]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Mark the cursor and the overlay as being part of the display planes
[thirdparty/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
673a394b 37
88241785 38static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
05394f39
CW
39static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
41static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
42 bool write);
43static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
44 uint64_t offset,
45 uint64_t size);
05394f39 46static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
88241785
CW
47static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
48 unsigned alignment,
49 bool map_and_fenceable);
d9e86c0e
CW
50static void i915_gem_clear_fence_reg(struct drm_device *dev,
51 struct drm_i915_fence_reg *reg);
05394f39
CW
52static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
71acb5eb 54 struct drm_i915_gem_pwrite *args,
05394f39
CW
55 struct drm_file *file);
56static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
673a394b 57
17250b71 58static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 59 struct shrink_control *sc);
31169714 60
73aa808f
CW
61/* some bookkeeping */
62static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
63 size_t size)
64{
65 dev_priv->mm.object_count++;
66 dev_priv->mm.object_memory += size;
67}
68
69static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
70 size_t size)
71{
72 dev_priv->mm.object_count--;
73 dev_priv->mm.object_memory -= size;
74}
75
21dd3734
CW
76static int
77i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
78{
79 struct drm_i915_private *dev_priv = dev->dev_private;
80 struct completion *x = &dev_priv->error_completion;
81 unsigned long flags;
82 int ret;
83
84 if (!atomic_read(&dev_priv->mm.wedged))
85 return 0;
86
87 ret = wait_for_completion_interruptible(x);
88 if (ret)
89 return ret;
90
21dd3734
CW
91 if (atomic_read(&dev_priv->mm.wedged)) {
92 /* GPU is hung, bump the completion count to account for
93 * the token we just consumed so that we never hit zero and
94 * end up waiting upon a subsequent completion event that
95 * will never happen.
96 */
97 spin_lock_irqsave(&x->wait.lock, flags);
98 x->done++;
99 spin_unlock_irqrestore(&x->wait.lock, flags);
100 }
101 return 0;
30dbf0c0
CW
102}
103
54cf91dc 104int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 105{
76c1dec1
CW
106 int ret;
107
21dd3734 108 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
109 if (ret)
110 return ret;
111
112 ret = mutex_lock_interruptible(&dev->struct_mutex);
113 if (ret)
114 return ret;
115
23bc5982 116 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
117 return 0;
118}
30dbf0c0 119
7d1c4804 120static inline bool
05394f39 121i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 122{
05394f39 123 return obj->gtt_space && !obj->active && obj->pin_count == 0;
7d1c4804
CW
124}
125
2021746e
CW
126void i915_gem_do_init(struct drm_device *dev,
127 unsigned long start,
128 unsigned long mappable_end,
129 unsigned long end)
673a394b
EA
130{
131 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 132
bee4a186 133 drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
673a394b 134
bee4a186
CW
135 dev_priv->mm.gtt_start = start;
136 dev_priv->mm.gtt_mappable_end = mappable_end;
137 dev_priv->mm.gtt_end = end;
73aa808f 138 dev_priv->mm.gtt_total = end - start;
fb7d516a 139 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
bee4a186
CW
140
141 /* Take over this portion of the GTT */
142 intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
79e53945 143}
673a394b 144
79e53945
JB
145int
146i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 147 struct drm_file *file)
79e53945
JB
148{
149 struct drm_i915_gem_init *args = data;
2021746e
CW
150
151 if (args->gtt_start >= args->gtt_end ||
152 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
153 return -EINVAL;
79e53945
JB
154
155 mutex_lock(&dev->struct_mutex);
2021746e 156 i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
673a394b
EA
157 mutex_unlock(&dev->struct_mutex);
158
2021746e 159 return 0;
673a394b
EA
160}
161
5a125c3c
EA
162int
163i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 164 struct drm_file *file)
5a125c3c 165{
73aa808f 166 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 167 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
168 struct drm_i915_gem_object *obj;
169 size_t pinned;
5a125c3c
EA
170
171 if (!(dev->driver->driver_features & DRIVER_GEM))
172 return -ENODEV;
173
6299f992 174 pinned = 0;
73aa808f 175 mutex_lock(&dev->struct_mutex);
6299f992
CW
176 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
177 pinned += obj->gtt_space->size;
73aa808f 178 mutex_unlock(&dev->struct_mutex);
5a125c3c 179
6299f992
CW
180 args->aper_size = dev_priv->mm.gtt_total;
181 args->aper_available_size = args->aper_size -pinned;
182
5a125c3c
EA
183 return 0;
184}
185
ff72145b
DA
186static int
187i915_gem_create(struct drm_file *file,
188 struct drm_device *dev,
189 uint64_t size,
190 uint32_t *handle_p)
673a394b 191{
05394f39 192 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
193 int ret;
194 u32 handle;
673a394b 195
ff72145b 196 size = roundup(size, PAGE_SIZE);
673a394b
EA
197
198 /* Allocate the new object */
ff72145b 199 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
200 if (obj == NULL)
201 return -ENOMEM;
202
05394f39 203 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 204 if (ret) {
05394f39
CW
205 drm_gem_object_release(&obj->base);
206 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 207 kfree(obj);
673a394b 208 return ret;
1dfd9754 209 }
673a394b 210
202f2fef 211 /* drop reference from allocate - handle holds it now */
05394f39 212 drm_gem_object_unreference(&obj->base);
202f2fef
CW
213 trace_i915_gem_object_create(obj);
214
ff72145b 215 *handle_p = handle;
673a394b
EA
216 return 0;
217}
218
ff72145b
DA
219int
220i915_gem_dumb_create(struct drm_file *file,
221 struct drm_device *dev,
222 struct drm_mode_create_dumb *args)
223{
224 /* have to work out size/pitch and return them */
ed0291fd 225 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
226 args->size = args->pitch * args->height;
227 return i915_gem_create(file, dev,
228 args->size, &args->handle);
229}
230
231int i915_gem_dumb_destroy(struct drm_file *file,
232 struct drm_device *dev,
233 uint32_t handle)
234{
235 return drm_gem_handle_delete(file, handle);
236}
237
238/**
239 * Creates a new mm object and returns a handle to it.
240 */
241int
242i915_gem_create_ioctl(struct drm_device *dev, void *data,
243 struct drm_file *file)
244{
245 struct drm_i915_gem_create *args = data;
246 return i915_gem_create(file, dev,
247 args->size, &args->handle);
248}
249
05394f39 250static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 251{
05394f39 252 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
253
254 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 255 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
256}
257
99a03df5 258static inline void
40123c1f
EA
259slow_shmem_copy(struct page *dst_page,
260 int dst_offset,
261 struct page *src_page,
262 int src_offset,
263 int length)
264{
265 char *dst_vaddr, *src_vaddr;
266
99a03df5
CW
267 dst_vaddr = kmap(dst_page);
268 src_vaddr = kmap(src_page);
40123c1f
EA
269
270 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
271
99a03df5
CW
272 kunmap(src_page);
273 kunmap(dst_page);
40123c1f
EA
274}
275
99a03df5 276static inline void
280b713b
EA
277slow_shmem_bit17_copy(struct page *gpu_page,
278 int gpu_offset,
279 struct page *cpu_page,
280 int cpu_offset,
281 int length,
282 int is_read)
283{
284 char *gpu_vaddr, *cpu_vaddr;
285
286 /* Use the unswizzled path if this page isn't affected. */
287 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
288 if (is_read)
289 return slow_shmem_copy(cpu_page, cpu_offset,
290 gpu_page, gpu_offset, length);
291 else
292 return slow_shmem_copy(gpu_page, gpu_offset,
293 cpu_page, cpu_offset, length);
294 }
295
99a03df5
CW
296 gpu_vaddr = kmap(gpu_page);
297 cpu_vaddr = kmap(cpu_page);
280b713b
EA
298
299 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
300 * XORing with the other bits (A9 for Y, A9 and A10 for X)
301 */
302 while (length > 0) {
303 int cacheline_end = ALIGN(gpu_offset + 1, 64);
304 int this_length = min(cacheline_end - gpu_offset, length);
305 int swizzled_gpu_offset = gpu_offset ^ 64;
306
307 if (is_read) {
308 memcpy(cpu_vaddr + cpu_offset,
309 gpu_vaddr + swizzled_gpu_offset,
310 this_length);
311 } else {
312 memcpy(gpu_vaddr + swizzled_gpu_offset,
313 cpu_vaddr + cpu_offset,
314 this_length);
315 }
316 cpu_offset += this_length;
317 gpu_offset += this_length;
318 length -= this_length;
319 }
320
99a03df5
CW
321 kunmap(cpu_page);
322 kunmap(gpu_page);
280b713b
EA
323}
324
eb01459f
EA
325/**
326 * This is the fast shmem pread path, which attempts to copy_from_user directly
327 * from the backing pages of the object to the user's address space. On a
328 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
329 */
330static int
05394f39
CW
331i915_gem_shmem_pread_fast(struct drm_device *dev,
332 struct drm_i915_gem_object *obj,
eb01459f 333 struct drm_i915_gem_pread *args,
05394f39 334 struct drm_file *file)
eb01459f 335{
05394f39 336 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
eb01459f 337 ssize_t remain;
e5281ccd 338 loff_t offset;
eb01459f
EA
339 char __user *user_data;
340 int page_offset, page_length;
eb01459f
EA
341
342 user_data = (char __user *) (uintptr_t) args->data_ptr;
343 remain = args->size;
344
eb01459f
EA
345 offset = args->offset;
346
347 while (remain > 0) {
e5281ccd
CW
348 struct page *page;
349 char *vaddr;
350 int ret;
351
eb01459f
EA
352 /* Operation in this page
353 *
eb01459f
EA
354 * page_offset = offset within page
355 * page_length = bytes to copy for this page
356 */
c8cbbb8b 357 page_offset = offset_in_page(offset);
eb01459f
EA
358 page_length = remain;
359 if ((page_offset + remain) > PAGE_SIZE)
360 page_length = PAGE_SIZE - page_offset;
361
e5281ccd
CW
362 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
363 GFP_HIGHUSER | __GFP_RECLAIMABLE);
364 if (IS_ERR(page))
365 return PTR_ERR(page);
366
367 vaddr = kmap_atomic(page);
368 ret = __copy_to_user_inatomic(user_data,
369 vaddr + page_offset,
370 page_length);
371 kunmap_atomic(vaddr);
372
373 mark_page_accessed(page);
374 page_cache_release(page);
375 if (ret)
4f27b75d 376 return -EFAULT;
eb01459f
EA
377
378 remain -= page_length;
379 user_data += page_length;
380 offset += page_length;
381 }
382
4f27b75d 383 return 0;
eb01459f
EA
384}
385
386/**
387 * This is the fallback shmem pread path, which allocates temporary storage
388 * in kernel space to copy_to_user into outside of the struct_mutex, so we
389 * can copy out of the object's backing pages while holding the struct mutex
390 * and not take page faults.
391 */
392static int
05394f39
CW
393i915_gem_shmem_pread_slow(struct drm_device *dev,
394 struct drm_i915_gem_object *obj,
eb01459f 395 struct drm_i915_gem_pread *args,
05394f39 396 struct drm_file *file)
eb01459f 397{
05394f39 398 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
eb01459f
EA
399 struct mm_struct *mm = current->mm;
400 struct page **user_pages;
401 ssize_t remain;
402 loff_t offset, pinned_pages, i;
403 loff_t first_data_page, last_data_page, num_pages;
e5281ccd
CW
404 int shmem_page_offset;
405 int data_page_index, data_page_offset;
eb01459f
EA
406 int page_length;
407 int ret;
408 uint64_t data_ptr = args->data_ptr;
280b713b 409 int do_bit17_swizzling;
eb01459f
EA
410
411 remain = args->size;
412
413 /* Pin the user pages containing the data. We can't fault while
414 * holding the struct mutex, yet we want to hold it while
415 * dereferencing the user data.
416 */
417 first_data_page = data_ptr / PAGE_SIZE;
418 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
419 num_pages = last_data_page - first_data_page + 1;
420
4f27b75d 421 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
eb01459f
EA
422 if (user_pages == NULL)
423 return -ENOMEM;
424
4f27b75d 425 mutex_unlock(&dev->struct_mutex);
eb01459f
EA
426 down_read(&mm->mmap_sem);
427 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 428 num_pages, 1, 0, user_pages, NULL);
eb01459f 429 up_read(&mm->mmap_sem);
4f27b75d 430 mutex_lock(&dev->struct_mutex);
eb01459f
EA
431 if (pinned_pages < num_pages) {
432 ret = -EFAULT;
4f27b75d 433 goto out;
eb01459f
EA
434 }
435
4f27b75d
CW
436 ret = i915_gem_object_set_cpu_read_domain_range(obj,
437 args->offset,
438 args->size);
07f73f69 439 if (ret)
4f27b75d 440 goto out;
eb01459f 441
4f27b75d 442 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 443
eb01459f
EA
444 offset = args->offset;
445
446 while (remain > 0) {
e5281ccd
CW
447 struct page *page;
448
eb01459f
EA
449 /* Operation in this page
450 *
eb01459f
EA
451 * shmem_page_offset = offset within page in shmem file
452 * data_page_index = page number in get_user_pages return
453 * data_page_offset = offset with data_page_index page.
454 * page_length = bytes to copy for this page
455 */
c8cbbb8b 456 shmem_page_offset = offset_in_page(offset);
eb01459f 457 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
c8cbbb8b 458 data_page_offset = offset_in_page(data_ptr);
eb01459f
EA
459
460 page_length = remain;
461 if ((shmem_page_offset + page_length) > PAGE_SIZE)
462 page_length = PAGE_SIZE - shmem_page_offset;
463 if ((data_page_offset + page_length) > PAGE_SIZE)
464 page_length = PAGE_SIZE - data_page_offset;
465
e5281ccd
CW
466 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
467 GFP_HIGHUSER | __GFP_RECLAIMABLE);
468 if (IS_ERR(page))
469 return PTR_ERR(page);
470
280b713b 471 if (do_bit17_swizzling) {
e5281ccd 472 slow_shmem_bit17_copy(page,
280b713b 473 shmem_page_offset,
99a03df5
CW
474 user_pages[data_page_index],
475 data_page_offset,
476 page_length,
477 1);
478 } else {
479 slow_shmem_copy(user_pages[data_page_index],
480 data_page_offset,
e5281ccd 481 page,
99a03df5
CW
482 shmem_page_offset,
483 page_length);
280b713b 484 }
eb01459f 485
e5281ccd
CW
486 mark_page_accessed(page);
487 page_cache_release(page);
488
eb01459f
EA
489 remain -= page_length;
490 data_ptr += page_length;
491 offset += page_length;
492 }
493
4f27b75d 494out:
eb01459f
EA
495 for (i = 0; i < pinned_pages; i++) {
496 SetPageDirty(user_pages[i]);
e5281ccd 497 mark_page_accessed(user_pages[i]);
eb01459f
EA
498 page_cache_release(user_pages[i]);
499 }
8e7d2b2c 500 drm_free_large(user_pages);
eb01459f
EA
501
502 return ret;
503}
504
673a394b
EA
505/**
506 * Reads data from the object referenced by handle.
507 *
508 * On error, the contents of *data are undefined.
509 */
510int
511i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 512 struct drm_file *file)
673a394b
EA
513{
514 struct drm_i915_gem_pread *args = data;
05394f39 515 struct drm_i915_gem_object *obj;
35b62a89 516 int ret = 0;
673a394b 517
51311d0a
CW
518 if (args->size == 0)
519 return 0;
520
521 if (!access_ok(VERIFY_WRITE,
522 (char __user *)(uintptr_t)args->data_ptr,
523 args->size))
524 return -EFAULT;
525
526 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
527 args->size);
528 if (ret)
529 return -EFAULT;
530
4f27b75d 531 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 532 if (ret)
4f27b75d 533 return ret;
673a394b 534
05394f39 535 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 536 if (&obj->base == NULL) {
1d7cfea1
CW
537 ret = -ENOENT;
538 goto unlock;
4f27b75d 539 }
673a394b 540
7dcd2499 541 /* Bounds check source. */
05394f39
CW
542 if (args->offset > obj->base.size ||
543 args->size > obj->base.size - args->offset) {
ce9d419d 544 ret = -EINVAL;
35b62a89 545 goto out;
ce9d419d
CW
546 }
547
db53a302
CW
548 trace_i915_gem_object_pread(obj, args->offset, args->size);
549
4f27b75d
CW
550 ret = i915_gem_object_set_cpu_read_domain_range(obj,
551 args->offset,
552 args->size);
553 if (ret)
e5281ccd 554 goto out;
4f27b75d
CW
555
556 ret = -EFAULT;
557 if (!i915_gem_object_needs_bit17_swizzle(obj))
05394f39 558 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
4f27b75d 559 if (ret == -EFAULT)
05394f39 560 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
673a394b 561
35b62a89 562out:
05394f39 563 drm_gem_object_unreference(&obj->base);
1d7cfea1 564unlock:
4f27b75d 565 mutex_unlock(&dev->struct_mutex);
eb01459f 566 return ret;
673a394b
EA
567}
568
0839ccb8
KP
569/* This is the fast write path which cannot handle
570 * page faults in the source data
9b7530cc 571 */
0839ccb8
KP
572
573static inline int
574fast_user_write(struct io_mapping *mapping,
575 loff_t page_base, int page_offset,
576 char __user *user_data,
577 int length)
9b7530cc 578{
9b7530cc 579 char *vaddr_atomic;
0839ccb8 580 unsigned long unwritten;
9b7530cc 581
3e4d3af5 582 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
583 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
584 user_data, length);
3e4d3af5 585 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 586 return unwritten;
0839ccb8
KP
587}
588
589/* Here's the write path which can sleep for
590 * page faults
591 */
592
ab34c226 593static inline void
3de09aa3
EA
594slow_kernel_write(struct io_mapping *mapping,
595 loff_t gtt_base, int gtt_offset,
596 struct page *user_page, int user_offset,
597 int length)
0839ccb8 598{
ab34c226
CW
599 char __iomem *dst_vaddr;
600 char *src_vaddr;
0839ccb8 601
ab34c226
CW
602 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
603 src_vaddr = kmap(user_page);
604
605 memcpy_toio(dst_vaddr + gtt_offset,
606 src_vaddr + user_offset,
607 length);
608
609 kunmap(user_page);
610 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
611}
612
3de09aa3
EA
613/**
614 * This is the fast pwrite path, where we copy the data directly from the
615 * user into the GTT, uncached.
