]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Sanitize GEM shrinker init and clean-up
[thirdparty/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
b4716185
CW
41#define RQ_BUG_ON(expr)
42
05394f39 43static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 44static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
c8725f3d 45static void
b4716185
CW
46i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47static void
48i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
61050808 49
c76ce038
CW
50static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52{
53 return HAS_LLC(dev) || level != I915_CACHE_NONE;
54}
55
2c22569b
CW
56static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57{
58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 return true;
60
61 return obj->pin_display;
62}
63
73aa808f
CW
64/* some bookkeeping */
65static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67{
c20e8355 68 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
69 dev_priv->mm.object_count++;
70 dev_priv->mm.object_memory += size;
c20e8355 71 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
72}
73
74static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76{
c20e8355 77 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
78 dev_priv->mm.object_count--;
79 dev_priv->mm.object_memory -= size;
c20e8355 80 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
81}
82
21dd3734 83static int
33196ded 84i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 85{
30dbf0c0
CW
86 int ret;
87
7abb690a
DV
88#define EXIT_COND (!i915_reset_in_progress(error) || \
89 i915_terminally_wedged(error))
1f83fee0 90 if (EXIT_COND)
30dbf0c0
CW
91 return 0;
92
0a6759c6
DV
93 /*
94 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 * userspace. If it takes that long something really bad is going on and
96 * we should simply try to bail out and fail as gracefully as possible.
97 */
1f83fee0
DV
98 ret = wait_event_interruptible_timeout(error->reset_queue,
99 EXIT_COND,
100 10*HZ);
0a6759c6
DV
101 if (ret == 0) {
102 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 return -EIO;
104 } else if (ret < 0) {
30dbf0c0 105 return ret;
0a6759c6 106 }
1f83fee0 107#undef EXIT_COND
30dbf0c0 108
21dd3734 109 return 0;
30dbf0c0
CW
110}
111
54cf91dc 112int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 113{
33196ded 114 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
115 int ret;
116
33196ded 117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
118 if (ret)
119 return ret;
120
121 ret = mutex_lock_interruptible(&dev->struct_mutex);
122 if (ret)
123 return ret;
124
23bc5982 125 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
126 return 0;
127}
30dbf0c0 128
5a125c3c
EA
129int
130i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 131 struct drm_file *file)
5a125c3c 132{
73aa808f 133 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 134 struct drm_i915_gem_get_aperture *args = data;
ca1543be
TU
135 struct i915_gtt *ggtt = &dev_priv->gtt;
136 struct i915_vma *vma;
6299f992 137 size_t pinned;
5a125c3c 138
6299f992 139 pinned = 0;
73aa808f 140 mutex_lock(&dev->struct_mutex);
ca1543be
TU
141 list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142 if (vma->pin_count)
143 pinned += vma->node.size;
144 list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145 if (vma->pin_count)
146 pinned += vma->node.size;
73aa808f 147 mutex_unlock(&dev->struct_mutex);
5a125c3c 148
853ba5d2 149 args->aper_size = dev_priv->gtt.base.total;
0206e353 150 args->aper_available_size = args->aper_size - pinned;
6299f992 151
5a125c3c
EA
152 return 0;
153}
154
6a2c4232
CW
155static int
156i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 157{
6a2c4232
CW
158 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 char *vaddr = obj->phys_handle->vaddr;
160 struct sg_table *st;
161 struct scatterlist *sg;
162 int i;
00731155 163
6a2c4232
CW
164 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 return -EINVAL;
166
167 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 struct page *page;
169 char *src;
170
171 page = shmem_read_mapping_page(mapping, i);
172 if (IS_ERR(page))
173 return PTR_ERR(page);
174
175 src = kmap_atomic(page);
176 memcpy(vaddr, src, PAGE_SIZE);
177 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 kunmap_atomic(src);
179
180 page_cache_release(page);
181 vaddr += PAGE_SIZE;
182 }
183
184 i915_gem_chipset_flush(obj->base.dev);
185
186 st = kmalloc(sizeof(*st), GFP_KERNEL);
187 if (st == NULL)
188 return -ENOMEM;
189
190 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 kfree(st);
192 return -ENOMEM;
193 }
194
195 sg = st->sgl;
196 sg->offset = 0;
197 sg->length = obj->base.size;
00731155 198
6a2c4232
CW
199 sg_dma_address(sg) = obj->phys_handle->busaddr;
200 sg_dma_len(sg) = obj->base.size;
201
202 obj->pages = st;
6a2c4232
CW
203 return 0;
204}
205
206static void
207i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208{
209 int ret;
210
211 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 212
6a2c4232
CW
213 ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 if (ret) {
215 /* In the event of a disaster, abandon all caches and
216 * hope for the best.
217 */
218 WARN_ON(ret != -EIO);
219 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 }
221
222 if (obj->madv == I915_MADV_DONTNEED)
223 obj->dirty = 0;
224
225 if (obj->dirty) {
00731155 226 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 227 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
228 int i;
229
230 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
231 struct page *page;
232 char *dst;
233
234 page = shmem_read_mapping_page(mapping, i);
235 if (IS_ERR(page))
236 continue;
237
238 dst = kmap_atomic(page);
239 drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 memcpy(dst, vaddr, PAGE_SIZE);
241 kunmap_atomic(dst);
242
243 set_page_dirty(page);
244 if (obj->madv == I915_MADV_WILLNEED)
00731155 245 mark_page_accessed(page);
6a2c4232 246 page_cache_release(page);
00731155
CW
247 vaddr += PAGE_SIZE;
248 }
6a2c4232 249 obj->dirty = 0;
00731155
CW
250 }
251
6a2c4232
CW
252 sg_free_table(obj->pages);
253 kfree(obj->pages);
6a2c4232
CW
254}
255
256static void
257i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258{
259 drm_pci_free(obj->base.dev, obj->phys_handle);
260}
261
262static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 .get_pages = i915_gem_object_get_pages_phys,
264 .put_pages = i915_gem_object_put_pages_phys,
265 .release = i915_gem_object_release_phys,
266};
267
268static int
269drop_pages(struct drm_i915_gem_object *obj)
270{
271 struct i915_vma *vma, *next;
272 int ret;
273
274 drm_gem_object_reference(&obj->base);
275 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276 if (i915_vma_unbind(vma))
277 break;
278
279 ret = i915_gem_object_put_pages(obj);
280 drm_gem_object_unreference(&obj->base);
281
282 return ret;
00731155
CW
283}
284
285int
286i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 int align)
288{
289 drm_dma_handle_t *phys;
6a2c4232 290 int ret;
00731155
CW
291
292 if (obj->phys_handle) {
293 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 return -EBUSY;
295
296 return 0;
297 }
298
299 if (obj->madv != I915_MADV_WILLNEED)
300 return -EFAULT;
301
302 if (obj->base.filp == NULL)
303 return -EINVAL;
304
6a2c4232
CW
305 ret = drop_pages(obj);
306 if (ret)
307 return ret;
308
00731155
CW
309 /* create a new object */
310 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 if (!phys)
312 return -ENOMEM;
313
00731155 314 obj->phys_handle = phys;
6a2c4232
CW
315 obj->ops = &i915_gem_phys_ops;
316
317 return i915_gem_object_get_pages(obj);
00731155
CW
318}
319
320static int
321i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 struct drm_i915_gem_pwrite *args,
323 struct drm_file *file_priv)
324{
325 struct drm_device *dev = obj->base.dev;
326 void *vaddr = obj->phys_handle->vaddr + args->offset;
327 char __user *user_data = to_user_ptr(args->data_ptr);
063e4e6b 328 int ret = 0;
6a2c4232
CW
329
330 /* We manually control the domain here and pretend that it
331 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 */
333 ret = i915_gem_object_wait_rendering(obj, false);
334 if (ret)
335 return ret;
00731155 336
77a0d1ca 337 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
338 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 unsigned long unwritten;
340
341 /* The physical object once assigned is fixed for the lifetime
342 * of the obj, so we can safely drop the lock and continue
343 * to access vaddr.
344 */
345 mutex_unlock(&dev->struct_mutex);
346 unwritten = copy_from_user(vaddr, user_data, args->size);
347 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
348 if (unwritten) {
349 ret = -EFAULT;
350 goto out;
351 }
00731155
CW
352 }
353
6a2c4232 354 drm_clflush_virt_range(vaddr, args->size);
00731155 355 i915_gem_chipset_flush(dev);
063e4e6b
PZ
356
357out:
de152b62 358 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 359 return ret;
00731155
CW
360}
361
42dcedd4
CW
362void *i915_gem_object_alloc(struct drm_device *dev)
363{
364 struct drm_i915_private *dev_priv = dev->dev_private;
efab6d8d 365 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
366}
367
368void i915_gem_object_free(struct drm_i915_gem_object *obj)
369{
370 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
efab6d8d 371 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
372}
373
ff72145b
DA
374static int
375i915_gem_create(struct drm_file *file,
376 struct drm_device *dev,
377 uint64_t size,
378 uint32_t *handle_p)
673a394b 379{
05394f39 380 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
381 int ret;
382 u32 handle;
673a394b 383
ff72145b 384 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
385 if (size == 0)
386 return -EINVAL;
673a394b
EA
387
388 /* Allocate the new object */
ff72145b 389 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
390 if (obj == NULL)
391 return -ENOMEM;
392
05394f39 393 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 394 /* drop reference from allocate - handle holds it now */
d861e338
DV
395 drm_gem_object_unreference_unlocked(&obj->base);
396 if (ret)
397 return ret;
202f2fef 398
ff72145b 399 *handle_p = handle;
673a394b
EA
400 return 0;
401}
402
ff72145b
DA
403int
404i915_gem_dumb_create(struct drm_file *file,
405 struct drm_device *dev,
406 struct drm_mode_create_dumb *args)
407{
408 /* have to work out size/pitch and return them */
de45eaf7 409 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
410 args->size = args->pitch * args->height;
411 return i915_gem_create(file, dev,
da6b51d0 412 args->size, &args->handle);
ff72145b
DA
413}
414
ff72145b
DA
415/**
416 * Creates a new mm object and returns a handle to it.
417 */
418int
419i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 struct drm_file *file)
421{
422 struct drm_i915_gem_create *args = data;
63ed2cb2 423
ff72145b 424 return i915_gem_create(file, dev,
da6b51d0 425 args->size, &args->handle);
ff72145b
DA
426}
427
8461d226
DV
428static inline int
429__copy_to_user_swizzled(char __user *cpu_vaddr,
430 const char *gpu_vaddr, int gpu_offset,
431 int length)
432{
433 int ret, cpu_offset = 0;
434
435 while (length > 0) {
436 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 int this_length = min(cacheline_end - gpu_offset, length);
438 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 gpu_vaddr + swizzled_gpu_offset,
442 this_length);
443 if (ret)
444 return ret + length;
445
446 cpu_offset += this_length;
447 gpu_offset += this_length;
448 length -= this_length;
449 }
450
451 return 0;
452}
453
8c59967c 454static inline int
4f0c7cfb
BW
455__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 const char __user *cpu_vaddr,
8c59967c
DV
457 int length)
458{
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 cpu_vaddr + cpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478}
479
4c914c0c
BV
480/*
481 * Pins the specified object's pages and synchronizes the object with
482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
483 * flush the object from the CPU cache.
484 */
485int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 int *needs_clflush)
487{
488 int ret;
489
490 *needs_clflush = 0;
491
492 if (!obj->base.filp)
493 return -EINVAL;
494
495 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 /* If we're not in the cpu read domain, set ourself into the gtt
497 * read domain and manually flush cachelines (if required). This
498 * optimizes for the case when the gpu will dirty the data
499 * anyway again before the next pread happens. */
500 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 obj->cache_level);
502 ret = i915_gem_object_wait_rendering(obj, true);
503 if (ret)
504 return ret;
505 }
506
507 ret = i915_gem_object_get_pages(obj);
508 if (ret)
509 return ret;
510
511 i915_gem_object_pin_pages(obj);
512
513 return ret;
514}
515
d174bd64
DV
516/* Per-page copy function for the shmem pread fastpath.
517 * Flushes invalid cachelines before reading the target if
518 * needs_clflush is set. */
eb01459f 519static int
d174bd64
DV
520shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 char __user *user_data,
522 bool page_do_bit17_swizzling, bool needs_clflush)
523{
524 char *vaddr;
525 int ret;
526
e7e58eb5 527 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
528 return -EINVAL;
529
530 vaddr = kmap_atomic(page);
531 if (needs_clflush)
532 drm_clflush_virt_range(vaddr + shmem_page_offset,
533 page_length);
534 ret = __copy_to_user_inatomic(user_data,
535 vaddr + shmem_page_offset,
536 page_length);
537 kunmap_atomic(vaddr);
538
f60d7f0c 539 return ret ? -EFAULT : 0;
d174bd64
DV
540}
541
23c18c71
DV
542static void
543shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 bool swizzled)
545{
e7e58eb5 546 if (unlikely(swizzled)) {
23c18c71
DV
547 unsigned long start = (unsigned long) addr;
548 unsigned long end = (unsigned long) addr + length;
549
550 /* For swizzling simply ensure that we always flush both
551 * channels. Lame, but simple and it works. Swizzled
552 * pwrite/pread is far from a hotpath - current userspace
553 * doesn't use it at all. */
554 start = round_down(start, 128);
555 end = round_up(end, 128);
556
557 drm_clflush_virt_range((void *)start, end - start);
558 } else {
559 drm_clflush_virt_range(addr, length);
560 }
561
562}
563
d174bd64
DV
564/* Only difference to the fast-path function is that this can handle bit17
565 * and uses non-atomic copy and kmap functions. */
566static int
567shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 char __user *user_data,
569 bool page_do_bit17_swizzling, bool needs_clflush)
570{
571 char *vaddr;
572 int ret;
573
574 vaddr = kmap(page);
575 if (needs_clflush)
23c18c71
DV
576 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 page_length,
578 page_do_bit17_swizzling);
d174bd64
DV
579
580 if (page_do_bit17_swizzling)
581 ret = __copy_to_user_swizzled(user_data,
582 vaddr, shmem_page_offset,
583 page_length);
584 else
585 ret = __copy_to_user(user_data,
586 vaddr + shmem_page_offset,
587 page_length);
588 kunmap(page);
589
f60d7f0c 590 return ret ? - EFAULT : 0;
d174bd64
DV
591}
592
eb01459f 593static int
dbf7bff0
DV
594i915_gem_shmem_pread(struct drm_device *dev,
595 struct drm_i915_gem_object *obj,
596 struct drm_i915_gem_pread *args,
597 struct drm_file *file)
eb01459f 598{
8461d226 599 char __user *user_data;
eb01459f 600 ssize_t remain;
8461d226 601 loff_t offset;
eb2c0c81 602 int shmem_page_offset, page_length, ret = 0;
8461d226 603 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 604 int prefaulted = 0;
8489731c 605 int needs_clflush = 0;
67d5a50c 606 struct sg_page_iter sg_iter;
eb01459f 607
2bb4629a 608 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
609 remain = args->size;
610
8461d226 611 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 612
4c914c0c 613 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
614 if (ret)
615 return ret;
616
8461d226 617 offset = args->offset;
eb01459f 618
67d5a50c
ID
619 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 offset >> PAGE_SHIFT) {
2db76d7c 621 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
622
623 if (remain <= 0)
624 break;
625
eb01459f
EA
626 /* Operation in this page
627 *
eb01459f 628 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
629 * page_length = bytes to copy for this page
630 */
c8cbbb8b 631 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
632 page_length = remain;
633 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 635
8461d226
DV
636 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 (page_to_phys(page) & (1 << 17)) != 0;
638
d174bd64
DV
639 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 user_data, page_do_bit17_swizzling,
641 needs_clflush);
642 if (ret == 0)
643 goto next_page;
dbf7bff0 644
dbf7bff0
DV
645 mutex_unlock(&dev->struct_mutex);
646
d330a953 647 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 648 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
649 /* Userspace is tricking us, but we've already clobbered
650 * its pages with the prefault and promised to write the
651 * data up to the first fault. Hence ignore any errors
652 * and just continue. */
653 (void)ret;
654 prefaulted = 1;
655 }
eb01459f 656
d174bd64
DV
657 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
eb01459f 660
dbf7bff0 661 mutex_lock(&dev->struct_mutex);
f60d7f0c 662
f60d7f0c 663 if (ret)
8461d226 664 goto out;
8461d226 665
17793c9a 666next_page:
eb01459f 667 remain -= page_length;
8461d226 668 user_data += page_length;
eb01459f
EA
669 offset += page_length;
670 }
671
4f27b75d 672out:
f60d7f0c
CW
673 i915_gem_object_unpin_pages(obj);
674
eb01459f
EA
675 return ret;
676}
677
673a394b
EA
678/**
679 * Reads data from the object referenced by handle.
680 *
681 * On error, the contents of *data are undefined.
682 */
683int
684i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 685 struct drm_file *file)
673a394b
EA
686{
687 struct drm_i915_gem_pread *args = data;
05394f39 688 struct drm_i915_gem_object *obj;
35b62a89 689 int ret = 0;
673a394b 690
51311d0a
CW
691 if (args->size == 0)
692 return 0;
693
694 if (!access_ok(VERIFY_WRITE,
2bb4629a 695 to_user_ptr(args->data_ptr),
51311d0a
CW
696 args->size))
697 return -EFAULT;
698
4f27b75d 699 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 700 if (ret)
4f27b75d 701 return ret;
673a394b 702
05394f39 703 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 704 if (&obj->base == NULL) {
1d7cfea1
CW
705 ret = -ENOENT;
706 goto unlock;
4f27b75d 707 }
673a394b 708
7dcd2499 709 /* Bounds check source. */
05394f39
CW
710 if (args->offset > obj->base.size ||
711 args->size > obj->base.size - args->offset) {
ce9d419d 712 ret = -EINVAL;
35b62a89 713 goto out;
ce9d419d
CW
714 }
715
1286ff73
DV
716 /* prime objects have no backing filp to GEM pread/pwrite
717 * pages from.
718 */
719 if (!obj->base.filp) {
720 ret = -EINVAL;
721 goto out;
722 }
723
db53a302
CW
724 trace_i915_gem_object_pread(obj, args->offset, args->size);
725
dbf7bff0 726 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 727
35b62a89 728out:
05394f39 729 drm_gem_object_unreference(&obj->base);
1d7cfea1 730unlock:
4f27b75d 731 mutex_unlock(&dev->struct_mutex);
eb01459f 732 return ret;
673a394b
EA
733}
734
0839ccb8
KP
735/* This is the fast write path which cannot handle
736 * page faults in the source data
9b7530cc 737 */
0839ccb8
KP
738
739static inline int
740fast_user_write(struct io_mapping *mapping,
741 loff_t page_base, int page_offset,
742 char __user *user_data,
743 int length)
9b7530cc 744{
4f0c7cfb
BW
745 void __iomem *vaddr_atomic;
746 void *vaddr;
0839ccb8 747 unsigned long unwritten;
9b7530cc 748
3e4d3af5 749 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
750 /* We can use the cpu mem copy function because this is X86. */
751 vaddr = (void __force*)vaddr_atomic + page_offset;
752 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 753 user_data, length);
3e4d3af5 754 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 755 return unwritten;
0839ccb8
KP
756}
757
3de09aa3
EA
758/**
759 * This is the fast pwrite path, where we copy the data directly from the
760 * user into the GTT, uncached.
761 */
673a394b 762static int
05394f39
CW
763i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 struct drm_i915_gem_object *obj,
3de09aa3 765 struct drm_i915_gem_pwrite *args,
05394f39 766 struct drm_file *file)
673a394b 767{
3e31c6c0 768 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 769 ssize_t remain;
0839ccb8 770 loff_t offset, page_base;
673a394b 771 char __user *user_data;
935aaa69
DV
772 int page_offset, page_length, ret;
773
1ec9e26d 774 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
775 if (ret)
776 goto out;
777
778 ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 if (ret)
780 goto out_unpin;
781
782 ret = i915_gem_object_put_fence(obj);
783 if (ret)
784 goto out_unpin;
673a394b 785
2bb4629a 786 user_data = to_user_ptr(args->data_ptr);
673a394b 787 remain = args->size;
673a394b 788
f343c5f6 789 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b 790
77a0d1ca 791 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
063e4e6b 792
673a394b
EA
793 while (remain > 0) {
794 /* Operation in this page
795 *
0839ccb8
KP
796 * page_base = page offset within aperture
797 * page_offset = offset within page
798 * page_length = bytes to copy for this page
673a394b 799 */
c8cbbb8b
CW
800 page_base = offset & PAGE_MASK;
801 page_offset = offset_in_page(offset);
0839ccb8
KP
802 page_length = remain;
803 if ((page_offset + remain) > PAGE_SIZE)
804 page_length = PAGE_SIZE - page_offset;
805
0839ccb8 806 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
807 * source page isn't available. Return the error and we'll
808 * retry in the slow path.
0839ccb8 809 */
5d4545ae 810 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
811 page_offset, user_data, page_length)) {
812 ret = -EFAULT;
063e4e6b 813 goto out_flush;
935aaa69 814 }
673a394b 815
0839ccb8
KP
816 remain -= page_length;
817 user_data += page_length;
818 offset += page_length;
673a394b 819 }
673a394b 820
063e4e6b 821out_flush:
de152b62 822 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
935aaa69 823out_unpin:
d7f46fc4 824 i915_gem_object_ggtt_unpin(obj);
935aaa69 825out:
3de09aa3 826 return ret;
673a394b
EA
827}
828
d174bd64
DV
829/* Per-page copy function for the shmem pwrite fastpath.
