]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Provide a hook for selftests
[thirdparty/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
5d723d7a 35#include "intel_frontbuffer.h"
0ccdacf6 36#include "intel_mocs.h"
6b5e90f5 37#include <linux/dma-fence-array.h>
fe3288b5 38#include <linux/kthread.h>
c13d87ea 39#include <linux/reservation.h>
5949eac4 40#include <linux/shmem_fs.h>
5a0e3ad6 41#include <linux/slab.h>
20e4933c 42#include <linux/stop_machine.h>
673a394b 43#include <linux/swap.h>
79e53945 44#include <linux/pci.h>
1286ff73 45#include <linux/dma-buf.h>
673a394b 46
fbbd37b3 47static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
05394f39 48static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 49static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
61050808 50
c76ce038
CW
51static bool cpu_cache_is_coherent(struct drm_device *dev,
52 enum i915_cache_level level)
53{
0031fb96 54 return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
c76ce038
CW
55}
56
2c22569b
CW
57static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
58{
b50a5371
AS
59 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
60 return false;
61
2c22569b
CW
62 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
63 return true;
64
65 return obj->pin_display;
66}
67
4f1959ee 68static int
bb6dc8d9 69insert_mappable_node(struct i915_ggtt *ggtt,
4f1959ee
AS
70 struct drm_mm_node *node, u32 size)
71{
72 memset(node, 0, sizeof(*node));
4e64e553
CW
73 return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
74 size, 0, I915_COLOR_UNEVICTABLE,
75 0, ggtt->mappable_end,
76 DRM_MM_INSERT_LOW);
4f1959ee
AS
77}
78
79static void
80remove_mappable_node(struct drm_mm_node *node)
81{
82 drm_mm_remove_node(node);
83}
84
73aa808f
CW
85/* some bookkeeping */
86static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
3ef7f228 87 u64 size)
73aa808f 88{
c20e8355 89 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
90 dev_priv->mm.object_count++;
91 dev_priv->mm.object_memory += size;
c20e8355 92 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
93}
94
95static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
3ef7f228 96 u64 size)
73aa808f 97{
c20e8355 98 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
99 dev_priv->mm.object_count--;
100 dev_priv->mm.object_memory -= size;
c20e8355 101 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
102}
103
21dd3734 104static int
33196ded 105i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 106{
30dbf0c0
CW
107 int ret;
108
4c7d62c6
CW
109 might_sleep();
110
d98c52cf 111 if (!i915_reset_in_progress(error))
30dbf0c0
CW
112 return 0;
113
0a6759c6
DV
114 /*
115 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
116 * userspace. If it takes that long something really bad is going on and
117 * we should simply try to bail out and fail as gracefully as possible.
118 */
1f83fee0 119 ret = wait_event_interruptible_timeout(error->reset_queue,
d98c52cf 120 !i915_reset_in_progress(error),
b52992c0 121 I915_RESET_TIMEOUT);
0a6759c6
DV
122 if (ret == 0) {
123 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
124 return -EIO;
125 } else if (ret < 0) {
30dbf0c0 126 return ret;
d98c52cf
CW
127 } else {
128 return 0;
0a6759c6 129 }
30dbf0c0
CW
130}
131
54cf91dc 132int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 133{
fac5e23e 134 struct drm_i915_private *dev_priv = to_i915(dev);
76c1dec1
CW
135 int ret;
136
33196ded 137 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
138 if (ret)
139 return ret;
140
141 ret = mutex_lock_interruptible(&dev->struct_mutex);
142 if (ret)
143 return ret;
144
76c1dec1
CW
145 return 0;
146}
30dbf0c0 147
5a125c3c
EA
148int
149i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 150 struct drm_file *file)
5a125c3c 151{
72e96d64 152 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 153 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 154 struct drm_i915_gem_get_aperture *args = data;
ca1543be 155 struct i915_vma *vma;
6299f992 156 size_t pinned;
5a125c3c 157
6299f992 158 pinned = 0;
73aa808f 159 mutex_lock(&dev->struct_mutex);
1c7f4bca 160 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
20dfbde4 161 if (i915_vma_is_pinned(vma))
ca1543be 162 pinned += vma->node.size;
1c7f4bca 163 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
20dfbde4 164 if (i915_vma_is_pinned(vma))
ca1543be 165 pinned += vma->node.size;
73aa808f 166 mutex_unlock(&dev->struct_mutex);
5a125c3c 167
72e96d64 168 args->aper_size = ggtt->base.total;
0206e353 169 args->aper_available_size = args->aper_size - pinned;
6299f992 170
5a125c3c
EA
171 return 0;
172}
173
03ac84f1 174static struct sg_table *
6a2c4232 175i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 176{
93c76a3d 177 struct address_space *mapping = obj->base.filp->f_mapping;
dbb4351b 178 drm_dma_handle_t *phys;
6a2c4232
CW
179 struct sg_table *st;
180 struct scatterlist *sg;
dbb4351b 181 char *vaddr;
6a2c4232 182 int i;
00731155 183
6a2c4232 184 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
03ac84f1 185 return ERR_PTR(-EINVAL);
6a2c4232 186
dbb4351b
CW
187 /* Always aligning to the object size, allows a single allocation
188 * to handle all possible callers, and given typical object sizes,
189 * the alignment of the buddy allocation will naturally match.
190 */
191 phys = drm_pci_alloc(obj->base.dev,
192 obj->base.size,
193 roundup_pow_of_two(obj->base.size));
194 if (!phys)
195 return ERR_PTR(-ENOMEM);
196
197 vaddr = phys->vaddr;
6a2c4232
CW
198 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
199 struct page *page;
200 char *src;
201
202 page = shmem_read_mapping_page(mapping, i);
dbb4351b
CW
203 if (IS_ERR(page)) {
204 st = ERR_CAST(page);
205 goto err_phys;
206 }
6a2c4232
CW
207
208 src = kmap_atomic(page);
209 memcpy(vaddr, src, PAGE_SIZE);
210 drm_clflush_virt_range(vaddr, PAGE_SIZE);
211 kunmap_atomic(src);
212
09cbfeaf 213 put_page(page);
6a2c4232
CW
214 vaddr += PAGE_SIZE;
215 }
216
c033666a 217 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
218
219 st = kmalloc(sizeof(*st), GFP_KERNEL);
dbb4351b
CW
220 if (!st) {
221 st = ERR_PTR(-ENOMEM);
222 goto err_phys;
223 }
6a2c4232
CW
224
225 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
226 kfree(st);
dbb4351b
CW
227 st = ERR_PTR(-ENOMEM);
228 goto err_phys;
6a2c4232
CW
229 }
230
231 sg = st->sgl;
232 sg->offset = 0;
233 sg->length = obj->base.size;
00731155 234
dbb4351b 235 sg_dma_address(sg) = phys->busaddr;
6a2c4232
CW
236 sg_dma_len(sg) = obj->base.size;
237
dbb4351b
CW
238 obj->phys_handle = phys;
239 return st;
240
241err_phys:
242 drm_pci_free(obj->base.dev, phys);
03ac84f1 243 return st;
6a2c4232
CW
244}
245
246static void
2b3c8317 247__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
e5facdf9
CW
248 struct sg_table *pages,
249 bool needs_clflush)
6a2c4232 250{
a4f5ea64 251 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
00731155 252
a4f5ea64
CW
253 if (obj->mm.madv == I915_MADV_DONTNEED)
254 obj->mm.dirty = false;
6a2c4232 255
e5facdf9
CW
256 if (needs_clflush &&
257 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
05c34837 258 !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
2b3c8317 259 drm_clflush_sg(pages);
03ac84f1
CW
260
261 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
262 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
263}
264
265static void
266i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
267 struct sg_table *pages)
268{
e5facdf9 269 __i915_gem_object_release_shmem(obj, pages, false);
03ac84f1 270
a4f5ea64 271 if (obj->mm.dirty) {
93c76a3d 272 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232 273 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
274 int i;
275
276 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
277 struct page *page;
278 char *dst;
279
280 page = shmem_read_mapping_page(mapping, i);
281 if (IS_ERR(page))
282 continue;
283
284 dst = kmap_atomic(page);
285 drm_clflush_virt_range(vaddr, PAGE_SIZE);
286 memcpy(dst, vaddr, PAGE_SIZE);
287 kunmap_atomic(dst);
288
289 set_page_dirty(page);
a4f5ea64 290 if (obj->mm.madv == I915_MADV_WILLNEED)
00731155 291 mark_page_accessed(page);
09cbfeaf 292 put_page(page);
00731155
CW
293 vaddr += PAGE_SIZE;
294 }
a4f5ea64 295 obj->mm.dirty = false;
00731155
CW
296 }
297
03ac84f1
CW
298 sg_free_table(pages);
299 kfree(pages);
dbb4351b
CW
300
301 drm_pci_free(obj->base.dev, obj->phys_handle);
6a2c4232
CW
302}
303
304static void
305i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
306{
a4f5ea64 307 i915_gem_object_unpin_pages(obj);
6a2c4232
CW
308}
309
310static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
311 .get_pages = i915_gem_object_get_pages_phys,
312 .put_pages = i915_gem_object_put_pages_phys,
313 .release = i915_gem_object_release_phys,
314};
315
35a9611c 316int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
aa653a68
CW
317{
318 struct i915_vma *vma;
319 LIST_HEAD(still_in_list);
02bef8f9
CW
320 int ret;
321
322 lockdep_assert_held(&obj->base.dev->struct_mutex);
aa653a68 323
02bef8f9
CW
324 /* Closed vma are removed from the obj->vma_list - but they may
325 * still have an active binding on the object. To remove those we
326 * must wait for all rendering to complete to the object (as unbinding
327 * must anyway), and retire the requests.
aa653a68 328 */
e95433c7
CW
329 ret = i915_gem_object_wait(obj,
330 I915_WAIT_INTERRUPTIBLE |
331 I915_WAIT_LOCKED |
332 I915_WAIT_ALL,
333 MAX_SCHEDULE_TIMEOUT,
334 NULL);
02bef8f9
CW
335 if (ret)
336 return ret;
337
338 i915_gem_retire_requests(to_i915(obj->base.dev));
339
aa653a68
CW
340 while ((vma = list_first_entry_or_null(&obj->vma_list,
341 struct i915_vma,
342 obj_link))) {
343 list_move_tail(&vma->obj_link, &still_in_list);
344 ret = i915_vma_unbind(vma);
345 if (ret)
346 break;
347 }
348 list_splice(&still_in_list, &obj->vma_list);
349
350 return ret;
351}
352
e95433c7
CW
353static long
354i915_gem_object_wait_fence(struct dma_fence *fence,
355 unsigned int flags,
356 long timeout,
357 struct intel_rps_client *rps)
00e60f26 358{
e95433c7 359 struct drm_i915_gem_request *rq;
00e60f26 360
e95433c7 361 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
00e60f26 362
e95433c7
CW
363 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
364 return timeout;
365
366 if (!dma_fence_is_i915(fence))
367 return dma_fence_wait_timeout(fence,
368 flags & I915_WAIT_INTERRUPTIBLE,
369 timeout);
370
371 rq = to_request(fence);
372 if (i915_gem_request_completed(rq))
373 goto out;
374
375 /* This client is about to stall waiting for the GPU. In many cases
376 * this is undesirable and limits the throughput of the system, as
377 * many clients cannot continue processing user input/output whilst
378 * blocked. RPS autotuning may take tens of milliseconds to respond
379 * to the GPU load and thus incurs additional latency for the client.
380 * We can circumvent that by promoting the GPU frequency to maximum
381 * before we wait. This makes the GPU throttle up much more quickly
382 * (good for benchmarks and user experience, e.g. window animations),
383 * but at a cost of spending more power processing the workload
384 * (bad for battery). Not all clients even want their results
385 * immediately and for them we should just let the GPU select its own
386 * frequency to maximise efficiency. To prevent a single client from
387 * forcing the clocks too high for the whole system, we only allow
388 * each client to waitboost once in a busy period.
389 */
390 if (rps) {
391 if (INTEL_GEN(rq->i915) >= 6)
392 gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
393 else
394 rps = NULL;
00e60f26
CW
395 }
396
e95433c7
CW
397 timeout = i915_wait_request(rq, flags, timeout);
398
399out:
400 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
401 i915_gem_request_retire_upto(rq);
402
cb399eab 403 if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
e95433c7
CW
404 /* The GPU is now idle and this client has stalled.
405 * Since no other client has submitted a request in the
406 * meantime, assume that this client is the only one
407 * supplying work to the GPU but is unable to keep that
408 * work supplied because it is waiting. Since the GPU is
409 * then never kept fully busy, RPS autoclocking will
410 * keep the clocks relatively low, causing further delays.
411 * Compensate by giving the synchronous client credit for
412 * a waitboost next time.
413 */
414 spin_lock(&rq->i915->rps.client_lock);
415 list_del_init(&rps->link);
416 spin_unlock(&rq->i915->rps.client_lock);
417 }
418
419 return timeout;
420}
421
422static long
423i915_gem_object_wait_reservation(struct reservation_object *resv,
424 unsigned int flags,
425 long timeout,
426 struct intel_rps_client *rps)
427{
428 struct dma_fence *excl;
429
430 if (flags & I915_WAIT_ALL) {
431 struct dma_fence **shared;
432 unsigned int count, i;
00e60f26
CW
433 int ret;
434
e95433c7
CW
435 ret = reservation_object_get_fences_rcu(resv,
436 &excl, &count, &shared);
00e60f26
CW
437 if (ret)
438 return ret;
00e60f26 439
e95433c7
CW
440 for (i = 0; i < count; i++) {
441 timeout = i915_gem_object_wait_fence(shared[i],
442 flags, timeout,
443 rps);
444 if (timeout <= 0)
445 break;
00e60f26 446
e95433c7
CW
447 dma_fence_put(shared[i]);
448 }
449
450 for (; i < count; i++)
451 dma_fence_put(shared[i]);
452 kfree(shared);
453 } else {
454 excl = reservation_object_get_excl_rcu(resv);
00e60f26
CW
455 }
456
e95433c7
CW
457 if (excl && timeout > 0)
458 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
459
460 dma_fence_put(excl);
461
462 return timeout;
00e60f26
CW
463}
464
6b5e90f5
CW
465static void __fence_set_priority(struct dma_fence *fence, int prio)
466{
467 struct drm_i915_gem_request *rq;
468 struct intel_engine_cs *engine;
469
470 if (!dma_fence_is_i915(fence))
471 return;
472
473 rq = to_request(fence);
474 engine = rq->engine;
475 if (!engine->schedule)
476 return;
477
478 engine->schedule(rq, prio);
479}
480
481static void fence_set_priority(struct dma_fence *fence, int prio)
482{
483 /* Recurse once into a fence-array */
484 if (dma_fence_is_array(fence)) {
485 struct dma_fence_array *array = to_dma_fence_array(fence);
486 int i;
487
488 for (i = 0; i < array->num_fences; i++)
489 __fence_set_priority(array->fences[i], prio);
490 } else {
491 __fence_set_priority(fence, prio);
492 }
493}
494
495int
496i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
497 unsigned int flags,
498 int prio)
499{
500 struct dma_fence *excl;
501
502 if (flags & I915_WAIT_ALL) {
503 struct dma_fence **shared;
504 unsigned int count, i;
505 int ret;
506
507 ret = reservation_object_get_fences_rcu(obj->resv,
508 &excl, &count, &shared);
509 if (ret)
510 return ret;
511
512 for (i = 0; i < count; i++) {
513 fence_set_priority(shared[i], prio);
514 dma_fence_put(shared[i]);
515 }
516
517 kfree(shared);
518 } else {
519 excl = reservation_object_get_excl_rcu(obj->resv);
520 }
521
522 if (excl) {
523 fence_set_priority(excl, prio);
524 dma_fence_put(excl);
525 }
526 return 0;
527}
528
e95433c7
CW
529/**
530 * Waits for rendering to the object to be completed
531 * @obj: i915 gem object
532 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
533 * @timeout: how long to wait
534 * @rps: client (user process) to charge for any waitboosting
00e60f26 535 */
e95433c7
CW
536int
537i915_gem_object_wait(struct drm_i915_gem_object *obj,
538 unsigned int flags,
539 long timeout,
540 struct intel_rps_client *rps)
00e60f26 541{
e95433c7
CW
542 might_sleep();
543#if IS_ENABLED(CONFIG_LOCKDEP)
544 GEM_BUG_ON(debug_locks &&
545 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
546 !!(flags & I915_WAIT_LOCKED));
547#endif
548 GEM_BUG_ON(timeout < 0);
00e60f26 549
d07f0e59
CW
550 timeout = i915_gem_object_wait_reservation(obj->resv,
551 flags, timeout,
552 rps);
e95433c7 553 return timeout < 0 ? timeout : 0;
00e60f26
CW
554}
555
556static struct intel_rps_client *to_rps_client(struct drm_file *file)
557{
558 struct drm_i915_file_private *fpriv = file->driver_priv;
559
560 return &fpriv->rps;
561}
562
00731155
CW
563int
564i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
565 int align)
566{
6a2c4232 567 int ret;
00731155 568
dbb4351b
CW
569 if (align > obj->base.size)
570 return -EINVAL;
00731155 571
dbb4351b 572 if (obj->ops == &i915_gem_phys_ops)
00731155 573 return 0;
00731155 574
a4f5ea64 575 if (obj->mm.madv != I915_MADV_WILLNEED)
00731155
CW
576 return -EFAULT;
577
578 if (obj->base.filp == NULL)
579 return -EINVAL;
580
4717ca9e
CW
581 ret = i915_gem_object_unbind(obj);
582 if (ret)
583 return ret;
584
548625ee 585 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
03ac84f1
CW
586 if (obj->mm.pages)
587 return -EBUSY;
6a2c4232 588
6a2c4232
CW
589 obj->ops = &i915_gem_phys_ops;
590
a4f5ea64 591 return i915_gem_object_pin_pages(obj);
00731155
CW
592}
593
594static int
595i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
596 struct drm_i915_gem_pwrite *args,
03ac84f1 597 struct drm_file *file)
00731155 598{
00731155 599 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 600 char __user *user_data = u64_to_user_ptr(args->data_ptr);
6a2c4232
CW
601
602 /* We manually control the domain here and pretend that it
603 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
604 */
77a0d1ca 605 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
10466d2a
CW
606 if (copy_from_user(vaddr, user_data, args->size))
607 return -EFAULT;
00731155 608
6a2c4232 609 drm_clflush_virt_range(vaddr, args->size);
10466d2a 610 i915_gem_chipset_flush(to_i915(obj->base.dev));
063e4e6b 611
de152b62 612 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
10466d2a 613 return 0;
00731155
CW
614}
615
187685cb 616void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
42dcedd4 617{
efab6d8d 618 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
619}
620
621void i915_gem_object_free(struct drm_i915_gem_object *obj)
622{
fac5e23e 623 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
efab6d8d 624 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
625}
626
ff72145b
DA
627static int
628i915_gem_create(struct drm_file *file,
12d79d78 629 struct drm_i915_private *dev_priv,
ff72145b
DA
630 uint64_t size,
631 uint32_t *handle_p)
673a394b 632{
05394f39 633 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
634 int ret;
635 u32 handle;
673a394b 636
ff72145b 637 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
638 if (size == 0)
639 return -EINVAL;
673a394b
EA
640
641 /* Allocate the new object */
12d79d78 642 obj = i915_gem_object_create(dev_priv, size);
fe3db79b
CW
643 if (IS_ERR(obj))
644 return PTR_ERR(obj);
673a394b 645
05394f39 646 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 647 /* drop reference from allocate - handle holds it now */
f0cd5182 648 i915_gem_object_put(obj);
d861e338
DV
649 if (ret)
650 return ret;
202f2fef 651
ff72145b 652 *handle_p = handle;
673a394b
EA
653 return 0;
654}
655
ff72145b
DA
656int
657i915_gem_dumb_create(struct drm_file *file,
658 struct drm_device *dev,
659 struct drm_mode_create_dumb *args)
660{
661 /* have to work out size/pitch and return them */
de45eaf7 662 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b 663 args->size = args->pitch * args->height;
12d79d78 664 return i915_gem_create(file, to_i915(dev),
da6b51d0 665 args->size, &args->handle);
ff72145b
DA
666}
667
ff72145b
DA
668/**
669 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
670 * @dev: drm device pointer
671 * @data: ioctl data blob
672 * @file: drm file pointer
ff72145b
DA
673 */
674int
675i915_gem_create_ioctl(struct drm_device *dev, void *data,
676 struct drm_file *file)
677{
12d79d78 678 struct drm_i915_private *dev_priv = to_i915(dev);
ff72145b 679 struct drm_i915_gem_create *args = data;
63ed2cb2 680
12d79d78 681 i915_gem_flush_free_objects(dev_priv);
fbbd37b3 682
12d79d78 683 return i915_gem_create(file, dev_priv,
da6b51d0 684 args->size, &args->handle);
ff72145b
DA
685}
686
8461d226
DV
687static inline int
688__copy_to_user_swizzled(char __user *cpu_vaddr,
689 const char *gpu_vaddr, int gpu_offset,
690 int length)
691{
692 int ret, cpu_offset = 0;
693
694 while (length > 0) {
695 int cacheline_end = ALIGN(gpu_offset + 1, 64);
696 int this_length = min(cacheline_end - gpu_offset, length);
697 int swizzled_gpu_offset = gpu_offset ^ 64;
698
699 ret = __copy_to_user(cpu_vaddr + cpu_offset,
700 gpu_vaddr + swizzled_gpu_offset,
701 this_length);
702 if (ret)
703 return ret + length;
704
705 cpu_offset += this_length;
706 gpu_offset += this_length;
707 length -= this_length;
708 }
709
710 return 0;
711}
712
8c59967c 713static inline int
4f0c7cfb
BW
714__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
715 const char __user *cpu_vaddr,
8c59967c
DV
716 int length)
717{
718 int ret, cpu_offset = 0;
719
720 while (length > 0) {
721 int cacheline_end = ALIGN(gpu_offset + 1, 64);
722 int this_length = min(cacheline_end - gpu_offset, length);
723 int swizzled_gpu_offset = gpu_offset ^ 64;
724
725 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
726 cpu_vaddr + cpu_offset,
727 this_length);
728 if (ret)
729 return ret + length;
730
731 cpu_offset += this_length;
732 gpu_offset += this_length;
733 length -= this_length;
734 }
735
736 return 0;
737}
738
4c914c0c
BV
739/*
740 * Pins the specified object's pages and synchronizes the object with
741 * GPU accesses. Sets needs_clflush to non-zero if the caller should
742 * flush the object from the CPU cache.
