]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Live testing of empty requests
[thirdparty/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
5d723d7a 35#include "intel_frontbuffer.h"
0ccdacf6 36#include "intel_mocs.h"
6b5e90f5 37#include <linux/dma-fence-array.h>
fe3288b5 38#include <linux/kthread.h>
c13d87ea 39#include <linux/reservation.h>
5949eac4 40#include <linux/shmem_fs.h>
5a0e3ad6 41#include <linux/slab.h>
20e4933c 42#include <linux/stop_machine.h>
673a394b 43#include <linux/swap.h>
79e53945 44#include <linux/pci.h>
1286ff73 45#include <linux/dma-buf.h>
673a394b 46
fbbd37b3 47static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
05394f39 48static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 49static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
61050808 50
c76ce038
CW
51static bool cpu_cache_is_coherent(struct drm_device *dev,
52 enum i915_cache_level level)
53{
0031fb96 54 return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
c76ce038
CW
55}
56
2c22569b
CW
57static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
58{
b50a5371
AS
59 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
60 return false;
61
2c22569b
CW
62 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
63 return true;
64
65 return obj->pin_display;
66}
67
4f1959ee 68static int
bb6dc8d9 69insert_mappable_node(struct i915_ggtt *ggtt,
4f1959ee
AS
70 struct drm_mm_node *node, u32 size)
71{
72 memset(node, 0, sizeof(*node));
4e64e553
CW
73 return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
74 size, 0, I915_COLOR_UNEVICTABLE,
75 0, ggtt->mappable_end,
76 DRM_MM_INSERT_LOW);
4f1959ee
AS
77}
78
79static void
80remove_mappable_node(struct drm_mm_node *node)
81{
82 drm_mm_remove_node(node);
83}
84
73aa808f
CW
85/* some bookkeeping */
86static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
3ef7f228 87 u64 size)
73aa808f 88{
c20e8355 89 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
90 dev_priv->mm.object_count++;
91 dev_priv->mm.object_memory += size;
c20e8355 92 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
93}
94
95static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
3ef7f228 96 u64 size)
73aa808f 97{
c20e8355 98 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
99 dev_priv->mm.object_count--;
100 dev_priv->mm.object_memory -= size;
c20e8355 101 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
102}
103
21dd3734 104static int
33196ded 105i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 106{
30dbf0c0
CW
107 int ret;
108
4c7d62c6
CW
109 might_sleep();
110
d98c52cf 111 if (!i915_reset_in_progress(error))
30dbf0c0
CW
112 return 0;
113
0a6759c6
DV
114 /*
115 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
116 * userspace. If it takes that long something really bad is going on and
117 * we should simply try to bail out and fail as gracefully as possible.
118 */
1f83fee0 119 ret = wait_event_interruptible_timeout(error->reset_queue,
d98c52cf 120 !i915_reset_in_progress(error),
b52992c0 121 I915_RESET_TIMEOUT);
0a6759c6
DV
122 if (ret == 0) {
123 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
124 return -EIO;
125 } else if (ret < 0) {
30dbf0c0 126 return ret;
d98c52cf
CW
127 } else {
128 return 0;
0a6759c6 129 }
30dbf0c0
CW
130}
131
54cf91dc 132int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 133{
fac5e23e 134 struct drm_i915_private *dev_priv = to_i915(dev);
76c1dec1
CW
135 int ret;
136
33196ded 137 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
138 if (ret)
139 return ret;
140
141 ret = mutex_lock_interruptible(&dev->struct_mutex);
142 if (ret)
143 return ret;
144
76c1dec1
CW
145 return 0;
146}
30dbf0c0 147
5a125c3c
EA
148int
149i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 150 struct drm_file *file)
5a125c3c 151{
72e96d64 152 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 153 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 154 struct drm_i915_gem_get_aperture *args = data;
ca1543be 155 struct i915_vma *vma;
6299f992 156 size_t pinned;
5a125c3c 157
6299f992 158 pinned = 0;
73aa808f 159 mutex_lock(&dev->struct_mutex);
1c7f4bca 160 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
20dfbde4 161 if (i915_vma_is_pinned(vma))
ca1543be 162 pinned += vma->node.size;
1c7f4bca 163 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
20dfbde4 164 if (i915_vma_is_pinned(vma))
ca1543be 165 pinned += vma->node.size;
73aa808f 166 mutex_unlock(&dev->struct_mutex);
5a125c3c 167
72e96d64 168 args->aper_size = ggtt->base.total;
0206e353 169 args->aper_available_size = args->aper_size - pinned;
6299f992 170
5a125c3c
EA
171 return 0;
172}
173
03ac84f1 174static struct sg_table *
6a2c4232 175i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 176{
93c76a3d 177 struct address_space *mapping = obj->base.filp->f_mapping;
dbb4351b 178 drm_dma_handle_t *phys;
6a2c4232
CW
179 struct sg_table *st;
180 struct scatterlist *sg;
dbb4351b 181 char *vaddr;
6a2c4232 182 int i;
00731155 183
6a2c4232 184 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
03ac84f1 185 return ERR_PTR(-EINVAL);
6a2c4232 186
dbb4351b
CW
187 /* Always aligning to the object size, allows a single allocation
188 * to handle all possible callers, and given typical object sizes,
189 * the alignment of the buddy allocation will naturally match.
190 */
191 phys = drm_pci_alloc(obj->base.dev,
192 obj->base.size,
193 roundup_pow_of_two(obj->base.size));
194 if (!phys)
195 return ERR_PTR(-ENOMEM);
196
197 vaddr = phys->vaddr;
6a2c4232
CW
198 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
199 struct page *page;
200 char *src;
201
202 page = shmem_read_mapping_page(mapping, i);
dbb4351b
CW
203 if (IS_ERR(page)) {
204 st = ERR_CAST(page);
205 goto err_phys;
206 }
6a2c4232
CW
207
208 src = kmap_atomic(page);
209 memcpy(vaddr, src, PAGE_SIZE);
210 drm_clflush_virt_range(vaddr, PAGE_SIZE);
211 kunmap_atomic(src);
212
09cbfeaf 213 put_page(page);
6a2c4232
CW
214 vaddr += PAGE_SIZE;
215 }
216
c033666a 217 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
218
219 st = kmalloc(sizeof(*st), GFP_KERNEL);
dbb4351b
CW
220 if (!st) {
221 st = ERR_PTR(-ENOMEM);
222 goto err_phys;
223 }
6a2c4232
CW
224
225 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
226 kfree(st);
dbb4351b
CW
227 st = ERR_PTR(-ENOMEM);
228 goto err_phys;
6a2c4232
CW
229 }
230
231 sg = st->sgl;
232 sg->offset = 0;
233 sg->length = obj->base.size;
00731155 234
dbb4351b 235 sg_dma_address(sg) = phys->busaddr;
6a2c4232
CW
236 sg_dma_len(sg) = obj->base.size;
237
dbb4351b
CW
238 obj->phys_handle = phys;
239 return st;
240
241err_phys:
242 drm_pci_free(obj->base.dev, phys);
03ac84f1 243 return st;
6a2c4232
CW
244}
245
246static void
2b3c8317 247__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
e5facdf9
CW
248 struct sg_table *pages,
249 bool needs_clflush)
6a2c4232 250{
a4f5ea64 251 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
00731155 252
a4f5ea64
CW
253 if (obj->mm.madv == I915_MADV_DONTNEED)
254 obj->mm.dirty = false;
6a2c4232 255
e5facdf9
CW
256 if (needs_clflush &&
257 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
05c34837 258 !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
2b3c8317 259 drm_clflush_sg(pages);
03ac84f1
CW
260
261 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
262 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
263}
264
265static void
266i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
267 struct sg_table *pages)
268{
e5facdf9 269 __i915_gem_object_release_shmem(obj, pages, false);
03ac84f1 270
a4f5ea64 271 if (obj->mm.dirty) {
93c76a3d 272 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232 273 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
274 int i;
275
276 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
277 struct page *page;
278 char *dst;
279
280 page = shmem_read_mapping_page(mapping, i);
281 if (IS_ERR(page))
282 continue;
283
284 dst = kmap_atomic(page);
285 drm_clflush_virt_range(vaddr, PAGE_SIZE);
286 memcpy(dst, vaddr, PAGE_SIZE);
287 kunmap_atomic(dst);
288
289 set_page_dirty(page);
a4f5ea64 290 if (obj->mm.madv == I915_MADV_WILLNEED)
00731155 291 mark_page_accessed(page);
09cbfeaf 292 put_page(page);
00731155
CW
293 vaddr += PAGE_SIZE;
294 }
a4f5ea64 295 obj->mm.dirty = false;
00731155
CW
296 }
297
03ac84f1
CW
298 sg_free_table(pages);
299 kfree(pages);
dbb4351b
CW
300
301 drm_pci_free(obj->base.dev, obj->phys_handle);
6a2c4232
CW
302}
303
304static void
305i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
306{
a4f5ea64 307 i915_gem_object_unpin_pages(obj);
6a2c4232
CW
308}
309
310static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
311 .get_pages = i915_gem_object_get_pages_phys,
312 .put_pages = i915_gem_object_put_pages_phys,
313 .release = i915_gem_object_release_phys,
314};
315
35a9611c 316int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
aa653a68
CW
317{
318 struct i915_vma *vma;
319 LIST_HEAD(still_in_list);
02bef8f9
CW
320 int ret;
321
322 lockdep_assert_held(&obj->base.dev->struct_mutex);
aa653a68 323
02bef8f9
CW
324 /* Closed vma are removed from the obj->vma_list - but they may
325 * still have an active binding on the object. To remove those we
326 * must wait for all rendering to complete to the object (as unbinding
327 * must anyway), and retire the requests.
aa653a68 328 */
e95433c7
CW
329 ret = i915_gem_object_wait(obj,
330 I915_WAIT_INTERRUPTIBLE |
331 I915_WAIT_LOCKED |
332 I915_WAIT_ALL,
333 MAX_SCHEDULE_TIMEOUT,
334 NULL);
02bef8f9
CW
335 if (ret)
336 return ret;
337
338 i915_gem_retire_requests(to_i915(obj->base.dev));
339
aa653a68
CW
340 while ((vma = list_first_entry_or_null(&obj->vma_list,
341 struct i915_vma,
342 obj_link))) {
343 list_move_tail(&vma->obj_link, &still_in_list);
344 ret = i915_vma_unbind(vma);
345 if (ret)
346 break;
347 }
348 list_splice(&still_in_list, &obj->vma_list);
349
350 return ret;
351}
352
e95433c7
CW
353static long
354i915_gem_object_wait_fence(struct dma_fence *fence,
355 unsigned int flags,
356 long timeout,
357 struct intel_rps_client *rps)
00e60f26 358{
e95433c7 359 struct drm_i915_gem_request *rq;
00e60f26 360
e95433c7 361 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
00e60f26 362
e95433c7
CW
363 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
364 return timeout;
365
366 if (!dma_fence_is_i915(fence))
367 return dma_fence_wait_timeout(fence,
368 flags & I915_WAIT_INTERRUPTIBLE,
369 timeout);
370
371 rq = to_request(fence);
372 if (i915_gem_request_completed(rq))
373 goto out;
374
375 /* This client is about to stall waiting for the GPU. In many cases
376 * this is undesirable and limits the throughput of the system, as
377 * many clients cannot continue processing user input/output whilst
378 * blocked. RPS autotuning may take tens of milliseconds to respond
379 * to the GPU load and thus incurs additional latency for the client.
380 * We can circumvent that by promoting the GPU frequency to maximum
381 * before we wait. This makes the GPU throttle up much more quickly
382 * (good for benchmarks and user experience, e.g. window animations),
383 * but at a cost of spending more power processing the workload
384 * (bad for battery). Not all clients even want their results
385 * immediately and for them we should just let the GPU select its own
386 * frequency to maximise efficiency. To prevent a single client from
387 * forcing the clocks too high for the whole system, we only allow
388 * each client to waitboost once in a busy period.
389 */
390 if (rps) {
391 if (INTEL_GEN(rq->i915) >= 6)
392 gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
393 else
394 rps = NULL;
00e60f26
CW
395 }
396
e95433c7
CW
397 timeout = i915_wait_request(rq, flags, timeout);
398
399out:
400 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
401 i915_gem_request_retire_upto(rq);
402
cb399eab 403 if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
e95433c7
CW
404 /* The GPU is now idle and this client has stalled.
405 * Since no other client has submitted a request in the
406 * meantime, assume that this client is the only one
407 * supplying work to the GPU but is unable to keep that
408 * work supplied because it is waiting. Since the GPU is
409 * then never kept fully busy, RPS autoclocking will
410 * keep the clocks relatively low, causing further delays.
411 * Compensate by giving the synchronous client credit for
412 * a waitboost next time.
413 */
414 spin_lock(&rq->i915->rps.client_lock);
415 list_del_init(&rps->link);
416 spin_unlock(&rq->i915->rps.client_lock);
417 }
418
419 return timeout;
420}
421
422static long
423i915_gem_object_wait_reservation(struct reservation_object *resv,
424 unsigned int flags,
425 long timeout,
426 struct intel_rps_client *rps)
427{
428 struct dma_fence *excl;
429
430 if (flags & I915_WAIT_ALL) {
431 struct dma_fence **shared;
432 unsigned int count, i;
00e60f26
CW
433 int ret;
434
e95433c7
CW
435 ret = reservation_object_get_fences_rcu(resv,
436 &excl, &count, &shared);
00e60f26
CW
437 if (ret)
438 return ret;
00e60f26 439
e95433c7
CW
440 for (i = 0; i < count; i++) {
441 timeout = i915_gem_object_wait_fence(shared[i],
442 flags, timeout,
443 rps);
444 if (timeout <= 0)
445 break;
00e60f26 446
e95433c7
CW
447 dma_fence_put(shared[i]);
448 }
449
450 for (; i < count; i++)
451 dma_fence_put(shared[i]);
452 kfree(shared);
453 } else {
454 excl = reservation_object_get_excl_rcu(resv);
00e60f26
CW
455 }
456
e95433c7
CW
457 if (excl && timeout > 0)
458 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
459
460 dma_fence_put(excl);
461
462 return timeout;
00e60f26
CW
463}
464
6b5e90f5
CW
465static void __fence_set_priority(struct dma_fence *fence, int prio)
466{
467 struct drm_i915_gem_request *rq;
468 struct intel_engine_cs *engine;
469
470 if (!dma_fence_is_i915(fence))
471 return;
472
473 rq = to_request(fence);
474 engine = rq->engine;
475 if (!engine->schedule)
476 return;
477
478 engine->schedule(rq, prio);
479}
480
481static void fence_set_priority(struct dma_fence *fence, int prio)
482{
483 /* Recurse once into a fence-array */
484 if (dma_fence_is_array(fence)) {
485 struct dma_fence_array *array = to_dma_fence_array(fence);
486 int i;
487
488 for (i = 0; i < array->num_fences; i++)
489 __fence_set_priority(array->fences[i], prio);
490 } else {
491 __fence_set_priority(fence, prio);
492 }
493}
494
495int
496i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
497 unsigned int flags,
498 int prio)
499{
500 struct dma_fence *excl;
501
502 if (flags & I915_WAIT_ALL) {
503 struct dma_fence **shared;
504 unsigned int count, i;
505 int ret;
506
507 ret = reservation_object_get_fences_rcu(obj->resv,
508 &excl, &count, &shared);
509 if (ret)
510 return ret;
511
512 for (i = 0; i < count; i++) {
513 fence_set_priority(shared[i], prio);
514 dma_fence_put(shared[i]);
515 }
516
517 kfree(shared);
518 } else {
519 excl = reservation_object_get_excl_rcu(obj->resv);
520 }
521
522 if (excl) {
523 fence_set_priority(excl, prio);
524 dma_fence_put(excl);
525 }
526 return 0;
527}
528
e95433c7
CW
529/**
530 * Waits for rendering to the object to be completed
531 * @obj: i915 gem object
532 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
533 * @timeout: how long to wait
534 * @rps: client (user process) to charge for any waitboosting
00e60f26 535 */
e95433c7
CW
536int
537i915_gem_object_wait(struct drm_i915_gem_object *obj,
538 unsigned int flags,
539 long timeout,
540 struct intel_rps_client *rps)
00e60f26 541{
e95433c7
CW
542 might_sleep();
543#if IS_ENABLED(CONFIG_LOCKDEP)
544 GEM_BUG_ON(debug_locks &&
545 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
546 !!(flags & I915_WAIT_LOCKED));
547#endif
548 GEM_BUG_ON(timeout < 0);
00e60f26 549
d07f0e59
CW
550 timeout = i915_gem_object_wait_reservation(obj->resv,
551 flags, timeout,
552 rps);
e95433c7 553 return timeout < 0 ? timeout : 0;
00e60f26
CW
554}
555
556static struct intel_rps_client *to_rps_client(struct drm_file *file)
557{
558 struct drm_i915_file_private *fpriv = file->driver_priv;
559
560 return &fpriv->rps;
561}
562
00731155
CW
563int
564i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
565 int align)
566{
6a2c4232 567 int ret;
00731155 568
dbb4351b
CW
569 if (align > obj->base.size)
570 return -EINVAL;
00731155 571
dbb4351b 572 if (obj->ops == &i915_gem_phys_ops)
00731155 573 return 0;
00731155 574
a4f5ea64 575 if (obj->mm.madv != I915_MADV_WILLNEED)
00731155
CW
576 return -EFAULT;
577
578 if (obj->base.filp == NULL)
579 return -EINVAL;
580
4717ca9e
CW
581 ret = i915_gem_object_unbind(obj);
582 if (ret)
583 return ret;
584
548625ee 585 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
03ac84f1
CW
586 if (obj->mm.pages)
587 return -EBUSY;
6a2c4232 588
6a2c4232
CW
589 obj->ops = &i915_gem_phys_ops;
590
a4f5ea64 591 return i915_gem_object_pin_pages(obj);
00731155
CW
592}
593
594static int
595i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
596 struct drm_i915_gem_pwrite *args,
03ac84f1 597 struct drm_file *file)
00731155 598{
00731155 599 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 600 char __user *user_data = u64_to_user_ptr(args->data_ptr);
6a2c4232
CW
601
602 /* We manually control the domain here and pretend that it
603 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
604 */
77a0d1ca 605 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
10466d2a
CW
606 if (copy_from_user(vaddr, user_data, args->size))
607 return -EFAULT;
00731155 608
6a2c4232 609 drm_clflush_virt_range(vaddr, args->size);
10466d2a 610 i915_gem_chipset_flush(to_i915(obj->base.dev));
063e4e6b 611
de152b62 612 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
10466d2a 613 return 0;
00731155
CW
614}
615
187685cb 616void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
42dcedd4 617{
efab6d8d 618 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
619}
620
621void i915_gem_object_free(struct drm_i915_gem_object *obj)
622{
fac5e23e 623 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
efab6d8d 624 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
625}
626
ff72145b
DA
627static int
628i915_gem_create(struct drm_file *file,
12d79d78 629 struct drm_i915_private *dev_priv,
ff72145b
DA
630 uint64_t size,
631 uint32_t *handle_p)
673a394b 632{
05394f39 633 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
634 int ret;
635 u32 handle;
673a394b 636
ff72145b 637 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
638 if (size == 0)
639 return -EINVAL;
673a394b
EA
640
641 /* Allocate the new object */
12d79d78 642 obj = i915_gem_object_create(dev_priv, size);
fe3db79b
CW
643 if (IS_ERR(obj))
644 return PTR_ERR(obj);
673a394b 645
05394f39 646 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 647 /* drop reference from allocate - handle holds it now */
f0cd5182 648 i915_gem_object_put(obj);
d861e338
DV
649 if (ret)
650 return ret;
202f2fef 651
ff72145b 652 *handle_p = handle;
673a394b
EA
653 return 0;
654}
655
ff72145b
DA
656int
657i915_gem_dumb_create(struct drm_file *file,
658 struct drm_device *dev,
659 struct drm_mode_create_dumb *args)
660{
661 /* have to work out size/pitch and return them */
de45eaf7 662 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b 663 args->size = args->pitch * args->height;
12d79d78 664 return i915_gem_create(file, to_i915(dev),
da6b51d0 665 args->size, &args->handle);
ff72145b
DA
666}
667
ff72145b
DA
668/**
669 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
670 * @dev: drm device pointer
671 * @data: ioctl data blob
672 * @file: drm file pointer
ff72145b
DA
673 */
674int
675i915_gem_create_ioctl(struct drm_device *dev, void *data,
676 struct drm_file *file)
677{
12d79d78 678 struct drm_i915_private *dev_priv = to_i915(dev);
ff72145b 679 struct drm_i915_gem_create *args = data;
63ed2cb2 680
12d79d78 681 i915_gem_flush_free_objects(dev_priv);
fbbd37b3 682
12d79d78 683 return i915_gem_create(file, dev_priv,
da6b51d0 684 args->size, &args->handle);
ff72145b
DA
685}
686
8461d226
DV
687static inline int
688__copy_to_user_swizzled(char __user *cpu_vaddr,
689 const char *gpu_vaddr, int gpu_offset,
690 int length)
691{
692 int ret, cpu_offset = 0;
693
694 while (length > 0) {
695 int cacheline_end = ALIGN(gpu_offset + 1, 64);
696 int this_length = min(cacheline_end - gpu_offset, length);
697 int swizzled_gpu_offset = gpu_offset ^ 64;
698
699 ret = __copy_to_user(cpu_vaddr + cpu_offset,
700 gpu_vaddr + swizzled_gpu_offset,
701 this_length);
702 if (ret)
703 return ret + length;
704
705 cpu_offset += this_length;
706 gpu_offset += this_length;
707 length -= this_length;
708 }
709
710 return 0;
711}
712
8c59967c 713static inline int
4f0c7cfb
BW
714__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
715 const char __user *cpu_vaddr,
8c59967c
DV
716 int length)
717{
718 int ret, cpu_offset = 0;
719
720 while (length > 0) {
721 int cacheline_end = ALIGN(gpu_offset + 1, 64);
722 int this_length = min(cacheline_end - gpu_offset, length);
723 int swizzled_gpu_offset = gpu_offset ^ 64;
724
725 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
726 cpu_vaddr + cpu_offset,
727 this_length);
728 if (ret)
729 return ret + length;
730
731 cpu_offset += this_length;
732 gpu_offset += this_length;
733 length -= this_length;
734 }
735
736 return 0;
737}
738
4c914c0c
BV
739/*
740 * Pins the specified object's pages and synchronizes the object with
741 * GPU accesses. Sets needs_clflush to non-zero if the caller should
742 * flush the object from the CPU cache.
