f5 3634 return 0;
2bc43b5c 3635
776f3236 3636 ret = i915_wait_request(target, true, NULL, NULL);
e8a261ea 3637 i915_gem_request_put(target);
ff865885 3638
40a5f0de
EA
3639 return ret;
3640}
3641
d23db88c 3642static bool
91b2db6f 3643i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
d23db88c
CW
3644{
3645 struct drm_i915_gem_object *obj = vma->obj;
3646
59bfa124
CW
3647 if (!drm_mm_node_allocated(&vma->node))
3648 return false;
3649
91b2db6f
CW
3650 if (vma->node.size < size)
3651 return true;
3652
3653 if (alignment && vma->node.start & (alignment - 1))
d23db88c
CW
3654 return true;
3655
3656 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
3657 return true;
3658
3659 if (flags & PIN_OFFSET_BIAS &&
3660 vma->node.start < (flags & PIN_OFFSET_MASK))
3661 return true;
3662
506a8e87
CW
3663 if (flags & PIN_OFFSET_FIXED &&
3664 vma->node.start != (flags & PIN_OFFSET_MASK))
3665 return true;
3666
d23db88c
CW
3667 return false;
3668}
3669
d0710abb
CW
3670void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
3671{
3672 struct drm_i915_gem_object *obj = vma->obj;
a9f1481f 3673 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
d0710abb
CW
3674 bool mappable, fenceable;
3675 u32 fence_size, fence_alignment;
3676
a9f1481f 3677 fence_size = i915_gem_get_ggtt_size(dev_priv,
ad1a7d20
CW
3678 obj->base.size,
3679 obj->tiling_mode);
a9f1481f 3680 fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
ad1a7d20
CW
3681 obj->base.size,
3682 obj->tiling_mode,
3683 true);
d0710abb
CW
3684
3685 fenceable = (vma->node.size == fence_size &&
3686 (vma->node.start & (fence_alignment - 1)) == 0);
3687
3688 mappable = (vma->node.start + fence_size <=
a9f1481f 3689 dev_priv->ggtt.mappable_end);
d0710abb
CW
3690
3691 obj->map_and_fenceable = mappable && fenceable;
3692}
3693
305bc234
CW
3694int __i915_vma_do_pin(struct i915_vma *vma,
3695 u64 size, u64 alignment, u64 flags)
673a394b 3696{
305bc234 3697 unsigned int bound = vma->flags;
673a394b
EA
3698 int ret;
3699
59bfa124 3700 GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3272db53 3701 GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
d7f46fc4 3702
305bc234
CW
3703 if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
3704 ret = -EBUSY;
3705 goto err;
3706 }
ac0c6b5a 3707
de895082 3708 if ((bound & I915_VMA_BIND_MASK) == 0) {
59bfa124
CW
3709 ret = i915_vma_insert(vma, size, alignment, flags);
3710 if (ret)
3711 goto err;
fe14d5f4 3712 }
74898d7e 3713
59bfa124 3714 ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3b16525c 3715 if (ret)
59bfa124 3716 goto err;
3b16525c 3717
3272db53 3718 if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
d0710abb 3719 __i915_vma_set_map_and_fenceable(vma);
ef79e17c 3720
3b16525c 3721 GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
673a394b 3722 return 0;
673a394b 3723
59bfa124
CW
3724err:
3725 __i915_vma_unpin(vma);
3726 return ret;
ec7adb6e
JL
3727}
3728
3729int
3730i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3731 const struct i915_ggtt_view *view,
91b2db6f 3732 u64 size,
2ffffd0f
CW
3733 u64 alignment,
3734 u64 flags)
ec7adb6e 3735{
59bfa124
CW
3736 struct i915_vma *vma;
3737 int ret;
72e96d64 3738
de895082
CW
3739 if (!view)
3740 view = &i915_ggtt_view_normal;
ec7adb6e 3741
59bfa124
CW
3742 vma = i915_gem_obj_lookup_or_create_ggtt_vma(obj, view);
3743 if (IS_ERR(vma))
3744 return PTR_ERR(vma);
3745
3746 if (i915_vma_misplaced(vma, size, alignment, flags)) {
3747 if (flags & PIN_NONBLOCK &&
3748 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3749 return -ENOSPC;
3750
3751 WARN(i915_vma_is_pinned(vma),
3752 "bo is already pinned in ggtt with incorrect alignment:"
3753 " offset=%08x %08x, req.alignment=%llx, req.map_and_fenceable=%d,"
3754 " obj->map_and_fenceable=%d\n",
3755 upper_32_bits(vma->node.start),
3756 lower_32_bits(vma->node.start),
3757 alignment,
3758 !!(flags & PIN_MAPPABLE),
3759 obj->map_and_fenceable);
3760 ret = i915_vma_unbind(vma);
3761 if (ret)
3762 return ret;
3763 }
3764
3765 return i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
3766}
3767
673a394b 3768void
e6617330
TU
3769i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
3770 const struct i915_ggtt_view *view)
673a394b 3771{
de895082 3772 i915_vma_unpin(i915_gem_obj_to_ggtt_view(obj, view));
673a394b
EA
3773}
3774
673a394b
EA
3775int
3776i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3777 struct drm_file *file)
673a394b
EA
3778{
3779 struct drm_i915_gem_busy *args = data;
05394f39 3780 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3781 int ret;
3782
76c1dec1 3783 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3784 if (ret)
76c1dec1 3785 return ret;
673a394b 3786
03ac0642
CW
3787 obj = i915_gem_object_lookup(file, args->handle);
3788 if (!obj) {
1d7cfea1
CW
3789 ret = -ENOENT;
3790 goto unlock;
673a394b 3791 }
d1b851fc 3792
0be555b6
CW
3793 /* Count all active objects as busy, even if they are currently not used
3794 * by the gpu. Users of this interface expect objects to eventually
21c310f2 3795 * become non-busy without any further actions.