616 */
673a394b 617static int
05394f39
CW
618i915_gem_gtt_pwrite_fast(struct drm_device *dev,
619 struct drm_i915_gem_object *obj,
3de09aa3 620 struct drm_i915_gem_pwrite *args,
05394f39 621 struct drm_file *file)
673a394b 622{
0839ccb8 623 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 624 ssize_t remain;
0839ccb8 625 loff_t offset, page_base;
673a394b 626 char __user *user_data;
0839ccb8 627 int page_offset, page_length;
673a394b
EA
628
629 user_data = (char __user *) (uintptr_t) args->data_ptr;
630 remain = args->size;
673a394b 631
05394f39 632 offset = obj->gtt_offset + args->offset;
673a394b
EA
633
634 while (remain > 0) {
635 /* Operation in this page
636 *
0839ccb8
KP
637 * page_base = page offset within aperture
638 * page_offset = offset within page
639 * page_length = bytes to copy for this page
673a394b 640 */
c8cbbb8b
CW
641 page_base = offset & PAGE_MASK;
642 page_offset = offset_in_page(offset);
0839ccb8
KP
643 page_length = remain;
644 if ((page_offset + remain) > PAGE_SIZE)
645 page_length = PAGE_SIZE - page_offset;
646
0839ccb8 647 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
648 * source page isn't available. Return the error and we'll
649 * retry in the slow path.
0839ccb8 650 */
fbd5a26d
CW
651 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
652 page_offset, user_data, page_length))
fbd5a26d 653 return -EFAULT;
673a394b 654
0839ccb8
KP
655 remain -= page_length;
656 user_data += page_length;
657 offset += page_length;
673a394b 658 }
673a394b 659
fbd5a26d 660 return 0;
673a394b
EA
661}
662
3de09aa3
EA
663/**
664 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
665 * the memory and maps it using kmap_atomic for copying.
666 *
667 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
668 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
669 */
3043c60c 670static int
05394f39
CW
671i915_gem_gtt_pwrite_slow(struct drm_device *dev,
672 struct drm_i915_gem_object *obj,
3de09aa3 673 struct drm_i915_gem_pwrite *args,
05394f39 674 struct drm_file *file)
673a394b 675{
3de09aa3
EA
676 drm_i915_private_t *dev_priv = dev->dev_private;
677 ssize_t remain;
678 loff_t gtt_page_base, offset;
679 loff_t first_data_page, last_data_page, num_pages;
680 loff_t pinned_pages, i;
681 struct page **user_pages;
682 struct mm_struct *mm = current->mm;
683 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 684 int ret;
3de09aa3
EA
685 uint64_t data_ptr = args->data_ptr;
686
687 remain = args->size;
688
689 /* Pin the user pages containing the data. We can't fault while
690 * holding the struct mutex, and all of the pwrite implementations
691 * want to hold it while dereferencing the user data.
692 */
693 first_data_page = data_ptr / PAGE_SIZE;
694 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
695 num_pages = last_data_page - first_data_page + 1;
696
fbd5a26d 697 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
3de09aa3
EA
698 if (user_pages == NULL)
699 return -ENOMEM;
700
fbd5a26d 701 mutex_unlock(&dev->struct_mutex);
3de09aa3
EA
702 down_read(&mm->mmap_sem);
703 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
704 num_pages, 0, 0, user_pages, NULL);
705 up_read(&mm->mmap_sem);
fbd5a26d 706 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
707 if (pinned_pages < num_pages) {
708 ret = -EFAULT;
709 goto out_unpin_pages;
710 }
673a394b 711
d9e86c0e
CW
712 ret = i915_gem_object_set_to_gtt_domain(obj, true);
713 if (ret)
714 goto out_unpin_pages;
715
716 ret = i915_gem_object_put_fence(obj);
3de09aa3 717 if (ret)
fbd5a26d 718 goto out_unpin_pages;
3de09aa3 719
05394f39 720 offset = obj->gtt_offset + args->offset;
3de09aa3
EA
721
722 while (remain > 0) {
723 /* Operation in this page
724 *
725 * gtt_page_base = page offset within aperture
726 * gtt_page_offset = offset within page in aperture
727 * data_page_index = page number in get_user_pages return
728 * data_page_offset = offset with data_page_index page.
729 * page_length = bytes to copy for this page
730 */
731 gtt_page_base = offset & PAGE_MASK;
c8cbbb8b 732 gtt_page_offset = offset_in_page(offset);
3de09aa3 733 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
c8cbbb8b 734 data_page_offset = offset_in_page(data_ptr);
3de09aa3
EA
735
736 page_length = remain;
737 if ((gtt_page_offset + page_length) > PAGE_SIZE)
738 page_length = PAGE_SIZE - gtt_page_offset;
739 if ((data_page_offset + page_length) > PAGE_SIZE)
740 page_length = PAGE_SIZE - data_page_offset;
741
ab34c226
CW
742 slow_kernel_write(dev_priv->mm.gtt_mapping,
743 gtt_page_base, gtt_page_offset,
744 user_pages[data_page_index],
745 data_page_offset,
746 page_length);
3de09aa3
EA
747
748 remain -= page_length;
749 offset += page_length;
750 data_ptr += page_length;
751 }
752
3de09aa3
EA
753out_unpin_pages:
754 for (i = 0; i < pinned_pages; i++)
755 page_cache_release(user_pages[i]);
8e7d2b2c 756 drm_free_large(user_pages);
3de09aa3
EA
757
758 return ret;
759}
760
40123c1f
EA
761/**
762 * This is the fast shmem pwrite path, which attempts to directly
763 * copy_from_user into the kmapped pages backing the object.
764 */
3043c60c 765static int
05394f39
CW
766i915_gem_shmem_pwrite_fast(struct drm_device *dev,
767 struct drm_i915_gem_object *obj,
40123c1f 768 struct drm_i915_gem_pwrite *args,
05394f39 769 struct drm_file *file)
673a394b 770{
05394f39 771 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 772 ssize_t remain;
e5281ccd 773 loff_t offset;
40123c1f
EA
774 char __user *user_data;
775 int page_offset, page_length;
40123c1f
EA
776
777 user_data = (char __user *) (uintptr_t) args->data_ptr;
778 remain = args->size;
673a394b 779
40123c1f 780 offset = args->offset;
05394f39 781 obj->dirty = 1;
40123c1f
EA
782
783 while (remain > 0) {
e5281ccd
CW
784 struct page *page;
785 char *vaddr;
786 int ret;
787
40123c1f
EA
788 /* Operation in this page
789 *
40123c1f
EA
790 * page_offset = offset within page
791 * page_length = bytes to copy for this page
792 */
c8cbbb8b 793 page_offset = offset_in_page(offset);
40123c1f
EA
794 page_length = remain;
795 if ((page_offset + remain) > PAGE_SIZE)
796 page_length = PAGE_SIZE - page_offset;
797
e5281ccd
CW
798 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
799 GFP_HIGHUSER | __GFP_RECLAIMABLE);
800 if (IS_ERR(page))
801 return PTR_ERR(page);
802
803 vaddr = kmap_atomic(page, KM_USER0);
804 ret = __copy_from_user_inatomic(vaddr + page_offset,
805 user_data,
806 page_length);
807 kunmap_atomic(vaddr, KM_USER0);
808
809 set_page_dirty(page);
810 mark_page_accessed(page);
811 page_cache_release(page);
812
813 /* If we get a fault while copying data, then (presumably) our
814 * source page isn't available. Return the error and we'll
815 * retry in the slow path.
816 */
817 if (ret)
fbd5a26d 818 return -EFAULT;
40123c1f
EA
819
820 remain -= page_length;
821 user_data += page_length;
822 offset += page_length;
823 }
824
fbd5a26d 825 return 0;
40123c1f
EA
826}
827
828/**
829 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
830 * the memory and maps it using kmap_atomic for copying.
831 *
832 * This avoids taking mmap_sem for faulting on the user's address while the
833 * struct_mutex is held.
834 */
835static int
05394f39
CW
836i915_gem_shmem_pwrite_slow(struct drm_device *dev,
837 struct drm_i915_gem_object *obj,
40123c1f 838 struct drm_i915_gem_pwrite *args,
05394f39 839 struct drm_file *file)
40123c1f 840{
05394f39 841 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f
EA
842 struct mm_struct *mm = current->mm;
843 struct page **user_pages;
844 ssize_t remain;
845 loff_t offset, pinned_pages, i;
846 loff_t first_data_page, last_data_page, num_pages;
e5281ccd 847 int shmem_page_offset;
40123c1f
EA
848 int data_page_index, data_page_offset;
849 int page_length;
850 int ret;
851 uint64_t data_ptr = args->data_ptr;
280b713b 852 int do_bit17_swizzling;
40123c1f
EA
853
854 remain = args->size;
855
856 /* Pin the user pages containing the data. We can't fault while
857 * holding the struct mutex, and all of the pwrite implementations
858 * want to hold it while dereferencing the user data.
859 */
860 first_data_page = data_ptr / PAGE_SIZE;
861 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
862 num_pages = last_data_page - first_data_page + 1;
863
4f27b75d 864 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
40123c1f
EA
865 if (user_pages == NULL)
866 return -ENOMEM;
867
fbd5a26d 868 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
869 down_read(&mm->mmap_sem);
870 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
871 num_pages, 0, 0, user_pages, NULL);
872 up_read(&mm->mmap_sem);
fbd5a26d 873 mutex_lock(&dev->struct_mutex);
40123c1f
EA
874 if (pinned_pages < num_pages) {
875 ret = -EFAULT;
fbd5a26d 876 goto out;
673a394b
EA
877 }
878
fbd5a26d 879 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
07f73f69 880 if (ret)
fbd5a26d 881 goto out;
40123c1f 882
fbd5a26d 883 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 884
673a394b 885 offset = args->offset;
05394f39 886 obj->dirty = 1;
673a394b 887
40123c1f 888 while (remain > 0) {
e5281ccd
CW
889 struct page *page;
890
40123c1f
EA
891 /* Operation in this page
892 *
40123c1f
EA
893 * shmem_page_offset = offset within page in shmem file
894 * data_page_index = page number in get_user_pages return
895 * data_page_offset = offset with data_page_index page.
896 * page_length = bytes to copy for this page
897 */
c8cbbb8b 898 shmem_page_offset = offset_in_page(offset);
40123c1f 899 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
c8cbbb8b 900 data_page_offset = offset_in_page(data_ptr);
40123c1f
EA
901
902 page_length = remain;
903 if ((shmem_page_offset + page_length) > PAGE_SIZE)
904 page_length = PAGE_SIZE - shmem_page_offset;
905 if ((data_page_offset + page_length) > PAGE_SIZE)
906 page_length = PAGE_SIZE - data_page_offset;
907
e5281ccd
CW
908 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
909 GFP_HIGHUSER | __GFP_RECLAIMABLE);
910 if (IS_ERR(page)) {
911 ret = PTR_ERR(page);
912 goto out;
913 }
914
280b713b 915 if (do_bit17_swizzling) {
e5281ccd 916 slow_shmem_bit17_copy(page,
280b713b
EA
917 shmem_page_offset,
918 user_pages[data_page_index],
919 data_page_offset,
99a03df5
CW
920 page_length,
921 0);
922 } else {
e5281ccd 923 slow_shmem_copy(page,
99a03df5
CW
924 shmem_page_offset,
925 user_pages[data_page_index],
926 data_page_offset,
927 page_length);
280b713b 928 }
40123c1f 929
e5281ccd
CW
930 set_page_dirty(page);
931 mark_page_accessed(page);
932 page_cache_release(page);
933
40123c1f
EA
934 remain -= page_length;
935 data_ptr += page_length;
936 offset += page_length;
673a394b
EA
937 }
938
fbd5a26d 939out:
40123c1f
EA
940 for (i = 0; i < pinned_pages; i++)
941 page_cache_release(user_pages[i]);
8e7d2b2c 942 drm_free_large(user_pages);
673a394b 943
40123c1f 944 return ret;
673a394b
EA
945}
946
947/**
948 * Writes data to the object referenced by handle.
949 *
950 * On error, the contents of the buffer that were to be modified are undefined.
951 */
952int
953i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 954 struct drm_file *file)
673a394b
EA
955{
956 struct drm_i915_gem_pwrite *args = data;
05394f39 957 struct drm_i915_gem_object *obj;
51311d0a
CW
958 int ret;
959
960 if (args->size == 0)
961 return 0;
962
963 if (!access_ok(VERIFY_READ,
964 (char __user *)(uintptr_t)args->data_ptr,
965 args->size))
966 return -EFAULT;
967
968 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
969 args->size);
970 if (ret)
971 return -EFAULT;
673a394b 972
fbd5a26d 973 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 974 if (ret)
fbd5a26d 975 return ret;
1d7cfea1 976
05394f39 977 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 978 if (&obj->base == NULL) {
1d7cfea1
CW
979 ret = -ENOENT;
980 goto unlock;
fbd5a26d 981 }
673a394b 982
7dcd2499 983 /* Bounds check destination. */
05394f39
CW
984 if (args->offset > obj->base.size ||
985 args->size > obj->base.size - args->offset) {
ce9d419d 986 ret = -EINVAL;
35b62a89 987 goto out;
ce9d419d
CW
988 }
989
db53a302
CW
990 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
991
673a394b
EA
992 /* We can only do the GTT pwrite on untiled buffers, as otherwise
993 * it would end up going through the fenced access, and we'll get
994 * different detiling behavior between reading and writing.
995 * pread/pwrite currently are reading and writing from the CPU
996 * perspective, requiring manual detiling by the client.
997 */
05394f39 998 if (obj->phys_obj)
fbd5a26d 999 ret = i915_gem_phys_pwrite(dev, obj, args, file);
d9e86c0e 1000 else if (obj->gtt_space &&
05394f39 1001 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
75e9e915 1002 ret = i915_gem_object_pin(obj, 0, true);
fbd5a26d
CW
1003 if (ret)
1004 goto out;
1005
d9e86c0e
CW
1006 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1007 if (ret)
1008 goto out_unpin;
1009
1010 ret = i915_gem_object_put_fence(obj);
fbd5a26d
CW
1011 if (ret)
1012 goto out_unpin;
1013
1014 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1015 if (ret == -EFAULT)
1016 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1017
1018out_unpin:
1019 i915_gem_object_unpin(obj);
40123c1f 1020 } else {
fbd5a26d
CW
1021 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1022 if (ret)
e5281ccd 1023 goto out;
673a394b 1024
fbd5a26d
CW
1025 ret = -EFAULT;
1026 if (!i915_gem_object_needs_bit17_swizzle(obj))
1027 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1028 if (ret == -EFAULT)
1029 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
fbd5a26d 1030 }
673a394b 1031
35b62a89 1032out:
05394f39 1033 drm_gem_object_unreference(&obj->base);
1d7cfea1 1034unlock:
fbd5a26d 1035 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1036 return ret;
1037}
1038
1039/**
2ef7eeaa
EA
1040 * Called when user space prepares to use an object with the CPU, either
1041 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1042 */
1043int
1044i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1045 struct drm_file *file)
673a394b
EA
1046{
1047 struct drm_i915_gem_set_domain *args = data;
05394f39 1048 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1049 uint32_t read_domains = args->read_domains;
1050 uint32_t write_domain = args->write_domain;
673a394b
EA
1051 int ret;
1052
1053 if (!(dev->driver->driver_features & DRIVER_GEM))
1054 return -ENODEV;
1055
2ef7eeaa 1056 /* Only handle setting domains to types used by the CPU. */
21d509e3 1057 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1058 return -EINVAL;
1059
21d509e3 1060 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1061 return -EINVAL;
1062
1063 /* Having something in the write domain implies it's in the read
1064 * domain, and only that read domain. Enforce that in the request.
1065 */
1066 if (write_domain != 0 && read_domains != write_domain)
1067 return -EINVAL;
1068
76c1dec1 1069 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1070 if (ret)
76c1dec1 1071 return ret;
1d7cfea1 1072
05394f39 1073 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1074 if (&obj->base == NULL) {
1d7cfea1
CW
1075 ret = -ENOENT;
1076 goto unlock;
76c1dec1 1077 }
673a394b 1078
2ef7eeaa
EA
1079 if (read_domains & I915_GEM_DOMAIN_GTT) {
1080 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1081
1082 /* Silently promote "you're not bound, there was nothing to do"
1083 * to success, since the client was just asking us to
1084 * make sure everything was done.