743 */
744int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
43394c7d 745 unsigned int *needs_clflush)
4c914c0c
BV
746{
747 int ret;
748
e95433c7 749 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c914c0c 750
e95433c7 751 *needs_clflush = 0;
43394c7d
CW
752 if (!i915_gem_object_has_struct_page(obj))
753 return -ENODEV;
4c914c0c 754
e95433c7
CW
755 ret = i915_gem_object_wait(obj,
756 I915_WAIT_INTERRUPTIBLE |
757 I915_WAIT_LOCKED,
758 MAX_SCHEDULE_TIMEOUT,
759 NULL);
c13d87ea
CW
760 if (ret)
761 return ret;
762
a4f5ea64 763 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
764 if (ret)
765 return ret;
766
a314d5cb
CW
767 i915_gem_object_flush_gtt_write_domain(obj);
768
43394c7d
CW
769 /* If we're not in the cpu read domain, set ourself into the gtt
770 * read domain and manually flush cachelines (if required). This
771 * optimizes for the case when the gpu will dirty the data
772 * anyway again before the next pread happens.
773 */
774 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
4c914c0c
BV
775 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
776 obj->cache_level);
43394c7d 777
43394c7d
CW
778 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
779 ret = i915_gem_object_set_to_cpu_domain(obj, false);
9764951e
CW
780 if (ret)
781 goto err_unpin;
782
43394c7d 783 *needs_clflush = 0;
4c914c0c
BV
784 }
785
9764951e 786 /* return with the pages pinned */
43394c7d 787 return 0;
9764951e
CW
788
789err_unpin:
790 i915_gem_object_unpin_pages(obj);
791 return ret;
43394c7d
CW
792}
793
794int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
795 unsigned int *needs_clflush)
796{
797 int ret;
798
e95433c7
CW
799 lockdep_assert_held(&obj->base.dev->struct_mutex);
800
43394c7d
CW
801 *needs_clflush = 0;
802 if (!i915_gem_object_has_struct_page(obj))
803 return -ENODEV;
804
e95433c7
CW
805 ret = i915_gem_object_wait(obj,
806 I915_WAIT_INTERRUPTIBLE |
807 I915_WAIT_LOCKED |
808 I915_WAIT_ALL,
809 MAX_SCHEDULE_TIMEOUT,
810 NULL);
43394c7d
CW
811 if (ret)
812 return ret;
813
a4f5ea64 814 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
815 if (ret)
816 return ret;
817
a314d5cb
CW
818 i915_gem_object_flush_gtt_write_domain(obj);
819
43394c7d
CW
820 /* If we're not in the cpu write domain, set ourself into the
821 * gtt write domain and manually flush cachelines (as required).
822 * This optimizes for the case when the gpu will use the data
823 * right away and we therefore have to clflush anyway.
824 */
825 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
826 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
827
828 /* Same trick applies to invalidate partially written cachelines read
829 * before writing.
830 */
831 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
832 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
833 obj->cache_level);
834
43394c7d
CW
835 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
836 ret = i915_gem_object_set_to_cpu_domain(obj, true);
9764951e
CW
837 if (ret)
838 goto err_unpin;
839
43394c7d
CW
840 *needs_clflush = 0;
841 }
842
843 if ((*needs_clflush & CLFLUSH_AFTER) == 0)
844 obj->cache_dirty = true;
845
846 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
a4f5ea64 847 obj->mm.dirty = true;
9764951e 848 /* return with the pages pinned */
43394c7d 849 return 0;
9764951e
CW
850
851err_unpin:
852 i915_gem_object_unpin_pages(obj);
853 return ret;
4c914c0c
BV
854}
855
23c18c71
DV
856static void
857shmem_clflush_swizzled_range(char *addr, unsigned long length,
858 bool swizzled)
859{
e7e58eb5 860 if (unlikely(swizzled)) {
23c18c71
DV
861 unsigned long start = (unsigned long) addr;
862 unsigned long end = (unsigned long) addr + length;
863
864 /* For swizzling simply ensure that we always flush both
865 * channels. Lame, but simple and it works. Swizzled
866 * pwrite/pread is far from a hotpath - current userspace
867 * doesn't use it at all. */
868 start = round_down(start, 128);
869 end = round_up(end, 128);
870
871 drm_clflush_virt_range((void *)start, end - start);
872 } else {
873 drm_clflush_virt_range(addr, length);
874 }
875
876}
877
d174bd64
DV
878/* Only difference to the fast-path function is that this can handle bit17
879 * and uses non-atomic copy and kmap functions. */
880static int
bb6dc8d9 881shmem_pread_slow(struct page *page, int offset, int length,
d174bd64
DV
882 char __user *user_data,
883 bool page_do_bit17_swizzling, bool needs_clflush)
884{
885 char *vaddr;
886 int ret;
887
888 vaddr = kmap(page);
889 if (needs_clflush)
bb6dc8d9 890 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 891 page_do_bit17_swizzling);
d174bd64
DV
892
893 if (page_do_bit17_swizzling)
bb6dc8d9 894 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
d174bd64 895 else
bb6dc8d9 896 ret = __copy_to_user(user_data, vaddr + offset, length);
d174bd64
DV
897 kunmap(page);
898
f60d7f0c 899 return ret ? - EFAULT : 0;
d174bd64
DV
900}
901
bb6dc8d9
CW
902static int
903shmem_pread(struct page *page, int offset, int length, char __user *user_data,
904 bool page_do_bit17_swizzling, bool needs_clflush)
905{
906 int ret;
907
908 ret = -ENODEV;
909 if (!page_do_bit17_swizzling) {
910 char *vaddr = kmap_atomic(page);
911
912 if (needs_clflush)
913 drm_clflush_virt_range(vaddr + offset, length);
914 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
915 kunmap_atomic(vaddr);
916 }
917 if (ret == 0)
918 return 0;
919
920 return shmem_pread_slow(page, offset, length, user_data,
921 page_do_bit17_swizzling, needs_clflush);
922}
923
924static int
925i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
926 struct drm_i915_gem_pread *args)
927{
928 char __user *user_data;
929 u64 remain;
930 unsigned int obj_do_bit17_swizzling;
931 unsigned int needs_clflush;
932 unsigned int idx, offset;
933 int ret;
934
935 obj_do_bit17_swizzling = 0;
936 if (i915_gem_object_needs_bit17_swizzle(obj))
937 obj_do_bit17_swizzling = BIT(17);
938
939 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
940 if (ret)
941 return ret;
942
943 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
944 mutex_unlock(&obj->base.dev->struct_mutex);
945 if (ret)
946 return ret;
947
948 remain = args->size;
949 user_data = u64_to_user_ptr(args->data_ptr);
950 offset = offset_in_page(args->offset);
951 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
952 struct page *page = i915_gem_object_get_page(obj, idx);
953 int length;
954
955 length = remain;
956 if (offset + length > PAGE_SIZE)
957 length = PAGE_SIZE - offset;
958
959 ret = shmem_pread(page, offset, length, user_data,
960 page_to_phys(page) & obj_do_bit17_swizzling,
961 needs_clflush);
962 if (ret)
963 break;
964
965 remain -= length;
966 user_data += length;
967 offset = 0;
968 }
969
970 i915_gem_obj_finish_shmem_access(obj);
971 return ret;
972}
973
974static inline bool
975gtt_user_read(struct io_mapping *mapping,
976 loff_t base, int offset,
977 char __user *user_data, int length)
b50a5371 978{
b50a5371 979 void *vaddr;
bb6dc8d9 980 unsigned long unwritten;
b50a5371 981
b50a5371 982 /* We can use the cpu mem copy function because this is X86. */
bb6dc8d9
CW
983 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
984 unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
985 io_mapping_unmap_atomic(vaddr);
986 if (unwritten) {
987 vaddr = (void __force *)
988 io_mapping_map_wc(mapping, base, PAGE_SIZE);
989 unwritten = copy_to_user(user_data, vaddr + offset, length);
990 io_mapping_unmap(vaddr);
991 }
b50a5371
AS
992 return unwritten;
993}
994
995static int
bb6dc8d9
CW
996i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
997 const struct drm_i915_gem_pread *args)
b50a5371 998{
bb6dc8d9
CW
999 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1000 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 1001 struct drm_mm_node node;
bb6dc8d9
CW
1002 struct i915_vma *vma;
1003 void __user *user_data;
1004 u64 remain, offset;
b50a5371
AS
1005 int ret;
1006
bb6dc8d9
CW
1007 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1008 if (ret)
1009 return ret;
1010
1011 intel_runtime_pm_get(i915);
1012 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1013 PIN_MAPPABLE | PIN_NONBLOCK);
18034584
CW
1014 if (!IS_ERR(vma)) {
1015 node.start = i915_ggtt_offset(vma);
1016 node.allocated = false;
49ef5294 1017 ret = i915_vma_put_fence(vma);
18034584
CW
1018 if (ret) {
1019 i915_vma_unpin(vma);
1020 vma = ERR_PTR(ret);
1021 }
1022 }
058d88c4 1023 if (IS_ERR(vma)) {
bb6dc8d9 1024 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
b50a5371 1025 if (ret)
bb6dc8d9
CW
1026 goto out_unlock;
1027 GEM_BUG_ON(!node.allocated);
b50a5371
AS
1028 }
1029
1030 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1031 if (ret)
1032 goto out_unpin;
1033
bb6dc8d9 1034 mutex_unlock(&i915->drm.struct_mutex);
b50a5371 1035
bb6dc8d9
CW
1036 user_data = u64_to_user_ptr(args->data_ptr);
1037 remain = args->size;
1038 offset = args->offset;
b50a5371
AS
1039
1040 while (remain > 0) {
1041 /* Operation in this page
1042 *
1043 * page_base = page offset within aperture
1044 * page_offset = offset within page
1045 * page_length = bytes to copy for this page
1046 */
1047 u32 page_base = node.start;
1048 unsigned page_offset = offset_in_page(offset);
1049 unsigned page_length = PAGE_SIZE - page_offset;
1050 page_length = remain < page_length ? remain : page_length;
1051 if (node.allocated) {
1052 wmb();
1053 ggtt->base.insert_page(&ggtt->base,
1054 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
bb6dc8d9 1055 node.start, I915_CACHE_NONE, 0);
b50a5371
AS
1056 wmb();
1057 } else {
1058 page_base += offset & PAGE_MASK;
1059 }
bb6dc8d9
CW
1060
1061 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1062 user_data, page_length)) {
b50a5371
AS
1063 ret = -EFAULT;
1064 break;
1065 }
1066
1067 remain -= page_length;
1068 user_data += page_length;
1069 offset += page_length;
1070 }
1071
bb6dc8d9 1072 mutex_lock(&i915->drm.struct_mutex);
b50a5371
AS
1073out_unpin:
1074 if (node.allocated) {
1075 wmb();
1076 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1077 node.start, node.size);
b50a5371
AS
1078 remove_mappable_node(&node);
1079 } else {
058d88c4 1080 i915_vma_unpin(vma);
b50a5371 1081 }
bb6dc8d9
CW
1082out_unlock:
1083 intel_runtime_pm_put(i915);
1084 mutex_unlock(&i915->drm.struct_mutex);
f60d7f0c 1085
eb01459f
EA
1086 return ret;
1087}
1088
673a394b
EA
1089/**
1090 * Reads data from the object referenced by handle.
14bb2c11
TU
1091 * @dev: drm device pointer
1092 * @data: ioctl data blob
1093 * @file: drm file pointer
673a394b
EA
1094 *
1095 * On error, the contents of *data are undefined.
1096 */
1097int
1098i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 1099 struct drm_file *file)
673a394b
EA
1100{
1101 struct drm_i915_gem_pread *args = data;
05394f39 1102 struct drm_i915_gem_object *obj;
bb6dc8d9 1103 int ret;
673a394b 1104
51311d0a
CW
1105 if (args->size == 0)
1106 return 0;
1107
1108 if (!access_ok(VERIFY_WRITE,
3ed605bc 1109 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1110 args->size))
1111 return -EFAULT;
1112
03ac0642 1113 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1114 if (!obj)
1115 return -ENOENT;
673a394b 1116
7dcd2499 1117 /* Bounds check source. */
966d5bf5 1118 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
ce9d419d 1119 ret = -EINVAL;
bb6dc8d9 1120 goto out;
ce9d419d
CW
1121 }
1122
db53a302
CW
1123 trace_i915_gem_object_pread(obj, args->offset, args->size);
1124
e95433c7
CW
1125 ret = i915_gem_object_wait(obj,
1126 I915_WAIT_INTERRUPTIBLE,
1127 MAX_SCHEDULE_TIMEOUT,
1128 to_rps_client(file));
258a5ede 1129 if (ret)
bb6dc8d9 1130 goto out;
258a5ede 1131
bb6dc8d9 1132 ret = i915_gem_object_pin_pages(obj);
258a5ede 1133 if (ret)
bb6dc8d9 1134 goto out;
673a394b 1135
bb6dc8d9 1136 ret = i915_gem_shmem_pread(obj, args);
9c870d03 1137 if (ret == -EFAULT || ret == -ENODEV)
bb6dc8d9 1138 ret = i915_gem_gtt_pread(obj, args);
b50a5371 1139
bb6dc8d9
CW
1140 i915_gem_object_unpin_pages(obj);
1141out:
f0cd5182 1142 i915_gem_object_put(obj);
eb01459f 1143 return ret;
673a394b
EA
1144}
1145
0839ccb8
KP
1146/* This is the fast write path which cannot handle
1147 * page faults in the source data
9b7530cc 1148 */
0839ccb8 1149
fe115628
CW
1150static inline bool
1151ggtt_write(struct io_mapping *mapping,
1152 loff_t base, int offset,
1153 char __user *user_data, int length)
9b7530cc 1154{
4f0c7cfb 1155 void *vaddr;
0839ccb8 1156 unsigned long unwritten;
9b7530cc 1157
4f0c7cfb 1158 /* We can use the cpu mem copy function because this is X86. */
fe115628
CW
1159 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1160 unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
0839ccb8 1161 user_data, length);
fe115628
CW
1162 io_mapping_unmap_atomic(vaddr);
1163 if (unwritten) {
1164 vaddr = (void __force *)
1165 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1166 unwritten = copy_from_user(vaddr + offset, user_data, length);
1167 io_mapping_unmap(vaddr);
1168 }
bb6dc8d9 1169
bb6dc8d9
CW
1170 return unwritten;
1171}
1172
3de09aa3
EA
1173/**
1174 * This is the fast pwrite path, where we copy the data directly from the
1175 * user into the GTT, uncached.
fe115628 1176 * @obj: i915 GEM object
14bb2c11 1177 * @args: pwrite arguments structure
3de09aa3 1178 */
673a394b 1179static int
fe115628
CW
1180i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1181 const struct drm_i915_gem_pwrite *args)
673a394b 1182{
fe115628 1183 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4f1959ee
AS
1184 struct i915_ggtt *ggtt = &i915->ggtt;
1185 struct drm_mm_node node;
fe115628
CW
1186 struct i915_vma *vma;
1187 u64 remain, offset;
1188 void __user *user_data;
4f1959ee 1189 int ret;
b50a5371 1190
fe115628
CW
1191 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1192 if (ret)
1193 return ret;
935aaa69 1194
9c870d03 1195 intel_runtime_pm_get(i915);
058d88c4 1196 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
de895082 1197 PIN_MAPPABLE | PIN_NONBLOCK);
18034584
CW
1198 if (!IS_ERR(vma)) {
1199 node.start = i915_ggtt_offset(vma);
1200 node.allocated = false;
49ef5294 1201 ret = i915_vma_put_fence(vma);
18034584
CW
1202 if (ret) {
1203 i915_vma_unpin(vma);
1204 vma = ERR_PTR(ret);
1205 }
1206 }
058d88c4 1207 if (IS_ERR(vma)) {
bb6dc8d9 1208 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
4f1959ee 1209 if (ret)
fe115628
CW
1210 goto out_unlock;
1211 GEM_BUG_ON(!node.allocated);
4f1959ee 1212 }
935aaa69
DV
1213
1214 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1215 if (ret)
1216 goto out_unpin;
1217
fe115628
CW
1218 mutex_unlock(&i915->drm.struct_mutex);
1219
b19482d7 1220 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 1221
4f1959ee
AS
1222 user_data = u64_to_user_ptr(args->data_ptr);
1223 offset = args->offset;
1224 remain = args->size;
1225 while (remain) {
673a394b
EA
1226 /* Operation in this page
1227 *
0839ccb8
KP
1228 * page_base = page offset within aperture
1229 * page_offset = offset within page
1230 * page_length = bytes to copy for this page
673a394b 1231 */
4f1959ee 1232 u32 page_base = node.start;
bb6dc8d9
CW
1233 unsigned int page_offset = offset_in_page(offset);
1234 unsigned int page_length = PAGE_SIZE - page_offset;
4f1959ee
AS
1235 page_length = remain < page_length ? remain : page_length;
1236 if (node.allocated) {
1237 wmb(); /* flush the write before we modify the GGTT */
1238 ggtt->base.insert_page(&ggtt->base,
1239 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1240 node.start, I915_CACHE_NONE, 0);
1241 wmb(); /* flush modifications to the GGTT (insert_page) */
1242 } else {
1243 page_base += offset & PAGE_MASK;
1244 }
0839ccb8 1245 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
1246 * source page isn't available. Return the error and we'll
1247 * retry in the slow path.
b50a5371
AS
1248 * If the object is non-shmem backed, we retry again with the
1249 * path that handles page fault.
0839ccb8 1250 */
fe115628
CW
1251 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1252 user_data, page_length)) {
1253 ret = -EFAULT;
1254 break;
935aaa69 1255 }
673a394b 1256
0839ccb8
KP
1257 remain -= page_length;
1258 user_data += page_length;
1259 offset += page_length;
673a394b 1260 }
b19482d7 1261 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
fe115628
CW
1262
1263 mutex_lock(&i915->drm.struct_mutex);
935aaa69 1264out_unpin:
4f1959ee
AS
1265 if (node.allocated) {
1266 wmb();
1267 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1268 node.start, node.size);
4f1959ee
AS
1269 remove_mappable_node(&node);
1270 } else {
058d88c4 1271 i915_vma_unpin(vma);
4f1959ee 1272 }
fe115628 1273out_unlock:
9c870d03 1274 intel_runtime_pm_put(i915);
fe115628 1275 mutex_unlock(&i915->drm.struct_mutex);
3de09aa3 1276 return ret;
673a394b
EA
1277}
1278
3043c60c 1279static int
fe115628 1280shmem_pwrite_slow(struct page *page, int offset, int length,
d174bd64
DV
1281 char __user *user_data,
1282 bool page_do_bit17_swizzling,
1283 bool needs_clflush_before,
1284 bool needs_clflush_after)
673a394b 1285{
d174bd64
DV
1286 char *vaddr;
1287 int ret;
e5281ccd 1288
d174bd64 1289 vaddr = kmap(page);
e7e58eb5 1290 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
fe115628 1291 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1292 page_do_bit17_swizzling);
d174bd64 1293 if (page_do_bit17_swizzling)
fe115628
CW
1294 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1295 length);
d174bd64 1296 else
fe115628 1297 ret = __copy_from_user(vaddr + offset, user_data, length);
d174bd64 1298 if (needs_clflush_after)
fe115628 1299 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1300 page_do_bit17_swizzling);
d174bd64 1301 kunmap(page);
40123c1f 1302
755d2218 1303 return ret ? -EFAULT : 0;
40123c1f
EA
1304}
1305
fe115628
CW
1306/* Per-page copy function for the shmem pwrite fastpath.
1307 * Flushes invalid cachelines before writing to the target if
1308 * needs_clflush_before is set and flushes out any written cachelines after
1309 * writing if needs_clflush is set.
1310 */
40123c1f 1311static int
fe115628
CW
1312shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1313 bool page_do_bit17_swizzling,
1314 bool needs_clflush_before,
1315 bool needs_clflush_after)
40123c1f 1316{
fe115628
CW
1317 int ret;
1318
1319 ret = -ENODEV;
1320 if (!page_do_bit17_swizzling) {
1321 char *vaddr = kmap_atomic(page);
1322
1323 if (needs_clflush_before)
1324 drm_clflush_virt_range(vaddr + offset, len);
1325 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1326 if (needs_clflush_after)
1327 drm_clflush_virt_range(vaddr + offset, len);
1328
1329 kunmap_atomic(vaddr);
1330 }
1331 if (ret == 0)
1332 return ret;
1333
1334 return shmem_pwrite_slow(page, offset, len, user_data,
1335 page_do_bit17_swizzling,
1336 needs_clflush_before,
1337 needs_clflush_after);
1338}
1339
1340static int
1341i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1342 const struct drm_i915_gem_pwrite *args)
1343{
1344 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1345 void __user *user_data;
1346 u64 remain;
1347 unsigned int obj_do_bit17_swizzling;
1348 unsigned int partial_cacheline_write;
43394c7d 1349 unsigned int needs_clflush;
fe115628
CW
1350 unsigned int offset, idx;
1351 int ret;
40123c1f 1352
fe115628 1353 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
755d2218
CW
1354 if (ret)
1355 return ret;
1356
fe115628
CW
1357 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1358 mutex_unlock(&i915->drm.struct_mutex);
1359 if (ret)
1360 return ret;
673a394b 1361
fe115628
CW
1362 obj_do_bit17_swizzling = 0;
1363 if (i915_gem_object_needs_bit17_swizzle(obj))
1364 obj_do_bit17_swizzling = BIT(17);
e5281ccd 1365
fe115628
CW
1366 /* If we don't overwrite a cacheline completely we need to be
1367 * careful to have up-to-date data by first clflushing. Don't
1368 * overcomplicate things and flush the entire patch.
1369 */
1370 partial_cacheline_write = 0;
1371 if (needs_clflush & CLFLUSH_BEFORE)
1372 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
9da3da66 1373
fe115628
CW
1374 user_data = u64_to_user_ptr(args->data_ptr);
1375 remain = args->size;
1376 offset = offset_in_page(args->offset);
1377 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1378 struct page *page = i915_gem_object_get_page(obj, idx);
1379 int length;
40123c1f 1380
fe115628
CW
1381 length = remain;
1382 if (offset + length > PAGE_SIZE)
1383 length = PAGE_SIZE - offset;
755d2218 1384
fe115628
CW
1385 ret = shmem_pwrite(page, offset, length, user_data,
1386 page_to_phys(page) & obj_do_bit17_swizzling,
1387 (offset | length) & partial_cacheline_write,
1388 needs_clflush & CLFLUSH_AFTER);
755d2218 1389 if (ret)
fe115628 1390 break;
755d2218 1391
fe115628
CW
1392 remain -= length;
1393 user_data += length;
1394 offset = 0;
8c59967c 1395 }
673a394b 1396
de152b62 1397 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
fe115628 1398 i915_gem_obj_finish_shmem_access(obj);
40123c1f 1399 return ret;
673a394b
EA
1400}
1401
1402/**
1403 * Writes data to the object referenced by handle.