c4de0a5d 3796 */
426960be 3797 args->busy = 0;
573adb39 3798 if (i915_gem_object_is_active(obj)) {
27c01aae 3799 struct drm_i915_gem_request *req;
426960be
CW
3800 int i;
3801
666796da 3802 for (i = 0; i < I915_NUM_ENGINES; i++) {
d72d908b
CW
3803 req = i915_gem_active_peek(&obj->last_read[i],
3804 &obj->base.dev->struct_mutex);
426960be 3805 if (req)
4a570db5 3806 args->busy |= 1 << (16 + req->engine->exec_id);
426960be 3807 }
d72d908b
CW
3808 req = i915_gem_active_peek(&obj->last_write,
3809 &obj->base.dev->struct_mutex);
27c01aae
CW
3810 if (req)
3811 args->busy |= req->engine->exec_id;
426960be 3812 }
673a394b 3813
f8c417cd 3814 i915_gem_object_put(obj);
1d7cfea1 3815unlock:
673a394b 3816 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3817 return ret;
673a394b
EA
3818}
3819
3820int
3821i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3822 struct drm_file *file_priv)
3823{
0206e353 3824 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3825}
3826
3ef94daa
CW
3827int
3828i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3829 struct drm_file *file_priv)
3830{
fac5e23e 3831 struct drm_i915_private *dev_priv = to_i915(dev);
3ef94daa 3832 struct drm_i915_gem_madvise *args = data;
05394f39 3833 struct drm_i915_gem_object *obj;
76c1dec1 3834 int ret;
3ef94daa
CW
3835
3836 switch (args->madv) {
3837 case I915_MADV_DONTNEED:
3838 case I915_MADV_WILLNEED:
3839 break;
3840 default:
3841 return -EINVAL;
3842 }
3843
1d7cfea1
CW
3844 ret = i915_mutex_lock_interruptible(dev);
3845 if (ret)
3846 return ret;
3847
03ac0642
CW
3848 obj = i915_gem_object_lookup(file_priv, args->handle);
3849 if (!obj) {
1d7cfea1
CW
3850 ret = -ENOENT;
3851 goto unlock;
3ef94daa 3852 }
3ef94daa 3853
d7f46fc4 3854 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
3855 ret = -EINVAL;
3856 goto out;
3ef94daa
CW
3857 }
3858
656bfa3a
DV
3859 if (obj->pages &&
3860 obj->tiling_mode != I915_TILING_NONE &&
3861 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3862 if (obj->madv == I915_MADV_WILLNEED)
3863 i915_gem_object_unpin_pages(obj);
3864 if (args->madv == I915_MADV_WILLNEED)
3865 i915_gem_object_pin_pages(obj);
3866 }
3867
05394f39
CW
3868 if (obj->madv != __I915_MADV_PURGED)
3869 obj->madv = args->madv;
3ef94daa 3870
6c085a72 3871 /* if the object is no longer attached, discard its backing storage */
be6a0376 3872 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
3873 i915_gem_object_truncate(obj);
3874
05394f39 3875 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3876
1d7cfea1 3877out:
f8c417cd 3878 i915_gem_object_put(obj);
1d7cfea1 3879unlock:
3ef94daa 3880 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3881 return ret;
3ef94daa
CW
3882}
3883
37e680a1
CW
3884void i915_gem_object_init(struct drm_i915_gem_object *obj,
3885 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3886{
b4716185
CW
3887 int i;
3888
35c20a60 3889 INIT_LIST_HEAD(&obj->global_list);
666796da 3890 for (i = 0; i < I915_NUM_ENGINES; i++)
fa545cbf
CW
3891 init_request_active(&obj->last_read[i],
3892 i915_gem_object_retire__read);
3893 init_request_active(&obj->last_write,
3894 i915_gem_object_retire__write);
3895 init_request_active(&obj->last_fence, NULL);
b25cb2f8 3896 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 3897 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 3898 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 3899
37e680a1
CW
3900 obj->ops = ops;
3901
0327d6ba
CW
3902 obj->fence_reg = I915_FENCE_REG_NONE;
3903 obj->madv = I915_MADV_WILLNEED;
0327d6ba 3904
f19ec8cb 3905 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
0327d6ba
CW
3906}
3907
37e680a1 3908static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
de472664 3909 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
37e680a1
CW
