]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Fallback to single PAGE_SIZE segments for DMA remapping
[thirdparty/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
5d723d7a 35#include "intel_frontbuffer.h"
0ccdacf6 36#include "intel_mocs.h"
6b5e90f5 37#include <linux/dma-fence-array.h>
c13d87ea 38#include <linux/reservation.h>
5949eac4 39#include <linux/shmem_fs.h>
5a0e3ad6 40#include <linux/slab.h>
20e4933c 41#include <linux/stop_machine.h>
673a394b 42#include <linux/swap.h>
79e53945 43#include <linux/pci.h>
1286ff73 44#include <linux/dma-buf.h>
673a394b 45
fbbd37b3 46static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
05394f39 47static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 48static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
61050808 49
c76ce038
CW
50static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52{
0031fb96 53 return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
c76ce038
CW
54}
55
2c22569b
CW
56static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57{
b50a5371
AS
58 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
59 return false;
60
2c22569b
CW
61 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
62 return true;
63
64 return obj->pin_display;
65}
66
4f1959ee 67static int
bb6dc8d9 68insert_mappable_node(struct i915_ggtt *ggtt,
4f1959ee
AS
69 struct drm_mm_node *node, u32 size)
70{
71 memset(node, 0, sizeof(*node));
bb6dc8d9 72 return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
85fd4f58
CW
73 size, 0,
74 I915_COLOR_UNEVICTABLE,
bb6dc8d9 75 0, ggtt->mappable_end,
4f1959ee
AS
76 DRM_MM_SEARCH_DEFAULT,
77 DRM_MM_CREATE_DEFAULT);
78}
79
80static void
81remove_mappable_node(struct drm_mm_node *node)
82{
83 drm_mm_remove_node(node);
84}
85
73aa808f
CW
86/* some bookkeeping */
87static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
3ef7f228 88 u64 size)
73aa808f 89{
c20e8355 90 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
91 dev_priv->mm.object_count++;
92 dev_priv->mm.object_memory += size;
c20e8355 93 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
94}
95
96static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
3ef7f228 97 u64 size)
73aa808f 98{
c20e8355 99 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
100 dev_priv->mm.object_count--;
101 dev_priv->mm.object_memory -= size;
c20e8355 102 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
103}
104
21dd3734 105static int
33196ded 106i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 107{
30dbf0c0
CW
108 int ret;
109
4c7d62c6
CW
110 might_sleep();
111
d98c52cf 112 if (!i915_reset_in_progress(error))
30dbf0c0
CW
113 return 0;
114
0a6759c6
DV
115 /*
116 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
117 * userspace. If it takes that long something really bad is going on and
118 * we should simply try to bail out and fail as gracefully as possible.
119 */
1f83fee0 120 ret = wait_event_interruptible_timeout(error->reset_queue,
d98c52cf 121 !i915_reset_in_progress(error),
b52992c0 122 I915_RESET_TIMEOUT);
0a6759c6
DV
123 if (ret == 0) {
124 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
125 return -EIO;
126 } else if (ret < 0) {
30dbf0c0 127 return ret;
d98c52cf
CW
128 } else {
129 return 0;
0a6759c6 130 }
30dbf0c0
CW
131}
132
54cf91dc 133int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 134{
fac5e23e 135 struct drm_i915_private *dev_priv = to_i915(dev);
76c1dec1
CW
136 int ret;
137
33196ded 138 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
139 if (ret)
140 return ret;
141
142 ret = mutex_lock_interruptible(&dev->struct_mutex);
143 if (ret)
144 return ret;
145
76c1dec1
CW
146 return 0;
147}
30dbf0c0 148
5a125c3c
EA
149int
150i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 151 struct drm_file *file)
5a125c3c 152{
72e96d64 153 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 154 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 155 struct drm_i915_gem_get_aperture *args = data;
ca1543be 156 struct i915_vma *vma;
6299f992 157 size_t pinned;
5a125c3c 158
6299f992 159 pinned = 0;
73aa808f 160 mutex_lock(&dev->struct_mutex);
1c7f4bca 161 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
20dfbde4 162 if (i915_vma_is_pinned(vma))
ca1543be 163 pinned += vma->node.size;
1c7f4bca 164 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
20dfbde4 165 if (i915_vma_is_pinned(vma))
ca1543be 166 pinned += vma->node.size;
73aa808f 167 mutex_unlock(&dev->struct_mutex);
5a125c3c 168
72e96d64 169 args->aper_size = ggtt->base.total;
0206e353 170 args->aper_available_size = args->aper_size - pinned;
6299f992 171
5a125c3c
EA
172 return 0;
173}
174
03ac84f1 175static struct sg_table *
6a2c4232 176i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 177{
93c76a3d 178 struct address_space *mapping = obj->base.filp->f_mapping;
dbb4351b 179 drm_dma_handle_t *phys;
6a2c4232
CW
180 struct sg_table *st;
181 struct scatterlist *sg;
dbb4351b 182 char *vaddr;
6a2c4232 183 int i;
00731155 184
6a2c4232 185 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
03ac84f1 186 return ERR_PTR(-EINVAL);
6a2c4232 187
dbb4351b
CW
188 /* Always aligning to the object size, allows a single allocation
189 * to handle all possible callers, and given typical object sizes,
190 * the alignment of the buddy allocation will naturally match.