14bb2c11
TU
1404 * @dev: drm device
1405 * @data: ioctl data blob
1406 * @file: drm file
673a394b
EA
1407 *
1408 * On error, the contents of the buffer that were to be modified are undefined.
1409 */
1410int
1411i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1412 struct drm_file *file)
673a394b
EA
1413{
1414 struct drm_i915_gem_pwrite *args = data;
05394f39 1415 struct drm_i915_gem_object *obj;
51311d0a
CW
1416 int ret;
1417
1418 if (args->size == 0)
1419 return 0;
1420
1421 if (!access_ok(VERIFY_READ,
3ed605bc 1422 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1423 args->size))
1424 return -EFAULT;
1425
03ac0642 1426 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1427 if (!obj)
1428 return -ENOENT;
673a394b 1429
7dcd2499 1430 /* Bounds check destination. */
966d5bf5 1431 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
ce9d419d 1432 ret = -EINVAL;
258a5ede 1433 goto err;
ce9d419d
CW
1434 }
1435
db53a302
CW
1436 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1437
e95433c7
CW
1438 ret = i915_gem_object_wait(obj,
1439 I915_WAIT_INTERRUPTIBLE |
1440 I915_WAIT_ALL,
1441 MAX_SCHEDULE_TIMEOUT,
1442 to_rps_client(file));
258a5ede
CW
1443 if (ret)
1444 goto err;
1445
fe115628 1446 ret = i915_gem_object_pin_pages(obj);
258a5ede 1447 if (ret)
fe115628 1448 goto err;
258a5ede 1449
935aaa69 1450 ret = -EFAULT;
673a394b
EA
1451 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1452 * it would end up going through the fenced access, and we'll get
1453 * different detiling behavior between reading and writing.
1454 * pread/pwrite currently are reading and writing from the CPU
1455 * perspective, requiring manual detiling by the client.
1456 */
6eae0059 1457 if (!i915_gem_object_has_struct_page(obj) ||
9c870d03 1458 cpu_write_needs_clflush(obj))
935aaa69
DV
1459 /* Note that the gtt paths might fail with non-page-backed user
1460 * pointers (e.g. gtt mappings when moving data between
9c870d03
CW
1461 * textures). Fallback to the shmem path in that case.
1462 */
fe115628 1463 ret = i915_gem_gtt_pwrite_fast(obj, args);
673a394b 1464
d1054ee4 1465 if (ret == -EFAULT || ret == -ENOSPC) {
6a2c4232
CW
1466 if (obj->phys_handle)
1467 ret = i915_gem_phys_pwrite(obj, args, file);
b50a5371 1468 else
fe115628 1469 ret = i915_gem_shmem_pwrite(obj, args);
6a2c4232 1470 }
5c0480f2 1471
fe115628 1472 i915_gem_object_unpin_pages(obj);
258a5ede 1473err:
f0cd5182 1474 i915_gem_object_put(obj);
258a5ede 1475 return ret;
673a394b
EA
1476}
1477
d243ad82 1478static inline enum fb_op_origin
aeecc969
CW
1479write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1480{
50349247
CW
1481 return (domain == I915_GEM_DOMAIN_GTT ?
1482 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
aeecc969
CW
1483}
1484
40e62d5d
CW
1485static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1486{
1487 struct drm_i915_private *i915;
1488 struct list_head *list;
1489 struct i915_vma *vma;
1490
1491 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1492 if (!i915_vma_is_ggtt(vma))
28f412e0 1493 break;
40e62d5d
CW
1494
1495 if (i915_vma_is_active(vma))
1496 continue;
1497
1498 if (!drm_mm_node_allocated(&vma->node))
1499 continue;
1500
1501 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1502 }
1503
1504 i915 = to_i915(obj->base.dev);
1505 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
56cea323 1506 list_move_tail(&obj->global_link, list);
40e62d5d
CW
1507}
1508
673a394b 1509/**
2ef7eeaa
EA
1510 * Called when user space prepares to use an object with the CPU, either
1511 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1512 * @dev: drm device
1513 * @data: ioctl data blob
1514 * @file: drm file
673a394b
EA
1515 */
1516int
1517i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1518 struct drm_file *file)
673a394b
EA
1519{
1520 struct drm_i915_gem_set_domain *args = data;
05394f39 1521 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1522 uint32_t read_domains = args->read_domains;
1523 uint32_t write_domain = args->write_domain;
40e62d5d 1524 int err;
673a394b 1525
2ef7eeaa 1526 /* Only handle setting domains to types used by the CPU. */
b8f9096d 1527 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1528 return -EINVAL;
1529
1530 /* Having something in the write domain implies it's in the read
1531 * domain, and only that read domain. Enforce that in the request.
1532 */
1533 if (write_domain != 0 && read_domains != write_domain)
1534 return -EINVAL;
1535
03ac0642 1536 obj = i915_gem_object_lookup(file, args->handle);
b8f9096d
CW
1537 if (!obj)
1538 return -ENOENT;
673a394b 1539
3236f57a
CW
1540 /* Try to flush the object off the GPU without holding the lock.
1541 * We will repeat the flush holding the lock in the normal manner
1542 * to catch cases where we are gazumped.
1543 */
40e62d5d 1544 err = i915_gem_object_wait(obj,
e95433c7
CW
1545 I915_WAIT_INTERRUPTIBLE |
1546 (write_domain ? I915_WAIT_ALL : 0),
1547 MAX_SCHEDULE_TIMEOUT,
1548 to_rps_client(file));
40e62d5d 1549 if (err)
f0cd5182 1550 goto out;
b8f9096d 1551
40e62d5d
CW
1552 /* Flush and acquire obj->pages so that we are coherent through
1553 * direct access in memory with previous cached writes through
1554 * shmemfs and that our cache domain tracking remains valid.
1555 * For example, if the obj->filp was moved to swap without us
1556 * being notified and releasing the pages, we would mistakenly
1557 * continue to assume that the obj remained out of the CPU cached
1558 * domain.
1559 */
1560 err = i915_gem_object_pin_pages(obj);
1561 if (err)
f0cd5182 1562 goto out;
40e62d5d
CW
1563
1564 err = i915_mutex_lock_interruptible(dev);
1565 if (err)
f0cd5182 1566 goto out_unpin;
3236f57a 1567
43566ded 1568 if (read_domains & I915_GEM_DOMAIN_GTT)
40e62d5d 1569 err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1570 else
40e62d5d 1571 err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1572
40e62d5d
CW
1573 /* And bump the LRU for this access */
1574 i915_gem_object_bump_inactive_ggtt(obj);
031b698a 1575
673a394b 1576 mutex_unlock(&dev->struct_mutex);
b8f9096d 1577
40e62d5d
CW
1578 if (write_domain != 0)
1579 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1580
f0cd5182 1581out_unpin:
40e62d5d 1582 i915_gem_object_unpin_pages(obj);
f0cd5182
CW
1583out:
1584 i915_gem_object_put(obj);
40e62d5d 1585 return err;
673a394b
EA
1586}
1587
1588/**
1589 * Called when user space has done writes to this buffer
14bb2c11
TU
1590 * @dev: drm device
1591 * @data: ioctl data blob
1592 * @file: drm file
673a394b
EA
1593 */
1594int
1595i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1596 struct drm_file *file)
673a394b
EA
1597{
1598 struct drm_i915_gem_sw_finish *args = data;
05394f39 1599 struct drm_i915_gem_object *obj;
c21724cc 1600 int err = 0;
1d7cfea1 1601
03ac0642 1602 obj = i915_gem_object_lookup(file, args->handle);
c21724cc
CW
1603 if (!obj)
1604 return -ENOENT;
673a394b 1605
673a394b 1606 /* Pinned buffers may be scanout, so flush the cache */
c21724cc
CW
1607 if (READ_ONCE(obj->pin_display)) {
1608 err = i915_mutex_lock_interruptible(dev);
1609 if (!err) {
1610 i915_gem_object_flush_cpu_write_domain(obj);
1611 mutex_unlock(&dev->struct_mutex);
1612 }
1613 }
e47c68e9 1614
f0cd5182 1615 i915_gem_object_put(obj);
c21724cc 1616 return err;
673a394b
EA
1617}
1618
1619/**
14bb2c11
TU
1620 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1621 * it is mapped to.
1622 * @dev: drm device
1623 * @data: ioctl data blob
1624 * @file: drm file
673a394b
EA
1625 *
1626 * While the mapping holds a reference on the contents of the object, it doesn't
1627 * imply a ref on the object itself.
34367381
DV
1628 *
1629 * IMPORTANT:
1630 *
1631 * DRM driver writers who look a this function as an example for how to do GEM
1632 * mmap support, please don't implement mmap support like here. The modern way
1633 * to implement DRM mmap support is with an mmap offset ioctl (like
1634 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1635 * That way debug tooling like valgrind will understand what's going on, hiding
1636 * the mmap call in a driver private ioctl will break that. The i915 driver only
1637 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1638 */
1639int
1640i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1641 struct drm_file *file)
673a394b
EA
1642{
1643 struct drm_i915_gem_mmap *args = data;
03ac0642 1644 struct drm_i915_gem_object *obj;
673a394b
EA
1645 unsigned long addr;
1646
1816f923
AG
1647 if (args->flags & ~(I915_MMAP_WC))
1648 return -EINVAL;
1649
568a58e5 1650 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1651 return -ENODEV;
1652
03ac0642
CW
1653 obj = i915_gem_object_lookup(file, args->handle);
1654 if (!obj)
bf79cb91 1655 return -ENOENT;
673a394b 1656
1286ff73
DV
1657 /* prime objects have no backing filp to GEM mmap
1658 * pages from.
1659 */
03ac0642 1660 if (!obj->base.filp) {
f0cd5182 1661 i915_gem_object_put(obj);
1286ff73
DV
1662 return -EINVAL;
1663 }
1664
03ac0642 1665 addr = vm_mmap(obj->base.filp, 0, args->size,
673a394b
EA
1666 PROT_READ | PROT_WRITE, MAP_SHARED,
1667 args->offset);
1816f923
AG
1668 if (args->flags & I915_MMAP_WC) {
1669 struct mm_struct *mm = current->mm;
1670 struct vm_area_struct *vma;
1671
80a89a5e 1672 if (down_write_killable(&mm->mmap_sem)) {
f0cd5182 1673 i915_gem_object_put(obj);
80a89a5e
MH
1674 return -EINTR;
1675 }
1816f923
AG
1676 vma = find_vma(mm, addr);
1677 if (vma)
1678 vma->vm_page_prot =
1679 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1680 else
1681 addr = -ENOMEM;
1682 up_write(&mm->mmap_sem);
aeecc969
CW
1683
1684 /* This may race, but that's ok, it only gets set */
50349247 1685 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1816f923 1686 }
f0cd5182 1687 i915_gem_object_put(obj);
673a394b
EA
1688 if (IS_ERR((void *)addr))
1689 return addr;
1690
1691 args->addr_ptr = (uint64_t) addr;
1692
1693 return 0;
1694}
1695
03af84fe
CW
1696static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1697{
6649a0b6 1698 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
03af84fe
CW
1699}
1700
4cc69075
CW
1701/**
1702 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1703 *
1704 * A history of the GTT mmap interface:
1705 *
1706 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1707 * aligned and suitable for fencing, and still fit into the available
1708 * mappable space left by the pinned display objects. A classic problem
1709 * we called the page-fault-of-doom where we would ping-pong between
1710 * two objects that could not fit inside the GTT and so the memcpy
1711 * would page one object in at the expense of the other between every
1712 * single byte.
1713 *
1714 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1715 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1716 * object is too large for the available space (or simply too large
1717 * for the mappable aperture!), a view is created instead and faulted
1718 * into userspace. (This view is aligned and sized appropriately for
1719 * fenced access.)
1720 *
1721 * Restrictions:
1722 *
1723 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1724 * hangs on some architectures, corruption on others. An attempt to service
1725 * a GTT page fault from a snoopable object will generate a SIGBUS.
1726 *
1727 * * the object must be able to fit into RAM (physical memory, though no
1728 * limited to the mappable aperture).
1729 *
1730 *
1731 * Caveats:
1732 *
1733 * * a new GTT page fault will synchronize rendering from the GPU and flush
1734 * all data to system memory. Subsequent access will not be synchronized.
1735 *
1736 * * all mappings are revoked on runtime device suspend.
1737 *
1738 * * there are only 8, 16 or 32 fence registers to share between all users
1739 * (older machines require fence register for display and blitter access
1740 * as well). Contention of the fence registers will cause the previous users
1741 * to be unmapped and any new access will generate new page faults.
1742 *
1743 * * running out of memory while servicing a fault may generate a SIGBUS,
1744 * rather than the expected SIGSEGV.
1745 */
1746int i915_gem_mmap_gtt_version(void)
1747{
1748 return 1;
1749}
1750
2d4281bb
CW
1751static inline struct i915_ggtt_view
1752compute_partial_view(struct drm_i915_gem_object *obj,
2d4281bb
CW
1753 pgoff_t page_offset,
1754 unsigned int chunk)
1755{
1756 struct i915_ggtt_view view;
1757
1758 if (i915_gem_object_is_tiled(obj))
1759 chunk = roundup(chunk, tile_row_pages(obj));
1760
2d4281bb 1761 view.type = I915_GGTT_VIEW_PARTIAL;
8bab1193
CW
1762 view.partial.offset = rounddown(page_offset, chunk);
1763 view.partial.size =
2d4281bb 1764 min_t(unsigned int, chunk,
8bab1193 1765 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
2d4281bb
CW
1766
1767 /* If the partial covers the entire object, just create a normal VMA. */
1768 if (chunk >= obj->base.size >> PAGE_SHIFT)
1769 view.type = I915_GGTT_VIEW_NORMAL;
1770
1771 return view;
1772}
1773
de151cf6
JB
1774/**
1775 * i915_gem_fault - fault a page into the GTT
058d88c4 1776 * @area: CPU VMA in question
d9072a3e 1777 * @vmf: fault info
de151cf6
JB
1778 *
1779 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1780 * from userspace. The fault handler takes care of binding the object to
1781 * the GTT (if needed), allocating and programming a fence register (again,
1782 * only if needed based on whether the old reg is still valid or the object
1783 * is tiled) and inserting a new PTE into the faulting process.
1784 *
1785 * Note that the faulting process may involve evicting existing objects
1786 * from the GTT and/or fence registers to make room. So performance may
1787 * suffer if the GTT working set is large or there are few fence registers
1788 * left.
4cc69075
CW
1789 *
1790 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1791 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
de151cf6 1792 */
058d88c4 1793int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
de151cf6 1794{
03af84fe 1795#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
058d88c4 1796 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
05394f39 1797 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1798 struct drm_i915_private *dev_priv = to_i915(dev);
1799 struct i915_ggtt *ggtt = &dev_priv->ggtt;
b8f9096d 1800 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
058d88c4 1801 struct i915_vma *vma;
de151cf6 1802 pgoff_t page_offset;
82118877 1803 unsigned int flags;
b8f9096d 1804 int ret;
f65c9168 1805
de151cf6 1806 /* We don't use vmf->pgoff since that has the fake offset */
1a29d85e 1807 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
de151cf6 1808
db53a302
CW
1809 trace_i915_gem_object_fault(obj, page_offset, true, write);
1810
6e4930f6 1811 /* Try to flush the object off the GPU first without holding the lock.
b8f9096d 1812 * Upon acquiring the lock, we will perform our sanity checks and then
6e4930f6
CW
1813 * repeat the flush holding the lock in the normal manner to catch cases
1814 * where we are gazumped.
1815 */
e95433c7
CW
1816 ret = i915_gem_object_wait(obj,
1817 I915_WAIT_INTERRUPTIBLE,
1818 MAX_SCHEDULE_TIMEOUT,
1819 NULL);
6e4930f6 1820 if (ret)
b8f9096d
CW
1821 goto err;
1822
40e62d5d
CW
1823 ret = i915_gem_object_pin_pages(obj);
1824 if (ret)
1825 goto err;
1826
b8f9096d
CW
1827 intel_runtime_pm_get(dev_priv);
1828
1829 ret = i915_mutex_lock_interruptible(dev);
1830 if (ret)
1831 goto err_rpm;
6e4930f6 1832
eb119bd6 1833 /* Access to snoopable pages through the GTT is incoherent. */
0031fb96 1834 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
ddeff6ee 1835 ret = -EFAULT;
b8f9096d 1836 goto err_unlock;
eb119bd6
CW
1837 }
1838
82118877
CW
1839 /* If the object is smaller than a couple of partial vma, it is
1840 * not worth only creating a single partial vma - we may as well
1841 * clear enough space for the full object.
1842 */
1843 flags = PIN_MAPPABLE;
1844 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1845 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1846
a61007a8 1847 /* Now pin it into the GTT as needed */
82118877 1848 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
a61007a8 1849 if (IS_ERR(vma)) {
a61007a8 1850 /* Use a partial view if it is bigger than available space */
2d4281bb 1851 struct i915_ggtt_view view =
8201c1fa 1852 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
aa136d9d 1853
50349247
CW
1854 /* Userspace is now writing through an untracked VMA, abandon
1855 * all hope that the hardware is able to track future writes.
1856 */
1857 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1858
a61007a8
CW
1859 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1860 }
058d88c4
CW
1861 if (IS_ERR(vma)) {
1862 ret = PTR_ERR(vma);
b8f9096d 1863 goto err_unlock;
058d88c4 1864 }
4a684a41 1865
c9839303
CW
1866 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1867 if (ret)
b8f9096d 1868 goto err_unpin;
74898d7e 1869
49ef5294 1870 ret = i915_vma_get_fence(vma);
d9e86c0e 1871 if (ret)
b8f9096d 1872 goto err_unpin;
7d1c4804 1873
275f039d 1874 /* Mark as being mmapped into userspace for later revocation */
9c870d03 1875 assert_rpm_wakelock_held(dev_priv);
275f039d
CW
1876 if (list_empty(&obj->userfault_link))
1877 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
275f039d 1878
b90b91d8 1879 /* Finally, remap it using the new GTT offset */
c58305af 1880 ret = remap_io_mapping(area,
8bab1193 1881 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
c58305af
CW
1882 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1883 min_t(u64, vma->size, area->vm_end - area->vm_start),
1884 &ggtt->mappable);
a61007a8 1885
b8f9096d 1886err_unpin:
058d88c4 1887 __i915_vma_unpin(vma);
b8f9096d 1888err_unlock:
de151cf6 1889 mutex_unlock(&dev->struct_mutex);
b8f9096d
CW
1890err_rpm:
1891 intel_runtime_pm_put(dev_priv);
40e62d5d 1892 i915_gem_object_unpin_pages(obj);
b8f9096d 1893err:
de151cf6 1894 switch (ret) {
d9bc7e9f 1895 case -EIO:
2232f031
DV
1896 /*
1897 * We eat errors when the gpu is terminally wedged to avoid
1898 * userspace unduly crashing (gl has no provisions for mmaps to
1899 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1900 * and so needs to be reported.
1901 */
1902 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1903 ret = VM_FAULT_SIGBUS;
1904 break;
1905 }
045e769a 1906 case -EAGAIN:
571c608d
DV
1907 /*
1908 * EAGAIN means the gpu is hung and we'll wait for the error
1909 * handler to reset everything when re-faulting in
1910 * i915_mutex_lock_interruptible.
d9bc7e9f 1911 */
c715089f
CW
1912 case 0:
1913 case -ERESTARTSYS:
bed636ab 1914 case -EINTR:
e79e0fe3
DR
1915 case -EBUSY:
1916 /*
1917 * EBUSY is ok: this just means that another thread
1918 * already did the job.
1919 */
f65c9168
PZ
1920 ret = VM_FAULT_NOPAGE;
1921 break;
de151cf6 1922 case -ENOMEM:
f65c9168
PZ
1923 ret = VM_FAULT_OOM;
1924 break;
a7c2e1aa 1925 case -ENOSPC:
45d67817 1926 case -EFAULT:
f65c9168
PZ
1927 ret = VM_FAULT_SIGBUS;
1928 break;
de151cf6 1929 default:
a7c2e1aa 1930 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1931 ret = VM_FAULT_SIGBUS;
1932 break;
de151cf6 1933 }
f65c9168 1934 return ret;
de151cf6
JB
1935}
1936
901782b2
CW
1937/**
1938 * i915_gem_release_mmap - remove physical page mappings
1939 * @obj: obj in question
1940 *
af901ca1 1941 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1942 * relinquish ownership of the pages back to the system.
1943 *
1944 * It is vital that we remove the page mapping if we have mapped a tiled
1945 * object through the GTT and then lose the fence register due to
1946 * resource pressure. Similarly if the object has been moved out of the
1947 * aperture, than pages mapped into userspace must be revoked. Removing the
1948 * mapping will then trigger a page fault on the next user access, allowing
1949 * fixup by i915_gem_fault().
1950 */
d05ca301 1951void
05394f39 1952i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1953{
275f039d 1954 struct drm_i915_private *i915 = to_i915(obj->base.dev);
275f039d 1955
349f2ccf
CW
1956 /* Serialisation between user GTT access and our code depends upon
1957 * revoking the CPU's PTE whilst the mutex is held. The next user
1958 * pagefault then has to wait until we release the mutex.
9c870d03
CW
1959 *
1960 * Note that RPM complicates somewhat by adding an additional
1961 * requirement that operations to the GGTT be made holding the RPM
1962 * wakeref.
349f2ccf 1963 */
275f039d 1964 lockdep_assert_held(&i915->drm.struct_mutex);
9c870d03 1965 intel_runtime_pm_get(i915);
349f2ccf 1966
3594a3e2 1967 if (list_empty(&obj->userfault_link))
9c870d03 1968 goto out;
901782b2 1969
3594a3e2 1970 list_del_init(&obj->userfault_link);
6796cb16
DR
1971 drm_vma_node_unmap(&obj->base.vma_node,
1972 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
1973
1974 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1975 * memory transactions from userspace before we return. The TLB
1976 * flushing implied above by changing the PTE above *should* be
1977 * sufficient, an extra barrier here just provides us with a bit
1978 * of paranoid documentation about our requirement to serialise
1979 * memory writes before touching registers / GSM.
1980 */
1981 wmb();
9c870d03
CW
1982
1983out:
1984 intel_runtime_pm_put(i915);
901782b2
CW
1985}
1986
7c108fd8 1987void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
eedd10f4 1988{
3594a3e2 1989 struct drm_i915_gem_object *obj, *on;
7c108fd8 1990 int i;
eedd10f4 1991
3594a3e2
CW
1992 /*
1993 * Only called during RPM suspend. All users of the userfault_list
1994 * must be holding an RPM wakeref to ensure that this can not
1995 * run concurrently with themselves (and use the struct_mutex for
1996 * protection between themselves).