3910 .get_pages = i915_gem_object_get_pages_gtt,
3911 .put_pages = i915_gem_object_put_pages_gtt,
3912};
3913
d37cd8a8 3914struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
05394f39 3915 size_t size)
ac52bc56 3916{
c397b908 3917 struct drm_i915_gem_object *obj;
5949eac4 3918 struct address_space *mapping;
1a240d4d 3919 gfp_t mask;
fe3db79b 3920 int ret;
ac52bc56 3921
42dcedd4 3922 obj = i915_gem_object_alloc(dev);
c397b908 3923 if (obj == NULL)
fe3db79b 3924 return ERR_PTR(-ENOMEM);
673a394b 3925
fe3db79b
CW
3926 ret = drm_gem_object_init(dev, &obj->base, size);
3927 if (ret)
3928 goto fail;
673a394b 3929
bed1ea95
CW
3930 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3931 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3932 /* 965gm cannot relocate objects above 4GiB. */
3933 mask &= ~__GFP_HIGHMEM;
3934 mask |= __GFP_DMA32;
3935 }
3936
496ad9aa 3937 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 3938 mapping_set_gfp_mask(mapping, mask);
5949eac4 3939
37e680a1 3940 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 3941
c397b908
DV
3942 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3943 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3944
3d29b842
ED
3945 if (HAS_LLC(dev)) {
3946 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3947 * cache) for about a 10% performance improvement
3948 * compared to uncached. Graphics requests other than
3949 * display scanout are coherent with the CPU in
3950 * accessing this cache. This means in this mode we
3951 * don't need to clflush on the CPU side, and on the
3952 * GPU side we only need to flush internal caches to
3953 * get data visible to the CPU.
3954 *
3955 * However, we maintain the display planes as UC, and so
3956 * need to rebind when first used as such.
3957 */
3958 obj->cache_level = I915_CACHE_LLC;
3959 } else
3960 obj->cache_level = I915_CACHE_NONE;
3961
d861e338
DV
3962 trace_i915_gem_object_create(obj);
3963
05394f39 3964 return obj;
fe3db79b
CW
3965
3966fail:
3967 i915_gem_object_free(obj);
3968
3969 return ERR_PTR(ret);
c397b908
DV
3970}
3971
340fbd8c
CW
3972static bool discard_backing_storage(struct drm_i915_gem_object *obj)
3973{
3974 /* If we are the last user of the backing storage (be it shmemfs
3975 * pages or stolen etc), we know that the pages are going to be
3976 * immediately released. In this case, we can then skip copying
3977 * back the contents from the GPU.
3978 */
3979
3980 if (obj->madv != I915_MADV_WILLNEED)
3981 return false;
3982
3983 if (obj->base.filp == NULL)
3984 return true;
3985
3986 /* At first glance, this looks racy, but then again so would be
3987 * userspace racing mmap against close. However, the first external
3988 * reference to the filp can only be obtained through the
3989 * i915_gem_mmap_ioctl() which safeguards us against the user
3990 * acquiring such a reference whilst we are in the middle of
3991 * freeing the object.
3992 */
3993 return atomic_long_read(&obj->base.filp->f_count) == 1;
3994}
3995
1488fc08 3996void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3997{
1488fc08 3998 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3999 struct drm_device *dev = obj->base.dev;
fac5e23e 4000 struct drm_i915_private *dev_priv = to_i915(dev);
07fe0b12 4001 struct i915_vma *vma, *next;
673a394b 4002
f65c9168
PZ
4003 intel_runtime_pm_get(dev_priv);
4004
26e12f89
CW
4005 trace_i915_gem_object_destroy(obj);
4006
b1f788c6
CW
4007 /* All file-owned VMA should have been released by this point through
4008 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4009 * However, the object may also be bound into the global GTT (e.g.
4010 * older GPUs without per-process support, or for direct access through
4011 * the GTT either for the user or for scanout). Those VMA still need to
4012 * unbound now.