830 * Flushes invalid cachelines before writing to the target if
831 * needs_clflush_before is set and flushes out any written cachelines after
832 * writing if needs_clflush is set. */
3043c60c 833static int
d174bd64
DV
834shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 char __user *user_data,
836 bool page_do_bit17_swizzling,
837 bool needs_clflush_before,
838 bool needs_clflush_after)
673a394b 839{
d174bd64 840 char *vaddr;
673a394b 841 int ret;
3de09aa3 842
e7e58eb5 843 if (unlikely(page_do_bit17_swizzling))
d174bd64 844 return -EINVAL;
3de09aa3 845
d174bd64
DV
846 vaddr = kmap_atomic(page);
847 if (needs_clflush_before)
848 drm_clflush_virt_range(vaddr + shmem_page_offset,
849 page_length);
c2831a94
CW
850 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 user_data, page_length);
d174bd64
DV
852 if (needs_clflush_after)
853 drm_clflush_virt_range(vaddr + shmem_page_offset,
854 page_length);
855 kunmap_atomic(vaddr);
3de09aa3 856
755d2218 857 return ret ? -EFAULT : 0;
3de09aa3
EA
858}
859
d174bd64
DV
860/* Only difference to the fast-path function is that this can handle bit17
861 * and uses non-atomic copy and kmap functions. */
3043c60c 862static int
d174bd64
DV
863shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 char __user *user_data,
865 bool page_do_bit17_swizzling,
866 bool needs_clflush_before,
867 bool needs_clflush_after)
673a394b 868{
d174bd64
DV
869 char *vaddr;
870 int ret;
e5281ccd 871
d174bd64 872 vaddr = kmap(page);
e7e58eb5 873 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
874 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 page_length,
876 page_do_bit17_swizzling);
d174bd64
DV
877 if (page_do_bit17_swizzling)
878 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
879 user_data,
880 page_length);
d174bd64
DV
881 else
882 ret = __copy_from_user(vaddr + shmem_page_offset,
883 user_data,
884 page_length);
885 if (needs_clflush_after)
23c18c71
DV
886 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 page_length,
888 page_do_bit17_swizzling);
d174bd64 889 kunmap(page);
40123c1f 890
755d2218 891 return ret ? -EFAULT : 0;
40123c1f
EA
892}
893
40123c1f 894static int
e244a443
DV
895i915_gem_shmem_pwrite(struct drm_device *dev,
896 struct drm_i915_gem_object *obj,
897 struct drm_i915_gem_pwrite *args,
898 struct drm_file *file)
40123c1f 899{
40123c1f 900 ssize_t remain;
8c59967c
DV
901 loff_t offset;
902 char __user *user_data;
eb2c0c81 903 int shmem_page_offset, page_length, ret = 0;
8c59967c 904 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 905 int hit_slowpath = 0;
58642885
DV
906 int needs_clflush_after = 0;
907 int needs_clflush_before = 0;
67d5a50c 908 struct sg_page_iter sg_iter;
40123c1f 909
2bb4629a 910 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
911 remain = args->size;
912
8c59967c 913 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 914
58642885
DV
915 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 /* If we're not in the cpu write domain, set ourself into the gtt
917 * write domain and manually flush cachelines (if required). This
918 * optimizes for the case when the gpu will use the data
919 * right away and we therefore have to clflush anyway. */
2c22569b 920 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
921 ret = i915_gem_object_wait_rendering(obj, false);
922 if (ret)
923 return ret;
58642885 924 }
c76ce038
CW
925 /* Same trick applies to invalidate partially written cachelines read
926 * before writing. */
927 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 needs_clflush_before =
929 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 930
755d2218
CW
931 ret = i915_gem_object_get_pages(obj);
932 if (ret)
933 return ret;
934
77a0d1ca 935 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 936
755d2218
CW
937 i915_gem_object_pin_pages(obj);
938
673a394b 939 offset = args->offset;
05394f39 940 obj->dirty = 1;
673a394b 941
67d5a50c
ID
942 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 offset >> PAGE_SHIFT) {
2db76d7c 944 struct page *page = sg_page_iter_page(&sg_iter);
58642885 945 int partial_cacheline_write;
e5281ccd 946
9da3da66
CW
947 if (remain <= 0)
948 break;
949
40123c1f
EA
950 /* Operation in this page
951 *
40123c1f 952 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
953 * page_length = bytes to copy for this page
954 */
c8cbbb8b 955 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
956
957 page_length = remain;
958 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 960
58642885
DV
961 /* If we don't overwrite a cacheline completely we need to be
962 * careful to have up-to-date data by first clflushing. Don't
963 * overcomplicate things and flush the entire patch. */
964 partial_cacheline_write = needs_clflush_before &&
965 ((shmem_page_offset | page_length)
966 & (boot_cpu_data.x86_clflush_size - 1));
967
8c59967c
DV
968 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 (page_to_phys(page) & (1 << 17)) != 0;
970
d174bd64
DV
971 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 user_data, page_do_bit17_swizzling,
973 partial_cacheline_write,
974 needs_clflush_after);
975 if (ret == 0)
976 goto next_page;
e244a443
DV
977
978 hit_slowpath = 1;
e244a443 979 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
980 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 user_data, page_do_bit17_swizzling,
982 partial_cacheline_write,
983 needs_clflush_after);
40123c1f 984
e244a443 985 mutex_lock(&dev->struct_mutex);
755d2218 986
755d2218 987 if (ret)
8c59967c 988 goto out;
8c59967c 989
17793c9a 990next_page:
40123c1f 991 remain -= page_length;
8c59967c 992 user_data += page_length;
40123c1f 993 offset += page_length;
673a394b
EA
994 }
995
fbd5a26d 996out:
755d2218
CW
997 i915_gem_object_unpin_pages(obj);
998
e244a443 999 if (hit_slowpath) {
8dcf015e
DV
1000 /*
1001 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 * cachelines in-line while writing and the object moved
1003 * out of the cpu write domain while we've dropped the lock.
1004 */
1005 if (!needs_clflush_after &&
1006 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6 1007 if (i915_gem_clflush_object(obj, obj->pin_display))
ed75a55b 1008 needs_clflush_after = true;
e244a443 1009 }
8c59967c 1010 }
673a394b 1011
58642885 1012 if (needs_clflush_after)
e76e9aeb 1013 i915_gem_chipset_flush(dev);
ed75a55b
VS
1014 else
1015 obj->cache_dirty = true;
58642885 1016
de152b62 1017 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1018 return ret;
673a394b
EA
1019}
1020
1021/**
1022 * Writes data to the object referenced by handle.
1023 *
1024 * On error, the contents of the buffer that were to be modified are undefined.
1025 */
1026int
1027i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1028 struct drm_file *file)
673a394b 1029{
5d77d9c5 1030 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1031 struct drm_i915_gem_pwrite *args = data;
05394f39 1032 struct drm_i915_gem_object *obj;
51311d0a
CW
1033 int ret;
1034
1035 if (args->size == 0)
1036 return 0;
1037
1038 if (!access_ok(VERIFY_READ,
2bb4629a 1039 to_user_ptr(args->data_ptr),
51311d0a
CW
1040 args->size))
1041 return -EFAULT;
1042
d330a953 1043 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1044 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045 args->size);
1046 if (ret)
1047 return -EFAULT;
1048 }
673a394b 1049
5d77d9c5
ID
1050 intel_runtime_pm_get(dev_priv);
1051
fbd5a26d 1052 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1053 if (ret)
5d77d9c5 1054 goto put_rpm;
1d7cfea1 1055
05394f39 1056 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1057 if (&obj->base == NULL) {
1d7cfea1
CW
1058 ret = -ENOENT;
1059 goto unlock;
fbd5a26d 1060 }
673a394b 1061
7dcd2499 1062 /* Bounds check destination. */
05394f39
CW
1063 if (args->offset > obj->base.size ||
1064 args->size > obj->base.size - args->offset) {
ce9d419d 1065 ret = -EINVAL;
35b62a89 1066 goto out;
ce9d419d
CW
1067 }
1068
1286ff73
DV
1069 /* prime objects have no backing filp to GEM pread/pwrite
1070 * pages from.
1071 */
1072 if (!obj->base.filp) {
1073 ret = -EINVAL;
1074 goto out;
1075 }
1076
db53a302
CW
1077 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
935aaa69 1079 ret = -EFAULT;
673a394b
EA
1080 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081 * it would end up going through the fenced access, and we'll get
1082 * different detiling behavior between reading and writing.
1083 * pread/pwrite currently are reading and writing from the CPU
1084 * perspective, requiring manual detiling by the client.
1085 */
2c22569b
CW
1086 if (obj->tiling_mode == I915_TILING_NONE &&
1087 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088 cpu_write_needs_clflush(obj)) {
fbd5a26d 1089 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1090 /* Note that the gtt paths might fail with non-page-backed user
1091 * pointers (e.g. gtt mappings when moving data between
1092 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1093 }
673a394b 1094
6a2c4232
CW
1095 if (ret == -EFAULT || ret == -ENOSPC) {
1096 if (obj->phys_handle)
1097 ret = i915_gem_phys_pwrite(obj, args, file);
1098 else
1099 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100 }
5c0480f2 1101
35b62a89 1102out:
05394f39 1103 drm_gem_object_unreference(&obj->base);
1d7cfea1 1104unlock:
fbd5a26d 1105 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1106put_rpm:
1107 intel_runtime_pm_put(dev_priv);
1108
673a394b
EA
1109 return ret;
1110}
1111
b361237b 1112int
33196ded 1113i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1114 bool interruptible)
1115{
1f83fee0 1116 if (i915_reset_in_progress(error)) {
b361237b
CW
1117 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118 * -EIO unconditionally for these. */
1119 if (!interruptible)
1120 return -EIO;
1121
1f83fee0
DV
1122 /* Recovery complete, but the reset failed ... */
1123 if (i915_terminally_wedged(error))
b361237b
CW
1124 return -EIO;
1125
6689c167
MA
1126 /*
1127 * Check if GPU Reset is in progress - we need intel_ring_begin
1128 * to work properly to reinit the hw state while the gpu is
1129 * still marked as reset-in-progress. Handle this with a flag.
1130 */
1131 if (!error->reload_in_reset)
1132 return -EAGAIN;
b361237b
CW
1133 }
1134
1135 return 0;
1136}
1137
094f9a54
CW
1138static void fake_irq(unsigned long data)
1139{
1140 wake_up_process((struct task_struct *)data);
1141}
1142
1143static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1144 struct intel_engine_cs *ring)
094f9a54
CW
1145{
1146 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147}
1148
ca5b721e
CW
1149static unsigned long local_clock_us(unsigned *cpu)
1150{
1151 unsigned long t;
1152
1153 /* Cheaply and approximately convert from nanoseconds to microseconds.
1154 * The result and subsequent calculations are also defined in the same
1155 * approximate microseconds units. The principal source of timing
1156 * error here is from the simple truncation.
1157 *
1158 * Note that local_clock() is only defined wrt to the current CPU;
1159 * the comparisons are no longer valid if we switch CPUs. Instead of
1160 * blocking preemption for the entire busywait, we can detect the CPU
1161 * switch and use that as indicator of system load and a reason to
1162 * stop busywaiting, see busywait_stop().
1163 */
1164 *cpu = get_cpu();
1165 t = local_clock() >> 10;
1166 put_cpu();
1167
1168 return t;
1169}
1170
1171static bool busywait_stop(unsigned long timeout, unsigned cpu)
1172{
1173 unsigned this_cpu;
1174
1175 if (time_after(local_clock_us(&this_cpu), timeout))
1176 return true;
1177
1178 return this_cpu != cpu;
1179}
1180
91b0c352 1181static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
b29c19b6 1182{
2def4ad9 1183 unsigned long timeout;
ca5b721e
CW
1184 unsigned cpu;
1185
1186 /* When waiting for high frequency requests, e.g. during synchronous
1187 * rendering split between the CPU and GPU, the finite amount of time
1188 * required to set up the irq and wait upon it limits the response
1189 * rate. By busywaiting on the request completion for a short while we
1190 * can service the high frequency waits as quick as possible. However,
1191 * if it is a slow request, we want to sleep as quickly as possible.
1192 * The tradeoff between waiting and sleeping is roughly the time it
1193 * takes to sleep on a request, on the order of a microsecond.
1194 */
2def4ad9 1195
821485dc 1196 if (req->ring->irq_refcount)
2def4ad9
CW
1197 return -EBUSY;
1198
821485dc
CW
1199 /* Only spin if we know the GPU is processing this request */
1200 if (!i915_gem_request_started(req, true))
1201 return -EAGAIN;
1202
ca5b721e 1203 timeout = local_clock_us(&cpu) + 5;
2def4ad9 1204 while (!need_resched()) {
eed29a5b 1205 if (i915_gem_request_completed(req, true))
2def4ad9
CW
1206 return 0;
1207
91b0c352
CW
1208 if (signal_pending_state(state, current))
1209 break;
1210
ca5b721e 1211 if (busywait_stop(timeout, cpu))
2def4ad9 1212 break;
b29c19b6 1213
2def4ad9
CW
1214 cpu_relax_lowlatency();
1215 }
821485dc 1216
eed29a5b 1217 if (i915_gem_request_completed(req, false))
2def4ad9
CW
1218 return 0;
1219
1220 return -EAGAIN;
b29c19b6
CW
1221}
1222
b361237b 1223/**
9c654818
JH
1224 * __i915_wait_request - wait until execution of request has finished
1225 * @req: duh!
1226 * @reset_counter: reset sequence associated with the given request
b361237b
CW
1227 * @interruptible: do an interruptible wait (normally yes)
1228 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1229 *
f69061be
DV
1230 * Note: It is of utmost importance that the passed in seqno and reset_counter
1231 * values have been read by the caller in an smp safe manner. Where read-side
1232 * locks are involved, it is sufficient to read the reset_counter before
1233 * unlocking the lock that protects the seqno. For lockless tricks, the
1234 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1235 * inserted.
1236 *
9c654818 1237 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1238 * errno with remaining time filled in timeout argument.
1239 */
9c654818 1240int __i915_wait_request(struct drm_i915_gem_request *req,
f69061be 1241 unsigned reset_counter,
b29c19b6 1242 bool interruptible,
5ed0bdf2 1243 s64 *timeout,
2e1b8730 1244 struct intel_rps_client *rps)
b361237b 1245{
9c654818 1246 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
3d13ef2e 1247 struct drm_device *dev = ring->dev;
3e31c6c0 1248 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1249 const bool irq_test_in_progress =
1250 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
91b0c352 1251 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
094f9a54 1252 DEFINE_WAIT(wait);
47e9766d 1253 unsigned long timeout_expire;
e0313db0 1254 s64 before = 0; /* Only to silence a compiler warning. */
b361237b
CW
1255 int ret;
1256
9df7575f 1257 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1258
b4716185
CW
1259 if (list_empty(&req->list))
1260 return 0;
1261
1b5a433a 1262 if (i915_gem_request_completed(req, true))
b361237b
CW
1263 return 0;
1264
bb6d1984
CW
1265 timeout_expire = 0;
1266 if (timeout) {
1267 if (WARN_ON(*timeout < 0))
1268 return -EINVAL;
1269
1270 if (*timeout == 0)
1271 return -ETIME;
1272
1273 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
e0313db0
TU
1274
1275 /*
1276 * Record current time in case interrupted by signal, or wedged.
1277 */
1278 before = ktime_get_raw_ns();
bb6d1984 1279 }
b361237b 1280
2e1b8730 1281 if (INTEL_INFO(dev_priv)->gen >= 6)
e61b9958 1282 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
b361237b 1283
74328ee5 1284 trace_i915_gem_request_wait_begin(req);
2def4ad9
CW
1285
1286 /* Optimistic spin for the next jiffie before touching IRQs */
91b0c352 1287 ret = __i915_spin_request(req, state);
2def4ad9
CW
1288 if (ret == 0)
1289 goto out;
1290
1291 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1292 ret = -ENODEV;
1293 goto out;
1294 }
1295
094f9a54
CW
1296 for (;;) {
1297 struct timer_list timer;
b361237b 1298
91b0c352 1299 prepare_to_wait(&ring->irq_queue, &wait, state);
b361237b 1300
f69061be
DV
1301 /* We need to check whether any gpu reset happened in between
1302 * the caller grabbing the seqno and now ... */
094f9a54
CW
1303 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1304 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1305 * is truely gone. */
1306 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1307 if (ret == 0)
1308 ret = -EAGAIN;
1309 break;
1310 }
f69061be 1311
1b5a433a 1312 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1313 ret = 0;
1314 break;
1315 }
b361237b 1316
91b0c352 1317 if (signal_pending_state(state, current)) {
094f9a54
CW
1318 ret = -ERESTARTSYS;
1319 break;
1320 }
1321
47e9766d 1322 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1323 ret = -ETIME;
1324 break;
1325 }
1326
1327 timer.function = NULL;
1328 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1329 unsigned long expire;
1330
094f9a54 1331 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1332 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1333 mod_timer(&timer, expire);
1334 }
1335
5035c275 1336 io_schedule();
094f9a54 1337
094f9a54
CW
1338 if (timer.function) {
1339 del_singleshot_timer_sync(&timer);
1340 destroy_timer_on_stack(&timer);
1341 }
1342 }
168c3f21
MK
1343 if (!irq_test_in_progress)
1344 ring->irq_put(ring);
094f9a54
CW
1345
1346 finish_wait(&ring->irq_queue, &wait);
b361237b 1347
2def4ad9 1348out:
2def4ad9
CW
1349 trace_i915_gem_request_wait_end(req);
1350
b361237b 1351 if (timeout) {
e0313db0 1352 s64 tres = *timeout - (ktime_get_raw_ns() - before);
5ed0bdf2
TG
1353
1354 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1355
1356 /*
1357 * Apparently ktime isn't accurate enough and occasionally has a
1358 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1359 * things up to make the test happy. We allow up to 1 jiffy.
1360 *
1361 * This is a regrssion from the timespec->ktime conversion.
1362 */
1363 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1364 *timeout = 0;
b361237b
CW
1365 }
1366
094f9a54 1367 return ret;
b361237b
CW
1368}
1369
fcfa423c
JH
1370int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1371 struct drm_file *file)
1372{
1373 struct drm_i915_private *dev_private;
1374 struct drm_i915_file_private *file_priv;
1375
1376 WARN_ON(!req || !file || req->file_priv);
1377
1378 if (!req || !file)
1379 return -EINVAL;
1380
1381 if (req->file_priv)
1382 return -EINVAL;
1383
1384 dev_private = req->ring->dev->dev_private;
1385 file_priv = file->driver_priv;
1386
1387 spin_lock(&file_priv->mm.lock);
1388 req->file_priv = file_priv;
1389 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1390 spin_unlock(&file_priv->mm.lock);
1391
1392 req->pid = get_pid(task_pid(current));
1393
1394 return 0;
1395}
1396
b4716185
CW
1397static inline void
1398i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1399{
1400 struct drm_i915_file_private *file_priv = request->file_priv;
1401
1402 if (!file_priv)
1403 return;
1404
1405 spin_lock(&file_priv->mm.lock);
1406 list_del(&request->client_list);
1407 request->file_priv = NULL;
1408 spin_unlock(&file_priv->mm.lock);
fcfa423c
JH
1409
1410 put_pid(request->pid);
1411 request->pid = NULL;
b4716185
CW
1412}
1413
1414static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1415{
1416 trace_i915_gem_request_retire(request);
1417
1418 /* We know the GPU must have read the request to have
1419 * sent us the seqno + interrupt, so use the position
1420 * of tail of the request to update the last known position
1421 * of the GPU head.
1422 *
1423 * Note this requires that we are always called in request
1424 * completion order.
1425 */
1426 request->ringbuf->last_retired_head = request->postfix;
1427
1428 list_del_init(&request->list);
1429 i915_gem_request_remove_from_client(request);
1430
b4716185
CW
1431 i915_gem_request_unreference(request);
1432}
1433
1434static void
1435__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1436{
1437 struct intel_engine_cs *engine = req->ring;
1438 struct drm_i915_gem_request *tmp;
1439
1440 lockdep_assert_held(&engine->dev->struct_mutex);
1441
1442 if (list_empty(&req->list))
1443 return;
1444
1445 do {
1446 tmp = list_first_entry(&engine->request_list,
1447 typeof(*tmp), list);
1448
1449 i915_gem_request_retire(tmp);
1450 } while (tmp != req);
1451
1452 WARN_ON(i915_verify_lists(engine->dev));
1453}
1454
b361237b 1455/**
a4b3a571 1456 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1457 * request and object lists appropriately for that event.
1458 */
1459int
a4b3a571 1460i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1461{
a4b3a571
DV
1462 struct drm_device *dev;
1463 struct drm_i915_private *dev_priv;
1464 bool interruptible;
b361237b
CW
1465 int ret;
1466
a4b3a571
DV
1467 BUG_ON(req == NULL);
1468
1469 dev = req->ring->dev;
1470 dev_priv = dev->dev_private;
1471 interruptible = dev_priv->mm.interruptible;
1472
b361237b 1473 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
b361237b 1474
33196ded 1475 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1476 if (ret)
1477 return ret;
1478
b4716185
CW
1479 ret = __i915_wait_request(req,
1480 atomic_read(&dev_priv->gpu_error.reset_counter),
9c654818 1481 interruptible, NULL, NULL);
b4716185
CW
1482 if (ret)
1483 return ret;
d26e3af8 1484
b4716185 1485 __i915_gem_request_retire__upto(req);
d26e3af8
CW
1486 return 0;
1487}
1488
b361237b
CW
1489/**
1490 * Ensures that all rendering to the object has completed and the object is
1491 * safe to unbind from the GTT or access from the CPU.