1997 */
275f039d 1998
3594a3e2
CW
1999 list_for_each_entry_safe(obj, on,
2000 &dev_priv->mm.userfault_list, userfault_link) {
2001 list_del_init(&obj->userfault_link);
275f039d
CW
2002 drm_vma_node_unmap(&obj->base.vma_node,
2003 obj->base.dev->anon_inode->i_mapping);
275f039d 2004 }
7c108fd8
CW
2005
2006 /* The fence will be lost when the device powers down. If any were
2007 * in use by hardware (i.e. they are pinned), we should not be powering
2008 * down! All other fences will be reacquired by the user upon waking.
2009 */
2010 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2011 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2012
e0ec3ec6
CW
2013 /* Ideally we want to assert that the fence register is not
2014 * live at this point (i.e. that no piece of code will be
2015 * trying to write through fence + GTT, as that both violates
2016 * our tracking of activity and associated locking/barriers,
2017 * but also is illegal given that the hw is powered down).
2018 *
2019 * Previously we used reg->pin_count as a "liveness" indicator.
2020 * That is not sufficient, and we need a more fine-grained
2021 * tool if we want to have a sanity check here.
2022 */
7c108fd8
CW
2023
2024 if (!reg->vma)
2025 continue;
2026
2027 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2028 reg->dirty = true;
2029 }
eedd10f4
CW
2030}
2031
d8cb5086
CW
2032static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2033{
fac5e23e 2034 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
f3f6184c 2035 int err;
da494d7c 2036
f3f6184c 2037 err = drm_gem_create_mmap_offset(&obj->base);
b42a13d9 2038 if (likely(!err))
f3f6184c 2039 return 0;
d8cb5086 2040
b42a13d9
CW
2041 /* Attempt to reap some mmap space from dead objects */
2042 do {
2043 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2044 if (err)
2045 break;
f3f6184c 2046
b42a13d9 2047 i915_gem_drain_freed_objects(dev_priv);
f3f6184c 2048 err = drm_gem_create_mmap_offset(&obj->base);
b42a13d9
CW
2049 if (!err)
2050 break;
2051
2052 } while (flush_delayed_work(&dev_priv->gt.retire_work));
da494d7c 2053
f3f6184c 2054 return err;
d8cb5086
CW
2055}
2056
2057static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2058{
d8cb5086
CW
2059 drm_gem_free_mmap_offset(&obj->base);
2060}
2061
da6b51d0 2062int
ff72145b
DA
2063i915_gem_mmap_gtt(struct drm_file *file,
2064 struct drm_device *dev,
da6b51d0 2065 uint32_t handle,
ff72145b 2066 uint64_t *offset)
de151cf6 2067{
05394f39 2068 struct drm_i915_gem_object *obj;
de151cf6
JB
2069 int ret;
2070
03ac0642 2071 obj = i915_gem_object_lookup(file, handle);
f3f6184c
CW
2072 if (!obj)
2073 return -ENOENT;
ab18282d 2074
d8cb5086 2075 ret = i915_gem_object_create_mmap_offset(obj);
f3f6184c
CW
2076 if (ret == 0)
2077 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2078
f0cd5182 2079 i915_gem_object_put(obj);
1d7cfea1 2080 return ret;
de151cf6
JB
2081}
2082
ff72145b
DA
2083/**
2084 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2085 * @dev: DRM device
2086 * @data: GTT mapping ioctl data
2087 * @file: GEM object info
2088 *
2089 * Simply returns the fake offset to userspace so it can mmap it.
2090 * The mmap call will end up in drm_gem_mmap(), which will set things
2091 * up so we can get faults in the handler above.
2092 *
2093 * The fault handler will take care of binding the object into the GTT
2094 * (since it may have been evicted to make room for something), allocating
2095 * a fence register, and mapping the appropriate aperture address into
2096 * userspace.
2097 */
2098int
2099i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2100 struct drm_file *file)
2101{
2102 struct drm_i915_gem_mmap_gtt *args = data;
2103
da6b51d0 2104 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2105}
2106
225067ee
DV
2107/* Immediately discard the backing storage */
2108static void
2109i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2110{
4d6294bf 2111 i915_gem_object_free_mmap_offset(obj);
1286ff73 2112
4d6294bf
CW
2113 if (obj->base.filp == NULL)
2114 return;
e5281ccd 2115
225067ee
DV
2116 /* Our goal here is to return as much of the memory as
2117 * is possible back to the system as we are called from OOM.
2118 * To do this we must instruct the shmfs to drop all of its
2119 * backing pages, *now*.
2120 */
5537252b 2121 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
a4f5ea64 2122 obj->mm.madv = __I915_MADV_PURGED;
225067ee 2123}
e5281ccd 2124
5537252b 2125/* Try to discard unwanted pages */
03ac84f1 2126void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2127{
5537252b
CW
2128 struct address_space *mapping;
2129
1233e2db
CW
2130 lockdep_assert_held(&obj->mm.lock);
2131 GEM_BUG_ON(obj->mm.pages);
2132
a4f5ea64 2133 switch (obj->mm.madv) {
5537252b
CW
2134 case I915_MADV_DONTNEED:
2135 i915_gem_object_truncate(obj);
2136 case __I915_MADV_PURGED:
2137 return;
2138 }
2139
2140 if (obj->base.filp == NULL)
2141 return;
2142
93c76a3d 2143 mapping = obj->base.filp->f_mapping,
5537252b 2144 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2145}
2146
5cdf5881 2147static void
03ac84f1
CW
2148i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2149 struct sg_table *pages)
673a394b 2150{
85d1225e
DG
2151 struct sgt_iter sgt_iter;
2152 struct page *page;
1286ff73 2153
e5facdf9 2154 __i915_gem_object_release_shmem(obj, pages, true);
673a394b 2155
03ac84f1 2156 i915_gem_gtt_finish_pages(obj, pages);
e2273302 2157
6dacfd2f 2158 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2159 i915_gem_object_save_bit_17_swizzle(obj, pages);
280b713b 2160
03ac84f1 2161 for_each_sgt_page(page, sgt_iter, pages) {
a4f5ea64 2162 if (obj->mm.dirty)
9da3da66 2163 set_page_dirty(page);
3ef94daa 2164
a4f5ea64 2165 if (obj->mm.madv == I915_MADV_WILLNEED)
9da3da66 2166 mark_page_accessed(page);
3ef94daa 2167
09cbfeaf 2168 put_page(page);
3ef94daa 2169 }
a4f5ea64 2170 obj->mm.dirty = false;
673a394b 2171
03ac84f1
CW
2172 sg_free_table(pages);
2173 kfree(pages);
37e680a1 2174}
6c085a72 2175
96d77634
CW
2176static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2177{
2178 struct radix_tree_iter iter;
2179 void **slot;
2180
a4f5ea64
CW
2181 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2182 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
96d77634
CW
2183}
2184
548625ee
CW
2185void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2186 enum i915_mm_subclass subclass)
37e680a1 2187{
03ac84f1 2188 struct sg_table *pages;
37e680a1 2189
a4f5ea64 2190 if (i915_gem_object_has_pinned_pages(obj))
03ac84f1 2191 return;
a5570178 2192
15717de2 2193 GEM_BUG_ON(obj->bind_count);
1233e2db
CW
2194 if (!READ_ONCE(obj->mm.pages))
2195 return;
2196
2197 /* May be called by shrinker from within get_pages() (on another bo) */
548625ee 2198 mutex_lock_nested(&obj->mm.lock, subclass);
1233e2db
CW
2199 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2200 goto unlock;
3e123027 2201
a2165e31
CW
2202 /* ->put_pages might need to allocate memory for the bit17 swizzle
2203 * array, hence protect them from being reaped by removing them from gtt
2204 * lists early. */
03ac84f1
CW
2205 pages = fetch_and_zero(&obj->mm.pages);
2206 GEM_BUG_ON(!pages);
a2165e31 2207
a4f5ea64 2208 if (obj->mm.mapping) {
4b30cb23
CW
2209 void *ptr;
2210
a4f5ea64 2211 ptr = ptr_mask_bits(obj->mm.mapping);
4b30cb23
CW
2212 if (is_vmalloc_addr(ptr))
2213 vunmap(ptr);
fb8621d3 2214 else
4b30cb23
CW
2215 kunmap(kmap_to_page(ptr));
2216
a4f5ea64 2217 obj->mm.mapping = NULL;
0a798eb9
CW
2218 }
2219
96d77634
CW
2220 __i915_gem_object_reset_page_iter(obj);
2221
03ac84f1 2222 obj->ops->put_pages(obj, pages);
1233e2db
CW
2223unlock:
2224 mutex_unlock(&obj->mm.lock);
6c085a72
CW
2225}
2226
0c40ce13
TU
2227static void i915_sg_trim(struct sg_table *orig_st)
2228{
2229 struct sg_table new_st;
2230 struct scatterlist *sg, *new_sg;
2231 unsigned int i;
2232
2233 if (orig_st->nents == orig_st->orig_nents)
2234 return;
2235
8bfc478f 2236 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
0c40ce13
TU
2237 return;
2238
2239 new_sg = new_st.sgl;
2240 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2241 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2242 /* called before being DMA mapped, no need to copy sg->dma_* */
2243 new_sg = sg_next(new_sg);
2244 }
c2dc6cc9 2245 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
0c40ce13
TU
2246
2247 sg_free_table(orig_st);
2248
2249 *orig_st = new_st;
2250}
2251
03ac84f1 2252static struct sg_table *
6c085a72 2253i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2254{
fac5e23e 2255 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
d766ef53
CW
2256 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2257 unsigned long i;
e5281ccd 2258 struct address_space *mapping;
9da3da66
CW
2259 struct sg_table *st;
2260 struct scatterlist *sg;
85d1225e 2261 struct sgt_iter sgt_iter;
e5281ccd 2262 struct page *page;
90797e6d 2263 unsigned long last_pfn = 0; /* suppress gcc warning */
4ff340f0 2264 unsigned int max_segment;
e2273302 2265 int ret;
6c085a72 2266 gfp_t gfp;
e5281ccd 2267
6c085a72
CW
2268 /* Assert that the object is not currently in any GPU domain. As it
2269 * wasn't in the GTT, there shouldn't be any way it could have been in
2270 * a GPU cache
2271 */
03ac84f1
CW
2272 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2273 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
6c085a72 2274
7453c549 2275 max_segment = swiotlb_max_segment();
871dfbd6 2276 if (!max_segment)
4ff340f0 2277 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
871dfbd6 2278
9da3da66
CW
2279 st = kmalloc(sizeof(*st), GFP_KERNEL);
2280 if (st == NULL)
03ac84f1 2281 return ERR_PTR(-ENOMEM);
9da3da66 2282
d766ef53 2283rebuild_st:
9da3da66 2284 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2285 kfree(st);
03ac84f1 2286 return ERR_PTR(-ENOMEM);
9da3da66 2287 }
e5281ccd 2288
9da3da66
CW
2289 /* Get the list of pages out of our struct file. They'll be pinned
2290 * at this point until we release them.
2291 *
2292 * Fail silently without starting the shrinker
2293 */
93c76a3d 2294 mapping = obj->base.filp->f_mapping;
c62d2555 2295 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2296 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2297 sg = st->sgl;
2298 st->nents = 0;
2299 for (i = 0; i < page_count; i++) {
6c085a72
CW
2300 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2301 if (IS_ERR(page)) {
21ab4e74
CW
2302 i915_gem_shrink(dev_priv,
2303 page_count,
2304 I915_SHRINK_BOUND |
2305 I915_SHRINK_UNBOUND |
2306 I915_SHRINK_PURGEABLE);
6c085a72
CW
2307 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2308 }
2309 if (IS_ERR(page)) {
2310 /* We've tried hard to allocate the memory by reaping
2311 * our own buffer, now let the real VM do its job and
2312 * go down in flames if truly OOM.
2313 */
f461d1be 2314 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2315 if (IS_ERR(page)) {
2316 ret = PTR_ERR(page);
b17993b7 2317 goto err_sg;
e2273302 2318 }
6c085a72 2319 }
871dfbd6
CW
2320 if (!i ||
2321 sg->length >= max_segment ||
2322 page_to_pfn(page) != last_pfn + 1) {
90797e6d
ID
2323 if (i)
2324 sg = sg_next(sg);
2325 st->nents++;
2326 sg_set_page(sg, page, PAGE_SIZE, 0);
2327 } else {
2328 sg->length += PAGE_SIZE;
2329 }
2330 last_pfn = page_to_pfn(page);
3bbbe706
DV
2331
2332 /* Check that the i965g/gm workaround works. */
2333 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2334 }
871dfbd6 2335 if (sg) /* loop terminated early; short sg table */
426729dc 2336 sg_mark_end(sg);
74ce6b6c 2337
0c40ce13
TU
2338 /* Trim unused sg entries to avoid wasting memory. */
2339 i915_sg_trim(st);
2340
03ac84f1 2341 ret = i915_gem_gtt_prepare_pages(obj, st);
d766ef53
CW
2342 if (ret) {
2343 /* DMA remapping failed? One possible cause is that
2344 * it could not reserve enough large entries, asking
2345 * for PAGE_SIZE chunks instead may be helpful.
2346 */
2347 if (max_segment > PAGE_SIZE) {
2348 for_each_sgt_page(page, sgt_iter, st)
2349 put_page(page);
2350 sg_free_table(st);
2351
2352 max_segment = PAGE_SIZE;
2353 goto rebuild_st;
2354 } else {
2355 dev_warn(&dev_priv->drm.pdev->dev,
2356 "Failed to DMA remap %lu pages\n",
2357 page_count);
2358 goto err_pages;
2359 }
2360 }
e2273302 2361
6dacfd2f 2362 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2363 i915_gem_object_do_bit_17_swizzle(obj, st);
e5281ccd 2364
03ac84f1 2365 return st;
e5281ccd 2366
b17993b7 2367err_sg:
90797e6d 2368 sg_mark_end(sg);
b17993b7 2369err_pages:
85d1225e
DG
2370 for_each_sgt_page(page, sgt_iter, st)
2371 put_page(page);
9da3da66
CW
2372 sg_free_table(st);
2373 kfree(st);
0820baf3
CW
2374
2375 /* shmemfs first checks if there is enough memory to allocate the page
2376 * and reports ENOSPC should there be insufficient, along with the usual
2377 * ENOMEM for a genuine allocation failure.
2378 *
2379 * We use ENOSPC in our driver to mean that we have run out of aperture
2380 * space and so want to translate the error from shmemfs back to our
2381 * usual understanding of ENOMEM.
2382 */
e2273302
ID
2383 if (ret == -ENOSPC)
2384 ret = -ENOMEM;
2385
03ac84f1
CW
2386 return ERR_PTR(ret);
2387}
2388
2389void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2390 struct sg_table *pages)
2391{
1233e2db 2392 lockdep_assert_held(&obj->mm.lock);
03ac84f1
CW
2393
2394 obj->mm.get_page.sg_pos = pages->sgl;
2395 obj->mm.get_page.sg_idx = 0;
2396
2397 obj->mm.pages = pages;
2c3a3f44
CW
2398
2399 if (i915_gem_object_is_tiled(obj) &&
2400 to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2401 GEM_BUG_ON(obj->mm.quirked);
2402 __i915_gem_object_pin_pages(obj);
2403 obj->mm.quirked = true;
2404 }
03ac84f1
CW
2405}
2406
2407static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2408{
2409 struct sg_table *pages;
2410
2c3a3f44
CW
2411 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2412
03ac84f1
CW
2413 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2414 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2415 return -EFAULT;
2416 }
2417
2418 pages = obj->ops->get_pages(obj);
2419 if (unlikely(IS_ERR(pages)))
2420 return PTR_ERR(pages);
2421
2422 __i915_gem_object_set_pages(obj, pages);
2423 return 0;
673a394b
EA
2424}
2425
37e680a1 2426/* Ensure that the associated pages are gathered from the backing storage
1233e2db 2427 * and pinned into our object. i915_gem_object_pin_pages() may be called
37e680a1 2428 * multiple times before they are released by a single call to
1233e2db 2429 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
37e680a1
CW
2430 * either as a result of memory pressure (reaping pages under the shrinker)
2431 * or as the object is itself released.
2432 */
a4f5ea64 2433int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
37e680a1 2434{
03ac84f1 2435 int err;
37e680a1 2436
1233e2db
CW
2437 err = mutex_lock_interruptible(&obj->mm.lock);
2438 if (err)
2439 return err;
4c7d62c6 2440
2c3a3f44
CW
2441 if (unlikely(!obj->mm.pages)) {
2442 err = ____i915_gem_object_get_pages(obj);
2443 if (err)
2444 goto unlock;
37e680a1 2445
2c3a3f44
CW
2446 smp_mb__before_atomic();
2447 }
2448 atomic_inc(&obj->mm.pages_pin_count);
ee286370 2449
1233e2db
CW
2450unlock:
2451 mutex_unlock(&obj->mm.lock);
03ac84f1 2452 return err;
673a394b
EA
2453}
2454
dd6034c6 2455/* The 'mapping' part of i915_gem_object_pin_map() below */
d31d7cb1
CW
2456static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2457 enum i915_map_type type)
dd6034c6
DG
2458{
2459 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
a4f5ea64 2460 struct sg_table *sgt = obj->mm.pages;
85d1225e
DG
2461 struct sgt_iter sgt_iter;
2462 struct page *page;
b338fa47
DG
2463 struct page *stack_pages[32];
2464 struct page **pages = stack_pages;
dd6034c6 2465 unsigned long i = 0;
d31d7cb1 2466 pgprot_t pgprot;
dd6034c6
DG
2467 void *addr;
2468
2469 /* A single page can always be kmapped */
d31d7cb1 2470 if (n_pages == 1 && type == I915_MAP_WB)
dd6034c6
DG
2471 return kmap(sg_page(sgt->sgl));
2472
b338fa47
DG
2473 if (n_pages > ARRAY_SIZE(stack_pages)) {
2474 /* Too big for stack -- allocate temporary array instead */
2475 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2476 if (!pages)
2477 return NULL;
2478 }
dd6034c6 2479
85d1225e
DG
2480 for_each_sgt_page(page, sgt_iter, sgt)
2481 pages[i++] = page;
dd6034c6
DG
2482
2483 /* Check that we have the expected number of pages */
2484 GEM_BUG_ON(i != n_pages);
2485
d31d7cb1
CW
2486 switch (type) {
2487 case I915_MAP_WB:
2488 pgprot = PAGE_KERNEL;
2489 break;
2490 case I915_MAP_WC:
2491 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2492 break;
2493 }
2494 addr = vmap(pages, n_pages, 0, pgprot);
dd6034c6 2495
b338fa47
DG
2496 if (pages != stack_pages)
2497 drm_free_large(pages);
dd6034c6
DG
2498
2499 return addr;
2500}
2501
2502/* get, pin, and map the pages of the object into kernel space */
d31d7cb1
CW
2503void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2504 enum i915_map_type type)
0a798eb9 2505{
d31d7cb1
CW
2506 enum i915_map_type has_type;
2507 bool pinned;
2508 void *ptr;
0a798eb9
CW
2509 int ret;
2510
d31d7cb1 2511 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
0a798eb9 2512
1233e2db 2513 ret = mutex_lock_interruptible(&obj->mm.lock);
0a798eb9
CW
2514 if (ret)
2515 return ERR_PTR(ret);
2516
1233e2db
CW
2517 pinned = true;
2518 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2c3a3f44
CW
2519 if (unlikely(!obj->mm.pages)) {
2520 ret = ____i915_gem_object_get_pages(obj);
2521 if (ret)
2522 goto err_unlock;
1233e2db 2523
2c3a3f44
CW
2524 smp_mb__before_atomic();
2525 }
2526 atomic_inc(&obj->mm.pages_pin_count);
1233e2db
CW
2527 pinned = false;
2528 }
2529 GEM_BUG_ON(!obj->mm.pages);
0a798eb9 2530
a4f5ea64 2531 ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
d31d7cb1
CW
2532 if (ptr && has_type != type) {
2533 if (pinned) {
2534 ret = -EBUSY;
1233e2db 2535 goto err_unpin;
0a798eb9 2536 }
d31d7cb1
CW
2537
2538 if (is_vmalloc_addr(ptr))
2539 vunmap(ptr);
2540 else
2541 kunmap(kmap_to_page(ptr));
2542
a4f5ea64 2543 ptr = obj->mm.mapping = NULL;
0a798eb9
CW
2544 }
2545
d31d7cb1
CW
2546 if (!ptr) {
2547 ptr = i915_gem_object_map(obj, type);
2548 if (!ptr) {
2549 ret = -ENOMEM;
1233e2db 2550 goto err_unpin;
d31d7cb1
CW
2551 }
2552
a4f5ea64 2553 obj->mm.mapping = ptr_pack_bits(ptr, type);
d31d7cb1
CW
2554 }
2555
1233e2db
CW
2556out_unlock:
2557 mutex_unlock(&obj->mm.lock);
d31d7cb1
CW
2558 return ptr;
2559
1233e2db
CW
2560err_unpin:
2561 atomic_dec(&obj->mm.pages_pin_count);
2562err_unlock:
2563 ptr = ERR_PTR(ret);
2564 goto out_unlock;
0a798eb9
CW
2565}
2566
6095868a 2567static bool ban_context(const struct i915_gem_context *ctx)
be62acb4 2568{
6095868a
CW
2569 return (i915_gem_context_is_bannable(ctx) &&
2570 ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
be62acb4
MK
2571}
2572
e5e1fc47 2573static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
aa60c664 2574{
bc1d53c6 2575 ctx->guilty_count++;
6095868a
CW
2576 ctx->ban_score += CONTEXT_SCORE_GUILTY;
2577 if (ban_context(ctx))
2578 i915_gem_context_set_banned(ctx);
b083a087
MK
2579
2580 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
bc1d53c6 2581 ctx->name, ctx->ban_score,
6095868a 2582 yesno(i915_gem_context_is_banned(ctx)));
b083a087 2583
6095868a 2584 if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
b083a087
MK
2585 return;
2586
d9e9da64
CW
2587 ctx->file_priv->context_bans++;
2588 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2589 ctx->name, ctx->file_priv->context_bans);
e5e1fc47
MK
2590}
2591
2592static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2593{
bc1d53c6 2594 ctx->active_count++;
aa60c664
MK
2595}
2596
8d9fc7fd 2597struct drm_i915_gem_request *
0bc40be8 2598i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2599{
4db080f9
CW
2600 struct drm_i915_gem_request *request;
2601
f69a02c9
CW
2602 /* We are called by the error capture and reset at a random
2603 * point in time. In particular, note that neither is crucially
2604 * ordered with an interrupt. After a hang, the GPU is dead and we
2605 * assume that no more writes can happen (we waited long enough for
2606 * all writes that were in transaction to be flushed) - adding an
2607 * extra delay for a recent interrupt is pointless. Hence, we do
2608 * not need an engine->irq_seqno_barrier() before the seqno reads.