4013 */
1c7f4bca 4014 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3272db53 4015 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
b1f788c6 4016 GEM_BUG_ON(i915_vma_is_active(vma));
3272db53 4017 vma->flags &= ~I915_VMA_PIN_MASK;
b1f788c6 4018 i915_vma_close(vma);
1488fc08 4019 }
15717de2 4020 GEM_BUG_ON(obj->bind_count);
1488fc08 4021
1d64ae71
BW
4022 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4023 * before progressing. */
4024 if (obj->stolen)
4025 i915_gem_object_unpin_pages(obj);
4026
faf5bf0a 4027 WARN_ON(atomic_read(&obj->frontbuffer_bits));
a071fa00 4028
656bfa3a
DV
4029 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4030 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4031 obj->tiling_mode != I915_TILING_NONE)
4032 i915_gem_object_unpin_pages(obj);
4033
401c29f6
BW
4034 if (WARN_ON(obj->pages_pin_count))
4035 obj->pages_pin_count = 0;
340fbd8c 4036 if (discard_backing_storage(obj))
5537252b 4037 obj->madv = I915_MADV_DONTNEED;
37e680a1 4038 i915_gem_object_put_pages(obj);
de151cf6 4039
9da3da66
CW
4040 BUG_ON(obj->pages);
4041
2f745ad3
CW
4042 if (obj->base.import_attach)
4043 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4044
5cc9ed4b
CW
4045 if (obj->ops->release)
4046 obj->ops->release(obj);
4047
05394f39
CW
4048 drm_gem_object_release(&obj->base);
4049 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4050
05394f39 4051 kfree(obj->bit_17);
42dcedd4 4052 i915_gem_object_free(obj);
f65c9168
PZ
4053
4054 intel_runtime_pm_put(dev_priv);
673a394b
EA
4055}
4056
ec7adb6e
JL
4057struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4058 struct i915_address_space *vm)
e656a6cb
DV
4059{
4060 struct i915_vma *vma;
1c7f4bca 4061 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1b683729
TU
4062 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4063 vma->vm == vm)
e656a6cb 4064 return vma;
ec7adb6e
JL
4065 }
4066 return NULL;
4067}
4068
4069struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4070 const struct i915_ggtt_view *view)
4071{
ec7adb6e 4072 struct i915_vma *vma;
e656a6cb 4073
598b9ec8 4074 GEM_BUG_ON(!view);
ec7adb6e 4075
1c7f4bca 4076 list_for_each_entry(vma, &obj->vma_list, obj_link)
3272db53
CW
4077 if (i915_vma_is_ggtt(vma) &&
4078 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4079 return vma;
e656a6cb
DV
4080 return NULL;
4081}
4082
29105ccc 4083int
45c5f202 4084i915_gem_suspend(struct drm_device *dev)
29105ccc 4085{
fac5e23e 4086 struct drm_i915_private *dev_priv = to_i915(dev);
45c5f202 4087 int ret = 0;
28dfe52a 4088
54b4f68f
CW
4089 intel_suspend_gt_powersave(dev_priv);
4090
45c5f202 4091 mutex_lock(&dev->struct_mutex);
5ab57c70
CW
4092
4093 /* We have to flush all the executing contexts to main memory so
4094 * that they can saved in the hibernation image. To ensure the last
4095 * context image is coherent, we have to switch away from it. That
4096 * leaves the dev_priv->kernel_context still active when
4097 * we actually suspend, and its image in memory may not match the GPU
4098 * state. Fortunately, the kernel_context is disposable and we do
4099 * not rely on its state.
4100 */
4101 ret = i915_gem_switch_to_kernel_context(dev_priv);
4102 if (ret)
4103 goto err;
4104
6e5a5beb 4105 ret = i915_gem_wait_for_idle(dev_priv);
f7403347 4106 if (ret)
45c5f202 4107 goto err;
f7403347 4108
c033666a 4109 i915_gem_retire_requests(dev_priv);
673a394b 4110
b2e862d0 4111 i915_gem_context_lost(dev_priv);
45c5f202
CW
4112 mutex_unlock(&dev->struct_mutex);
4113
737b1506 4114 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
67d97da3
CW
4115 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4116 flush_delayed_work(&dev_priv->gt.idle_work);
29105ccc 4117
bdcf120b
CW
4118 /* Assert that we sucessfully flushed all the work and
4119 * reset the GPU back to its idle, low power state.
4120 */
67d97da3 4121 WARN_ON(dev_priv->gt.awake);
bdcf120b 4122
673a394b 4123 return 0;
45c5f202
CW
4124
4125err:
4126 mutex_unlock(&dev->struct_mutex);
4127 return ret;
673a394b
EA
4128}
4129
5ab57c70
CW
4130void i915_gem_resume(struct drm_device *dev)
4131{
4132 struct drm_i915_private *dev_priv = to_i915(dev);
4133
4134 mutex_lock(&dev->struct_mutex);
4135 i915_gem_restore_gtt_mappings(dev);
4136
4137 /* As we didn't flush the kernel context before suspend, we cannot
4138 * guarantee that the context image is complete. So let's just reset
4139 * it and start again.