1085 */
1086 if (ret == -EINVAL)
1087 ret = 0;
2ef7eeaa 1088 } else {
e47c68e9 1089 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1090 }
1091
05394f39 1092 drm_gem_object_unreference(&obj->base);
1d7cfea1 1093unlock:
673a394b
EA
1094 mutex_unlock(&dev->struct_mutex);
1095 return ret;
1096}
1097
1098/**
1099 * Called when user space has done writes to this buffer
1100 */
1101int
1102i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1103 struct drm_file *file)
673a394b
EA
1104{
1105 struct drm_i915_gem_sw_finish *args = data;
05394f39 1106 struct drm_i915_gem_object *obj;
673a394b
EA
1107 int ret = 0;
1108
1109 if (!(dev->driver->driver_features & DRIVER_GEM))
1110 return -ENODEV;
1111
76c1dec1 1112 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1113 if (ret)
76c1dec1 1114 return ret;
1d7cfea1 1115
05394f39 1116 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1117 if (&obj->base == NULL) {
1d7cfea1
CW
1118 ret = -ENOENT;
1119 goto unlock;
673a394b
EA
1120 }
1121
673a394b 1122 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1123 if (obj->pin_count)
e47c68e9
EA
1124 i915_gem_object_flush_cpu_write_domain(obj);
1125
05394f39 1126 drm_gem_object_unreference(&obj->base);
1d7cfea1 1127unlock:
673a394b
EA
1128 mutex_unlock(&dev->struct_mutex);
1129 return ret;
1130}
1131
1132/**
1133 * Maps the contents of an object, returning the address it is mapped
1134 * into.
1135 *
1136 * While the mapping holds a reference on the contents of the object, it doesn't
1137 * imply a ref on the object itself.
1138 */
1139int
1140i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1141 struct drm_file *file)
673a394b 1142{
da761a6e 1143 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1144 struct drm_i915_gem_mmap *args = data;
1145 struct drm_gem_object *obj;
673a394b
EA
1146 unsigned long addr;
1147
1148 if (!(dev->driver->driver_features & DRIVER_GEM))
1149 return -ENODEV;
1150
05394f39 1151 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1152 if (obj == NULL)
bf79cb91 1153 return -ENOENT;
673a394b 1154
da761a6e
CW
1155 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1156 drm_gem_object_unreference_unlocked(obj);
1157 return -E2BIG;
1158 }
1159
673a394b
EA
1160 down_write(&current->mm->mmap_sem);
1161 addr = do_mmap(obj->filp, 0, args->size,
1162 PROT_READ | PROT_WRITE, MAP_SHARED,
1163 args->offset);
1164 up_write(&current->mm->mmap_sem);
bc9025bd 1165 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1166 if (IS_ERR((void *)addr))
1167 return addr;
1168
1169 args->addr_ptr = (uint64_t) addr;
1170
1171 return 0;
1172}
1173
de151cf6
JB
1174/**
1175 * i915_gem_fault - fault a page into the GTT
1176 * vma: VMA in question
1177 * vmf: fault info
1178 *
1179 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1180 * from userspace. The fault handler takes care of binding the object to
1181 * the GTT (if needed), allocating and programming a fence register (again,
1182 * only if needed based on whether the old reg is still valid or the object
1183 * is tiled) and inserting a new PTE into the faulting process.
1184 *
1185 * Note that the faulting process may involve evicting existing objects
1186 * from the GTT and/or fence registers to make room. So performance may
1187 * suffer if the GTT working set is large or there are few fence registers
1188 * left.
1189 */
1190int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1191{
05394f39
CW
1192 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1193 struct drm_device *dev = obj->base.dev;
7d1c4804 1194 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1195 pgoff_t page_offset;
1196 unsigned long pfn;
1197 int ret = 0;
0f973f27 1198 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1199
1200 /* We don't use vmf->pgoff since that has the fake offset */
1201 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1202 PAGE_SHIFT;
1203
d9bc7e9f
CW
1204 ret = i915_mutex_lock_interruptible(dev);
1205 if (ret)
1206 goto out;
a00b10c3 1207
db53a302
CW
1208 trace_i915_gem_object_fault(obj, page_offset, true, write);
1209
d9bc7e9f 1210 /* Now bind it into the GTT if needed */
919926ae
CW
1211 if (!obj->map_and_fenceable) {
1212 ret = i915_gem_object_unbind(obj);
1213 if (ret)
1214 goto unlock;
a00b10c3 1215 }
05394f39 1216 if (!obj->gtt_space) {
75e9e915 1217 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1218 if (ret)
1219 goto unlock;
de151cf6
JB
1220 }
1221
4a684a41
CW
1222 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1223 if (ret)
1224 goto unlock;
1225
d9e86c0e
CW
1226 if (obj->tiling_mode == I915_TILING_NONE)
1227 ret = i915_gem_object_put_fence(obj);
1228 else
ce453d81 1229 ret = i915_gem_object_get_fence(obj, NULL);
d9e86c0e
CW
1230 if (ret)
1231 goto unlock;
de151cf6 1232
05394f39
CW
1233 if (i915_gem_object_is_inactive(obj))
1234 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1235
6299f992
CW
1236 obj->fault_mappable = true;
1237
05394f39 1238 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1239 page_offset;
1240
1241 /* Finally, remap it using the new GTT offset */
1242 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1243unlock:
de151cf6 1244 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1245out:
de151cf6 1246 switch (ret) {
d9bc7e9f 1247 case -EIO:
045e769a 1248 case -EAGAIN:
d9bc7e9f
CW
1249 /* Give the error handler a chance to run and move the
1250 * objects off the GPU active list. Next time we service the
1251 * fault, we should be able to transition the page into the
1252 * GTT without touching the GPU (and so avoid further
1253 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1254 * with coherency, just lost writes.
1255 */
045e769a 1256 set_need_resched();
c715089f
CW
1257 case 0:
1258 case -ERESTARTSYS:
bed636ab 1259 case -EINTR:
c715089f 1260 return VM_FAULT_NOPAGE;
de151cf6 1261 case -ENOMEM:
de151cf6 1262 return VM_FAULT_OOM;
de151cf6 1263 default:
c715089f 1264 return VM_FAULT_SIGBUS;
de151cf6
JB
1265 }
1266}
1267
1268/**
1269 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1270 * @obj: obj in question
1271 *
1272 * GEM memory mapping works by handing back to userspace a fake mmap offset
1273 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1274 * up the object based on the offset and sets up the various memory mapping
1275 * structures.
1276 *
1277 * This routine allocates and attaches a fake offset for @obj.
1278 */
1279static int
05394f39 1280i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
de151cf6 1281{
05394f39 1282 struct drm_device *dev = obj->base.dev;
de151cf6 1283 struct drm_gem_mm *mm = dev->mm_private;
de151cf6 1284 struct drm_map_list *list;
f77d390c 1285 struct drm_local_map *map;
de151cf6
JB
1286 int ret = 0;
1287
1288 /* Set the object up for mmap'ing */
05394f39 1289 list = &obj->base.map_list;
9a298b2a 1290 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1291 if (!list->map)
1292 return -ENOMEM;
1293
1294 map = list->map;
1295 map->type = _DRM_GEM;
05394f39 1296 map->size = obj->base.size;
de151cf6
JB
1297 map->handle = obj;
1298
1299 /* Get a DRM GEM mmap offset allocated... */
1300 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
05394f39
CW
1301 obj->base.size / PAGE_SIZE,
1302 0, 0);
de151cf6 1303 if (!list->file_offset_node) {
05394f39
CW
1304 DRM_ERROR("failed to allocate offset for bo %d\n",
1305 obj->base.name);
9e0ae534 1306 ret = -ENOSPC;
de151cf6
JB
1307 goto out_free_list;
1308 }
1309
1310 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
05394f39
CW
1311 obj->base.size / PAGE_SIZE,
1312 0);
de151cf6
JB
1313 if (!list->file_offset_node) {
1314 ret = -ENOMEM;
1315 goto out_free_list;
1316 }
1317
1318 list->hash.key = list->file_offset_node->start;
9e0ae534
CW
1319 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1320 if (ret) {
de151cf6
JB
1321 DRM_ERROR("failed to add to map hash\n");
1322 goto out_free_mm;
1323 }
1324
de151cf6
JB
1325 return 0;
1326
1327out_free_mm:
1328 drm_mm_put_block(list->file_offset_node);
1329out_free_list:
9a298b2a 1330 kfree(list->map);
39a01d1f 1331 list->map = NULL;
de151cf6
JB
1332
1333 return ret;
1334}
1335
901782b2
CW
1336/**
1337 * i915_gem_release_mmap - remove physical page mappings
1338 * @obj: obj in question
1339 *
af901ca1 1340 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1341 * relinquish ownership of the pages back to the system.
1342 *
1343 * It is vital that we remove the page mapping if we have mapped a tiled
1344 * object through the GTT and then lose the fence register due to
1345 * resource pressure. Similarly if the object has been moved out of the
1346 * aperture, than pages mapped into userspace must be revoked. Removing the
1347 * mapping will then trigger a page fault on the next user access, allowing
1348 * fixup by i915_gem_fault().
1349 */
d05ca301 1350void
05394f39 1351i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1352{
6299f992
CW
1353 if (!obj->fault_mappable)
1354 return;
901782b2 1355
f6e47884
CW
1356 if (obj->base.dev->dev_mapping)
1357 unmap_mapping_range(obj->base.dev->dev_mapping,
1358 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1359 obj->base.size, 1);
fb7d516a 1360
6299f992 1361 obj->fault_mappable = false;
901782b2
CW
1362}
1363
ab00b3e5 1364static void
05394f39 1365i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
ab00b3e5 1366{
05394f39 1367 struct drm_device *dev = obj->base.dev;
ab00b3e5 1368 struct drm_gem_mm *mm = dev->mm_private;
05394f39 1369 struct drm_map_list *list = &obj->base.map_list;
ab00b3e5 1370
ab00b3e5 1371 drm_ht_remove_item(&mm->offset_hash, &list->hash);
39a01d1f
CW
1372 drm_mm_put_block(list->file_offset_node);
1373 kfree(list->map);
1374 list->map = NULL;
ab00b3e5
JB
1375}
1376
92b88aeb
CW
1377static uint32_t
1378i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
1379{
1380 struct drm_device *dev = obj->base.dev;
1381 uint32_t size;
1382
1383 if (INTEL_INFO(dev)->gen >= 4 ||
1384 obj->tiling_mode == I915_TILING_NONE)
1385 return obj->base.size;
1386
1387 /* Previous chips need a power-of-two fence region when tiling */
1388 if (INTEL_INFO(dev)->gen == 3)
1389 size = 1024*1024;
1390 else
1391 size = 512*1024;
1392
1393 while (size < obj->base.size)
1394 size <<= 1;
1395
1396 return size;
1397}
1398
de151cf6
JB
1399/**
1400 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1401 * @obj: object to check
1402 *
1403 * Return the required GTT alignment for an object, taking into account
5e783301 1404 * potential fence register mapping.
de151cf6
JB
1405 */
1406static uint32_t
05394f39 1407i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
de151cf6 1408{
05394f39 1409 struct drm_device *dev = obj->base.dev;
de151cf6
JB
1410
1411 /*
1412 * Minimum alignment is 4k (GTT page size), but might be greater
1413 * if a fence register is needed for the object.
1414 */
a00b10c3 1415 if (INTEL_INFO(dev)->gen >= 4 ||
05394f39 1416 obj->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1417 return 4096;
1418
a00b10c3
CW
1419 /*
1420 * Previous chips need to be aligned to the size of the smallest
1421 * fence register that can contain the object.
1422 */
05394f39 1423 return i915_gem_get_gtt_size(obj);
a00b10c3
CW
1424}
1425
5e783301
DV
1426/**
1427 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1428 * unfenced object
1429 * @obj: object to check
1430 *
1431 * Return the required GTT alignment for an object, only taking into account
1432 * unfenced tiled surface requirements.
1433 */
467cffba 1434uint32_t
05394f39 1435i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
5e783301 1436{
05394f39 1437 struct drm_device *dev = obj->base.dev;
5e783301
DV
1438 int tile_height;
1439
1440 /*
1441 * Minimum alignment is 4k (GTT page size) for sane hw.
1442 */
1443 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
05394f39 1444 obj->tiling_mode == I915_TILING_NONE)
5e783301
DV
1445 return 4096;
1446
1447 /*
1448 * Older chips need unfenced tiled buffers to be aligned to the left
1449 * edge of an even tile row (where tile rows are counted as if the bo is
1450 * placed in a fenced gtt region).
1451 */
c8ebc2b0
DV
1452 if (IS_GEN2(dev))
1453 tile_height = 16;
1454 else if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
5e783301
DV
1455 tile_height = 32;
1456 else
1457 tile_height = 8;
1458
05394f39 1459 return tile_height * obj->stride * 2;
5e783301
DV
1460}
1461
de151cf6 1462int
ff72145b
DA
1463i915_gem_mmap_gtt(struct drm_file *file,
1464 struct drm_device *dev,
1465 uint32_t handle,
1466 uint64_t *offset)
de151cf6 1467{
da761a6e 1468 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1469 struct drm_i915_gem_object *obj;
de151cf6
JB
1470 int ret;
1471
1472 if (!(dev->driver->driver_features & DRIVER_GEM))
1473 return -ENODEV;
1474
76c1dec1 1475 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1476 if (ret)
76c1dec1 1477 return ret;
de151cf6 1478
ff72145b 1479 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1480 if (&obj->base == NULL) {
1d7cfea1
CW
1481 ret = -ENOENT;
1482 goto unlock;
1483 }
de151cf6 1484
05394f39 1485 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e
CW
1486 ret = -E2BIG;
1487 goto unlock;
1488 }
1489
05394f39 1490 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1491 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1492 ret = -EINVAL;
1493 goto out;
ab18282d
CW
1494 }
1495
05394f39 1496 if (!obj->base.map_list.map) {
de151cf6 1497 ret = i915_gem_create_mmap_offset(obj);
1d7cfea1
CW
1498 if (ret)
1499 goto out;
de151cf6
JB
1500 }
1501
ff72145b 1502 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1503
1d7cfea1 1504out:
05394f39 1505 drm_gem_object_unreference(&obj->base);
1d7cfea1 1506unlock:
de151cf6 1507 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1508 return ret;
de151cf6
JB
1509}
1510
ff72145b
DA
1511/**
1512 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1513 * @dev: DRM device
1514 * @data: GTT mapping ioctl data
1515 * @file: GEM object info
1516 *
1517 * Simply returns the fake offset to userspace so it can mmap it.
1518 * The mmap call will end up in drm_gem_mmap(), which will set things
1519 * up so we can get faults in the handler above.
1520 *
1521 * The fault handler will take care of binding the object into the GTT
1522 * (since it may have been evicted to make room for something), allocating
1523 * a fence register, and mapping the appropriate aperture address into
1524 * userspace.
1525 */
1526int
1527i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1528 struct drm_file *file)
1529{
1530 struct drm_i915_gem_mmap_gtt *args = data;
1531
1532 if (!(dev->driver->driver_features & DRIVER_GEM))
1533 return -ENODEV;
1534
1535 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1536}
1537
1538
e5281ccd 1539static int
05394f39 1540i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1541 gfp_t gfpmask)
1542{
e5281ccd
CW
1543 int page_count, i;
1544 struct address_space *mapping;
1545 struct inode *inode;
1546 struct page *page;
1547
1548 /* Get the list of pages out of our struct file. They'll be pinned
1549 * at this point until we release them.
1550 */
05394f39
CW
1551 page_count = obj->base.size / PAGE_SIZE;
1552 BUG_ON(obj->pages != NULL);
1553 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1554 if (obj->pages == NULL)
e5281ccd
CW
1555 return -ENOMEM;
1556
05394f39 1557 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd
CW
1558 mapping = inode->i_mapping;
1559 for (i = 0; i < page_count; i++) {
1560 page = read_cache_page_gfp(mapping, i,
1561 GFP_HIGHUSER |
1562 __GFP_COLD |
1563 __GFP_RECLAIMABLE |
1564 gfpmask);
1565 if (IS_ERR(page))
1566 goto err_pages;
1567
05394f39 1568 obj->pages[i] = page;
e5281ccd
CW
1569 }
1570
05394f39 1571 if (obj->tiling_mode != I915_TILING_NONE)
e5281ccd
CW
1572 i915_gem_object_do_bit_17_swizzle(obj);
1573
1574 return 0;
1575
1576err_pages:
1577 while (i--)
05394f39 1578 page_cache_release(obj->pages[i]);
e5281ccd 1579
05394f39
CW
1580 drm_free_large(obj->pages);
1581 obj->pages = NULL;
e5281ccd
CW
1582 return PTR_ERR(page);
1583}
1584
5cdf5881 1585static void
05394f39 1586i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1587{
05394f39 1588 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1589 int i;
1590
05394f39 1591 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1592
05394f39 1593 if (obj->tiling_mode != I915_TILING_NONE)
280b713b
EA
1594 i915_gem_object_save_bit_17_swizzle(obj);
1595
05394f39
CW
1596 if (obj->madv == I915_MADV_DONTNEED)
1597 obj->dirty = 0;
3ef94daa
CW
1598
1599 for (i = 0; i < page_count; i++) {
05394f39
CW
1600 if (obj->dirty)
1601 set_page_dirty(obj->pages[i]);
3ef94daa 1602
05394f39
CW
1603 if (obj->madv == I915_MADV_WILLNEED)
1604 mark_page_accessed(obj->pages[i]);
3ef94daa 1605
05394f39 1606 page_cache_release(obj->pages[i]);
3ef94daa 1607 }
05394f39 1608 obj->dirty = 0;
673a394b 1609
05394f39
CW
1610 drm_free_large(obj->pages);
1611 obj->pages = NULL;
673a394b
EA
1612}
1613
54cf91dc 1614void
05394f39 1615i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1616 struct intel_ring_buffer *ring,
1617 u32 seqno)
673a394b 1618{
05394f39 1619 struct drm_device *dev = obj->base.dev;
69dc4987 1620 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1621
852835f3 1622 BUG_ON(ring == NULL);
05394f39 1623 obj->ring = ring;
673a394b
EA
1624
1625 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1626 if (!obj->active) {
1627 drm_gem_object_reference(&obj->base);
1628 obj->active = 1;
673a394b 1629 }
e35a41de 1630
673a394b 1631 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1632 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1633 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1634
05394f39 1635 obj->last_rendering_seqno = seqno;
caea7476
CW
1636 if (obj->fenced_gpu_access) {
1637 struct drm_i915_fence_reg *reg;
1638
1639 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1640
1641 obj->last_fenced_seqno = seqno;
1642 obj->last_fenced_ring = ring;
1643
1644 reg = &dev_priv->fence_regs[obj->fence_reg];
1645 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1646 }
1647}
1648
1649static void
1650i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1651{
1652 list_del_init(&obj->ring_list);
1653 obj->last_rendering_seqno = 0;
673a394b
EA
1654}
1655
ce44b0ea 1656static void
05394f39 1657i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1658{
05394f39 1659 struct drm_device *dev = obj->base.dev;
ce44b0ea 1660 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1661
05394f39
CW
1662 BUG_ON(!obj->active);
1663 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1664
1665 i915_gem_object_move_off_active(obj);
1666}
1667
1668static void
1669i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1670{
1671 struct drm_device *dev = obj->base.dev;
1672 struct drm_i915_private *dev_priv = dev->dev_private;
1673
1674 if (obj->pin_count != 0)
1675 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1676 else
1677 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1678
1679 BUG_ON(!list_empty(&obj->gpu_write_list));
1680 BUG_ON(!obj->active);
1681 obj->ring = NULL;
1682
1683 i915_gem_object_move_off_active(obj);
1684 obj->fenced_gpu_access = false;
caea7476
CW
1685
1686 obj->active = 0;
87ca9c8a 1687 obj->pending_gpu_write = false;
caea7476
CW
1688 drm_gem_object_unreference(&obj->base);
1689
1690 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1691}
673a394b 1692
963b4836
CW
1693/* Immediately discard the backing storage */
1694static void
05394f39 1695i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1696{
bb6baf76 1697 struct inode *inode;
963b4836 1698
ae9fed6b
CW
1699 /* Our goal here is to return as much of the memory as
1700 * is possible back to the system as we are called from OOM.