1492 */
2e2f351d 1493int
b361237b
CW
1494i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1495 bool readonly)
1496{
b4716185 1497 int ret, i;
b361237b 1498
b4716185 1499 if (!obj->active)
b361237b
CW
1500 return 0;
1501
b4716185
CW
1502 if (readonly) {
1503 if (obj->last_write_req != NULL) {
1504 ret = i915_wait_request(obj->last_write_req);
1505 if (ret)
1506 return ret;
b361237b 1507
b4716185
CW
1508 i = obj->last_write_req->ring->id;
1509 if (obj->last_read_req[i] == obj->last_write_req)
1510 i915_gem_object_retire__read(obj, i);
1511 else
1512 i915_gem_object_retire__write(obj);
1513 }
1514 } else {
1515 for (i = 0; i < I915_NUM_RINGS; i++) {
1516 if (obj->last_read_req[i] == NULL)
1517 continue;
1518
1519 ret = i915_wait_request(obj->last_read_req[i]);
1520 if (ret)
1521 return ret;
1522
1523 i915_gem_object_retire__read(obj, i);
1524 }
1525 RQ_BUG_ON(obj->active);
1526 }
1527
1528 return 0;
1529}
1530
1531static void
1532i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1533 struct drm_i915_gem_request *req)
1534{
1535 int ring = req->ring->id;
1536
1537 if (obj->last_read_req[ring] == req)
1538 i915_gem_object_retire__read(obj, ring);
1539 else if (obj->last_write_req == req)
1540 i915_gem_object_retire__write(obj);
1541
1542 __i915_gem_request_retire__upto(req);
b361237b
CW
1543}
1544
3236f57a
CW
1545/* A nonblocking variant of the above wait. This is a highly dangerous routine
1546 * as the object state may change during this call.
1547 */
1548static __must_check int
1549i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
2e1b8730 1550 struct intel_rps_client *rps,
3236f57a
CW
1551 bool readonly)
1552{
1553 struct drm_device *dev = obj->base.dev;
1554 struct drm_i915_private *dev_priv = dev->dev_private;
b4716185 1555 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
f69061be 1556 unsigned reset_counter;
b4716185 1557 int ret, i, n = 0;
3236f57a
CW
1558
1559 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1560 BUG_ON(!dev_priv->mm.interruptible);
1561
b4716185 1562 if (!obj->active)
3236f57a
CW
1563 return 0;
1564
33196ded 1565 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1566 if (ret)
1567 return ret;
1568
f69061be 1569 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
1570
1571 if (readonly) {
1572 struct drm_i915_gem_request *req;
1573
1574 req = obj->last_write_req;
1575 if (req == NULL)
1576 return 0;
1577
b4716185
CW
1578 requests[n++] = i915_gem_request_reference(req);
1579 } else {
1580 for (i = 0; i < I915_NUM_RINGS; i++) {
1581 struct drm_i915_gem_request *req;
1582
1583 req = obj->last_read_req[i];
1584 if (req == NULL)
1585 continue;
1586
b4716185
CW
1587 requests[n++] = i915_gem_request_reference(req);
1588 }
1589 }
1590
3236f57a 1591 mutex_unlock(&dev->struct_mutex);
b4716185
CW
1592 for (i = 0; ret == 0 && i < n; i++)
1593 ret = __i915_wait_request(requests[i], reset_counter, true,
2e1b8730 1594 NULL, rps);
3236f57a
CW
1595 mutex_lock(&dev->struct_mutex);
1596
b4716185
CW
1597 for (i = 0; i < n; i++) {
1598 if (ret == 0)
1599 i915_gem_object_retire_request(obj, requests[i]);
1600 i915_gem_request_unreference(requests[i]);
1601 }
1602
1603 return ret;
3236f57a
CW
1604}
1605
2e1b8730
CW
1606static struct intel_rps_client *to_rps_client(struct drm_file *file)
1607{
1608 struct drm_i915_file_private *fpriv = file->driver_priv;
1609 return &fpriv->rps;
1610}
1611
673a394b 1612/**
2ef7eeaa
EA
1613 * Called when user space prepares to use an object with the CPU, either
1614 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1615 */
1616int
1617i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1618 struct drm_file *file)
673a394b
EA
1619{
1620 struct drm_i915_gem_set_domain *args = data;
05394f39 1621 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1622 uint32_t read_domains = args->read_domains;
1623 uint32_t write_domain = args->write_domain;
673a394b
EA
1624 int ret;
1625
2ef7eeaa 1626 /* Only handle setting domains to types used by the CPU. */
21d509e3 1627 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1628 return -EINVAL;
1629
21d509e3 1630 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1631 return -EINVAL;
1632
1633 /* Having something in the write domain implies it's in the read
1634 * domain, and only that read domain. Enforce that in the request.
1635 */
1636 if (write_domain != 0 && read_domains != write_domain)
1637 return -EINVAL;
1638
76c1dec1 1639 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1640 if (ret)
76c1dec1 1641 return ret;
1d7cfea1 1642
05394f39 1643 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1644 if (&obj->base == NULL) {
1d7cfea1
CW
1645 ret = -ENOENT;
1646 goto unlock;
76c1dec1 1647 }
673a394b 1648
3236f57a
CW
1649 /* Try to flush the object off the GPU without holding the lock.
1650 * We will repeat the flush holding the lock in the normal manner
1651 * to catch cases where we are gazumped.
1652 */
6e4930f6 1653 ret = i915_gem_object_wait_rendering__nonblocking(obj,
2e1b8730 1654 to_rps_client(file),
6e4930f6 1655 !write_domain);
3236f57a
CW
1656 if (ret)
1657 goto unref;
1658
43566ded 1659 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1660 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1661 else
e47c68e9 1662 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1663
031b698a
DV
1664 if (write_domain != 0)
1665 intel_fb_obj_invalidate(obj,
1666 write_domain == I915_GEM_DOMAIN_GTT ?
1667 ORIGIN_GTT : ORIGIN_CPU);
1668
3236f57a 1669unref:
05394f39 1670 drm_gem_object_unreference(&obj->base);
1d7cfea1 1671unlock:
673a394b
EA
1672 mutex_unlock(&dev->struct_mutex);
1673 return ret;
1674}
1675
1676/**
1677 * Called when user space has done writes to this buffer
1678 */
1679int
1680i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1681 struct drm_file *file)
673a394b
EA
1682{
1683 struct drm_i915_gem_sw_finish *args = data;
05394f39 1684 struct drm_i915_gem_object *obj;
673a394b
EA
1685 int ret = 0;
1686
76c1dec1 1687 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1688 if (ret)
76c1dec1 1689 return ret;
1d7cfea1 1690
05394f39 1691 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1692 if (&obj->base == NULL) {
1d7cfea1
CW
1693 ret = -ENOENT;
1694 goto unlock;
673a394b
EA
1695 }
1696
673a394b 1697 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1698 if (obj->pin_display)
e62b59e4 1699 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1700
05394f39 1701 drm_gem_object_unreference(&obj->base);
1d7cfea1 1702unlock:
673a394b
EA
1703 mutex_unlock(&dev->struct_mutex);
1704 return ret;
1705}
1706
1707/**
1708 * Maps the contents of an object, returning the address it is mapped
1709 * into.
1710 *
1711 * While the mapping holds a reference on the contents of the object, it doesn't
1712 * imply a ref on the object itself.
34367381
DV
1713 *
1714 * IMPORTANT:
1715 *
1716 * DRM driver writers who look a this function as an example for how to do GEM
1717 * mmap support, please don't implement mmap support like here. The modern way
1718 * to implement DRM mmap support is with an mmap offset ioctl (like
1719 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1720 * That way debug tooling like valgrind will understand what's going on, hiding
1721 * the mmap call in a driver private ioctl will break that. The i915 driver only
1722 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1723 */
1724int
1725i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1726 struct drm_file *file)
673a394b
EA
1727{
1728 struct drm_i915_gem_mmap *args = data;
1729 struct drm_gem_object *obj;
673a394b
EA
1730 unsigned long addr;
1731
1816f923
AG
1732 if (args->flags & ~(I915_MMAP_WC))
1733 return -EINVAL;
1734
1735 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1736 return -ENODEV;
1737
05394f39 1738 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1739 if (obj == NULL)
bf79cb91 1740 return -ENOENT;
673a394b 1741
1286ff73
DV
1742 /* prime objects have no backing filp to GEM mmap
1743 * pages from.
1744 */
1745 if (!obj->filp) {
1746 drm_gem_object_unreference_unlocked(obj);
1747 return -EINVAL;
1748 }
1749
6be5ceb0 1750 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1751 PROT_READ | PROT_WRITE, MAP_SHARED,
1752 args->offset);
1816f923
AG
1753 if (args->flags & I915_MMAP_WC) {
1754 struct mm_struct *mm = current->mm;
1755 struct vm_area_struct *vma;
1756
1757 down_write(&mm->mmap_sem);
1758 vma = find_vma(mm, addr);
1759 if (vma)
1760 vma->vm_page_prot =
1761 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1762 else
1763 addr = -ENOMEM;
1764 up_write(&mm->mmap_sem);
1765 }
bc9025bd 1766 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1767 if (IS_ERR((void *)addr))
1768 return addr;
1769
1770 args->addr_ptr = (uint64_t) addr;
1771
1772 return 0;
1773}
1774
de151cf6
JB
1775/**
1776 * i915_gem_fault - fault a page into the GTT
d9072a3e
GT
1777 * @vma: VMA in question
1778 * @vmf: fault info
de151cf6
JB
1779 *
1780 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1781 * from userspace. The fault handler takes care of binding the object to
1782 * the GTT (if needed), allocating and programming a fence register (again,
1783 * only if needed based on whether the old reg is still valid or the object
1784 * is tiled) and inserting a new PTE into the faulting process.
1785 *
1786 * Note that the faulting process may involve evicting existing objects
1787 * from the GTT and/or fence registers to make room. So performance may
1788 * suffer if the GTT working set is large or there are few fence registers
1789 * left.
1790 */
1791int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1792{
05394f39
CW
1793 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1794 struct drm_device *dev = obj->base.dev;
3e31c6c0 1795 struct drm_i915_private *dev_priv = dev->dev_private;
c5ad54cf 1796 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
1797 pgoff_t page_offset;
1798 unsigned long pfn;
1799 int ret = 0;
0f973f27 1800 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1801
f65c9168
PZ
1802 intel_runtime_pm_get(dev_priv);
1803
de151cf6
JB
1804 /* We don't use vmf->pgoff since that has the fake offset */
1805 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1806 PAGE_SHIFT;
1807
d9bc7e9f
CW
1808 ret = i915_mutex_lock_interruptible(dev);
1809 if (ret)
1810 goto out;
a00b10c3 1811
db53a302
CW
1812 trace_i915_gem_object_fault(obj, page_offset, true, write);
1813
6e4930f6
CW
1814 /* Try to flush the object off the GPU first without holding the lock.
1815 * Upon reacquiring the lock, we will perform our sanity checks and then
1816 * repeat the flush holding the lock in the normal manner to catch cases
1817 * where we are gazumped.
1818 */
1819 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1820 if (ret)
1821 goto unlock;
1822
eb119bd6
CW
1823 /* Access to snoopable pages through the GTT is incoherent. */
1824 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1825 ret = -EFAULT;
eb119bd6
CW
1826 goto unlock;
1827 }
1828
c5ad54cf 1829 /* Use a partial view if the object is bigger than the aperture. */
e7ded2d7
JL
1830 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1831 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 1832 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1833
c5ad54cf
JL
1834 memset(&view, 0, sizeof(view));
1835 view.type = I915_GGTT_VIEW_PARTIAL;
1836 view.params.partial.offset = rounddown(page_offset, chunk_size);
1837 view.params.partial.size =
1838 min_t(unsigned int,
1839 chunk_size,
1840 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1841 view.params.partial.offset);
1842 }
1843
1844 /* Now pin it into the GTT if needed */
1845 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
c9839303
CW
1846 if (ret)
1847 goto unlock;
4a684a41 1848
c9839303
CW
1849 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1850 if (ret)
1851 goto unpin;
74898d7e 1852
06d98131 1853 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1854 if (ret)
c9839303 1855 goto unpin;
7d1c4804 1856
b90b91d8 1857 /* Finally, remap it using the new GTT offset */
c5ad54cf
JL
1858 pfn = dev_priv->gtt.mappable_base +
1859 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 1860 pfn >>= PAGE_SHIFT;
de151cf6 1861
c5ad54cf
JL
1862 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1863 /* Overriding existing pages in partial view does not cause
1864 * us any trouble as TLBs are still valid because the fault
1865 * is due to userspace losing part of the mapping or never
1866 * having accessed it before (at this partials' range).
1867 */
1868 unsigned long base = vma->vm_start +
1869 (view.params.partial.offset << PAGE_SHIFT);
1870 unsigned int i;
b90b91d8 1871
c5ad54cf
JL
1872 for (i = 0; i < view.params.partial.size; i++) {
1873 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
1874 if (ret)
1875 break;
1876 }
1877
1878 obj->fault_mappable = true;
c5ad54cf
JL
1879 } else {
1880 if (!obj->fault_mappable) {
1881 unsigned long size = min_t(unsigned long,
1882 vma->vm_end - vma->vm_start,
1883 obj->base.size);
1884 int i;
1885
1886 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1887 ret = vm_insert_pfn(vma,
1888 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1889 pfn + i);
1890 if (ret)
1891 break;
1892 }
1893
1894 obj->fault_mappable = true;
1895 } else
1896 ret = vm_insert_pfn(vma,
1897 (unsigned long)vmf->virtual_address,
1898 pfn + page_offset);
1899 }
c9839303 1900unpin:
c5ad54cf 1901 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 1902unlock:
de151cf6 1903 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1904out:
de151cf6 1905 switch (ret) {
d9bc7e9f 1906 case -EIO:
2232f031
DV
1907 /*
1908 * We eat errors when the gpu is terminally wedged to avoid
1909 * userspace unduly crashing (gl has no provisions for mmaps to
1910 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1911 * and so needs to be reported.
1912 */
1913 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1914 ret = VM_FAULT_SIGBUS;
1915 break;
1916 }
045e769a 1917 case -EAGAIN:
571c608d
DV
1918 /*
1919 * EAGAIN means the gpu is hung and we'll wait for the error
1920 * handler to reset everything when re-faulting in
1921 * i915_mutex_lock_interruptible.
d9bc7e9f 1922 */
c715089f
CW
1923 case 0:
1924 case -ERESTARTSYS:
bed636ab 1925 case -EINTR:
e79e0fe3
DR
1926 case -EBUSY:
1927 /*
1928 * EBUSY is ok: this just means that another thread
1929 * already did the job.
1930 */
f65c9168
PZ
1931 ret = VM_FAULT_NOPAGE;
1932 break;
de151cf6 1933 case -ENOMEM:
f65c9168
PZ
1934 ret = VM_FAULT_OOM;
1935 break;
a7c2e1aa 1936 case -ENOSPC:
45d67817 1937 case -EFAULT:
f65c9168
PZ
1938 ret = VM_FAULT_SIGBUS;
1939 break;
de151cf6 1940 default:
a7c2e1aa 1941 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1942 ret = VM_FAULT_SIGBUS;
1943 break;
de151cf6 1944 }
f65c9168
PZ
1945
1946 intel_runtime_pm_put(dev_priv);
1947 return ret;
de151cf6
JB
1948}
1949
901782b2
CW
1950/**
1951 * i915_gem_release_mmap - remove physical page mappings
1952 * @obj: obj in question
1953 *
af901ca1 1954 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1955 * relinquish ownership of the pages back to the system.
1956 *
1957 * It is vital that we remove the page mapping if we have mapped a tiled
1958 * object through the GTT and then lose the fence register due to
1959 * resource pressure. Similarly if the object has been moved out of the
1960 * aperture, than pages mapped into userspace must be revoked. Removing the
1961 * mapping will then trigger a page fault on the next user access, allowing
1962 * fixup by i915_gem_fault().
1963 */
d05ca301 1964void
05394f39 1965i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1966{
6299f992
CW
1967 if (!obj->fault_mappable)
1968 return;
901782b2 1969
6796cb16
DR
1970 drm_vma_node_unmap(&obj->base.vma_node,
1971 obj->base.dev->anon_inode->i_mapping);
6299f992 1972 obj->fault_mappable = false;
901782b2
CW
1973}
1974
eedd10f4
CW
1975void
1976i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1977{
1978 struct drm_i915_gem_object *obj;
1979
1980 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1981 i915_gem_release_mmap(obj);
1982}
1983
0fa87796 1984uint32_t
e28f8711 1985i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1986{
e28f8711 1987 uint32_t gtt_size;
92b88aeb
CW
1988
1989 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1990 tiling_mode == I915_TILING_NONE)
1991 return size;
92b88aeb
CW
1992
1993 /* Previous chips need a power-of-two fence region when tiling */
1994 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1995 gtt_size = 1024*1024;
92b88aeb 1996 else
e28f8711 1997 gtt_size = 512*1024;
92b88aeb 1998
e28f8711
CW
1999 while (gtt_size < size)
2000 gtt_size <<= 1;
92b88aeb 2001
e28f8711 2002 return gtt_size;
92b88aeb
CW
2003}
2004
de151cf6
JB
2005/**
2006 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2007 * @obj: object to check
2008 *
2009 * Return the required GTT alignment for an object, taking into account
5e783301 2010 * potential fence register mapping.
de151cf6 2011 */
d865110c
ID
2012uint32_t
2013i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2014 int tiling_mode, bool fenced)
de151cf6 2015{
de151cf6
JB
2016 /*
2017 * Minimum alignment is 4k (GTT page size), but might be greater
2018 * if a fence register is needed for the object.
2019 */
d865110c 2020 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 2021 tiling_mode == I915_TILING_NONE)
de151cf6
JB
2022 return 4096;
2023
a00b10c3
CW
2024 /*
2025 * Previous chips need to be aligned to the size of the smallest
2026 * fence register that can contain the object.
2027 */
e28f8711 2028 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
2029}
2030
d8cb5086
CW
2031static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2032{
2033 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2034 int ret;
2035
0de23977 2036 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
2037 return 0;
2038
da494d7c
DV
2039 dev_priv->mm.shrinker_no_lock_stealing = true;
2040
d8cb5086
CW
2041 ret = drm_gem_create_mmap_offset(&obj->base);
2042 if (ret != -ENOSPC)
da494d7c 2043 goto out;
d8cb5086
CW
2044
2045 /* Badly fragmented mmap space? The only way we can recover
2046 * space is by destroying unwanted objects. We can't randomly release
2047 * mmap_offsets as userspace expects them to be persistent for the
2048 * lifetime of the objects. The closest we can is to release the
2049 * offsets on purgeable objects by truncating it and marking it purged,
2050 * which prevents userspace from ever using that object again.
2051 */
21ab4e74
CW
2052 i915_gem_shrink(dev_priv,
2053 obj->base.size >> PAGE_SHIFT,
2054 I915_SHRINK_BOUND |
2055 I915_SHRINK_UNBOUND |
2056 I915_SHRINK_PURGEABLE);
d8cb5086
CW
2057 ret = drm_gem_create_mmap_offset(&obj->base);
2058 if (ret != -ENOSPC)
da494d7c 2059 goto out;
d8cb5086
CW
2060
2061 i915_gem_shrink_all(dev_priv);
da494d7c
DV
2062 ret = drm_gem_create_mmap_offset(&obj->base);
2063out:
2064 dev_priv->mm.shrinker_no_lock_stealing = false;
2065
2066 return ret;
d8cb5086
CW
2067}
2068
2069static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2070{
d8cb5086
CW
2071 drm_gem_free_mmap_offset(&obj->base);
2072}
2073
da6b51d0 2074int
ff72145b
DA
2075i915_gem_mmap_gtt(struct drm_file *file,
2076 struct drm_device *dev,
da6b51d0 2077 uint32_t handle,
ff72145b 2078 uint64_t *offset)
de151cf6 2079{
05394f39 2080 struct drm_i915_gem_object *obj;
de151cf6
JB
2081 int ret;
2082
76c1dec1 2083 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 2084 if (ret)
76c1dec1 2085 return ret;
de151cf6 2086
ff72145b 2087 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 2088 if (&obj->base == NULL) {
1d7cfea1
CW
2089 ret = -ENOENT;
2090 goto unlock;
2091 }
de151cf6 2092
05394f39 2093 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2094 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 2095 ret = -EFAULT;
1d7cfea1 2096 goto out;
ab18282d
CW
2097 }
2098
d8cb5086
CW
2099 ret = i915_gem_object_create_mmap_offset(obj);
2100 if (ret)
2101 goto out;
de151cf6 2102
0de23977 2103 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2104
1d7cfea1 2105out:
05394f39 2106 drm_gem_object_unreference(&obj->base);
1d7cfea1 2107unlock:
de151cf6 2108 mutex_unlock(&dev->struct_mutex);
1d7cfea1 2109 return ret;
de151cf6
JB
2110}
2111
ff72145b
DA
2112/**
2113 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2114 * @dev: DRM device
2115 * @data: GTT mapping ioctl data
2116 * @file: GEM object info
2117 *
2118 * Simply returns the fake offset to userspace so it can mmap it.
2119 * The mmap call will end up in drm_gem_mmap(), which will set things
2120 * up so we can get faults in the handler above.
2121 *
2122 * The fault handler will take care of binding the object into the GTT
2123 * (since it may have been evicted to make room for something), allocating
2124 * a fence register, and mapping the appropriate aperture address into
2125 * userspace.
2126 */
2127int
2128i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2129 struct drm_file *file)
2130{
2131 struct drm_i915_gem_mmap_gtt *args = data;
2132
da6b51d0 2133 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2134}
2135
225067ee
DV
2136/* Immediately discard the backing storage */
2137static void
2138i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2139{
4d6294bf 2140 i915_gem_object_free_mmap_offset(obj);
1286ff73 2141
4d6294bf
CW
2142 if (obj->base.filp == NULL)
2143 return;
e5281ccd 2144
225067ee
DV
2145 /* Our goal here is to return as much of the memory as
2146 * is possible back to the system as we are called from OOM.
2147 * To do this we must instruct the shmfs to drop all of its
2148 * backing pages, *now*.
2149 */
5537252b 2150 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2151 obj->madv = __I915_MADV_PURGED;
2152}
e5281ccd 2153
5537252b
CW
2154/* Try to discard unwanted pages */
2155static void
2156i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2157{
5537252b
CW
2158 struct address_space *mapping;
2159
2160 switch (obj->madv) {
2161 case I915_MADV_DONTNEED:
2162 i915_gem_object_truncate(obj);
2163 case __I915_MADV_PURGED:
2164 return;
2165 }
2166
2167 if (obj->base.filp == NULL)
2168 return;
2169
2170 mapping = file_inode(obj->base.filp)->i_mapping,
2171 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2172}
2173
5cdf5881 2174static void
05394f39 2175i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2176{
90797e6d
ID
2177 struct sg_page_iter sg_iter;
2178 int ret;
1286ff73 2179
05394f39 2180 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2181
6c085a72
CW
2182 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2183 if (ret) {
2184 /* In the event of a disaster, abandon all caches and
2185 * hope for the best.