4140 */
4141 if (i915.enable_execlists)
4142 intel_lr_context_reset(dev_priv, dev_priv->kernel_context);
4143
4144 mutex_unlock(&dev->struct_mutex);
4145}
4146
f691e2f4
DV
4147void i915_gem_init_swizzling(struct drm_device *dev)
4148{
fac5e23e 4149 struct drm_i915_private *dev_priv = to_i915(dev);
f691e2f4 4150
11782b02 4151 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4152 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4153 return;
4154
4155 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4156 DISP_TILE_SURFACE_SWIZZLING);
4157
11782b02
DV
4158 if (IS_GEN5(dev))
4159 return;
4160
f691e2f4
DV
4161 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4162 if (IS_GEN6(dev))
6b26c86d 4163 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4164 else if (IS_GEN7(dev))
6b26c86d 4165 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4166 else if (IS_GEN8(dev))
4167 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4168 else
4169 BUG();
f691e2f4 4170}
e21af88d 4171
81e7f200
VS
4172static void init_unused_ring(struct drm_device *dev, u32 base)
4173{
fac5e23e 4174 struct drm_i915_private *dev_priv = to_i915(dev);
81e7f200
VS
4175
4176 I915_WRITE(RING_CTL(base), 0);
4177 I915_WRITE(RING_HEAD(base), 0);
4178 I915_WRITE(RING_TAIL(base), 0);
4179 I915_WRITE(RING_START(base), 0);
4180}
4181
4182static void init_unused_rings(struct drm_device *dev)
4183{
4184 if (IS_I830(dev)) {
4185 init_unused_ring(dev, PRB1_BASE);
4186 init_unused_ring(dev, SRB0_BASE);
4187 init_unused_ring(dev, SRB1_BASE);
4188 init_unused_ring(dev, SRB2_BASE);
4189 init_unused_ring(dev, SRB3_BASE);
4190 } else if (IS_GEN2(dev)) {
4191 init_unused_ring(dev, SRB0_BASE);
4192 init_unused_ring(dev, SRB1_BASE);
4193 } else if (IS_GEN3(dev)) {
4194 init_unused_ring(dev, PRB1_BASE);
4195 init_unused_ring(dev, PRB2_BASE);
4196 }
4197}
4198
4fc7c971
BW
4199int
4200i915_gem_init_hw(struct drm_device *dev)
4201{
fac5e23e 4202 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4203 struct intel_engine_cs *engine;
d200cda6 4204 int ret;
4fc7c971 4205
5e4f5189
CW
4206 /* Double layer security blanket, see i915_gem_init() */
4207 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4208
3accaf7e 4209 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4210 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4211
0bf21347
VS
4212 if (IS_HASWELL(dev))
4213 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4214 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4215
88a2b2a3 4216 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4217 if (IS_IVYBRIDGE(dev)) {
4218 u32 temp = I915_READ(GEN7_MSG_CTL);
4219 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4220 I915_WRITE(GEN7_MSG_CTL, temp);
4221 } else if (INTEL_INFO(dev)->gen >= 7) {
4222 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4223 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4224 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4225 }
88a2b2a3
BW
4226 }
4227
4fc7c971
BW
4228 i915_gem_init_swizzling(dev);
4229
d5abdfda
DV
4230 /*
4231 * At least 830 can leave some of the unused rings
4232 * "active" (ie. head != tail) after resume which
4233 * will prevent c3 entry. Makes sure all unused rings
4234 * are totally idle.
4235 */
4236 init_unused_rings(dev);
4237
ed54c1a1 4238 BUG_ON(!dev_priv->kernel_context);
90638cc1 4239
4ad2fd88
JH
4240 ret = i915_ppgtt_init_hw(dev);
4241 if (ret) {
4242 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4243 goto out;
4244 }
4245
4246 /* Need to do basic initialisation of all rings first: */
b4ac5afc 4247 for_each_engine(engine, dev_priv) {
e2f80391 4248 ret = engine->init_hw(engine);
35a57ffb 4249 if (ret)
5e4f5189 4250 goto out;
35a57ffb 4251 }
99433931 4252
0ccdacf6
PA
4253 intel_mocs_init_l3cc_table(dev);
4254
33a732f4 4255 /* We can't enable contexts until all firmware is loaded */
e556f7c1
DG
4256 ret = intel_guc_setup(dev);
4257 if (ret)
4258 goto out;
33a732f4 4259
5e4f5189
CW
4260out:
4261 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4262 return ret;
8187a2b7
ZN
4263}
4264
39df9190
CW
4265bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4266{
4267 if (INTEL_INFO(dev_priv)->gen < 6)
4268 return false;
4269
4270 /* TODO: make semaphores and Execlists play nicely together */
4271 if (i915.enable_execlists)
4272 return false;
4273
4274 if (value >= 0)
4275 return value;
4276
4277#ifdef CONFIG_INTEL_IOMMU
4278 /* Enable semaphores on SNB when IO remapping is off */
4279 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4280 return false;
4281#endif
4282
4283 return true;
4284}
4285
1070a42b
CW
4286int i915_gem_init(struct drm_device *dev)
4287{
fac5e23e 4288 struct drm_i915_private *dev_priv = to_i915(dev);
1070a42b
CW
4289 int ret;
4290
1070a42b 4291 mutex_lock(&dev->struct_mutex);
d62b4892 4292
a83014d3 4293 if (!i915.enable_execlists) {
7e37f889 4294 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
454afebd 4295 } else {
117897f4 4296 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
a83014d3
OM
4297 }
4298
5e4f5189
CW
4299 /* This is just a security blanket to placate dragons.