743 */
744int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
43394c7d 745 unsigned int *needs_clflush)
4c914c0c
BV
746{
747 int ret;
748
e95433c7 749 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c914c0c 750
e95433c7 751 *needs_clflush = 0;
43394c7d
CW
752 if (!i915_gem_object_has_struct_page(obj))
753 return -ENODEV;
4c914c0c 754
e95433c7
CW
755 ret = i915_gem_object_wait(obj,
756 I915_WAIT_INTERRUPTIBLE |
757 I915_WAIT_LOCKED,
758 MAX_SCHEDULE_TIMEOUT,
759 NULL);
c13d87ea
CW
760 if (ret)
761 return ret;
762
a4f5ea64 763 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
764 if (ret)
765 return ret;
766
a314d5cb
CW
767 i915_gem_object_flush_gtt_write_domain(obj);
768
43394c7d
CW
769 /* If we're not in the cpu read domain, set ourself into the gtt
770 * read domain and manually flush cachelines (if required). This
771 * optimizes for the case when the gpu will dirty the data
772 * anyway again before the next pread happens.
773 */
774 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
4c914c0c
BV
775 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
776 obj->cache_level);
43394c7d 777
43394c7d
CW
778 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
779 ret = i915_gem_object_set_to_cpu_domain(obj, false);
9764951e
CW
780 if (ret)
781 goto err_unpin;
782
43394c7d 783 *needs_clflush = 0;
4c914c0c
BV
784 }
785
9764951e 786 /* return with the pages pinned */
43394c7d 787 return 0;
9764951e
CW
788
789err_unpin:
790 i915_gem_object_unpin_pages(obj);
791 return ret;
43394c7d
CW
792}
793
794int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
795 unsigned int *needs_clflush)
796{
797 int ret;
798
e95433c7
CW
799 lockdep_assert_held(&obj->base.dev->struct_mutex);
800
43394c7d
CW
801 *needs_clflush = 0;
802 if (!i915_gem_object_has_struct_page(obj))
803 return -ENODEV;
804
e95433c7
CW
805 ret = i915_gem_object_wait(obj,
806 I915_WAIT_INTERRUPTIBLE |
807 I915_WAIT_LOCKED |
808 I915_WAIT_ALL,
809 MAX_SCHEDULE_TIMEOUT,
810 NULL);
43394c7d
CW
811 if (ret)
812 return ret;
813
a4f5ea64 814 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
815 if (ret)
816 return ret;
817
a314d5cb
CW
818 i915_gem_object_flush_gtt_write_domain(obj);
819
43394c7d
CW
820 /* If we're not in the cpu write domain, set ourself into the
821 * gtt write domain and manually flush cachelines (as required).
822 * This optimizes for the case when the gpu will use the data
823 * right away and we therefore have to clflush anyway.
824 */
825 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
826 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
827
828 /* Same trick applies to invalidate partially written cachelines read
829 * before writing.
830 */
831 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
832 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
833 obj->cache_level);
834
43394c7d
CW
835 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
836 ret = i915_gem_object_set_to_cpu_domain(obj, true);
9764951e
CW
837 if (ret)
838 goto err_unpin;
839
43394c7d
CW
840 *needs_clflush = 0;
841 }
842
843 if ((*needs_clflush & CLFLUSH_AFTER) == 0)
844 obj->cache_dirty = true;
845
846 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
a4f5ea64 847 obj->mm.dirty = true;
9764951e 848 /* return with the pages pinned */
43394c7d 849 return 0;
9764951e
CW
850
851err_unpin:
852 i915_gem_object_unpin_pages(obj);
853 return ret;
4c914c0c
BV
854}
855
23c18c71
DV
856static void
857shmem_clflush_swizzled_range(char *addr, unsigned long length,
858 bool swizzled)
859{
e7e58eb5 860 if (unlikely(swizzled)) {
23c18c71
DV
861 unsigned long start = (unsigned long) addr;
862 unsigned long end = (unsigned long) addr + length;
863
864 /* For swizzling simply ensure that we always flush both
865 * channels. Lame, but simple and it works. Swizzled
866 * pwrite/pread is far from a hotpath - current userspace
867 * doesn't use it at all. */
868 start = round_down(start, 128);
869 end = round_up(end, 128);
870
871 drm_clflush_virt_range((void *)start, end - start);
872 } else {
873 drm_clflush_virt_range(addr, length);
874 }
875
876}
877
d174bd64
DV
878/* Only difference to the fast-path function is that this can handle bit17
879 * and uses non-atomic copy and kmap functions. */
880static int
bb6dc8d9 881shmem_pread_slow(struct page *page, int offset, int length,
d174bd64
DV
882 char __user *user_data,
883 bool page_do_bit17_swizzling, bool needs_clflush)
884{
885 char *vaddr;
886 int ret;
887
888 vaddr = kmap(page);
889 if (needs_clflush)
bb6dc8d9 890 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 891 page_do_bit17_swizzling);
d174bd64
DV
892
893 if (page_do_bit17_swizzling)
bb6dc8d9 894 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
d174bd64 895 else
bb6dc8d9 896 ret = __copy_to_user(user_data, vaddr + offset, length);
d174bd64
DV
897 kunmap(page);
898
f60d7f0c 899 return ret ? - EFAULT : 0;
d174bd64
DV
900}
901
bb6dc8d9
CW
902static int
903shmem_pread(struct page *page, int offset, int length, char __user *user_data,
904 bool page_do_bit17_swizzling, bool needs_clflush)
905{
906 int ret;
907
908 ret = -ENODEV;
909 if (!page_do_bit17_swizzling) {
910 char *vaddr = kmap_atomic(page);
911
912 if (needs_clflush)
913 drm_clflush_virt_range(vaddr + offset, length);
914 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
915 kunmap_atomic(vaddr);
916 }
917 if (ret == 0)
918 return 0;
919
920 return shmem_pread_slow(page, offset, length, user_data,
921 page_do_bit17_swizzling, needs_clflush);
922}
923
924static int
925i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
926 struct drm_i915_gem_pread *args)
927{
928 char __user *user_data;
929 u64 remain;
930 unsigned int obj_do_bit17_swizzling;
931 unsigned int needs_clflush;
932 unsigned int idx, offset;
933 int ret;
934
935 obj_do_bit17_swizzling = 0;
936 if (i915_gem_object_needs_bit17_swizzle(obj))
937 obj_do_bit17_swizzling = BIT(17);
938
939 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
940 if (ret)
941 return ret;
942
943 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
944 mutex_unlock(&obj->base.dev->struct_mutex);
945 if (ret)
946 return ret;
947
948 remain = args->size;
949 user_data = u64_to_user_ptr(args->data_ptr);
950 offset = offset_in_page(args->offset);
951 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
952 struct page *page = i915_gem_object_get_page(obj, idx);
953 int length;
954
955 length = remain;
956 if (offset + length > PAGE_SIZE)
957 length = PAGE_SIZE - offset;
958
959 ret = shmem_pread(page, offset, length, user_data,
960 page_to_phys(page) & obj_do_bit17_swizzling,
961 needs_clflush);
962 if (ret)
963 break;
964
965 remain -= length;
966 user_data += length;
967 offset = 0;
968 }
969
970 i915_gem_obj_finish_shmem_access(obj);
971 return ret;
972}
973
974static inline bool
975gtt_user_read(struct io_mapping *mapping,
976 loff_t base, int offset,
977 char __user *user_data, int length)
b50a5371 978{
b50a5371 979 void *vaddr;
bb6dc8d9 980 unsigned long unwritten;
b50a5371 981
b50a5371 982 /* We can use the cpu mem copy function because this is X86. */
bb6dc8d9
CW
983 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
984 unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
985 io_mapping_unmap_atomic(vaddr);
986 if (unwritten) {
987 vaddr = (void __force *)
988 io_mapping_map_wc(mapping, base, PAGE_SIZE);
989 unwritten = copy_to_user(user_data, vaddr + offset, length);
990 io_mapping_unmap(vaddr);
991 }
b50a5371
AS
992 return unwritten;
993}
994
995static int
bb6dc8d9
CW
996i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
997 const struct drm_i915_gem_pread *args)
b50a5371 998{
bb6dc8d9
CW
999 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1000 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 1001 struct drm_mm_node node;
bb6dc8d9
CW
1002 struct i915_vma *vma;
1003 void __user *user_data;
1004 u64 remain, offset;
b50a5371
AS
1005 int ret;
1006
bb6dc8d9
CW
1007 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1008 if (ret)
1009 return ret;
1010
1011 intel_runtime_pm_get(i915);
1012 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1013 PIN_MAPPABLE | PIN_NONBLOCK);
18034584
CW
1014 if (!IS_ERR(vma)) {
1015 node.start = i915_ggtt_offset(vma);
1016 node.allocated = false;
49ef5294 1017 ret = i915_vma_put_fence(vma);
18034584
CW
1018 if (ret) {
1019 i915_vma_unpin(vma);
1020 vma = ERR_PTR(ret);
1021 }
1022 }
058d88c4 1023 if (IS_ERR(vma)) {
bb6dc8d9 1024 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
b50a5371 1025 if (ret)
bb6dc8d9
CW
1026 goto out_unlock;
1027 GEM_BUG_ON(!node.allocated);
b50a5371
AS
1028 }
1029
1030 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1031 if (ret)
1032 goto out_unpin;
1033
bb6dc8d9 1034 mutex_unlock(&i915->drm.struct_mutex);
b50a5371 1035
bb6dc8d9
CW
1036 user_data = u64_to_user_ptr(args->data_ptr);
1037 remain = args->size;
1038 offset = args->offset;
b50a5371
AS
1039
1040 while (remain > 0) {
1041 /* Operation in this page
1042 *
1043 * page_base = page offset within aperture
1044 * page_offset = offset within page
1045 * page_length = bytes to copy for this page
1046 */
1047 u32 page_base = node.start;
1048 unsigned page_offset = offset_in_page(offset);
1049 unsigned page_length = PAGE_SIZE - page_offset;
1050 page_length = remain < page_length ? remain : page_length;
1051 if (node.allocated) {
1052 wmb();
1053 ggtt->base.insert_page(&ggtt->base,
1054 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
bb6dc8d9 1055 node.start, I915_CACHE_NONE, 0);
b50a5371
AS
1056 wmb();
1057 } else {
1058 page_base += offset & PAGE_MASK;
1059 }
bb6dc8d9
CW
1060
1061 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1062 user_data, page_length)) {
b50a5371
AS
1063 ret = -EFAULT;
1064 break;
1065 }
1066
1067 remain -= page_length;
1068 user_data += page_length;
1069 offset += page_length;
1070 }
1071
bb6dc8d9 1072 mutex_lock(&i915->drm.struct_mutex);
b50a5371
AS
1073out_unpin:
1074 if (node.allocated) {
1075 wmb();
1076 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1077 node.start, node.size);
b50a5371
AS
1078 remove_mappable_node(&node);
1079 } else {
058d88c4 1080 i915_vma_unpin(vma);
b50a5371 1081 }
bb6dc8d9
CW
1082out_unlock:
1083 intel_runtime_pm_put(i915);
1084 mutex_unlock(&i915->drm.struct_mutex);
f60d7f0c 1085
eb01459f
EA
1086 return ret;
1087}
1088
673a394b
EA
1089/**
1090 * Reads data from the object referenced by handle.
14bb2c11
TU
1091 * @dev: drm device pointer
1092 * @data: ioctl data blob
1093 * @file: drm file pointer
673a394b
EA
1094 *
1095 * On error, the contents of *data are undefined.
1096 */
1097int
1098i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 1099 struct drm_file *file)
673a394b
EA
1100{
1101 struct drm_i915_gem_pread *args = data;
05394f39 1102 struct drm_i915_gem_object *obj;
bb6dc8d9 1103 int ret;
673a394b 1104
51311d0a
CW
1105 if (args->size == 0)
1106 return 0;
1107
1108 if (!access_ok(VERIFY_WRITE,
3ed605bc 1109 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1110 args->size))
1111 return -EFAULT;
1112
03ac0642 1113 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1114 if (!obj)
1115 return -ENOENT;
673a394b 1116
7dcd2499 1117 /* Bounds check source. */
966d5bf5 1118 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
ce9d419d 1119 ret = -EINVAL;
bb6dc8d9 1120 goto out;
ce9d419d
CW
1121 }
1122
db53a302
CW
1123 trace_i915_gem_object_pread(obj, args->offset, args->size);
1124
e95433c7
CW
1125 ret = i915_gem_object_wait(obj,
1126 I915_WAIT_INTERRUPTIBLE,
1127 MAX_SCHEDULE_TIMEOUT,
1128 to_rps_client(file));
258a5ede 1129 if (ret)
bb6dc8d9 1130 goto out;
258a5ede 1131
bb6dc8d9 1132 ret = i915_gem_object_pin_pages(obj);
258a5ede 1133 if (ret)
bb6dc8d9 1134 goto out;
673a394b 1135
bb6dc8d9 1136 ret = i915_gem_shmem_pread(obj, args);
9c870d03 1137 if (ret == -EFAULT || ret == -ENODEV)
bb6dc8d9 1138 ret = i915_gem_gtt_pread(obj, args);
b50a5371 1139
bb6dc8d9
CW
1140 i915_gem_object_unpin_pages(obj);
1141out:
f0cd5182 1142 i915_gem_object_put(obj);
eb01459f 1143 return ret;
673a394b
EA
1144}
1145
0839ccb8
KP
1146/* This is the fast write path which cannot handle
1147 * page faults in the source data
9b7530cc 1148 */
0839ccb8 1149
fe115628
CW
1150static inline bool
1151ggtt_write(struct io_mapping *mapping,
1152 loff_t base, int offset,
1153 char __user *user_data, int length)
9b7530cc 1154{
4f0c7cfb 1155 void *vaddr;
0839ccb8 1156 unsigned long unwritten;
9b7530cc 1157
4f0c7cfb 1158 /* We can use the cpu mem copy function because this is X86. */
fe115628
CW
1159 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1160 unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
0839ccb8 1161 user_data, length);
fe115628
CW
1162 io_mapping_unmap_atomic(vaddr);
1163 if (unwritten) {
1164 vaddr = (void __force *)
1165 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1166 unwritten = copy_from_user(vaddr + offset, user_data, length);
1167 io_mapping_unmap(vaddr);
1168 }
bb6dc8d9 1169
bb6dc8d9
CW
1170 return unwritten;
1171}
1172
3de09aa3
EA
1173/**
1174 * This is the fast pwrite path, where we copy the data directly from the
1175 * user into the GTT, uncached.
fe115628 1176 * @obj: i915 GEM object
14bb2c11 1177 * @args: pwrite arguments structure
3de09aa3 1178 */
673a394b 1179static int
fe115628
CW
1180i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1181 const struct drm_i915_gem_pwrite *args)
673a394b 1182{
fe115628 1183 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4f1959ee
AS
1184 struct i915_ggtt *ggtt = &i915->ggtt;
1185 struct drm_mm_node node;
fe115628
CW
1186 struct i915_vma *vma;
1187 u64 remain, offset;
1188 void __user *user_data;
4f1959ee 1189 int ret;
b50a5371 1190
fe115628
CW
1191 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1192 if (ret)
1193 return ret;
935aaa69 1194
9c870d03 1195 intel_runtime_pm_get(i915);
058d88c4 1196 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
de895082 1197 PIN_MAPPABLE | PIN_NONBLOCK);
18034584
CW
1198 if (!IS_ERR(vma)) {
1199 node.start = i915_ggtt_offset(vma);
1200 node.allocated = false;
49ef5294 1201 ret = i915_vma_put_fence(vma);
18034584
CW
1202 if (ret) {
1203 i915_vma_unpin(vma);
1204 vma = ERR_PTR(ret);
1205 }
1206 }
058d88c4 1207 if (IS_ERR(vma)) {
bb6dc8d9 1208 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
4f1959ee 1209 if (ret)
fe115628
CW
1210 goto out_unlock;
1211 GEM_BUG_ON(!node.allocated);
4f1959ee 1212 }
935aaa69
DV
1213
1214 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1215 if (ret)
1216 goto out_unpin;
1217
fe115628
CW
1218 mutex_unlock(&i915->drm.struct_mutex);
1219
b19482d7 1220 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 1221
4f1959ee
AS
1222 user_data = u64_to_user_ptr(args->data_ptr);
1223 offset = args->offset;
1224 remain = args->size;
1225 while (remain) {
673a394b
EA
1226 /* Operation in this page
1227 *
0839ccb8
KP
1228 * page_base = page offset within aperture
1229 * page_offset = offset within page
1230 * page_length = bytes to copy for this page
673a394b 1231 */
4f1959ee 1232 u32 page_base = node.start;
bb6dc8d9
CW
1233 unsigned int page_offset = offset_in_page(offset);
1234 unsigned int page_length = PAGE_SIZE - page_offset;
4f1959ee
AS
1235 page_length = remain < page_length ? remain : page_length;
1236 if (node.allocated) {
1237 wmb(); /* flush the write before we modify the GGTT */
1238 ggtt->base.insert_page(&ggtt->base,
1239 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1240 node.start, I915_CACHE_NONE, 0);
1241 wmb(); /* flush modifications to the GGTT (insert_page) */
1242 } else {
1243 page_base += offset & PAGE_MASK;
1244 }
0839ccb8 1245 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
1246 * source page isn't available. Return the error and we'll
1247 * retry in the slow path.
b50a5371
AS
1248 * If the object is non-shmem backed, we retry again with the
1249 * path that handles page fault.
0839ccb8 1250 */
fe115628
CW
1251 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1252 user_data, page_length)) {
1253 ret = -EFAULT;
1254 break;
935aaa69 1255 }
673a394b 1256
0839ccb8
KP
1257 remain -= page_length;
1258 user_data += page_length;
1259 offset += page_length;
673a394b 1260 }
b19482d7 1261 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
fe115628
CW
1262
1263 mutex_lock(&i915->drm.struct_mutex);
935aaa69 1264out_unpin:
4f1959ee
AS
1265 if (node.allocated) {
1266 wmb();
1267 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1268 node.start, node.size);
4f1959ee
AS
1269 remove_mappable_node(&node);
1270 } else {
058d88c4 1271 i915_vma_unpin(vma);
4f1959ee 1272 }
fe115628 1273out_unlock:
9c870d03 1274 intel_runtime_pm_put(i915);
fe115628 1275 mutex_unlock(&i915->drm.struct_mutex);
3de09aa3 1276 return ret;
673a394b
EA
1277}
1278
3043c60c 1279static int
fe115628 1280shmem_pwrite_slow(struct page *page, int offset, int length,
d174bd64
DV
1281 char __user *user_data,
1282 bool page_do_bit17_swizzling,
1283 bool needs_clflush_before,
1284 bool needs_clflush_after)
673a394b 1285{
d174bd64
DV
1286 char *vaddr;
1287 int ret;
e5281ccd 1288
d174bd64 1289 vaddr = kmap(page);
e7e58eb5 1290 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
fe115628 1291 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1292 page_do_bit17_swizzling);
d174bd64 1293 if (page_do_bit17_swizzling)
fe115628
CW
1294 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1295 length);
d174bd64 1296 else
fe115628 1297 ret = __copy_from_user(vaddr + offset, user_data, length);
d174bd64 1298 if (needs_clflush_after)
fe115628 1299 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1300 page_do_bit17_swizzling);
d174bd64 1301 kunmap(page);
40123c1f 1302
755d2218 1303 return ret ? -EFAULT : 0;
40123c1f
EA
1304}
1305
fe115628
CW
1306/* Per-page copy function for the shmem pwrite fastpath.
1307 * Flushes invalid cachelines before writing to the target if
1308 * needs_clflush_before is set and flushes out any written cachelines after
1309 * writing if needs_clflush is set.
1310 */
40123c1f 1311static int
fe115628
CW
1312shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1313 bool page_do_bit17_swizzling,
1314 bool needs_clflush_before,
1315 bool needs_clflush_after)
40123c1f 1316{
fe115628
CW
1317 int ret;
1318
1319 ret = -ENODEV;
1320 if (!page_do_bit17_swizzling) {
1321 char *vaddr = kmap_atomic(page);
1322
1323 if (needs_clflush_before)
1324 drm_clflush_virt_range(vaddr + offset, len);
1325 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1326 if (needs_clflush_after)
1327 drm_clflush_virt_range(vaddr + offset, len);
1328
1329 kunmap_atomic(vaddr);
1330 }
1331 if (ret == 0)
1332 return ret;
1333
1334 return shmem_pwrite_slow(page, offset, len, user_data,
1335 page_do_bit17_swizzling,
1336 needs_clflush_before,
1337 needs_clflush_after);
1338}
1339
1340static int
1341i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1342 const struct drm_i915_gem_pwrite *args)
1343{
1344 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1345 void __user *user_data;
1346 u64 remain;
1347 unsigned int obj_do_bit17_swizzling;
1348 unsigned int partial_cacheline_write;
43394c7d 1349 unsigned int needs_clflush;
fe115628
CW
1350 unsigned int offset, idx;
1351 int ret;
40123c1f 1352
fe115628 1353 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
755d2218
CW
1354 if (ret)
1355 return ret;
1356
fe115628
CW
1357 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1358 mutex_unlock(&i915->drm.struct_mutex);
1359 if (ret)
1360 return ret;
673a394b 1361
fe115628
CW
1362 obj_do_bit17_swizzling = 0;
1363 if (i915_gem_object_needs_bit17_swizzle(obj))
1364 obj_do_bit17_swizzling = BIT(17);
e5281ccd 1365
fe115628
CW
1366 /* If we don't overwrite a cacheline completely we need to be
1367 * careful to have up-to-date data by first clflushing. Don't
1368 * overcomplicate things and flush the entire patch.
1369 */
1370 partial_cacheline_write = 0;
1371 if (needs_clflush & CLFLUSH_BEFORE)
1372 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
9da3da66 1373
fe115628
CW
1374 user_data = u64_to_user_ptr(args->data_ptr);
1375 remain = args->size;
1376 offset = offset_in_page(args->offset);
1377 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1378 struct page *page = i915_gem_object_get_page(obj, idx);
1379 int length;
40123c1f 1380
fe115628
CW
1381 length = remain;
1382 if (offset + length > PAGE_SIZE)
1383 length = PAGE_SIZE - offset;
755d2218 1384
fe115628
CW
1385 ret = shmem_pwrite(page, offset, length, user_data,
1386 page_to_phys(page) & obj_do_bit17_swizzling,
1387 (offset | length) & partial_cacheline_write,
1388 needs_clflush & CLFLUSH_AFTER);
755d2218 1389 if (ret)
fe115628 1390 break;
755d2218 1391
fe115628
CW
1392 remain -= length;
1393 user_data += length;
1394 offset = 0;
8c59967c 1395 }
673a394b 1396
de152b62 1397 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
fe115628 1398 i915_gem_obj_finish_shmem_access(obj);
40123c1f 1399 return ret;
673a394b
EA
1400}
1401
1402/**
1403 * Writes data to the object referenced by handle.
14bb2c11
TU
1404 * @dev: drm device
1405 * @data: ioctl data blob
1406 * @file: drm file
673a394b
EA
1407 *
1408 * On error, the contents of the buffer that were to be modified are undefined.