191 */
192 phys = drm_pci_alloc(obj->base.dev,
193 obj->base.size,
194 roundup_pow_of_two(obj->base.size));
195 if (!phys)
196 return ERR_PTR(-ENOMEM);
197
198 vaddr = phys->vaddr;
6a2c4232
CW
199 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
200 struct page *page;
201 char *src;
202
203 page = shmem_read_mapping_page(mapping, i);
dbb4351b
CW
204 if (IS_ERR(page)) {
205 st = ERR_CAST(page);
206 goto err_phys;
207 }
6a2c4232
CW
208
209 src = kmap_atomic(page);
210 memcpy(vaddr, src, PAGE_SIZE);
211 drm_clflush_virt_range(vaddr, PAGE_SIZE);
212 kunmap_atomic(src);
213
09cbfeaf 214 put_page(page);
6a2c4232
CW
215 vaddr += PAGE_SIZE;
216 }
217
c033666a 218 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
219
220 st = kmalloc(sizeof(*st), GFP_KERNEL);
dbb4351b
CW
221 if (!st) {
222 st = ERR_PTR(-ENOMEM);
223 goto err_phys;
224 }
6a2c4232
CW
225
226 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
227 kfree(st);
dbb4351b
CW
228 st = ERR_PTR(-ENOMEM);
229 goto err_phys;
6a2c4232
CW
230 }
231
232 sg = st->sgl;
233 sg->offset = 0;
234 sg->length = obj->base.size;
00731155 235
dbb4351b 236 sg_dma_address(sg) = phys->busaddr;
6a2c4232
CW
237 sg_dma_len(sg) = obj->base.size;
238
dbb4351b
CW
239 obj->phys_handle = phys;
240 return st;
241
242err_phys:
243 drm_pci_free(obj->base.dev, phys);
03ac84f1 244 return st;
6a2c4232
CW
245}
246
247static void
2b3c8317
CW
248__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
249 struct sg_table *pages)
6a2c4232 250{
a4f5ea64 251 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
00731155 252
a4f5ea64
CW
253 if (obj->mm.madv == I915_MADV_DONTNEED)
254 obj->mm.dirty = false;
6a2c4232 255
05c34837
CW
256 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
257 !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
2b3c8317 258 drm_clflush_sg(pages);
03ac84f1
CW
259
260 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
261 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
262}
263
264static void
265i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
266 struct sg_table *pages)
267{
2b3c8317 268 __i915_gem_object_release_shmem(obj, pages);
03ac84f1 269
a4f5ea64 270 if (obj->mm.dirty) {
93c76a3d 271 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232 272 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
273 int i;
274
275 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
276 struct page *page;
277 char *dst;
278
279 page = shmem_read_mapping_page(mapping, i);
280 if (IS_ERR(page))
281 continue;
282
283 dst = kmap_atomic(page);
284 drm_clflush_virt_range(vaddr, PAGE_SIZE);
285 memcpy(dst, vaddr, PAGE_SIZE);
286 kunmap_atomic(dst);
287
288 set_page_dirty(page);
a4f5ea64 289 if (obj->mm.madv == I915_MADV_WILLNEED)
00731155 290 mark_page_accessed(page);
09cbfeaf 291 put_page(page);
00731155
CW
292 vaddr += PAGE_SIZE;
293 }
a4f5ea64 294 obj->mm.dirty = false;
00731155
CW
295 }
296
03ac84f1
CW
297 sg_free_table(pages);
298 kfree(pages);
dbb4351b
CW
299
300 drm_pci_free(obj->base.dev, obj->phys_handle);
6a2c4232
CW
301}
302
303static void
304i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
305{
a4f5ea64 306 i915_gem_object_unpin_pages(obj);
6a2c4232
CW
307}
308
309static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
310 .get_pages = i915_gem_object_get_pages_phys,