1701 * To do this we must instruct the shmfs to drop all of its
1702 * backing pages, *now*. Here we mirror the actions taken
1703 * when by shmem_delete_inode() to release the backing store.
1704 */
05394f39 1705 inode = obj->base.filp->f_path.dentry->d_inode;
ae9fed6b
CW
1706 truncate_inode_pages(inode->i_mapping, 0);
1707 if (inode->i_op->truncate_range)
1708 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1709
05394f39 1710 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1711}
1712
1713static inline int
05394f39 1714i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1715{
05394f39 1716 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1717}
1718
63560396 1719static void
db53a302
CW
1720i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1721 uint32_t flush_domains)
63560396 1722{
05394f39 1723 struct drm_i915_gem_object *obj, *next;
63560396 1724
05394f39 1725 list_for_each_entry_safe(obj, next,
64193406 1726 &ring->gpu_write_list,
63560396 1727 gpu_write_list) {
05394f39
CW
1728 if (obj->base.write_domain & flush_domains) {
1729 uint32_t old_write_domain = obj->base.write_domain;
63560396 1730
05394f39
CW
1731 obj->base.write_domain = 0;
1732 list_del_init(&obj->gpu_write_list);
1ec14ad3 1733 i915_gem_object_move_to_active(obj, ring,
db53a302 1734 i915_gem_next_request_seqno(ring));
63560396 1735
63560396 1736 trace_i915_gem_object_change_domain(obj,
05394f39 1737 obj->base.read_domains,
63560396
DV
1738 old_write_domain);
1739 }
1740 }
1741}
8187a2b7 1742
3cce469c 1743int
db53a302 1744i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1745 struct drm_file *file,
db53a302 1746 struct drm_i915_gem_request *request)
673a394b 1747{
db53a302 1748 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b
EA
1749 uint32_t seqno;
1750 int was_empty;
3cce469c
CW
1751 int ret;
1752
1753 BUG_ON(request == NULL);
673a394b 1754
3cce469c
CW
1755 ret = ring->add_request(ring, &seqno);
1756 if (ret)
1757 return ret;
673a394b 1758
db53a302 1759 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1760
1761 request->seqno = seqno;
852835f3 1762 request->ring = ring;
673a394b 1763 request->emitted_jiffies = jiffies;
852835f3
ZN
1764 was_empty = list_empty(&ring->request_list);
1765 list_add_tail(&request->list, &ring->request_list);
1766
db53a302
CW
1767 if (file) {
1768 struct drm_i915_file_private *file_priv = file->driver_priv;
1769
1c25595f 1770 spin_lock(&file_priv->mm.lock);
f787a5f5 1771 request->file_priv = file_priv;
b962442e 1772 list_add_tail(&request->client_list,
f787a5f5 1773 &file_priv->mm.request_list);
1c25595f 1774 spin_unlock(&file_priv->mm.lock);
b962442e 1775 }
673a394b 1776
db53a302
CW
1777 ring->outstanding_lazy_request = false;
1778
f65d9421 1779 if (!dev_priv->mm.suspended) {
b3b079db
CW
1780 mod_timer(&dev_priv->hangcheck_timer,
1781 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1782 if (was_empty)
b3b079db
CW
1783 queue_delayed_work(dev_priv->wq,
1784 &dev_priv->mm.retire_work, HZ);
f65d9421 1785 }
3cce469c 1786 return 0;
673a394b
EA
1787}
1788
f787a5f5
CW
1789static inline void
1790i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1791{
1c25595f 1792 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1793
1c25595f
CW
1794 if (!file_priv)
1795 return;
1c5d22f7 1796
1c25595f 1797 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
1798 if (request->file_priv) {
1799 list_del(&request->client_list);
1800 request->file_priv = NULL;
1801 }
1c25595f 1802 spin_unlock(&file_priv->mm.lock);
673a394b 1803}
673a394b 1804
dfaae392
CW
1805static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1806 struct intel_ring_buffer *ring)
9375e446 1807{
dfaae392
CW
1808 while (!list_empty(&ring->request_list)) {
1809 struct drm_i915_gem_request *request;
673a394b 1810
dfaae392
CW
1811 request = list_first_entry(&ring->request_list,
1812 struct drm_i915_gem_request,
1813 list);
de151cf6 1814
dfaae392 1815 list_del(&request->list);
f787a5f5 1816 i915_gem_request_remove_from_client(request);
dfaae392
CW
1817 kfree(request);
1818 }
673a394b 1819
dfaae392 1820 while (!list_empty(&ring->active_list)) {
05394f39 1821 struct drm_i915_gem_object *obj;
9375e446 1822
05394f39
CW
1823 obj = list_first_entry(&ring->active_list,
1824 struct drm_i915_gem_object,
1825 ring_list);
9375e446 1826
05394f39
CW
1827 obj->base.write_domain = 0;
1828 list_del_init(&obj->gpu_write_list);
1829 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1830 }
1831}
1832
312817a3
CW
1833static void i915_gem_reset_fences(struct drm_device *dev)
1834{
1835 struct drm_i915_private *dev_priv = dev->dev_private;
1836 int i;
1837
1838 for (i = 0; i < 16; i++) {
1839 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c
CW
1840 struct drm_i915_gem_object *obj = reg->obj;
1841
1842 if (!obj)
1843 continue;
1844
1845 if (obj->tiling_mode)
1846 i915_gem_release_mmap(obj);
1847
d9e86c0e
CW
1848 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1849 reg->obj->fenced_gpu_access = false;
1850 reg->obj->last_fenced_seqno = 0;
1851 reg->obj->last_fenced_ring = NULL;
1852 i915_gem_clear_fence_reg(dev, reg);
312817a3
CW
1853 }
1854}
1855
069efc1d 1856void i915_gem_reset(struct drm_device *dev)
673a394b 1857{
77f01230 1858 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1859 struct drm_i915_gem_object *obj;
1ec14ad3 1860 int i;
673a394b 1861
1ec14ad3
CW
1862 for (i = 0; i < I915_NUM_RINGS; i++)
1863 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
dfaae392
CW
1864
1865 /* Remove anything from the flushing lists. The GPU cache is likely
1866 * to be lost on reset along with the data, so simply move the
1867 * lost bo to the inactive list.
1868 */
1869 while (!list_empty(&dev_priv->mm.flushing_list)) {
05394f39
CW
1870 obj= list_first_entry(&dev_priv->mm.flushing_list,
1871 struct drm_i915_gem_object,
1872 mm_list);
dfaae392 1873
05394f39
CW
1874 obj->base.write_domain = 0;
1875 list_del_init(&obj->gpu_write_list);
1876 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1877 }
1878
1879 /* Move everything out of the GPU domains to ensure we do any
1880 * necessary invalidation upon reuse.
1881 */
05394f39 1882 list_for_each_entry(obj,
77f01230 1883 &dev_priv->mm.inactive_list,
69dc4987 1884 mm_list)
77f01230 1885 {
05394f39 1886 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1887 }
069efc1d
CW
1888
1889 /* The fence registers are invalidated so clear them out */
312817a3 1890 i915_gem_reset_fences(dev);
673a394b
EA
1891}
1892
1893/**
1894 * This function clears the request list as sequence numbers are passed.
1895 */
b09a1fec 1896static void
db53a302 1897i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1898{
673a394b 1899 uint32_t seqno;
1ec14ad3 1900 int i;
673a394b 1901
db53a302 1902 if (list_empty(&ring->request_list))
6c0594a3
KW
1903 return;
1904
db53a302 1905 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1906
78501eac 1907 seqno = ring->get_seqno(ring);
1ec14ad3 1908
076e2c0e 1909 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1910 if (seqno >= ring->sync_seqno[i])
1911 ring->sync_seqno[i] = 0;
1912
852835f3 1913 while (!list_empty(&ring->request_list)) {
673a394b 1914 struct drm_i915_gem_request *request;
673a394b 1915
852835f3 1916 request = list_first_entry(&ring->request_list,
673a394b
EA
1917 struct drm_i915_gem_request,
1918 list);
673a394b 1919
dfaae392 1920 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1921 break;
1922
db53a302 1923 trace_i915_gem_request_retire(ring, request->seqno);
b84d5f0c
CW
1924
1925 list_del(&request->list);
f787a5f5 1926 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1927 kfree(request);
1928 }
673a394b 1929
b84d5f0c
CW
1930 /* Move any buffers on the active list that are no longer referenced
1931 * by the ringbuffer to the flushing/inactive lists as appropriate.
1932 */
1933 while (!list_empty(&ring->active_list)) {
05394f39 1934 struct drm_i915_gem_object *obj;
b84d5f0c 1935
05394f39
CW
1936 obj= list_first_entry(&ring->active_list,
1937 struct drm_i915_gem_object,
1938 ring_list);
673a394b 1939
05394f39 1940 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
673a394b 1941 break;
b84d5f0c 1942
05394f39 1943 if (obj->base.write_domain != 0)
b84d5f0c
CW
1944 i915_gem_object_move_to_flushing(obj);
1945 else
1946 i915_gem_object_move_to_inactive(obj);
673a394b 1947 }
9d34e5db 1948
db53a302
CW
1949 if (unlikely(ring->trace_irq_seqno &&
1950 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1951 ring->irq_put(ring);
db53a302 1952 ring->trace_irq_seqno = 0;
9d34e5db 1953 }
23bc5982 1954
db53a302 1955 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1956}
1957
b09a1fec
CW
1958void
1959i915_gem_retire_requests(struct drm_device *dev)
1960{
1961 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 1962 int i;
b09a1fec 1963
be72615b 1964 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
05394f39 1965 struct drm_i915_gem_object *obj, *next;
be72615b
CW
1966
1967 /* We must be careful that during unbind() we do not
1968 * accidentally infinitely recurse into retire requests.
1969 * Currently:
1970 * retire -> free -> unbind -> wait -> retire_ring
1971 */
05394f39 1972 list_for_each_entry_safe(obj, next,
be72615b 1973 &dev_priv->mm.deferred_free_list,
69dc4987 1974 mm_list)
05394f39 1975 i915_gem_free_object_tail(obj);
be72615b
CW
1976 }
1977
1ec14ad3 1978 for (i = 0; i < I915_NUM_RINGS; i++)
db53a302 1979 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
b09a1fec
CW
1980}
1981
75ef9da2 1982static void
673a394b
EA
1983i915_gem_retire_work_handler(struct work_struct *work)
1984{
1985 drm_i915_private_t *dev_priv;
1986 struct drm_device *dev;
0a58705b
CW
1987 bool idle;
1988 int i;
673a394b
EA
1989
1990 dev_priv = container_of(work, drm_i915_private_t,
1991 mm.retire_work.work);
1992 dev = dev_priv->dev;
1993
891b48cf
CW
1994 /* Come back later if the device is busy... */
1995 if (!mutex_trylock(&dev->struct_mutex)) {
1996 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1997 return;
1998 }
1999
b09a1fec 2000 i915_gem_retire_requests(dev);
d1b851fc 2001
0a58705b
CW
2002 /* Send a periodic flush down the ring so we don't hold onto GEM
2003 * objects indefinitely.
2004 */
2005 idle = true;
2006 for (i = 0; i < I915_NUM_RINGS; i++) {
2007 struct intel_ring_buffer *ring = &dev_priv->ring[i];
2008
2009 if (!list_empty(&ring->gpu_write_list)) {
2010 struct drm_i915_gem_request *request;
2011 int ret;
2012
db53a302
CW
2013 ret = i915_gem_flush_ring(ring,
2014 0, I915_GEM_GPU_DOMAINS);
0a58705b
CW
2015 request = kzalloc(sizeof(*request), GFP_KERNEL);
2016 if (ret || request == NULL ||
db53a302 2017 i915_add_request(ring, NULL, request))
0a58705b
CW
2018 kfree(request);
2019 }
2020
2021 idle &= list_empty(&ring->request_list);
2022 }
2023
2024 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 2025 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
0a58705b 2026
673a394b
EA
2027 mutex_unlock(&dev->struct_mutex);
2028}
2029
db53a302
CW
2030/**
2031 * Waits for a sequence number to be signaled, and cleans up the
2032 * request and object lists appropriately for that event.
2033 */
5a5a0c64 2034int
db53a302 2035i915_wait_request(struct intel_ring_buffer *ring,
ce453d81 2036 uint32_t seqno)
673a394b 2037{
db53a302 2038 drm_i915_private_t *dev_priv = ring->dev->dev_private;
802c7eb6 2039 u32 ier;
673a394b
EA
2040 int ret = 0;
2041
2042 BUG_ON(seqno == 0);
2043
d9bc7e9f
CW
2044 if (atomic_read(&dev_priv->mm.wedged)) {
2045 struct completion *x = &dev_priv->error_completion;
2046 bool recovery_complete;
2047 unsigned long flags;
2048
2049 /* Give the error handler a chance to run. */
2050 spin_lock_irqsave(&x->wait.lock, flags);
2051 recovery_complete = x->done > 0;
2052 spin_unlock_irqrestore(&x->wait.lock, flags);
2053
2054 return recovery_complete ? -EIO : -EAGAIN;
2055 }
30dbf0c0 2056
5d97eb69 2057 if (seqno == ring->outstanding_lazy_request) {
3cce469c
CW
2058 struct drm_i915_gem_request *request;
2059
2060 request = kzalloc(sizeof(*request), GFP_KERNEL);
2061 if (request == NULL)
e35a41de 2062 return -ENOMEM;
3cce469c 2063
db53a302 2064 ret = i915_add_request(ring, NULL, request);
3cce469c
CW
2065 if (ret) {
2066 kfree(request);
2067 return ret;
2068 }
2069
2070 seqno = request->seqno;
e35a41de 2071 }
ffed1d09 2072
78501eac 2073 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
db53a302 2074 if (HAS_PCH_SPLIT(ring->dev))
036a4a7d
ZW
2075 ier = I915_READ(DEIER) | I915_READ(GTIER);
2076 else
2077 ier = I915_READ(IER);
802c7eb6
JB
2078 if (!ier) {
2079 DRM_ERROR("something (likely vbetool) disabled "
2080 "interrupts, re-enabling\n");
db53a302
CW
2081 i915_driver_irq_preinstall(ring->dev);
2082 i915_driver_irq_postinstall(ring->dev);
802c7eb6
JB
2083 }
2084
db53a302 2085 trace_i915_gem_request_wait_begin(ring, seqno);
1c5d22f7 2086
b2223497 2087 ring->waiting_seqno = seqno;
b13c2b96 2088 if (ring->irq_get(ring)) {
ce453d81 2089 if (dev_priv->mm.interruptible)
b13c2b96
CW
2090 ret = wait_event_interruptible(ring->irq_queue,
2091 i915_seqno_passed(ring->get_seqno(ring), seqno)
2092 || atomic_read(&dev_priv->mm.wedged));
2093 else
2094 wait_event(ring->irq_queue,
2095 i915_seqno_passed(ring->get_seqno(ring), seqno)
2096 || atomic_read(&dev_priv->mm.wedged));
2097
2098 ring->irq_put(ring);
b5ba177d
CW
2099 } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
2100 seqno) ||
2101 atomic_read(&dev_priv->mm.wedged), 3000))
2102 ret = -EBUSY;
b2223497 2103 ring->waiting_seqno = 0;
1c5d22f7 2104
db53a302 2105 trace_i915_gem_request_wait_end(ring, seqno);
673a394b 2106 }
ba1234d1 2107 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 2108 ret = -EAGAIN;
673a394b
EA
2109
2110 if (ret && ret != -ERESTARTSYS)
8bff917c 2111 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
78501eac 2112 __func__, ret, seqno, ring->get_seqno(ring),
8bff917c 2113 dev_priv->next_seqno);
673a394b
EA
2114
2115 /* Directly dispatch request retiring. While we have the work queue
2116 * to handle this, the waiter on a request often wants an associated
2117 * buffer to have made it to the inactive list, and we would need
2118 * a separate wait queue to handle that.
2119 */
2120 if (ret == 0)
db53a302 2121 i915_gem_retire_requests_ring(ring);
673a394b
EA
2122
2123 return ret;
2124}
2125
673a394b
EA
2126/**
2127 * Ensures that all rendering to the object has completed and the object is
2128 * safe to unbind from the GTT or access from the CPU.