1409 */
1410int
1411i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1412 struct drm_file *file)
673a394b
EA
1413{
1414 struct drm_i915_gem_pwrite *args = data;
05394f39 1415 struct drm_i915_gem_object *obj;
51311d0a
CW
1416 int ret;
1417
1418 if (args->size == 0)
1419 return 0;
1420
1421 if (!access_ok(VERIFY_READ,
3ed605bc 1422 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1423 args->size))
1424 return -EFAULT;
1425
03ac0642 1426 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1427 if (!obj)
1428 return -ENOENT;
673a394b 1429
7dcd2499 1430 /* Bounds check destination. */
966d5bf5 1431 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
ce9d419d 1432 ret = -EINVAL;
258a5ede 1433 goto err;
ce9d419d
CW
1434 }
1435
db53a302
CW
1436 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1437
e95433c7
CW
1438 ret = i915_gem_object_wait(obj,
1439 I915_WAIT_INTERRUPTIBLE |
1440 I915_WAIT_ALL,
1441 MAX_SCHEDULE_TIMEOUT,
1442 to_rps_client(file));
258a5ede
CW
1443 if (ret)
1444 goto err;
1445
fe115628 1446 ret = i915_gem_object_pin_pages(obj);
258a5ede 1447 if (ret)
fe115628 1448 goto err;
258a5ede 1449
935aaa69 1450 ret = -EFAULT;
673a394b
EA
1451 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1452 * it would end up going through the fenced access, and we'll get
1453 * different detiling behavior between reading and writing.
1454 * pread/pwrite currently are reading and writing from the CPU
1455 * perspective, requiring manual detiling by the client.
1456 */
6eae0059 1457 if (!i915_gem_object_has_struct_page(obj) ||
9c870d03 1458 cpu_write_needs_clflush(obj))
935aaa69
DV
1459 /* Note that the gtt paths might fail with non-page-backed user
1460 * pointers (e.g. gtt mappings when moving data between
9c870d03
CW
1461 * textures). Fallback to the shmem path in that case.
1462 */
fe115628 1463 ret = i915_gem_gtt_pwrite_fast(obj, args);
673a394b 1464
d1054ee4 1465 if (ret == -EFAULT || ret == -ENOSPC) {
6a2c4232
CW
1466 if (obj->phys_handle)
1467 ret = i915_gem_phys_pwrite(obj, args, file);
b50a5371 1468 else
fe115628 1469 ret = i915_gem_shmem_pwrite(obj, args);
6a2c4232 1470 }
5c0480f2 1471
fe115628 1472 i915_gem_object_unpin_pages(obj);
258a5ede 1473err:
f0cd5182 1474 i915_gem_object_put(obj);
258a5ede 1475 return ret;
673a394b
EA
1476}
1477
d243ad82 1478static inline enum fb_op_origin
aeecc969
CW
1479write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1480{
50349247
CW
1481 return (domain == I915_GEM_DOMAIN_GTT ?
1482 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
aeecc969
CW
1483}
1484
40e62d5d
CW
1485static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1486{
1487 struct drm_i915_private *i915;
1488 struct list_head *list;
1489 struct i915_vma *vma;
1490
1491 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1492 if (!i915_vma_is_ggtt(vma))
28f412e0 1493 break;
40e62d5d
CW
1494
1495 if (i915_vma_is_active(vma))
1496 continue;
1497
1498 if (!drm_mm_node_allocated(&vma->node))
1499 continue;
1500
1501 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1502 }
1503
1504 i915 = to_i915(obj->base.dev);
1505 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
56cea323 1506 list_move_tail(&obj->global_link, list);
40e62d5d
CW
1507}
1508
673a394b 1509/**
2ef7eeaa
EA
1510 * Called when user space prepares to use an object with the CPU, either
1511 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1512 * @dev: drm device
1513 * @data: ioctl data blob
1514 * @file: drm file
673a394b
EA
1515 */
1516int
1517i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1518 struct drm_file *file)
673a394b
EA
1519{
1520 struct drm_i915_gem_set_domain *args = data;
05394f39 1521 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1522 uint32_t read_domains = args->read_domains;
1523 uint32_t write_domain = args->write_domain;
40e62d5d 1524 int err;
673a394b 1525
2ef7eeaa 1526 /* Only handle setting domains to types used by the CPU. */
b8f9096d 1527 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1528 return -EINVAL;
1529
1530 /* Having something in the write domain implies it's in the read
1531 * domain, and only that read domain. Enforce that in the request.
1532 */
1533 if (write_domain != 0 && read_domains != write_domain)
1534 return -EINVAL;
1535
03ac0642 1536 obj = i915_gem_object_lookup(file, args->handle);
b8f9096d
CW
1537 if (!obj)
1538 return -ENOENT;
673a394b 1539
3236f57a
CW
1540 /* Try to flush the object off the GPU without holding the lock.
1541 * We will repeat the flush holding the lock in the normal manner
1542 * to catch cases where we are gazumped.
1543 */
40e62d5d 1544 err = i915_gem_object_wait(obj,
e95433c7
CW
1545 I915_WAIT_INTERRUPTIBLE |
1546 (write_domain ? I915_WAIT_ALL : 0),
1547 MAX_SCHEDULE_TIMEOUT,
1548 to_rps_client(file));
40e62d5d 1549 if (err)
f0cd5182 1550 goto out;
b8f9096d 1551
40e62d5d
CW
1552 /* Flush and acquire obj->pages so that we are coherent through
1553 * direct access in memory with previous cached writes through
1554 * shmemfs and that our cache domain tracking remains valid.
1555 * For example, if the obj->filp was moved to swap without us
1556 * being notified and releasing the pages, we would mistakenly
1557 * continue to assume that the obj remained out of the CPU cached
1558 * domain.
1559 */
1560 err = i915_gem_object_pin_pages(obj);
1561 if (err)
f0cd5182 1562 goto out;
40e62d5d
CW
1563
1564 err = i915_mutex_lock_interruptible(dev);
1565 if (err)
f0cd5182 1566 goto out_unpin;
3236f57a 1567
43566ded 1568 if (read_domains & I915_GEM_DOMAIN_GTT)
40e62d5d 1569 err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1570 else
40e62d5d 1571 err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1572
40e62d5d
CW
1573 /* And bump the LRU for this access */
1574 i915_gem_object_bump_inactive_ggtt(obj);
031b698a 1575
673a394b 1576 mutex_unlock(&dev->struct_mutex);
b8f9096d 1577
40e62d5d
CW
1578 if (write_domain != 0)
1579 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1580
f0cd5182 1581out_unpin:
40e62d5d 1582 i915_gem_object_unpin_pages(obj);
f0cd5182
CW
1583out:
1584 i915_gem_object_put(obj);
40e62d5d 1585 return err;
673a394b
EA
1586}
1587
1588/**
1589 * Called when user space has done writes to this buffer
14bb2c11
TU
1590 * @dev: drm device
1591 * @data: ioctl data blob
1592 * @file: drm file
673a394b
EA
1593 */
1594int
1595i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1596 struct drm_file *file)
673a394b
EA
1597{
1598 struct drm_i915_gem_sw_finish *args = data;
05394f39 1599 struct drm_i915_gem_object *obj;
c21724cc 1600 int err = 0;
1d7cfea1 1601
03ac0642 1602 obj = i915_gem_object_lookup(file, args->handle);
c21724cc
CW
1603 if (!obj)
1604 return -ENOENT;
673a394b 1605
673a394b 1606 /* Pinned buffers may be scanout, so flush the cache */
c21724cc
CW
1607 if (READ_ONCE(obj->pin_display)) {
1608 err = i915_mutex_lock_interruptible(dev);
1609 if (!err) {
1610 i915_gem_object_flush_cpu_write_domain(obj);
1611 mutex_unlock(&dev->struct_mutex);
1612 }
1613 }
e47c68e9 1614
f0cd5182 1615 i915_gem_object_put(obj);
c21724cc 1616 return err;
673a394b
EA
1617}
1618
1619/**
14bb2c11
TU
1620 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1621 * it is mapped to.
1622 * @dev: drm device
1623 * @data: ioctl data blob
1624 * @file: drm file
673a394b
EA
1625 *
1626 * While the mapping holds a reference on the contents of the object, it doesn't
1627 * imply a ref on the object itself.
34367381
DV
1628 *
1629 * IMPORTANT:
1630 *
1631 * DRM driver writers who look a this function as an example for how to do GEM
1632 * mmap support, please don't implement mmap support like here. The modern way
1633 * to implement DRM mmap support is with an mmap offset ioctl (like
1634 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1635 * That way debug tooling like valgrind will understand what's going on, hiding
1636 * the mmap call in a driver private ioctl will break that. The i915 driver only
1637 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1638 */
1639int
1640i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1641 struct drm_file *file)
673a394b
EA
1642{
1643 struct drm_i915_gem_mmap *args = data;
03ac0642 1644 struct drm_i915_gem_object *obj;
673a394b
EA
1645 unsigned long addr;
1646
1816f923
AG
1647 if (args->flags & ~(I915_MMAP_WC))
1648 return -EINVAL;
1649
568a58e5 1650 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1651 return -ENODEV;
1652
03ac0642
CW
1653 obj = i915_gem_object_lookup(file, args->handle);
1654 if (!obj)
bf79cb91 1655 return -ENOENT;
673a394b 1656
1286ff73
DV
1657 /* prime objects have no backing filp to GEM mmap
1658 * pages from.
1659 */
03ac0642 1660 if (!obj->base.filp) {
f0cd5182 1661 i915_gem_object_put(obj);
1286ff73
DV
1662 return -EINVAL;
1663 }
1664
03ac0642 1665 addr = vm_mmap(obj->base.filp, 0, args->size,
673a394b
EA
1666 PROT_READ | PROT_WRITE, MAP_SHARED,
1667 args->offset);
1816f923
AG
1668 if (args->flags & I915_MMAP_WC) {
1669 struct mm_struct *mm = current->mm;
1670 struct vm_area_struct *vma;
1671
80a89a5e 1672 if (down_write_killable(&mm->mmap_sem)) {
f0cd5182 1673 i915_gem_object_put(obj);
80a89a5e
MH
1674 return -EINTR;
1675 }
1816f923
AG
1676 vma = find_vma(mm, addr);
1677 if (vma)
1678 vma->vm_page_prot =
1679 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1680 else
1681 addr = -ENOMEM;
1682 up_write(&mm->mmap_sem);
aeecc969
CW
1683
1684 /* This may race, but that's ok, it only gets set */
50349247 1685 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1816f923 1686 }
f0cd5182 1687 i915_gem_object_put(obj);
673a394b
EA
1688 if (IS_ERR((void *)addr))
1689 return addr;
1690
1691 args->addr_ptr = (uint64_t) addr;
1692
1693 return 0;
1694}
1695
03af84fe
CW
1696static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1697{
6649a0b6 1698 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
03af84fe
CW
1699}
1700
4cc69075
CW
1701/**
1702 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1703 *
1704 * A history of the GTT mmap interface:
1705 *
1706 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1707 * aligned and suitable for fencing, and still fit into the available
1708 * mappable space left by the pinned display objects. A classic problem
1709 * we called the page-fault-of-doom where we would ping-pong between
1710 * two objects that could not fit inside the GTT and so the memcpy
1711 * would page one object in at the expense of the other between every
1712 * single byte.
1713 *
1714 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1715 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1716 * object is too large for the available space (or simply too large
1717 * for the mappable aperture!), a view is created instead and faulted
1718 * into userspace. (This view is aligned and sized appropriately for
1719 * fenced access.)
1720 *
1721 * Restrictions:
1722 *
1723 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1724 * hangs on some architectures, corruption on others. An attempt to service
1725 * a GTT page fault from a snoopable object will generate a SIGBUS.
1726 *
1727 * * the object must be able to fit into RAM (physical memory, though no
1728 * limited to the mappable aperture).
1729 *
1730 *
1731 * Caveats:
1732 *
1733 * * a new GTT page fault will synchronize rendering from the GPU and flush
1734 * all data to system memory. Subsequent access will not be synchronized.
1735 *
1736 * * all mappings are revoked on runtime device suspend.
1737 *
1738 * * there are only 8, 16 or 32 fence registers to share between all users
1739 * (older machines require fence register for display and blitter access
1740 * as well). Contention of the fence registers will cause the previous users
1741 * to be unmapped and any new access will generate new page faults.
1742 *
1743 * * running out of memory while servicing a fault may generate a SIGBUS,
1744 * rather than the expected SIGSEGV.
1745 */
1746int i915_gem_mmap_gtt_version(void)
1747{
1748 return 1;
1749}
1750
2d4281bb
CW
1751static inline struct i915_ggtt_view
1752compute_partial_view(struct drm_i915_gem_object *obj,
2d4281bb
CW
1753 pgoff_t page_offset,
1754 unsigned int chunk)
1755{
1756 struct i915_ggtt_view view;
1757
1758 if (i915_gem_object_is_tiled(obj))
1759 chunk = roundup(chunk, tile_row_pages(obj));
1760
2d4281bb 1761 view.type = I915_GGTT_VIEW_PARTIAL;
8bab1193
CW
1762 view.partial.offset = rounddown(page_offset, chunk);
1763 view.partial.size =
2d4281bb 1764 min_t(unsigned int, chunk,
8bab1193 1765 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
2d4281bb
CW
1766
1767 /* If the partial covers the entire object, just create a normal VMA. */
1768 if (chunk >= obj->base.size >> PAGE_SHIFT)
1769 view.type = I915_GGTT_VIEW_NORMAL;
1770
1771 return view;
1772}
1773
de151cf6
JB
1774/**
1775 * i915_gem_fault - fault a page into the GTT
058d88c4 1776 * @area: CPU VMA in question
d9072a3e 1777 * @vmf: fault info
de151cf6
JB
1778 *
1779 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1780 * from userspace. The fault handler takes care of binding the object to
1781 * the GTT (if needed), allocating and programming a fence register (again,
1782 * only if needed based on whether the old reg is still valid or the object
1783 * is tiled) and inserting a new PTE into the faulting process.
1784 *
1785 * Note that the faulting process may involve evicting existing objects
1786 * from the GTT and/or fence registers to make room. So performance may
1787 * suffer if the GTT working set is large or there are few fence registers
1788 * left.
4cc69075
CW
1789 *
1790 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1791 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
de151cf6 1792 */
058d88c4 1793int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
de151cf6 1794{
03af84fe 1795#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
058d88c4 1796 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
05394f39 1797 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1798 struct drm_i915_private *dev_priv = to_i915(dev);
1799 struct i915_ggtt *ggtt = &dev_priv->ggtt;
b8f9096d 1800 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
058d88c4 1801 struct i915_vma *vma;
de151cf6 1802 pgoff_t page_offset;
82118877 1803 unsigned int flags;
b8f9096d 1804 int ret;
f65c9168 1805
de151cf6 1806 /* We don't use vmf->pgoff since that has the fake offset */
1a29d85e 1807 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
de151cf6 1808
db53a302
CW
1809 trace_i915_gem_object_fault(obj, page_offset, true, write);
1810
6e4930f6 1811 /* Try to flush the object off the GPU first without holding the lock.
b8f9096d 1812 * Upon acquiring the lock, we will perform our sanity checks and then
6e4930f6
CW
1813 * repeat the flush holding the lock in the normal manner to catch cases
1814 * where we are gazumped.
1815 */
e95433c7
CW
1816 ret = i915_gem_object_wait(obj,
1817 I915_WAIT_INTERRUPTIBLE,
1818 MAX_SCHEDULE_TIMEOUT,
1819 NULL);
6e4930f6 1820 if (ret)
b8f9096d
CW
1821 goto err;
1822
40e62d5d
CW
1823 ret = i915_gem_object_pin_pages(obj);
1824 if (ret)
1825 goto err;
1826
b8f9096d
CW
1827 intel_runtime_pm_get(dev_priv);
1828
1829 ret = i915_mutex_lock_interruptible(dev);
1830 if (ret)
1831 goto err_rpm;
6e4930f6 1832
eb119bd6 1833 /* Access to snoopable pages through the GTT is incoherent. */
0031fb96 1834 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
ddeff6ee 1835 ret = -EFAULT;
b8f9096d 1836 goto err_unlock;
eb119bd6
CW
1837 }
1838
82118877
CW
1839 /* If the object is smaller than a couple of partial vma, it is
1840 * not worth only creating a single partial vma - we may as well
1841 * clear enough space for the full object.
1842 */
1843 flags = PIN_MAPPABLE;
1844 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1845 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1846
a61007a8 1847 /* Now pin it into the GTT as needed */
82118877 1848 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
a61007a8 1849 if (IS_ERR(vma)) {
a61007a8 1850 /* Use a partial view if it is bigger than available space */
2d4281bb 1851 struct i915_ggtt_view view =
8201c1fa 1852 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
aa136d9d 1853
50349247
CW
1854 /* Userspace is now writing through an untracked VMA, abandon
1855 * all hope that the hardware is able to track future writes.
1856 */
1857 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1858
a61007a8
CW
1859 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1860 }
058d88c4
CW
1861 if (IS_ERR(vma)) {
1862 ret = PTR_ERR(vma);
b8f9096d 1863 goto err_unlock;
058d88c4 1864 }
4a684a41 1865
c9839303
CW
1866 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1867 if (ret)
b8f9096d 1868 goto err_unpin;
74898d7e 1869
49ef5294 1870 ret = i915_vma_get_fence(vma);
d9e86c0e 1871 if (ret)
b8f9096d 1872 goto err_unpin;
7d1c4804 1873
275f039d 1874 /* Mark as being mmapped into userspace for later revocation */
9c870d03 1875 assert_rpm_wakelock_held(dev_priv);
275f039d
CW
1876 if (list_empty(&obj->userfault_link))
1877 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
275f039d 1878
b90b91d8 1879 /* Finally, remap it using the new GTT offset */
c58305af 1880 ret = remap_io_mapping(area,
8bab1193 1881 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
c58305af
CW
1882 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1883 min_t(u64, vma->size, area->vm_end - area->vm_start),
1884 &ggtt->mappable);
a61007a8 1885
b8f9096d 1886err_unpin:
058d88c4 1887 __i915_vma_unpin(vma);
b8f9096d 1888err_unlock:
de151cf6 1889 mutex_unlock(&dev->struct_mutex);
b8f9096d
CW
1890err_rpm:
1891 intel_runtime_pm_put(dev_priv);
40e62d5d 1892 i915_gem_object_unpin_pages(obj);
b8f9096d 1893err:
de151cf6 1894 switch (ret) {
d9bc7e9f 1895 case -EIO:
2232f031
DV
1896 /*
1897 * We eat errors when the gpu is terminally wedged to avoid
1898 * userspace unduly crashing (gl has no provisions for mmaps to
1899 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1900 * and so needs to be reported.
1901 */
1902 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1903 ret = VM_FAULT_SIGBUS;
1904 break;
1905 }
045e769a 1906 case -EAGAIN:
571c608d
DV
1907 /*
1908 * EAGAIN means the gpu is hung and we'll wait for the error
1909 * handler to reset everything when re-faulting in
1910 * i915_mutex_lock_interruptible.
d9bc7e9f 1911 */
c715089f
CW
1912 case 0:
1913 case -ERESTARTSYS:
bed636ab 1914 case -EINTR:
e79e0fe3
DR
1915 case -EBUSY:
1916 /*
1917 * EBUSY is ok: this just means that another thread
1918 * already did the job.
1919 */
f65c9168
PZ
1920 ret = VM_FAULT_NOPAGE;
1921 break;
de151cf6 1922 case -ENOMEM:
f65c9168
PZ
1923 ret = VM_FAULT_OOM;
1924 break;
a7c2e1aa 1925 case -ENOSPC:
45d67817 1926 case -EFAULT:
f65c9168
PZ
1927 ret = VM_FAULT_SIGBUS;
1928 break;
de151cf6 1929 default:
a7c2e1aa 1930 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1931 ret = VM_FAULT_SIGBUS;
1932 break;
de151cf6 1933 }
f65c9168 1934 return ret;
de151cf6
JB
1935}
1936
901782b2
CW
1937/**
1938 * i915_gem_release_mmap - remove physical page mappings
1939 * @obj: obj in question
1940 *
af901ca1 1941 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1942 * relinquish ownership of the pages back to the system.
1943 *
1944 * It is vital that we remove the page mapping if we have mapped a tiled
1945 * object through the GTT and then lose the fence register due to
1946 * resource pressure. Similarly if the object has been moved out of the
1947 * aperture, than pages mapped into userspace must be revoked. Removing the
1948 * mapping will then trigger a page fault on the next user access, allowing
1949 * fixup by i915_gem_fault().
1950 */
d05ca301 1951void
05394f39 1952i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1953{
275f039d 1954 struct drm_i915_private *i915 = to_i915(obj->base.dev);
275f039d 1955
349f2ccf
CW
1956 /* Serialisation between user GTT access and our code depends upon
1957 * revoking the CPU's PTE whilst the mutex is held. The next user
1958 * pagefault then has to wait until we release the mutex.
9c870d03
CW
1959 *
1960 * Note that RPM complicates somewhat by adding an additional
1961 * requirement that operations to the GGTT be made holding the RPM
1962 * wakeref.
349f2ccf 1963 */
275f039d 1964 lockdep_assert_held(&i915->drm.struct_mutex);
9c870d03 1965 intel_runtime_pm_get(i915);
349f2ccf 1966
3594a3e2 1967 if (list_empty(&obj->userfault_link))
9c870d03 1968 goto out;
901782b2 1969
3594a3e2 1970 list_del_init(&obj->userfault_link);
6796cb16
DR
1971 drm_vma_node_unmap(&obj->base.vma_node,
1972 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
1973
1974 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1975 * memory transactions from userspace before we return. The TLB
1976 * flushing implied above by changing the PTE above *should* be
1977 * sufficient, an extra barrier here just provides us with a bit
1978 * of paranoid documentation about our requirement to serialise
1979 * memory writes before touching registers / GSM.
1980 */
1981 wmb();
9c870d03
CW
1982
1983out:
1984 intel_runtime_pm_put(i915);
901782b2
CW
1985}
1986
7c108fd8 1987void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
eedd10f4 1988{
3594a3e2 1989 struct drm_i915_gem_object *obj, *on;
7c108fd8 1990 int i;
eedd10f4 1991
3594a3e2
CW
1992 /*
1993 * Only called during RPM suspend. All users of the userfault_list
1994 * must be holding an RPM wakeref to ensure that this can not
1995 * run concurrently with themselves (and use the struct_mutex for
1996 * protection between themselves).