4300 * On some systems, we very sporadically observe that the first TLBs
4301 * used by the CS may be stale, despite us poking the TLB reset. If
4302 * we hold the forcewake during initialisation these problems
4303 * just magically go away.
4304 */
4305 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4306
72778cb2 4307 i915_gem_init_userptr(dev_priv);
f6b9d5ca
CW
4308
4309 ret = i915_gem_init_ggtt(dev_priv);
4310 if (ret)
4311 goto out_unlock;
d62b4892 4312
2fa48d8d 4313 ret = i915_gem_context_init(dev);
7bcc3777
JN
4314 if (ret)
4315 goto out_unlock;
2fa48d8d 4316
8b3e2d36 4317 ret = intel_engines_init(dev);
35a57ffb 4318 if (ret)
7bcc3777 4319 goto out_unlock;
2fa48d8d 4320
1070a42b 4321 ret = i915_gem_init_hw(dev);
60990320 4322 if (ret == -EIO) {
7e21d648 4323 /* Allow engine initialisation to fail by marking the GPU as
60990320
CW
4324 * wedged. But we only want to do this where the GPU is angry,
4325 * for all other failure, such as an allocation failure, bail.
4326 */
4327 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
805de8f4 4328 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
60990320 4329 ret = 0;
1070a42b 4330 }
7bcc3777
JN
4331
4332out_unlock:
5e4f5189 4333 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4334 mutex_unlock(&dev->struct_mutex);
1070a42b 4335
60990320 4336 return ret;
1070a42b
CW
4337}
4338
8187a2b7 4339void
117897f4 4340i915_gem_cleanup_engines(struct drm_device *dev)
8187a2b7 4341{
fac5e23e 4342 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4343 struct intel_engine_cs *engine;
8187a2b7 4344
b4ac5afc 4345 for_each_engine(engine, dev_priv)
117897f4 4346 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
4347}
4348
64193406 4349static void
666796da 4350init_engine_lists(struct intel_engine_cs *engine)
64193406 4351{
0bc40be8 4352 INIT_LIST_HEAD(&engine->request_list);
64193406
CW
4353}
4354
40ae4e16
ID
4355void
4356i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4357{
91c8a326 4358 struct drm_device *dev = &dev_priv->drm;
40ae4e16
ID
4359
4360 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4361 !IS_CHERRYVIEW(dev_priv))
4362 dev_priv->num_fence_regs = 32;
4363 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4364 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4365 dev_priv->num_fence_regs = 16;
4366 else
4367 dev_priv->num_fence_regs = 8;
4368
c033666a 4369 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
4370 dev_priv->num_fence_regs =
4371 I915_READ(vgtif_reg(avail_rs.fence_num));
4372
4373 /* Initialize fence registers to zero */
4374 i915_gem_restore_fences(dev);
4375
4376 i915_gem_detect_bit_6_swizzle(dev);
4377}
4378
673a394b 4379void
d64aa096 4380i915_gem_load_init(struct drm_device *dev)
673a394b 4381{
fac5e23e 4382 struct drm_i915_private *dev_priv = to_i915(dev);
42dcedd4
CW
4383 int i;
4384
efab6d8d 4385 dev_priv->objects =
42dcedd4
CW
4386 kmem_cache_create("i915_gem_object",
4387 sizeof(struct drm_i915_gem_object), 0,
4388 SLAB_HWCACHE_ALIGN,
4389 NULL);
e20d2ab7
CW
4390 dev_priv->vmas =
4391 kmem_cache_create("i915_gem_vma",
4392 sizeof(struct i915_vma), 0,
4393 SLAB_HWCACHE_ALIGN,
4394 NULL);
efab6d8d
CW
4395 dev_priv->requests =
4396 kmem_cache_create("i915_gem_request",
4397 sizeof(struct drm_i915_gem_request), 0,
0eafec6d
CW
4398 SLAB_HWCACHE_ALIGN |
4399 SLAB_RECLAIM_ACCOUNT |
4400 SLAB_DESTROY_BY_RCU,
efab6d8d 4401 NULL);
673a394b 4402
a33afea5 4403 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4404 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4405 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4406 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
666796da
TU
4407 for (i = 0; i < I915_NUM_ENGINES; i++)
4408 init_engine_lists(&dev_priv->engine[i]);
4b9de737 4409 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4410 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
67d97da3 4411 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
673a394b 4412 i915_gem_retire_work_handler);
67d97da3 4413 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
b29c19b6 4414 i915_gem_idle_work_handler);
1f15b76f 4415 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1f83fee0 4416 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4417
72bfa19c
CW
4418 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4419
19b2dbde 4420 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
10ed13e4 4421
6b95a207 4422 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4423
ce453d81
CW
4424 dev_priv->mm.interruptible = true;
4425
b5add959 4426 spin_lock_init(&dev_priv->fb_tracking.lock);
673a394b 4427}
71acb5eb 4428
d64aa096
ID
4429void i915_gem_load_cleanup(struct drm_device *dev)
4430{
4431 struct drm_i915_private *dev_priv = to_i915(dev);
4432
4433 kmem_cache_destroy(dev_priv->requests);
4434 kmem_cache_destroy(dev_priv->vmas);
4435 kmem_cache_destroy(dev_priv->objects);
0eafec6d
CW
4436
4437 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4438 rcu_barrier();
d64aa096
ID
4439}
4440
461fb99c
CW
4441int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4442{
4443 struct drm_i915_gem_object *obj;
4444
4445 /* Called just before we write the hibernation image.