2129 */
54cf91dc 2130int
ce453d81 2131i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
673a394b 2132{
673a394b
EA
2133 int ret;
2134
e47c68e9
EA
2135 /* This function only exists to support waiting for existing rendering,
2136 * not for emitting required flushes.
673a394b 2137 */
05394f39 2138 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2139
2140 /* If there is rendering queued on the buffer being evicted, wait for
2141 * it.
2142 */
05394f39 2143 if (obj->active) {
ce453d81 2144 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
2cf34d7b 2145 if (ret)
673a394b
EA
2146 return ret;
2147 }
2148
2149 return 0;
2150}
2151
b5ffc9bc
CW
2152static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2153{
2154 u32 old_write_domain, old_read_domains;
2155
2156 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2157 return;
2158
2159 /* Act a barrier for all accesses through the GTT */
2160 mb();
2161
2162 /* Force a pagefault for domain tracking on next user access */
2163 i915_gem_release_mmap(obj);
2164
2165 old_read_domains = obj->base.read_domains;
2166 old_write_domain = obj->base.write_domain;
2167
2168 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2169 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2170
2171 trace_i915_gem_object_change_domain(obj,
2172 old_read_domains,
2173 old_write_domain);
2174}
2175
673a394b
EA
2176/**
2177 * Unbinds an object from the GTT aperture.
2178 */
0f973f27 2179int
05394f39 2180i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2181{
673a394b
EA
2182 int ret = 0;
2183
05394f39 2184 if (obj->gtt_space == NULL)
673a394b
EA
2185 return 0;
2186
05394f39 2187 if (obj->pin_count != 0) {
673a394b
EA
2188 DRM_ERROR("Attempting to unbind pinned buffer\n");
2189 return -EINVAL;
2190 }
2191
a8198eea
CW
2192 ret = i915_gem_object_finish_gpu(obj);
2193 if (ret == -ERESTARTSYS)
2194 return ret;
2195 /* Continue on if we fail due to EIO, the GPU is hung so we
2196 * should be safe and we need to cleanup or else we might
2197 * cause memory corruption through use-after-free.
2198 */
2199
b5ffc9bc 2200 i915_gem_object_finish_gtt(obj);
5323fd04 2201
673a394b
EA
2202 /* Move the object to the CPU domain to ensure that
2203 * any possible CPU writes while it's not in the GTT
a8198eea 2204 * are flushed when we go to remap it.
673a394b 2205 */
a8198eea
CW
2206 if (ret == 0)
2207 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2208 if (ret == -ERESTARTSYS)
673a394b 2209 return ret;
812ed492 2210 if (ret) {
a8198eea
CW
2211 /* In the event of a disaster, abandon all caches and
2212 * hope for the best.
2213 */
812ed492 2214 i915_gem_clflush_object(obj);
05394f39 2215 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2216 }
673a394b 2217
96b47b65 2218 /* release the fence reg _after_ flushing */
d9e86c0e
CW
2219 ret = i915_gem_object_put_fence(obj);
2220 if (ret == -ERESTARTSYS)
2221 return ret;
96b47b65 2222
db53a302
CW
2223 trace_i915_gem_object_unbind(obj);
2224
7c2e6fdf 2225 i915_gem_gtt_unbind_object(obj);
e5281ccd 2226 i915_gem_object_put_pages_gtt(obj);
673a394b 2227
6299f992 2228 list_del_init(&obj->gtt_list);
05394f39 2229 list_del_init(&obj->mm_list);
75e9e915 2230 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2231 obj->map_and_fenceable = true;
673a394b 2232
05394f39
CW
2233 drm_mm_put_block(obj->gtt_space);
2234 obj->gtt_space = NULL;
2235 obj->gtt_offset = 0;
673a394b 2236
05394f39 2237 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2238 i915_gem_object_truncate(obj);
2239
8dc1775d 2240 return ret;
673a394b
EA
2241}
2242
88241785 2243int
db53a302 2244i915_gem_flush_ring(struct intel_ring_buffer *ring,
54cf91dc
CW
2245 uint32_t invalidate_domains,
2246 uint32_t flush_domains)
2247{
88241785
CW
2248 int ret;
2249
36d527de
CW
2250 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2251 return 0;
2252
db53a302
CW
2253 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2254
88241785
CW
2255 ret = ring->flush(ring, invalidate_domains, flush_domains);
2256 if (ret)
2257 return ret;
2258
36d527de
CW
2259 if (flush_domains & I915_GEM_GPU_DOMAINS)
2260 i915_gem_process_flushing_list(ring, flush_domains);
2261
88241785 2262 return 0;
54cf91dc
CW
2263}
2264
db53a302 2265static int i915_ring_idle(struct intel_ring_buffer *ring)
a56ba56c 2266{
88241785
CW
2267 int ret;
2268
395b70be 2269 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2270 return 0;
2271
88241785 2272 if (!list_empty(&ring->gpu_write_list)) {
db53a302 2273 ret = i915_gem_flush_ring(ring,
0ac74c6b 2274 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
88241785
CW
2275 if (ret)
2276 return ret;
2277 }
2278
ce453d81 2279 return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
a56ba56c
CW
2280}
2281
b47eb4a2 2282int
4df2faf4
DV
2283i915_gpu_idle(struct drm_device *dev)
2284{
2285 drm_i915_private_t *dev_priv = dev->dev_private;
2286 bool lists_empty;
1ec14ad3 2287 int ret, i;
4df2faf4 2288
d1b851fc 2289 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
395b70be 2290 list_empty(&dev_priv->mm.active_list));
4df2faf4
DV
2291 if (lists_empty)
2292 return 0;
2293
2294 /* Flush everything onto the inactive list. */
1ec14ad3 2295 for (i = 0; i < I915_NUM_RINGS; i++) {
db53a302 2296 ret = i915_ring_idle(&dev_priv->ring[i]);
1ec14ad3
CW
2297 if (ret)
2298 return ret;
2299 }
4df2faf4 2300
8a1a49f9 2301 return 0;
4df2faf4
DV
2302}
2303
c6642782
DV
2304static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2305 struct intel_ring_buffer *pipelined)
4e901fdc 2306{
05394f39 2307 struct drm_device *dev = obj->base.dev;
4e901fdc 2308 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2309 u32 size = obj->gtt_space->size;
2310 int regnum = obj->fence_reg;
4e901fdc
EA
2311 uint64_t val;
2312
05394f39 2313 val = (uint64_t)((obj->gtt_offset + size - 4096) &
c6642782 2314 0xfffff000) << 32;
05394f39
CW
2315 val |= obj->gtt_offset & 0xfffff000;
2316 val |= (uint64_t)((obj->stride / 128) - 1) <<
4e901fdc
EA
2317 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2318
05394f39 2319 if (obj->tiling_mode == I915_TILING_Y)
4e901fdc
EA
2320 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2321 val |= I965_FENCE_REG_VALID;
2322
c6642782
DV
2323 if (pipelined) {
2324 int ret = intel_ring_begin(pipelined, 6);
2325 if (ret)
2326 return ret;
2327
2328 intel_ring_emit(pipelined, MI_NOOP);
2329 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2330 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2331 intel_ring_emit(pipelined, (u32)val);
2332 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2333 intel_ring_emit(pipelined, (u32)(val >> 32));
2334 intel_ring_advance(pipelined);
2335 } else
2336 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2337
2338 return 0;
4e901fdc
EA
2339}
2340
c6642782
DV
2341static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2342 struct intel_ring_buffer *pipelined)
de151cf6 2343{
05394f39 2344 struct drm_device *dev = obj->base.dev;
de151cf6 2345 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2346 u32 size = obj->gtt_space->size;
2347 int regnum = obj->fence_reg;
de151cf6
JB
2348 uint64_t val;
2349
05394f39 2350 val = (uint64_t)((obj->gtt_offset + size - 4096) &
de151cf6 2351 0xfffff000) << 32;
05394f39
CW
2352 val |= obj->gtt_offset & 0xfffff000;
2353 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2354 if (obj->tiling_mode == I915_TILING_Y)
de151cf6
JB
2355 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2356 val |= I965_FENCE_REG_VALID;
2357
c6642782
DV
2358 if (pipelined) {
2359 int ret = intel_ring_begin(pipelined, 6);
2360 if (ret)
2361 return ret;
2362
2363 intel_ring_emit(pipelined, MI_NOOP);
2364 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2365 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2366 intel_ring_emit(pipelined, (u32)val);
2367 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2368 intel_ring_emit(pipelined, (u32)(val >> 32));
2369 intel_ring_advance(pipelined);
2370 } else
2371 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2372
2373 return 0;
de151cf6
JB
2374}
2375
c6642782
DV
2376static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2377 struct intel_ring_buffer *pipelined)
de151cf6 2378{
05394f39 2379 struct drm_device *dev = obj->base.dev;
de151cf6 2380 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39 2381 u32 size = obj->gtt_space->size;
c6642782 2382 u32 fence_reg, val, pitch_val;
0f973f27 2383 int tile_width;
de151cf6 2384
c6642782
DV
2385 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2386 (size & -size) != size ||
2387 (obj->gtt_offset & (size - 1)),
2388 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2389 obj->gtt_offset, obj->map_and_fenceable, size))
2390 return -EINVAL;
de151cf6 2391
c6642782 2392 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
0f973f27 2393 tile_width = 128;
de151cf6 2394 else
0f973f27
JB
2395 tile_width = 512;
2396
2397 /* Note: pitch better be a power of two tile widths */
05394f39 2398 pitch_val = obj->stride / tile_width;
0f973f27 2399 pitch_val = ffs(pitch_val) - 1;
de151cf6 2400
05394f39
CW
2401 val = obj->gtt_offset;
2402 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2403 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
a00b10c3 2404 val |= I915_FENCE_SIZE_BITS(size);
de151cf6
JB
2405 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2406 val |= I830_FENCE_REG_VALID;
2407
05394f39 2408 fence_reg = obj->fence_reg;
a00b10c3
CW
2409 if (fence_reg < 8)
2410 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f 2411 else
a00b10c3 2412 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
c6642782
DV
2413
2414 if (pipelined) {
2415 int ret = intel_ring_begin(pipelined, 4);
2416 if (ret)
2417 return ret;
2418
2419 intel_ring_emit(pipelined, MI_NOOP);
2420 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2421 intel_ring_emit(pipelined, fence_reg);
2422 intel_ring_emit(pipelined, val);
2423 intel_ring_advance(pipelined);
2424 } else
2425 I915_WRITE(fence_reg, val);
2426
2427 return 0;
de151cf6
JB
2428}
2429
c6642782
DV
2430static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2431 struct intel_ring_buffer *pipelined)
de151cf6 2432{
05394f39 2433 struct drm_device *dev = obj->base.dev;
de151cf6 2434 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2435 u32 size = obj->gtt_space->size;
2436 int regnum = obj->fence_reg;
de151cf6
JB
2437 uint32_t val;
2438 uint32_t pitch_val;
2439
c6642782
DV
2440 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2441 (size & -size) != size ||
2442 (obj->gtt_offset & (size - 1)),
2443 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2444 obj->gtt_offset, size))
2445 return -EINVAL;
de151cf6 2446
05394f39 2447 pitch_val = obj->stride / 128;
e76a16de 2448 pitch_val = ffs(pitch_val) - 1;
e76a16de 2449
05394f39
CW
2450 val = obj->gtt_offset;
2451 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2452 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
c6642782 2453 val |= I830_FENCE_SIZE_BITS(size);
de151cf6
JB
2454 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2455 val |= I830_FENCE_REG_VALID;
2456
c6642782
DV
2457 if (pipelined) {
2458 int ret = intel_ring_begin(pipelined, 4);
2459 if (ret)
2460 return ret;
2461
2462 intel_ring_emit(pipelined, MI_NOOP);
2463 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2464 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2465 intel_ring_emit(pipelined, val);
2466 intel_ring_advance(pipelined);
2467 } else
2468 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2469
2470 return 0;
de151cf6
JB
2471}
2472
d9e86c0e
CW
2473static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2474{
2475 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2476}
2477
2478static int
2479i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
ce453d81 2480 struct intel_ring_buffer *pipelined)
d9e86c0e
CW
2481{
2482 int ret;
2483
2484 if (obj->fenced_gpu_access) {
88241785 2485 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 2486 ret = i915_gem_flush_ring(obj->last_fenced_ring,
88241785
CW
2487 0, obj->base.write_domain);
2488 if (ret)
2489 return ret;
2490 }
d9e86c0e
CW
2491
2492 obj->fenced_gpu_access = false;
2493 }
2494
2495 if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2496 if (!ring_passed_seqno(obj->last_fenced_ring,
2497 obj->last_fenced_seqno)) {
db53a302 2498 ret = i915_wait_request(obj->last_fenced_ring,
ce453d81 2499 obj->last_fenced_seqno);
d9e86c0e
CW
2500 if (ret)
2501 return ret;
2502 }
2503
2504 obj->last_fenced_seqno = 0;
2505 obj->last_fenced_ring = NULL;
2506 }
2507
63256ec5
CW
2508 /* Ensure that all CPU reads are completed before installing a fence
2509 * and all writes before removing the fence.
2510 */
2511 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2512 mb();
2513
d9e86c0e
CW
2514 return 0;
2515}
2516
2517int
2518i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2519{
2520 int ret;
2521
2522 if (obj->tiling_mode)
2523 i915_gem_release_mmap(obj);
2524
ce453d81 2525 ret = i915_gem_object_flush_fence(obj, NULL);
d9e86c0e
CW
2526 if (ret)
2527 return ret;
2528
2529 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2530 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2531 i915_gem_clear_fence_reg(obj->base.dev,
2532 &dev_priv->fence_regs[obj->fence_reg]);
2533
2534 obj->fence_reg = I915_FENCE_REG_NONE;
2535 }
2536
2537 return 0;
2538}
2539
2540static struct drm_i915_fence_reg *
2541i915_find_fence_reg(struct drm_device *dev,
2542 struct intel_ring_buffer *pipelined)
ae3db24a 2543{
ae3db24a 2544 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e
CW
2545 struct drm_i915_fence_reg *reg, *first, *avail;
2546 int i;
ae3db24a
DV
2547
2548 /* First try to find a free reg */
d9e86c0e 2549 avail = NULL;
ae3db24a
DV
2550 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2551 reg = &dev_priv->fence_regs[i];
2552 if (!reg->obj)
d9e86c0e 2553 return reg;
ae3db24a 2554
05394f39 2555 if (!reg->obj->pin_count)
d9e86c0e 2556 avail = reg;
ae3db24a
DV
2557 }
2558
d9e86c0e
CW
2559 if (avail == NULL)
2560 return NULL;
ae3db24a
DV
2561
2562 /* None available, try to steal one or wait for a user to finish */
d9e86c0e
CW
2563 avail = first = NULL;
2564 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2565 if (reg->obj->pin_count)
ae3db24a
DV
2566 continue;
2567
d9e86c0e
CW
2568 if (first == NULL)
2569 first = reg;
2570
2571 if (!pipelined ||
2572 !reg->obj->last_fenced_ring ||
2573 reg->obj->last_fenced_ring == pipelined) {
2574 avail = reg;
2575 break;
2576 }
ae3db24a
DV
2577 }
2578
d9e86c0e
CW
2579 if (avail == NULL)
2580 avail = first;
ae3db24a 2581
a00b10c3 2582 return avail;
ae3db24a
DV
2583}
2584
de151cf6 2585/**
d9e86c0e 2586 * i915_gem_object_get_fence - set up a fence reg for an object
de151cf6 2587 * @obj: object to map through a fence reg
d9e86c0e
CW
2588 * @pipelined: ring on which to queue the change, or NULL for CPU access
2589 * @interruptible: must we wait uninterruptibly for the register to retire?
de151cf6
JB
2590 *
2591 * When mapping objects through the GTT, userspace wants to be able to write
2592 * to them without having to worry about swizzling if the object is tiled.
2593 *
2594 * This function walks the fence regs looking for a free one for @obj,
2595 * stealing one if it can't find any.
2596 *
2597 * It then sets up the reg based on the object's properties: address, pitch
2598 * and tiling format.