1997 */
275f039d 1998
3594a3e2
CW
1999 list_for_each_entry_safe(obj, on,
2000 &dev_priv->mm.userfault_list, userfault_link) {
2001 list_del_init(&obj->userfault_link);
275f039d
CW
2002 drm_vma_node_unmap(&obj->base.vma_node,
2003 obj->base.dev->anon_inode->i_mapping);
275f039d 2004 }
7c108fd8
CW
2005
2006 /* The fence will be lost when the device powers down. If any were
2007 * in use by hardware (i.e. they are pinned), we should not be powering
2008 * down! All other fences will be reacquired by the user upon waking.
2009 */
2010 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2011 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2012
e0ec3ec6
CW
2013 /* Ideally we want to assert that the fence register is not
2014 * live at this point (i.e. that no piece of code will be
2015 * trying to write through fence + GTT, as that both violates
2016 * our tracking of activity and associated locking/barriers,
2017 * but also is illegal given that the hw is powered down).
2018 *
2019 * Previously we used reg->pin_count as a "liveness" indicator.
2020 * That is not sufficient, and we need a more fine-grained
2021 * tool if we want to have a sanity check here.
2022 */
7c108fd8
CW
2023
2024 if (!reg->vma)
2025 continue;
2026
2027 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2028 reg->dirty = true;
2029 }
eedd10f4
CW
2030}
2031
d8cb5086
CW
2032static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2033{
fac5e23e 2034 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
f3f6184c 2035 int err;
da494d7c 2036
f3f6184c 2037 err = drm_gem_create_mmap_offset(&obj->base);
b42a13d9 2038 if (likely(!err))
f3f6184c 2039 return 0;
d8cb5086 2040
b42a13d9
CW
2041 /* Attempt to reap some mmap space from dead objects */
2042 do {
2043 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2044 if (err)
2045 break;
f3f6184c 2046
b42a13d9 2047 i915_gem_drain_freed_objects(dev_priv);
f3f6184c 2048 err = drm_gem_create_mmap_offset(&obj->base);
b42a13d9
CW
2049 if (!err)
2050 break;
2051
2052 } while (flush_delayed_work(&dev_priv->gt.retire_work));
da494d7c 2053
f3f6184c 2054 return err;
d8cb5086
CW
2055}
2056
2057static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2058{
d8cb5086
CW
2059 drm_gem_free_mmap_offset(&obj->base);
2060}
2061
da6b51d0 2062int
ff72145b
DA
2063i915_gem_mmap_gtt(struct drm_file *file,
2064 struct drm_device *dev,
da6b51d0 2065 uint32_t handle,
ff72145b 2066 uint64_t *offset)
de151cf6 2067{
05394f39 2068 struct drm_i915_gem_object *obj;
de151cf6
JB
2069 int ret;
2070
03ac0642 2071 obj = i915_gem_object_lookup(file, handle);
f3f6184c
CW
2072 if (!obj)
2073 return -ENOENT;
ab18282d 2074
d8cb5086 2075 ret = i915_gem_object_create_mmap_offset(obj);
f3f6184c
CW
2076 if (ret == 0)
2077 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2078
f0cd5182 2079 i915_gem_object_put(obj);
1d7cfea1 2080 return ret;
de151cf6
JB
2081}
2082
ff72145b
DA
2083/**
2084 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2085 * @dev: DRM device
2086 * @data: GTT mapping ioctl data
2087 * @file: GEM object info
2088 *
2089 * Simply returns the fake offset to userspace so it can mmap it.
2090 * The mmap call will end up in drm_gem_mmap(), which will set things
2091 * up so we can get faults in the handler above.
2092 *
2093 * The fault handler will take care of binding the object into the GTT
2094 * (since it may have been evicted to make room for something), allocating
2095 * a fence register, and mapping the appropriate aperture address into
2096 * userspace.
2097 */
2098int
2099i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2100 struct drm_file *file)
2101{
2102 struct drm_i915_gem_mmap_gtt *args = data;
2103
da6b51d0 2104 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2105}
2106
225067ee
DV
2107/* Immediately discard the backing storage */
2108static void
2109i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2110{
4d6294bf 2111 i915_gem_object_free_mmap_offset(obj);
1286ff73 2112
4d6294bf
CW
2113 if (obj->base.filp == NULL)
2114 return;
e5281ccd 2115
225067ee
DV
2116 /* Our goal here is to return as much of the memory as
2117 * is possible back to the system as we are called from OOM.
2118 * To do this we must instruct the shmfs to drop all of its
2119 * backing pages, *now*.
2120 */
5537252b 2121 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
a4f5ea64 2122 obj->mm.madv = __I915_MADV_PURGED;
225067ee 2123}
e5281ccd 2124
5537252b 2125/* Try to discard unwanted pages */
03ac84f1 2126void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2127{
5537252b
CW
2128 struct address_space *mapping;
2129
1233e2db
CW
2130 lockdep_assert_held(&obj->mm.lock);
2131 GEM_BUG_ON(obj->mm.pages);
2132
a4f5ea64 2133 switch (obj->mm.madv) {
5537252b
CW
2134 case I915_MADV_DONTNEED:
2135 i915_gem_object_truncate(obj);
2136 case __I915_MADV_PURGED:
2137 return;
2138 }
2139
2140 if (obj->base.filp == NULL)
2141 return;
2142
93c76a3d 2143 mapping = obj->base.filp->f_mapping,
5537252b 2144 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2145}
2146
5cdf5881 2147static void
03ac84f1
CW
2148i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2149 struct sg_table *pages)
673a394b 2150{
85d1225e
DG
2151 struct sgt_iter sgt_iter;
2152 struct page *page;
1286ff73 2153
e5facdf9 2154 __i915_gem_object_release_shmem(obj, pages, true);
673a394b 2155
03ac84f1 2156 i915_gem_gtt_finish_pages(obj, pages);
e2273302 2157
6dacfd2f 2158 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2159 i915_gem_object_save_bit_17_swizzle(obj, pages);
280b713b 2160
03ac84f1 2161 for_each_sgt_page(page, sgt_iter, pages) {
a4f5ea64 2162 if (obj->mm.dirty)
9da3da66 2163 set_page_dirty(page);
3ef94daa 2164
a4f5ea64 2165 if (obj->mm.madv == I915_MADV_WILLNEED)
9da3da66 2166 mark_page_accessed(page);
3ef94daa 2167
09cbfeaf 2168 put_page(page);
3ef94daa 2169 }
a4f5ea64 2170 obj->mm.dirty = false;
673a394b 2171
03ac84f1
CW
2172 sg_free_table(pages);
2173 kfree(pages);
37e680a1 2174}
6c085a72 2175
96d77634
CW
2176static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2177{
2178 struct radix_tree_iter iter;
2179 void **slot;
2180
a4f5ea64
CW
2181 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2182 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
96d77634
CW
2183}
2184
548625ee
CW
2185void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2186 enum i915_mm_subclass subclass)
37e680a1 2187{
03ac84f1 2188 struct sg_table *pages;
37e680a1 2189
a4f5ea64 2190 if (i915_gem_object_has_pinned_pages(obj))
03ac84f1 2191 return;
a5570178 2192
15717de2 2193 GEM_BUG_ON(obj->bind_count);
1233e2db
CW
2194 if (!READ_ONCE(obj->mm.pages))
2195 return;
2196
2197 /* May be called by shrinker from within get_pages() (on another bo) */
548625ee 2198 mutex_lock_nested(&obj->mm.lock, subclass);
1233e2db
CW
2199 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2200 goto unlock;
3e123027 2201
a2165e31
CW
2202 /* ->put_pages might need to allocate memory for the bit17 swizzle
2203 * array, hence protect them from being reaped by removing them from gtt
2204 * lists early. */
03ac84f1
CW
2205 pages = fetch_and_zero(&obj->mm.pages);
2206 GEM_BUG_ON(!pages);
a2165e31 2207
a4f5ea64 2208 if (obj->mm.mapping) {
4b30cb23
CW
2209 void *ptr;
2210
a4f5ea64 2211 ptr = ptr_mask_bits(obj->mm.mapping);
4b30cb23
CW
2212 if (is_vmalloc_addr(ptr))
2213 vunmap(ptr);
fb8621d3 2214 else
4b30cb23
CW
2215 kunmap(kmap_to_page(ptr));
2216
a4f5ea64 2217 obj->mm.mapping = NULL;
0a798eb9
CW
2218 }
2219
96d77634
CW
2220 __i915_gem_object_reset_page_iter(obj);
2221
03ac84f1 2222 obj->ops->put_pages(obj, pages);
1233e2db
CW
2223unlock:
2224 mutex_unlock(&obj->mm.lock);
6c085a72
CW
2225}
2226
935a2f77 2227static bool i915_sg_trim(struct sg_table *orig_st)
0c40ce13
TU
2228{
2229 struct sg_table new_st;
2230 struct scatterlist *sg, *new_sg;
2231 unsigned int i;
2232
2233 if (orig_st->nents == orig_st->orig_nents)
935a2f77 2234 return false;
0c40ce13 2235
8bfc478f 2236 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
935a2f77 2237 return false;
0c40ce13
TU
2238
2239 new_sg = new_st.sgl;
2240 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2241 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2242 /* called before being DMA mapped, no need to copy sg->dma_* */
2243 new_sg = sg_next(new_sg);
2244 }
c2dc6cc9 2245 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
0c40ce13
TU
2246
2247 sg_free_table(orig_st);
2248
2249 *orig_st = new_st;
935a2f77 2250 return true;
0c40ce13
TU
2251}
2252
03ac84f1 2253static struct sg_table *
6c085a72 2254i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2255{
fac5e23e 2256 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
d766ef53
CW
2257 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2258 unsigned long i;
e5281ccd 2259 struct address_space *mapping;
9da3da66
CW
2260 struct sg_table *st;
2261 struct scatterlist *sg;
85d1225e 2262 struct sgt_iter sgt_iter;
e5281ccd 2263 struct page *page;
90797e6d 2264 unsigned long last_pfn = 0; /* suppress gcc warning */
4ff340f0 2265 unsigned int max_segment;
e2273302 2266 int ret;
6c085a72 2267 gfp_t gfp;
e5281ccd 2268
6c085a72
CW
2269 /* Assert that the object is not currently in any GPU domain. As it
2270 * wasn't in the GTT, there shouldn't be any way it could have been in
2271 * a GPU cache
2272 */
03ac84f1
CW
2273 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2274 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
6c085a72 2275
7453c549 2276 max_segment = swiotlb_max_segment();
871dfbd6 2277 if (!max_segment)
4ff340f0 2278 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
871dfbd6 2279
9da3da66
CW
2280 st = kmalloc(sizeof(*st), GFP_KERNEL);
2281 if (st == NULL)
03ac84f1 2282 return ERR_PTR(-ENOMEM);
9da3da66 2283
d766ef53 2284rebuild_st:
9da3da66 2285 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2286 kfree(st);
03ac84f1 2287 return ERR_PTR(-ENOMEM);
9da3da66 2288 }
e5281ccd 2289
9da3da66
CW
2290 /* Get the list of pages out of our struct file. They'll be pinned
2291 * at this point until we release them.
2292 *
2293 * Fail silently without starting the shrinker
2294 */
93c76a3d 2295 mapping = obj->base.filp->f_mapping;
c62d2555 2296 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2297 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2298 sg = st->sgl;
2299 st->nents = 0;
2300 for (i = 0; i < page_count; i++) {
6c085a72
CW
2301 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2302 if (IS_ERR(page)) {
21ab4e74
CW
2303 i915_gem_shrink(dev_priv,
2304 page_count,
2305 I915_SHRINK_BOUND |
2306 I915_SHRINK_UNBOUND |
2307 I915_SHRINK_PURGEABLE);
6c085a72
CW
2308 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2309 }
2310 if (IS_ERR(page)) {
2311 /* We've tried hard to allocate the memory by reaping
2312 * our own buffer, now let the real VM do its job and
2313 * go down in flames if truly OOM.
2314 */
f461d1be 2315 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2316 if (IS_ERR(page)) {
2317 ret = PTR_ERR(page);
b17993b7 2318 goto err_sg;
e2273302 2319 }
6c085a72 2320 }
871dfbd6
CW
2321 if (!i ||
2322 sg->length >= max_segment ||
2323 page_to_pfn(page) != last_pfn + 1) {
90797e6d
ID
2324 if (i)
2325 sg = sg_next(sg);
2326 st->nents++;
2327 sg_set_page(sg, page, PAGE_SIZE, 0);
2328 } else {
2329 sg->length += PAGE_SIZE;
2330 }
2331 last_pfn = page_to_pfn(page);
3bbbe706
DV
2332
2333 /* Check that the i965g/gm workaround works. */
2334 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2335 }
871dfbd6 2336 if (sg) /* loop terminated early; short sg table */
426729dc 2337 sg_mark_end(sg);
74ce6b6c 2338
0c40ce13
TU
2339 /* Trim unused sg entries to avoid wasting memory. */
2340 i915_sg_trim(st);
2341
03ac84f1 2342 ret = i915_gem_gtt_prepare_pages(obj, st);
d766ef53
CW
2343 if (ret) {
2344 /* DMA remapping failed? One possible cause is that
2345 * it could not reserve enough large entries, asking
2346 * for PAGE_SIZE chunks instead may be helpful.
2347 */
2348 if (max_segment > PAGE_SIZE) {
2349 for_each_sgt_page(page, sgt_iter, st)
2350 put_page(page);
2351 sg_free_table(st);
2352
2353 max_segment = PAGE_SIZE;
2354 goto rebuild_st;
2355 } else {
2356 dev_warn(&dev_priv->drm.pdev->dev,
2357 "Failed to DMA remap %lu pages\n",
2358 page_count);
2359 goto err_pages;
2360 }
2361 }
e2273302 2362
6dacfd2f 2363 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2364 i915_gem_object_do_bit_17_swizzle(obj, st);
e5281ccd 2365
03ac84f1 2366 return st;
e5281ccd 2367
b17993b7 2368err_sg:
90797e6d 2369 sg_mark_end(sg);
b17993b7 2370err_pages:
85d1225e
DG
2371 for_each_sgt_page(page, sgt_iter, st)
2372 put_page(page);
9da3da66
CW
2373 sg_free_table(st);
2374 kfree(st);
0820baf3
CW
2375
2376 /* shmemfs first checks if there is enough memory to allocate the page
2377 * and reports ENOSPC should there be insufficient, along with the usual
2378 * ENOMEM for a genuine allocation failure.
2379 *
2380 * We use ENOSPC in our driver to mean that we have run out of aperture
2381 * space and so want to translate the error from shmemfs back to our
2382 * usual understanding of ENOMEM.
2383 */
e2273302
ID
2384 if (ret == -ENOSPC)
2385 ret = -ENOMEM;
2386
03ac84f1
CW
2387 return ERR_PTR(ret);
2388}
2389
2390void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2391 struct sg_table *pages)
2392{
1233e2db 2393 lockdep_assert_held(&obj->mm.lock);
03ac84f1
CW
2394
2395 obj->mm.get_page.sg_pos = pages->sgl;
2396 obj->mm.get_page.sg_idx = 0;
2397
2398 obj->mm.pages = pages;
2c3a3f44
CW
2399
2400 if (i915_gem_object_is_tiled(obj) &&
2401 to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2402 GEM_BUG_ON(obj->mm.quirked);
2403 __i915_gem_object_pin_pages(obj);
2404 obj->mm.quirked = true;
2405 }
03ac84f1
CW
2406}
2407
2408static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2409{
2410 struct sg_table *pages;
2411
2c3a3f44
CW
2412 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2413
03ac84f1
CW
2414 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2415 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2416 return -EFAULT;
2417 }
2418
2419 pages = obj->ops->get_pages(obj);
2420 if (unlikely(IS_ERR(pages)))
2421 return PTR_ERR(pages);
2422
2423 __i915_gem_object_set_pages(obj, pages);
2424 return 0;
673a394b
EA
2425}
2426
37e680a1 2427/* Ensure that the associated pages are gathered from the backing storage
1233e2db 2428 * and pinned into our object. i915_gem_object_pin_pages() may be called
37e680a1 2429 * multiple times before they are released by a single call to
1233e2db 2430 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
37e680a1
CW
2431 * either as a result of memory pressure (reaping pages under the shrinker)
2432 * or as the object is itself released.
2433 */
a4f5ea64 2434int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
37e680a1 2435{
03ac84f1 2436 int err;
37e680a1 2437
1233e2db
CW
2438 err = mutex_lock_interruptible(&obj->mm.lock);
2439 if (err)
2440 return err;
4c7d62c6 2441
2c3a3f44
CW
2442 if (unlikely(!obj->mm.pages)) {
2443 err = ____i915_gem_object_get_pages(obj);
2444 if (err)
2445 goto unlock;
37e680a1 2446
2c3a3f44
CW
2447 smp_mb__before_atomic();
2448 }
2449 atomic_inc(&obj->mm.pages_pin_count);
ee286370 2450
1233e2db
CW
2451unlock:
2452 mutex_unlock(&obj->mm.lock);
03ac84f1 2453 return err;
673a394b
EA
2454}
2455
dd6034c6 2456/* The 'mapping' part of i915_gem_object_pin_map() below */
d31d7cb1
CW
2457static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2458 enum i915_map_type type)
dd6034c6
DG
2459{
2460 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
a4f5ea64 2461 struct sg_table *sgt = obj->mm.pages;
85d1225e
DG
2462 struct sgt_iter sgt_iter;
2463 struct page *page;
b338fa47
DG
2464 struct page *stack_pages[32];
2465 struct page **pages = stack_pages;
dd6034c6 2466 unsigned long i = 0;
d31d7cb1 2467 pgprot_t pgprot;
dd6034c6
DG
2468 void *addr;
2469
2470 /* A single page can always be kmapped */
d31d7cb1 2471 if (n_pages == 1 && type == I915_MAP_WB)
dd6034c6
DG
2472 return kmap(sg_page(sgt->sgl));
2473
b338fa47
DG
2474 if (n_pages > ARRAY_SIZE(stack_pages)) {
2475 /* Too big for stack -- allocate temporary array instead */
2476 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2477 if (!pages)
2478 return NULL;
2479 }
dd6034c6 2480
85d1225e
DG
2481 for_each_sgt_page(page, sgt_iter, sgt)
2482 pages[i++] = page;
dd6034c6
DG
2483
2484 /* Check that we have the expected number of pages */
2485 GEM_BUG_ON(i != n_pages);
2486
d31d7cb1
CW
2487 switch (type) {
2488 case I915_MAP_WB:
2489 pgprot = PAGE_KERNEL;
2490 break;
2491 case I915_MAP_WC:
2492 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2493 break;
2494 }
2495 addr = vmap(pages, n_pages, 0, pgprot);
dd6034c6 2496
b338fa47
DG
2497 if (pages != stack_pages)
2498 drm_free_large(pages);
dd6034c6
DG
2499
2500 return addr;
2501}
2502
2503/* get, pin, and map the pages of the object into kernel space */
d31d7cb1
CW
2504void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2505 enum i915_map_type type)
0a798eb9 2506{
d31d7cb1
CW
2507 enum i915_map_type has_type;
2508 bool pinned;
2509 void *ptr;
0a798eb9
CW
2510 int ret;
2511
d31d7cb1 2512 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
0a798eb9 2513
1233e2db 2514 ret = mutex_lock_interruptible(&obj->mm.lock);
0a798eb9
CW
2515 if (ret)
2516 return ERR_PTR(ret);
2517
1233e2db
CW
2518 pinned = true;
2519 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2c3a3f44
CW
2520 if (unlikely(!obj->mm.pages)) {
2521 ret = ____i915_gem_object_get_pages(obj);
2522 if (ret)
2523 goto err_unlock;
1233e2db 2524
2c3a3f44
CW
2525 smp_mb__before_atomic();
2526 }
2527 atomic_inc(&obj->mm.pages_pin_count);
1233e2db
CW
2528 pinned = false;
2529 }
2530 GEM_BUG_ON(!obj->mm.pages);
0a798eb9 2531
a4f5ea64 2532 ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
d31d7cb1
CW
2533 if (ptr && has_type != type) {
2534 if (pinned) {
2535 ret = -EBUSY;
1233e2db 2536 goto err_unpin;
0a798eb9 2537 }
d31d7cb1
CW
2538
2539 if (is_vmalloc_addr(ptr))
2540 vunmap(ptr);
2541 else
2542 kunmap(kmap_to_page(ptr));
2543
a4f5ea64 2544 ptr = obj->mm.mapping = NULL;
0a798eb9
CW
2545 }
2546
d31d7cb1
CW
2547 if (!ptr) {
2548 ptr = i915_gem_object_map(obj, type);
2549 if (!ptr) {
2550 ret = -ENOMEM;
1233e2db 2551 goto err_unpin;
d31d7cb1
CW
2552 }
2553
a4f5ea64 2554 obj->mm.mapping = ptr_pack_bits(ptr, type);
d31d7cb1
CW
2555 }
2556
1233e2db
CW
2557out_unlock:
2558 mutex_unlock(&obj->mm.lock);
d31d7cb1
CW
2559 return ptr;
2560
1233e2db
CW
2561err_unpin:
2562 atomic_dec(&obj->mm.pages_pin_count);
2563err_unlock:
2564 ptr = ERR_PTR(ret);
2565 goto out_unlock;
0a798eb9
CW
2566}
2567
6095868a 2568static bool ban_context(const struct i915_gem_context *ctx)
be62acb4 2569{
6095868a
CW
2570 return (i915_gem_context_is_bannable(ctx) &&
2571 ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
be62acb4
MK
2572}
2573
e5e1fc47 2574static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
aa60c664 2575{
bc1d53c6 2576 ctx->guilty_count++;
6095868a
CW
2577 ctx->ban_score += CONTEXT_SCORE_GUILTY;
2578 if (ban_context(ctx))
2579 i915_gem_context_set_banned(ctx);
b083a087
MK
2580
2581 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
bc1d53c6 2582 ctx->name, ctx->ban_score,
6095868a 2583 yesno(i915_gem_context_is_banned(ctx)));
b083a087 2584
6095868a 2585 if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
b083a087
MK
2586 return;
2587
d9e9da64
CW
2588 ctx->file_priv->context_bans++;
2589 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2590 ctx->name, ctx->file_priv->context_bans);
e5e1fc47
MK
2591}
2592
2593static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2594{
bc1d53c6 2595 ctx->active_count++;
aa60c664
MK
2596}
2597
8d9fc7fd 2598struct drm_i915_gem_request *
0bc40be8 2599i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2600{
4db080f9
CW
2601 struct drm_i915_gem_request *request;
2602
f69a02c9
CW
2603 /* We are called by the error capture and reset at a random
2604 * point in time. In particular, note that neither is crucially
2605 * ordered with an interrupt. After a hang, the GPU is dead and we
2606 * assume that no more writes can happen (we waited long enough for
2607 * all writes that were in transaction to be flushed) - adding an
2608 * extra delay for a recent interrupt is pointless. Hence, we do
2609 * not need an engine->irq_seqno_barrier() before the seqno reads.