2609 */
73cb9701 2610 list_for_each_entry(request, &engine->timeline->requests, link) {
80b204bc 2611 if (__i915_gem_request_completed(request))
4db080f9 2612 continue;
aa60c664 2613
36193acd 2614 GEM_BUG_ON(request->engine != engine);
c00122f3
CW
2615 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2616 &request->fence.flags));
b6b0fac0 2617 return request;
4db080f9 2618 }
b6b0fac0
MK
2619
2620 return NULL;
2621}
2622
bf2f0436
MK
2623static bool engine_stalled(struct intel_engine_cs *engine)
2624{
2625 if (!engine->hangcheck.stalled)
2626 return false;
2627
2628 /* Check for possible seqno movement after hang declaration */
2629 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2630 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2631 return false;
2632 }
2633
2634 return true;
2635}
2636
0e178aef 2637int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
4c965543
CW
2638{
2639 struct intel_engine_cs *engine;
2640 enum intel_engine_id id;
0e178aef 2641 int err = 0;
4c965543
CW
2642
2643 /* Ensure irq handler finishes, and not run again. */
0e178aef
CW
2644 for_each_engine(engine, dev_priv, id) {
2645 struct drm_i915_gem_request *request;
2646
fe3288b5
CW
2647 /* Prevent the signaler thread from updating the request
2648 * state (by calling dma_fence_signal) as we are processing
2649 * the reset. The write from the GPU of the seqno is
2650 * asynchronous and the signaler thread may see a different
2651 * value to us and declare the request complete, even though
2652 * the reset routine have picked that request as the active
2653 * (incomplete) request. This conflict is not handled
2654 * gracefully!
2655 */
2656 kthread_park(engine->breadcrumbs.signaler);
2657
1f7b847d
CW
2658 /* Prevent request submission to the hardware until we have
2659 * completed the reset in i915_gem_reset_finish(). If a request
2660 * is completed by one engine, it may then queue a request
2661 * to a second via its engine->irq_tasklet *just* as we are
2662 * calling engine->init_hw() and also writing the ELSP.
2663 * Turning off the engine->irq_tasklet until the reset is over
2664 * prevents the race.
2665 */
4c965543 2666 tasklet_kill(&engine->irq_tasklet);
1d309634 2667 tasklet_disable(&engine->irq_tasklet);
4c965543 2668
8c12d121
CW
2669 if (engine->irq_seqno_barrier)
2670 engine->irq_seqno_barrier(engine);
2671
0e178aef
CW
2672 if (engine_stalled(engine)) {
2673 request = i915_gem_find_active_request(engine);
2674 if (request && request->fence.error == -EIO)
2675 err = -EIO; /* Previous reset failed! */
2676 }
2677 }
2678
4c965543 2679 i915_gem_revoke_fences(dev_priv);
0e178aef
CW
2680
2681 return err;
4c965543
CW
2682}
2683
36193acd 2684static void skip_request(struct drm_i915_gem_request *request)
821ed7df
CW
2685{
2686 void *vaddr = request->ring->vaddr;
2687 u32 head;
2688
2689 /* As this request likely depends on state from the lost
2690 * context, clear out all the user operations leaving the
2691 * breadcrumb at the end (so we get the fence notifications).
2692 */
2693 head = request->head;
2694 if (request->postfix < head) {
2695 memset(vaddr + head, 0, request->ring->size - head);
2696 head = 0;
2697 }
2698 memset(vaddr + head, 0, request->postfix - head);
c0d5f32c
CW
2699
2700 dma_fence_set_error(&request->fence, -EIO);
821ed7df
CW
2701}
2702
36193acd
MK
2703static void engine_skip_context(struct drm_i915_gem_request *request)
2704{
2705 struct intel_engine_cs *engine = request->engine;
2706 struct i915_gem_context *hung_ctx = request->ctx;
2707 struct intel_timeline *timeline;
2708 unsigned long flags;
2709
2710 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2711
2712 spin_lock_irqsave(&engine->timeline->lock, flags);
2713 spin_lock(&timeline->lock);
2714
2715 list_for_each_entry_continue(request, &engine->timeline->requests, link)
2716 if (request->ctx == hung_ctx)
2717 skip_request(request);
2718
2719 list_for_each_entry(request, &timeline->requests, link)
2720 skip_request(request);
2721
2722 spin_unlock(&timeline->lock);
2723 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2724}
2725
61da5362
MK
2726/* Returns true if the request was guilty of hang */
2727static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
2728{
2729 /* Read once and return the resolution */
2730 const bool guilty = engine_stalled(request->engine);
2731
71895a08
MK
2732 /* The guilty request will get skipped on a hung engine.
2733 *
2734 * Users of client default contexts do not rely on logical
2735 * state preserved between batches so it is safe to execute
2736 * queued requests following the hang. Non default contexts
2737 * rely on preserved state, so skipping a batch loses the
2738 * evolution of the state and it needs to be considered corrupted.
2739 * Executing more queued batches on top of corrupted state is
2740 * risky. But we take the risk by trying to advance through
2741 * the queued requests in order to make the client behaviour
2742 * more predictable around resets, by not throwing away random
2743 * amount of batches it has prepared for execution. Sophisticated
2744 * clients can use gem_reset_stats_ioctl and dma fence status
2745 * (exported via sync_file info ioctl on explicit fences) to observe
2746 * when it loses the context state and should rebuild accordingly.
2747 *
2748 * The context ban, and ultimately the client ban, mechanism are safety
2749 * valves if client submission ends up resulting in nothing more than
2750 * subsequent hangs.
2751 */
2752
61da5362
MK
2753 if (guilty) {
2754 i915_gem_context_mark_guilty(request->ctx);
2755 skip_request(request);
2756 } else {
2757 i915_gem_context_mark_innocent(request->ctx);
2758 dma_fence_set_error(&request->fence, -EAGAIN);
2759 }
2760
2761 return guilty;
2762}
2763
821ed7df 2764static void i915_gem_reset_engine(struct intel_engine_cs *engine)
b6b0fac0
MK
2765{
2766 struct drm_i915_gem_request *request;
b6b0fac0 2767
0bc40be8 2768 request = i915_gem_find_active_request(engine);
c0dcb203
CW
2769 if (request && i915_gem_reset_request(request)) {
2770 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2771 engine->name, request->global_seqno);
821ed7df 2772
c0dcb203
CW
2773 /* If this context is now banned, skip all pending requests. */
2774 if (i915_gem_context_is_banned(request->ctx))
2775 engine_skip_context(request);
2776 }
821ed7df
CW
2777
2778 /* Setup the CS to resume from the breadcrumb of the hung request */
2779 engine->reset_hw(engine, request);
4db080f9 2780}
aa60c664 2781
d8027093 2782void i915_gem_reset(struct drm_i915_private *dev_priv)
4db080f9 2783{
821ed7df 2784 struct intel_engine_cs *engine;
3b3f1650 2785 enum intel_engine_id id;
608c1a52 2786
4c7d62c6
CW
2787 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2788
821ed7df
CW
2789 i915_gem_retire_requests(dev_priv);
2790
2ae55738
CW
2791 for_each_engine(engine, dev_priv, id) {
2792 struct i915_gem_context *ctx;
2793
821ed7df 2794 i915_gem_reset_engine(engine);
2ae55738
CW
2795 ctx = fetch_and_zero(&engine->last_retired_context);
2796 if (ctx)
2797 engine->context_unpin(engine, ctx);
2798 }
821ed7df 2799
4362f4f6 2800 i915_gem_restore_fences(dev_priv);
f2a91d1a
CW
2801
2802 if (dev_priv->gt.awake) {
2803 intel_sanitize_gt_powersave(dev_priv);
2804 intel_enable_gt_powersave(dev_priv);
2805 if (INTEL_GEN(dev_priv) >= 6)
2806 gen6_rps_busy(dev_priv);
2807 }
821ed7df
CW
2808}
2809
d8027093
CW
2810void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
2811{
1f7b847d
CW
2812 struct intel_engine_cs *engine;
2813 enum intel_engine_id id;
2814
d8027093 2815 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1f7b847d 2816
fe3288b5 2817 for_each_engine(engine, dev_priv, id) {
1f7b847d 2818 tasklet_enable(&engine->irq_tasklet);
fe3288b5
CW
2819 kthread_unpark(engine->breadcrumbs.signaler);
2820 }
d8027093
CW
2821}
2822
821ed7df
CW
2823static void nop_submit_request(struct drm_i915_gem_request *request)
2824{
3cd9442f 2825 dma_fence_set_error(&request->fence, -EIO);
3dcf93f7
CW
2826 i915_gem_request_submit(request);
2827 intel_engine_init_global_seqno(request->engine, request->global_seqno);
821ed7df
CW
2828}
2829
2a20d6f8 2830static void engine_set_wedged(struct intel_engine_cs *engine)
821ed7df 2831{
3cd9442f
CW
2832 struct drm_i915_gem_request *request;
2833 unsigned long flags;
2834
20e4933c
CW
2835 /* We need to be sure that no thread is running the old callback as
2836 * we install the nop handler (otherwise we would submit a request
2837 * to hardware that will never complete). In order to prevent this
2838 * race, we wait until the machine is idle before making the swap
2839 * (using stop_machine()).
2840 */
821ed7df 2841 engine->submit_request = nop_submit_request;
70c2a24d 2842
3cd9442f
CW
2843 /* Mark all executing requests as skipped */
2844 spin_lock_irqsave(&engine->timeline->lock, flags);
2845 list_for_each_entry(request, &engine->timeline->requests, link)
2846 dma_fence_set_error(&request->fence, -EIO);
2847 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2848
c4b0930b
CW
2849 /* Mark all pending requests as complete so that any concurrent
2850 * (lockless) lookup doesn't try and wait upon the request as we
2851 * reset it.
2852 */
73cb9701 2853 intel_engine_init_global_seqno(engine,
cb399eab 2854 intel_engine_last_submit(engine));
c4b0930b 2855
dcb4c12a
OM
2856 /*
2857 * Clear the execlists queue up before freeing the requests, as those
2858 * are the ones that keep the context and ringbuffer backing objects
2859 * pinned in place.
2860 */
dcb4c12a 2861
7de1691a 2862 if (i915.enable_execlists) {
663f71e7
CW
2863 unsigned long flags;
2864
2865 spin_lock_irqsave(&engine->timeline->lock, flags);
2866
70c2a24d
CW
2867 i915_gem_request_put(engine->execlist_port[0].request);
2868 i915_gem_request_put(engine->execlist_port[1].request);
2869 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
20311bd3
CW
2870 engine->execlist_queue = RB_ROOT;
2871 engine->execlist_first = NULL;
663f71e7
CW
2872
2873 spin_unlock_irqrestore(&engine->timeline->lock, flags);
dcb4c12a 2874 }
673a394b
EA
2875}
2876
20e4933c 2877static int __i915_gem_set_wedged_BKL(void *data)
673a394b 2878{
20e4933c 2879 struct drm_i915_private *i915 = data;
e2f80391 2880 struct intel_engine_cs *engine;
3b3f1650 2881 enum intel_engine_id id;
673a394b 2882
20e4933c 2883 for_each_engine(engine, i915, id)
2a20d6f8 2884 engine_set_wedged(engine);
20e4933c
CW
2885
2886 return 0;
2887}
2888
2889void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2890{
821ed7df
CW
2891 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2892 set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
4db080f9 2893
20e4933c 2894 stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
dfaae392 2895
20e4933c 2896 i915_gem_context_lost(dev_priv);
821ed7df 2897 i915_gem_retire_requests(dev_priv);
20e4933c
CW
2898
2899 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
673a394b
EA
2900}
2901
75ef9da2 2902static void
673a394b
EA
2903i915_gem_retire_work_handler(struct work_struct *work)
2904{
b29c19b6 2905 struct drm_i915_private *dev_priv =
67d97da3 2906 container_of(work, typeof(*dev_priv), gt.retire_work.work);
91c8a326 2907 struct drm_device *dev = &dev_priv->drm;
673a394b 2908
891b48cf 2909 /* Come back later if the device is busy... */
b29c19b6 2910 if (mutex_trylock(&dev->struct_mutex)) {
67d97da3 2911 i915_gem_retire_requests(dev_priv);
b29c19b6 2912 mutex_unlock(&dev->struct_mutex);
673a394b 2913 }
67d97da3
CW
2914
2915 /* Keep the retire handler running until we are finally idle.
2916 * We do not need to do this test under locking as in the worst-case
2917 * we queue the retire worker once too often.
2918 */
c9615613
CW
2919 if (READ_ONCE(dev_priv->gt.awake)) {
2920 i915_queue_hangcheck(dev_priv);
67d97da3
CW
2921 queue_delayed_work(dev_priv->wq,
2922 &dev_priv->gt.retire_work,
bcb45086 2923 round_jiffies_up_relative(HZ));
c9615613 2924 }
b29c19b6 2925}
0a58705b 2926
b29c19b6
CW
2927static void
2928i915_gem_idle_work_handler(struct work_struct *work)
2929{
2930 struct drm_i915_private *dev_priv =
67d97da3 2931 container_of(work, typeof(*dev_priv), gt.idle_work.work);
91c8a326 2932 struct drm_device *dev = &dev_priv->drm;
b4ac5afc 2933 struct intel_engine_cs *engine;
3b3f1650 2934 enum intel_engine_id id;
67d97da3
CW
2935 bool rearm_hangcheck;
2936
2937 if (!READ_ONCE(dev_priv->gt.awake))
2938 return;
2939
0cb5670b
ID
2940 /*
2941 * Wait for last execlists context complete, but bail out in case a
2942 * new request is submitted.
2943 */
2944 wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
2945 intel_execlists_idle(dev_priv), 10);
2946
28176ef4 2947 if (READ_ONCE(dev_priv->gt.active_requests))
67d97da3
CW
2948 return;
2949
2950 rearm_hangcheck =
2951 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2952
2953 if (!mutex_trylock(&dev->struct_mutex)) {
2954 /* Currently busy, come back later */
2955 mod_delayed_work(dev_priv->wq,
2956 &dev_priv->gt.idle_work,
2957 msecs_to_jiffies(50));
2958 goto out_rearm;
2959 }
2960
93c97dc1
ID
2961 /*
2962 * New request retired after this work handler started, extend active
2963 * period until next instance of the work.
2964 */
2965 if (work_pending(work))
2966 goto out_unlock;
2967
28176ef4 2968 if (dev_priv->gt.active_requests)
67d97da3 2969 goto out_unlock;
b29c19b6 2970
0cb5670b
ID
2971 if (wait_for(intel_execlists_idle(dev_priv), 10))
2972 DRM_ERROR("Timeout waiting for engines to idle\n");
2973
3b3f1650 2974 for_each_engine(engine, dev_priv, id)
67d97da3 2975 i915_gem_batch_pool_fini(&engine->batch_pool);
35c94185 2976
67d97da3
CW
2977 GEM_BUG_ON(!dev_priv->gt.awake);
2978 dev_priv->gt.awake = false;
2979 rearm_hangcheck = false;
30ecad77 2980
67d97da3
CW
2981 if (INTEL_GEN(dev_priv) >= 6)
2982 gen6_rps_idle(dev_priv);
2983 intel_runtime_pm_put(dev_priv);
2984out_unlock:
2985 mutex_unlock(&dev->struct_mutex);
b29c19b6 2986
67d97da3
CW
2987out_rearm:
2988 if (rearm_hangcheck) {
2989 GEM_BUG_ON(!dev_priv->gt.awake);
2990 i915_queue_hangcheck(dev_priv);
35c94185 2991 }
673a394b
EA
2992}
2993
b1f788c6
CW
2994void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2995{
2996 struct drm_i915_gem_object *obj = to_intel_bo(gem);
2997 struct drm_i915_file_private *fpriv = file->driver_priv;
2998 struct i915_vma *vma, *vn;
2999
3000 mutex_lock(&obj->base.dev->struct_mutex);
3001 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
3002 if (vma->vm->file == fpriv)
3003 i915_vma_close(vma);
f8a7fde4
CW
3004
3005 if (i915_gem_object_is_active(obj) &&
3006 !i915_gem_object_has_active_reference(obj)) {
3007 i915_gem_object_set_active_reference(obj);
3008 i915_gem_object_get(obj);
3009 }
b1f788c6
CW
3010 mutex_unlock(&obj->base.dev->struct_mutex);
3011}
3012
e95433c7
CW
3013static unsigned long to_wait_timeout(s64 timeout_ns)
3014{
3015 if (timeout_ns < 0)
3016 return MAX_SCHEDULE_TIMEOUT;
3017
3018 if (timeout_ns == 0)
3019 return 0;
3020
3021 return nsecs_to_jiffies_timeout(timeout_ns);
3022}
3023
23ba4fd0
BW
3024/**
3025 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
3026 * @dev: drm device pointer
3027 * @data: ioctl data blob
3028 * @file: drm file pointer
23ba4fd0
BW
3029 *
3030 * Returns 0 if successful, else an error is returned with the remaining time in
3031 * the timeout parameter.
3032 * -ETIME: object is still busy after timeout
3033 * -ERESTARTSYS: signal interrupted the wait
3034 * -ENONENT: object doesn't exist
3035 * Also possible, but rare:
3036 * -EAGAIN: GPU wedged
3037 * -ENOMEM: damn
3038 * -ENODEV: Internal IRQ fail
3039 * -E?: The add request failed
3040 *
3041 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3042 * non-zero timeout parameter the wait ioctl will wait for the given number of
3043 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3044 * without holding struct_mutex the object may become re-busied before this
3045 * function completes. A similar but shorter * race condition exists in the busy
3046 * ioctl
3047 */
3048int
3049i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3050{
3051 struct drm_i915_gem_wait *args = data;
3052 struct drm_i915_gem_object *obj;
e95433c7
CW
3053 ktime_t start;
3054 long ret;
23ba4fd0 3055
11b5d511
DV
3056 if (args->flags != 0)
3057 return -EINVAL;
3058
03ac0642 3059 obj = i915_gem_object_lookup(file, args->bo_handle);
033d549b 3060 if (!obj)
23ba4fd0 3061 return -ENOENT;
23ba4fd0 3062
e95433c7
CW
3063 start = ktime_get();
3064
3065 ret = i915_gem_object_wait(obj,
3066 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3067 to_wait_timeout(args->timeout_ns),
3068 to_rps_client(file));
3069
3070 if (args->timeout_ns > 0) {
3071 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3072 if (args->timeout_ns < 0)
3073 args->timeout_ns = 0;
b4716185
CW
3074 }
3075
f0cd5182 3076 i915_gem_object_put(obj);
ff865885 3077 return ret;
23ba4fd0
BW
3078}
3079
73cb9701 3080static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
4df2faf4 3081{
73cb9701 3082 int ret, i;
4df2faf4 3083
73cb9701
CW
3084 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3085 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3086 if (ret)
3087 return ret;
3088 }
62e63007 3089
73cb9701
CW
3090 return 0;
3091}
3092
3093int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3094{
73cb9701
CW
3095 int ret;
3096
9caa34aa
CW
3097 if (flags & I915_WAIT_LOCKED) {
3098 struct i915_gem_timeline *tl;
3099
3100 lockdep_assert_held(&i915->drm.struct_mutex);
3101
3102 list_for_each_entry(tl, &i915->gt.timelines, link) {
3103 ret = wait_for_timeline(tl, flags);
3104 if (ret)
3105 return ret;
3106 }
3107 } else {
3108 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
1ec14ad3
CW
3109 if (ret)
3110 return ret;
3111 }
4df2faf4 3112
8a1a49f9 3113 return 0;
4df2faf4
DV
3114}
3115
d0da48cf
CW
3116void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3117 bool force)
673a394b 3118{
673a394b
EA
3119 /* If we don't have a page list set up, then we're not pinned
3120 * to GPU, and we can ignore the cache flush because it'll happen
3121 * again at bind time.
3122 */
a4f5ea64 3123 if (!obj->mm.pages)
d0da48cf 3124 return;
673a394b 3125
769ce464
ID
3126 /*
3127 * Stolen memory is always coherent with the GPU as it is explicitly
3128 * marked as wc by the system, or the system is cache-coherent.
3129 */
6a2c4232 3130 if (obj->stolen || obj->phys_handle)
d0da48cf 3131 return;
769ce464 3132
9c23f7fc
CW
3133 /* If the GPU is snooping the contents of the CPU cache,
3134 * we do not need to manually clear the CPU cache lines. However,
3135 * the caches are only snooped when the render cache is
3136 * flushed/invalidated. As we always have to emit invalidations
3137 * and flushes when moving into and out of the RENDER domain, correct
3138 * snooping behaviour occurs naturally as the result of our domain
3139 * tracking.
3140 */
0f71979a
CW
3141 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3142 obj->cache_dirty = true;
d0da48cf 3143 return;
0f71979a 3144 }
9c23f7fc 3145
1c5d22f7 3146 trace_i915_gem_object_clflush(obj);
a4f5ea64 3147 drm_clflush_sg(obj->mm.pages);
0f71979a 3148 obj->cache_dirty = false;
e47c68e9
EA
3149}
3150
3151/** Flushes the GTT write domain for the object if it's dirty. */
3152static void
05394f39 3153i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3154{
3b5724d7 3155 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1c5d22f7 3156
05394f39 3157 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3158 return;
3159
63256ec5 3160 /* No actual flushing is required for the GTT write domain. Writes
3b5724d7 3161 * to it "immediately" go to main memory as far as we know, so there's
e47c68e9 3162 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3163 *
3164 * However, we do have to enforce the order so that all writes through
3165 * the GTT land before any writes to the device, such as updates to
3166 * the GATT itself.
3b5724d7
CW
3167 *
3168 * We also have to wait a bit for the writes to land from the GTT.
3169 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3170 * timing. This issue has only been observed when switching quickly
3171 * between GTT writes and CPU reads from inside the kernel on recent hw,
3172 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3173 * system agents we cannot reproduce this behaviour).
e47c68e9 3174 */
63256ec5 3175 wmb();
3b5724d7 3176 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3b3f1650 3177 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
63256ec5 3178
d243ad82 3179 intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
f99d7069 3180
b0dc465f 3181 obj->base.write_domain = 0;
1c5d22f7 3182 trace_i915_gem_object_change_domain(obj,
05394f39 3183 obj->base.read_domains,
b0dc465f 3184 I915_GEM_DOMAIN_GTT);
e47c68e9
EA
3185}
3186
3187/** Flushes the CPU write domain for the object if it's dirty. */
3188static void
e62b59e4 3189i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3190{
05394f39 3191 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3192 return;
3193
d0da48cf 3194 i915_gem_clflush_object(obj, obj->pin_display);
de152b62 3195 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3196
b0dc465f 3197 obj->base.write_domain = 0;
1c5d22f7 3198 trace_i915_gem_object_change_domain(obj,
05394f39 3199 obj->base.read_domains,
b0dc465f 3200 I915_GEM_DOMAIN_CPU);
e47c68e9
EA
3201}
3202
2ef7eeaa
EA
3203/**
3204 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3205 * @obj: object to act on
3206 * @write: ask for write access or read only
2ef7eeaa
EA
3207 *
3208 * This function returns when the move is complete, including waiting on
3209 * flushes to occur.