2599 */
8c4b8c3f 2600int
d9e86c0e 2601i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
ce453d81 2602 struct intel_ring_buffer *pipelined)
de151cf6 2603{
05394f39 2604 struct drm_device *dev = obj->base.dev;
79e53945 2605 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e 2606 struct drm_i915_fence_reg *reg;
ae3db24a 2607 int ret;
de151cf6 2608
6bda10d1
CW
2609 /* XXX disable pipelining. There are bugs. Shocking. */
2610 pipelined = NULL;
2611
d9e86c0e 2612 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2613 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2614 reg = &dev_priv->fence_regs[obj->fence_reg];
007cc8ac 2615 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
d9e86c0e 2616
29c5a587
CW
2617 if (obj->tiling_changed) {
2618 ret = i915_gem_object_flush_fence(obj, pipelined);
2619 if (ret)
2620 return ret;
2621
2622 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2623 pipelined = NULL;
2624
2625 if (pipelined) {
2626 reg->setup_seqno =
2627 i915_gem_next_request_seqno(pipelined);
2628 obj->last_fenced_seqno = reg->setup_seqno;
2629 obj->last_fenced_ring = pipelined;
2630 }
2631
2632 goto update;
2633 }
d9e86c0e
CW
2634
2635 if (!pipelined) {
2636 if (reg->setup_seqno) {
2637 if (!ring_passed_seqno(obj->last_fenced_ring,
2638 reg->setup_seqno)) {
db53a302 2639 ret = i915_wait_request(obj->last_fenced_ring,
ce453d81 2640 reg->setup_seqno);
d9e86c0e
CW
2641 if (ret)
2642 return ret;
2643 }
2644
2645 reg->setup_seqno = 0;
2646 }
2647 } else if (obj->last_fenced_ring &&
2648 obj->last_fenced_ring != pipelined) {
ce453d81 2649 ret = i915_gem_object_flush_fence(obj, pipelined);
d9e86c0e
CW
2650 if (ret)
2651 return ret;
d9e86c0e
CW
2652 }
2653
a09ba7fa
EA
2654 return 0;
2655 }
2656
d9e86c0e
CW
2657 reg = i915_find_fence_reg(dev, pipelined);
2658 if (reg == NULL)
2659 return -ENOSPC;
de151cf6 2660
ce453d81 2661 ret = i915_gem_object_flush_fence(obj, pipelined);
d9e86c0e 2662 if (ret)
ae3db24a 2663 return ret;
de151cf6 2664
d9e86c0e
CW
2665 if (reg->obj) {
2666 struct drm_i915_gem_object *old = reg->obj;
2667
2668 drm_gem_object_reference(&old->base);
2669
2670 if (old->tiling_mode)
2671 i915_gem_release_mmap(old);
2672
ce453d81 2673 ret = i915_gem_object_flush_fence(old, pipelined);
d9e86c0e
CW
2674 if (ret) {
2675 drm_gem_object_unreference(&old->base);
2676 return ret;
2677 }
2678
2679 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2680 pipelined = NULL;
2681
2682 old->fence_reg = I915_FENCE_REG_NONE;
2683 old->last_fenced_ring = pipelined;
2684 old->last_fenced_seqno =
db53a302 2685 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2686
2687 drm_gem_object_unreference(&old->base);
2688 } else if (obj->last_fenced_seqno == 0)
2689 pipelined = NULL;
a09ba7fa 2690
de151cf6 2691 reg->obj = obj;
d9e86c0e
CW
2692 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2693 obj->fence_reg = reg - dev_priv->fence_regs;
2694 obj->last_fenced_ring = pipelined;
de151cf6 2695
d9e86c0e 2696 reg->setup_seqno =
db53a302 2697 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2698 obj->last_fenced_seqno = reg->setup_seqno;
2699
2700update:
2701 obj->tiling_changed = false;
e259befd 2702 switch (INTEL_INFO(dev)->gen) {
25aebfc3 2703 case 7:
e259befd 2704 case 6:
c6642782 2705 ret = sandybridge_write_fence_reg(obj, pipelined);
e259befd
CW
2706 break;
2707 case 5:
2708 case 4:
c6642782 2709 ret = i965_write_fence_reg(obj, pipelined);
e259befd
CW
2710 break;
2711 case 3:
c6642782 2712 ret = i915_write_fence_reg(obj, pipelined);
e259befd
CW
2713 break;
2714 case 2:
c6642782 2715 ret = i830_write_fence_reg(obj, pipelined);
e259befd
CW
2716 break;
2717 }
d9ddcb96 2718
c6642782 2719 return ret;
de151cf6
JB
2720}
2721
2722/**
2723 * i915_gem_clear_fence_reg - clear out fence register info
2724 * @obj: object to clear
2725 *
2726 * Zeroes out the fence register itself and clears out the associated
05394f39 2727 * data structures in dev_priv and obj.
de151cf6
JB
2728 */
2729static void
d9e86c0e
CW
2730i915_gem_clear_fence_reg(struct drm_device *dev,
2731 struct drm_i915_fence_reg *reg)
de151cf6 2732{
79e53945 2733 drm_i915_private_t *dev_priv = dev->dev_private;
d9e86c0e 2734 uint32_t fence_reg = reg - dev_priv->fence_regs;
de151cf6 2735
e259befd 2736 switch (INTEL_INFO(dev)->gen) {
25aebfc3 2737 case 7:
e259befd 2738 case 6:
d9e86c0e 2739 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
e259befd
CW
2740 break;
2741 case 5:
2742 case 4:
d9e86c0e 2743 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
e259befd
CW
2744 break;
2745 case 3:
d9e86c0e
CW
2746 if (fence_reg >= 8)
2747 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
dc529a4f 2748 else
e259befd 2749 case 2:
d9e86c0e 2750 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f
EA
2751
2752 I915_WRITE(fence_reg, 0);
e259befd 2753 break;
dc529a4f 2754 }
de151cf6 2755
007cc8ac 2756 list_del_init(&reg->lru_list);
d9e86c0e
CW
2757 reg->obj = NULL;
2758 reg->setup_seqno = 0;
52dc7d32
CW
2759}
2760
673a394b
EA
2761/**
2762 * Finds free space in the GTT aperture and binds the object there.
2763 */
2764static int
05394f39 2765i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2766 unsigned alignment,
75e9e915 2767 bool map_and_fenceable)
673a394b 2768{
05394f39 2769 struct drm_device *dev = obj->base.dev;
673a394b 2770 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2771 struct drm_mm_node *free_space;
a00b10c3 2772 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2773 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2774 bool mappable, fenceable;
07f73f69 2775 int ret;
673a394b 2776
05394f39 2777 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2778 DRM_ERROR("Attempting to bind a purgeable object\n");
2779 return -EINVAL;
2780 }
2781
05394f39
CW
2782 fence_size = i915_gem_get_gtt_size(obj);
2783 fence_alignment = i915_gem_get_gtt_alignment(obj);
2784 unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
a00b10c3 2785
673a394b 2786 if (alignment == 0)
5e783301
DV
2787 alignment = map_and_fenceable ? fence_alignment :
2788 unfenced_alignment;
75e9e915 2789 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2790 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2791 return -EINVAL;
2792 }
2793
05394f39 2794 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2795
654fc607
CW
2796 /* If the object is bigger than the entire aperture, reject it early
2797 * before evicting everything in a vain attempt to find space.
2798 */
05394f39 2799 if (obj->base.size >
75e9e915 2800 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2801 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2802 return -E2BIG;
2803 }
2804
673a394b 2805 search_free:
75e9e915 2806 if (map_and_fenceable)
920afa77
DV
2807 free_space =
2808 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2809 size, alignment, 0,
920afa77
DV
2810 dev_priv->mm.gtt_mappable_end,
2811 0);
2812 else
2813 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2814 size, alignment, 0);
920afa77
DV
2815
2816 if (free_space != NULL) {
75e9e915 2817 if (map_and_fenceable)
05394f39 2818 obj->gtt_space =
920afa77 2819 drm_mm_get_block_range_generic(free_space,
a00b10c3 2820 size, alignment, 0,
920afa77
DV
2821 dev_priv->mm.gtt_mappable_end,
2822 0);
2823 else
05394f39 2824 obj->gtt_space =
a00b10c3 2825 drm_mm_get_block(free_space, size, alignment);
920afa77 2826 }
05394f39 2827 if (obj->gtt_space == NULL) {
673a394b
EA
2828 /* If the gtt is empty and we're still having trouble
2829 * fitting our object in, we're out of memory.
2830 */
75e9e915
DV
2831 ret = i915_gem_evict_something(dev, size, alignment,
2832 map_and_fenceable);
9731129c 2833 if (ret)
673a394b 2834 return ret;
9731129c 2835
673a394b
EA
2836 goto search_free;
2837 }
2838
e5281ccd 2839 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2840 if (ret) {
05394f39
CW
2841 drm_mm_put_block(obj->gtt_space);
2842 obj->gtt_space = NULL;
07f73f69
CW
2843
2844 if (ret == -ENOMEM) {
809b6334
CW
2845 /* first try to reclaim some memory by clearing the GTT */
2846 ret = i915_gem_evict_everything(dev, false);
07f73f69 2847 if (ret) {
07f73f69 2848 /* now try to shrink everyone else */
4bdadb97
CW
2849 if (gfpmask) {
2850 gfpmask = 0;
2851 goto search_free;
07f73f69
CW
2852 }
2853
809b6334 2854 return -ENOMEM;
07f73f69
CW
2855 }
2856
2857 goto search_free;
2858 }
2859
673a394b
EA
2860 return ret;
2861 }
2862
7c2e6fdf
DV
2863 ret = i915_gem_gtt_bind_object(obj);
2864 if (ret) {
e5281ccd 2865 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2866 drm_mm_put_block(obj->gtt_space);
2867 obj->gtt_space = NULL;
07f73f69 2868
809b6334 2869 if (i915_gem_evict_everything(dev, false))
07f73f69 2870 return ret;
07f73f69
CW
2871
2872 goto search_free;
673a394b 2873 }
673a394b 2874
6299f992 2875 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2876 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2877
673a394b
EA
2878 /* Assert that the object is not currently in any GPU domain. As it
2879 * wasn't in the GTT, there shouldn't be any way it could have been in
2880 * a GPU cache
2881 */
05394f39
CW
2882 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2883 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2884
6299f992 2885 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2886
75e9e915 2887 fenceable =
05394f39
CW
2888 obj->gtt_space->size == fence_size &&
2889 (obj->gtt_space->start & (fence_alignment -1)) == 0;
a00b10c3 2890
75e9e915 2891 mappable =
05394f39 2892 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2893
05394f39 2894 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2895
db53a302 2896 trace_i915_gem_object_bind(obj, map_and_fenceable);
673a394b
EA
2897 return 0;
2898}
2899
2900void
05394f39 2901i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2902{
673a394b
EA
2903 /* If we don't have a page list set up, then we're not pinned
2904 * to GPU, and we can ignore the cache flush because it'll happen
2905 * again at bind time.
2906 */
05394f39 2907 if (obj->pages == NULL)
673a394b
EA
2908 return;
2909
9c23f7fc
CW
2910 /* If the GPU is snooping the contents of the CPU cache,
2911 * we do not need to manually clear the CPU cache lines. However,
2912 * the caches are only snooped when the render cache is
2913 * flushed/invalidated. As we always have to emit invalidations
2914 * and flushes when moving into and out of the RENDER domain, correct
2915 * snooping behaviour occurs naturally as the result of our domain
2916 * tracking.
2917 */
2918 if (obj->cache_level != I915_CACHE_NONE)
2919 return;
2920
1c5d22f7 2921 trace_i915_gem_object_clflush(obj);
cfa16a0d 2922
05394f39 2923 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2924}
2925
e47c68e9 2926/** Flushes any GPU write domain for the object if it's dirty. */
88241785 2927static int
3619df03 2928i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2929{
05394f39 2930 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
88241785 2931 return 0;
e47c68e9
EA
2932
2933 /* Queue the GPU write cache flushing we need. */
db53a302 2934 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
e47c68e9
EA
2935}
2936
2937/** Flushes the GTT write domain for the object if it's dirty. */
2938static void
05394f39 2939i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2940{
1c5d22f7
CW
2941 uint32_t old_write_domain;
2942
05394f39 2943 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2944 return;
2945
63256ec5 2946 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2947 * to it immediately go to main memory as far as we know, so there's
2948 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2949 *
2950 * However, we do have to enforce the order so that all writes through
2951 * the GTT land before any writes to the device, such as updates to
2952 * the GATT itself.
e47c68e9 2953 */
63256ec5
CW
2954 wmb();
2955
4a684a41
CW
2956 i915_gem_release_mmap(obj);
2957
05394f39
CW
2958 old_write_domain = obj->base.write_domain;
2959 obj->base.write_domain = 0;
1c5d22f7
CW
2960
2961 trace_i915_gem_object_change_domain(obj,
05394f39 2962 obj->base.read_domains,
1c5d22f7 2963 old_write_domain);
e47c68e9
EA
2964}
2965
2966/** Flushes the CPU write domain for the object if it's dirty. */
2967static void
05394f39 2968i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2969{
1c5d22f7 2970 uint32_t old_write_domain;
e47c68e9 2971
05394f39 2972 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2973 return;
2974
2975 i915_gem_clflush_object(obj);
40ce6575 2976 intel_gtt_chipset_flush();
05394f39
CW
2977 old_write_domain = obj->base.write_domain;
2978 obj->base.write_domain = 0;
1c5d22f7
CW
2979
2980 trace_i915_gem_object_change_domain(obj,
05394f39 2981 obj->base.read_domains,
1c5d22f7 2982 old_write_domain);
e47c68e9
EA
2983}
2984
2ef7eeaa
EA
2985/**
2986 * Moves a single object to the GTT read, and possibly write domain.
2987 *
2988 * This function returns when the move is complete, including waiting on
2989 * flushes to occur.
2990 */
79e53945 2991int
2021746e 2992i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2993{
1c5d22f7 2994 uint32_t old_write_domain, old_read_domains;
e47c68e9 2995 int ret;
2ef7eeaa 2996
02354392 2997 /* Not valid to be called on unbound objects. */
05394f39 2998 if (obj->gtt_space == NULL)
02354392
EA
2999 return -EINVAL;
3000
8d7e3de1
CW
3001 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3002 return 0;
3003
88241785
CW
3004 ret = i915_gem_object_flush_gpu_write_domain(obj);
3005 if (ret)
3006 return ret;
3007
87ca9c8a 3008 if (obj->pending_gpu_write || write) {
ce453d81 3009 ret = i915_gem_object_wait_rendering(obj);
87ca9c8a
CW
3010 if (ret)
3011 return ret;
3012 }
2dafb1e0 3013
7213342d 3014 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3015
05394f39
CW
3016 old_write_domain = obj->base.write_domain;
3017 old_read_domains = obj->base.read_domains;
1c5d22f7 3018
e47c68e9
EA
3019 /* It should now be out of any other write domains, and we can update
3020 * the domain values for our changes.
3021 */
05394f39
CW
3022 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3023 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3024 if (write) {
05394f39
CW
3025 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3026 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3027 obj->dirty = 1;
2ef7eeaa
EA
3028 }
3029
1c5d22f7
CW
3030 trace_i915_gem_object_change_domain(obj,
3031 old_read_domains,
3032 old_write_domain);
3033
e47c68e9
EA
3034 return 0;
3035}
3036
e4ffd173
CW
3037int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3038 enum i915_cache_level cache_level)
3039{
3040 int ret;
3041
3042 if (obj->cache_level == cache_level)
3043 return 0;
3044
3045 if (obj->pin_count) {
3046 DRM_DEBUG("can not change the cache level of pinned objects\n");
3047 return -EBUSY;
3048 }
3049
3050 if (obj->gtt_space) {
3051 ret = i915_gem_object_finish_gpu(obj);
3052 if (ret)
3053 return ret;
3054
3055 i915_gem_object_finish_gtt(obj);
3056
3057 /* Before SandyBridge, you could not use tiling or fence
3058 * registers with snooped memory, so relinquish any fences
3059 * currently pointing to our region in the aperture.
3060 */
3061 if (INTEL_INFO(obj->base.dev)->gen < 6) {
3062 ret = i915_gem_object_put_fence(obj);
3063 if (ret)
3064 return ret;
3065 }
3066
3067 i915_gem_gtt_rebind_object(obj, cache_level);
3068 }
3069
3070 if (cache_level == I915_CACHE_NONE) {
3071 u32 old_read_domains, old_write_domain;
3072
3073 /* If we're coming from LLC cached, then we haven't
3074 * actually been tracking whether the data is in the
3075 * CPU cache or not, since we only allow one bit set
3076 * in obj->write_domain and have been skipping the clflushes.
3077 * Just set it to the CPU cache for now.
3078 */
3079 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3080 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3081
3082 old_read_domains = obj->base.read_domains;
3083 old_write_domain = obj->base.write_domain;
3084
3085 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3086 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3087
3088 trace_i915_gem_object_change_domain(obj,
3089 old_read_domains,
3090 old_write_domain);
3091 }
3092
3093 obj->cache_level = cache_level;
3094 return 0;
3095}
3096
b9241ea3
ZW
3097/*
3098 * Prepare buffer for display plane. Use uninterruptible for possible flush
3099 * wait, as in modesetting process we're not supposed to be interrupted.
3100 */
3101int
05394f39 3102i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
919926ae 3103 struct intel_ring_buffer *pipelined)
b9241ea3 3104{
ba3d8d74 3105 uint32_t old_read_domains;
b9241ea3
ZW
3106 int ret;
3107
3108 /* Not valid to be called on unbound objects. */
05394f39 3109 if (obj->gtt_space == NULL)
b9241ea3
ZW
3110 return -EINVAL;
3111
88241785
CW
3112 ret = i915_gem_object_flush_gpu_write_domain(obj);
3113 if (ret)
3114 return ret;
3115
b9241ea3 3116
ced270fa 3117 /* Currently, we are always called from an non-interruptible context. */
0be73284 3118 if (pipelined != obj->ring) {
ce453d81 3119 ret = i915_gem_object_wait_rendering(obj);
ced270fa 3120 if (ret)
b9241ea3
ZW
3121 return ret;
3122 }
3123
b118c1e3
CW
3124 i915_gem_object_flush_cpu_write_domain(obj);
3125
05394f39
CW
3126 old_read_domains = obj->base.read_domains;
3127 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3128
3129 trace_i915_gem_object_change_domain(obj,
3130 old_read_domains,
05394f39 3131 obj->base.write_domain);
b9241ea3
ZW
3132
3133 return 0;
3134}
3135
85345517 3136int
a8198eea 3137i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3138{
88241785
CW
3139 int ret;
3140
a8198eea 3141 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3142 return 0;
3143
88241785 3144 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3145 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
88241785
CW
3146 if (ret)
3147 return ret;
3148 }
85345517 3149
a8198eea
CW
3150 /* Ensure that we invalidate the GPU's caches and TLBs. */
3151 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3152
ce453d81 3153 return i915_gem_object_wait_rendering(obj);
85345517
CW
3154}
3155
e47c68e9
EA
3156/**
3157 * Moves a single object to the CPU read, and possibly write domain.
3158 *
3159 * This function returns when the move is complete, including waiting on
3160 * flushes to occur.