2610 */
73cb9701 2611 list_for_each_entry(request, &engine->timeline->requests, link) {
80b204bc 2612 if (__i915_gem_request_completed(request))
4db080f9 2613 continue;
aa60c664 2614
36193acd 2615 GEM_BUG_ON(request->engine != engine);
c00122f3
CW
2616 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2617 &request->fence.flags));
b6b0fac0 2618 return request;
4db080f9 2619 }
b6b0fac0
MK
2620
2621 return NULL;
2622}
2623
bf2f0436
MK
2624static bool engine_stalled(struct intel_engine_cs *engine)
2625{
2626 if (!engine->hangcheck.stalled)
2627 return false;
2628
2629 /* Check for possible seqno movement after hang declaration */
2630 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2631 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2632 return false;
2633 }
2634
2635 return true;
2636}
2637
0e178aef 2638int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
4c965543
CW
2639{
2640 struct intel_engine_cs *engine;
2641 enum intel_engine_id id;
0e178aef 2642 int err = 0;
4c965543
CW
2643
2644 /* Ensure irq handler finishes, and not run again. */
0e178aef
CW
2645 for_each_engine(engine, dev_priv, id) {
2646 struct drm_i915_gem_request *request;
2647
fe3288b5
CW
2648 /* Prevent the signaler thread from updating the request
2649 * state (by calling dma_fence_signal) as we are processing
2650 * the reset. The write from the GPU of the seqno is
2651 * asynchronous and the signaler thread may see a different
2652 * value to us and declare the request complete, even though
2653 * the reset routine have picked that request as the active
2654 * (incomplete) request. This conflict is not handled
2655 * gracefully!
2656 */
2657 kthread_park(engine->breadcrumbs.signaler);
2658
1f7b847d
CW
2659 /* Prevent request submission to the hardware until we have
2660 * completed the reset in i915_gem_reset_finish(). If a request
2661 * is completed by one engine, it may then queue a request
2662 * to a second via its engine->irq_tasklet *just* as we are
2663 * calling engine->init_hw() and also writing the ELSP.
2664 * Turning off the engine->irq_tasklet until the reset is over
2665 * prevents the race.
2666 */
4c965543 2667 tasklet_kill(&engine->irq_tasklet);
1d309634 2668 tasklet_disable(&engine->irq_tasklet);
4c965543 2669
8c12d121
CW
2670 if (engine->irq_seqno_barrier)
2671 engine->irq_seqno_barrier(engine);
2672
0e178aef
CW
2673 if (engine_stalled(engine)) {
2674 request = i915_gem_find_active_request(engine);
2675 if (request && request->fence.error == -EIO)
2676 err = -EIO; /* Previous reset failed! */
2677 }
2678 }
2679
4c965543 2680 i915_gem_revoke_fences(dev_priv);
0e178aef
CW
2681
2682 return err;
4c965543
CW
2683}
2684
36193acd 2685static void skip_request(struct drm_i915_gem_request *request)
821ed7df
CW
2686{
2687 void *vaddr = request->ring->vaddr;
2688 u32 head;
2689
2690 /* As this request likely depends on state from the lost
2691 * context, clear out all the user operations leaving the
2692 * breadcrumb at the end (so we get the fence notifications).
2693 */
2694 head = request->head;
2695 if (request->postfix < head) {
2696 memset(vaddr + head, 0, request->ring->size - head);
2697 head = 0;
2698 }
2699 memset(vaddr + head, 0, request->postfix - head);
c0d5f32c
CW
2700
2701 dma_fence_set_error(&request->fence, -EIO);
821ed7df
CW
2702}
2703
36193acd
MK
2704static void engine_skip_context(struct drm_i915_gem_request *request)
2705{
2706 struct intel_engine_cs *engine = request->engine;
2707 struct i915_gem_context *hung_ctx = request->ctx;
2708 struct intel_timeline *timeline;
2709 unsigned long flags;
2710
2711 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2712
2713 spin_lock_irqsave(&engine->timeline->lock, flags);
2714 spin_lock(&timeline->lock);
2715
2716 list_for_each_entry_continue(request, &engine->timeline->requests, link)
2717 if (request->ctx == hung_ctx)
2718 skip_request(request);
2719
2720 list_for_each_entry(request, &timeline->requests, link)
2721 skip_request(request);
2722
2723 spin_unlock(&timeline->lock);
2724 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2725}
2726
61da5362
MK
2727/* Returns true if the request was guilty of hang */
2728static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
2729{
2730 /* Read once and return the resolution */
2731 const bool guilty = engine_stalled(request->engine);
2732
71895a08
MK
2733 /* The guilty request will get skipped on a hung engine.
2734 *
2735 * Users of client default contexts do not rely on logical
2736 * state preserved between batches so it is safe to execute
2737 * queued requests following the hang. Non default contexts
2738 * rely on preserved state, so skipping a batch loses the
2739 * evolution of the state and it needs to be considered corrupted.
2740 * Executing more queued batches on top of corrupted state is
2741 * risky. But we take the risk by trying to advance through
2742 * the queued requests in order to make the client behaviour
2743 * more predictable around resets, by not throwing away random
2744 * amount of batches it has prepared for execution. Sophisticated
2745 * clients can use gem_reset_stats_ioctl and dma fence status
2746 * (exported via sync_file info ioctl on explicit fences) to observe
2747 * when it loses the context state and should rebuild accordingly.
2748 *
2749 * The context ban, and ultimately the client ban, mechanism are safety
2750 * valves if client submission ends up resulting in nothing more than
2751 * subsequent hangs.
2752 */
2753
61da5362
MK
2754 if (guilty) {
2755 i915_gem_context_mark_guilty(request->ctx);
2756 skip_request(request);
2757 } else {
2758 i915_gem_context_mark_innocent(request->ctx);
2759 dma_fence_set_error(&request->fence, -EAGAIN);
2760 }
2761
2762 return guilty;
2763}
2764
821ed7df 2765static void i915_gem_reset_engine(struct intel_engine_cs *engine)
b6b0fac0
MK
2766{
2767 struct drm_i915_gem_request *request;
b6b0fac0 2768
0bc40be8 2769 request = i915_gem_find_active_request(engine);
c0dcb203
CW
2770 if (request && i915_gem_reset_request(request)) {
2771 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2772 engine->name, request->global_seqno);
821ed7df 2773
c0dcb203
CW
2774 /* If this context is now banned, skip all pending requests. */
2775 if (i915_gem_context_is_banned(request->ctx))
2776 engine_skip_context(request);
2777 }
821ed7df
CW
2778
2779 /* Setup the CS to resume from the breadcrumb of the hung request */
2780 engine->reset_hw(engine, request);
4db080f9 2781}
aa60c664 2782
d8027093 2783void i915_gem_reset(struct drm_i915_private *dev_priv)
4db080f9 2784{
821ed7df 2785 struct intel_engine_cs *engine;
3b3f1650 2786 enum intel_engine_id id;
608c1a52 2787
4c7d62c6
CW
2788 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2789
821ed7df
CW
2790 i915_gem_retire_requests(dev_priv);
2791
2ae55738
CW
2792 for_each_engine(engine, dev_priv, id) {
2793 struct i915_gem_context *ctx;
2794
821ed7df 2795 i915_gem_reset_engine(engine);
2ae55738
CW
2796 ctx = fetch_and_zero(&engine->last_retired_context);
2797 if (ctx)
2798 engine->context_unpin(engine, ctx);
2799 }
821ed7df 2800
4362f4f6 2801 i915_gem_restore_fences(dev_priv);
f2a91d1a
CW
2802
2803 if (dev_priv->gt.awake) {
2804 intel_sanitize_gt_powersave(dev_priv);
2805 intel_enable_gt_powersave(dev_priv);
2806 if (INTEL_GEN(dev_priv) >= 6)
2807 gen6_rps_busy(dev_priv);
2808 }
821ed7df
CW
2809}
2810
d8027093
CW
2811void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
2812{
1f7b847d
CW
2813 struct intel_engine_cs *engine;
2814 enum intel_engine_id id;
2815
d8027093 2816 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1f7b847d 2817
fe3288b5 2818 for_each_engine(engine, dev_priv, id) {
1f7b847d 2819 tasklet_enable(&engine->irq_tasklet);
fe3288b5
CW
2820 kthread_unpark(engine->breadcrumbs.signaler);
2821 }
d8027093
CW
2822}
2823
821ed7df
CW
2824static void nop_submit_request(struct drm_i915_gem_request *request)
2825{
3cd9442f 2826 dma_fence_set_error(&request->fence, -EIO);
3dcf93f7
CW
2827 i915_gem_request_submit(request);
2828 intel_engine_init_global_seqno(request->engine, request->global_seqno);
821ed7df
CW
2829}
2830
2a20d6f8 2831static void engine_set_wedged(struct intel_engine_cs *engine)
821ed7df 2832{
3cd9442f
CW
2833 struct drm_i915_gem_request *request;
2834 unsigned long flags;
2835
20e4933c
CW
2836 /* We need to be sure that no thread is running the old callback as
2837 * we install the nop handler (otherwise we would submit a request
2838 * to hardware that will never complete). In order to prevent this
2839 * race, we wait until the machine is idle before making the swap
2840 * (using stop_machine()).
2841 */
821ed7df 2842 engine->submit_request = nop_submit_request;
70c2a24d 2843
3cd9442f
CW
2844 /* Mark all executing requests as skipped */
2845 spin_lock_irqsave(&engine->timeline->lock, flags);
2846 list_for_each_entry(request, &engine->timeline->requests, link)
2847 dma_fence_set_error(&request->fence, -EIO);
2848 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2849
c4b0930b
CW
2850 /* Mark all pending requests as complete so that any concurrent
2851 * (lockless) lookup doesn't try and wait upon the request as we
2852 * reset it.
2853 */
73cb9701 2854 intel_engine_init_global_seqno(engine,
cb399eab 2855 intel_engine_last_submit(engine));
c4b0930b 2856
dcb4c12a
OM
2857 /*
2858 * Clear the execlists queue up before freeing the requests, as those
2859 * are the ones that keep the context and ringbuffer backing objects
2860 * pinned in place.
2861 */
dcb4c12a 2862
7de1691a 2863 if (i915.enable_execlists) {
663f71e7
CW
2864 unsigned long flags;
2865
2866 spin_lock_irqsave(&engine->timeline->lock, flags);
2867
70c2a24d
CW
2868 i915_gem_request_put(engine->execlist_port[0].request);
2869 i915_gem_request_put(engine->execlist_port[1].request);
2870 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
20311bd3
CW
2871 engine->execlist_queue = RB_ROOT;
2872 engine->execlist_first = NULL;
663f71e7
CW
2873
2874 spin_unlock_irqrestore(&engine->timeline->lock, flags);
dcb4c12a 2875 }
673a394b
EA
2876}
2877
20e4933c 2878static int __i915_gem_set_wedged_BKL(void *data)
673a394b 2879{
20e4933c 2880 struct drm_i915_private *i915 = data;
e2f80391 2881 struct intel_engine_cs *engine;
3b3f1650 2882 enum intel_engine_id id;
673a394b 2883
20e4933c 2884 for_each_engine(engine, i915, id)
2a20d6f8 2885 engine_set_wedged(engine);
20e4933c
CW
2886
2887 return 0;
2888}
2889
2890void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2891{
821ed7df
CW
2892 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2893 set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
4db080f9 2894
20e4933c 2895 stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
dfaae392 2896
20e4933c 2897 i915_gem_context_lost(dev_priv);
821ed7df 2898 i915_gem_retire_requests(dev_priv);
20e4933c
CW
2899
2900 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
673a394b
EA
2901}
2902
75ef9da2 2903static void
673a394b
EA
2904i915_gem_retire_work_handler(struct work_struct *work)
2905{
b29c19b6 2906 struct drm_i915_private *dev_priv =
67d97da3 2907 container_of(work, typeof(*dev_priv), gt.retire_work.work);
91c8a326 2908 struct drm_device *dev = &dev_priv->drm;
673a394b 2909
891b48cf 2910 /* Come back later if the device is busy... */
b29c19b6 2911 if (mutex_trylock(&dev->struct_mutex)) {
67d97da3 2912 i915_gem_retire_requests(dev_priv);
b29c19b6 2913 mutex_unlock(&dev->struct_mutex);
673a394b 2914 }
67d97da3
CW
2915
2916 /* Keep the retire handler running until we are finally idle.
2917 * We do not need to do this test under locking as in the worst-case
2918 * we queue the retire worker once too often.
2919 */
c9615613
CW
2920 if (READ_ONCE(dev_priv->gt.awake)) {
2921 i915_queue_hangcheck(dev_priv);
67d97da3
CW
2922 queue_delayed_work(dev_priv->wq,
2923 &dev_priv->gt.retire_work,
bcb45086 2924 round_jiffies_up_relative(HZ));
c9615613 2925 }
b29c19b6 2926}
0a58705b 2927
b29c19b6
CW
2928static void
2929i915_gem_idle_work_handler(struct work_struct *work)
2930{
2931 struct drm_i915_private *dev_priv =
67d97da3 2932 container_of(work, typeof(*dev_priv), gt.idle_work.work);
91c8a326 2933 struct drm_device *dev = &dev_priv->drm;
b4ac5afc 2934 struct intel_engine_cs *engine;
3b3f1650 2935 enum intel_engine_id id;
67d97da3
CW
2936 bool rearm_hangcheck;
2937
2938 if (!READ_ONCE(dev_priv->gt.awake))
2939 return;
2940
0cb5670b
ID
2941 /*
2942 * Wait for last execlists context complete, but bail out in case a
2943 * new request is submitted.
2944 */
2945 wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
2946 intel_execlists_idle(dev_priv), 10);
2947
28176ef4 2948 if (READ_ONCE(dev_priv->gt.active_requests))
67d97da3
CW
2949 return;
2950
2951 rearm_hangcheck =
2952 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2953
2954 if (!mutex_trylock(&dev->struct_mutex)) {
2955 /* Currently busy, come back later */
2956 mod_delayed_work(dev_priv->wq,
2957 &dev_priv->gt.idle_work,
2958 msecs_to_jiffies(50));
2959 goto out_rearm;
2960 }
2961
93c97dc1
ID
2962 /*
2963 * New request retired after this work handler started, extend active
2964 * period until next instance of the work.
2965 */
2966 if (work_pending(work))
2967 goto out_unlock;
2968
28176ef4 2969 if (dev_priv->gt.active_requests)
67d97da3 2970 goto out_unlock;
b29c19b6 2971
0cb5670b
ID
2972 if (wait_for(intel_execlists_idle(dev_priv), 10))
2973 DRM_ERROR("Timeout waiting for engines to idle\n");
2974
3b3f1650 2975 for_each_engine(engine, dev_priv, id)
67d97da3 2976 i915_gem_batch_pool_fini(&engine->batch_pool);
35c94185 2977
67d97da3
CW
2978 GEM_BUG_ON(!dev_priv->gt.awake);
2979 dev_priv->gt.awake = false;
2980 rearm_hangcheck = false;
30ecad77 2981
67d97da3
CW
2982 if (INTEL_GEN(dev_priv) >= 6)
2983 gen6_rps_idle(dev_priv);
2984 intel_runtime_pm_put(dev_priv);
2985out_unlock:
2986 mutex_unlock(&dev->struct_mutex);
b29c19b6 2987
67d97da3
CW
2988out_rearm:
2989 if (rearm_hangcheck) {
2990 GEM_BUG_ON(!dev_priv->gt.awake);
2991 i915_queue_hangcheck(dev_priv);
35c94185 2992 }
673a394b
EA
2993}
2994
b1f788c6
CW
2995void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2996{
2997 struct drm_i915_gem_object *obj = to_intel_bo(gem);
2998 struct drm_i915_file_private *fpriv = file->driver_priv;
2999 struct i915_vma *vma, *vn;
3000
3001 mutex_lock(&obj->base.dev->struct_mutex);
3002 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
3003 if (vma->vm->file == fpriv)
3004 i915_vma_close(vma);
f8a7fde4
CW
3005
3006 if (i915_gem_object_is_active(obj) &&
3007 !i915_gem_object_has_active_reference(obj)) {
3008 i915_gem_object_set_active_reference(obj);
3009 i915_gem_object_get(obj);
3010 }
b1f788c6
CW
3011 mutex_unlock(&obj->base.dev->struct_mutex);
3012}
3013
e95433c7
CW
3014static unsigned long to_wait_timeout(s64 timeout_ns)
3015{
3016 if (timeout_ns < 0)
3017 return MAX_SCHEDULE_TIMEOUT;
3018
3019 if (timeout_ns == 0)
3020 return 0;
3021
3022 return nsecs_to_jiffies_timeout(timeout_ns);
3023}
3024
23ba4fd0
BW
3025/**
3026 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
3027 * @dev: drm device pointer
3028 * @data: ioctl data blob
3029 * @file: drm file pointer
23ba4fd0
BW
3030 *
3031 * Returns 0 if successful, else an error is returned with the remaining time in
3032 * the timeout parameter.
3033 * -ETIME: object is still busy after timeout
3034 * -ERESTARTSYS: signal interrupted the wait
3035 * -ENONENT: object doesn't exist
3036 * Also possible, but rare:
3037 * -EAGAIN: GPU wedged
3038 * -ENOMEM: damn
3039 * -ENODEV: Internal IRQ fail
3040 * -E?: The add request failed
3041 *
3042 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3043 * non-zero timeout parameter the wait ioctl will wait for the given number of
3044 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3045 * without holding struct_mutex the object may become re-busied before this
3046 * function completes. A similar but shorter * race condition exists in the busy
3047 * ioctl
3048 */
3049int
3050i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3051{
3052 struct drm_i915_gem_wait *args = data;
3053 struct drm_i915_gem_object *obj;
e95433c7
CW
3054 ktime_t start;
3055 long ret;
23ba4fd0 3056
11b5d511
DV
3057 if (args->flags != 0)
3058 return -EINVAL;
3059
03ac0642 3060 obj = i915_gem_object_lookup(file, args->bo_handle);
033d549b 3061 if (!obj)
23ba4fd0 3062 return -ENOENT;
23ba4fd0 3063
e95433c7
CW
3064 start = ktime_get();
3065
3066 ret = i915_gem_object_wait(obj,
3067 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3068 to_wait_timeout(args->timeout_ns),
3069 to_rps_client(file));
3070
3071 if (args->timeout_ns > 0) {
3072 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3073 if (args->timeout_ns < 0)
3074 args->timeout_ns = 0;
b4716185
CW
3075 }
3076
f0cd5182 3077 i915_gem_object_put(obj);
ff865885 3078 return ret;
23ba4fd0
BW
3079}
3080
73cb9701 3081static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
4df2faf4 3082{
73cb9701 3083 int ret, i;
4df2faf4 3084
73cb9701
CW
3085 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3086 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3087 if (ret)
3088 return ret;
3089 }
62e63007 3090
73cb9701
CW
3091 return 0;
3092}
3093
3094int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3095{
73cb9701
CW
3096 int ret;
3097
9caa34aa
CW
3098 if (flags & I915_WAIT_LOCKED) {
3099 struct i915_gem_timeline *tl;
3100
3101 lockdep_assert_held(&i915->drm.struct_mutex);
3102
3103 list_for_each_entry(tl, &i915->gt.timelines, link) {
3104 ret = wait_for_timeline(tl, flags);
3105 if (ret)
3106 return ret;
3107 }
3108 } else {
3109 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
1ec14ad3
CW
3110 if (ret)
3111 return ret;
3112 }
4df2faf4 3113
8a1a49f9 3114 return 0;
4df2faf4
DV
3115}
3116
d0da48cf
CW
3117void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3118 bool force)
673a394b 3119{
673a394b
EA
3120 /* If we don't have a page list set up, then we're not pinned
3121 * to GPU, and we can ignore the cache flush because it'll happen
3122 * again at bind time.
3123 */
a4f5ea64 3124 if (!obj->mm.pages)
d0da48cf 3125 return;
673a394b 3126
769ce464
ID
3127 /*
3128 * Stolen memory is always coherent with the GPU as it is explicitly
3129 * marked as wc by the system, or the system is cache-coherent.
3130 */
6a2c4232 3131 if (obj->stolen || obj->phys_handle)
d0da48cf 3132 return;
769ce464 3133
9c23f7fc
CW
3134 /* If the GPU is snooping the contents of the CPU cache,
3135 * we do not need to manually clear the CPU cache lines. However,
3136 * the caches are only snooped when the render cache is
3137 * flushed/invalidated. As we always have to emit invalidations
3138 * and flushes when moving into and out of the RENDER domain, correct
3139 * snooping behaviour occurs naturally as the result of our domain
3140 * tracking.
3141 */
0f71979a
CW
3142 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3143 obj->cache_dirty = true;
d0da48cf 3144 return;
0f71979a 3145 }
9c23f7fc 3146
1c5d22f7 3147 trace_i915_gem_object_clflush(obj);
a4f5ea64 3148 drm_clflush_sg(obj->mm.pages);
0f71979a 3149 obj->cache_dirty = false;
e47c68e9
EA
3150}
3151
3152/** Flushes the GTT write domain for the object if it's dirty. */
3153static void
05394f39 3154i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3155{
3b5724d7 3156 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1c5d22f7 3157
05394f39 3158 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3159 return;
3160
63256ec5 3161 /* No actual flushing is required for the GTT write domain. Writes
3b5724d7 3162 * to it "immediately" go to main memory as far as we know, so there's
e47c68e9 3163 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3164 *
3165 * However, we do have to enforce the order so that all writes through
3166 * the GTT land before any writes to the device, such as updates to
3167 * the GATT itself.
3b5724d7
CW
3168 *
3169 * We also have to wait a bit for the writes to land from the GTT.
3170 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3171 * timing. This issue has only been observed when switching quickly
3172 * between GTT writes and CPU reads from inside the kernel on recent hw,
3173 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3174 * system agents we cannot reproduce this behaviour).
e47c68e9 3175 */
63256ec5 3176 wmb();
3b5724d7 3177 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3b3f1650 3178 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
63256ec5 3179
d243ad82 3180 intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
f99d7069 3181
b0dc465f 3182 obj->base.write_domain = 0;
1c5d22f7 3183 trace_i915_gem_object_change_domain(obj,
05394f39 3184 obj->base.read_domains,
b0dc465f 3185 I915_GEM_DOMAIN_GTT);
e47c68e9
EA
3186}
3187
3188/** Flushes the CPU write domain for the object if it's dirty. */
3189static void
e62b59e4 3190i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3191{
05394f39 3192 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3193 return;
3194
d0da48cf 3195 i915_gem_clflush_object(obj, obj->pin_display);
de152b62 3196 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3197
b0dc465f 3198 obj->base.write_domain = 0;
1c5d22f7 3199 trace_i915_gem_object_change_domain(obj,
05394f39 3200 obj->base.read_domains,
b0dc465f 3201 I915_GEM_DOMAIN_CPU);
e47c68e9
EA
3202}
3203
2ef7eeaa
EA
3204/**
3205 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3206 * @obj: object to act on
3207 * @write: ask for write access or read only
2ef7eeaa
EA
3208 *
3209 * This function returns when the move is complete, including waiting on
3210 * flushes to occur.