2186 */
2187 WARN_ON(ret != -EIO);
2c22569b 2188 i915_gem_clflush_object(obj, true);
6c085a72
CW
2189 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2190 }
2191
e2273302
ID
2192 i915_gem_gtt_finish_object(obj);
2193
6dacfd2f 2194 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2195 i915_gem_object_save_bit_17_swizzle(obj);
2196
05394f39
CW
2197 if (obj->madv == I915_MADV_DONTNEED)
2198 obj->dirty = 0;
3ef94daa 2199
90797e6d 2200 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 2201 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 2202
05394f39 2203 if (obj->dirty)
9da3da66 2204 set_page_dirty(page);
3ef94daa 2205
05394f39 2206 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2207 mark_page_accessed(page);
3ef94daa 2208
9da3da66 2209 page_cache_release(page);
3ef94daa 2210 }
05394f39 2211 obj->dirty = 0;
673a394b 2212
9da3da66
CW
2213 sg_free_table(obj->pages);
2214 kfree(obj->pages);
37e680a1 2215}
6c085a72 2216
dd624afd 2217int
37e680a1
CW
2218i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2219{
2220 const struct drm_i915_gem_object_ops *ops = obj->ops;
2221
2f745ad3 2222 if (obj->pages == NULL)
37e680a1
CW
2223 return 0;
2224
a5570178
CW
2225 if (obj->pages_pin_count)
2226 return -EBUSY;
2227
9843877d 2228 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2229
a2165e31
CW
2230 /* ->put_pages might need to allocate memory for the bit17 swizzle
2231 * array, hence protect them from being reaped by removing them from gtt
2232 * lists early. */
35c20a60 2233 list_del(&obj->global_list);
a2165e31 2234
37e680a1 2235 ops->put_pages(obj);
05394f39 2236 obj->pages = NULL;
37e680a1 2237
5537252b 2238 i915_gem_object_invalidate(obj);
6c085a72
CW
2239
2240 return 0;
2241}
2242
37e680a1 2243static int
6c085a72 2244i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2245{
6c085a72 2246 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2247 int page_count, i;
2248 struct address_space *mapping;
9da3da66
CW
2249 struct sg_table *st;
2250 struct scatterlist *sg;
90797e6d 2251 struct sg_page_iter sg_iter;
e5281ccd 2252 struct page *page;
90797e6d 2253 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2254 int ret;
6c085a72 2255 gfp_t gfp;
e5281ccd 2256
6c085a72
CW
2257 /* Assert that the object is not currently in any GPU domain. As it
2258 * wasn't in the GTT, there shouldn't be any way it could have been in
2259 * a GPU cache
2260 */
2261 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2262 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2263
9da3da66
CW
2264 st = kmalloc(sizeof(*st), GFP_KERNEL);
2265 if (st == NULL)
2266 return -ENOMEM;
2267
05394f39 2268 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2269 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2270 kfree(st);
e5281ccd 2271 return -ENOMEM;
9da3da66 2272 }
e5281ccd 2273
9da3da66
CW
2274 /* Get the list of pages out of our struct file. They'll be pinned
2275 * at this point until we release them.
2276 *
2277 * Fail silently without starting the shrinker
2278 */
496ad9aa 2279 mapping = file_inode(obj->base.filp)->i_mapping;
c62d2555 2280 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2281 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2282 sg = st->sgl;
2283 st->nents = 0;
2284 for (i = 0; i < page_count; i++) {
6c085a72
CW
2285 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2286 if (IS_ERR(page)) {
21ab4e74
CW
2287 i915_gem_shrink(dev_priv,
2288 page_count,
2289 I915_SHRINK_BOUND |
2290 I915_SHRINK_UNBOUND |
2291 I915_SHRINK_PURGEABLE);
6c085a72
CW
2292 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2293 }
2294 if (IS_ERR(page)) {
2295 /* We've tried hard to allocate the memory by reaping
2296 * our own buffer, now let the real VM do its job and
2297 * go down in flames if truly OOM.
2298 */
6c085a72 2299 i915_gem_shrink_all(dev_priv);
f461d1be 2300 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2301 if (IS_ERR(page)) {
2302 ret = PTR_ERR(page);
6c085a72 2303 goto err_pages;
e2273302 2304 }
6c085a72 2305 }
426729dc
KRW
2306#ifdef CONFIG_SWIOTLB
2307 if (swiotlb_nr_tbl()) {
2308 st->nents++;
2309 sg_set_page(sg, page, PAGE_SIZE, 0);
2310 sg = sg_next(sg);
2311 continue;
2312 }
2313#endif
90797e6d
ID
2314 if (!i || page_to_pfn(page) != last_pfn + 1) {
2315 if (i)
2316 sg = sg_next(sg);
2317 st->nents++;
2318 sg_set_page(sg, page, PAGE_SIZE, 0);
2319 } else {
2320 sg->length += PAGE_SIZE;
2321 }
2322 last_pfn = page_to_pfn(page);
3bbbe706
DV
2323
2324 /* Check that the i965g/gm workaround works. */
2325 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2326 }
426729dc
KRW
2327#ifdef CONFIG_SWIOTLB
2328 if (!swiotlb_nr_tbl())
2329#endif
2330 sg_mark_end(sg);
74ce6b6c
CW
2331 obj->pages = st;
2332
e2273302
ID
2333 ret = i915_gem_gtt_prepare_object(obj);
2334 if (ret)
2335 goto err_pages;
2336
6dacfd2f 2337 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2338 i915_gem_object_do_bit_17_swizzle(obj);
2339
656bfa3a
DV
2340 if (obj->tiling_mode != I915_TILING_NONE &&
2341 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2342 i915_gem_object_pin_pages(obj);
2343
e5281ccd
CW
2344 return 0;
2345
2346err_pages:
90797e6d
ID
2347 sg_mark_end(sg);
2348 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2349 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2350 sg_free_table(st);
2351 kfree(st);
0820baf3
CW
2352
2353 /* shmemfs first checks if there is enough memory to allocate the page
2354 * and reports ENOSPC should there be insufficient, along with the usual
2355 * ENOMEM for a genuine allocation failure.
2356 *
2357 * We use ENOSPC in our driver to mean that we have run out of aperture
2358 * space and so want to translate the error from shmemfs back to our
2359 * usual understanding of ENOMEM.
2360 */
e2273302
ID
2361 if (ret == -ENOSPC)
2362 ret = -ENOMEM;
2363
2364 return ret;
673a394b
EA
2365}
2366
37e680a1
CW
2367/* Ensure that the associated pages are gathered from the backing storage
2368 * and pinned into our object. i915_gem_object_get_pages() may be called
2369 * multiple times before they are released by a single call to
2370 * i915_gem_object_put_pages() - once the pages are no longer referenced
2371 * either as a result of memory pressure (reaping pages under the shrinker)
2372 * or as the object is itself released.
2373 */
2374int
2375i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2376{
2377 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2378 const struct drm_i915_gem_object_ops *ops = obj->ops;
2379 int ret;
2380
2f745ad3 2381 if (obj->pages)
37e680a1
CW
2382 return 0;
2383
43e28f09 2384 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2385 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2386 return -EFAULT;
43e28f09
CW
2387 }
2388
a5570178
CW
2389 BUG_ON(obj->pages_pin_count);
2390
37e680a1
CW
2391 ret = ops->get_pages(obj);
2392 if (ret)
2393 return ret;
2394
35c20a60 2395 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2396
2397 obj->get_page.sg = obj->pages->sgl;
2398 obj->get_page.last = 0;
2399
37e680a1 2400 return 0;
673a394b
EA
2401}
2402
b4716185 2403void i915_vma_move_to_active(struct i915_vma *vma,
b2af0376 2404 struct drm_i915_gem_request *req)
673a394b 2405{
b4716185 2406 struct drm_i915_gem_object *obj = vma->obj;
b2af0376
JH
2407 struct intel_engine_cs *ring;
2408
2409 ring = i915_gem_request_get_ring(req);
673a394b
EA
2410
2411 /* Add a reference if we're newly entering the active list. */
b4716185 2412 if (obj->active == 0)
05394f39 2413 drm_gem_object_reference(&obj->base);
b4716185 2414 obj->active |= intel_ring_flag(ring);
e35a41de 2415
b4716185 2416 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
b2af0376 2417 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
caea7476 2418
b4716185 2419 list_move_tail(&vma->mm_list, &vma->vm->active_list);
caea7476
CW
2420}
2421
b4716185
CW
2422static void
2423i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
e2d05a8b 2424{
b4716185
CW
2425 RQ_BUG_ON(obj->last_write_req == NULL);
2426 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2427
2428 i915_gem_request_assign(&obj->last_write_req, NULL);
de152b62 2429 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2430}
2431
caea7476 2432static void
b4716185 2433i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
ce44b0ea 2434{
feb822cf 2435 struct i915_vma *vma;
ce44b0ea 2436
b4716185
CW
2437 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2438 RQ_BUG_ON(!(obj->active & (1 << ring)));
2439
2440 list_del_init(&obj->ring_list[ring]);
2441 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2442
2443 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2444 i915_gem_object_retire__write(obj);
2445
2446 obj->active &= ~(1 << ring);
2447 if (obj->active)
2448 return;
caea7476 2449
6c246959
CW
2450 /* Bump our place on the bound list to keep it roughly in LRU order
2451 * so that we don't steal from recently used but inactive objects
2452 * (unless we are forced to ofc!)
2453 */
2454 list_move_tail(&obj->global_list,
2455 &to_i915(obj->base.dev)->mm.bound_list);
2456
fe14d5f4
TU
2457 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2458 if (!list_empty(&vma->mm_list))
2459 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
feb822cf 2460 }
caea7476 2461
97b2a6a1 2462 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476 2463 drm_gem_object_unreference(&obj->base);
c8725f3d
CW
2464}
2465
9d773091 2466static int
fca26bb4 2467i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2468{
9d773091 2469 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2470 struct intel_engine_cs *ring;
9d773091 2471 int ret, i, j;
53d227f2 2472
107f27a5 2473 /* Carefully retire all requests without writing to the rings */
9d773091 2474 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2475 ret = intel_ring_idle(ring);
2476 if (ret)
2477 return ret;
9d773091 2478 }
9d773091 2479 i915_gem_retire_requests(dev);
107f27a5
CW
2480
2481 /* Finally reset hw state */
9d773091 2482 for_each_ring(ring, dev_priv, i) {
fca26bb4 2483 intel_ring_init_seqno(ring, seqno);
498d2ac1 2484
ebc348b2
BW
2485 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2486 ring->semaphore.sync_seqno[j] = 0;
9d773091 2487 }
53d227f2 2488
9d773091 2489 return 0;
53d227f2
DV
2490}
2491
fca26bb4
MK
2492int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2493{
2494 struct drm_i915_private *dev_priv = dev->dev_private;
2495 int ret;
2496
2497 if (seqno == 0)
2498 return -EINVAL;
2499
2500 /* HWS page needs to be set less than what we
2501 * will inject to ring
2502 */
2503 ret = i915_gem_init_seqno(dev, seqno - 1);
2504 if (ret)
2505 return ret;
2506
2507 /* Carefully set the last_seqno value so that wrap
2508 * detection still works
2509 */
2510 dev_priv->next_seqno = seqno;
2511 dev_priv->last_seqno = seqno - 1;
2512 if (dev_priv->last_seqno == 0)
2513 dev_priv->last_seqno--;
2514
2515 return 0;
2516}
2517
9d773091
CW
2518int
2519i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2520{
9d773091
CW
2521 struct drm_i915_private *dev_priv = dev->dev_private;
2522
2523 /* reserve 0 for non-seqno */
2524 if (dev_priv->next_seqno == 0) {
fca26bb4 2525 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2526 if (ret)
2527 return ret;
53d227f2 2528
9d773091
CW
2529 dev_priv->next_seqno = 1;
2530 }
53d227f2 2531
f72b3435 2532 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2533 return 0;
53d227f2
DV
2534}
2535
bf7dc5b7
JH
2536/*
2537 * NB: This function is not allowed to fail. Doing so would mean the the
2538 * request is not being tracked for completion but the work itself is
2539 * going to happen on the hardware. This would be a Bad Thing(tm).
2540 */
75289874 2541void __i915_add_request(struct drm_i915_gem_request *request,
5b4a60c2
JH
2542 struct drm_i915_gem_object *obj,
2543 bool flush_caches)
673a394b 2544{
75289874
JH
2545 struct intel_engine_cs *ring;
2546 struct drm_i915_private *dev_priv;
48e29f55 2547 struct intel_ringbuffer *ringbuf;
6d3d8274 2548 u32 request_start;
3cce469c
CW
2549 int ret;
2550
48e29f55 2551 if (WARN_ON(request == NULL))
bf7dc5b7 2552 return;
48e29f55 2553
75289874
JH
2554 ring = request->ring;
2555 dev_priv = ring->dev->dev_private;
2556 ringbuf = request->ringbuf;
2557
29b1b415
JH
2558 /*
2559 * To ensure that this call will not fail, space for its emissions
2560 * should already have been reserved in the ring buffer. Let the ring
2561 * know that it is time to use that space up.
2562 */
2563 intel_ring_reserved_space_use(ringbuf);
2564
48e29f55 2565 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2566 /*
2567 * Emit any outstanding flushes - execbuf can fail to emit the flush
2568 * after having emitted the batchbuffer command. Hence we need to fix
2569 * things up similar to emitting the lazy request. The difference here
2570 * is that the flush _must_ happen before the next request, no matter
2571 * what.
2572 */
5b4a60c2
JH
2573 if (flush_caches) {
2574 if (i915.enable_execlists)
4866d729 2575 ret = logical_ring_flush_all_caches(request);
5b4a60c2 2576 else
4866d729 2577 ret = intel_ring_flush_all_caches(request);
5b4a60c2
JH
2578 /* Not allowed to fail! */
2579 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2580 }
cc889e0f 2581
a71d8d94
CW
2582 /* Record the position of the start of the request so that
2583 * should we detect the updated seqno part-way through the
2584 * GPU processing the request, we never over-estimate the
2585 * position of the head.
2586 */
6d3d8274 2587 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2588
bf7dc5b7 2589 if (i915.enable_execlists)
c4e76638 2590 ret = ring->emit_request(request);
bf7dc5b7 2591 else {
ee044a88 2592 ret = ring->add_request(request);
53292cdb
MT
2593
2594 request->tail = intel_ring_get_tail(ringbuf);
48e29f55 2595 }
bf7dc5b7
JH
2596 /* Not allowed to fail! */
2597 WARN(ret, "emit|add_request failed: %d!\n", ret);
673a394b 2598
7d736f4f 2599 request->head = request_start;
7d736f4f
MK
2600
2601 /* Whilst this request exists, batch_obj will be on the
2602 * active_list, and so will hold the active reference. Only when this
2603 * request is retired will the the batch_obj be moved onto the
2604 * inactive_list and lose its active reference. Hence we do not need
2605 * to explicitly hold another reference here.
2606 */
9a7e0c2a 2607 request->batch_obj = obj;
0e50e96b 2608
673a394b 2609 request->emitted_jiffies = jiffies;
821485dc 2610 request->previous_seqno = ring->last_submitted_seqno;
94f7bbe1 2611 ring->last_submitted_seqno = request->seqno;
852835f3 2612 list_add_tail(&request->list, &ring->request_list);
673a394b 2613
74328ee5 2614 trace_i915_gem_request_add(request);
db53a302 2615
87255483 2616 i915_queue_hangcheck(ring->dev);
10cd45b6 2617
87255483
DV
2618 queue_delayed_work(dev_priv->wq,
2619 &dev_priv->mm.retire_work,
2620 round_jiffies_up_relative(HZ));
2621 intel_mark_busy(dev_priv->dev);
cc889e0f 2622
29b1b415
JH
2623 /* Sanity check that the reserved size was large enough. */
2624 intel_ring_reserved_space_end(ringbuf);
673a394b
EA
2625}
2626
939fd762 2627static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2628 const struct intel_context *ctx)
be62acb4 2629{
44e2c070 2630 unsigned long elapsed;
be62acb4 2631
44e2c070
MK
2632 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2633
2634 if (ctx->hang_stats.banned)
be62acb4
MK
2635 return true;
2636
676fa572
CW
2637 if (ctx->hang_stats.ban_period_seconds &&
2638 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2639 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2640 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2641 return true;
88b4aa87
MK
2642 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2643 if (i915_stop_ring_allow_warn(dev_priv))
2644 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2645 return true;
3fac8978 2646 }
be62acb4
MK
2647 }
2648
2649 return false;
2650}
2651
939fd762 2652static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2653 struct intel_context *ctx,
b6b0fac0 2654 const bool guilty)
aa60c664 2655{
44e2c070
MK
2656 struct i915_ctx_hang_stats *hs;
2657
2658 if (WARN_ON(!ctx))
2659 return;
aa60c664 2660
44e2c070
MK
2661 hs = &ctx->hang_stats;
2662
2663 if (guilty) {
939fd762 2664 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2665 hs->batch_active++;
2666 hs->guilty_ts = get_seconds();
2667 } else {
2668 hs->batch_pending++;
aa60c664
MK
2669 }
2670}
2671
abfe262a
JH
2672void i915_gem_request_free(struct kref *req_ref)
2673{
2674 struct drm_i915_gem_request *req = container_of(req_ref,
2675 typeof(*req), ref);
2676 struct intel_context *ctx = req->ctx;
2677
fcfa423c
JH
2678 if (req->file_priv)
2679 i915_gem_request_remove_from_client(req);
2680
0794aed3 2681 if (ctx) {
e28e404c
DG
2682 if (i915.enable_execlists && ctx != req->i915->kernel_context)
2683 intel_lr_context_unpin(req);
abfe262a 2684
dcb4c12a
OM
2685 i915_gem_context_unreference(ctx);
2686 }
abfe262a 2687
efab6d8d 2688 kmem_cache_free(req->i915->requests, req);
0e50e96b
MK
2689}
2690
26827088
DG
2691static inline int
2692__i915_gem_request_alloc(struct intel_engine_cs *ring,
2693 struct intel_context *ctx,
2694 struct drm_i915_gem_request **req_out)
6689cb2b 2695{
efab6d8d 2696 struct drm_i915_private *dev_priv = to_i915(ring->dev);
eed29a5b 2697 struct drm_i915_gem_request *req;
6689cb2b 2698 int ret;
6689cb2b 2699
217e46b5
JH
2700 if (!req_out)
2701 return -EINVAL;
2702
bccca494 2703 *req_out = NULL;
6689cb2b 2704
eed29a5b
DV
2705 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2706 if (req == NULL)
6689cb2b
JH
2707 return -ENOMEM;
2708
eed29a5b 2709 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
9a0c1e27
CW
2710 if (ret)
2711 goto err;
6689cb2b 2712
40e895ce
JH
2713 kref_init(&req->ref);
2714 req->i915 = dev_priv;
eed29a5b 2715 req->ring = ring;
40e895ce
JH
2716 req->ctx = ctx;
2717 i915_gem_context_reference(req->ctx);
6689cb2b
JH
2718
2719 if (i915.enable_execlists)
40e895ce 2720 ret = intel_logical_ring_alloc_request_extras(req);
6689cb2b 2721 else
eed29a5b 2722 ret = intel_ring_alloc_request_extras(req);
40e895ce
JH
2723 if (ret) {
2724 i915_gem_context_unreference(req->ctx);
9a0c1e27 2725 goto err;
40e895ce 2726 }
6689cb2b 2727
29b1b415
JH
2728 /*
2729 * Reserve space in the ring buffer for all the commands required to
2730 * eventually emit this request. This is to guarantee that the
2731 * i915_add_request() call can't fail. Note that the reserve may need
2732 * to be redone if the request is not actually submitted straight
2733 * away, e.g. because a GPU scheduler has deferred it.
29b1b415 2734 */
ccd98fe4
JH
2735 if (i915.enable_execlists)
2736 ret = intel_logical_ring_reserve_space(req);
2737 else
2738 ret = intel_ring_reserve_space(req);
2739 if (ret) {
2740 /*
2741 * At this point, the request is fully allocated even if not
2742 * fully prepared. Thus it can be cleaned up using the proper
2743 * free code.
2744 */
2745 i915_gem_request_cancel(req);
2746 return ret;
2747 }
29b1b415 2748
bccca494 2749 *req_out = req;
6689cb2b 2750 return 0;
9a0c1e27
CW
2751
2752err:
2753 kmem_cache_free(dev_priv->requests, req);
2754 return ret;
0e50e96b
MK
2755}
2756
26827088
DG
2757/**
2758 * i915_gem_request_alloc - allocate a request structure
2759 *
2760 * @engine: engine that we wish to issue the request on.
2761 * @ctx: context that the request will be associated with.
2762 * This can be NULL if the request is not directly related to
2763 * any specific user context, in which case this function will
2764 * choose an appropriate context to use.
2765 *
2766 * Returns a pointer to the allocated request if successful,
2767 * or an error code if not.