4446 *
4447 * We need to update the domain tracking to reflect that the CPU
4448 * will be accessing all the pages to create and restore from the
4449 * hibernation, and so upon restoration those pages will be in the
4450 * CPU domain.
4451 *
4452 * To make sure the hibernation image contains the latest state,
4453 * we update that state just before writing out the image.
4454 */
4455
4456 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
4457 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4458 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4459 }
4460
4461 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4462 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4463 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4464 }
4465
4466 return 0;
4467}
4468
f787a5f5 4469void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4470{
f787a5f5 4471 struct drm_i915_file_private *file_priv = file->driver_priv;
15f7bbc7 4472 struct drm_i915_gem_request *request;
b962442e
EA
4473
4474 /* Clean up our request list when the client is going away, so that
4475 * later retire_requests won't dereference our soon-to-be-gone
4476 * file_priv.
4477 */
1c25595f 4478 spin_lock(&file_priv->mm.lock);
15f7bbc7 4479 list_for_each_entry(request, &file_priv->mm.request_list, client_list)
f787a5f5 4480 request->file_priv = NULL;
1c25595f 4481 spin_unlock(&file_priv->mm.lock);
b29c19b6 4482
2e1b8730 4483 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 4484 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 4485 list_del(&file_priv->rps.link);
8d3afd7d 4486 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 4487 }
b29c19b6
CW
4488}
4489
4490int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4491{
4492 struct drm_i915_file_private *file_priv;
e422b888 4493 int ret;
b29c19b6
CW
4494
4495 DRM_DEBUG_DRIVER("\n");
4496
4497 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4498 if (!file_priv)
4499 return -ENOMEM;
4500
4501 file->driver_priv = file_priv;
f19ec8cb 4502 file_priv->dev_priv = to_i915(dev);
ab0e7ff9 4503 file_priv->file = file;
2e1b8730 4504 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
4505
4506 spin_lock_init(&file_priv->mm.lock);
4507 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 4508
c80ff16e 4509 file_priv->bsd_engine = -1;
de1add36 4510
e422b888
BW
4511 ret = i915_gem_context_open(dev, file);
4512 if (ret)
4513 kfree(file_priv);
b29c19b6 4514
e422b888 4515 return ret;
b29c19b6
CW
4516}
4517
b680c37a
DV
4518/**
4519 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
4520 * @old: current GEM buffer for the frontbuffer slots
4521 * @new: new GEM buffer for the frontbuffer slots
4522 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
4523 *
4524 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4525 * from @old and setting them in @new. Both @old and @new can be NULL.
4526 */
a071fa00
DV
4527void i915_gem_track_fb(struct drm_i915_gem_object *old,
4528 struct drm_i915_gem_object *new,
4529 unsigned frontbuffer_bits)
4530{
faf5bf0a
CW
4531 /* Control of individual bits within the mask are guarded by
4532 * the owning plane->mutex, i.e. we can never see concurrent
4533 * manipulation of individual bits. But since the bitfield as a whole
4534 * is updated using RMW, we need to use atomics in order to update
4535 * the bits.