3211 */
79e53945 3212int
2021746e 3213i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3214{
1c5d22f7 3215 uint32_t old_write_domain, old_read_domains;
e47c68e9 3216 int ret;
2ef7eeaa 3217
e95433c7 3218 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3219
e95433c7
CW
3220 ret = i915_gem_object_wait(obj,
3221 I915_WAIT_INTERRUPTIBLE |
3222 I915_WAIT_LOCKED |
3223 (write ? I915_WAIT_ALL : 0),
3224 MAX_SCHEDULE_TIMEOUT,
3225 NULL);
88241785
CW
3226 if (ret)
3227 return ret;
3228
c13d87ea
CW
3229 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3230 return 0;
3231
43566ded
CW
3232 /* Flush and acquire obj->pages so that we are coherent through
3233 * direct access in memory with previous cached writes through
3234 * shmemfs and that our cache domain tracking remains valid.
3235 * For example, if the obj->filp was moved to swap without us
3236 * being notified and releasing the pages, we would mistakenly
3237 * continue to assume that the obj remained out of the CPU cached
3238 * domain.
3239 */
a4f5ea64 3240 ret = i915_gem_object_pin_pages(obj);
43566ded
CW
3241 if (ret)
3242 return ret;
3243
e62b59e4 3244 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3245
d0a57789
CW
3246 /* Serialise direct access to this object with the barriers for
3247 * coherent writes from the GPU, by effectively invalidating the
3248 * GTT domain upon first access.
3249 */
3250 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3251 mb();
3252
05394f39
CW
3253 old_write_domain = obj->base.write_domain;
3254 old_read_domains = obj->base.read_domains;
1c5d22f7 3255
e47c68e9
EA
3256 /* It should now be out of any other write domains, and we can update
3257 * the domain values for our changes.
3258 */
40e62d5d 3259 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 3260 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3261 if (write) {
05394f39
CW
3262 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3263 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
a4f5ea64 3264 obj->mm.dirty = true;
2ef7eeaa
EA
3265 }
3266
1c5d22f7
CW
3267 trace_i915_gem_object_change_domain(obj,
3268 old_read_domains,
3269 old_write_domain);
3270
a4f5ea64 3271 i915_gem_object_unpin_pages(obj);
e47c68e9
EA
3272 return 0;
3273}
3274
ef55f92a
CW
3275/**
3276 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
3277 * @obj: object to act on
3278 * @cache_level: new cache level to set for the object
ef55f92a
CW
3279 *
3280 * After this function returns, the object will be in the new cache-level
3281 * across all GTT and the contents of the backing storage will be coherent,
3282 * with respect to the new cache-level. In order to keep the backing storage
3283 * coherent for all users, we only allow a single cache level to be set
3284 * globally on the object and prevent it from being changed whilst the
3285 * hardware is reading from the object. That is if the object is currently
3286 * on the scanout it will be set to uncached (or equivalent display
3287 * cache coherency) and all non-MOCS GPU access will also be uncached so
3288 * that all direct access to the scanout remains coherent.
3289 */
e4ffd173
CW
3290int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3291 enum i915_cache_level cache_level)
3292{
aa653a68 3293 struct i915_vma *vma;
a6a7cc4b 3294 int ret;
e4ffd173 3295
4c7d62c6
CW
3296 lockdep_assert_held(&obj->base.dev->struct_mutex);
3297
e4ffd173 3298 if (obj->cache_level == cache_level)
a6a7cc4b 3299 return 0;
e4ffd173 3300
ef55f92a
CW
3301 /* Inspect the list of currently bound VMA and unbind any that would
3302 * be invalid given the new cache-level. This is principally to
3303 * catch the issue of the CS prefetch crossing page boundaries and
3304 * reading an invalid PTE on older architectures.
3305 */
aa653a68
CW
3306restart:
3307 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3308 if (!drm_mm_node_allocated(&vma->node))
3309 continue;
3310
20dfbde4 3311 if (i915_vma_is_pinned(vma)) {
ef55f92a
CW
3312 DRM_DEBUG("can not change the cache level of pinned objects\n");
3313 return -EBUSY;
3314 }
3315
aa653a68
CW
3316 if (i915_gem_valid_gtt_space(vma, cache_level))
3317 continue;
3318
3319 ret = i915_vma_unbind(vma);
3320 if (ret)
3321 return ret;
3322
3323 /* As unbinding may affect other elements in the
3324 * obj->vma_list (due to side-effects from retiring
3325 * an active vma), play safe and restart the iterator.
3326 */
3327 goto restart;
42d6ab48
CW
3328 }
3329
ef55f92a
CW
3330 /* We can reuse the existing drm_mm nodes but need to change the
3331 * cache-level on the PTE. We could simply unbind them all and
3332 * rebind with the correct cache-level on next use. However since
3333 * we already have a valid slot, dma mapping, pages etc, we may as
3334 * rewrite the PTE in the belief that doing so tramples upon less
3335 * state and so involves less work.
3336 */
15717de2 3337 if (obj->bind_count) {
ef55f92a
CW
3338 /* Before we change the PTE, the GPU must not be accessing it.
3339 * If we wait upon the object, we know that all the bound
3340 * VMA are no longer active.
3341 */
e95433c7
CW
3342 ret = i915_gem_object_wait(obj,
3343 I915_WAIT_INTERRUPTIBLE |
3344 I915_WAIT_LOCKED |
3345 I915_WAIT_ALL,
3346 MAX_SCHEDULE_TIMEOUT,
3347 NULL);
e4ffd173
CW
3348 if (ret)
3349 return ret;
3350
0031fb96
TU
3351 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3352 cache_level != I915_CACHE_NONE) {
ef55f92a
CW
3353 /* Access to snoopable pages through the GTT is
3354 * incoherent and on some machines causes a hard
3355 * lockup. Relinquish the CPU mmaping to force
3356 * userspace to refault in the pages and we can
3357 * then double check if the GTT mapping is still
3358 * valid for that pointer access.
3359 */
3360 i915_gem_release_mmap(obj);
3361
3362 /* As we no longer need a fence for GTT access,
3363 * we can relinquish it now (and so prevent having
3364 * to steal a fence from someone else on the next
3365 * fence request). Note GPU activity would have
3366 * dropped the fence as all snoopable access is
3367 * supposed to be linear.
3368 */
49ef5294
CW
3369 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3370 ret = i915_vma_put_fence(vma);
3371 if (ret)
3372 return ret;
3373 }
ef55f92a
CW
3374 } else {
3375 /* We either have incoherent backing store and
3376 * so no GTT access or the architecture is fully
3377 * coherent. In such cases, existing GTT mmaps
3378 * ignore the cache bit in the PTE and we can
3379 * rewrite it without confusing the GPU or having
3380 * to force userspace to fault back in its mmaps.
3381 */
e4ffd173
CW
3382 }
3383
1c7f4bca 3384 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3385 if (!drm_mm_node_allocated(&vma->node))
3386 continue;
3387
3388 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3389 if (ret)
3390 return ret;
3391 }
e4ffd173
CW
3392 }
3393
a6a7cc4b
CW
3394 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3395 cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3396 obj->cache_dirty = true;
3397
1c7f4bca 3398 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
3399 vma->node.color = cache_level;
3400 obj->cache_level = cache_level;
3401
e4ffd173
CW
3402 return 0;
3403}
3404
199adf40
BW
3405int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3406 struct drm_file *file)
e6994aee 3407{
199adf40 3408 struct drm_i915_gem_caching *args = data;
e6994aee 3409 struct drm_i915_gem_object *obj;
fbbd37b3 3410 int err = 0;
e6994aee 3411
fbbd37b3
CW
3412 rcu_read_lock();
3413 obj = i915_gem_object_lookup_rcu(file, args->handle);
3414 if (!obj) {
3415 err = -ENOENT;
3416 goto out;
3417 }
e6994aee 3418
651d794f
CW
3419 switch (obj->cache_level) {
3420 case I915_CACHE_LLC:
3421 case I915_CACHE_L3_LLC:
3422 args->caching = I915_CACHING_CACHED;
3423 break;
3424
4257d3ba
CW
3425 case I915_CACHE_WT:
3426 args->caching = I915_CACHING_DISPLAY;
3427 break;
3428
651d794f
CW
3429 default:
3430 args->caching = I915_CACHING_NONE;
3431 break;
3432 }
fbbd37b3
CW
3433out:
3434 rcu_read_unlock();
3435 return err;
e6994aee
CW
3436}
3437
199adf40
BW
3438int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3439 struct drm_file *file)
e6994aee 3440{
9c870d03 3441 struct drm_i915_private *i915 = to_i915(dev);
199adf40 3442 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3443 struct drm_i915_gem_object *obj;
3444 enum i915_cache_level level;
d65415df 3445 int ret = 0;
e6994aee 3446
199adf40
BW
3447 switch (args->caching) {
3448 case I915_CACHING_NONE:
e6994aee
CW
3449 level = I915_CACHE_NONE;
3450 break;
199adf40 3451 case I915_CACHING_CACHED:
e5756c10
ID
3452 /*
3453 * Due to a HW issue on BXT A stepping, GPU stores via a
3454 * snooped mapping may leave stale data in a corresponding CPU
3455 * cacheline, whereas normally such cachelines would get
3456 * invalidated.
3457 */
9c870d03 3458 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
e5756c10
ID
3459 return -ENODEV;
3460
e6994aee
CW
3461 level = I915_CACHE_LLC;
3462 break;
4257d3ba 3463 case I915_CACHING_DISPLAY:
9c870d03 3464 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4257d3ba 3465 break;
e6994aee
CW
3466 default:
3467 return -EINVAL;
3468 }
3469
d65415df
CW
3470 obj = i915_gem_object_lookup(file, args->handle);
3471 if (!obj)
3472 return -ENOENT;
3473
3474 if (obj->cache_level == level)
3475 goto out;
3476
3477 ret = i915_gem_object_wait(obj,
3478 I915_WAIT_INTERRUPTIBLE,
3479 MAX_SCHEDULE_TIMEOUT,
3480 to_rps_client(file));
3bc2913e 3481 if (ret)
d65415df 3482 goto out;
3bc2913e 3483
d65415df
CW
3484 ret = i915_mutex_lock_interruptible(dev);
3485 if (ret)
3486 goto out;
e6994aee
CW
3487
3488 ret = i915_gem_object_set_cache_level(obj, level);
e6994aee 3489 mutex_unlock(&dev->struct_mutex);
d65415df
CW
3490
3491out:
3492 i915_gem_object_put(obj);
e6994aee
CW
3493 return ret;
3494}
3495
b9241ea3 3496/*
2da3b9b9
CW
3497 * Prepare buffer for display plane (scanout, cursors, etc).
3498 * Can be called from an uninterruptible phase (modesetting) and allows
3499 * any flushes to be pipelined (for pageflips).
b9241ea3 3500 */
058d88c4 3501struct i915_vma *
2da3b9b9
CW
3502i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3503 u32 alignment,
e6617330 3504 const struct i915_ggtt_view *view)
b9241ea3 3505{
058d88c4 3506 struct i915_vma *vma;
2da3b9b9 3507 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3508 int ret;
3509
4c7d62c6
CW
3510 lockdep_assert_held(&obj->base.dev->struct_mutex);
3511
cc98b413
CW
3512 /* Mark the pin_display early so that we account for the
3513 * display coherency whilst setting up the cache domains.
3514 */
8a0c39b1 3515 obj->pin_display++;
cc98b413 3516
a7ef0640
EA
3517 /* The display engine is not coherent with the LLC cache on gen6. As
3518 * a result, we make sure that the pinning that is about to occur is
3519 * done with uncached PTEs. This is lowest common denominator for all
3520 * chipsets.
3521 *
3522 * However for gen6+, we could do better by using the GFDT bit instead
3523 * of uncaching, which would allow us to flush all the LLC-cached data
3524 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3525 */
651d794f 3526 ret = i915_gem_object_set_cache_level(obj,
8652744b
TU
3527 HAS_WT(to_i915(obj->base.dev)) ?
3528 I915_CACHE_WT : I915_CACHE_NONE);
058d88c4
CW
3529 if (ret) {
3530 vma = ERR_PTR(ret);
cc98b413 3531 goto err_unpin_display;
058d88c4 3532 }
a7ef0640 3533
2da3b9b9
CW
3534 /* As the user may map the buffer once pinned in the display plane
3535 * (e.g. libkms for the bootup splash), we have to ensure that we
2efb813d
CW
3536 * always use map_and_fenceable for all scanout buffers. However,
3537 * it may simply be too big to fit into mappable, in which case
3538 * put it anyway and hope that userspace can cope (but always first
3539 * try to preserve the existing ABI).
2da3b9b9 3540 */
2efb813d 3541 vma = ERR_PTR(-ENOSPC);
47a8e3f6 3542 if (!view || view->type == I915_GGTT_VIEW_NORMAL)
2efb813d
CW
3543 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3544 PIN_MAPPABLE | PIN_NONBLOCK);
767a222e
CW
3545 if (IS_ERR(vma)) {
3546 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3547 unsigned int flags;
3548
3549 /* Valleyview is definitely limited to scanning out the first
3550 * 512MiB. Lets presume this behaviour was inherited from the
3551 * g4x display engine and that all earlier gen are similarly
3552 * limited. Testing suggests that it is a little more
3553 * complicated than this. For example, Cherryview appears quite
3554 * happy to scanout from anywhere within its global aperture.
3555 */
3556 flags = 0;
3557 if (HAS_GMCH_DISPLAY(i915))
3558 flags = PIN_MAPPABLE;
3559 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3560 }
058d88c4 3561 if (IS_ERR(vma))
cc98b413 3562 goto err_unpin_display;
2da3b9b9 3563
d8923dcf
CW
3564 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3565
a6a7cc4b 3566 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
69aeafea 3567 if (obj->cache_dirty || obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
a6a7cc4b
CW
3568 i915_gem_clflush_object(obj, true);
3569 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
3570 }
b118c1e3 3571
2da3b9b9 3572 old_write_domain = obj->base.write_domain;
05394f39 3573 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3574
3575 /* It should now be out of any other write domains, and we can update
3576 * the domain values for our changes.
3577 */
e5f1d962 3578 obj->base.write_domain = 0;
05394f39 3579 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3580
3581 trace_i915_gem_object_change_domain(obj,
3582 old_read_domains,
2da3b9b9 3583 old_write_domain);
b9241ea3 3584
058d88c4 3585 return vma;
cc98b413
CW
3586
3587err_unpin_display:
8a0c39b1 3588 obj->pin_display--;
058d88c4 3589 return vma;
cc98b413
CW
3590}
3591
3592void
058d88c4 3593i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
cc98b413 3594{
49d73912 3595 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4c7d62c6 3596
058d88c4 3597 if (WARN_ON(vma->obj->pin_display == 0))
8a0c39b1
TU
3598 return;
3599
d8923dcf 3600 if (--vma->obj->pin_display == 0)
f51455d4 3601 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
e6617330 3602
383d5823 3603 /* Bump the LRU to try and avoid premature eviction whilst flipping */
befedbb7 3604 i915_gem_object_bump_inactive_ggtt(vma->obj);
383d5823 3605
058d88c4 3606 i915_vma_unpin(vma);
b9241ea3
ZW
3607}
3608
e47c68e9
EA
3609/**
3610 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
3611 * @obj: object to act on
3612 * @write: requesting write or read-only access
e47c68e9
EA
3613 *
3614 * This function returns when the move is complete, including waiting on
3615 * flushes to occur.
3616 */
dabdfe02 3617int
919926ae 3618i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3619{
1c5d22f7 3620 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3621 int ret;
3622
e95433c7 3623 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3624
e95433c7
CW
3625 ret = i915_gem_object_wait(obj,
3626 I915_WAIT_INTERRUPTIBLE |
3627 I915_WAIT_LOCKED |
3628 (write ? I915_WAIT_ALL : 0),
3629 MAX_SCHEDULE_TIMEOUT,
3630 NULL);
88241785
CW
3631 if (ret)
3632 return ret;
3633
c13d87ea
CW
3634 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3635 return 0;
3636
e47c68e9 3637 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3638
05394f39
CW
3639 old_write_domain = obj->base.write_domain;
3640 old_read_domains = obj->base.read_domains;
1c5d22f7 3641
e47c68e9 3642 /* Flush the CPU cache if it's still invalid. */
05394f39 3643 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3644 i915_gem_clflush_object(obj, false);
2ef7eeaa 3645
05394f39 3646 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3647 }
3648
3649 /* It should now be out of any other write domains, and we can update
3650 * the domain values for our changes.
3651 */
40e62d5d 3652 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3653
3654 /* If we're writing through the CPU, then the GPU read domains will
3655 * need to be invalidated at next use.
3656 */
3657 if (write) {
05394f39
CW
3658 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3659 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3660 }
2ef7eeaa 3661
1c5d22f7
CW
3662 trace_i915_gem_object_change_domain(obj,
3663 old_read_domains,
3664 old_write_domain);
3665
2ef7eeaa
EA
3666 return 0;
3667}
3668
673a394b
EA
3669/* Throttle our rendering by waiting until the ring has completed our requests
3670 * emitted over 20 msec ago.
3671 *
b962442e
EA
3672 * Note that if we were to use the current jiffies each time around the loop,
3673 * we wouldn't escape the function with any frames outstanding if the time to
3674 * render a frame was over 20ms.
3675 *
673a394b
EA
3676 * This should get us reasonable parallelism between CPU and GPU but also
3677 * relatively low latency when blocking on a particular request to finish.
3678 */
40a5f0de 3679static int
f787a5f5 3680i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3681{
fac5e23e 3682 struct drm_i915_private *dev_priv = to_i915(dev);
f787a5f5 3683 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 3684 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 3685 struct drm_i915_gem_request *request, *target = NULL;
e95433c7 3686 long ret;
93533c29 3687
f4457ae7
CW
3688 /* ABI: return -EIO if already wedged */
3689 if (i915_terminally_wedged(&dev_priv->gpu_error))
3690 return -EIO;
e110e8d6 3691
1c25595f 3692 spin_lock(&file_priv->mm.lock);
f787a5f5 3693 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3694 if (time_after_eq(request->emitted_jiffies, recent_enough))
3695 break;
40a5f0de 3696
fcfa423c
JH
3697 /*
3698 * Note that the request might not have been submitted yet.
3699 * In which case emitted_jiffies will be zero.
3700 */
3701 if (!request->emitted_jiffies)
3702 continue;
3703
54fb2411 3704 target = request;
b962442e 3705 }
ff865885 3706 if (target)
e8a261ea 3707 i915_gem_request_get(target);
1c25595f 3708 spin_unlock(&file_priv->mm.lock);
40a5f0de 3709
54fb2411 3710 if (target == NULL)
f787a5f5 3711 return 0;
2bc43b5c 3712
e95433c7
CW
3713 ret = i915_wait_request(target,
3714 I915_WAIT_INTERRUPTIBLE,
3715 MAX_SCHEDULE_TIMEOUT);
e8a261ea 3716 i915_gem_request_put(target);
ff865885 3717
e95433c7 3718 return ret < 0 ? ret : 0;
40a5f0de
EA
3719}
3720
058d88c4 3721struct i915_vma *
ec7adb6e
JL
3722i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3723 const struct i915_ggtt_view *view,
91b2db6f 3724 u64 size,
2ffffd0f
CW
3725 u64 alignment,
3726 u64 flags)
ec7adb6e 3727{
ad16d2ed
CW
3728 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3729 struct i915_address_space *vm = &dev_priv->ggtt.base;
59bfa124
CW
3730 struct i915_vma *vma;
3731 int ret;
72e96d64 3732
4c7d62c6
CW
3733 lockdep_assert_held(&obj->base.dev->struct_mutex);
3734
718659a6 3735 vma = i915_vma_instance(obj, vm, view);
e0216b76 3736 if (unlikely(IS_ERR(vma)))
058d88c4 3737 return vma;
59bfa124
CW
3738
3739 if (i915_vma_misplaced(vma, size, alignment, flags)) {
3740 if (flags & PIN_NONBLOCK &&
3741 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
058d88c4 3742 return ERR_PTR(-ENOSPC);
59bfa124 3743
ad16d2ed 3744 if (flags & PIN_MAPPABLE) {
ad16d2ed
CW
3745 /* If the required space is larger than the available
3746 * aperture, we will not able to find a slot for the
3747 * object and unbinding the object now will be in
3748 * vain. Worse, doing so may cause us to ping-pong
3749 * the object in and out of the Global GTT and
3750 * waste a lot of cycles under the mutex.
3751 */
944397f0 3752 if (vma->fence_size > dev_priv->ggtt.mappable_end)
ad16d2ed
CW
3753 return ERR_PTR(-E2BIG);
3754
3755 /* If NONBLOCK is set the caller is optimistically
3756 * trying to cache the full object within the mappable
3757 * aperture, and *must* have a fallback in place for
3758 * situations where we cannot bind the object. We
3759 * can be a little more lax here and use the fallback
3760 * more often to avoid costly migrations of ourselves
3761 * and other objects within the aperture.
3762 *
3763 * Half-the-aperture is used as a simple heuristic.
3764 * More interesting would to do search for a free
3765 * block prior to making the commitment to unbind.
3766 * That caters for the self-harm case, and with a
3767 * little more heuristics (e.g. NOFAULT, NOEVICT)
3768 * we could try to minimise harm to others.
3769 */
3770 if (flags & PIN_NONBLOCK &&
944397f0 3771 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
ad16d2ed
CW
3772 return ERR_PTR(-ENOSPC);
3773 }
3774
59bfa124
CW
3775 WARN(i915_vma_is_pinned(vma),
3776 "bo is already pinned in ggtt with incorrect alignment:"
05a20d09
CW
3777 " offset=%08x, req.alignment=%llx,"
3778 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3779 i915_ggtt_offset(vma), alignment,
59bfa124 3780 !!(flags & PIN_MAPPABLE),
05a20d09 3781 i915_vma_is_map_and_fenceable(vma));
59bfa124
CW
3782 ret = i915_vma_unbind(vma);
3783 if (ret)
058d88c4 3784 return ERR_PTR(ret);
59bfa124
CW
3785 }
3786
058d88c4
CW
3787 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3788 if (ret)
3789 return ERR_PTR(ret);
ec7adb6e 3790
058d88c4 3791 return vma;
673a394b
EA
3792}
3793
edf6b76f 3794static __always_inline unsigned int __busy_read_flag(unsigned int id)
3fdc13c7
CW
3795{
3796 /* Note that we could alias engines in the execbuf API, but
3797 * that would be very unwise as it prevents userspace from
3798 * fine control over engine selection. Ahem.