311 .put_pages = i915_gem_object_put_pages_phys,
312 .release = i915_gem_object_release_phys,
313};
314
35a9611c 315int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
aa653a68
CW
316{
317 struct i915_vma *vma;
318 LIST_HEAD(still_in_list);
02bef8f9
CW
319 int ret;
320
321 lockdep_assert_held(&obj->base.dev->struct_mutex);
aa653a68 322
02bef8f9
CW
323 /* Closed vma are removed from the obj->vma_list - but they may
324 * still have an active binding on the object. To remove those we
325 * must wait for all rendering to complete to the object (as unbinding
326 * must anyway), and retire the requests.
aa653a68 327 */
e95433c7
CW
328 ret = i915_gem_object_wait(obj,
329 I915_WAIT_INTERRUPTIBLE |
330 I915_WAIT_LOCKED |
331 I915_WAIT_ALL,
332 MAX_SCHEDULE_TIMEOUT,
333 NULL);
02bef8f9
CW
334 if (ret)
335 return ret;
336
337 i915_gem_retire_requests(to_i915(obj->base.dev));
338
aa653a68
CW
339 while ((vma = list_first_entry_or_null(&obj->vma_list,
340 struct i915_vma,
341 obj_link))) {
342 list_move_tail(&vma->obj_link, &still_in_list);
343 ret = i915_vma_unbind(vma);
344 if (ret)
345 break;
346 }
347 list_splice(&still_in_list, &obj->vma_list);
348
349 return ret;
350}
351
e95433c7
CW
352static long
353i915_gem_object_wait_fence(struct dma_fence *fence,
354 unsigned int flags,
355 long timeout,
356 struct intel_rps_client *rps)
00e60f26 357{
e95433c7 358 struct drm_i915_gem_request *rq;
00e60f26 359
e95433c7 360 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
00e60f26 361
e95433c7
CW
362 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
363 return timeout;
364
365 if (!dma_fence_is_i915(fence))
366 return dma_fence_wait_timeout(fence,
367 flags & I915_WAIT_INTERRUPTIBLE,
368 timeout);
369
370 rq = to_request(fence);
371 if (i915_gem_request_completed(rq))
372 goto out;
373
374 /* This client is about to stall waiting for the GPU. In many cases
375 * this is undesirable and limits the throughput of the system, as
376 * many clients cannot continue processing user input/output whilst
377 * blocked. RPS autotuning may take tens of milliseconds to respond
378 * to the GPU load and thus incurs additional latency for the client.
379 * We can circumvent that by promoting the GPU frequency to maximum
380 * before we wait. This makes the GPU throttle up much more quickly
381 * (good for benchmarks and user experience, e.g. window animations),
382 * but at a cost of spending more power processing the workload
383 * (bad for battery). Not all clients even want their results
384 * immediately and for them we should just let the GPU select its own
385 * frequency to maximise efficiency. To prevent a single client from
386 * forcing the clocks too high for the whole system, we only allow
387 * each client to waitboost once in a busy period.
388 */
389 if (rps) {
390 if (INTEL_GEN(rq->i915) >= 6)
391 gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
392 else
393 rps = NULL;
00e60f26
CW
394 }
395
e95433c7
CW
396 timeout = i915_wait_request(rq, flags, timeout);
397
398out:
399 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
400 i915_gem_request_retire_upto(rq);
401
cb399eab 402 if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
e95433c7
CW
403 /* The GPU is now idle and this client has stalled.