2768 */
2769struct drm_i915_gem_request *
2770i915_gem_request_alloc(struct intel_engine_cs *engine,
2771 struct intel_context *ctx)
2772{
2773 struct drm_i915_gem_request *req;
2774 int err;
2775
2776 if (ctx == NULL)
ed54c1a1 2777 ctx = to_i915(engine->dev)->kernel_context;
26827088
DG
2778 err = __i915_gem_request_alloc(engine, ctx, &req);
2779 return err ? ERR_PTR(err) : req;
2780}
2781
29b1b415
JH
2782void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2783{
2784 intel_ring_reserved_space_cancel(req->ringbuf);
2785
2786 i915_gem_request_unreference(req);
2787}
2788
8d9fc7fd 2789struct drm_i915_gem_request *
a4872ba6 2790i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2791{
4db080f9
CW
2792 struct drm_i915_gem_request *request;
2793
2794 list_for_each_entry(request, &ring->request_list, list) {
1b5a433a 2795 if (i915_gem_request_completed(request, false))
4db080f9 2796 continue;
aa60c664 2797
b6b0fac0 2798 return request;
4db080f9 2799 }
b6b0fac0
MK
2800
2801 return NULL;
2802}
2803
2804static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2805 struct intel_engine_cs *ring)
b6b0fac0
MK
2806{
2807 struct drm_i915_gem_request *request;
2808 bool ring_hung;
2809
8d9fc7fd 2810 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2811
2812 if (request == NULL)
2813 return;
2814
2815 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2816
939fd762 2817 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2818
2819 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2820 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2821}
aa60c664 2822
4db080f9 2823static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2824 struct intel_engine_cs *ring)
4db080f9 2825{
608c1a52
CW
2826 struct intel_ringbuffer *buffer;
2827
dfaae392 2828 while (!list_empty(&ring->active_list)) {
05394f39 2829 struct drm_i915_gem_object *obj;
9375e446 2830
05394f39
CW
2831 obj = list_first_entry(&ring->active_list,
2832 struct drm_i915_gem_object,
b4716185 2833 ring_list[ring->id]);
9375e446 2834
b4716185 2835 i915_gem_object_retire__read(obj, ring->id);
673a394b 2836 }
1d62beea 2837
dcb4c12a
OM
2838 /*
2839 * Clear the execlists queue up before freeing the requests, as those
2840 * are the ones that keep the context and ringbuffer backing objects
2841 * pinned in place.
2842 */
dcb4c12a 2843
7de1691a
TE
2844 if (i915.enable_execlists) {
2845 spin_lock_irq(&ring->execlist_lock);
1197b4f2 2846
c5baa566
TE
2847 /* list_splice_tail_init checks for empty lists */
2848 list_splice_tail_init(&ring->execlist_queue,
2849 &ring->execlist_retired_req_list);
1197b4f2 2850
7de1691a 2851 spin_unlock_irq(&ring->execlist_lock);
c5baa566 2852 intel_execlists_retire_requests(ring);
dcb4c12a
OM
2853 }
2854
1d62beea
BW
2855 /*
2856 * We must free the requests after all the corresponding objects have
2857 * been moved off active lists. Which is the same order as the normal
2858 * retire_requests function does. This is important if object hold
2859 * implicit references on things like e.g. ppgtt address spaces through
2860 * the request.
2861 */
2862 while (!list_empty(&ring->request_list)) {
2863 struct drm_i915_gem_request *request;
2864
2865 request = list_first_entry(&ring->request_list,
2866 struct drm_i915_gem_request,
2867 list);
2868
b4716185 2869 i915_gem_request_retire(request);
1d62beea 2870 }
608c1a52
CW
2871
2872 /* Having flushed all requests from all queues, we know that all
2873 * ringbuffers must now be empty. However, since we do not reclaim
2874 * all space when retiring the request (to prevent HEADs colliding
2875 * with rapid ringbuffer wraparound) the amount of available space
2876 * upon reset is less than when we start. Do one more pass over
2877 * all the ringbuffers to reset last_retired_head.
2878 */
2879 list_for_each_entry(buffer, &ring->buffers, link) {
2880 buffer->last_retired_head = buffer->tail;
2881 intel_ring_update_space(buffer);
2882 }
673a394b
EA
2883}
2884
069efc1d 2885void i915_gem_reset(struct drm_device *dev)
673a394b 2886{
77f01230 2887 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2888 struct intel_engine_cs *ring;
1ec14ad3 2889 int i;
673a394b 2890
4db080f9
CW
2891 /*
2892 * Before we free the objects from the requests, we need to inspect
2893 * them for finding the guilty party. As the requests only borrow
2894 * their reference to the objects, the inspection must be done first.
2895 */
2896 for_each_ring(ring, dev_priv, i)
2897 i915_gem_reset_ring_status(dev_priv, ring);
2898
b4519513 2899 for_each_ring(ring, dev_priv, i)
4db080f9 2900 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2901
acce9ffa
BW
2902 i915_gem_context_reset(dev);
2903
19b2dbde 2904 i915_gem_restore_fences(dev);
b4716185
CW
2905
2906 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2907}
2908
2909/**
2910 * This function clears the request list as sequence numbers are passed.
2911 */
1cf0ba14 2912void
a4872ba6 2913i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2914{
db53a302 2915 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2916
832a3aad
CW
2917 /* Retire requests first as we use it above for the early return.
2918 * If we retire requests last, we may use a later seqno and so clear
2919 * the requests lists without clearing the active list, leading to
2920 * confusion.
e9103038 2921 */
852835f3 2922 while (!list_empty(&ring->request_list)) {
673a394b 2923 struct drm_i915_gem_request *request;
673a394b 2924
852835f3 2925 request = list_first_entry(&ring->request_list,
673a394b
EA
2926 struct drm_i915_gem_request,
2927 list);
673a394b 2928
1b5a433a 2929 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2930 break;
2931
b4716185 2932 i915_gem_request_retire(request);
b84d5f0c 2933 }
673a394b 2934
832a3aad
CW
2935 /* Move any buffers on the active list that are no longer referenced
2936 * by the ringbuffer to the flushing/inactive lists as appropriate,
2937 * before we free the context associated with the requests.
2938 */
2939 while (!list_empty(&ring->active_list)) {
2940 struct drm_i915_gem_object *obj;
2941
2942 obj = list_first_entry(&ring->active_list,
2943 struct drm_i915_gem_object,
b4716185 2944 ring_list[ring->id]);
832a3aad 2945
b4716185 2946 if (!list_empty(&obj->last_read_req[ring->id]->list))
832a3aad
CW
2947 break;
2948
b4716185 2949 i915_gem_object_retire__read(obj, ring->id);
832a3aad
CW
2950 }
2951
581c26e8
JH
2952 if (unlikely(ring->trace_irq_req &&
2953 i915_gem_request_completed(ring->trace_irq_req, true))) {
1ec14ad3 2954 ring->irq_put(ring);
581c26e8 2955 i915_gem_request_assign(&ring->trace_irq_req, NULL);
9d34e5db 2956 }
23bc5982 2957
db53a302 2958 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2959}
2960
b29c19b6 2961bool
b09a1fec
CW
2962i915_gem_retire_requests(struct drm_device *dev)
2963{
3e31c6c0 2964 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2965 struct intel_engine_cs *ring;
b29c19b6 2966 bool idle = true;
1ec14ad3 2967 int i;
b09a1fec 2968
b29c19b6 2969 for_each_ring(ring, dev_priv, i) {
b4519513 2970 i915_gem_retire_requests_ring(ring);
b29c19b6 2971 idle &= list_empty(&ring->request_list);
c86ee3a9
TD
2972 if (i915.enable_execlists) {
2973 unsigned long flags;
2974
2975 spin_lock_irqsave(&ring->execlist_lock, flags);
2976 idle &= list_empty(&ring->execlist_queue);
2977 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2978
2979 intel_execlists_retire_requests(ring);
2980 }
b29c19b6
CW
2981 }
2982
2983 if (idle)
2984 mod_delayed_work(dev_priv->wq,
2985 &dev_priv->mm.idle_work,
2986 msecs_to_jiffies(100));
2987
2988 return idle;
b09a1fec
CW
2989}
2990
75ef9da2 2991static void
673a394b
EA
2992i915_gem_retire_work_handler(struct work_struct *work)
2993{
b29c19b6
CW
2994 struct drm_i915_private *dev_priv =
2995 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2996 struct drm_device *dev = dev_priv->dev;
0a58705b 2997 bool idle;
673a394b 2998
891b48cf 2999 /* Come back later if the device is busy... */
b29c19b6
CW
3000 idle = false;
3001 if (mutex_trylock(&dev->struct_mutex)) {
3002 idle = i915_gem_retire_requests(dev);
3003 mutex_unlock(&dev->struct_mutex);
673a394b 3004 }
b29c19b6 3005 if (!idle)
bcb45086
CW
3006 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3007 round_jiffies_up_relative(HZ));
b29c19b6 3008}
0a58705b 3009
b29c19b6
CW
3010static void
3011i915_gem_idle_work_handler(struct work_struct *work)
3012{
3013 struct drm_i915_private *dev_priv =
3014 container_of(work, typeof(*dev_priv), mm.idle_work.work);
35c94185 3015 struct drm_device *dev = dev_priv->dev;
423795cb
CW
3016 struct intel_engine_cs *ring;
3017 int i;
b29c19b6 3018
423795cb
CW
3019 for_each_ring(ring, dev_priv, i)
3020 if (!list_empty(&ring->request_list))
3021 return;
35c94185 3022
30ecad77
DV
3023 /* we probably should sync with hangcheck here, using cancel_work_sync.
3024 * Also locking seems to be fubar here, ring->request_list is protected
3025 * by dev->struct_mutex. */
3026
35c94185
CW
3027 intel_mark_idle(dev);
3028
3029 if (mutex_trylock(&dev->struct_mutex)) {
3030 struct intel_engine_cs *ring;
3031 int i;
3032
3033 for_each_ring(ring, dev_priv, i)
3034 i915_gem_batch_pool_fini(&ring->batch_pool);
b29c19b6 3035
35c94185
CW
3036 mutex_unlock(&dev->struct_mutex);
3037 }
673a394b
EA
3038}
3039
30dfebf3
DV
3040/**
3041 * Ensures that an object will eventually get non-busy by flushing any required
3042 * write domains, emitting any outstanding lazy request and retiring and
3043 * completed requests.
3044 */
3045static int
3046i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3047{
a5ac0f90 3048 int i;
b4716185
CW
3049
3050 if (!obj->active)
3051 return 0;
30dfebf3 3052
b4716185
CW
3053 for (i = 0; i < I915_NUM_RINGS; i++) {
3054 struct drm_i915_gem_request *req;
41c52415 3055
b4716185
CW
3056 req = obj->last_read_req[i];
3057 if (req == NULL)
3058 continue;
3059
3060 if (list_empty(&req->list))
3061 goto retire;
3062
b4716185
CW
3063 if (i915_gem_request_completed(req, true)) {
3064 __i915_gem_request_retire__upto(req);
3065retire:
3066 i915_gem_object_retire__read(obj, i);
3067 }
30dfebf3
DV
3068 }
3069
3070 return 0;
3071}
3072
23ba4fd0
BW
3073/**
3074 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3075 * @DRM_IOCTL_ARGS: standard ioctl arguments
3076 *
3077 * Returns 0 if successful, else an error is returned with the remaining time in
3078 * the timeout parameter.
3079 * -ETIME: object is still busy after timeout
3080 * -ERESTARTSYS: signal interrupted the wait
3081 * -ENONENT: object doesn't exist
3082 * Also possible, but rare:
3083 * -EAGAIN: GPU wedged
3084 * -ENOMEM: damn
3085 * -ENODEV: Internal IRQ fail
3086 * -E?: The add request failed
3087 *
3088 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3089 * non-zero timeout parameter the wait ioctl will wait for the given number of
3090 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3091 * without holding struct_mutex the object may become re-busied before this
3092 * function completes. A similar but shorter * race condition exists in the busy
3093 * ioctl
3094 */
3095int
3096i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3097{
3e31c6c0 3098 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
3099 struct drm_i915_gem_wait *args = data;
3100 struct drm_i915_gem_object *obj;
b4716185 3101 struct drm_i915_gem_request *req[I915_NUM_RINGS];
f69061be 3102 unsigned reset_counter;
b4716185
CW
3103 int i, n = 0;
3104 int ret;
23ba4fd0 3105
11b5d511
DV
3106 if (args->flags != 0)
3107 return -EINVAL;
3108
23ba4fd0
BW
3109 ret = i915_mutex_lock_interruptible(dev);
3110 if (ret)
3111 return ret;
3112
3113 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3114 if (&obj->base == NULL) {
3115 mutex_unlock(&dev->struct_mutex);
3116 return -ENOENT;
3117 }
3118
30dfebf3
DV
3119 /* Need to make sure the object gets inactive eventually. */
3120 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
3121 if (ret)
3122 goto out;
3123
b4716185 3124 if (!obj->active)
97b2a6a1 3125 goto out;
23ba4fd0 3126
23ba4fd0 3127 /* Do this after OLR check to make sure we make forward progress polling
762e4583 3128 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 3129 */
762e4583 3130 if (args->timeout_ns == 0) {
23ba4fd0
BW
3131 ret = -ETIME;
3132 goto out;
3133 }
3134
3135 drm_gem_object_unreference(&obj->base);
f69061be 3136 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
3137
3138 for (i = 0; i < I915_NUM_RINGS; i++) {
3139 if (obj->last_read_req[i] == NULL)
3140 continue;
3141
3142 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3143 }
3144
23ba4fd0
BW
3145 mutex_unlock(&dev->struct_mutex);
3146
b4716185
CW
3147 for (i = 0; i < n; i++) {
3148 if (ret == 0)
3149 ret = __i915_wait_request(req[i], reset_counter, true,
3150 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
b6aa0873 3151 to_rps_client(file));
b4716185
CW
3152 i915_gem_request_unreference__unlocked(req[i]);
3153 }
ff865885 3154 return ret;
23ba4fd0
BW
3155
3156out:
3157 drm_gem_object_unreference(&obj->base);
3158 mutex_unlock(&dev->struct_mutex);
3159 return ret;
3160}
3161
b4716185
CW
3162static int
3163__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3164 struct intel_engine_cs *to,
91af127f
JH
3165 struct drm_i915_gem_request *from_req,
3166 struct drm_i915_gem_request **to_req)
b4716185
CW
3167{
3168 struct intel_engine_cs *from;
3169 int ret;
3170
91af127f 3171 from = i915_gem_request_get_ring(from_req);
b4716185
CW
3172 if (to == from)
3173 return 0;
3174
91af127f 3175 if (i915_gem_request_completed(from_req, true))
b4716185
CW
3176 return 0;
3177
b4716185 3178 if (!i915_semaphore_is_enabled(obj->base.dev)) {
a6f766f3 3179 struct drm_i915_private *i915 = to_i915(obj->base.dev);
91af127f 3180 ret = __i915_wait_request(from_req,
a6f766f3
CW
3181 atomic_read(&i915->gpu_error.reset_counter),
3182 i915->mm.interruptible,
3183 NULL,
3184 &i915->rps.semaphores);
b4716185
CW
3185 if (ret)
3186 return ret;
3187
91af127f 3188 i915_gem_object_retire_request(obj, from_req);
b4716185
CW
3189 } else {
3190 int idx = intel_ring_sync_index(from, to);
91af127f
JH
3191 u32 seqno = i915_gem_request_get_seqno(from_req);
3192
3193 WARN_ON(!to_req);
b4716185
CW
3194
3195 if (seqno <= from->semaphore.sync_seqno[idx])
3196 return 0;
3197
91af127f 3198 if (*to_req == NULL) {
26827088
DG
3199 struct drm_i915_gem_request *req;
3200
3201 req = i915_gem_request_alloc(to, NULL);
3202 if (IS_ERR(req))
3203 return PTR_ERR(req);
3204
3205 *to_req = req;
91af127f
JH
3206 }
3207
599d924c
JH
3208 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3209 ret = to->semaphore.sync_to(*to_req, from, seqno);
b4716185
CW
3210 if (ret)
3211 return ret;
3212
3213 /* We use last_read_req because sync_to()
3214 * might have just caused seqno wrap under
3215 * the radar.
3216 */
3217 from->semaphore.sync_seqno[idx] =
3218 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3219 }
3220
3221 return 0;
3222}
3223
5816d648
BW
3224/**
3225 * i915_gem_object_sync - sync an object to a ring.
3226 *
3227 * @obj: object which may be in use on another ring.
3228 * @to: ring we wish to use the object on. May be NULL.
91af127f
JH
3229 * @to_req: request we wish to use the object for. See below.
3230 * This will be allocated and returned if a request is
3231 * required but not passed in.
5816d648
BW
3232 *
3233 * This code is meant to abstract object synchronization with the GPU.
3234 * Calling with NULL implies synchronizing the object with the CPU
b4716185 3235 * rather than a particular GPU ring. Conceptually we serialise writes
91af127f 3236 * between engines inside the GPU. We only allow one engine to write
b4716185
CW
3237 * into a buffer at any time, but multiple readers. To ensure each has
3238 * a coherent view of memory, we must:
3239 *
3240 * - If there is an outstanding write request to the object, the new
3241 * request must wait for it to complete (either CPU or in hw, requests
3242 * on the same ring will be naturally ordered).
3243 *
3244 * - If we are a write request (pending_write_domain is set), the new
3245 * request must wait for outstanding read requests to complete.
5816d648 3246 *
91af127f
JH
3247 * For CPU synchronisation (NULL to) no request is required. For syncing with
3248 * rings to_req must be non-NULL. However, a request does not have to be
3249 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3250 * request will be allocated automatically and returned through *to_req. Note
3251 * that it is not guaranteed that commands will be emitted (because the system
3252 * might already be idle). Hence there is no need to create a request that
3253 * might never have any work submitted. Note further that if a request is
3254 * returned in *to_req, it is the responsibility of the caller to submit
3255 * that request (after potentially adding more work to it).
3256 *
5816d648
BW
3257 * Returns 0 if successful, else propagates up the lower layer error.
3258 */
2911a35b
BW
3259int
3260i915_gem_object_sync(struct drm_i915_gem_object *obj,
91af127f
JH
3261 struct intel_engine_cs *to,
3262 struct drm_i915_gem_request **to_req)
2911a35b 3263{
b4716185
CW
3264 const bool readonly = obj->base.pending_write_domain == 0;
3265 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3266 int ret, i, n;
41c52415 3267
b4716185 3268 if (!obj->active)
2911a35b
BW
3269 return 0;
3270
b4716185
CW
3271 if (to == NULL)
3272 return i915_gem_object_wait_rendering(obj, readonly);
2911a35b 3273
b4716185
CW
3274 n = 0;
3275 if (readonly) {
3276 if (obj->last_write_req)
3277 req[n++] = obj->last_write_req;
3278 } else {
3279 for (i = 0; i < I915_NUM_RINGS; i++)
3280 if (obj->last_read_req[i])
3281 req[n++] = obj->last_read_req[i];
3282 }
3283 for (i = 0; i < n; i++) {
91af127f 3284 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
b4716185
CW
3285 if (ret)
3286 return ret;
3287 }
2911a35b 3288
b4716185 3289 return 0;
2911a35b
BW
3290}
3291
b5ffc9bc
CW
3292static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3293{
3294 u32 old_write_domain, old_read_domains;
3295
b5ffc9bc
CW
3296 /* Force a pagefault for domain tracking on next user access */
3297 i915_gem_release_mmap(obj);
3298
b97c3d9c
KP
3299 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3300 return;
3301
97c809fd
CW
3302 /* Wait for any direct GTT access to complete */
3303 mb();
3304
b5ffc9bc
CW
3305 old_read_domains = obj->base.read_domains;
3306 old_write_domain = obj->base.write_domain;
3307
3308 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3309 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3310
3311 trace_i915_gem_object_change_domain(obj,
3312 old_read_domains,
3313 old_write_domain);
3314}
3315
e9f24d5f 3316static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
673a394b 3317{
07fe0b12 3318 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3319 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3320 int ret;
673a394b 3321
07fe0b12 3322 if (list_empty(&vma->vma_link))
673a394b
EA
3323 return 0;
3324
0ff501cb
DV
3325 if (!drm_mm_node_allocated(&vma->node)) {
3326 i915_gem_vma_destroy(vma);
0ff501cb
DV
3327 return 0;
3328 }
433544bd 3329
d7f46fc4 3330 if (vma->pin_count)
31d8d651 3331 return -EBUSY;
673a394b 3332
c4670ad0
CW
3333 BUG_ON(obj->pages == NULL);
3334
e9f24d5f
TU
3335 if (wait) {
3336 ret = i915_gem_object_wait_rendering(obj, false);
3337 if (ret)
3338 return ret;
3339 }
a8198eea 3340
fe14d5f4
TU
3341 if (i915_is_ggtt(vma->vm) &&
3342 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3343 i915_gem_object_finish_gtt(obj);
5323fd04 3344
8b1bc9b4
DV
3345 /* release the fence reg _after_ flushing */
3346 ret = i915_gem_object_put_fence(obj);
3347 if (ret)
3348 return ret;
3349 }
96b47b65 3350
07fe0b12 3351 trace_i915_vma_unbind(vma);
db53a302 3352
777dc5bb 3353 vma->vm->unbind_vma(vma);
5e562f1d 3354 vma->bound = 0;
6f65e29a 3355
64bf9303 3356 list_del_init(&vma->mm_list);
fe14d5f4
TU
3357 if (i915_is_ggtt(vma->vm)) {
3358 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3359 obj->map_and_fenceable = false;
3360 } else if (vma->ggtt_view.pages) {
3361 sg_free_table(vma->ggtt_view.pages);
3362 kfree(vma->ggtt_view.pages);
fe14d5f4 3363 }
016a65a3 3364 vma->ggtt_view.pages = NULL;
fe14d5f4 3365 }
673a394b 3366
2f633156
BW
3367 drm_mm_remove_node(&vma->node);
3368 i915_gem_vma_destroy(vma);
3369
3370 /* Since the unbound list is global, only move to that list if
b93dab6e 3371 * no more VMAs exist. */
e2273302 3372 if (list_empty(&obj->vma_list))
2f633156 3373 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 3374
70903c3b
CW
3375 /* And finally now the object is completely decoupled from this vma,
3376 * we can drop its hold on the backing storage and allow it to be
3377 * reaped by the shrinker.