3799 *
3800 * This should be something like EXEC_MAX_ENGINE instead of
3801 * I915_NUM_ENGINES.
3802 */
3803 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3804 return 0x10000 << id;
3805}
3806
3807static __always_inline unsigned int __busy_write_id(unsigned int id)
3808{
70cb472c
CW
3809 /* The uABI guarantees an active writer is also amongst the read
3810 * engines. This would be true if we accessed the activity tracking
3811 * under the lock, but as we perform the lookup of the object and
3812 * its activity locklessly we can not guarantee that the last_write
3813 * being active implies that we have set the same engine flag from
3814 * last_read - hence we always set both read and write busy for
3815 * last_write.
3816 */
3817 return id | __busy_read_flag(id);
3fdc13c7
CW
3818}
3819
edf6b76f 3820static __always_inline unsigned int
d07f0e59 3821__busy_set_if_active(const struct dma_fence *fence,
3fdc13c7
CW
3822 unsigned int (*flag)(unsigned int id))
3823{
d07f0e59 3824 struct drm_i915_gem_request *rq;
3fdc13c7 3825
d07f0e59
CW
3826 /* We have to check the current hw status of the fence as the uABI
3827 * guarantees forward progress. We could rely on the idle worker
3828 * to eventually flush us, but to minimise latency just ask the
3829 * hardware.
1255501d 3830 *
d07f0e59 3831 * Note we only report on the status of native fences.
1255501d 3832 */
d07f0e59
CW
3833 if (!dma_fence_is_i915(fence))
3834 return 0;
3835
3836 /* opencode to_request() in order to avoid const warnings */
3837 rq = container_of(fence, struct drm_i915_gem_request, fence);
3838 if (i915_gem_request_completed(rq))
3839 return 0;
3840
3841 return flag(rq->engine->exec_id);
3fdc13c7
CW
3842}
3843
edf6b76f 3844static __always_inline unsigned int
d07f0e59 3845busy_check_reader(const struct dma_fence *fence)
3fdc13c7 3846{
d07f0e59 3847 return __busy_set_if_active(fence, __busy_read_flag);
3fdc13c7
CW
3848}
3849
edf6b76f 3850static __always_inline unsigned int
d07f0e59 3851busy_check_writer(const struct dma_fence *fence)
3fdc13c7 3852{
d07f0e59
CW
3853 if (!fence)
3854 return 0;
3855
3856 return __busy_set_if_active(fence, __busy_write_id);
3fdc13c7
CW
3857}
3858
673a394b
EA
3859int
3860i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3861 struct drm_file *file)
673a394b
EA
3862{
3863 struct drm_i915_gem_busy *args = data;
05394f39 3864 struct drm_i915_gem_object *obj;
d07f0e59
CW
3865 struct reservation_object_list *list;
3866 unsigned int seq;
fbbd37b3 3867 int err;
673a394b 3868
d07f0e59 3869 err = -ENOENT;
fbbd37b3
CW
3870 rcu_read_lock();
3871 obj = i915_gem_object_lookup_rcu(file, args->handle);
d07f0e59 3872 if (!obj)
fbbd37b3 3873 goto out;
d1b851fc 3874
d07f0e59
CW
3875 /* A discrepancy here is that we do not report the status of
3876 * non-i915 fences, i.e. even though we may report the object as idle,
3877 * a call to set-domain may still stall waiting for foreign rendering.
3878 * This also means that wait-ioctl may report an object as busy,
3879 * where busy-ioctl considers it idle.
3880 *
3881 * We trade the ability to warn of foreign fences to report on which
3882 * i915 engines are active for the object.
3883 *
3884 * Alternatively, we can trade that extra information on read/write
3885 * activity with
3886 * args->busy =
3887 * !reservation_object_test_signaled_rcu(obj->resv, true);
3888 * to report the overall busyness. This is what the wait-ioctl does.
3889 *
3890 */
3891retry:
3892 seq = raw_read_seqcount(&obj->resv->seq);
426960be 3893
d07f0e59
CW
3894 /* Translate the exclusive fence to the READ *and* WRITE engine */
3895 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3fdc13c7 3896
d07f0e59
CW
3897 /* Translate shared fences to READ set of engines */
3898 list = rcu_dereference(obj->resv->fence);
3899 if (list) {
3900 unsigned int shared_count = list->shared_count, i;
3fdc13c7 3901
d07f0e59
CW
3902 for (i = 0; i < shared_count; ++i) {
3903 struct dma_fence *fence =
3904 rcu_dereference(list->shared[i]);
3905
3906 args->busy |= busy_check_reader(fence);
3907 }
426960be 3908 }
673a394b 3909
d07f0e59
CW
3910 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
3911 goto retry;
3912
3913 err = 0;
fbbd37b3
CW
3914out:
3915 rcu_read_unlock();
3916 return err;
673a394b
EA
3917}
3918
3919int
3920i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3921 struct drm_file *file_priv)
3922{
0206e353 3923 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3924}
3925
3ef94daa
CW
3926int
3927i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3928 struct drm_file *file_priv)
3929{
fac5e23e 3930 struct drm_i915_private *dev_priv = to_i915(dev);
3ef94daa 3931 struct drm_i915_gem_madvise *args = data;
05394f39 3932 struct drm_i915_gem_object *obj;
1233e2db 3933 int err;
3ef94daa
CW
3934
3935 switch (args->madv) {
3936 case I915_MADV_DONTNEED:
3937 case I915_MADV_WILLNEED:
3938 break;
3939 default:
3940 return -EINVAL;
3941 }
3942
03ac0642 3943 obj = i915_gem_object_lookup(file_priv, args->handle);
1233e2db
CW
3944 if (!obj)
3945 return -ENOENT;
3946
3947 err = mutex_lock_interruptible(&obj->mm.lock);
3948 if (err)
3949 goto out;
3ef94daa 3950
a4f5ea64 3951 if (obj->mm.pages &&
3e510a8e 3952 i915_gem_object_is_tiled(obj) &&
656bfa3a 3953 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
bc0629a7
CW
3954 if (obj->mm.madv == I915_MADV_WILLNEED) {
3955 GEM_BUG_ON(!obj->mm.quirked);
a4f5ea64 3956 __i915_gem_object_unpin_pages(obj);
bc0629a7
CW
3957 obj->mm.quirked = false;
3958 }
3959 if (args->madv == I915_MADV_WILLNEED) {
2c3a3f44 3960 GEM_BUG_ON(obj->mm.quirked);
a4f5ea64 3961 __i915_gem_object_pin_pages(obj);
bc0629a7
CW
3962 obj->mm.quirked = true;
3963 }
656bfa3a
DV
3964 }
3965
a4f5ea64
CW
3966 if (obj->mm.madv != __I915_MADV_PURGED)
3967 obj->mm.madv = args->madv;
3ef94daa 3968
6c085a72 3969 /* if the object is no longer attached, discard its backing storage */
a4f5ea64 3970 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
2d7ef395
CW
3971 i915_gem_object_truncate(obj);
3972
a4f5ea64 3973 args->retained = obj->mm.madv != __I915_MADV_PURGED;
1233e2db 3974 mutex_unlock(&obj->mm.lock);
bb6baf76 3975
1233e2db 3976out:
f8c417cd 3977 i915_gem_object_put(obj);
1233e2db 3978 return err;
3ef94daa
CW
3979}
3980
5b8c8aec
CW
3981static void
3982frontbuffer_retire(struct i915_gem_active *active,
3983 struct drm_i915_gem_request *request)
3984{
3985 struct drm_i915_gem_object *obj =
3986 container_of(active, typeof(*obj), frontbuffer_write);
3987
3988 intel_fb_obj_flush(obj, true, ORIGIN_CS);
3989}
3990
37e680a1
CW
3991void i915_gem_object_init(struct drm_i915_gem_object *obj,
3992 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3993{
1233e2db
CW
3994 mutex_init(&obj->mm.lock);
3995
56cea323 3996 INIT_LIST_HEAD(&obj->global_link);
275f039d 3997 INIT_LIST_HEAD(&obj->userfault_link);
b25cb2f8 3998 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 3999 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4000 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4001
37e680a1
CW
4002 obj->ops = ops;
4003
d07f0e59
CW
4004 reservation_object_init(&obj->__builtin_resv);
4005 obj->resv = &obj->__builtin_resv;
4006
50349247 4007 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
5b8c8aec 4008 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
a4f5ea64
CW
4009
4010 obj->mm.madv = I915_MADV_WILLNEED;
4011 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4012 mutex_init(&obj->mm.get_page.lock);
0327d6ba 4013
f19ec8cb 4014 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
0327d6ba
CW
4015}
4016
37e680a1 4017static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3599a91c
TU
4018 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4019 I915_GEM_OBJECT_IS_SHRINKABLE,
37e680a1
CW
4020 .get_pages = i915_gem_object_get_pages_gtt,
4021 .put_pages = i915_gem_object_put_pages_gtt,
4022};
4023
b4bcbe2a 4024struct drm_i915_gem_object *
12d79d78 4025i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
ac52bc56 4026{
c397b908 4027 struct drm_i915_gem_object *obj;
5949eac4 4028 struct address_space *mapping;
1a240d4d 4029 gfp_t mask;
fe3db79b 4030 int ret;
ac52bc56 4031
b4bcbe2a
CW
4032 /* There is a prevalence of the assumption that we fit the object's
4033 * page count inside a 32bit _signed_ variable. Let's document this and
4034 * catch if we ever need to fix it. In the meantime, if you do spot
4035 * such a local variable, please consider fixing!
4036 */
4037 if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
4038 return ERR_PTR(-E2BIG);
4039
4040 if (overflows_type(size, obj->base.size))
4041 return ERR_PTR(-E2BIG);
4042
187685cb 4043 obj = i915_gem_object_alloc(dev_priv);
c397b908 4044 if (obj == NULL)
fe3db79b 4045 return ERR_PTR(-ENOMEM);
673a394b 4046
12d79d78 4047 ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
fe3db79b
CW
4048 if (ret)
4049 goto fail;
673a394b 4050
bed1ea95 4051 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
c0f86832 4052 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
bed1ea95
CW
4053 /* 965gm cannot relocate objects above 4GiB. */
4054 mask &= ~__GFP_HIGHMEM;
4055 mask |= __GFP_DMA32;
4056 }
4057
93c76a3d 4058 mapping = obj->base.filp->f_mapping;
bed1ea95 4059 mapping_set_gfp_mask(mapping, mask);
5949eac4 4060
37e680a1 4061 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4062
c397b908
DV
4063 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4064 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4065
0031fb96 4066 if (HAS_LLC(dev_priv)) {
3d29b842 4067 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4068 * cache) for about a 10% performance improvement
4069 * compared to uncached. Graphics requests other than
4070 * display scanout are coherent with the CPU in
4071 * accessing this cache. This means in this mode we
4072 * don't need to clflush on the CPU side, and on the
4073 * GPU side we only need to flush internal caches to
4074 * get data visible to the CPU.
4075 *
4076 * However, we maintain the display planes as UC, and so
4077 * need to rebind when first used as such.
4078 */
4079 obj->cache_level = I915_CACHE_LLC;
4080 } else
4081 obj->cache_level = I915_CACHE_NONE;
4082
d861e338
DV
4083 trace_i915_gem_object_create(obj);
4084
05394f39 4085 return obj;
fe3db79b
CW
4086
4087fail:
4088 i915_gem_object_free(obj);
fe3db79b 4089 return ERR_PTR(ret);
c397b908
DV
4090}
4091
340fbd8c
CW
4092static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4093{
4094 /* If we are the last user of the backing storage (be it shmemfs
4095 * pages or stolen etc), we know that the pages are going to be
4096 * immediately released. In this case, we can then skip copying
4097 * back the contents from the GPU.
4098 */
4099
a4f5ea64 4100 if (obj->mm.madv != I915_MADV_WILLNEED)
340fbd8c
CW
4101 return false;
4102
4103 if (obj->base.filp == NULL)
4104 return true;
4105
4106 /* At first glance, this looks racy, but then again so would be
4107 * userspace racing mmap against close. However, the first external
4108 * reference to the filp can only be obtained through the
4109 * i915_gem_mmap_ioctl() which safeguards us against the user
4110 * acquiring such a reference whilst we are in the middle of
4111 * freeing the object.
4112 */
4113 return atomic_long_read(&obj->base.filp->f_count) == 1;
4114}
4115
fbbd37b3
CW
4116static void __i915_gem_free_objects(struct drm_i915_private *i915,
4117 struct llist_node *freed)
673a394b 4118{
fbbd37b3 4119 struct drm_i915_gem_object *obj, *on;
673a394b 4120
fbbd37b3
CW
4121 mutex_lock(&i915->drm.struct_mutex);
4122 intel_runtime_pm_get(i915);
4123 llist_for_each_entry(obj, freed, freed) {
4124 struct i915_vma *vma, *vn;
4125
4126 trace_i915_gem_object_destroy(obj);
4127
4128 GEM_BUG_ON(i915_gem_object_is_active(obj));
4129 list_for_each_entry_safe(vma, vn,
4130 &obj->vma_list, obj_link) {
4131 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4132 GEM_BUG_ON(i915_vma_is_active(vma));
4133 vma->flags &= ~I915_VMA_PIN_MASK;
4134 i915_vma_close(vma);
4135 }
db6c2b41
CW
4136 GEM_BUG_ON(!list_empty(&obj->vma_list));
4137 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
fbbd37b3 4138
56cea323 4139 list_del(&obj->global_link);
fbbd37b3
CW
4140 }
4141 intel_runtime_pm_put(i915);
4142 mutex_unlock(&i915->drm.struct_mutex);
4143
4144 llist_for_each_entry_safe(obj, on, freed, freed) {
4145 GEM_BUG_ON(obj->bind_count);
4146 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4147
4148 if (obj->ops->release)
4149 obj->ops->release(obj);
f65c9168 4150
fbbd37b3
CW
4151 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4152 atomic_set(&obj->mm.pages_pin_count, 0);
548625ee 4153 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
fbbd37b3
CW
4154 GEM_BUG_ON(obj->mm.pages);
4155
4156 if (obj->base.import_attach)
4157 drm_prime_gem_destroy(&obj->base, NULL);
4158
d07f0e59 4159 reservation_object_fini(&obj->__builtin_resv);
fbbd37b3
CW
4160 drm_gem_object_release(&obj->base);
4161 i915_gem_info_remove_obj(i915, obj->base.size);
4162
4163 kfree(obj->bit_17);
4164 i915_gem_object_free(obj);
4165 }
4166}
4167
4168static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4169{
4170 struct llist_node *freed;
4171
4172 freed = llist_del_all(&i915->mm.free_list);
4173 if (unlikely(freed))
4174 __i915_gem_free_objects(i915, freed);
4175}
4176
4177static void __i915_gem_free_work(struct work_struct *work)
4178{
4179 struct drm_i915_private *i915 =
4180 container_of(work, struct drm_i915_private, mm.free_work);
4181 struct llist_node *freed;
26e12f89 4182
b1f788c6
CW
4183 /* All file-owned VMA should have been released by this point through
4184 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4185 * However, the object may also be bound into the global GTT (e.g.
4186 * older GPUs without per-process support, or for direct access through
4187 * the GTT either for the user or for scanout). Those VMA still need to
4188 * unbound now.
4189 */
1488fc08 4190
fbbd37b3
CW
4191 while ((freed = llist_del_all(&i915->mm.free_list)))
4192 __i915_gem_free_objects(i915, freed);
4193}
a071fa00 4194
fbbd37b3
CW
4195static void __i915_gem_free_object_rcu(struct rcu_head *head)
4196{
4197 struct drm_i915_gem_object *obj =
4198 container_of(head, typeof(*obj), rcu);
4199 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4200
4201 /* We can't simply use call_rcu() from i915_gem_free_object()
4202 * as we need to block whilst unbinding, and the call_rcu
4203 * task may be called from softirq context. So we take a
4204 * detour through a worker.
4205 */
4206 if (llist_add(&obj->freed, &i915->mm.free_list))
4207 schedule_work(&i915->mm.free_work);
4208}
656bfa3a 4209
fbbd37b3
CW
4210void i915_gem_free_object(struct drm_gem_object *gem_obj)
4211{
4212 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
a4f5ea64 4213
bc0629a7
CW
4214 if (obj->mm.quirked)
4215 __i915_gem_object_unpin_pages(obj);
4216
340fbd8c 4217 if (discard_backing_storage(obj))
a4f5ea64 4218 obj->mm.madv = I915_MADV_DONTNEED;
de151cf6 4219
fbbd37b3
CW
4220 /* Before we free the object, make sure any pure RCU-only
4221 * read-side critical sections are complete, e.g.
4222 * i915_gem_busy_ioctl(). For the corresponding synchronized
4223 * lookup see i915_gem_object_lookup_rcu().
4224 */
4225 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
673a394b
EA
4226}
4227
f8a7fde4
CW
4228void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4229{
4230 lockdep_assert_held(&obj->base.dev->struct_mutex);
4231
4232 GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4233 if (i915_gem_object_is_active(obj))
4234 i915_gem_object_set_active_reference(obj);
4235 else
4236 i915_gem_object_put(obj);
4237}
4238
3033acab
CW
4239static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4240{
4241 struct intel_engine_cs *engine;
4242 enum intel_engine_id id;
4243
4244 for_each_engine(engine, dev_priv, id)
f131e356
CW
4245 GEM_BUG_ON(engine->last_retired_context &&
4246 !i915_gem_context_is_kernel(engine->last_retired_context));
3033acab
CW
4247}
4248
24145517
CW
4249void i915_gem_sanitize(struct drm_i915_private *i915)
4250{
4251 /*
4252 * If we inherit context state from the BIOS or earlier occupants
4253 * of the GPU, the GPU may be in an inconsistent state when we
4254 * try to take over. The only way to remove the earlier state
4255 * is by resetting. However, resetting on earlier gen is tricky as
4256 * it may impact the display and we are uncertain about the stability
4257 * of the reset, so we only reset recent machines with logical
4258 * context support (that must be reset to remove any stray contexts).
4259 */
4260 if (HAS_HW_CONTEXTS(i915)) {
4261 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4262 WARN_ON(reset && reset != -ENODEV);
4263 }
4264}
4265
bf9e8429 4266int i915_gem_suspend(struct drm_i915_private *dev_priv)
29105ccc 4267{
bf9e8429 4268 struct drm_device *dev = &dev_priv->drm;
dcff85c8 4269 int ret;
28dfe52a 4270
54b4f68f
CW
4271 intel_suspend_gt_powersave(dev_priv);
4272
45c5f202 4273 mutex_lock(&dev->struct_mutex);
5ab57c70
CW
4274
4275 /* We have to flush all the executing contexts to main memory so
4276 * that they can saved in the hibernation image. To ensure the last
4277 * context image is coherent, we have to switch away from it. That
4278 * leaves the dev_priv->kernel_context still active when
4279 * we actually suspend, and its image in memory may not match the GPU
4280 * state. Fortunately, the kernel_context is disposable and we do
4281 * not rely on its state.
4282 */
4283 ret = i915_gem_switch_to_kernel_context(dev_priv);
4284 if (ret)
4285 goto err;
4286
22dd3bb9
CW
4287 ret = i915_gem_wait_for_idle(dev_priv,
4288 I915_WAIT_INTERRUPTIBLE |
4289 I915_WAIT_LOCKED);
f7403347 4290 if (ret)
45c5f202 4291 goto err;
f7403347 4292
c033666a 4293 i915_gem_retire_requests(dev_priv);
28176ef4 4294 GEM_BUG_ON(dev_priv->gt.active_requests);
673a394b 4295
3033acab 4296 assert_kernel_context_is_current(dev_priv);
b2e862d0 4297 i915_gem_context_lost(dev_priv);
45c5f202
CW
4298 mutex_unlock(&dev->struct_mutex);
4299
737b1506 4300 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
67d97da3 4301 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
bdeb9785
CW
4302
4303 /* As the idle_work is rearming if it detects a race, play safe and
4304 * repeat the flush until it is definitely idle.
4305 */
4306 while (flush_delayed_work(&dev_priv->gt.idle_work))
4307 ;
4308
4309 i915_gem_drain_freed_objects(dev_priv);
29105ccc 4310
bdcf120b
CW
4311 /* Assert that we sucessfully flushed all the work and
4312 * reset the GPU back to its idle, low power state.
4313 */
67d97da3 4314 WARN_ON(dev_priv->gt.awake);
31ab49ab 4315 WARN_ON(!intel_execlists_idle(dev_priv));
bdcf120b 4316
1c777c5d
ID
4317 /*
4318 * Neither the BIOS, ourselves or any other kernel
4319 * expects the system to be in execlists mode on startup,
4320 * so we need to reset the GPU back to legacy mode. And the only
4321 * known way to disable logical contexts is through a GPU reset.
4322 *
4323 * So in order to leave the system in a known default configuration,
4324 * always reset the GPU upon unload and suspend. Afterwards we then
4325 * clean up the GEM state tracking, flushing off the requests and
4326 * leaving the system in a known idle state.
4327 *
4328 * Note that is of the upmost importance that the GPU is idle and
4329 * all stray writes are flushed *before* we dismantle the backing
4330 * storage for the pinned objects.
4331 *
4332 * However, since we are uncertain that resetting the GPU on older
4333 * machines is a good idea, we don't - just in case it leaves the
4334 * machine in an unusable condition.
4335 */
24145517 4336 i915_gem_sanitize(dev_priv);
1c777c5d 4337
673a394b 4338 return 0;
45c5f202
CW
4339
4340err:
4341 mutex_unlock(&dev->struct_mutex);
4342 return ret;
673a394b
EA
4343}
4344
bf9e8429 4345void i915_gem_resume(struct drm_i915_private *dev_priv)
5ab57c70 4346{
bf9e8429 4347 struct drm_device *dev = &dev_priv->drm;
5ab57c70 4348
31ab49ab
ID
4349 WARN_ON(dev_priv->gt.awake);
4350
5ab57c70 4351 mutex_lock(&dev->struct_mutex);
275a991c 4352 i915_gem_restore_gtt_mappings(dev_priv);
5ab57c70
CW
4353
4354 /* As we didn't flush the kernel context before suspend, we cannot
4355 * guarantee that the context image is complete. So let's just reset
4356 * it and start again.