404 * Since no other client has submitted a request in the
405 * meantime, assume that this client is the only one
406 * supplying work to the GPU but is unable to keep that
407 * work supplied because it is waiting. Since the GPU is
408 * then never kept fully busy, RPS autoclocking will
409 * keep the clocks relatively low, causing further delays.
410 * Compensate by giving the synchronous client credit for
411 * a waitboost next time.
412 */
413 spin_lock(&rq->i915->rps.client_lock);
414 list_del_init(&rps->link);
415 spin_unlock(&rq->i915->rps.client_lock);
416 }
417
418 return timeout;
419}
420
421static long
422i915_gem_object_wait_reservation(struct reservation_object *resv,
423 unsigned int flags,
424 long timeout,
425 struct intel_rps_client *rps)
426{
427 struct dma_fence *excl;
428
429 if (flags & I915_WAIT_ALL) {
430 struct dma_fence **shared;
431 unsigned int count, i;
00e60f26
CW
432 int ret;
433
e95433c7
CW
434 ret = reservation_object_get_fences_rcu(resv,
435 &excl, &count, &shared);
00e60f26
CW
436 if (ret)
437 return ret;
00e60f26 438
e95433c7
CW
439 for (i = 0; i < count; i++) {
440 timeout = i915_gem_object_wait_fence(shared[i],
441 flags, timeout,
442 rps);
443 if (timeout <= 0)
444 break;
00e60f26 445
e95433c7
CW
446 dma_fence_put(shared[i]);
447 }
448
449 for (; i < count; i++)
450 dma_fence_put(shared[i]);
451 kfree(shared);
452 } else {
453 excl = reservation_object_get_excl_rcu(resv);
00e60f26
CW
454 }
455
e95433c7
CW
456 if (excl && timeout > 0)
457 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
458
459 dma_fence_put(excl);
460
461 return timeout;
00e60f26
CW
462}
463
6b5e90f5
CW
464static void __fence_set_priority(struct dma_fence *fence, int prio)
465{
466 struct drm_i915_gem_request *rq;
467 struct intel_engine_cs *engine;
468
469 if (!dma_fence_is_i915(fence))
470 return;
471
472 rq = to_request(fence);
473 engine = rq->engine;
474 if (!engine->schedule)
475 return;
476
477 engine->schedule(rq, prio);
478}
479
480static void fence_set_priority(struct dma_fence *fence, int prio)
481{
482 /* Recurse once into a fence-array */
483 if (dma_fence_is_array(fence)) {
484 struct dma_fence_array *array = to_dma_fence_array(fence);
485 int i;
486
487 for (i = 0; i < array->num_fences; i++)
488 __fence_set_priority(array->fences[i], prio);
489 } else {
490 __fence_set_priority(fence, prio);
491 }
492}
493
494int
495i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
496 unsigned int flags,
497 int prio)
498{
499 struct dma_fence *excl;
500
501 if (flags & I915_WAIT_ALL) {
502 struct dma_fence **shared;
503 unsigned int count, i;
504 int ret;
505
506 ret = reservation_object_get_fences_rcu(obj->resv,
507 &excl, &count, &shared);
508 if (ret)
509 return ret;
510
511 for (i = 0; i < count; i++) {
512 fence_set_priority(shared[i], prio);
513 dma_fence_put(shared[i]);
514 }
515
516 kfree(shared);
517 } else {
518 excl = reservation_object_get_excl_rcu(obj->resv);
519 }
520
521 if (excl) {
522 fence_set_priority(excl, prio);
523 dma_fence_put(excl);
524 }
525 return 0;
526}
527
e95433c7
CW
528/**
529 * Waits for rendering to the object to be completed
530 * @obj: i915 gem object
531 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
532 * @timeout: how long to wait
533 * @rps: client (user process) to charge for any waitboosting
00e60f26 534 */
e95433c7
CW
535int
536i915_gem_object_wait(struct drm_i915_gem_object *obj,
537 unsigned int flags,
538 long timeout,
539 struct intel_rps_client *rps)
00e60f26 540{
e95433c7
CW
541 might_sleep();
542#if IS_ENABLED(CONFIG_LOCKDEP)
543 GEM_BUG_ON(debug_locks &&
544 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
545 !!(flags & I915_WAIT_LOCKED));