3161 */
3162static int
919926ae 3163i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3164{
1c5d22f7 3165 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3166 int ret;
3167
8d7e3de1
CW
3168 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3169 return 0;
3170
88241785
CW
3171 ret = i915_gem_object_flush_gpu_write_domain(obj);
3172 if (ret)
3173 return ret;
3174
ce453d81 3175 ret = i915_gem_object_wait_rendering(obj);
de18a29e 3176 if (ret)
e47c68e9 3177 return ret;
2ef7eeaa 3178
e47c68e9 3179 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3180
e47c68e9
EA
3181 /* If we have a partially-valid cache of the object in the CPU,
3182 * finish invalidating it and free the per-page flags.
2ef7eeaa 3183 */
e47c68e9 3184 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 3185
05394f39
CW
3186 old_write_domain = obj->base.write_domain;
3187 old_read_domains = obj->base.read_domains;
1c5d22f7 3188
e47c68e9 3189 /* Flush the CPU cache if it's still invalid. */
05394f39 3190 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3191 i915_gem_clflush_object(obj);
2ef7eeaa 3192
05394f39 3193 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3194 }
3195
3196 /* It should now be out of any other write domains, and we can update
3197 * the domain values for our changes.
3198 */
05394f39 3199 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3200
3201 /* If we're writing through the CPU, then the GPU read domains will
3202 * need to be invalidated at next use.
3203 */
3204 if (write) {
05394f39
CW
3205 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3206 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3207 }
2ef7eeaa 3208
1c5d22f7
CW
3209 trace_i915_gem_object_change_domain(obj,
3210 old_read_domains,
3211 old_write_domain);
3212
2ef7eeaa
EA
3213 return 0;
3214}
3215
673a394b 3216/**
e47c68e9 3217 * Moves the object from a partially CPU read to a full one.
673a394b 3218 *
e47c68e9
EA
3219 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3220 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3221 */
e47c68e9 3222static void
05394f39 3223i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
673a394b 3224{
05394f39 3225 if (!obj->page_cpu_valid)
e47c68e9
EA
3226 return;
3227
3228 /* If we're partially in the CPU read domain, finish moving it in.
3229 */
05394f39 3230 if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3231 int i;
3232
05394f39
CW
3233 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3234 if (obj->page_cpu_valid[i])
e47c68e9 3235 continue;
05394f39 3236 drm_clflush_pages(obj->pages + i, 1);
e47c68e9 3237 }
e47c68e9
EA
3238 }
3239
3240 /* Free the page_cpu_valid mappings which are now stale, whether
3241 * or not we've got I915_GEM_DOMAIN_CPU.
3242 */
05394f39
CW
3243 kfree(obj->page_cpu_valid);
3244 obj->page_cpu_valid = NULL;
e47c68e9
EA
3245}
3246
3247/**
3248 * Set the CPU read domain on a range of the object.
3249 *
3250 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3251 * not entirely valid. The page_cpu_valid member of the object flags which
3252 * pages have been flushed, and will be respected by
3253 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3254 * of the whole object.
3255 *
3256 * This function returns when the move is complete, including waiting on
3257 * flushes to occur.
3258 */
3259static int
05394f39 3260i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
e47c68e9
EA
3261 uint64_t offset, uint64_t size)
3262{
1c5d22f7 3263 uint32_t old_read_domains;
e47c68e9 3264 int i, ret;
673a394b 3265
05394f39 3266 if (offset == 0 && size == obj->base.size)
e47c68e9 3267 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3268
88241785
CW
3269 ret = i915_gem_object_flush_gpu_write_domain(obj);
3270 if (ret)
3271 return ret;
3272
ce453d81 3273 ret = i915_gem_object_wait_rendering(obj);
de18a29e 3274 if (ret)
6a47baa6 3275 return ret;
de18a29e 3276
e47c68e9
EA
3277 i915_gem_object_flush_gtt_write_domain(obj);
3278
3279 /* If we're already fully in the CPU read domain, we're done. */
05394f39
CW
3280 if (obj->page_cpu_valid == NULL &&
3281 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
e47c68e9 3282 return 0;
673a394b 3283
e47c68e9
EA
3284 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3285 * newly adding I915_GEM_DOMAIN_CPU
3286 */
05394f39
CW
3287 if (obj->page_cpu_valid == NULL) {
3288 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3289 GFP_KERNEL);
3290 if (obj->page_cpu_valid == NULL)
e47c68e9 3291 return -ENOMEM;
05394f39
CW
3292 } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3293 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
673a394b
EA
3294
3295 /* Flush the cache on any pages that are still invalid from the CPU's
3296 * perspective.
3297 */
e47c68e9
EA
3298 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3299 i++) {
05394f39 3300 if (obj->page_cpu_valid[i])
673a394b
EA
3301 continue;
3302
05394f39 3303 drm_clflush_pages(obj->pages + i, 1);
673a394b 3304
05394f39 3305 obj->page_cpu_valid[i] = 1;
673a394b
EA
3306 }
3307
e47c68e9
EA
3308 /* It should now be out of any other write domains, and we can update
3309 * the domain values for our changes.
3310 */
05394f39 3311 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9 3312
05394f39
CW
3313 old_read_domains = obj->base.read_domains;
3314 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
e47c68e9 3315
1c5d22f7
CW
3316 trace_i915_gem_object_change_domain(obj,
3317 old_read_domains,
05394f39 3318 obj->base.write_domain);
1c5d22f7 3319
673a394b
EA
3320 return 0;
3321}
3322
673a394b
EA
3323/* Throttle our rendering by waiting until the ring has completed our requests
3324 * emitted over 20 msec ago.
3325 *
b962442e
EA
3326 * Note that if we were to use the current jiffies each time around the loop,
3327 * we wouldn't escape the function with any frames outstanding if the time to
3328 * render a frame was over 20ms.
3329 *
673a394b
EA
3330 * This should get us reasonable parallelism between CPU and GPU but also
3331 * relatively low latency when blocking on a particular request to finish.
3332 */
40a5f0de 3333static int
f787a5f5 3334i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3335{
f787a5f5
CW
3336 struct drm_i915_private *dev_priv = dev->dev_private;
3337 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3338 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3339 struct drm_i915_gem_request *request;
3340 struct intel_ring_buffer *ring = NULL;
3341 u32 seqno = 0;
3342 int ret;
93533c29 3343
e110e8d6
CW
3344 if (atomic_read(&dev_priv->mm.wedged))
3345 return -EIO;
3346
1c25595f 3347 spin_lock(&file_priv->mm.lock);
f787a5f5 3348 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3349 if (time_after_eq(request->emitted_jiffies, recent_enough))
3350 break;
40a5f0de 3351
f787a5f5
CW
3352 ring = request->ring;
3353 seqno = request->seqno;
b962442e 3354 }
1c25595f 3355 spin_unlock(&file_priv->mm.lock);
40a5f0de 3356
f787a5f5
CW
3357 if (seqno == 0)
3358 return 0;
2bc43b5c 3359
f787a5f5 3360 ret = 0;
78501eac 3361 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3362 /* And wait for the seqno passing without holding any locks and
3363 * causing extra latency for others. This is safe as the irq
3364 * generation is designed to be run atomically and so is
3365 * lockless.
3366 */
b13c2b96
CW
3367 if (ring->irq_get(ring)) {
3368 ret = wait_event_interruptible(ring->irq_queue,
3369 i915_seqno_passed(ring->get_seqno(ring), seqno)
3370 || atomic_read(&dev_priv->mm.wedged));
3371 ring->irq_put(ring);
40a5f0de 3372
b13c2b96
CW
3373 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3374 ret = -EIO;
3375 }
40a5f0de
EA
3376 }
3377
f787a5f5
CW
3378 if (ret == 0)
3379 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3380
3381 return ret;
3382}
3383
673a394b 3384int
05394f39
CW
3385i915_gem_object_pin(struct drm_i915_gem_object *obj,
3386 uint32_t alignment,
75e9e915 3387 bool map_and_fenceable)
673a394b 3388{
05394f39 3389 struct drm_device *dev = obj->base.dev;
f13d3f73 3390 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
3391 int ret;
3392
05394f39 3393 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 3394 WARN_ON(i915_verify_lists(dev));
ac0c6b5a 3395
05394f39
CW
3396 if (obj->gtt_space != NULL) {
3397 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3398 (map_and_fenceable && !obj->map_and_fenceable)) {
3399 WARN(obj->pin_count,
ae7d49d8 3400 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3401 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3402 " obj->map_and_fenceable=%d\n",
05394f39 3403 obj->gtt_offset, alignment,
75e9e915 3404 map_and_fenceable,
05394f39 3405 obj->map_and_fenceable);
ac0c6b5a
CW
3406 ret = i915_gem_object_unbind(obj);
3407 if (ret)
3408 return ret;
3409 }
3410 }
3411
05394f39 3412 if (obj->gtt_space == NULL) {
a00b10c3 3413 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3414 map_and_fenceable);
9731129c 3415 if (ret)
673a394b 3416 return ret;
22c344e9 3417 }
76446cac 3418
05394f39 3419 if (obj->pin_count++ == 0) {
05394f39
CW
3420 if (!obj->active)
3421 list_move_tail(&obj->mm_list,
f13d3f73 3422 &dev_priv->mm.pinned_list);
673a394b 3423 }
6299f992 3424 obj->pin_mappable |= map_and_fenceable;
673a394b 3425
23bc5982 3426 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3427 return 0;
3428}
3429
3430void
05394f39 3431i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3432{
05394f39 3433 struct drm_device *dev = obj->base.dev;
673a394b 3434 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3435
23bc5982 3436 WARN_ON(i915_verify_lists(dev));
05394f39
CW
3437 BUG_ON(obj->pin_count == 0);
3438 BUG_ON(obj->gtt_space == NULL);
673a394b 3439
05394f39
CW
3440 if (--obj->pin_count == 0) {
3441 if (!obj->active)
3442 list_move_tail(&obj->mm_list,
673a394b 3443 &dev_priv->mm.inactive_list);
6299f992 3444 obj->pin_mappable = false;
673a394b 3445 }
23bc5982 3446 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3447}
3448
3449int
3450i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3451 struct drm_file *file)
673a394b
EA
3452{
3453 struct drm_i915_gem_pin *args = data;
05394f39 3454 struct drm_i915_gem_object *obj;
673a394b
EA
3455 int ret;
3456
1d7cfea1
CW
3457 ret = i915_mutex_lock_interruptible(dev);
3458 if (ret)
3459 return ret;
673a394b 3460
05394f39 3461 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3462 if (&obj->base == NULL) {
1d7cfea1
CW
3463 ret = -ENOENT;
3464 goto unlock;
673a394b 3465 }
673a394b 3466
05394f39 3467 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3468 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3469 ret = -EINVAL;
3470 goto out;
3ef94daa
CW
3471 }
3472
05394f39 3473 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3474 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3475 args->handle);
1d7cfea1
CW
3476 ret = -EINVAL;
3477 goto out;
79e53945
JB
3478 }
3479
05394f39
CW
3480 obj->user_pin_count++;
3481 obj->pin_filp = file;
3482 if (obj->user_pin_count == 1) {
75e9e915 3483 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3484 if (ret)
3485 goto out;
673a394b
EA
3486 }
3487
3488 /* XXX - flush the CPU caches for pinned objects
3489 * as the X server doesn't manage domains yet
3490 */
e47c68e9 3491 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3492 args->offset = obj->gtt_offset;
1d7cfea1 3493out:
05394f39 3494 drm_gem_object_unreference(&obj->base);
1d7cfea1 3495unlock:
673a394b 3496 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3497 return ret;
673a394b
EA
3498}
3499
3500int
3501i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3502 struct drm_file *file)
673a394b
EA
3503{
3504 struct drm_i915_gem_pin *args = data;
05394f39 3505 struct drm_i915_gem_object *obj;
76c1dec1 3506 int ret;
673a394b 3507
1d7cfea1
CW
3508 ret = i915_mutex_lock_interruptible(dev);
3509 if (ret)
3510 return ret;
673a394b 3511
05394f39 3512 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3513 if (&obj->base == NULL) {
1d7cfea1
CW
3514 ret = -ENOENT;
3515 goto unlock;
673a394b 3516 }
76c1dec1 3517
05394f39 3518 if (obj->pin_filp != file) {
79e53945
JB
3519 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3520 args->handle);
1d7cfea1
CW
3521 ret = -EINVAL;
3522 goto out;
79e53945 3523 }
05394f39
CW
3524 obj->user_pin_count--;
3525 if (obj->user_pin_count == 0) {
3526 obj->pin_filp = NULL;
79e53945
JB
3527 i915_gem_object_unpin(obj);
3528 }
673a394b 3529
1d7cfea1 3530out:
05394f39 3531 drm_gem_object_unreference(&obj->base);
1d7cfea1 3532unlock:
673a394b 3533 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3534 return ret;
673a394b
EA
3535}
3536
3537int
3538i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3539 struct drm_file *file)
673a394b
EA
3540{
3541 struct drm_i915_gem_busy *args = data;
05394f39 3542 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3543 int ret;
3544
76c1dec1 3545 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3546 if (ret)
76c1dec1 3547 return ret;
673a394b 3548
05394f39 3549 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3550 if (&obj->base == NULL) {
1d7cfea1
CW
3551 ret = -ENOENT;
3552 goto unlock;
673a394b 3553 }
d1b851fc 3554
0be555b6
CW
3555 /* Count all active objects as busy, even if they are currently not used
3556 * by the gpu. Users of this interface expect objects to eventually
3557 * become non-busy without any further actions, therefore emit any
3558 * necessary flushes here.
c4de0a5d 3559 */
05394f39 3560 args->busy = obj->active;
0be555b6
CW
3561 if (args->busy) {
3562 /* Unconditionally flush objects, even when the gpu still uses this
3563 * object. Userspace calling this function indicates that it wants to
3564 * use this buffer rather sooner than later, so issuing the required
3565 * flush earlier is beneficial.
3566 */
1a1c6976 3567 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3568 ret = i915_gem_flush_ring(obj->ring,
88241785 3569 0, obj->base.write_domain);
1a1c6976
CW
3570 } else if (obj->ring->outstanding_lazy_request ==
3571 obj->last_rendering_seqno) {
3572 struct drm_i915_gem_request *request;
3573
7a194876
CW
3574 /* This ring is not being cleared by active usage,
3575 * so emit a request to do so.
3576 */
1a1c6976
CW
3577 request = kzalloc(sizeof(*request), GFP_KERNEL);
3578 if (request)
db53a302 3579 ret = i915_add_request(obj->ring, NULL,request);
1a1c6976 3580 else
7a194876
CW
3581 ret = -ENOMEM;
3582 }
0be555b6
CW
3583
3584 /* Update the active list for the hardware's current position.
3585 * Otherwise this only updates on a delayed timer or when irqs
3586 * are actually unmasked, and our working set ends up being
3587 * larger than required.
3588 */
db53a302 3589 i915_gem_retire_requests_ring(obj->ring);
0be555b6 3590
05394f39 3591 args->busy = obj->active;
0be555b6 3592 }
673a394b 3593
05394f39 3594 drm_gem_object_unreference(&obj->base);
1d7cfea1 3595unlock:
673a394b 3596 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3597 return ret;
673a394b
EA
3598}
3599
3600int
3601i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3602 struct drm_file *file_priv)
3603{
3604 return i915_gem_ring_throttle(dev, file_priv);
3605}
3606
3ef94daa
CW
3607int
3608i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3609 struct drm_file *file_priv)
3610{
3611 struct drm_i915_gem_madvise *args = data;
05394f39 3612 struct drm_i915_gem_object *obj;
76c1dec1 3613 int ret;
3ef94daa
CW
3614
3615 switch (args->madv) {
3616 case I915_MADV_DONTNEED:
3617 case I915_MADV_WILLNEED:
3618 break;
3619 default:
3620 return -EINVAL;
3621 }
3622
1d7cfea1
CW
3623 ret = i915_mutex_lock_interruptible(dev);
3624 if (ret)
3625 return ret;
3626
05394f39 3627 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3628 if (&obj->base == NULL) {
1d7cfea1
CW
3629 ret = -ENOENT;
3630 goto unlock;
3ef94daa 3631 }
3ef94daa 3632
05394f39 3633 if (obj->pin_count) {
1d7cfea1
CW
3634 ret = -EINVAL;
3635 goto out;
3ef94daa
CW
3636 }
3637
05394f39
CW
3638 if (obj->madv != __I915_MADV_PURGED)
3639 obj->madv = args->madv;
3ef94daa 3640
2d7ef395 3641 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3642 if (i915_gem_object_is_purgeable(obj) &&
3643 obj->gtt_space == NULL)
2d7ef395
CW
3644 i915_gem_object_truncate(obj);
3645
05394f39 3646 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3647
1d7cfea1 3648out:
05394f39 3649 drm_gem_object_unreference(&obj->base);
1d7cfea1 3650unlock:
3ef94daa 3651 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3652 return ret;
3ef94daa
CW
3653}
3654
05394f39
CW
3655struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3656 size_t size)
ac52bc56 3657{
73aa808f 3658 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3659 struct drm_i915_gem_object *obj;
ac52bc56 3660
c397b908
DV
3661 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3662 if (obj == NULL)
3663 return NULL;
673a394b 3664
c397b908
DV
3665 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3666 kfree(obj);
3667 return NULL;
3668 }
673a394b 3669
73aa808f
CW
3670 i915_gem_info_add_obj(dev_priv, size);
3671
c397b908
DV
3672 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3673 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3674
93dfb40c 3675 obj->cache_level = I915_CACHE_NONE;
62b8b215 3676 obj->base.driver_private = NULL;
c397b908 3677 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3678 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3679 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3680 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3681 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3682 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 3683 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3684 /* Avoid an unnecessary call to unbind on the first bind. */
3685 obj->map_and_fenceable = true;
de151cf6 3686
05394f39 3687 return obj;
c397b908
DV
3688}
3689
3690int i915_gem_init_object(struct drm_gem_object *obj)
3691{
3692 BUG();
de151cf6 3693
673a394b
EA
3694 return 0;
3695}
3696
05394f39 3697static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
673a394b 3698{
05394f39 3699 struct drm_device *dev = obj->base.dev;
be72615b 3700 drm_i915_private_t *dev_priv = dev->dev_private;
be72615b 3701 int ret;
673a394b 3702
be72615b
CW
3703 ret = i915_gem_object_unbind(obj);
3704 if (ret == -ERESTARTSYS) {
05394f39 3705 list_move(&obj->mm_list,
be72615b
CW
3706 &dev_priv->mm.deferred_free_list);
3707 return;
3708 }
673a394b 3709
26e12f89
CW
3710 trace_i915_gem_object_destroy(obj);
3711
05394f39 3712 if (obj->base.map_list.map)
7e616158 3713 i915_gem_free_mmap_offset(obj);
de151cf6 3714
05394f39
CW
3715 drm_gem_object_release(&obj->base);
3716 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3717
05394f39
CW
3718 kfree(obj->page_cpu_valid);
3719 kfree(obj->bit_17);
3720 kfree(obj);
673a394b
EA
3721}
3722
05394f39 3723void i915_gem_free_object(struct drm_gem_object *gem_obj)
be72615b 3724{
05394f39
CW
3725 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3726 struct drm_device *dev = obj->base.dev;
be72615b 3727
05394f39 3728 while (obj->pin_count > 0)
be72615b
CW
3729 i915_gem_object_unpin(obj);
3730
05394f39 3731 if (obj->phys_obj)
be72615b
CW
3732 i915_gem_detach_phys_object(dev, obj);
3733
3734 i915_gem_free_object_tail(obj);
3735}
3736
29105ccc
CW
3737int
3738i915_gem_idle(struct drm_device *dev)
3739{
3740 drm_i915_private_t *dev_priv = dev->dev_private;
3741 int ret;
28dfe52a 3742
29105ccc 3743 mutex_lock(&dev->struct_mutex);
1c5d22f7 3744
87acb0a5 3745 if (dev_priv->mm.suspended) {
29105ccc
CW
3746 mutex_unlock(&dev->struct_mutex);
3747 return 0;
28dfe52a
EA
3748 }
3749
29105ccc 3750 ret = i915_gpu_idle(dev);
6dbe2772
KP
3751 if (ret) {
3752 mutex_unlock(&dev->struct_mutex);
673a394b 3753 return ret;
6dbe2772 3754 }
673a394b 3755
29105ccc
CW
3756 /* Under UMS, be paranoid and evict. */
3757 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
5eac3ab4 3758 ret = i915_gem_evict_inactive(dev, false);
29105ccc
CW
3759 if (ret) {
3760 mutex_unlock(&dev->struct_mutex);
3761 return ret;
3762 }
3763 }
3764
312817a3
CW
3765 i915_gem_reset_fences(dev);
3766
29105ccc
CW
3767 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3768 * We need to replace this with a semaphore, or something.