4357 */
821ed7df 4358 dev_priv->gt.resume(dev_priv);
5ab57c70
CW
4359
4360 mutex_unlock(&dev->struct_mutex);
4361}
4362
c6be607a 4363void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
f691e2f4 4364{
c6be607a 4365 if (INTEL_GEN(dev_priv) < 5 ||
f691e2f4
DV
4366 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4367 return;
4368
4369 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4370 DISP_TILE_SURFACE_SWIZZLING);
4371
5db94019 4372 if (IS_GEN5(dev_priv))
11782b02
DV
4373 return;
4374
f691e2f4 4375 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5db94019 4376 if (IS_GEN6(dev_priv))
6b26c86d 4377 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5db94019 4378 else if (IS_GEN7(dev_priv))
6b26c86d 4379 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5db94019 4380 else if (IS_GEN8(dev_priv))
31a5336e 4381 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4382 else
4383 BUG();
f691e2f4 4384}
e21af88d 4385
50a0bc90 4386static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
81e7f200 4387{
81e7f200
VS
4388 I915_WRITE(RING_CTL(base), 0);
4389 I915_WRITE(RING_HEAD(base), 0);
4390 I915_WRITE(RING_TAIL(base), 0);
4391 I915_WRITE(RING_START(base), 0);
4392}
4393
50a0bc90 4394static void init_unused_rings(struct drm_i915_private *dev_priv)
81e7f200 4395{
50a0bc90
TU
4396 if (IS_I830(dev_priv)) {
4397 init_unused_ring(dev_priv, PRB1_BASE);
4398 init_unused_ring(dev_priv, SRB0_BASE);
4399 init_unused_ring(dev_priv, SRB1_BASE);
4400 init_unused_ring(dev_priv, SRB2_BASE);
4401 init_unused_ring(dev_priv, SRB3_BASE);
4402 } else if (IS_GEN2(dev_priv)) {
4403 init_unused_ring(dev_priv, SRB0_BASE);
4404 init_unused_ring(dev_priv, SRB1_BASE);
4405 } else if (IS_GEN3(dev_priv)) {
4406 init_unused_ring(dev_priv, PRB1_BASE);
4407 init_unused_ring(dev_priv, PRB2_BASE);
81e7f200
VS
4408 }
4409}
4410
20a8a74a 4411static int __i915_gem_restart_engines(void *data)
4fc7c971 4412{
20a8a74a 4413 struct drm_i915_private *i915 = data;
e2f80391 4414 struct intel_engine_cs *engine;
3b3f1650 4415 enum intel_engine_id id;
20a8a74a
CW
4416 int err;
4417
4418 for_each_engine(engine, i915, id) {
4419 err = engine->init_hw(engine);
4420 if (err)
4421 return err;
4422 }
4423
4424 return 0;
4425}
4426
4427int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4428{
d200cda6 4429 int ret;
4fc7c971 4430
de867c20
CW
4431 dev_priv->gt.last_init_time = ktime_get();
4432
5e4f5189
CW
4433 /* Double layer security blanket, see i915_gem_init() */
4434 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4435
0031fb96 4436 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4437 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4438
772c2a51 4439 if (IS_HASWELL(dev_priv))
50a0bc90 4440 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
0bf21347 4441 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4442
6e266956 4443 if (HAS_PCH_NOP(dev_priv)) {
fd6b8f43 4444 if (IS_IVYBRIDGE(dev_priv)) {
6ba844b0
DV
4445 u32 temp = I915_READ(GEN7_MSG_CTL);
4446 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4447 I915_WRITE(GEN7_MSG_CTL, temp);
c6be607a 4448 } else if (INTEL_GEN(dev_priv) >= 7) {
6ba844b0
DV
4449 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4450 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4451 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4452 }
88a2b2a3
BW
4453 }
4454
c6be607a 4455 i915_gem_init_swizzling(dev_priv);
4fc7c971 4456
d5abdfda
DV
4457 /*
4458 * At least 830 can leave some of the unused rings
4459 * "active" (ie. head != tail) after resume which
4460 * will prevent c3 entry. Makes sure all unused rings
4461 * are totally idle.
4462 */
50a0bc90 4463 init_unused_rings(dev_priv);
d5abdfda 4464
ed54c1a1 4465 BUG_ON(!dev_priv->kernel_context);
90638cc1 4466
c6be607a 4467 ret = i915_ppgtt_init_hw(dev_priv);
4ad2fd88
JH
4468 if (ret) {
4469 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4470 goto out;
4471 }
4472
4473 /* Need to do basic initialisation of all rings first: */
20a8a74a
CW
4474 ret = __i915_gem_restart_engines(dev_priv);
4475 if (ret)
4476 goto out;
99433931 4477
bf9e8429 4478 intel_mocs_init_l3cc_table(dev_priv);
0ccdacf6 4479
33a732f4 4480 /* We can't enable contexts until all firmware is loaded */
bf9e8429 4481 ret = intel_guc_setup(dev_priv);
e556f7c1
DG
4482 if (ret)
4483 goto out;
33a732f4 4484
5e4f5189
CW
4485out:
4486 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4487 return ret;
8187a2b7
ZN
4488}
4489
39df9190
CW
4490bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4491{
4492 if (INTEL_INFO(dev_priv)->gen < 6)
4493 return false;
4494
4495 /* TODO: make semaphores and Execlists play nicely together */
4496 if (i915.enable_execlists)
4497 return false;
4498
4499 if (value >= 0)
4500 return value;
4501
4502#ifdef CONFIG_INTEL_IOMMU
4503 /* Enable semaphores on SNB when IO remapping is off */
4504 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4505 return false;
4506#endif
4507
4508 return true;
4509}
4510
bf9e8429 4511int i915_gem_init(struct drm_i915_private *dev_priv)
1070a42b 4512{
1070a42b
CW
4513 int ret;
4514
bf9e8429 4515 mutex_lock(&dev_priv->drm.struct_mutex);
d62b4892 4516
a83014d3 4517 if (!i915.enable_execlists) {
821ed7df 4518 dev_priv->gt.resume = intel_legacy_submission_resume;
7e37f889 4519 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
454afebd 4520 } else {
821ed7df 4521 dev_priv->gt.resume = intel_lr_context_resume;
117897f4 4522 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
a83014d3
OM
4523 }
4524
5e4f5189
CW
4525 /* This is just a security blanket to placate dragons.
4526 * On some systems, we very sporadically observe that the first TLBs
4527 * used by the CS may be stale, despite us poking the TLB reset. If
4528 * we hold the forcewake during initialisation these problems
4529 * just magically go away.
4530 */
4531 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4532
72778cb2 4533 i915_gem_init_userptr(dev_priv);
f6b9d5ca
CW
4534
4535 ret = i915_gem_init_ggtt(dev_priv);
4536 if (ret)
4537 goto out_unlock;
d62b4892 4538
bf9e8429 4539 ret = i915_gem_context_init(dev_priv);
7bcc3777
JN
4540 if (ret)
4541 goto out_unlock;
2fa48d8d 4542
bf9e8429 4543 ret = intel_engines_init(dev_priv);
35a57ffb 4544 if (ret)
7bcc3777 4545 goto out_unlock;
2fa48d8d 4546
bf9e8429 4547 ret = i915_gem_init_hw(dev_priv);
60990320 4548 if (ret == -EIO) {
7e21d648 4549 /* Allow engine initialisation to fail by marking the GPU as
60990320
CW
4550 * wedged. But we only want to do this where the GPU is angry,
4551 * for all other failure, such as an allocation failure, bail.
4552 */
4553 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
821ed7df 4554 i915_gem_set_wedged(dev_priv);
60990320 4555 ret = 0;
1070a42b 4556 }
7bcc3777
JN
4557
4558out_unlock:
5e4f5189 4559 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
bf9e8429 4560 mutex_unlock(&dev_priv->drm.struct_mutex);
1070a42b 4561
60990320 4562 return ret;
1070a42b
CW
4563}
4564
24145517
CW
4565void i915_gem_init_mmio(struct drm_i915_private *i915)
4566{
4567 i915_gem_sanitize(i915);
4568}
4569
8187a2b7 4570void
cb15d9f8 4571i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
8187a2b7 4572{
e2f80391 4573 struct intel_engine_cs *engine;
3b3f1650 4574 enum intel_engine_id id;
8187a2b7 4575
3b3f1650 4576 for_each_engine(engine, dev_priv, id)
117897f4 4577 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
4578}
4579
40ae4e16
ID
4580void
4581i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4582{
49ef5294 4583 int i;
40ae4e16
ID
4584
4585 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4586 !IS_CHERRYVIEW(dev_priv))
4587 dev_priv->num_fence_regs = 32;
73f67aa8
JN
4588 else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4589 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4590 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
40ae4e16
ID
4591 dev_priv->num_fence_regs = 16;
4592 else
4593 dev_priv->num_fence_regs = 8;
4594
c033666a 4595 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
4596 dev_priv->num_fence_regs =
4597 I915_READ(vgtif_reg(avail_rs.fence_num));
4598
4599 /* Initialize fence registers to zero */
49ef5294
CW
4600 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4601 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4602
4603 fence->i915 = dev_priv;
4604 fence->id = i;
4605 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4606 }
4362f4f6 4607 i915_gem_restore_fences(dev_priv);
40ae4e16 4608
4362f4f6 4609 i915_gem_detect_bit_6_swizzle(dev_priv);
40ae4e16
ID
4610}
4611
73cb9701 4612int
cb15d9f8 4613i915_gem_load_init(struct drm_i915_private *dev_priv)
673a394b 4614{
a933568e 4615 int err = -ENOMEM;
42dcedd4 4616
a933568e
TU
4617 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4618 if (!dev_priv->objects)
73cb9701 4619 goto err_out;
73cb9701 4620
a933568e
TU
4621 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4622 if (!dev_priv->vmas)
73cb9701 4623 goto err_objects;
73cb9701 4624
a933568e
TU
4625 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4626 SLAB_HWCACHE_ALIGN |
4627 SLAB_RECLAIM_ACCOUNT |
4628 SLAB_DESTROY_BY_RCU);
4629 if (!dev_priv->requests)
73cb9701 4630 goto err_vmas;
73cb9701 4631
52e54209
CW
4632 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4633 SLAB_HWCACHE_ALIGN |
4634 SLAB_RECLAIM_ACCOUNT);
4635 if (!dev_priv->dependencies)
4636 goto err_requests;
4637
73cb9701
CW
4638 mutex_lock(&dev_priv->drm.struct_mutex);
4639 INIT_LIST_HEAD(&dev_priv->gt.timelines);
bb89485e 4640 err = i915_gem_timeline_init__global(dev_priv);
73cb9701
CW
4641 mutex_unlock(&dev_priv->drm.struct_mutex);
4642 if (err)
52e54209 4643 goto err_dependencies;
673a394b 4644
a33afea5 4645 INIT_LIST_HEAD(&dev_priv->context_list);
fbbd37b3
CW
4646 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4647 init_llist_head(&dev_priv->mm.free_list);
6c085a72
CW
4648 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4649 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4650 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
275f039d 4651 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
67d97da3 4652 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
673a394b 4653 i915_gem_retire_work_handler);
67d97da3 4654 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
b29c19b6 4655 i915_gem_idle_work_handler);
1f15b76f 4656 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1f83fee0 4657 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4658
72bfa19c
CW
4659 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4660
6b95a207 4661 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4662
ce453d81
CW
4663 dev_priv->mm.interruptible = true;
4664
6f633402
JL
4665 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4666
b5add959 4667 spin_lock_init(&dev_priv->fb_tracking.lock);
73cb9701
CW
4668
4669 return 0;
4670
52e54209
CW
4671err_dependencies:
4672 kmem_cache_destroy(dev_priv->dependencies);
73cb9701
CW
4673err_requests:
4674 kmem_cache_destroy(dev_priv->requests);
4675err_vmas:
4676 kmem_cache_destroy(dev_priv->vmas);
4677err_objects:
4678 kmem_cache_destroy(dev_priv->objects);
4679err_out:
4680 return err;
673a394b 4681}
71acb5eb 4682
cb15d9f8 4683void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
d64aa096 4684{
c4d4c1c6 4685 i915_gem_drain_freed_objects(dev_priv);
7d5d59e5 4686 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
c4d4c1c6 4687 WARN_ON(dev_priv->mm.object_count);
7d5d59e5 4688
ea84aa77
MA
4689 mutex_lock(&dev_priv->drm.struct_mutex);
4690 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4691 WARN_ON(!list_empty(&dev_priv->gt.timelines));
4692 mutex_unlock(&dev_priv->drm.struct_mutex);
4693
52e54209 4694 kmem_cache_destroy(dev_priv->dependencies);
d64aa096
ID
4695 kmem_cache_destroy(dev_priv->requests);
4696 kmem_cache_destroy(dev_priv->vmas);
4697 kmem_cache_destroy(dev_priv->objects);
0eafec6d
CW
4698
4699 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4700 rcu_barrier();
d64aa096
ID
4701}
4702
6a800eab
CW
4703int i915_gem_freeze(struct drm_i915_private *dev_priv)
4704{
6a800eab
CW
4705 mutex_lock(&dev_priv->drm.struct_mutex);
4706 i915_gem_shrink_all(dev_priv);
4707 mutex_unlock(&dev_priv->drm.struct_mutex);
4708
6a800eab
CW
4709 return 0;
4710}
4711
461fb99c
CW
4712int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4713{
4714 struct drm_i915_gem_object *obj;
7aab2d53
CW
4715 struct list_head *phases[] = {
4716 &dev_priv->mm.unbound_list,
4717 &dev_priv->mm.bound_list,
4718 NULL
4719 }, **p;
461fb99c
CW
4720
4721 /* Called just before we write the hibernation image.
4722 *
4723 * We need to update the domain tracking to reflect that the CPU
4724 * will be accessing all the pages to create and restore from the
4725 * hibernation, and so upon restoration those pages will be in the
4726 * CPU domain.
4727 *
4728 * To make sure the hibernation image contains the latest state,
4729 * we update that state just before writing out the image.
7aab2d53
CW
4730 *
4731 * To try and reduce the hibernation image, we manually shrink
4732 * the objects as well.
461fb99c
CW
4733 */
4734
6a800eab
CW
4735 mutex_lock(&dev_priv->drm.struct_mutex);
4736 i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
461fb99c 4737
7aab2d53 4738 for (p = phases; *p; p++) {
56cea323 4739 list_for_each_entry(obj, *p, global_link) {
7aab2d53
CW
4740 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4741 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4742 }
461fb99c 4743 }
6a800eab 4744 mutex_unlock(&dev_priv->drm.struct_mutex);
461fb99c
CW
4745
4746 return 0;
4747}
4748
f787a5f5 4749void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4750{
f787a5f5 4751 struct drm_i915_file_private *file_priv = file->driver_priv;
15f7bbc7 4752 struct drm_i915_gem_request *request;
b962442e
EA
4753
4754 /* Clean up our request list when the client is going away, so that
4755 * later retire_requests won't dereference our soon-to-be-gone
4756 * file_priv.
4757 */
1c25595f 4758 spin_lock(&file_priv->mm.lock);
15f7bbc7 4759 list_for_each_entry(request, &file_priv->mm.request_list, client_list)
f787a5f5 4760 request->file_priv = NULL;
1c25595f 4761 spin_unlock(&file_priv->mm.lock);
b29c19b6 4762
2e1b8730 4763 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 4764 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 4765 list_del(&file_priv->rps.link);
8d3afd7d 4766 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 4767 }
b29c19b6
CW
4768}
4769
4770int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4771{
4772 struct drm_i915_file_private *file_priv;
e422b888 4773 int ret;
b29c19b6 4774
c4c29d7b 4775 DRM_DEBUG("\n");
b29c19b6
CW
4776
4777 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4778 if (!file_priv)
4779 return -ENOMEM;
4780
4781 file->driver_priv = file_priv;
f19ec8cb 4782 file_priv->dev_priv = to_i915(dev);
ab0e7ff9 4783 file_priv->file = file;
2e1b8730 4784 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
4785
4786 spin_lock_init(&file_priv->mm.lock);
4787 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 4788
c80ff16e 4789 file_priv->bsd_engine = -1;
de1add36 4790
e422b888
BW
4791 ret = i915_gem_context_open(dev, file);
4792 if (ret)
4793 kfree(file_priv);
b29c19b6 4794
e422b888 4795 return ret;
b29c19b6
CW
4796}
4797
b680c37a
DV
4798/**
4799 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
4800 * @old: current GEM buffer for the frontbuffer slots
4801 * @new: new GEM buffer for the frontbuffer slots
4802 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
4803 *
4804 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4805 * from @old and setting them in @new. Both @old and @new can be NULL.
4806 */
a071fa00
DV
4807void i915_gem_track_fb(struct drm_i915_gem_object *old,
4808 struct drm_i915_gem_object *new,
4809 unsigned frontbuffer_bits)
4810{
faf5bf0a
CW
4811 /* Control of individual bits within the mask are guarded by
4812 * the owning plane->mutex, i.e. we can never see concurrent
4813 * manipulation of individual bits. But since the bitfield as a whole
4814 * is updated using RMW, we need to use atomics in order to update
4815 * the bits.
4816 */
4817 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4818 sizeof(atomic_t) * BITS_PER_BYTE);
4819
a071fa00 4820 if (old) {
faf5bf0a
CW
4821 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4822 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
a071fa00
DV
4823 }
4824
4825 if (new) {
faf5bf0a
CW
4826 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4827 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
a071fa00
DV
4828 }
4829}
4830
ea70299d
DG
4831/* Allocate a new GEM object and fill it with the supplied data */
4832struct drm_i915_gem_object *
12d79d78 4833i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
ea70299d
DG
4834 const void *data, size_t size)
4835{
4836 struct drm_i915_gem_object *obj;
4837 struct sg_table *sg;
4838 size_t bytes;
4839 int ret;
4840
12d79d78 4841 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
fe3db79b 4842 if (IS_ERR(obj))
ea70299d
DG
4843 return obj;
4844
4845 ret = i915_gem_object_set_to_cpu_domain(obj, true);
4846 if (ret)
4847 goto fail;
4848
a4f5ea64 4849 ret = i915_gem_object_pin_pages(obj);
ea70299d
DG
4850 if (ret)
4851 goto fail;
4852
a4f5ea64 4853 sg = obj->mm.pages;
ea70299d 4854 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
a4f5ea64 4855 obj->mm.dirty = true; /* Backing store is now out of date */
ea70299d
DG
4856 i915_gem_object_unpin_pages(obj);
4857
4858 if (WARN_ON(bytes != size)) {
4859 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4860 ret = -EFAULT;
4861 goto fail;
4862 }
4863
4864 return obj;
4865
4866fail:
f8c417cd 4867 i915_gem_object_put(obj);
ea70299d
DG
4868 return ERR_PTR(ret);
4869}
96d77634
CW
4870
4871struct scatterlist *
4872i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4873 unsigned int n,
4874 unsigned int *offset)
4875{
a4f5ea64 4876 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
96d77634
CW
4877 struct scatterlist *sg;
4878 unsigned int idx, count;
4879
4880 might_sleep();
4881 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
a4f5ea64 4882 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
96d77634
CW
4883
4884 /* As we iterate forward through the sg, we record each entry in a
4885 * radixtree for quick repeated (backwards) lookups. If we have seen
4886 * this index previously, we will have an entry for it.
4887 *
4888 * Initial lookup is O(N), but this is amortized to O(1) for
4889 * sequential page access (where each new request is consecutive
4890 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
4891 * i.e. O(1) with a large constant!
4892 */
4893 if (n < READ_ONCE(iter->sg_idx))
4894 goto lookup;
4895
4896 mutex_lock(&iter->lock);
4897
4898 /* We prefer to reuse the last sg so that repeated lookup of this
4899 * (or the subsequent) sg are fast - comparing against the last
4900 * sg is faster than going through the radixtree.
4901 */
4902
4903 sg = iter->sg_pos;
4904 idx = iter->sg_idx;
4905 count = __sg_page_count(sg);
4906
4907 while (idx + count <= n) {
4908 unsigned long exception, i;
4909 int ret;
4910
4911 /* If we cannot allocate and insert this entry, or the
4912 * individual pages from this range, cancel updating the
4913 * sg_idx so that on this lookup we are forced to linearly
4914 * scan onwards, but on future lookups we will try the
4915 * insertion again (in which case we need to be careful of
4916 * the error return reporting that we have already inserted
4917 * this index).
4918 */
4919 ret = radix_tree_insert(&iter->radix, idx, sg);
4920 if (ret && ret != -EEXIST)
4921 goto scan;
4922
4923 exception =
4924 RADIX_TREE_EXCEPTIONAL_ENTRY |
4925 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
4926 for (i = 1; i < count; i++) {
4927 ret = radix_tree_insert(&iter->radix, idx + i,
4928 (void *)exception);
4929 if (ret && ret != -EEXIST)
4930 goto scan;
4931 }
4932
4933 idx += count;
4934 sg = ____sg_next(sg);
4935 count = __sg_page_count(sg);
4936 }
4937
4938scan:
4939 iter->sg_pos = sg;
4940 iter->sg_idx = idx;
4941
4942 mutex_unlock(&iter->lock);
4943
4944 if (unlikely(n < idx)) /* insertion completed by another thread */
4945 goto lookup;
4946
4947 /* In case we failed to insert the entry into the radixtree, we need
4948 * to look beyond the current sg.
4949 */
4950 while (idx + count <= n) {
4951 idx += count;
4952 sg = ____sg_next(sg);
4953 count = __sg_page_count(sg);
4954 }
4955
4956 *offset = n - idx;
4957 return sg;
4958
4959lookup:
4960 rcu_read_lock();
4961
4962 sg = radix_tree_lookup(&iter->radix, n);
4963 GEM_BUG_ON(!sg);
4964
4965 /* If this index is in the middle of multi-page sg entry,
4966 * the radixtree will contain an exceptional entry that points
4967 * to the start of that range. We will return the pointer to
4968 * the base page and the offset of this page within the
4969 * sg entry's range.
4970 */
4971 *offset = 0;
4972 if (unlikely(radix_tree_exception(sg))) {
4973 unsigned long base =
4974 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
4975
4976 sg = radix_tree_lookup(&iter->radix, base);
4977 GEM_BUG_ON(!sg);
4978
4979 *offset = n - base;
4980 }
4981
4982 rcu_read_unlock();
4983
4984 return sg;
4985}
4986
4987struct page *
4988i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
4989{
4990 struct scatterlist *sg;
4991 unsigned int offset;
4992
4993 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
4994
4995 sg = i915_gem_object_get_sg(obj, n, &offset);
4996 return nth_page(sg_page(sg), offset);
4997}
4998
4999/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5000struct page *
5001i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5002 unsigned int n)
5003{
5004 struct page *page;
5005
5006 page = i915_gem_object_get_page(obj, n);
a4f5ea64 5007 if (!obj->mm.dirty)
96d77634
CW
5008 set_page_dirty(page);
5009
5010 return page;
5011}
5012
5013dma_addr_t
5014i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5015 unsigned long n)
5016{
5017 struct scatterlist *sg;
5018 unsigned int offset;
5019
5020 sg = i915_gem_object_get_sg(obj, n, &offset);
5021 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5022}
935a2f77
CW
5023
5024#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5025#include "selftests/scatterlist.c"
66d9cb5d 5026#include "selftests/mock_gem_device.c"
44653988 5027#include "selftests/huge_gem_object.c"
935a2f77 5028#endif