3378 */
3379 i915_gem_object_unpin_pages(obj);
3380
88241785 3381 return 0;
54cf91dc
CW
3382}
3383
e9f24d5f
TU
3384int i915_vma_unbind(struct i915_vma *vma)
3385{
3386 return __i915_vma_unbind(vma, true);
3387}
3388
3389int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3390{
3391 return __i915_vma_unbind(vma, false);
3392}
3393
b2da9fe5 3394int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3395{
3e31c6c0 3396 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3397 struct intel_engine_cs *ring;
1ec14ad3 3398 int ret, i;
4df2faf4 3399
4df2faf4 3400 /* Flush everything onto the inactive list. */
b4519513 3401 for_each_ring(ring, dev_priv, i) {
ecdb5fd8 3402 if (!i915.enable_execlists) {
73cfa865
JH
3403 struct drm_i915_gem_request *req;
3404
26827088
DG
3405 req = i915_gem_request_alloc(ring, NULL);
3406 if (IS_ERR(req))
3407 return PTR_ERR(req);
73cfa865 3408
ba01cc93 3409 ret = i915_switch_context(req);
73cfa865
JH
3410 if (ret) {
3411 i915_gem_request_cancel(req);
3412 return ret;
3413 }
3414
75289874 3415 i915_add_request_no_flush(req);
ecdb5fd8 3416 }
b6c7488d 3417
3e960501 3418 ret = intel_ring_idle(ring);
1ec14ad3
CW
3419 if (ret)
3420 return ret;
3421 }
4df2faf4 3422
b4716185 3423 WARN_ON(i915_verify_lists(dev));
8a1a49f9 3424 return 0;
4df2faf4
DV
3425}
3426
4144f9b5 3427static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3428 unsigned long cache_level)
3429{
4144f9b5 3430 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3431 struct drm_mm_node *other;
3432
4144f9b5
CW
3433 /*
3434 * On some machines we have to be careful when putting differing types
3435 * of snoopable memory together to avoid the prefetcher crossing memory
3436 * domains and dying. During vm initialisation, we decide whether or not
3437 * these constraints apply and set the drm_mm.color_adjust
3438 * appropriately.
42d6ab48 3439 */
4144f9b5 3440 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3441 return true;
3442
c6cfb325 3443 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3444 return true;
3445
3446 if (list_empty(&gtt_space->node_list))
3447 return true;
3448
3449 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3450 if (other->allocated && !other->hole_follows && other->color != cache_level)
3451 return false;
3452
3453 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3454 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3455 return false;
3456
3457 return true;
3458}
3459
673a394b 3460/**
91e6711e
JL
3461 * Finds free space in the GTT aperture and binds the object or a view of it
3462 * there.
673a394b 3463 */
262de145 3464static struct i915_vma *
07fe0b12
BW
3465i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3466 struct i915_address_space *vm,
ec7adb6e 3467 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3468 unsigned alignment,
ec7adb6e 3469 uint64_t flags)
673a394b 3470{
05394f39 3471 struct drm_device *dev = obj->base.dev;
3e31c6c0 3472 struct drm_i915_private *dev_priv = dev->dev_private;
65bd342f 3473 u32 fence_alignment, unfenced_alignment;
101b506a
MT
3474 u32 search_flag, alloc_flag;
3475 u64 start, end;
65bd342f 3476 u64 size, fence_size;
2f633156 3477 struct i915_vma *vma;
07f73f69 3478 int ret;
673a394b 3479
91e6711e
JL
3480 if (i915_is_ggtt(vm)) {
3481 u32 view_size;
3482
3483 if (WARN_ON(!ggtt_view))
3484 return ERR_PTR(-EINVAL);
ec7adb6e 3485
91e6711e
JL
3486 view_size = i915_ggtt_view_size(obj, ggtt_view);
3487
3488 fence_size = i915_gem_get_gtt_size(dev,
3489 view_size,
3490 obj->tiling_mode);
3491 fence_alignment = i915_gem_get_gtt_alignment(dev,
3492 view_size,
3493 obj->tiling_mode,
3494 true);
3495 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3496 view_size,
3497 obj->tiling_mode,
3498 false);
3499 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3500 } else {
3501 fence_size = i915_gem_get_gtt_size(dev,
3502 obj->base.size,
3503 obj->tiling_mode);
3504 fence_alignment = i915_gem_get_gtt_alignment(dev,
3505 obj->base.size,
3506 obj->tiling_mode,
3507 true);
3508 unfenced_alignment =
3509 i915_gem_get_gtt_alignment(dev,
3510 obj->base.size,
3511 obj->tiling_mode,
3512 false);
3513 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3514 }
a00b10c3 3515
101b506a
MT
3516 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3517 end = vm->total;
3518 if (flags & PIN_MAPPABLE)
3519 end = min_t(u64, end, dev_priv->gtt.mappable_end);
3520 if (flags & PIN_ZONE_4G)
48ea1e32 3521 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
101b506a 3522
673a394b 3523 if (alignment == 0)
1ec9e26d 3524 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3525 unfenced_alignment;
1ec9e26d 3526 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
91e6711e
JL
3527 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3528 ggtt_view ? ggtt_view->type : 0,
3529 alignment);
262de145 3530 return ERR_PTR(-EINVAL);
673a394b
EA
3531 }
3532
91e6711e
JL
3533 /* If binding the object/GGTT view requires more space than the entire
3534 * aperture has, reject it early before evicting everything in a vain
3535 * attempt to find space.
654fc607 3536 */
91e6711e 3537 if (size > end) {
65bd342f 3538 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
91e6711e
JL
3539 ggtt_view ? ggtt_view->type : 0,
3540 size,
1ec9e26d 3541 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3542 end);
262de145 3543 return ERR_PTR(-E2BIG);
654fc607
CW
3544 }
3545
37e680a1 3546 ret = i915_gem_object_get_pages(obj);
6c085a72 3547 if (ret)
262de145 3548 return ERR_PTR(ret);
6c085a72 3549
fbdda6fb
CW
3550 i915_gem_object_pin_pages(obj);
3551
ec7adb6e
JL
3552 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3553 i915_gem_obj_lookup_or_create_vma(obj, vm);
3554
262de145 3555 if (IS_ERR(vma))
bc6bc15b 3556 goto err_unpin;
2f633156 3557
506a8e87
CW
3558 if (flags & PIN_OFFSET_FIXED) {
3559 uint64_t offset = flags & PIN_OFFSET_MASK;
3560
3561 if (offset & (alignment - 1) || offset + size > end) {
3562 ret = -EINVAL;
3563 goto err_free_vma;
3564 }
3565 vma->node.start = offset;
3566 vma->node.size = size;
3567 vma->node.color = obj->cache_level;
3568 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3569 if (ret) {
3570 ret = i915_gem_evict_for_vma(vma);
3571 if (ret == 0)
3572 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3573 }
3574 if (ret)
3575 goto err_free_vma;
101b506a 3576 } else {
506a8e87
CW
3577 if (flags & PIN_HIGH) {
3578 search_flag = DRM_MM_SEARCH_BELOW;
3579 alloc_flag = DRM_MM_CREATE_TOP;
3580 } else {
3581 search_flag = DRM_MM_SEARCH_DEFAULT;
3582 alloc_flag = DRM_MM_CREATE_DEFAULT;
3583 }
101b506a 3584
0a9ae0d7 3585search_free:
506a8e87
CW
3586 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3587 size, alignment,
3588 obj->cache_level,
3589 start, end,
3590 search_flag,
3591 alloc_flag);
3592 if (ret) {
3593 ret = i915_gem_evict_something(dev, vm, size, alignment,
3594 obj->cache_level,
3595 start, end,
3596 flags);
3597 if (ret == 0)
3598 goto search_free;
9731129c 3599
506a8e87
CW
3600 goto err_free_vma;
3601 }
673a394b 3602 }
4144f9b5 3603 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3604 ret = -EINVAL;
bc6bc15b 3605 goto err_remove_node;
673a394b
EA
3606 }
3607
fe14d5f4 3608 trace_i915_vma_bind(vma, flags);
0875546c 3609 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4 3610 if (ret)
e2273302 3611 goto err_remove_node;
fe14d5f4 3612
35c20a60 3613 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3614 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3615
262de145 3616 return vma;
2f633156 3617
bc6bc15b 3618err_remove_node:
6286ef9b 3619 drm_mm_remove_node(&vma->node);
bc6bc15b 3620err_free_vma:
2f633156 3621 i915_gem_vma_destroy(vma);
262de145 3622 vma = ERR_PTR(ret);
bc6bc15b 3623err_unpin:
2f633156 3624 i915_gem_object_unpin_pages(obj);
262de145 3625 return vma;
673a394b
EA
3626}
3627
000433b6 3628bool
2c22569b
CW
3629i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3630 bool force)
673a394b 3631{
673a394b
EA
3632 /* If we don't have a page list set up, then we're not pinned
3633 * to GPU, and we can ignore the cache flush because it'll happen
3634 * again at bind time.
3635 */
05394f39 3636 if (obj->pages == NULL)
000433b6 3637 return false;
673a394b 3638
769ce464
ID
3639 /*
3640 * Stolen memory is always coherent with the GPU as it is explicitly
3641 * marked as wc by the system, or the system is cache-coherent.
3642 */
6a2c4232 3643 if (obj->stolen || obj->phys_handle)
000433b6 3644 return false;
769ce464 3645
9c23f7fc
CW
3646 /* If the GPU is snooping the contents of the CPU cache,
3647 * we do not need to manually clear the CPU cache lines. However,
3648 * the caches are only snooped when the render cache is
3649 * flushed/invalidated. As we always have to emit invalidations
3650 * and flushes when moving into and out of the RENDER domain, correct
3651 * snooping behaviour occurs naturally as the result of our domain
3652 * tracking.
3653 */
0f71979a
CW
3654 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3655 obj->cache_dirty = true;
000433b6 3656 return false;
0f71979a 3657 }
9c23f7fc 3658
1c5d22f7 3659 trace_i915_gem_object_clflush(obj);
9da3da66 3660 drm_clflush_sg(obj->pages);
0f71979a 3661 obj->cache_dirty = false;
000433b6
CW
3662
3663 return true;
e47c68e9
EA
3664}
3665
3666/** Flushes the GTT write domain for the object if it's dirty. */
3667static void
05394f39 3668i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3669{
1c5d22f7
CW
3670 uint32_t old_write_domain;
3671
05394f39 3672 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3673 return;
3674
63256ec5 3675 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3676 * to it immediately go to main memory as far as we know, so there's
3677 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3678 *
3679 * However, we do have to enforce the order so that all writes through
3680 * the GTT land before any writes to the device, such as updates to
3681 * the GATT itself.
e47c68e9 3682 */
63256ec5
CW
3683 wmb();
3684
05394f39
CW
3685 old_write_domain = obj->base.write_domain;
3686 obj->base.write_domain = 0;
1c5d22f7 3687
de152b62 3688 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
f99d7069 3689
1c5d22f7 3690 trace_i915_gem_object_change_domain(obj,
05394f39 3691 obj->base.read_domains,
1c5d22f7 3692 old_write_domain);
e47c68e9
EA
3693}
3694
3695/** Flushes the CPU write domain for the object if it's dirty. */
3696static void
e62b59e4 3697i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3698{
1c5d22f7 3699 uint32_t old_write_domain;
e47c68e9 3700
05394f39 3701 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3702 return;
3703
e62b59e4 3704 if (i915_gem_clflush_object(obj, obj->pin_display))
000433b6
CW
3705 i915_gem_chipset_flush(obj->base.dev);
3706
05394f39
CW
3707 old_write_domain = obj->base.write_domain;
3708 obj->base.write_domain = 0;
1c5d22f7 3709
de152b62 3710 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3711
1c5d22f7 3712 trace_i915_gem_object_change_domain(obj,
05394f39 3713 obj->base.read_domains,
1c5d22f7 3714 old_write_domain);
e47c68e9
EA
3715}
3716
2ef7eeaa
EA
3717/**
3718 * Moves a single object to the GTT read, and possibly write domain.
3719 *
3720 * This function returns when the move is complete, including waiting on
3721 * flushes to occur.
3722 */
79e53945 3723int
2021746e 3724i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3725{
1c5d22f7 3726 uint32_t old_write_domain, old_read_domains;
43566ded 3727 struct i915_vma *vma;
e47c68e9 3728 int ret;
2ef7eeaa 3729
8d7e3de1
CW
3730 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3731 return 0;
3732
0201f1ec 3733 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3734 if (ret)
3735 return ret;
3736
43566ded
CW
3737 /* Flush and acquire obj->pages so that we are coherent through
3738 * direct access in memory with previous cached writes through
3739 * shmemfs and that our cache domain tracking remains valid.
3740 * For example, if the obj->filp was moved to swap without us
3741 * being notified and releasing the pages, we would mistakenly
3742 * continue to assume that the obj remained out of the CPU cached
3743 * domain.
3744 */
3745 ret = i915_gem_object_get_pages(obj);
3746 if (ret)
3747 return ret;
3748
e62b59e4 3749 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3750
d0a57789
CW
3751 /* Serialise direct access to this object with the barriers for
3752 * coherent writes from the GPU, by effectively invalidating the
3753 * GTT domain upon first access.
3754 */
3755 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3756 mb();
3757
05394f39
CW
3758 old_write_domain = obj->base.write_domain;
3759 old_read_domains = obj->base.read_domains;
1c5d22f7 3760
e47c68e9
EA
3761 /* It should now be out of any other write domains, and we can update
3762 * the domain values for our changes.
3763 */
05394f39
CW
3764 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3765 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3766 if (write) {
05394f39
CW
3767 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3768 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3769 obj->dirty = 1;
2ef7eeaa
EA
3770 }
3771
1c5d22f7
CW
3772 trace_i915_gem_object_change_domain(obj,
3773 old_read_domains,
3774 old_write_domain);
3775
8325a09d 3776 /* And bump the LRU for this access */
43566ded
CW
3777 vma = i915_gem_obj_to_ggtt(obj);
3778 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
dc8cd1e7 3779 list_move_tail(&vma->mm_list,
43566ded 3780 &to_i915(obj->base.dev)->gtt.base.inactive_list);
8325a09d 3781
e47c68e9
EA
3782 return 0;
3783}
3784
ef55f92a
CW
3785/**
3786 * Changes the cache-level of an object across all VMA.
3787 *
3788 * After this function returns, the object will be in the new cache-level
3789 * across all GTT and the contents of the backing storage will be coherent,
3790 * with respect to the new cache-level. In order to keep the backing storage
3791 * coherent for all users, we only allow a single cache level to be set
3792 * globally on the object and prevent it from being changed whilst the
3793 * hardware is reading from the object. That is if the object is currently
3794 * on the scanout it will be set to uncached (or equivalent display
3795 * cache coherency) and all non-MOCS GPU access will also be uncached so
3796 * that all direct access to the scanout remains coherent.
3797 */
e4ffd173
CW
3798int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3799 enum i915_cache_level cache_level)
3800{
7bddb01f 3801 struct drm_device *dev = obj->base.dev;
df6f783a 3802 struct i915_vma *vma, *next;
ef55f92a 3803 bool bound = false;
ed75a55b 3804 int ret = 0;
e4ffd173
CW
3805
3806 if (obj->cache_level == cache_level)
ed75a55b 3807 goto out;
e4ffd173 3808
ef55f92a
CW
3809 /* Inspect the list of currently bound VMA and unbind any that would
3810 * be invalid given the new cache-level. This is principally to
3811 * catch the issue of the CS prefetch crossing page boundaries and
3812 * reading an invalid PTE on older architectures.
3813 */
df6f783a 3814 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
ef55f92a
CW
3815 if (!drm_mm_node_allocated(&vma->node))
3816 continue;
3817
3818 if (vma->pin_count) {
3819 DRM_DEBUG("can not change the cache level of pinned objects\n");
3820 return -EBUSY;
3821 }
3822
4144f9b5 3823 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3824 ret = i915_vma_unbind(vma);
3089c6f2
BW
3825 if (ret)
3826 return ret;
ef55f92a
CW
3827 } else
3828 bound = true;
42d6ab48
CW
3829 }
3830
ef55f92a
CW
3831 /* We can reuse the existing drm_mm nodes but need to change the
3832 * cache-level on the PTE. We could simply unbind them all and
3833 * rebind with the correct cache-level on next use. However since
3834 * we already have a valid slot, dma mapping, pages etc, we may as
3835 * rewrite the PTE in the belief that doing so tramples upon less
3836 * state and so involves less work.
3837 */
3838 if (bound) {
3839 /* Before we change the PTE, the GPU must not be accessing it.
3840 * If we wait upon the object, we know that all the bound
3841 * VMA are no longer active.
3842 */
2e2f351d 3843 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
3844 if (ret)
3845 return ret;
3846
ef55f92a
CW
3847 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3848 /* Access to snoopable pages through the GTT is
3849 * incoherent and on some machines causes a hard
3850 * lockup. Relinquish the CPU mmaping to force
3851 * userspace to refault in the pages and we can
3852 * then double check if the GTT mapping is still
3853 * valid for that pointer access.
3854 */
3855 i915_gem_release_mmap(obj);
3856
3857 /* As we no longer need a fence for GTT access,
3858 * we can relinquish it now (and so prevent having
3859 * to steal a fence from someone else on the next
3860 * fence request). Note GPU activity would have
3861 * dropped the fence as all snoopable access is
3862 * supposed to be linear.
3863 */
e4ffd173
CW
3864 ret = i915_gem_object_put_fence(obj);
3865 if (ret)
3866 return ret;
ef55f92a
CW
3867 } else {
3868 /* We either have incoherent backing store and
3869 * so no GTT access or the architecture is fully
3870 * coherent. In such cases, existing GTT mmaps
3871 * ignore the cache bit in the PTE and we can
3872 * rewrite it without confusing the GPU or having
3873 * to force userspace to fault back in its mmaps.
3874 */
e4ffd173
CW
3875 }
3876
ef55f92a
CW
3877 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3878 if (!drm_mm_node_allocated(&vma->node))
3879 continue;
3880
3881 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3882 if (ret)
3883 return ret;
3884 }
e4ffd173
CW
3885 }
3886
2c22569b
CW
3887 list_for_each_entry(vma, &obj->vma_list, vma_link)
3888 vma->node.color = cache_level;
3889 obj->cache_level = cache_level;
3890
ed75a55b 3891out:
ef55f92a
CW
3892 /* Flush the dirty CPU caches to the backing storage so that the
3893 * object is now coherent at its new cache level (with respect
3894 * to the access domain).
3895 */
0f71979a
CW
3896 if (obj->cache_dirty &&
3897 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3898 cpu_write_needs_clflush(obj)) {
3899 if (i915_gem_clflush_object(obj, true))
3900 i915_gem_chipset_flush(obj->base.dev);
e4ffd173
CW
3901 }
3902
e4ffd173
CW
3903 return 0;
3904}
3905
199adf40
BW
3906int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3907 struct drm_file *file)
e6994aee 3908{
199adf40 3909 struct drm_i915_gem_caching *args = data;
e6994aee 3910 struct drm_i915_gem_object *obj;
e6994aee
CW
3911
3912 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
432be69d
CW
3913 if (&obj->base == NULL)
3914 return -ENOENT;
e6994aee 3915
651d794f
CW
3916 switch (obj->cache_level) {
3917 case I915_CACHE_LLC:
3918 case I915_CACHE_L3_LLC:
3919 args->caching = I915_CACHING_CACHED;
3920 break;
3921
4257d3ba
CW
3922 case I915_CACHE_WT:
3923 args->caching = I915_CACHING_DISPLAY;
3924 break;
3925
651d794f
CW
3926 default:
3927 args->caching = I915_CACHING_NONE;
3928 break;
3929 }
e6994aee 3930
432be69d
CW
3931 drm_gem_object_unreference_unlocked(&obj->base);
3932 return 0;
e6994aee
CW
3933}
3934
199adf40
BW
3935int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3936 struct drm_file *file)
e6994aee 3937{
fd0fe6ac 3938 struct drm_i915_private *dev_priv = dev->dev_private;
199adf40 3939 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3940 struct drm_i915_gem_object *obj;
3941 enum i915_cache_level level;
3942 int ret;
3943
199adf40
BW
3944 switch (args->caching) {
3945 case I915_CACHING_NONE:
e6994aee
CW
3946 level = I915_CACHE_NONE;
3947 break;
199adf40 3948 case I915_CACHING_CACHED:
e5756c10
ID
3949 /*
3950 * Due to a HW issue on BXT A stepping, GPU stores via a
3951 * snooped mapping may leave stale data in a corresponding CPU
3952 * cacheline, whereas normally such cachelines would get
3953 * invalidated.
3954 */
e87a005d 3955 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
e5756c10
ID
3956 return -ENODEV;
3957
e6994aee
CW
3958 level = I915_CACHE_LLC;
3959 break;
4257d3ba
CW
3960 case I915_CACHING_DISPLAY:
3961 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3962 break;
e6994aee
CW
3963 default:
3964 return -EINVAL;
3965 }
3966
fd0fe6ac
ID
3967 intel_runtime_pm_get(dev_priv);
3968
3bc2913e
BW
3969 ret = i915_mutex_lock_interruptible(dev);
3970 if (ret)
fd0fe6ac 3971 goto rpm_put;
3bc2913e 3972
e6994aee
CW
3973 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3974 if (&obj->base == NULL) {
3975 ret = -ENOENT;
3976 goto unlock;
3977 }
3978
3979 ret = i915_gem_object_set_cache_level(obj, level);
3980
3981 drm_gem_object_unreference(&obj->base);
3982unlock:
3983 mutex_unlock(&dev->struct_mutex);
fd0fe6ac
ID
3984rpm_put:
3985 intel_runtime_pm_put(dev_priv);
3986
e6994aee
CW
3987 return ret;
3988}
3989
b9241ea3 3990/*
2da3b9b9
CW
3991 * Prepare buffer for display plane (scanout, cursors, etc).
3992 * Can be called from an uninterruptible phase (modesetting) and allows
3993 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3994 */
3995int
2da3b9b9
CW
3996i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3997 u32 alignment,
e6617330 3998 const struct i915_ggtt_view *view)
b9241ea3 3999{
2da3b9b9 4000 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
4001 int ret;
4002
cc98b413
CW
4003 /* Mark the pin_display early so that we account for the
4004 * display coherency whilst setting up the cache domains.