3769 * And not confound mm.suspended!
3770 */
3771 dev_priv->mm.suspended = 1;
bc0c7f14 3772 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3773
3774 i915_kernel_lost_context(dev);
6dbe2772 3775 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3776
6dbe2772
KP
3777 mutex_unlock(&dev->struct_mutex);
3778
29105ccc
CW
3779 /* Cancel the retire work handler, which should be idle now. */
3780 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3781
673a394b
EA
3782 return 0;
3783}
3784
8187a2b7
ZN
3785int
3786i915_gem_init_ringbuffer(struct drm_device *dev)
3787{
3788 drm_i915_private_t *dev_priv = dev->dev_private;
3789 int ret;
68f95ba9 3790
5c1143bb 3791 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3792 if (ret)
b6913e4b 3793 return ret;
68f95ba9
CW
3794
3795 if (HAS_BSD(dev)) {
5c1143bb 3796 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3797 if (ret)
3798 goto cleanup_render_ring;
d1b851fc 3799 }
68f95ba9 3800
549f7365
CW
3801 if (HAS_BLT(dev)) {
3802 ret = intel_init_blt_ring_buffer(dev);
3803 if (ret)
3804 goto cleanup_bsd_ring;
3805 }
3806
6f392d54
CW
3807 dev_priv->next_seqno = 1;
3808
68f95ba9
CW
3809 return 0;
3810
549f7365 3811cleanup_bsd_ring:
1ec14ad3 3812 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3813cleanup_render_ring:
1ec14ad3 3814 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3815 return ret;
3816}
3817
3818void
3819i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3820{
3821 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3822 int i;
8187a2b7 3823
1ec14ad3
CW
3824 for (i = 0; i < I915_NUM_RINGS; i++)
3825 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
8187a2b7
ZN
3826}
3827
673a394b
EA
3828int
3829i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3830 struct drm_file *file_priv)
3831{
3832 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3833 int ret, i;
673a394b 3834
79e53945
JB
3835 if (drm_core_check_feature(dev, DRIVER_MODESET))
3836 return 0;
3837
ba1234d1 3838 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3839 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3840 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3841 }
3842
673a394b 3843 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3844 dev_priv->mm.suspended = 0;
3845
3846 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
3847 if (ret != 0) {
3848 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3849 return ret;
d816f6ac 3850 }
9bb2d6f9 3851
69dc4987 3852 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b
EA
3853 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3854 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
1ec14ad3
CW
3855 for (i = 0; i < I915_NUM_RINGS; i++) {
3856 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3857 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3858 }
673a394b 3859 mutex_unlock(&dev->struct_mutex);
dbb19d30 3860
5f35308b
CW
3861 ret = drm_irq_install(dev);
3862 if (ret)
3863 goto cleanup_ringbuffer;
dbb19d30 3864
673a394b 3865 return 0;
5f35308b
CW
3866
3867cleanup_ringbuffer:
3868 mutex_lock(&dev->struct_mutex);
3869 i915_gem_cleanup_ringbuffer(dev);
3870 dev_priv->mm.suspended = 1;
3871 mutex_unlock(&dev->struct_mutex);
3872
3873 return ret;
673a394b
EA
3874}
3875
3876int
3877i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3878 struct drm_file *file_priv)
3879{
79e53945
JB
3880 if (drm_core_check_feature(dev, DRIVER_MODESET))
3881 return 0;
3882
dbb19d30 3883 drm_irq_uninstall(dev);
e6890f6f 3884 return i915_gem_idle(dev);
673a394b
EA
3885}
3886
3887void
3888i915_gem_lastclose(struct drm_device *dev)
3889{
3890 int ret;
673a394b 3891
e806b495
EA
3892 if (drm_core_check_feature(dev, DRIVER_MODESET))
3893 return;
3894
6dbe2772
KP
3895 ret = i915_gem_idle(dev);
3896 if (ret)
3897 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3898}
3899
64193406
CW
3900static void
3901init_ring_lists(struct intel_ring_buffer *ring)
3902{
3903 INIT_LIST_HEAD(&ring->active_list);
3904 INIT_LIST_HEAD(&ring->request_list);
3905 INIT_LIST_HEAD(&ring->gpu_write_list);
3906}
3907
673a394b
EA
3908void
3909i915_gem_load(struct drm_device *dev)
3910{
b5aa8a0f 3911 int i;
673a394b
EA
3912 drm_i915_private_t *dev_priv = dev->dev_private;
3913
69dc4987 3914 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
3915 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3916 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 3917 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 3918 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 3919 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
93a37f20 3920 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3921 for (i = 0; i < I915_NUM_RINGS; i++)
3922 init_ring_lists(&dev_priv->ring[i]);
007cc8ac
DV
3923 for (i = 0; i < 16; i++)
3924 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3925 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3926 i915_gem_retire_work_handler);
30dbf0c0 3927 init_completion(&dev_priv->error_completion);
31169714 3928
94400120
DA
3929 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3930 if (IS_GEN3(dev)) {
3931 u32 tmp = I915_READ(MI_ARB_STATE);
3932 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3933 /* arb state is a masked write, so set bit + bit in mask */
3934 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3935 I915_WRITE(MI_ARB_STATE, tmp);
3936 }
3937 }
3938
72bfa19c
CW
3939 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3940
de151cf6 3941 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3942 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3943 dev_priv->fence_reg_start = 3;
de151cf6 3944
a6c45cf0 3945 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3946 dev_priv->num_fence_regs = 16;
3947 else
3948 dev_priv->num_fence_regs = 8;
3949
b5aa8a0f 3950 /* Initialize fence registers to zero */
10ed13e4
EA
3951 for (i = 0; i < dev_priv->num_fence_regs; i++) {
3952 i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
b5aa8a0f 3953 }
10ed13e4 3954
673a394b 3955 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3956 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 3957
ce453d81
CW
3958 dev_priv->mm.interruptible = true;
3959
17250b71
CW
3960 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3961 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3962 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3963}
71acb5eb
DA
3964
3965/*
3966 * Create a physically contiguous memory object for this object
3967 * e.g. for cursor + overlay regs
3968 */
995b6762
CW
3969static int i915_gem_init_phys_object(struct drm_device *dev,
3970 int id, int size, int align)
71acb5eb
DA
3971{
3972 drm_i915_private_t *dev_priv = dev->dev_private;
3973 struct drm_i915_gem_phys_object *phys_obj;
3974 int ret;
3975
3976 if (dev_priv->mm.phys_objs[id - 1] || !size)
3977 return 0;
3978
9a298b2a 3979 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
3980 if (!phys_obj)
3981 return -ENOMEM;
3982
3983 phys_obj->id = id;
3984
6eeefaf3 3985 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
3986 if (!phys_obj->handle) {
3987 ret = -ENOMEM;
3988 goto kfree_obj;
3989 }
3990#ifdef CONFIG_X86
3991 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3992#endif
3993
3994 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3995
3996 return 0;
3997kfree_obj:
9a298b2a 3998 kfree(phys_obj);
71acb5eb
DA
3999 return ret;
4000}
4001
995b6762 4002static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4003{
4004 drm_i915_private_t *dev_priv = dev->dev_private;
4005 struct drm_i915_gem_phys_object *phys_obj;
4006
4007 if (!dev_priv->mm.phys_objs[id - 1])
4008 return;
4009
4010 phys_obj = dev_priv->mm.phys_objs[id - 1];
4011 if (phys_obj->cur_obj) {
4012 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4013 }
4014
4015#ifdef CONFIG_X86
4016 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4017#endif
4018 drm_pci_free(dev, phys_obj->handle);
4019 kfree(phys_obj);
4020 dev_priv->mm.phys_objs[id - 1] = NULL;
4021}
4022
4023void i915_gem_free_all_phys_object(struct drm_device *dev)
4024{
4025 int i;
4026
260883c8 4027 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4028 i915_gem_free_phys_object(dev, i);
4029}
4030
4031void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4032 struct drm_i915_gem_object *obj)
71acb5eb 4033{
05394f39 4034 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 4035 char *vaddr;
71acb5eb 4036 int i;
71acb5eb
DA
4037 int page_count;
4038
05394f39 4039 if (!obj->phys_obj)
71acb5eb 4040 return;
05394f39 4041 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4042
05394f39 4043 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4044 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4045 struct page *page = read_cache_page_gfp(mapping, i,
4046 GFP_HIGHUSER | __GFP_RECLAIMABLE);
4047 if (!IS_ERR(page)) {
4048 char *dst = kmap_atomic(page);
4049 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4050 kunmap_atomic(dst);
4051
4052 drm_clflush_pages(&page, 1);
4053
4054 set_page_dirty(page);
4055 mark_page_accessed(page);
4056 page_cache_release(page);
4057 }
71acb5eb 4058 }
40ce6575 4059 intel_gtt_chipset_flush();
d78b47b9 4060
05394f39
CW
4061 obj->phys_obj->cur_obj = NULL;
4062 obj->phys_obj = NULL;
71acb5eb
DA
4063}
4064
4065int
4066i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4067 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4068 int id,
4069 int align)
71acb5eb 4070{
05394f39 4071 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 4072 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4073 int ret = 0;
4074 int page_count;
4075 int i;
4076
4077 if (id > I915_MAX_PHYS_OBJECT)
4078 return -EINVAL;
4079
05394f39
CW
4080 if (obj->phys_obj) {
4081 if (obj->phys_obj->id == id)
71acb5eb
DA
4082 return 0;
4083 i915_gem_detach_phys_object(dev, obj);
4084 }
4085
71acb5eb
DA
4086 /* create a new object */
4087 if (!dev_priv->mm.phys_objs[id - 1]) {
4088 ret = i915_gem_init_phys_object(dev, id,
05394f39 4089 obj->base.size, align);
71acb5eb 4090 if (ret) {
05394f39
CW
4091 DRM_ERROR("failed to init phys object %d size: %zu\n",
4092 id, obj->base.size);
e5281ccd 4093 return ret;
71acb5eb
DA
4094 }
4095 }
4096
4097 /* bind to the object */
05394f39
CW
4098 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4099 obj->phys_obj->cur_obj = obj;
71acb5eb 4100
05394f39 4101 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4102
4103 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4104 struct page *page;
4105 char *dst, *src;
4106
4107 page = read_cache_page_gfp(mapping, i,
4108 GFP_HIGHUSER | __GFP_RECLAIMABLE);
4109 if (IS_ERR(page))
4110 return PTR_ERR(page);
71acb5eb 4111
ff75b9bc 4112 src = kmap_atomic(page);
05394f39 4113 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4114 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4115 kunmap_atomic(src);
71acb5eb 4116
e5281ccd
CW
4117 mark_page_accessed(page);
4118 page_cache_release(page);
4119 }
d78b47b9 4120
71acb5eb 4121 return 0;
71acb5eb
DA
4122}
4123
4124static int
05394f39
CW
4125i915_gem_phys_pwrite(struct drm_device *dev,
4126 struct drm_i915_gem_object *obj,
71acb5eb
DA
4127 struct drm_i915_gem_pwrite *args,
4128 struct drm_file *file_priv)
4129{
05394f39 4130 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4131 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4132
b47b30cc
CW
4133 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4134 unsigned long unwritten;
4135
4136 /* The physical object once assigned is fixed for the lifetime
4137 * of the obj, so we can safely drop the lock and continue
4138 * to access vaddr.
4139 */
4140 mutex_unlock(&dev->struct_mutex);
4141 unwritten = copy_from_user(vaddr, user_data, args->size);
4142 mutex_lock(&dev->struct_mutex);
4143 if (unwritten)
4144 return -EFAULT;
4145 }
71acb5eb 4146
40ce6575 4147 intel_gtt_chipset_flush();
71acb5eb
DA
4148 return 0;
4149}
b962442e 4150
f787a5f5 4151void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4152{
f787a5f5 4153 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4154
4155 /* Clean up our request list when the client is going away, so that
4156 * later retire_requests won't dereference our soon-to-be-gone
4157 * file_priv.
4158 */
1c25595f 4159 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4160 while (!list_empty(&file_priv->mm.request_list)) {
4161 struct drm_i915_gem_request *request;
4162
4163 request = list_first_entry(&file_priv->mm.request_list,
4164 struct drm_i915_gem_request,
4165 client_list);
4166 list_del(&request->client_list);
4167 request->file_priv = NULL;
4168 }
1c25595f 4169 spin_unlock(&file_priv->mm.lock);
b962442e 4170}
31169714 4171
1637ef41
CW
4172static int
4173i915_gpu_is_active(struct drm_device *dev)
4174{
4175 drm_i915_private_t *dev_priv = dev->dev_private;
4176 int lists_empty;
4177
1637ef41 4178 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 4179 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
4180
4181 return !lists_empty;
4182}
4183
31169714 4184static int
1495f230 4185i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4186{
17250b71
CW
4187 struct drm_i915_private *dev_priv =
4188 container_of(shrinker,
4189 struct drm_i915_private,
4190 mm.inactive_shrinker);
4191 struct drm_device *dev = dev_priv->dev;
4192 struct drm_i915_gem_object *obj, *next;
1495f230 4193 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
4194 int cnt;
4195
4196 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4197 return 0;
31169714
CW
4198
4199 /* "fast-path" to count number of available objects */
4200 if (nr_to_scan == 0) {
17250b71
CW
4201 cnt = 0;
4202 list_for_each_entry(obj,
4203 &dev_priv->mm.inactive_list,
4204 mm_list)
4205 cnt++;
4206 mutex_unlock(&dev->struct_mutex);
4207 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
4208 }
4209
1637ef41 4210rescan:
31169714 4211 /* first scan for clean buffers */
17250b71 4212 i915_gem_retire_requests(dev);
31169714 4213
17250b71
CW
4214 list_for_each_entry_safe(obj, next,
4215 &dev_priv->mm.inactive_list,
4216 mm_list) {
4217 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
4218 if (i915_gem_object_unbind(obj) == 0 &&
4219 --nr_to_scan == 0)
17250b71 4220 break;
31169714 4221 }
31169714
CW
4222 }
4223
4224 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
4225 cnt = 0;
4226 list_for_each_entry_safe(obj, next,
4227 &dev_priv->mm.inactive_list,
4228 mm_list) {
2021746e
CW
4229 if (nr_to_scan &&
4230 i915_gem_object_unbind(obj) == 0)
17250b71 4231 nr_to_scan--;
2021746e 4232 else
17250b71
CW
4233 cnt++;
4234 }
4235
4236 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
4237 /*
4238 * We are desperate for pages, so as a last resort, wait
4239 * for the GPU to finish and discard whatever we can.
4240 * This has a dramatic impact to reduce the number of
4241 * OOM-killer events whilst running the GPU aggressively.
4242 */
17250b71 4243 if (i915_gpu_idle(dev) == 0)
1637ef41
CW
4244 goto rescan;
4245 }
17250b71
CW
4246 mutex_unlock(&dev->struct_mutex);
4247 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 4248}