546#endif
547 GEM_BUG_ON(timeout < 0);
00e60f26 548
d07f0e59
CW
549 timeout = i915_gem_object_wait_reservation(obj->resv,
550 flags, timeout,
551 rps);
e95433c7 552 return timeout < 0 ? timeout : 0;
00e60f26
CW
553}
554
555static struct intel_rps_client *to_rps_client(struct drm_file *file)
556{
557 struct drm_i915_file_private *fpriv = file->driver_priv;
558
559 return &fpriv->rps;
560}
561
00731155
CW
562int
563i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
564 int align)
565{
6a2c4232 566 int ret;
00731155 567
dbb4351b
CW
568 if (align > obj->base.size)
569 return -EINVAL;
00731155 570
dbb4351b 571 if (obj->ops == &i915_gem_phys_ops)
00731155 572 return 0;
00731155 573
a4f5ea64 574 if (obj->mm.madv != I915_MADV_WILLNEED)
00731155
CW
575 return -EFAULT;
576
577 if (obj->base.filp == NULL)
578 return -EINVAL;
579
4717ca9e
CW
580 ret = i915_gem_object_unbind(obj);
581 if (ret)
582 return ret;
583
548625ee 584 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
03ac84f1
CW
585 if (obj->mm.pages)
586 return -EBUSY;
6a2c4232 587
6a2c4232
CW
588 obj->ops = &i915_gem_phys_ops;
589
a4f5ea64 590 return i915_gem_object_pin_pages(obj);
00731155
CW
591}
592
593static int
594i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
595 struct drm_i915_gem_pwrite *args,
03ac84f1 596 struct drm_file *file)
00731155
CW
597{
598 struct drm_device *dev = obj->base.dev;
599 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 600 char __user *user_data = u64_to_user_ptr(args->data_ptr);
e95433c7 601 int ret;
6a2c4232
CW
602
603 /* We manually control the domain here and pretend that it
604 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
605 */
e95433c7
CW
606 lockdep_assert_held(&obj->base.dev->struct_mutex);
607 ret = i915_gem_object_wait(obj,
608 I915_WAIT_INTERRUPTIBLE |
609 I915_WAIT_LOCKED |
610 I915_WAIT_ALL,
611 MAX_SCHEDULE_TIMEOUT,
03ac84f1 612 to_rps_client(file));
6a2c4232
CW
613 if (ret)
614 return ret;
00731155 615
77a0d1ca 616 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
617 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
618 unsigned long unwritten;
619
620 /* The physical object once assigned is fixed for the lifetime
621 * of the obj, so we can safely drop the lock and continue
622 * to access vaddr.
623 */
624 mutex_unlock(&dev->struct_mutex);
625 unwritten = copy_from_user(vaddr, user_data, args->size);
626 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
627 if (unwritten) {
628 ret = -EFAULT;
629 goto out;
630 }
00731155
CW
631 }
632
6a2c4232 633 drm_clflush_virt_range(vaddr, args->size);
c033666a 634 i915_gem_chipset_flush(to_i915(dev));
063e4e6b
PZ
635
636out:
de152b62 637 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 638 return ret;
00731155
CW
639}
640
187685cb 641void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
42dcedd4 642{
efab6d8d 643 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
644}
645
646void i915_gem_object_free(struct drm_i915_gem_object *obj)
647{
fac5e23e 648 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
efab6d8d 649 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
650}
651
ff72145b
DA
652static int
653i915_gem_create(struct drm_file *file,
12d79d78 654 struct drm_i915_private *dev_priv,
ff72145b
DA
655 uint64_t size,
656 uint32_t *handle_p)
673a394b 657{
05394f39 658 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
659 int ret;
660 u32 handle;
673a394b 661
ff72145b 662 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
663 if (size == 0)
664 return -EINVAL;
673a394b
EA
665
666 /* Allocate the new object */
12d79d78 667 obj = i915_gem_object_create(dev_priv, size);
fe3db79b
CW
668 if (IS_ERR(obj))
669 return PTR_ERR(obj);