4536 */
4537 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4538 sizeof(atomic_t) * BITS_PER_BYTE);
4539
a071fa00 4540 if (old) {
faf5bf0a
CW
4541 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4542 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
a071fa00
DV
4543 }
4544
4545 if (new) {
faf5bf0a
CW
4546 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4547 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
a071fa00
DV
4548 }
4549}
4550
a70a3148 4551/* All the new VM stuff */
088e0df4
MT
4552u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
4553 struct i915_address_space *vm)
a70a3148 4554{
fac5e23e 4555 struct drm_i915_private *dev_priv = to_i915(o->base.dev);
a70a3148
BW
4556 struct i915_vma *vma;
4557
896ab1a5 4558 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 4559
1c7f4bca 4560 list_for_each_entry(vma, &o->vma_list, obj_link) {
3272db53 4561 if (i915_vma_is_ggtt(vma) &&
ec7adb6e
JL
4562 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4563 continue;
4564 if (vma->vm == vm)
a70a3148 4565 return vma->node.start;
a70a3148 4566 }
ec7adb6e 4567
f25748ea
DV
4568 WARN(1, "%s vma for this object not found.\n",
4569 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
4570 return -1;
4571}
4572
088e0df4
MT
4573u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
4574 const struct i915_ggtt_view *view)
a70a3148
BW
4575{
4576 struct i915_vma *vma;
4577
1c7f4bca 4578 list_for_each_entry(vma, &o->vma_list, obj_link)
3272db53
CW
4579 if (i915_vma_is_ggtt(vma) &&
4580 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
4581 return vma->node.start;
4582
5678ad73 4583 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
4584 return -1;
4585}
4586
4587bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4588 struct i915_address_space *vm)
4589{
4590 struct i915_vma *vma;
4591
1c7f4bca 4592 list_for_each_entry(vma, &o->vma_list, obj_link) {
3272db53 4593 if (i915_vma_is_ggtt(vma) &&
ec7adb6e
JL
4594 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4595 continue;
4596 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4597 return true;
4598 }
4599
4600 return false;
4601}
4602
4603bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 4604 const struct i915_ggtt_view *view)
ec7adb6e 4605{
ec7adb6e
JL
4606 struct i915_vma *vma;
4607
1c7f4bca 4608 list_for_each_entry(vma, &o->vma_list, obj_link)
3272db53 4609 if (i915_vma_is_ggtt(vma) &&
9abc4648 4610 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 4611 drm_mm_node_allocated(&vma->node))
a70a3148
BW
4612 return true;
4613
4614 return false;
4615}
4616
8da32727 4617unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
a70a3148 4618{
a70a3148
BW
4619 struct i915_vma *vma;
4620
8da32727 4621 GEM_BUG_ON(list_empty(&o->vma_list));
a70a3148 4622
1c7f4bca 4623 list_for_each_entry(vma, &o->vma_list, obj_link) {
3272db53 4624 if (i915_vma_is_ggtt(vma) &&
8da32727 4625 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
a70a3148 4626 return vma->node.size;
ec7adb6e 4627 }
8da32727 4628
a70a3148
BW
4629 return 0;
4630}
4631
ec7adb6e 4632bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
4633{
4634 struct i915_vma *vma;
1c7f4bca 4635 list_for_each_entry(vma, &obj->vma_list, obj_link)
20dfbde4 4636 if (i915_vma_is_pinned(vma))
ec7adb6e 4637 return true;
a6631ae1 4638
ec7adb6e 4639 return false;
5c2abbea 4640}
ea70299d 4641
033908ae
DG
4642/* Like i915_gem_object_get_page(), but mark the returned page dirty */
4643struct page *
4644i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
4645{
4646 struct page *page;
4647
4648 /* Only default objects have per-page dirty tracking */
b9bcd14a 4649 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
033908ae
DG
4650 return NULL;
4651
4652 page = i915_gem_object_get_page(obj, n);
4653 set_page_dirty(page);
4654 return page;
4655}
4656
ea70299d
DG
4657/* Allocate a new GEM object and fill it with the supplied data */
4658struct drm_i915_gem_object *
4659i915_gem_object_create_from_data(struct drm_device *dev,
4660 const void *data, size_t size)
4661{
4662 struct drm_i915_gem_object *obj;
4663 struct sg_table *sg;
4664 size_t bytes;
4665 int ret;
4666
d37cd8a8 4667 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
fe3db79b 4668 if (IS_ERR(obj))
ea70299d
DG
4669 return obj;
4670
4671 ret = i915_gem_object_set_to_cpu_domain(obj, true);
4672 if (ret)
4673 goto fail;
4674
4675 ret = i915_gem_object_get_pages(obj);
4676 if (ret)
4677 goto fail;
4678
4679 i915_gem_object_pin_pages(obj);
4680 sg = obj->pages;
4681 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
9e7d18c0 4682 obj->dirty = 1; /* Backing store is now out of date */
ea70299d
DG
4683 i915_gem_object_unpin_pages(obj);
4684
4685 if (WARN_ON(bytes != size)) {
4686 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4687 ret = -EFAULT;
4688 goto fail;
4689 }
4690
4691 return obj;
4692
4693fail:
f8c417cd 4694 i915_gem_object_put(obj);
ea70299d
DG
4695 return ERR_PTR(ret);
4696}