3210 */
79e53945 3211int
2021746e 3212i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3213{
1c5d22f7 3214 uint32_t old_write_domain, old_read_domains;
e47c68e9 3215 int ret;
2ef7eeaa 3216
e95433c7 3217 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3218
e95433c7
CW
3219 ret = i915_gem_object_wait(obj,
3220 I915_WAIT_INTERRUPTIBLE |
3221 I915_WAIT_LOCKED |
3222 (write ? I915_WAIT_ALL : 0),
3223 MAX_SCHEDULE_TIMEOUT,
3224 NULL);
88241785
CW
3225 if (ret)
3226 return ret;
3227
c13d87ea
CW
3228 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3229 return 0;
3230
43566ded
CW
3231 /* Flush and acquire obj->pages so that we are coherent through
3232 * direct access in memory with previous cached writes through
3233 * shmemfs and that our cache domain tracking remains valid.
3234 * For example, if the obj->filp was moved to swap without us
3235 * being notified and releasing the pages, we would mistakenly
3236 * continue to assume that the obj remained out of the CPU cached
3237 * domain.
3238 */
a4f5ea64 3239 ret = i915_gem_object_pin_pages(obj);
43566ded
CW
3240 if (ret)
3241 return ret;
3242
e62b59e4 3243 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3244
d0a57789
CW
3245 /* Serialise direct access to this object with the barriers for
3246 * coherent writes from the GPU, by effectively invalidating the
3247 * GTT domain upon first access.
3248 */
3249 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3250 mb();
3251
05394f39
CW
3252 old_write_domain = obj->base.write_domain;
3253 old_read_domains = obj->base.read_domains;
1c5d22f7 3254
e47c68e9
EA
3255 /* It should now be out of any other write domains, and we can update
3256 * the domain values for our changes.
3257 */
40e62d5d 3258 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 3259 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3260 if (write) {
05394f39
CW
3261 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3262 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
a4f5ea64 3263 obj->mm.dirty = true;
2ef7eeaa
EA
3264 }
3265
1c5d22f7
CW
3266 trace_i915_gem_object_change_domain(obj,
3267 old_read_domains,
3268 old_write_domain);
3269
a4f5ea64 3270 i915_gem_object_unpin_pages(obj);
e47c68e9
EA
3271 return 0;
3272}
3273
ef55f92a
CW
3274/**
3275 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
3276 * @obj: object to act on
3277 * @cache_level: new cache level to set for the object
ef55f92a
CW
3278 *
3279 * After this function returns, the object will be in the new cache-level
3280 * across all GTT and the contents of the backing storage will be coherent,
3281 * with respect to the new cache-level. In order to keep the backing storage
3282 * coherent for all users, we only allow a single cache level to be set
3283 * globally on the object and prevent it from being changed whilst the
3284 * hardware is reading from the object. That is if the object is currently
3285 * on the scanout it will be set to uncached (or equivalent display
3286 * cache coherency) and all non-MOCS GPU access will also be uncached so
3287 * that all direct access to the scanout remains coherent.
3288 */
e4ffd173
CW
3289int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3290 enum i915_cache_level cache_level)
3291{
aa653a68 3292 struct i915_vma *vma;
a6a7cc4b 3293 int ret;
e4ffd173 3294
4c7d62c6
CW
3295 lockdep_assert_held(&obj->base.dev->struct_mutex);
3296
e4ffd173 3297 if (obj->cache_level == cache_level)
a6a7cc4b 3298 return 0;
e4ffd173 3299
ef55f92a
CW
3300 /* Inspect the list of currently bound VMA and unbind any that would
3301 * be invalid given the new cache-level. This is principally to
3302 * catch the issue of the CS prefetch crossing page boundaries and
3303 * reading an invalid PTE on older architectures.
3304 */
aa653a68
CW
3305restart:
3306 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3307 if (!drm_mm_node_allocated(&vma->node))
3308 continue;
3309
20dfbde4 3310 if (i915_vma_is_pinned(vma)) {
ef55f92a
CW
3311 DRM_DEBUG("can not change the cache level of pinned objects\n");
3312 return -EBUSY;
3313 }
3314
aa653a68
CW
3315 if (i915_gem_valid_gtt_space(vma, cache_level))
3316 continue;
3317
3318 ret = i915_vma_unbind(vma);
3319 if (ret)
3320 return ret;
3321
3322 /* As unbinding may affect other elements in the
3323 * obj->vma_list (due to side-effects from retiring
3324 * an active vma), play safe and restart the iterator.
3325 */
3326 goto restart;
42d6ab48
CW
3327 }
3328
ef55f92a
CW
3329 /* We can reuse the existing drm_mm nodes but need to change the
3330 * cache-level on the PTE. We could simply unbind them all and
3331 * rebind with the correct cache-level on next use. However since
3332 * we already have a valid slot, dma mapping, pages etc, we may as
3333 * rewrite the PTE in the belief that doing so tramples upon less
3334 * state and so involves less work.
3335 */
15717de2 3336 if (obj->bind_count) {
ef55f92a
CW
3337 /* Before we change the PTE, the GPU must not be accessing it.
3338 * If we wait upon the object, we know that all the bound
3339 * VMA are no longer active.
3340 */
e95433c7
CW
3341 ret = i915_gem_object_wait(obj,
3342 I915_WAIT_INTERRUPTIBLE |
3343 I915_WAIT_LOCKED |
3344 I915_WAIT_ALL,
3345 MAX_SCHEDULE_TIMEOUT,
3346 NULL);
e4ffd173
CW
3347 if (ret)
3348 return ret;
3349
0031fb96
TU
3350 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3351 cache_level != I915_CACHE_NONE) {
ef55f92a
CW
3352 /* Access to snoopable pages through the GTT is
3353 * incoherent and on some machines causes a hard
3354 * lockup. Relinquish the CPU mmaping to force
3355 * userspace to refault in the pages and we can
3356 * then double check if the GTT mapping is still
3357 * valid for that pointer access.
3358 */
3359 i915_gem_release_mmap(obj);
3360
3361 /* As we no longer need a fence for GTT access,
3362 * we can relinquish it now (and so prevent having
3363 * to steal a fence from someone else on the next
3364 * fence request). Note GPU activity would have
3365 * dropped the fence as all snoopable access is
3366 * supposed to be linear.
3367 */
49ef5294
CW
3368 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3369 ret = i915_vma_put_fence(vma);
3370 if (ret)
3371 return ret;
3372 }
ef55f92a
CW
3373 } else {
3374 /* We either have incoherent backing store and
3375 * so no GTT access or the architecture is fully
3376 * coherent. In such cases, existing GTT mmaps
3377 * ignore the cache bit in the PTE and we can
3378 * rewrite it without confusing the GPU or having
3379 * to force userspace to fault back in its mmaps.
3380 */
e4ffd173
CW
3381 }
3382
1c7f4bca 3383 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3384 if (!drm_mm_node_allocated(&vma->node))
3385 continue;
3386
3387 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3388 if (ret)
3389 return ret;
3390 }
e4ffd173
CW
3391 }
3392
a6a7cc4b
CW
3393 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3394 cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3395 obj->cache_dirty = true;
3396
1c7f4bca 3397 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
3398 vma->node.color = cache_level;
3399 obj->cache_level = cache_level;
3400
e4ffd173
CW
3401 return 0;
3402}
3403
199adf40
BW
3404int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3405 struct drm_file *file)
e6994aee 3406{
199adf40 3407 struct drm_i915_gem_caching *args = data;
e6994aee 3408 struct drm_i915_gem_object *obj;
fbbd37b3 3409 int err = 0;
e6994aee 3410
fbbd37b3
CW
3411 rcu_read_lock();
3412 obj = i915_gem_object_lookup_rcu(file, args->handle);
3413 if (!obj) {
3414 err = -ENOENT;
3415 goto out;
3416 }
e6994aee 3417
651d794f
CW
3418 switch (obj->cache_level) {
3419 case I915_CACHE_LLC:
3420 case I915_CACHE_L3_LLC:
3421 args->caching = I915_CACHING_CACHED;
3422 break;
3423
4257d3ba
CW
3424 case I915_CACHE_WT:
3425 args->caching = I915_CACHING_DISPLAY;
3426 break;
3427
651d794f
CW
3428 default:
3429 args->caching = I915_CACHING_NONE;
3430 break;
3431 }
fbbd37b3
CW
3432out:
3433 rcu_read_unlock();
3434 return err;
e6994aee
CW
3435}
3436
199adf40
BW
3437int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3438 struct drm_file *file)
e6994aee 3439{
9c870d03 3440 struct drm_i915_private *i915 = to_i915(dev);
199adf40 3441 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3442 struct drm_i915_gem_object *obj;
3443 enum i915_cache_level level;
d65415df 3444 int ret = 0;
e6994aee 3445
199adf40
BW
3446 switch (args->caching) {
3447 case I915_CACHING_NONE:
e6994aee
CW
3448 level = I915_CACHE_NONE;
3449 break;
199adf40 3450 case I915_CACHING_CACHED:
e5756c10
ID
3451 /*
3452 * Due to a HW issue on BXT A stepping, GPU stores via a
3453 * snooped mapping may leave stale data in a corresponding CPU
3454 * cacheline, whereas normally such cachelines would get
3455 * invalidated.
3456 */
9c870d03 3457 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
e5756c10
ID
3458 return -ENODEV;
3459
e6994aee
CW
3460 level = I915_CACHE_LLC;
3461 break;
4257d3ba 3462 case I915_CACHING_DISPLAY:
9c870d03 3463 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4257d3ba 3464 break;
e6994aee
CW
3465 default:
3466 return -EINVAL;
3467 }
3468
d65415df
CW
3469 obj = i915_gem_object_lookup(file, args->handle);
3470 if (!obj)
3471 return -ENOENT;
3472
3473 if (obj->cache_level == level)
3474 goto out;
3475
3476 ret = i915_gem_object_wait(obj,
3477 I915_WAIT_INTERRUPTIBLE,
3478 MAX_SCHEDULE_TIMEOUT,
3479 to_rps_client(file));
3bc2913e 3480 if (ret)
d65415df 3481 goto out;
3bc2913e 3482
d65415df
CW
3483 ret = i915_mutex_lock_interruptible(dev);
3484 if (ret)
3485 goto out;
e6994aee
CW
3486
3487 ret = i915_gem_object_set_cache_level(obj, level);
e6994aee 3488 mutex_unlock(&dev->struct_mutex);
d65415df
CW
3489
3490out:
3491 i915_gem_object_put(obj);
e6994aee
CW
3492 return ret;
3493}
3494
b9241ea3 3495/*
2da3b9b9
CW
3496 * Prepare buffer for display plane (scanout, cursors, etc).
3497 * Can be called from an uninterruptible phase (modesetting) and allows
3498 * any flushes to be pipelined (for pageflips).
b9241ea3 3499 */
058d88c4 3500struct i915_vma *
2da3b9b9
CW
3501i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3502 u32 alignment,
e6617330 3503 const struct i915_ggtt_view *view)
b9241ea3 3504{
058d88c4 3505 struct i915_vma *vma;
2da3b9b9 3506 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3507 int ret;
3508
4c7d62c6
CW
3509 lockdep_assert_held(&obj->base.dev->struct_mutex);
3510
cc98b413
CW
3511 /* Mark the pin_display early so that we account for the
3512 * display coherency whilst setting up the cache domains.
3513 */
8a0c39b1 3514 obj->pin_display++;
cc98b413 3515
a7ef0640
EA
3516 /* The display engine is not coherent with the LLC cache on gen6. As
3517 * a result, we make sure that the pinning that is about to occur is
3518 * done with uncached PTEs. This is lowest common denominator for all
3519 * chipsets.
3520 *
3521 * However for gen6+, we could do better by using the GFDT bit instead
3522 * of uncaching, which would allow us to flush all the LLC-cached data
3523 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3524 */
651d794f 3525 ret = i915_gem_object_set_cache_level(obj,
8652744b
TU
3526 HAS_WT(to_i915(obj->base.dev)) ?
3527 I915_CACHE_WT : I915_CACHE_NONE);
058d88c4
CW
3528 if (ret) {
3529 vma = ERR_PTR(ret);
cc98b413 3530 goto err_unpin_display;
058d88c4 3531 }
a7ef0640 3532
2da3b9b9
CW
3533 /* As the user may map the buffer once pinned in the display plane
3534 * (e.g. libkms for the bootup splash), we have to ensure that we
2efb813d
CW
3535 * always use map_and_fenceable for all scanout buffers. However,
3536 * it may simply be too big to fit into mappable, in which case
3537 * put it anyway and hope that userspace can cope (but always first
3538 * try to preserve the existing ABI).
2da3b9b9 3539 */
2efb813d 3540 vma = ERR_PTR(-ENOSPC);
47a8e3f6 3541 if (!view || view->type == I915_GGTT_VIEW_NORMAL)
2efb813d
CW
3542 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3543 PIN_MAPPABLE | PIN_NONBLOCK);
767a222e
CW
3544 if (IS_ERR(vma)) {
3545 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3546 unsigned int flags;
3547
3548 /* Valleyview is definitely limited to scanning out the first
3549 * 512MiB. Lets presume this behaviour was inherited from the
3550 * g4x display engine and that all earlier gen are similarly
3551 * limited. Testing suggests that it is a little more
3552 * complicated than this. For example, Cherryview appears quite
3553 * happy to scanout from anywhere within its global aperture.
3554 */
3555 flags = 0;
3556 if (HAS_GMCH_DISPLAY(i915))
3557 flags = PIN_MAPPABLE;
3558 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3559 }
058d88c4 3560 if (IS_ERR(vma))
cc98b413 3561 goto err_unpin_display;
2da3b9b9 3562
d8923dcf
CW
3563 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3564
a6a7cc4b 3565 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
69aeafea 3566 if (obj->cache_dirty || obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
a6a7cc4b
CW
3567 i915_gem_clflush_object(obj, true);
3568 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
3569 }
b118c1e3 3570
2da3b9b9 3571 old_write_domain = obj->base.write_domain;
05394f39 3572 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3573
3574 /* It should now be out of any other write domains, and we can update
3575 * the domain values for our changes.
3576 */
e5f1d962 3577 obj->base.write_domain = 0;
05394f39 3578 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3579
3580 trace_i915_gem_object_change_domain(obj,
3581 old_read_domains,
2da3b9b9 3582 old_write_domain);
b9241ea3 3583
058d88c4 3584 return vma;
cc98b413
CW
3585
3586err_unpin_display:
8a0c39b1 3587 obj->pin_display--;
058d88c4 3588 return vma;
cc98b413
CW
3589}
3590
3591void
058d88c4 3592i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
cc98b413 3593{
49d73912 3594 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4c7d62c6 3595
058d88c4 3596 if (WARN_ON(vma->obj->pin_display == 0))
8a0c39b1
TU
3597 return;
3598
d8923dcf 3599 if (--vma->obj->pin_display == 0)
f51455d4 3600 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
e6617330 3601
383d5823 3602 /* Bump the LRU to try and avoid premature eviction whilst flipping */
befedbb7 3603 i915_gem_object_bump_inactive_ggtt(vma->obj);
383d5823 3604
058d88c4 3605 i915_vma_unpin(vma);
b9241ea3
ZW
3606}
3607
e47c68e9
EA
3608/**
3609 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
3610 * @obj: object to act on
3611 * @write: requesting write or read-only access
e47c68e9
EA
3612 *
3613 * This function returns when the move is complete, including waiting on
3614 * flushes to occur.
3615 */
dabdfe02 3616int
919926ae 3617i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3618{
1c5d22f7 3619 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3620 int ret;
3621
e95433c7 3622 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3623
e95433c7
CW
3624 ret = i915_gem_object_wait(obj,
3625 I915_WAIT_INTERRUPTIBLE |
3626 I915_WAIT_LOCKED |
3627 (write ? I915_WAIT_ALL : 0),
3628 MAX_SCHEDULE_TIMEOUT,
3629 NULL);
88241785
CW
3630 if (ret)
3631 return ret;
3632
c13d87ea
CW
3633 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3634 return 0;
3635
e47c68e9 3636 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3637
05394f39
CW
3638 old_write_domain = obj->base.write_domain;
3639 old_read_domains = obj->base.read_domains;
1c5d22f7 3640
e47c68e9 3641 /* Flush the CPU cache if it's still invalid. */
05394f39 3642 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3643 i915_gem_clflush_object(obj, false);
2ef7eeaa 3644
05394f39 3645 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3646 }
3647
3648 /* It should now be out of any other write domains, and we can update
3649 * the domain values for our changes.
3650 */
40e62d5d 3651 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3652
3653 /* If we're writing through the CPU, then the GPU read domains will
3654 * need to be invalidated at next use.
3655 */
3656 if (write) {
05394f39
CW
3657 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3658 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3659 }
2ef7eeaa 3660
1c5d22f7
CW
3661 trace_i915_gem_object_change_domain(obj,
3662 old_read_domains,
3663 old_write_domain);
3664
2ef7eeaa
EA
3665 return 0;
3666}
3667
673a394b
EA
3668/* Throttle our rendering by waiting until the ring has completed our requests
3669 * emitted over 20 msec ago.
3670 *
b962442e
EA
3671 * Note that if we were to use the current jiffies each time around the loop,
3672 * we wouldn't escape the function with any frames outstanding if the time to
3673 * render a frame was over 20ms.
3674 *
673a394b
EA
3675 * This should get us reasonable parallelism between CPU and GPU but also
3676 * relatively low latency when blocking on a particular request to finish.
3677 */
40a5f0de 3678static int
f787a5f5 3679i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3680{
fac5e23e 3681 struct drm_i915_private *dev_priv = to_i915(dev);
f787a5f5 3682 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 3683 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 3684 struct drm_i915_gem_request *request, *target = NULL;
e95433c7 3685 long ret;
93533c29 3686
f4457ae7
CW
3687 /* ABI: return -EIO if already wedged */
3688 if (i915_terminally_wedged(&dev_priv->gpu_error))
3689 return -EIO;
e110e8d6 3690
1c25595f 3691 spin_lock(&file_priv->mm.lock);
f787a5f5 3692 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3693 if (time_after_eq(request->emitted_jiffies, recent_enough))
3694 break;
40a5f0de 3695
fcfa423c
JH
3696 /*
3697 * Note that the request might not have been submitted yet.
3698 * In which case emitted_jiffies will be zero.
3699 */
3700 if (!request->emitted_jiffies)
3701 continue;
3702
54fb2411 3703 target = request;
b962442e 3704 }
ff865885 3705 if (target)
e8a261ea 3706 i915_gem_request_get(target);
1c25595f 3707 spin_unlock(&file_priv->mm.lock);
40a5f0de 3708
54fb2411 3709 if (target == NULL)
f787a5f5 3710 return 0;
2bc43b5c 3711
e95433c7
CW
3712 ret = i915_wait_request(target,
3713 I915_WAIT_INTERRUPTIBLE,
3714 MAX_SCHEDULE_TIMEOUT);
e8a261ea 3715 i915_gem_request_put(target);
ff865885 3716
e95433c7 3717 return ret < 0 ? ret : 0;
40a5f0de
EA
3718}
3719
058d88c4 3720struct i915_vma *
ec7adb6e
JL
3721i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3722 const struct i915_ggtt_view *view,
91b2db6f 3723 u64 size,
2ffffd0f
CW
3724 u64 alignment,
3725 u64 flags)
ec7adb6e 3726{
ad16d2ed
CW
3727 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3728 struct i915_address_space *vm = &dev_priv->ggtt.base;
59bfa124
CW
3729 struct i915_vma *vma;
3730 int ret;
72e96d64 3731
4c7d62c6
CW
3732 lockdep_assert_held(&obj->base.dev->struct_mutex);
3733
718659a6 3734 vma = i915_vma_instance(obj, vm, view);
e0216b76 3735 if (unlikely(IS_ERR(vma)))
058d88c4 3736 return vma;
59bfa124
CW
3737
3738 if (i915_vma_misplaced(vma, size, alignment, flags)) {
3739 if (flags & PIN_NONBLOCK &&
3740 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
058d88c4 3741 return ERR_PTR(-ENOSPC);
59bfa124 3742
ad16d2ed 3743 if (flags & PIN_MAPPABLE) {
ad16d2ed
CW
3744 /* If the required space is larger than the available
3745 * aperture, we will not able to find a slot for the
3746 * object and unbinding the object now will be in
3747 * vain. Worse, doing so may cause us to ping-pong
3748 * the object in and out of the Global GTT and
3749 * waste a lot of cycles under the mutex.
3750 */
944397f0 3751 if (vma->fence_size > dev_priv->ggtt.mappable_end)
ad16d2ed
CW
3752 return ERR_PTR(-E2BIG);
3753
3754 /* If NONBLOCK is set the caller is optimistically
3755 * trying to cache the full object within the mappable
3756 * aperture, and *must* have a fallback in place for
3757 * situations where we cannot bind the object. We
3758 * can be a little more lax here and use the fallback
3759 * more often to avoid costly migrations of ourselves
3760 * and other objects within the aperture.
3761 *
3762 * Half-the-aperture is used as a simple heuristic.
3763 * More interesting would to do search for a free
3764 * block prior to making the commitment to unbind.
3765 * That caters for the self-harm case, and with a
3766 * little more heuristics (e.g. NOFAULT, NOEVICT)
3767 * we could try to minimise harm to others.
3768 */
3769 if (flags & PIN_NONBLOCK &&
944397f0 3770 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
ad16d2ed
CW
3771 return ERR_PTR(-ENOSPC);
3772 }
3773
59bfa124
CW
3774 WARN(i915_vma_is_pinned(vma),
3775 "bo is already pinned in ggtt with incorrect alignment:"
05a20d09
CW
3776 " offset=%08x, req.alignment=%llx,"
3777 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3778 i915_ggtt_offset(vma), alignment,
59bfa124 3779 !!(flags & PIN_MAPPABLE),
05a20d09 3780 i915_vma_is_map_and_fenceable(vma));
59bfa124
CW
3781 ret = i915_vma_unbind(vma);
3782 if (ret)
058d88c4 3783 return ERR_PTR(ret);
59bfa124
CW
3784 }
3785
058d88c4
CW
3786 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3787 if (ret)
3788 return ERR_PTR(ret);
ec7adb6e 3789
058d88c4 3790 return vma;
673a394b
EA
3791}
3792
edf6b76f 3793static __always_inline unsigned int __busy_read_flag(unsigned int id)
3fdc13c7
CW
3794{
3795 /* Note that we could alias engines in the execbuf API, but
3796 * that would be very unwise as it prevents userspace from
3797 * fine control over engine selection. Ahem.