4005 */
8a0c39b1 4006 obj->pin_display++;
cc98b413 4007
a7ef0640
EA
4008 /* The display engine is not coherent with the LLC cache on gen6. As
4009 * a result, we make sure that the pinning that is about to occur is
4010 * done with uncached PTEs. This is lowest common denominator for all
4011 * chipsets.
4012 *
4013 * However for gen6+, we could do better by using the GFDT bit instead
4014 * of uncaching, which would allow us to flush all the LLC-cached data
4015 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4016 */
651d794f
CW
4017 ret = i915_gem_object_set_cache_level(obj,
4018 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 4019 if (ret)
cc98b413 4020 goto err_unpin_display;
a7ef0640 4021
2da3b9b9
CW
4022 /* As the user may map the buffer once pinned in the display plane
4023 * (e.g. libkms for the bootup splash), we have to ensure that we
4024 * always use map_and_fenceable for all scanout buffers.
4025 */
50470bb0
TU
4026 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4027 view->type == I915_GGTT_VIEW_NORMAL ?
4028 PIN_MAPPABLE : 0);
2da3b9b9 4029 if (ret)
cc98b413 4030 goto err_unpin_display;
2da3b9b9 4031
e62b59e4 4032 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 4033
2da3b9b9 4034 old_write_domain = obj->base.write_domain;
05394f39 4035 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
4036
4037 /* It should now be out of any other write domains, and we can update
4038 * the domain values for our changes.
4039 */
e5f1d962 4040 obj->base.write_domain = 0;
05394f39 4041 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
4042
4043 trace_i915_gem_object_change_domain(obj,
4044 old_read_domains,
2da3b9b9 4045 old_write_domain);
b9241ea3
ZW
4046
4047 return 0;
cc98b413
CW
4048
4049err_unpin_display:
8a0c39b1 4050 obj->pin_display--;
cc98b413
CW
4051 return ret;
4052}
4053
4054void
e6617330
TU
4055i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4056 const struct i915_ggtt_view *view)
cc98b413 4057{
8a0c39b1
TU
4058 if (WARN_ON(obj->pin_display == 0))
4059 return;
4060
e6617330
TU
4061 i915_gem_object_ggtt_unpin_view(obj, view);
4062
8a0c39b1 4063 obj->pin_display--;
b9241ea3
ZW
4064}
4065
e47c68e9
EA
4066/**
4067 * Moves a single object to the CPU read, and possibly write domain.
4068 *
4069 * This function returns when the move is complete, including waiting on
4070 * flushes to occur.
4071 */
dabdfe02 4072int
919926ae 4073i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4074{
1c5d22f7 4075 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4076 int ret;
4077
8d7e3de1
CW
4078 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4079 return 0;
4080
0201f1ec 4081 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4082 if (ret)
4083 return ret;
4084
e47c68e9 4085 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4086
05394f39
CW
4087 old_write_domain = obj->base.write_domain;
4088 old_read_domains = obj->base.read_domains;
1c5d22f7 4089
e47c68e9 4090 /* Flush the CPU cache if it's still invalid. */
05394f39 4091 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4092 i915_gem_clflush_object(obj, false);
2ef7eeaa 4093
05394f39 4094 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4095 }
4096
4097 /* It should now be out of any other write domains, and we can update
4098 * the domain values for our changes.
4099 */
05394f39 4100 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4101
4102 /* If we're writing through the CPU, then the GPU read domains will
4103 * need to be invalidated at next use.
4104 */
4105 if (write) {
05394f39
CW
4106 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4107 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4108 }
2ef7eeaa 4109
1c5d22f7
CW
4110 trace_i915_gem_object_change_domain(obj,
4111 old_read_domains,
4112 old_write_domain);
4113
2ef7eeaa
EA
4114 return 0;
4115}
4116
673a394b
EA
4117/* Throttle our rendering by waiting until the ring has completed our requests
4118 * emitted over 20 msec ago.
4119 *
b962442e
EA
4120 * Note that if we were to use the current jiffies each time around the loop,
4121 * we wouldn't escape the function with any frames outstanding if the time to
4122 * render a frame was over 20ms.
4123 *
673a394b
EA
4124 * This should get us reasonable parallelism between CPU and GPU but also
4125 * relatively low latency when blocking on a particular request to finish.
4126 */
40a5f0de 4127static int
f787a5f5 4128i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4129{
f787a5f5
CW
4130 struct drm_i915_private *dev_priv = dev->dev_private;
4131 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4132 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 4133 struct drm_i915_gem_request *request, *target = NULL;
f69061be 4134 unsigned reset_counter;
f787a5f5 4135 int ret;
93533c29 4136
308887aa
DV
4137 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4138 if (ret)
4139 return ret;
4140
4141 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4142 if (ret)
4143 return ret;
e110e8d6 4144
1c25595f 4145 spin_lock(&file_priv->mm.lock);
f787a5f5 4146 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4147 if (time_after_eq(request->emitted_jiffies, recent_enough))
4148 break;
40a5f0de 4149
fcfa423c
JH
4150 /*
4151 * Note that the request might not have been submitted yet.
4152 * In which case emitted_jiffies will be zero.
4153 */
4154 if (!request->emitted_jiffies)
4155 continue;
4156
54fb2411 4157 target = request;
b962442e 4158 }
f69061be 4159 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885
JH
4160 if (target)
4161 i915_gem_request_reference(target);
1c25595f 4162 spin_unlock(&file_priv->mm.lock);
40a5f0de 4163
54fb2411 4164 if (target == NULL)
f787a5f5 4165 return 0;
2bc43b5c 4166
9c654818 4167 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
f787a5f5
CW
4168 if (ret == 0)
4169 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4170
41037f9f 4171 i915_gem_request_unreference__unlocked(target);
ff865885 4172
40a5f0de
EA
4173 return ret;
4174}
4175
d23db88c
CW
4176static bool
4177i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4178{
4179 struct drm_i915_gem_object *obj = vma->obj;
4180
4181 if (alignment &&
4182 vma->node.start & (alignment - 1))
4183 return true;
4184
4185 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4186 return true;
4187
4188 if (flags & PIN_OFFSET_BIAS &&
4189 vma->node.start < (flags & PIN_OFFSET_MASK))
4190 return true;
4191
506a8e87
CW
4192 if (flags & PIN_OFFSET_FIXED &&
4193 vma->node.start != (flags & PIN_OFFSET_MASK))
4194 return true;
4195
d23db88c
CW
4196 return false;
4197}
4198
d0710abb
CW
4199void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4200{
4201 struct drm_i915_gem_object *obj = vma->obj;
4202 bool mappable, fenceable;
4203 u32 fence_size, fence_alignment;
4204
4205 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4206 obj->base.size,
4207 obj->tiling_mode);
4208 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4209 obj->base.size,
4210 obj->tiling_mode,
4211 true);
4212
4213 fenceable = (vma->node.size == fence_size &&
4214 (vma->node.start & (fence_alignment - 1)) == 0);
4215
4216 mappable = (vma->node.start + fence_size <=
4217 to_i915(obj->base.dev)->gtt.mappable_end);
4218
4219 obj->map_and_fenceable = mappable && fenceable;
4220}
4221
ec7adb6e
JL
4222static int
4223i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4224 struct i915_address_space *vm,
4225 const struct i915_ggtt_view *ggtt_view,
4226 uint32_t alignment,
4227 uint64_t flags)
673a394b 4228{
6e7186af 4229 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4230 struct i915_vma *vma;
ef79e17c 4231 unsigned bound;
673a394b
EA
4232 int ret;
4233
6e7186af
BW
4234 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4235 return -ENODEV;
4236
bf3d149b 4237 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4238 return -EINVAL;
07fe0b12 4239
c826c449
CW
4240 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4241 return -EINVAL;
4242
ec7adb6e
JL
4243 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4244 return -EINVAL;
4245
4246 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4247 i915_gem_obj_to_vma(obj, vm);
4248
4249 if (IS_ERR(vma))
4250 return PTR_ERR(vma);
4251
07fe0b12 4252 if (vma) {
d7f46fc4
BW
4253 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4254 return -EBUSY;
4255
d23db88c 4256 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4257 WARN(vma->pin_count,
ec7adb6e 4258 "bo is already pinned in %s with incorrect alignment:"
088e0df4 4259 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4260 " obj->map_and_fenceable=%d\n",
ec7adb6e 4261 ggtt_view ? "ggtt" : "ppgtt",
088e0df4
MT
4262 upper_32_bits(vma->node.start),
4263 lower_32_bits(vma->node.start),
fe14d5f4 4264 alignment,
d23db88c 4265 !!(flags & PIN_MAPPABLE),
05394f39 4266 obj->map_and_fenceable);
07fe0b12 4267 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4268 if (ret)
4269 return ret;
8ea99c92
DV
4270
4271 vma = NULL;
ac0c6b5a
CW
4272 }
4273 }
4274
ef79e17c 4275 bound = vma ? vma->bound : 0;
8ea99c92 4276 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
ec7adb6e
JL
4277 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4278 flags);
262de145
DV
4279 if (IS_ERR(vma))
4280 return PTR_ERR(vma);
0875546c
DV
4281 } else {
4282 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
4283 if (ret)
4284 return ret;
4285 }
74898d7e 4286
91e6711e
JL
4287 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4288 (bound ^ vma->bound) & GLOBAL_BIND) {
d0710abb 4289 __i915_vma_set_map_and_fenceable(vma);
91e6711e
JL
4290 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4291 }
ef79e17c 4292
8ea99c92 4293 vma->pin_count++;
673a394b
EA
4294 return 0;
4295}
4296
ec7adb6e
JL
4297int
4298i915_gem_object_pin(struct drm_i915_gem_object *obj,
4299 struct i915_address_space *vm,
4300 uint32_t alignment,
4301 uint64_t flags)
4302{
4303 return i915_gem_object_do_pin(obj, vm,
4304 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4305 alignment, flags);
4306}
4307
4308int
4309i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4310 const struct i915_ggtt_view *view,
4311 uint32_t alignment,
4312 uint64_t flags)
4313{
4314 if (WARN_ONCE(!view, "no view specified"))
4315 return -EINVAL;
4316
4317 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
6fafab76 4318 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4319}
4320
673a394b 4321void
e6617330
TU
4322i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4323 const struct i915_ggtt_view *view)
673a394b 4324{
e6617330 4325 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4326
d7f46fc4 4327 BUG_ON(!vma);
e6617330 4328 WARN_ON(vma->pin_count == 0);
9abc4648 4329 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4330
30154650 4331 --vma->pin_count;
673a394b
EA
4332}
4333
673a394b
EA
4334int
4335i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4336 struct drm_file *file)
673a394b
EA
4337{
4338 struct drm_i915_gem_busy *args = data;
05394f39 4339 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4340 int ret;
4341
76c1dec1 4342 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4343 if (ret)
76c1dec1 4344 return ret;
673a394b 4345
05394f39 4346 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4347 if (&obj->base == NULL) {
1d7cfea1
CW
4348 ret = -ENOENT;
4349 goto unlock;
673a394b 4350 }
d1b851fc 4351
0be555b6
CW
4352 /* Count all active objects as busy, even if they are currently not used
4353 * by the gpu. Users of this interface expect objects to eventually
4354 * become non-busy without any further actions, therefore emit any
4355 * necessary flushes here.
c4de0a5d 4356 */
30dfebf3 4357 ret = i915_gem_object_flush_active(obj);
b4716185
CW
4358 if (ret)
4359 goto unref;
0be555b6 4360
426960be
CW
4361 args->busy = 0;
4362 if (obj->active) {
4363 int i;
4364
4365 for (i = 0; i < I915_NUM_RINGS; i++) {
4366 struct drm_i915_gem_request *req;
4367
4368 req = obj->last_read_req[i];
4369 if (req)
4370 args->busy |= 1 << (16 + req->ring->exec_id);
4371 }
4372 if (obj->last_write_req)
4373 args->busy |= obj->last_write_req->ring->exec_id;
4374 }
673a394b 4375
b4716185 4376unref:
05394f39 4377 drm_gem_object_unreference(&obj->base);
1d7cfea1 4378unlock:
673a394b 4379 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4380 return ret;
673a394b
EA
4381}
4382
4383int
4384i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4385 struct drm_file *file_priv)
4386{
0206e353 4387 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4388}
4389
3ef94daa
CW
4390int
4391i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4392 struct drm_file *file_priv)
4393{
656bfa3a 4394 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4395 struct drm_i915_gem_madvise *args = data;
05394f39 4396 struct drm_i915_gem_object *obj;
76c1dec1 4397 int ret;
3ef94daa
CW
4398
4399 switch (args->madv) {
4400 case I915_MADV_DONTNEED:
4401 case I915_MADV_WILLNEED:
4402 break;
4403 default:
4404 return -EINVAL;
4405 }
4406
1d7cfea1
CW
4407 ret = i915_mutex_lock_interruptible(dev);
4408 if (ret)
4409 return ret;
4410
05394f39 4411 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4412 if (&obj->base == NULL) {
1d7cfea1
CW
4413 ret = -ENOENT;
4414 goto unlock;
3ef94daa 4415 }
3ef94daa 4416
d7f46fc4 4417 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4418 ret = -EINVAL;
4419 goto out;
3ef94daa
CW
4420 }
4421
656bfa3a
DV
4422 if (obj->pages &&
4423 obj->tiling_mode != I915_TILING_NONE &&
4424 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4425 if (obj->madv == I915_MADV_WILLNEED)
4426 i915_gem_object_unpin_pages(obj);
4427 if (args->madv == I915_MADV_WILLNEED)
4428 i915_gem_object_pin_pages(obj);
4429 }
4430
05394f39
CW
4431 if (obj->madv != __I915_MADV_PURGED)
4432 obj->madv = args->madv;
3ef94daa 4433
6c085a72 4434 /* if the object is no longer attached, discard its backing storage */
be6a0376 4435 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4436 i915_gem_object_truncate(obj);
4437
05394f39 4438 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4439
1d7cfea1 4440out:
05394f39 4441 drm_gem_object_unreference(&obj->base);
1d7cfea1 4442unlock:
3ef94daa 4443 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4444 return ret;
3ef94daa
CW
4445}
4446
37e680a1
CW
4447void i915_gem_object_init(struct drm_i915_gem_object *obj,
4448 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4449{
b4716185
CW
4450 int i;
4451
35c20a60 4452 INIT_LIST_HEAD(&obj->global_list);
b4716185
CW
4453 for (i = 0; i < I915_NUM_RINGS; i++)
4454 INIT_LIST_HEAD(&obj->ring_list[i]);
b25cb2f8 4455 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4456 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4457 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4458
37e680a1
CW
4459 obj->ops = ops;
4460
0327d6ba
CW
4461 obj->fence_reg = I915_FENCE_REG_NONE;
4462 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4463
4464 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4465}
4466
37e680a1
CW
4467static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4468 .get_pages = i915_gem_object_get_pages_gtt,
4469 .put_pages = i915_gem_object_put_pages_gtt,
4470};
4471
05394f39
CW
4472struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4473 size_t size)
ac52bc56 4474{
c397b908 4475 struct drm_i915_gem_object *obj;
5949eac4 4476 struct address_space *mapping;
1a240d4d 4477 gfp_t mask;
ac52bc56 4478
42dcedd4 4479 obj = i915_gem_object_alloc(dev);
c397b908
DV
4480 if (obj == NULL)
4481 return NULL;
673a394b 4482
c397b908 4483 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4484 i915_gem_object_free(obj);
c397b908
DV
4485 return NULL;
4486 }
673a394b 4487
bed1ea95
CW
4488 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4489 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4490 /* 965gm cannot relocate objects above 4GiB. */
4491 mask &= ~__GFP_HIGHMEM;
4492 mask |= __GFP_DMA32;
4493 }
4494
496ad9aa 4495 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4496 mapping_set_gfp_mask(mapping, mask);
5949eac4 4497
37e680a1 4498 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4499
c397b908
DV
4500 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4501 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4502
3d29b842
ED
4503 if (HAS_LLC(dev)) {
4504 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4505 * cache) for about a 10% performance improvement
4506 * compared to uncached. Graphics requests other than
4507 * display scanout are coherent with the CPU in
4508 * accessing this cache. This means in this mode we
4509 * don't need to clflush on the CPU side, and on the
4510 * GPU side we only need to flush internal caches to
4511 * get data visible to the CPU.
4512 *
4513 * However, we maintain the display planes as UC, and so
4514 * need to rebind when first used as such.
4515 */
4516 obj->cache_level = I915_CACHE_LLC;
4517 } else
4518 obj->cache_level = I915_CACHE_NONE;
4519
d861e338
DV
4520 trace_i915_gem_object_create(obj);
4521
05394f39 4522 return obj;
c397b908
DV
4523}
4524
340fbd8c
CW
4525static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4526{
4527 /* If we are the last user of the backing storage (be it shmemfs
4528 * pages or stolen etc), we know that the pages are going to be
4529 * immediately released. In this case, we can then skip copying
4530 * back the contents from the GPU.
4531 */
4532
4533 if (obj->madv != I915_MADV_WILLNEED)
4534 return false;
4535
4536 if (obj->base.filp == NULL)
4537 return true;
4538
4539 /* At first glance, this looks racy, but then again so would be
4540 * userspace racing mmap against close. However, the first external
4541 * reference to the filp can only be obtained through the
4542 * i915_gem_mmap_ioctl() which safeguards us against the user
4543 * acquiring such a reference whilst we are in the middle of
4544 * freeing the object.
4545 */
4546 return atomic_long_read(&obj->base.filp->f_count) == 1;
4547}
4548
1488fc08 4549void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4550{
1488fc08 4551 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4552 struct drm_device *dev = obj->base.dev;
3e31c6c0 4553 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4554 struct i915_vma *vma, *next;
673a394b 4555
f65c9168
PZ
4556 intel_runtime_pm_get(dev_priv);
4557
26e12f89
CW
4558 trace_i915_gem_object_destroy(obj);
4559
07fe0b12 4560 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4561 int ret;
4562
4563 vma->pin_count = 0;
4564 ret = i915_vma_unbind(vma);
07fe0b12
BW
4565 if (WARN_ON(ret == -ERESTARTSYS)) {
4566 bool was_interruptible;
1488fc08 4567
07fe0b12
BW
4568 was_interruptible = dev_priv->mm.interruptible;
4569 dev_priv->mm.interruptible = false;
1488fc08 4570
07fe0b12 4571 WARN_ON(i915_vma_unbind(vma));
1488fc08 4572
07fe0b12
BW
4573 dev_priv->mm.interruptible = was_interruptible;
4574 }
1488fc08
CW
4575 }
4576
1d64ae71
BW
4577 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4578 * before progressing. */
4579 if (obj->stolen)
4580 i915_gem_object_unpin_pages(obj);
4581
a071fa00
DV
4582 WARN_ON(obj->frontbuffer_bits);
4583
656bfa3a
DV
4584 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4585 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4586 obj->tiling_mode != I915_TILING_NONE)
4587 i915_gem_object_unpin_pages(obj);
4588
401c29f6
BW
4589 if (WARN_ON(obj->pages_pin_count))
4590 obj->pages_pin_count = 0;
340fbd8c 4591 if (discard_backing_storage(obj))
5537252b 4592 obj->madv = I915_MADV_DONTNEED;
37e680a1 4593 i915_gem_object_put_pages(obj);
d8cb5086 4594 i915_gem_object_free_mmap_offset(obj);
de151cf6 4595
9da3da66
CW
4596 BUG_ON(obj->pages);
4597
2f745ad3
CW
4598 if (obj->base.import_attach)
4599 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4600
5cc9ed4b
CW
4601 if (obj->ops->release)
4602 obj->ops->release(obj);
4603
05394f39
CW
4604 drm_gem_object_release(&obj->base);
4605 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4606
05394f39 4607 kfree(obj->bit_17);
42dcedd4 4608 i915_gem_object_free(obj);
f65c9168
PZ
4609
4610 intel_runtime_pm_put(dev_priv);
673a394b
EA
4611}
4612
ec7adb6e
JL
4613struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4614 struct i915_address_space *vm)
e656a6cb
DV
4615{
4616 struct i915_vma *vma;
ec7adb6e 4617 list_for_each_entry(vma, &obj->vma_list, vma_link) {
1b683729
TU
4618 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4619 vma->vm == vm)
e656a6cb 4620 return vma;
ec7adb6e
JL
4621 }
4622 return NULL;
4623}
4624
4625struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4626 const struct i915_ggtt_view *view)
4627{
4628 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4629 struct i915_vma *vma;
e656a6cb 4630
ec7adb6e
JL
4631 if (WARN_ONCE(!view, "no view specified"))
4632 return ERR_PTR(-EINVAL);
4633
4634 list_for_each_entry(vma, &obj->vma_list, vma_link)
9abc4648
JL
4635 if (vma->vm == ggtt &&
4636 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4637 return vma;
e656a6cb
DV
4638 return NULL;
4639}
4640
2f633156
BW
4641void i915_gem_vma_destroy(struct i915_vma *vma)
4642{
b9d06dd9 4643 struct i915_address_space *vm = NULL;
2f633156 4644 WARN_ON(vma->node.allocated);
aaa05667
CW
4645
4646 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4647 if (!list_empty(&vma->exec_list))
4648 return;
4649
b9d06dd9 4650 vm = vma->vm;
b9d06dd9 4651
841cd773
DV
4652 if (!i915_is_ggtt(vm))
4653 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4654
8b9c2b94 4655 list_del(&vma->vma_link);
b93dab6e 4656
e20d2ab7 4657 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
2f633156
BW
4658}
4659
e3efda49
CW
4660static void
4661i915_gem_stop_ringbuffers(struct drm_device *dev)
4662{
4663 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4664 struct intel_engine_cs *ring;
e3efda49
CW
4665 int i;
4666
4667 for_each_ring(ring, dev_priv, i)
a83014d3 4668 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4669}
4670
29105ccc 4671int
45c5f202 4672i915_gem_suspend(struct drm_device *dev)
29105ccc 4673{
3e31c6c0 4674 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4675 int ret = 0;
28dfe52a 4676
45c5f202 4677 mutex_lock(&dev->struct_mutex);
b2da9fe5 4678 ret = i915_gpu_idle(dev);
f7403347 4679 if (ret)
45c5f202 4680 goto err;
f7403347 4681
b2da9fe5 4682 i915_gem_retire_requests(dev);
673a394b 4683
e3efda49 4684 i915_gem_stop_ringbuffers(dev);
45c5f202
CW
4685 mutex_unlock(&dev->struct_mutex);
4686
737b1506 4687 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4688 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4689 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4690
bdcf120b
CW
4691 /* Assert that we sucessfully flushed all the work and
4692 * reset the GPU back to its idle, low power state.