3798 *
3799 * This should be something like EXEC_MAX_ENGINE instead of
3800 * I915_NUM_ENGINES.
3801 */
3802 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3803 return 0x10000 << id;
3804}
3805
3806static __always_inline unsigned int __busy_write_id(unsigned int id)
3807{
70cb472c
CW
3808 /* The uABI guarantees an active writer is also amongst the read
3809 * engines. This would be true if we accessed the activity tracking
3810 * under the lock, but as we perform the lookup of the object and
3811 * its activity locklessly we can not guarantee that the last_write
3812 * being active implies that we have set the same engine flag from
3813 * last_read - hence we always set both read and write busy for
3814 * last_write.
3815 */
3816 return id | __busy_read_flag(id);
3fdc13c7
CW
3817}
3818
edf6b76f 3819static __always_inline unsigned int
d07f0e59 3820__busy_set_if_active(const struct dma_fence *fence,
3fdc13c7
CW
3821 unsigned int (*flag)(unsigned int id))
3822{
d07f0e59 3823 struct drm_i915_gem_request *rq;
3fdc13c7 3824
d07f0e59
CW
3825 /* We have to check the current hw status of the fence as the uABI
3826 * guarantees forward progress. We could rely on the idle worker
3827 * to eventually flush us, but to minimise latency just ask the
3828 * hardware.
1255501d 3829 *
d07f0e59 3830 * Note we only report on the status of native fences.
1255501d 3831 */
d07f0e59
CW
3832 if (!dma_fence_is_i915(fence))
3833 return 0;
3834
3835 /* opencode to_request() in order to avoid const warnings */
3836 rq = container_of(fence, struct drm_i915_gem_request, fence);
3837 if (i915_gem_request_completed(rq))
3838 return 0;
3839
3840 return flag(rq->engine->exec_id);
3fdc13c7
CW
3841}
3842
edf6b76f 3843static __always_inline unsigned int
d07f0e59 3844busy_check_reader(const struct dma_fence *fence)
3fdc13c7 3845{
d07f0e59 3846 return __busy_set_if_active(fence, __busy_read_flag);
3fdc13c7
CW
3847}
3848
edf6b76f 3849static __always_inline unsigned int
d07f0e59 3850busy_check_writer(const struct dma_fence *fence)
3fdc13c7 3851{
d07f0e59
CW
3852 if (!fence)
3853 return 0;
3854
3855 return __busy_set_if_active(fence, __busy_write_id);
3fdc13c7
CW
3856}
3857
673a394b
EA
3858int
3859i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3860 struct drm_file *file)
673a394b
EA
3861{
3862 struct drm_i915_gem_busy *args = data;
05394f39 3863 struct drm_i915_gem_object *obj;
d07f0e59
CW
3864 struct reservation_object_list *list;
3865 unsigned int seq;
fbbd37b3 3866 int err;
673a394b 3867
d07f0e59 3868 err = -ENOENT;
fbbd37b3
CW
3869 rcu_read_lock();
3870 obj = i915_gem_object_lookup_rcu(file, args->handle);
d07f0e59 3871 if (!obj)
fbbd37b3 3872 goto out;
d1b851fc 3873
d07f0e59
CW
3874 /* A discrepancy here is that we do not report the status of
3875 * non-i915 fences, i.e. even though we may report the object as idle,
3876 * a call to set-domain may still stall waiting for foreign rendering.
3877 * This also means that wait-ioctl may report an object as busy,
3878 * where busy-ioctl considers it idle.
3879 *
3880 * We trade the ability to warn of foreign fences to report on which
3881 * i915 engines are active for the object.
3882 *
3883 * Alternatively, we can trade that extra information on read/write
3884 * activity with
3885 * args->busy =
3886 * !reservation_object_test_signaled_rcu(obj->resv, true);
3887 * to report the overall busyness. This is what the wait-ioctl does.
3888 *
3889 */
3890retry:
3891 seq = raw_read_seqcount(&obj->resv->seq);
426960be 3892
d07f0e59
CW
3893 /* Translate the exclusive fence to the READ *and* WRITE engine */
3894 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3fdc13c7 3895
d07f0e59
CW
3896 /* Translate shared fences to READ set of engines */
3897 list = rcu_dereference(obj->resv->fence);
3898 if (list) {
3899 unsigned int shared_count = list->shared_count, i;
3fdc13c7 3900
d07f0e59
CW
3901 for (i = 0; i < shared_count; ++i) {
3902 struct dma_fence *fence =
3903 rcu_dereference(list->shared[i]);
3904
3905 args->busy |= busy_check_reader(fence);
3906 }
426960be 3907 }
673a394b 3908
d07f0e59
CW
3909 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
3910 goto retry;
3911
3912 err = 0;
fbbd37b3
CW
3913out:
3914 rcu_read_unlock();
3915 return err;
673a394b
EA
3916}
3917
3918int
3919i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3920 struct drm_file *file_priv)
3921{
0206e353 3922 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3923}
3924
3ef94daa
CW
3925int
3926i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3927 struct drm_file *file_priv)
3928{
fac5e23e 3929 struct drm_i915_private *dev_priv = to_i915(dev);
3ef94daa 3930 struct drm_i915_gem_madvise *args = data;
05394f39 3931 struct drm_i915_gem_object *obj;
1233e2db 3932 int err;
3ef94daa
CW
3933
3934 switch (args->madv) {
3935 case I915_MADV_DONTNEED:
3936 case I915_MADV_WILLNEED:
3937 break;
3938 default:
3939 return -EINVAL;
3940 }
3941
03ac0642 3942 obj = i915_gem_object_lookup(file_priv, args->handle);
1233e2db
CW
3943 if (!obj)
3944 return -ENOENT;
3945
3946 err = mutex_lock_interruptible(&obj->mm.lock);
3947 if (err)
3948 goto out;
3ef94daa 3949
a4f5ea64 3950 if (obj->mm.pages &&
3e510a8e 3951 i915_gem_object_is_tiled(obj) &&
656bfa3a 3952 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
bc0629a7
CW
3953 if (obj->mm.madv == I915_MADV_WILLNEED) {
3954 GEM_BUG_ON(!obj->mm.quirked);
a4f5ea64 3955 __i915_gem_object_unpin_pages(obj);
bc0629a7
CW
3956 obj->mm.quirked = false;
3957 }
3958 if (args->madv == I915_MADV_WILLNEED) {
2c3a3f44 3959 GEM_BUG_ON(obj->mm.quirked);
a4f5ea64 3960 __i915_gem_object_pin_pages(obj);
bc0629a7
CW
3961 obj->mm.quirked = true;
3962 }
656bfa3a
DV
3963 }
3964
a4f5ea64
CW
3965 if (obj->mm.madv != __I915_MADV_PURGED)
3966 obj->mm.madv = args->madv;
3ef94daa 3967
6c085a72 3968 /* if the object is no longer attached, discard its backing storage */
a4f5ea64 3969 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
2d7ef395
CW
3970 i915_gem_object_truncate(obj);
3971
a4f5ea64 3972 args->retained = obj->mm.madv != __I915_MADV_PURGED;
1233e2db 3973 mutex_unlock(&obj->mm.lock);
bb6baf76 3974
1233e2db 3975out:
f8c417cd 3976 i915_gem_object_put(obj);
1233e2db 3977 return err;
3ef94daa
CW
3978}
3979
5b8c8aec
CW
3980static void
3981frontbuffer_retire(struct i915_gem_active *active,
3982 struct drm_i915_gem_request *request)
3983{
3984 struct drm_i915_gem_object *obj =
3985 container_of(active, typeof(*obj), frontbuffer_write);
3986
3987 intel_fb_obj_flush(obj, true, ORIGIN_CS);
3988}
3989
37e680a1
CW
3990void i915_gem_object_init(struct drm_i915_gem_object *obj,
3991 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3992{
1233e2db
CW
3993 mutex_init(&obj->mm.lock);
3994
56cea323 3995 INIT_LIST_HEAD(&obj->global_link);
275f039d 3996 INIT_LIST_HEAD(&obj->userfault_link);
b25cb2f8 3997 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 3998 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 3999 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4000
37e680a1
CW
4001 obj->ops = ops;
4002
d07f0e59
CW
4003 reservation_object_init(&obj->__builtin_resv);
4004 obj->resv = &obj->__builtin_resv;
4005
50349247 4006 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
5b8c8aec 4007 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
a4f5ea64
CW
4008
4009 obj->mm.madv = I915_MADV_WILLNEED;
4010 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4011 mutex_init(&obj->mm.get_page.lock);
0327d6ba 4012
f19ec8cb 4013 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
0327d6ba
CW
4014}
4015
37e680a1 4016static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3599a91c
TU
4017 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4018 I915_GEM_OBJECT_IS_SHRINKABLE,
37e680a1
CW
4019 .get_pages = i915_gem_object_get_pages_gtt,
4020 .put_pages = i915_gem_object_put_pages_gtt,
4021};
4022
b4bcbe2a 4023struct drm_i915_gem_object *
12d79d78 4024i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
ac52bc56 4025{
c397b908 4026 struct drm_i915_gem_object *obj;
5949eac4 4027 struct address_space *mapping;
1a240d4d 4028 gfp_t mask;
fe3db79b 4029 int ret;
ac52bc56 4030
b4bcbe2a
CW
4031 /* There is a prevalence of the assumption that we fit the object's
4032 * page count inside a 32bit _signed_ variable. Let's document this and
4033 * catch if we ever need to fix it. In the meantime, if you do spot
4034 * such a local variable, please consider fixing!
4035 */
4036 if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
4037 return ERR_PTR(-E2BIG);
4038
4039 if (overflows_type(size, obj->base.size))
4040 return ERR_PTR(-E2BIG);
4041
187685cb 4042 obj = i915_gem_object_alloc(dev_priv);
c397b908 4043 if (obj == NULL)
fe3db79b 4044 return ERR_PTR(-ENOMEM);
673a394b 4045
12d79d78 4046 ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
fe3db79b
CW
4047 if (ret)
4048 goto fail;
673a394b 4049
bed1ea95 4050 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
c0f86832 4051 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
bed1ea95
CW
4052 /* 965gm cannot relocate objects above 4GiB. */
4053 mask &= ~__GFP_HIGHMEM;
4054 mask |= __GFP_DMA32;
4055 }
4056
93c76a3d 4057 mapping = obj->base.filp->f_mapping;
bed1ea95 4058 mapping_set_gfp_mask(mapping, mask);
5949eac4 4059
37e680a1 4060 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4061
c397b908
DV
4062 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4063 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4064
0031fb96 4065 if (HAS_LLC(dev_priv)) {
3d29b842 4066 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4067 * cache) for about a 10% performance improvement
4068 * compared to uncached. Graphics requests other than
4069 * display scanout are coherent with the CPU in
4070 * accessing this cache. This means in this mode we
4071 * don't need to clflush on the CPU side, and on the
4072 * GPU side we only need to flush internal caches to
4073 * get data visible to the CPU.
4074 *
4075 * However, we maintain the display planes as UC, and so
4076 * need to rebind when first used as such.
4077 */
4078 obj->cache_level = I915_CACHE_LLC;
4079 } else
4080 obj->cache_level = I915_CACHE_NONE;
4081
d861e338
DV
4082 trace_i915_gem_object_create(obj);
4083
05394f39 4084 return obj;
fe3db79b
CW
4085
4086fail:
4087 i915_gem_object_free(obj);
fe3db79b 4088 return ERR_PTR(ret);
c397b908
DV
4089}
4090
340fbd8c
CW
4091static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4092{
4093 /* If we are the last user of the backing storage (be it shmemfs
4094 * pages or stolen etc), we know that the pages are going to be
4095 * immediately released. In this case, we can then skip copying
4096 * back the contents from the GPU.
4097 */
4098
a4f5ea64 4099 if (obj->mm.madv != I915_MADV_WILLNEED)
340fbd8c
CW
4100 return false;
4101
4102 if (obj->base.filp == NULL)
4103 return true;
4104
4105 /* At first glance, this looks racy, but then again so would be
4106 * userspace racing mmap against close. However, the first external
4107 * reference to the filp can only be obtained through the
4108 * i915_gem_mmap_ioctl() which safeguards us against the user
4109 * acquiring such a reference whilst we are in the middle of
4110 * freeing the object.
4111 */
4112 return atomic_long_read(&obj->base.filp->f_count) == 1;
4113}
4114
fbbd37b3
CW
4115static void __i915_gem_free_objects(struct drm_i915_private *i915,
4116 struct llist_node *freed)
673a394b 4117{
fbbd37b3 4118 struct drm_i915_gem_object *obj, *on;
673a394b 4119
fbbd37b3
CW
4120 mutex_lock(&i915->drm.struct_mutex);
4121 intel_runtime_pm_get(i915);
4122 llist_for_each_entry(obj, freed, freed) {
4123 struct i915_vma *vma, *vn;
4124
4125 trace_i915_gem_object_destroy(obj);
4126
4127 GEM_BUG_ON(i915_gem_object_is_active(obj));
4128 list_for_each_entry_safe(vma, vn,
4129 &obj->vma_list, obj_link) {
4130 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4131 GEM_BUG_ON(i915_vma_is_active(vma));
4132 vma->flags &= ~I915_VMA_PIN_MASK;
4133 i915_vma_close(vma);
4134 }
db6c2b41
CW
4135 GEM_BUG_ON(!list_empty(&obj->vma_list));
4136 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
fbbd37b3 4137
56cea323 4138 list_del(&obj->global_link);
fbbd37b3
CW
4139 }
4140 intel_runtime_pm_put(i915);
4141 mutex_unlock(&i915->drm.struct_mutex);
4142
4143 llist_for_each_entry_safe(obj, on, freed, freed) {
4144 GEM_BUG_ON(obj->bind_count);
4145 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4146
4147 if (obj->ops->release)
4148 obj->ops->release(obj);
f65c9168 4149
fbbd37b3
CW
4150 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4151 atomic_set(&obj->mm.pages_pin_count, 0);
548625ee 4152 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
fbbd37b3
CW
4153 GEM_BUG_ON(obj->mm.pages);
4154
4155 if (obj->base.import_attach)
4156 drm_prime_gem_destroy(&obj->base, NULL);
4157
d07f0e59 4158 reservation_object_fini(&obj->__builtin_resv);
fbbd37b3
CW
4159 drm_gem_object_release(&obj->base);
4160 i915_gem_info_remove_obj(i915, obj->base.size);
4161
4162 kfree(obj->bit_17);
4163 i915_gem_object_free(obj);
4164 }
4165}
4166
4167static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4168{
4169 struct llist_node *freed;
4170
4171 freed = llist_del_all(&i915->mm.free_list);
4172 if (unlikely(freed))
4173 __i915_gem_free_objects(i915, freed);
4174}
4175
4176static void __i915_gem_free_work(struct work_struct *work)
4177{
4178 struct drm_i915_private *i915 =
4179 container_of(work, struct drm_i915_private, mm.free_work);
4180 struct llist_node *freed;
26e12f89 4181
b1f788c6
CW
4182 /* All file-owned VMA should have been released by this point through
4183 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4184 * However, the object may also be bound into the global GTT (e.g.
4185 * older GPUs without per-process support, or for direct access through
4186 * the GTT either for the user or for scanout). Those VMA still need to
4187 * unbound now.
4188 */
1488fc08 4189
fbbd37b3
CW
4190 while ((freed = llist_del_all(&i915->mm.free_list)))
4191 __i915_gem_free_objects(i915, freed);
4192}
a071fa00 4193
fbbd37b3
CW
4194static void __i915_gem_free_object_rcu(struct rcu_head *head)
4195{
4196 struct drm_i915_gem_object *obj =
4197 container_of(head, typeof(*obj), rcu);
4198 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4199
4200 /* We can't simply use call_rcu() from i915_gem_free_object()
4201 * as we need to block whilst unbinding, and the call_rcu
4202 * task may be called from softirq context. So we take a
4203 * detour through a worker.
4204 */
4205 if (llist_add(&obj->freed, &i915->mm.free_list))
4206 schedule_work(&i915->mm.free_work);
4207}
656bfa3a 4208
fbbd37b3
CW
4209void i915_gem_free_object(struct drm_gem_object *gem_obj)
4210{
4211 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
a4f5ea64 4212
bc0629a7
CW
4213 if (obj->mm.quirked)
4214 __i915_gem_object_unpin_pages(obj);
4215
340fbd8c 4216 if (discard_backing_storage(obj))
a4f5ea64 4217 obj->mm.madv = I915_MADV_DONTNEED;
de151cf6 4218
fbbd37b3
CW
4219 /* Before we free the object, make sure any pure RCU-only
4220 * read-side critical sections are complete, e.g.
4221 * i915_gem_busy_ioctl(). For the corresponding synchronized
4222 * lookup see i915_gem_object_lookup_rcu().
4223 */
4224 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
673a394b
EA
4225}
4226
f8a7fde4
CW
4227void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4228{
4229 lockdep_assert_held(&obj->base.dev->struct_mutex);
4230
4231 GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4232 if (i915_gem_object_is_active(obj))
4233 i915_gem_object_set_active_reference(obj);
4234 else
4235 i915_gem_object_put(obj);
4236}
4237
3033acab
CW
4238static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4239{
4240 struct intel_engine_cs *engine;
4241 enum intel_engine_id id;
4242
4243 for_each_engine(engine, dev_priv, id)
f131e356
CW
4244 GEM_BUG_ON(engine->last_retired_context &&
4245 !i915_gem_context_is_kernel(engine->last_retired_context));
3033acab
CW
4246}
4247
24145517
CW
4248void i915_gem_sanitize(struct drm_i915_private *i915)
4249{
4250 /*
4251 * If we inherit context state from the BIOS or earlier occupants
4252 * of the GPU, the GPU may be in an inconsistent state when we
4253 * try to take over. The only way to remove the earlier state
4254 * is by resetting. However, resetting on earlier gen is tricky as
4255 * it may impact the display and we are uncertain about the stability
4256 * of the reset, so we only reset recent machines with logical
4257 * context support (that must be reset to remove any stray contexts).
4258 */
4259 if (HAS_HW_CONTEXTS(i915)) {
4260 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4261 WARN_ON(reset && reset != -ENODEV);
4262 }
4263}
4264
bf9e8429 4265int i915_gem_suspend(struct drm_i915_private *dev_priv)
29105ccc 4266{
bf9e8429 4267 struct drm_device *dev = &dev_priv->drm;
dcff85c8 4268 int ret;
28dfe52a 4269
54b4f68f
CW
4270 intel_suspend_gt_powersave(dev_priv);
4271
45c5f202 4272 mutex_lock(&dev->struct_mutex);
5ab57c70
CW
4273
4274 /* We have to flush all the executing contexts to main memory so
4275 * that they can saved in the hibernation image. To ensure the last
4276 * context image is coherent, we have to switch away from it. That
4277 * leaves the dev_priv->kernel_context still active when
4278 * we actually suspend, and its image in memory may not match the GPU
4279 * state. Fortunately, the kernel_context is disposable and we do
4280 * not rely on its state.
4281 */
4282 ret = i915_gem_switch_to_kernel_context(dev_priv);
4283 if (ret)
4284 goto err;
4285
22dd3bb9
CW
4286 ret = i915_gem_wait_for_idle(dev_priv,
4287 I915_WAIT_INTERRUPTIBLE |
4288 I915_WAIT_LOCKED);
f7403347 4289 if (ret)
45c5f202 4290 goto err;
f7403347 4291
c033666a 4292 i915_gem_retire_requests(dev_priv);
28176ef4 4293 GEM_BUG_ON(dev_priv->gt.active_requests);
673a394b 4294
3033acab 4295 assert_kernel_context_is_current(dev_priv);
b2e862d0 4296 i915_gem_context_lost(dev_priv);
45c5f202
CW
4297 mutex_unlock(&dev->struct_mutex);
4298
737b1506 4299 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
67d97da3 4300 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
bdeb9785
CW
4301
4302 /* As the idle_work is rearming if it detects a race, play safe and
4303 * repeat the flush until it is definitely idle.
4304 */
4305 while (flush_delayed_work(&dev_priv->gt.idle_work))
4306 ;
4307
4308 i915_gem_drain_freed_objects(dev_priv);
29105ccc 4309
bdcf120b
CW
4310 /* Assert that we sucessfully flushed all the work and
4311 * reset the GPU back to its idle, low power state.
4312 */
67d97da3 4313 WARN_ON(dev_priv->gt.awake);
31ab49ab 4314 WARN_ON(!intel_execlists_idle(dev_priv));
bdcf120b 4315
1c777c5d
ID
4316 /*
4317 * Neither the BIOS, ourselves or any other kernel
4318 * expects the system to be in execlists mode on startup,
4319 * so we need to reset the GPU back to legacy mode. And the only
4320 * known way to disable logical contexts is through a GPU reset.
4321 *
4322 * So in order to leave the system in a known default configuration,
4323 * always reset the GPU upon unload and suspend. Afterwards we then
4324 * clean up the GEM state tracking, flushing off the requests and
4325 * leaving the system in a known idle state.
4326 *
4327 * Note that is of the upmost importance that the GPU is idle and
4328 * all stray writes are flushed *before* we dismantle the backing
4329 * storage for the pinned objects.
4330 *
4331 * However, since we are uncertain that resetting the GPU on older
4332 * machines is a good idea, we don't - just in case it leaves the
4333 * machine in an unusable condition.
4334 */
24145517 4335 i915_gem_sanitize(dev_priv);
1c777c5d 4336
673a394b 4337 return 0;
45c5f202
CW
4338
4339err:
4340 mutex_unlock(&dev->struct_mutex);
4341 return ret;
673a394b
EA
4342}
4343
bf9e8429 4344void i915_gem_resume(struct drm_i915_private *dev_priv)
5ab57c70 4345{
bf9e8429 4346 struct drm_device *dev = &dev_priv->drm;
5ab57c70 4347
31ab49ab
ID
4348 WARN_ON(dev_priv->gt.awake);
4349
5ab57c70 4350 mutex_lock(&dev->struct_mutex);
275a991c 4351 i915_gem_restore_gtt_mappings(dev_priv);
5ab57c70
CW
4352
4353 /* As we didn't flush the kernel context before suspend, we cannot
4354 * guarantee that the context image is complete. So let's just reset
4355 * it and start again.
4356 */
821ed7df 4357 dev_priv->gt.resume(dev_priv);
5ab57c70
CW
4358
4359 mutex_unlock(&dev->struct_mutex);
4360}
4361
c6be607a 4362void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
f691e2f4 4363{
c6be607a 4364 if (INTEL_GEN(dev_priv) < 5 ||
f691e2f4
DV
4365 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4366 return;
4367
4368 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4369 DISP_TILE_SURFACE_SWIZZLING);
4370
5db94019 4371 if (IS_GEN5(dev_priv))
11782b02
DV
4372 return;
4373
f691e2f4 4374 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5db94019 4375 if (IS_GEN6(dev_priv))
6b26c86d 4376 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5db94019 4377 else if (IS_GEN7(dev_priv))
6b26c86d 4378 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5db94019 4379 else if (IS_GEN8(dev_priv))
31a5336e 4380 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4381 else
4382 BUG();
f691e2f4 4383}
e21af88d 4384
50a0bc90 4385static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
81e7f200 4386{
81e7f200
VS
4387 I915_WRITE(RING_CTL(base), 0);
4388 I915_WRITE(RING_HEAD(base), 0);
4389 I915_WRITE(RING_TAIL(base), 0);
4390 I915_WRITE(RING_START(base), 0);
4391}
4392
50a0bc90 4393static void init_unused_rings(struct drm_i915_private *dev_priv)
81e7f200 4394{
50a0bc90
TU
4395 if (IS_I830(dev_priv)) {
4396 init_unused_ring(dev_priv, PRB1_BASE);
4397 init_unused_ring(dev_priv, SRB0_BASE);
4398 init_unused_ring(dev_priv, SRB1_BASE);
4399 init_unused_ring(dev_priv, SRB2_BASE);
4400 init_unused_ring(dev_priv, SRB3_BASE);
4401 } else if (IS_GEN2(dev_priv)) {
4402 init_unused_ring(dev_priv, SRB0_BASE);
4403 init_unused_ring(dev_priv, SRB1_BASE);
4404 } else if (IS_GEN3(dev_priv)) {
4405 init_unused_ring(dev_priv, PRB1_BASE);
4406 init_unused_ring(dev_priv, PRB2_BASE);
81e7f200
VS
4407 }
4408}
4409
20a8a74a 4410static int __i915_gem_restart_engines(void *data)
4fc7c971 4411{
20a8a74a 4412 struct drm_i915_private *i915 = data;
e2f80391 4413 struct intel_engine_cs *engine;
3b3f1650 4414 enum intel_engine_id id;
20a8a74a
CW
4415 int err;
4416
4417 for_each_engine(engine, i915, id) {
4418 err = engine->init_hw(engine);
4419 if (err)
4420 return err;
4421 }
4422
4423 return 0;
4424}
4425
4426int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4427{
d200cda6 4428 int ret;
4fc7c971 4429
de867c20
CW
4430 dev_priv->gt.last_init_time = ktime_get();
4431
5e4f5189
CW
4432 /* Double layer security blanket, see i915_gem_init() */
4433 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4434
0031fb96 4435 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4436 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4437
772c2a51 4438 if (IS_HASWELL(dev_priv))
50a0bc90 4439 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
0bf21347 4440 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4441
6e266956 4442 if (HAS_PCH_NOP(dev_priv)) {
fd6b8f43 4443 if (IS_IVYBRIDGE(dev_priv)) {
6ba844b0
DV
4444 u32 temp = I915_READ(GEN7_MSG_CTL);
4445 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4446 I915_WRITE(GEN7_MSG_CTL, temp);
c6be607a 4447 } else if (INTEL_GEN(dev_priv) >= 7) {
6ba844b0
DV
4448 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4449 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4450 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4451 }
88a2b2a3
BW
4452 }
4453
c6be607a 4454 i915_gem_init_swizzling(dev_priv);
4fc7c971 4455
d5abdfda
DV
4456 /*
4457 * At least 830 can leave some of the unused rings
4458 * "active" (ie. head != tail) after resume which
4459 * will prevent c3 entry. Makes sure all unused rings
4460 * are totally idle.
4461 */
50a0bc90 4462 init_unused_rings(dev_priv);
d5abdfda 4463
ed54c1a1 4464 BUG_ON(!dev_priv->kernel_context);
90638cc1 4465
c6be607a 4466 ret = i915_ppgtt_init_hw(dev_priv);
4ad2fd88
JH
4467 if (ret) {
4468 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4469 goto out;
4470 }
4471
4472 /* Need to do basic initialisation of all rings first: */
20a8a74a
CW
4473 ret = __i915_gem_restart_engines(dev_priv);
4474 if (ret)
4475 goto out;
99433931 4476
bf9e8429 4477 intel_mocs_init_l3cc_table(dev_priv);
0ccdacf6 4478
33a732f4 4479 /* We can't enable contexts until all firmware is loaded */
bf9e8429 4480 ret = intel_guc_setup(dev_priv);
e556f7c1
DG
4481 if (ret)
4482 goto out;
33a732f4 4483
5e4f5189
CW
4484out:
4485 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4486 return ret;
8187a2b7
ZN
4487}
4488
39df9190
CW
4489bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4490{
4491 if (INTEL_INFO(dev_priv)->gen < 6)
4492 return false;
4493
4494 /* TODO: make semaphores and Execlists play nicely together */
4495 if (i915.enable_execlists)
4496 return false;
4497
4498 if (value >= 0)
4499 return value;
4500
4501#ifdef CONFIG_INTEL_IOMMU
4502 /* Enable semaphores on SNB when IO remapping is off */
4503 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4504 return false;
4505#endif
4506
4507 return true;
4508}
4509
bf9e8429 4510int i915_gem_init(struct drm_i915_private *dev_priv)
1070a42b 4511{
1070a42b
CW
4512 int ret;
4513
bf9e8429 4514 mutex_lock(&dev_priv->drm.struct_mutex);
d62b4892 4515
a83014d3 4516 if (!i915.enable_execlists) {
821ed7df 4517 dev_priv->gt.resume = intel_legacy_submission_resume;
7e37f889 4518 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
454afebd 4519 } else {
821ed7df 4520 dev_priv->gt.resume = intel_lr_context_resume;
117897f4 4521 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
a83014d3
OM
4522 }
4523
5e4f5189
CW
4524 /* This is just a security blanket to placate dragons.
4525 * On some systems, we very sporadically observe that the first TLBs
4526 * used by the CS may be stale, despite us poking the TLB reset. If
4527 * we hold the forcewake during initialisation these problems
4528 * just magically go away.
4529 */
4530 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4531
72778cb2 4532 i915_gem_init_userptr(dev_priv);
f6b9d5ca
CW
4533
4534 ret = i915_gem_init_ggtt(dev_priv);
4535 if (ret)
4536 goto out_unlock;
d62b4892 4537
bf9e8429 4538 ret = i915_gem_context_init(dev_priv);
7bcc3777
JN
4539 if (ret)
4540 goto out_unlock;
2fa48d8d 4541
bf9e8429 4542 ret = intel_engines_init(dev_priv);
35a57ffb 4543 if (ret)
7bcc3777 4544 goto out_unlock;
2fa48d8d 4545
bf9e8429 4546 ret = i915_gem_init_hw(dev_priv);
60990320 4547 if (ret == -EIO) {
7e21d648 4548 /* Allow engine initialisation to fail by marking the GPU as
60990320
CW
4549 * wedged. But we only want to do this where the GPU is angry,
4550 * for all other failure, such as an allocation failure, bail.
4551 */
4552 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
821ed7df 4553 i915_gem_set_wedged(dev_priv);
60990320 4554 ret = 0;
1070a42b 4555 }
7bcc3777
JN
4556
4557out_unlock:
5e4f5189 4558 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
bf9e8429 4559 mutex_unlock(&dev_priv->drm.struct_mutex);
1070a42b 4560
60990320 4561 return ret;
1070a42b
CW
4562}
4563
24145517
CW
4564void i915_gem_init_mmio(struct drm_i915_private *i915)
4565{
4566 i915_gem_sanitize(i915);
4567}
4568
8187a2b7 4569void
cb15d9f8 4570i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
8187a2b7 4571{
e2f80391 4572 struct intel_engine_cs *engine;
3b3f1650 4573 enum intel_engine_id id;
8187a2b7 4574
3b3f1650 4575 for_each_engine(engine, dev_priv, id)
117897f4 4576 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
4577}
4578
40ae4e16
ID
4579void
4580i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4581{
49ef5294 4582 int i;
40ae4e16
ID
4583
4584 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4585 !IS_CHERRYVIEW(dev_priv))
4586 dev_priv->num_fence_regs = 32;
73f67aa8
JN
4587 else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4588 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4589 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
40ae4e16
ID
4590 dev_priv->num_fence_regs = 16;
4591 else
4592 dev_priv->num_fence_regs = 8;
4593
c033666a 4594 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
4595 dev_priv->num_fence_regs =
4596 I915_READ(vgtif_reg(avail_rs.fence_num));
4597
4598 /* Initialize fence registers to zero */
49ef5294
CW
4599 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4600 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4601
4602 fence->i915 = dev_priv;
4603 fence->id = i;
4604 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4605 }
4362f4f6 4606 i915_gem_restore_fences(dev_priv);
40ae4e16 4607
4362f4f6 4608 i915_gem_detect_bit_6_swizzle(dev_priv);
40ae4e16
ID
4609}
4610
73cb9701 4611int
cb15d9f8 4612i915_gem_load_init(struct drm_i915_private *dev_priv)
673a394b 4613{
a933568e 4614 int err = -ENOMEM;
42dcedd4 4615
a933568e
TU
4616 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4617 if (!dev_priv->objects)
73cb9701 4618 goto err_out;
73cb9701 4619
a933568e
TU
4620 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4621 if (!dev_priv->vmas)
73cb9701 4622 goto err_objects;
73cb9701 4623
a933568e
TU
4624 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4625 SLAB_HWCACHE_ALIGN |
4626 SLAB_RECLAIM_ACCOUNT |
4627 SLAB_DESTROY_BY_RCU);
4628 if (!dev_priv->requests)
73cb9701 4629 goto err_vmas;
73cb9701 4630
52e54209
CW
4631 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4632 SLAB_HWCACHE_ALIGN |
4633 SLAB_RECLAIM_ACCOUNT);
4634 if (!dev_priv->dependencies)
4635 goto err_requests;
4636
73cb9701
CW
4637 mutex_lock(&dev_priv->drm.struct_mutex);
4638 INIT_LIST_HEAD(&dev_priv->gt.timelines);
bb89485e 4639 err = i915_gem_timeline_init__global(dev_priv);
73cb9701
CW
4640 mutex_unlock(&dev_priv->drm.struct_mutex);
4641 if (err)
52e54209 4642 goto err_dependencies;
673a394b 4643
a33afea5 4644 INIT_LIST_HEAD(&dev_priv->context_list);
fbbd37b3
CW
4645 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4646 init_llist_head(&dev_priv->mm.free_list);
6c085a72
CW
4647 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4648 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4649 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
275f039d 4650 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
67d97da3 4651 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
673a394b 4652 i915_gem_retire_work_handler);
67d97da3 4653 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
b29c19b6 4654 i915_gem_idle_work_handler);
1f15b76f 4655 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1f83fee0 4656 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4657
72bfa19c
CW
4658 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4659
6b95a207 4660 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4661
ce453d81
CW
4662 dev_priv->mm.interruptible = true;
4663
6f633402
JL
4664 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4665
b5add959 4666 spin_lock_init(&dev_priv->fb_tracking.lock);
73cb9701
CW
4667
4668 return 0;
4669
52e54209
CW
4670err_dependencies:
4671 kmem_cache_destroy(dev_priv->dependencies);
73cb9701
CW
4672err_requests:
4673 kmem_cache_destroy(dev_priv->requests);
4674err_vmas:
4675 kmem_cache_destroy(dev_priv->vmas);
4676err_objects:
4677 kmem_cache_destroy(dev_priv->objects);
4678err_out:
4679 return err;
673a394b 4680}
71acb5eb 4681
cb15d9f8 4682void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
d64aa096 4683{
c4d4c1c6 4684 i915_gem_drain_freed_objects(dev_priv);
7d5d59e5 4685 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
c4d4c1c6 4686 WARN_ON(dev_priv->mm.object_count);
7d5d59e5 4687
ea84aa77
MA
4688 mutex_lock(&dev_priv->drm.struct_mutex);
4689 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4690 WARN_ON(!list_empty(&dev_priv->gt.timelines));
4691 mutex_unlock(&dev_priv->drm.struct_mutex);
4692
52e54209 4693 kmem_cache_destroy(dev_priv->dependencies);
d64aa096
ID
4694 kmem_cache_destroy(dev_priv->requests);
4695 kmem_cache_destroy(dev_priv->vmas);
4696 kmem_cache_destroy(dev_priv->objects);
0eafec6d
CW
4697
4698 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4699 rcu_barrier();
d64aa096
ID
4700}
4701
6a800eab
CW
4702int i915_gem_freeze(struct drm_i915_private *dev_priv)
4703{
6a800eab
CW
4704 mutex_lock(&dev_priv->drm.struct_mutex);
4705 i915_gem_shrink_all(dev_priv);
4706 mutex_unlock(&dev_priv->drm.struct_mutex);
4707
6a800eab
CW
4708 return 0;
4709}
4710
461fb99c
CW
4711int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4712{
4713 struct drm_i915_gem_object *obj;
7aab2d53
CW
4714 struct list_head *phases[] = {
4715 &dev_priv->mm.unbound_list,
4716 &dev_priv->mm.bound_list,
4717 NULL
4718 }, **p;
461fb99c
CW
4719
4720 /* Called just before we write the hibernation image.
4721 *
4722 * We need to update the domain tracking to reflect that the CPU
4723 * will be accessing all the pages to create and restore from the
4724 * hibernation, and so upon restoration those pages will be in the
4725 * CPU domain.
4726 *
4727 * To make sure the hibernation image contains the latest state,
4728 * we update that state just before writing out the image.
7aab2d53
CW
4729 *
4730 * To try and reduce the hibernation image, we manually shrink
4731 * the objects as well.
461fb99c
CW
4732 */
4733
6a800eab
CW
4734 mutex_lock(&dev_priv->drm.struct_mutex);
4735 i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
461fb99c 4736
7aab2d53 4737 for (p = phases; *p; p++) {
56cea323 4738 list_for_each_entry(obj, *p, global_link) {
7aab2d53
CW
4739 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4740 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4741 }
461fb99c 4742 }
6a800eab 4743 mutex_unlock(&dev_priv->drm.struct_mutex);
461fb99c
CW
4744
4745 return 0;
4746}
4747
f787a5f5 4748void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4749{
f787a5f5 4750 struct drm_i915_file_private *file_priv = file->driver_priv;
15f7bbc7 4751 struct drm_i915_gem_request *request;
b962442e
EA
4752
4753 /* Clean up our request list when the client is going away, so that
4754 * later retire_requests won't dereference our soon-to-be-gone
4755 * file_priv.
4756 */
1c25595f 4757 spin_lock(&file_priv->mm.lock);
15f7bbc7 4758 list_for_each_entry(request, &file_priv->mm.request_list, client_list)
f787a5f5 4759 request->file_priv = NULL;
1c25595f 4760 spin_unlock(&file_priv->mm.lock);
b29c19b6 4761
2e1b8730 4762 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 4763 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 4764 list_del(&file_priv->rps.link);
8d3afd7d 4765 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 4766 }
b29c19b6
CW
4767}
4768
4769int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4770{
4771 struct drm_i915_file_private *file_priv;
e422b888 4772 int ret;
b29c19b6 4773
c4c29d7b 4774 DRM_DEBUG("\n");
b29c19b6
CW
4775
4776 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4777 if (!file_priv)
4778 return -ENOMEM;
4779
4780 file->driver_priv = file_priv;
f19ec8cb 4781 file_priv->dev_priv = to_i915(dev);
ab0e7ff9 4782 file_priv->file = file;
2e1b8730 4783 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
4784
4785 spin_lock_init(&file_priv->mm.lock);
4786 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 4787
c80ff16e 4788 file_priv->bsd_engine = -1;
de1add36 4789
e422b888
BW
4790 ret = i915_gem_context_open(dev, file);
4791 if (ret)
4792 kfree(file_priv);
b29c19b6 4793
e422b888 4794 return ret;
b29c19b6
CW
4795}
4796
b680c37a
DV
4797/**
4798 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
4799 * @old: current GEM buffer for the frontbuffer slots
4800 * @new: new GEM buffer for the frontbuffer slots
4801 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
4802 *
4803 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4804 * from @old and setting them in @new. Both @old and @new can be NULL.
4805 */
a071fa00
DV
4806void i915_gem_track_fb(struct drm_i915_gem_object *old,
4807 struct drm_i915_gem_object *new,
4808 unsigned frontbuffer_bits)
4809{
faf5bf0a
CW
4810 /* Control of individual bits within the mask are guarded by
4811 * the owning plane->mutex, i.e. we can never see concurrent
4812 * manipulation of individual bits. But since the bitfield as a whole
4813 * is updated using RMW, we need to use atomics in order to update
4814 * the bits.
4815 */
4816 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4817 sizeof(atomic_t) * BITS_PER_BYTE);
4818
a071fa00 4819 if (old) {
faf5bf0a
CW
4820 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4821 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
a071fa00
DV
4822 }
4823
4824 if (new) {
faf5bf0a
CW
4825 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4826 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
a071fa00
DV
4827 }
4828}
4829
ea70299d
DG
4830/* Allocate a new GEM object and fill it with the supplied data */
4831struct drm_i915_gem_object *
12d79d78 4832i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
ea70299d
DG
4833 const void *data, size_t size)
4834{
4835 struct drm_i915_gem_object *obj;
4836 struct sg_table *sg;
4837 size_t bytes;
4838 int ret;
4839
12d79d78 4840 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
fe3db79b 4841 if (IS_ERR(obj))
ea70299d
DG
4842 return obj;
4843
4844 ret = i915_gem_object_set_to_cpu_domain(obj, true);
4845 if (ret)
4846 goto fail;
4847
a4f5ea64 4848 ret = i915_gem_object_pin_pages(obj);
ea70299d
DG
4849 if (ret)
4850 goto fail;
4851
a4f5ea64 4852 sg = obj->mm.pages;
ea70299d 4853 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
a4f5ea64 4854 obj->mm.dirty = true; /* Backing store is now out of date */
ea70299d
DG
4855 i915_gem_object_unpin_pages(obj);
4856
4857 if (WARN_ON(bytes != size)) {
4858 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4859 ret = -EFAULT;
4860 goto fail;
4861 }
4862
4863 return obj;
4864
4865fail:
f8c417cd 4866 i915_gem_object_put(obj);
ea70299d
DG
4867 return ERR_PTR(ret);
4868}
96d77634
CW
4869
4870struct scatterlist *
4871i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4872 unsigned int n,
4873 unsigned int *offset)
4874{
a4f5ea64 4875 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
96d77634
CW
4876 struct scatterlist *sg;
4877 unsigned int idx, count;
4878
4879 might_sleep();
4880 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
a4f5ea64 4881 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
96d77634
CW
4882
4883 /* As we iterate forward through the sg, we record each entry in a
4884 * radixtree for quick repeated (backwards) lookups. If we have seen
4885 * this index previously, we will have an entry for it.
4886 *
4887 * Initial lookup is O(N), but this is amortized to O(1) for
4888 * sequential page access (where each new request is consecutive
4889 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
4890 * i.e. O(1) with a large constant!
4891 */
4892 if (n < READ_ONCE(iter->sg_idx))
4893 goto lookup;
4894
4895 mutex_lock(&iter->lock);
4896
4897 /* We prefer to reuse the last sg so that repeated lookup of this
4898 * (or the subsequent) sg are fast - comparing against the last
4899 * sg is faster than going through the radixtree.
4900 */
4901
4902 sg = iter->sg_pos;
4903 idx = iter->sg_idx;
4904 count = __sg_page_count(sg);
4905
4906 while (idx + count <= n) {
4907 unsigned long exception, i;
4908 int ret;
4909
4910 /* If we cannot allocate and insert this entry, or the
4911 * individual pages from this range, cancel updating the
4912 * sg_idx so that on this lookup we are forced to linearly
4913 * scan onwards, but on future lookups we will try the
4914 * insertion again (in which case we need to be careful of
4915 * the error return reporting that we have already inserted
4916 * this index).
4917 */
4918 ret = radix_tree_insert(&iter->radix, idx, sg);
4919 if (ret && ret != -EEXIST)
4920 goto scan;
4921
4922 exception =
4923 RADIX_TREE_EXCEPTIONAL_ENTRY |
4924 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
4925 for (i = 1; i < count; i++) {
4926 ret = radix_tree_insert(&iter->radix, idx + i,
4927 (void *)exception);
4928 if (ret && ret != -EEXIST)
4929 goto scan;
4930 }
4931
4932 idx += count;
4933 sg = ____sg_next(sg);
4934 count = __sg_page_count(sg);
4935 }
4936
4937scan:
4938 iter->sg_pos = sg;
4939 iter->sg_idx = idx;
4940
4941 mutex_unlock(&iter->lock);
4942
4943 if (unlikely(n < idx)) /* insertion completed by another thread */
4944 goto lookup;
4945
4946 /* In case we failed to insert the entry into the radixtree, we need
4947 * to look beyond the current sg.
4948 */
4949 while (idx + count <= n) {
4950 idx += count;
4951 sg = ____sg_next(sg);
4952 count = __sg_page_count(sg);
4953 }
4954
4955 *offset = n - idx;
4956 return sg;
4957
4958lookup:
4959 rcu_read_lock();
4960
4961 sg = radix_tree_lookup(&iter->radix, n);
4962 GEM_BUG_ON(!sg);
4963
4964 /* If this index is in the middle of multi-page sg entry,
4965 * the radixtree will contain an exceptional entry that points
4966 * to the start of that range. We will return the pointer to
4967 * the base page and the offset of this page within the
4968 * sg entry's range.
4969 */
4970 *offset = 0;
4971 if (unlikely(radix_tree_exception(sg))) {
4972 unsigned long base =
4973 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
4974
4975 sg = radix_tree_lookup(&iter->radix, base);
4976 GEM_BUG_ON(!sg);
4977
4978 *offset = n - base;
4979 }
4980
4981 rcu_read_unlock();
4982
4983 return sg;
4984}
4985
4986struct page *
4987i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
4988{
4989 struct scatterlist *sg;
4990 unsigned int offset;
4991
4992 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
4993
4994 sg = i915_gem_object_get_sg(obj, n, &offset);
4995 return nth_page(sg_page(sg), offset);
4996}
4997
4998/* Like i915_gem_object_get_page(), but mark the returned page dirty */
4999struct page *
5000i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5001 unsigned int n)
5002{
5003 struct page *page;
5004
5005 page = i915_gem_object_get_page(obj, n);
a4f5ea64 5006 if (!obj->mm.dirty)
96d77634
CW
5007 set_page_dirty(page);
5008
5009 return page;
5010}
5011
5012dma_addr_t
5013i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5014 unsigned long n)
5015{
5016 struct scatterlist *sg;
5017 unsigned int offset;
5018
5019 sg = i915_gem_object_get_sg(obj, n, &offset);
5020 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5021}