4693 */
4694 WARN_ON(dev_priv->mm.busy);
4695
673a394b 4696 return 0;
45c5f202
CW
4697
4698err:
4699 mutex_unlock(&dev->struct_mutex);
4700 return ret;
673a394b
EA
4701}
4702
6909a666 4703int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
b9524a1e 4704{
6909a666 4705 struct intel_engine_cs *ring = req->ring;
c3787e2e 4706 struct drm_device *dev = ring->dev;
3e31c6c0 4707 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6 4708 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4709 int i, ret;
b9524a1e 4710
040d2baa 4711 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4712 return 0;
b9524a1e 4713
5fb9de1a 4714 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
c3787e2e
BW
4715 if (ret)
4716 return ret;
b9524a1e 4717
c3787e2e
BW
4718 /*
4719 * Note: We do not worry about the concurrent register cacheline hang
4720 * here because no other code should access these registers other than
4721 * at initialization time.
4722 */
6fa1c5f1 4723 for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
c3787e2e 4724 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
f92a9162 4725 intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i));
6fa1c5f1 4726 intel_ring_emit(ring, remap_info[i]);
b9524a1e
BW
4727 }
4728
c3787e2e 4729 intel_ring_advance(ring);
b9524a1e 4730
c3787e2e 4731 return ret;
b9524a1e
BW
4732}
4733
f691e2f4
DV
4734void i915_gem_init_swizzling(struct drm_device *dev)
4735{
3e31c6c0 4736 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4737
11782b02 4738 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4739 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4740 return;
4741
4742 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4743 DISP_TILE_SURFACE_SWIZZLING);
4744
11782b02
DV
4745 if (IS_GEN5(dev))
4746 return;
4747
f691e2f4
DV
4748 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4749 if (IS_GEN6(dev))
6b26c86d 4750 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4751 else if (IS_GEN7(dev))
6b26c86d 4752 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4753 else if (IS_GEN8(dev))
4754 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4755 else
4756 BUG();
f691e2f4 4757}
e21af88d 4758
81e7f200
VS
4759static void init_unused_ring(struct drm_device *dev, u32 base)
4760{
4761 struct drm_i915_private *dev_priv = dev->dev_private;
4762
4763 I915_WRITE(RING_CTL(base), 0);
4764 I915_WRITE(RING_HEAD(base), 0);
4765 I915_WRITE(RING_TAIL(base), 0);
4766 I915_WRITE(RING_START(base), 0);
4767}
4768
4769static void init_unused_rings(struct drm_device *dev)
4770{
4771 if (IS_I830(dev)) {
4772 init_unused_ring(dev, PRB1_BASE);
4773 init_unused_ring(dev, SRB0_BASE);
4774 init_unused_ring(dev, SRB1_BASE);
4775 init_unused_ring(dev, SRB2_BASE);
4776 init_unused_ring(dev, SRB3_BASE);
4777 } else if (IS_GEN2(dev)) {
4778 init_unused_ring(dev, SRB0_BASE);
4779 init_unused_ring(dev, SRB1_BASE);
4780 } else if (IS_GEN3(dev)) {
4781 init_unused_ring(dev, PRB1_BASE);
4782 init_unused_ring(dev, PRB2_BASE);
4783 }
4784}
4785
a83014d3 4786int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4787{
4fc7c971 4788 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4789 int ret;
68f95ba9 4790
5c1143bb 4791 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4792 if (ret)
b6913e4b 4793 return ret;
68f95ba9
CW
4794
4795 if (HAS_BSD(dev)) {
5c1143bb 4796 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4797 if (ret)
4798 goto cleanup_render_ring;
d1b851fc 4799 }
68f95ba9 4800
d39398f5 4801 if (HAS_BLT(dev)) {
549f7365
CW
4802 ret = intel_init_blt_ring_buffer(dev);
4803 if (ret)
4804 goto cleanup_bsd_ring;
4805 }
4806
9a8a2213
BW
4807 if (HAS_VEBOX(dev)) {
4808 ret = intel_init_vebox_ring_buffer(dev);
4809 if (ret)
4810 goto cleanup_blt_ring;
4811 }
4812
845f74a7
ZY
4813 if (HAS_BSD2(dev)) {
4814 ret = intel_init_bsd2_ring_buffer(dev);
4815 if (ret)
4816 goto cleanup_vebox_ring;
4817 }
9a8a2213 4818
4fc7c971
BW
4819 return 0;
4820
9a8a2213
BW
4821cleanup_vebox_ring:
4822 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4823cleanup_blt_ring:
4824 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4825cleanup_bsd_ring:
4826 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4827cleanup_render_ring:
4828 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4829
4830 return ret;
4831}
4832
4833int
4834i915_gem_init_hw(struct drm_device *dev)
4835{
3e31c6c0 4836 struct drm_i915_private *dev_priv = dev->dev_private;
35a57ffb 4837 struct intel_engine_cs *ring;
4ad2fd88 4838 int ret, i, j;
4fc7c971
BW
4839
4840 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4841 return -EIO;
4842
5e4f5189
CW
4843 /* Double layer security blanket, see i915_gem_init() */
4844 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4845
59124506 4846 if (dev_priv->ellc_size)
05e21cc4 4847 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4848
0bf21347
VS
4849 if (IS_HASWELL(dev))
4850 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4851 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4852
88a2b2a3 4853 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4854 if (IS_IVYBRIDGE(dev)) {
4855 u32 temp = I915_READ(GEN7_MSG_CTL);
4856 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4857 I915_WRITE(GEN7_MSG_CTL, temp);
4858 } else if (INTEL_INFO(dev)->gen >= 7) {
4859 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4860 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4861 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4862 }
88a2b2a3
BW
4863 }
4864
4fc7c971
BW
4865 i915_gem_init_swizzling(dev);
4866
d5abdfda
DV
4867 /*
4868 * At least 830 can leave some of the unused rings
4869 * "active" (ie. head != tail) after resume which
4870 * will prevent c3 entry. Makes sure all unused rings
4871 * are totally idle.
4872 */
4873 init_unused_rings(dev);
4874
ed54c1a1 4875 BUG_ON(!dev_priv->kernel_context);
90638cc1 4876
4ad2fd88
JH
4877 ret = i915_ppgtt_init_hw(dev);
4878 if (ret) {
4879 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4880 goto out;
4881 }
4882
4883 /* Need to do basic initialisation of all rings first: */
35a57ffb
DV
4884 for_each_ring(ring, dev_priv, i) {
4885 ret = ring->init_hw(ring);
4886 if (ret)
5e4f5189 4887 goto out;
35a57ffb 4888 }
99433931 4889
33a732f4 4890 /* We can't enable contexts until all firmware is loaded */
87bcdd2e
JB
4891 if (HAS_GUC_UCODE(dev)) {
4892 ret = intel_guc_ucode_load(dev);
4893 if (ret) {
9f9e539f
DV
4894 DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4895 ret = -EIO;
4896 goto out;
87bcdd2e 4897 }
33a732f4
AD
4898 }
4899
e84fe803
NH
4900 /*
4901 * Increment the next seqno by 0x100 so we have a visible break
4902 * on re-initialisation
4903 */
4904 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4905 if (ret)
4906 goto out;
4907
4ad2fd88
JH
4908 /* Now it is safe to go back round and do everything else: */
4909 for_each_ring(ring, dev_priv, i) {
dc4be607
JH
4910 struct drm_i915_gem_request *req;
4911
26827088
DG
4912 req = i915_gem_request_alloc(ring, NULL);
4913 if (IS_ERR(req)) {
4914 ret = PTR_ERR(req);
9a15a873 4915 i915_gem_cleanup_ringbuffer(dev);
dc4be607
JH
4916 goto out;
4917 }
4918
4ad2fd88
JH
4919 if (ring->id == RCS) {
4920 for (j = 0; j < NUM_L3_SLICES(dev); j++)
6909a666 4921 i915_gem_l3_remap(req, j);
4ad2fd88 4922 }
c3787e2e 4923
b3dd6b96 4924 ret = i915_ppgtt_init_ring(req);
4ad2fd88
JH
4925 if (ret && ret != -EIO) {
4926 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
dc4be607 4927 i915_gem_request_cancel(req);
9a15a873 4928 i915_gem_cleanup_ringbuffer(dev);
4ad2fd88
JH
4929 goto out;
4930 }
82460d97 4931
b3dd6b96 4932 ret = i915_gem_context_enable(req);
90638cc1
JH
4933 if (ret && ret != -EIO) {
4934 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
dc4be607 4935 i915_gem_request_cancel(req);
9a15a873 4936 i915_gem_cleanup_ringbuffer(dev);
90638cc1
JH
4937 goto out;
4938 }
dc4be607 4939
75289874 4940 i915_add_request_no_flush(req);
b7c36d25 4941 }
e21af88d 4942
5e4f5189
CW
4943out:
4944 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4945 return ret;
8187a2b7
ZN
4946}
4947
1070a42b
CW
4948int i915_gem_init(struct drm_device *dev)
4949{
4950 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4951 int ret;
4952
127f1003
OM
4953 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4954 i915.enable_execlists);
4955
1070a42b 4956 mutex_lock(&dev->struct_mutex);
d62b4892 4957
a83014d3 4958 if (!i915.enable_execlists) {
f3dc74c0 4959 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
a83014d3
OM
4960 dev_priv->gt.init_rings = i915_gem_init_rings;
4961 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4962 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd 4963 } else {
f3dc74c0 4964 dev_priv->gt.execbuf_submit = intel_execlists_submission;
454afebd
OM
4965 dev_priv->gt.init_rings = intel_logical_rings_init;
4966 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4967 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
4968 }
4969
5e4f5189
CW
4970 /* This is just a security blanket to placate dragons.
4971 * On some systems, we very sporadically observe that the first TLBs
4972 * used by the CS may be stale, despite us poking the TLB reset. If
4973 * we hold the forcewake during initialisation these problems
4974 * just magically go away.
4975 */
4976 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4977
6c5566a8 4978 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
4979 if (ret)
4980 goto out_unlock;
6c5566a8 4981
d7e5008f 4982 i915_gem_init_global_gtt(dev);
d62b4892 4983
2fa48d8d 4984 ret = i915_gem_context_init(dev);
7bcc3777
JN
4985 if (ret)
4986 goto out_unlock;
2fa48d8d 4987
35a57ffb
DV
4988 ret = dev_priv->gt.init_rings(dev);
4989 if (ret)
7bcc3777 4990 goto out_unlock;
2fa48d8d 4991
1070a42b 4992 ret = i915_gem_init_hw(dev);
60990320
CW
4993 if (ret == -EIO) {
4994 /* Allow ring initialisation to fail by marking the GPU as
4995 * wedged. But we only want to do this where the GPU is angry,
4996 * for all other failure, such as an allocation failure, bail.
4997 */
4998 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
805de8f4 4999 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
60990320 5000 ret = 0;
1070a42b 5001 }
7bcc3777
JN
5002
5003out_unlock:
5e4f5189 5004 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 5005 mutex_unlock(&dev->struct_mutex);
1070a42b 5006
60990320 5007 return ret;
1070a42b
CW
5008}
5009
8187a2b7 5010void
9a15a873 5011i915_gem_cleanup_ringbuffer(struct drm_device *dev)
8187a2b7 5012{
3e31c6c0 5013 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 5014 struct intel_engine_cs *ring;
1ec14ad3 5015 int i;
8187a2b7 5016
b4519513 5017 for_each_ring(ring, dev_priv, i)
a83014d3 5018 dev_priv->gt.cleanup_ring(ring);
a647828a 5019
9a15a873
DV
5020 if (i915.enable_execlists)
5021 /*
5022 * Neither the BIOS, ourselves or any other kernel
5023 * expects the system to be in execlists mode on startup,
5024 * so we need to reset the GPU back to legacy mode.
5025 */
5026 intel_gpu_reset(dev);
8187a2b7
ZN
5027}
5028
64193406 5029static void
a4872ba6 5030init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
5031{
5032 INIT_LIST_HEAD(&ring->active_list);
5033 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
5034}
5035
673a394b
EA
5036void
5037i915_gem_load(struct drm_device *dev)
5038{
3e31c6c0 5039 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
5040 int i;
5041
efab6d8d 5042 dev_priv->objects =
42dcedd4
CW
5043 kmem_cache_create("i915_gem_object",
5044 sizeof(struct drm_i915_gem_object), 0,
5045 SLAB_HWCACHE_ALIGN,
5046 NULL);
e20d2ab7
CW
5047 dev_priv->vmas =
5048 kmem_cache_create("i915_gem_vma",
5049 sizeof(struct i915_vma), 0,
5050 SLAB_HWCACHE_ALIGN,
5051 NULL);
efab6d8d
CW
5052 dev_priv->requests =
5053 kmem_cache_create("i915_gem_request",
5054 sizeof(struct drm_i915_gem_request), 0,
5055 SLAB_HWCACHE_ALIGN,
5056 NULL);
673a394b 5057
fc8c067e 5058 INIT_LIST_HEAD(&dev_priv->vm_list);
a33afea5 5059 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
5060 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5061 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 5062 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
5063 for (i = 0; i < I915_NUM_RINGS; i++)
5064 init_ring_lists(&dev_priv->ring[i]);
4b9de737 5065 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 5066 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
5067 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5068 i915_gem_retire_work_handler);
b29c19b6
CW
5069 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5070 i915_gem_idle_work_handler);
1f83fee0 5071 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5072
72bfa19c
CW
5073 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5074
666a4537 5075 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
42b5aeab
VS
5076 dev_priv->num_fence_regs = 32;
5077 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
5078 dev_priv->num_fence_regs = 16;
5079 else
5080 dev_priv->num_fence_regs = 8;
5081
eb82289a
YZ
5082 if (intel_vgpu_active(dev))
5083 dev_priv->num_fence_regs =
5084 I915_READ(vgtif_reg(avail_rs.fence_num));
5085
e84fe803
NH
5086 /*
5087 * Set initial sequence number for requests.
5088 * Using this number allows the wraparound to happen early,
5089 * catching any obvious problems.
5090 */
5091 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5092 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5093
b5aa8a0f 5094 /* Initialize fence registers to zero */
19b2dbde
CW
5095 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5096 i915_gem_restore_fences(dev);
10ed13e4 5097
673a394b 5098 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 5099 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5100
ce453d81
CW
5101 dev_priv->mm.interruptible = true;
5102
f99d7069 5103 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5104}
71acb5eb 5105
f787a5f5 5106void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5107{
f787a5f5 5108 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
5109
5110 /* Clean up our request list when the client is going away, so that
5111 * later retire_requests won't dereference our soon-to-be-gone
5112 * file_priv.
5113 */
1c25595f 5114 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5115 while (!list_empty(&file_priv->mm.request_list)) {
5116 struct drm_i915_gem_request *request;
5117
5118 request = list_first_entry(&file_priv->mm.request_list,
5119 struct drm_i915_gem_request,
5120 client_list);
5121 list_del(&request->client_list);
5122 request->file_priv = NULL;
5123 }
1c25595f 5124 spin_unlock(&file_priv->mm.lock);
b29c19b6 5125
2e1b8730 5126 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 5127 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 5128 list_del(&file_priv->rps.link);
8d3afd7d 5129 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 5130 }
b29c19b6
CW
5131}
5132
5133int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5134{
5135 struct drm_i915_file_private *file_priv;
e422b888 5136 int ret;
b29c19b6
CW
5137
5138 DRM_DEBUG_DRIVER("\n");
5139
5140 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5141 if (!file_priv)
5142 return -ENOMEM;
5143
5144 file->driver_priv = file_priv;
5145 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5146 file_priv->file = file;
2e1b8730 5147 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
5148
5149 spin_lock_init(&file_priv->mm.lock);
5150 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5151
de1add36
TU
5152 file_priv->bsd_ring = -1;
5153
e422b888
BW
5154 ret = i915_gem_context_open(dev, file);
5155 if (ret)
5156 kfree(file_priv);
b29c19b6 5157
e422b888 5158 return ret;
b29c19b6
CW
5159}
5160
b680c37a
DV
5161/**
5162 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
5163 * @old: current GEM buffer for the frontbuffer slots
5164 * @new: new GEM buffer for the frontbuffer slots
5165 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
5166 *
5167 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5168 * from @old and setting them in @new. Both @old and @new can be NULL.
5169 */
a071fa00
DV
5170void i915_gem_track_fb(struct drm_i915_gem_object *old,
5171 struct drm_i915_gem_object *new,
5172 unsigned frontbuffer_bits)
5173{
5174 if (old) {
5175 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5176 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5177 old->frontbuffer_bits &= ~frontbuffer_bits;
5178 }
5179
5180 if (new) {
5181 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5182 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5183 new->frontbuffer_bits |= frontbuffer_bits;
5184 }
5185}
5186
a70a3148 5187/* All the new VM stuff */
088e0df4
MT
5188u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5189 struct i915_address_space *vm)
a70a3148
BW
5190{
5191 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5192 struct i915_vma *vma;
5193
896ab1a5 5194 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5195
a70a3148 5196 list_for_each_entry(vma, &o->vma_list, vma_link) {
ec7adb6e
JL
5197 if (i915_is_ggtt(vma->vm) &&
5198 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5199 continue;
5200 if (vma->vm == vm)
a70a3148 5201 return vma->node.start;
a70a3148 5202 }
ec7adb6e 5203
f25748ea
DV
5204 WARN(1, "%s vma for this object not found.\n",
5205 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5206 return -1;
5207}
5208
088e0df4
MT
5209u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5210 const struct i915_ggtt_view *view)
a70a3148 5211{
ec7adb6e 5212 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
a70a3148
BW
5213 struct i915_vma *vma;
5214
5215 list_for_each_entry(vma, &o->vma_list, vma_link)
9abc4648
JL
5216 if (vma->vm == ggtt &&
5217 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
5218 return vma->node.start;
5219
5678ad73 5220 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
5221 return -1;
5222}
5223
5224bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5225 struct i915_address_space *vm)
5226{
5227 struct i915_vma *vma;
5228
5229 list_for_each_entry(vma, &o->vma_list, vma_link) {
5230 if (i915_is_ggtt(vma->vm) &&
5231 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5232 continue;
5233 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5234 return true;
5235 }
5236
5237 return false;
5238}
5239
5240bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 5241 const struct i915_ggtt_view *view)
ec7adb6e
JL
5242{
5243 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5244 struct i915_vma *vma;
5245
5246 list_for_each_entry(vma, &o->vma_list, vma_link)
5247 if (vma->vm == ggtt &&
9abc4648 5248 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 5249 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5250 return true;
5251
5252 return false;
5253}
5254
5255bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5256{
5a1d5eb0 5257 struct i915_vma *vma;
a70a3148 5258
5a1d5eb0
CW
5259 list_for_each_entry(vma, &o->vma_list, vma_link)
5260 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5261 return true;
5262
5263 return false;
5264}
5265
5266unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5267 struct i915_address_space *vm)
5268{
5269 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5270 struct i915_vma *vma;
5271
896ab1a5 5272 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5273
5274 BUG_ON(list_empty(&o->vma_list));
5275
ec7adb6e
JL
5276 list_for_each_entry(vma, &o->vma_list, vma_link) {
5277 if (i915_is_ggtt(vma->vm) &&
5278 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5279 continue;
a70a3148
BW
5280 if (vma->vm == vm)
5281 return vma->node.size;
ec7adb6e 5282 }
a70a3148
BW
5283 return 0;
5284}
5285
ec7adb6e 5286bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
5287{
5288 struct i915_vma *vma;
a6631ae1 5289 list_for_each_entry(vma, &obj->vma_list, vma_link)
ec7adb6e
JL
5290 if (vma->pin_count > 0)
5291 return true;
a6631ae1 5292
ec7adb6e 5293 return false;
5c2abbea 5294}
ea70299d 5295
033908ae
DG
5296/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5297struct page *
5298i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5299{
5300 struct page *page;
5301
5302 /* Only default objects have per-page dirty tracking */
5303 if (WARN_ON(obj->ops != &i915_gem_object_ops))
5304 return NULL;
5305
5306 page = i915_gem_object_get_page(obj, n);
5307 set_page_dirty(page);
5308 return page;
5309}
5310
ea70299d
DG
5311/* Allocate a new GEM object and fill it with the supplied data */
5312struct drm_i915_gem_object *
5313i915_gem_object_create_from_data(struct drm_device *dev,
5314 const void *data, size_t size)
5315{
5316 struct drm_i915_gem_object *obj;
5317 struct sg_table *sg;
5318 size_t bytes;
5319 int ret;
5320
5321 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5322 if (IS_ERR_OR_NULL(obj))
5323 return obj;
5324
5325 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5326 if (ret)
5327 goto fail;
5328
5329 ret = i915_gem_object_get_pages(obj);
5330 if (ret)
5331 goto fail;
5332
5333 i915_gem_object_pin_pages(obj);
5334 sg = obj->pages;
5335 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
9e7d18c0 5336 obj->dirty = 1; /* Backing store is now out of date */
ea70299d
DG
5337 i915_gem_object_unpin_pages(obj);
5338
5339 if (WARN_ON(bytes != size)) {
5340 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5341 ret = -EFAULT;
5342 goto fail;
5343 }
5344
5345 return obj;
5346
5347fail:
5348 drm_gem_object_unreference(&obj->base);
5349 return ERR_PTR(ret);
5350}