673a394b 670
05394f39 671 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 672 /* drop reference from allocate - handle holds it now */
f0cd5182 673 i915_gem_object_put(obj);
d861e338
DV
674 if (ret)
675 return ret;
202f2fef 676
ff72145b 677 *handle_p = handle;
673a394b
EA
678 return 0;
679}
680
ff72145b
DA
681int
682i915_gem_dumb_create(struct drm_file *file,
683 struct drm_device *dev,
684 struct drm_mode_create_dumb *args)
685{
686 /* have to work out size/pitch and return them */
de45eaf7 687 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b 688 args->size = args->pitch * args->height;
12d79d78 689 return i915_gem_create(file, to_i915(dev),
da6b51d0 690 args->size, &args->handle);
ff72145b
DA
691}
692
ff72145b
DA
693/**
694 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
695 * @dev: drm device pointer
696 * @data: ioctl data blob
697 * @file: drm file pointer
ff72145b
DA
698 */
699int
700i915_gem_create_ioctl(struct drm_device *dev, void *data,
701 struct drm_file *file)
702{
12d79d78 703 struct drm_i915_private *dev_priv = to_i915(dev);
ff72145b 704 struct drm_i915_gem_create *args = data;
63ed2cb2 705
12d79d78 706 i915_gem_flush_free_objects(dev_priv);
fbbd37b3 707
12d79d78 708 return i915_gem_create(file, dev_priv,
da6b51d0 709 args->size, &args->handle);
ff72145b
DA
710}
711
8461d226
DV
712static inline int
713__copy_to_user_swizzled(char __user *cpu_vaddr,
714 const char *gpu_vaddr, int gpu_offset,
715 int length)
716{
717 int ret, cpu_offset = 0;
718
719 while (length > 0) {
720 int cacheline_end = ALIGN(gpu_offset + 1, 64);
721 int this_length = min(cacheline_end - gpu_offset, length);
722 int swizzled_gpu_offset = gpu_offset ^ 64;
723
724 ret = __copy_to_user(cpu_vaddr + cpu_offset,
725 gpu_vaddr + swizzled_gpu_offset,
726 this_length);
727 if (ret)
728 return ret + length;
729
730 cpu_offset += this_length;
731 gpu_offset += this_length;
732 length -= this_length;
733 }
734
735 return 0;
736}
737
8c59967c 738static inline int
4f0c7cfb
BW
739__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
740 const char __user *cpu_vaddr,
8c59967c
DV
741 int length)
742{
743 int ret, cpu_offset = 0;
744
745 while (length > 0) {
746 int cacheline_end = ALIGN(gpu_offset + 1, 64);
747 int this_length = min(cacheline_end - gpu_offset, length);
748 int swizzled_gpu_offset = gpu_offset ^ 64;
749
750 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
751 cpu_vaddr + cpu_offset,
752 this_length);
753 if (ret)
754 return ret + length;
755
756 cpu_offset += this_length;
757 gpu_offset += this_length;
758 length -= this_length;
759 }
760
761 return 0;
762}
763
4c914c0c
BV
764/*
765 * Pins the specified object's pages and synchronizes the object with
766 * GPU accesses. Sets needs_clflush to non-zero if the caller should
767 * flush the object from the CPU cache.
768 */
769int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
43394c7d 770 unsigned int *needs_clflush)
4c914c0c
BV
771{
772 int ret;
773
e95433c7 774 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c914c0c 775
e95433c7 776 *needs_clflush = 0;
43394c7d
CW
777 if (!i915_gem_object_has_struct_page(obj))
778 return -ENODEV;
4c914c0c 779
e95433c7
CW
780 ret = i915_gem_object_wait(obj,
781 I915_WAIT_INTERRUPTIBLE |
782 I915_WAIT_LOCKED,
783 MAX_SCHEDULE_TIMEOUT,
784 NULL);
c13d87ea
CW
785 if (ret)
786 return ret;
787
a4f5ea64 788 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
789 if (ret)
790 return ret;
791
a314d5cb
CW
792 i915_gem_object_flush_gtt_write_domain(obj);
793
43394c7d
CW
794 /* If we're not in the cpu read domain, set ourself into the gtt
795 * read domain and manually flush cachelines (if required). This
796 * optimizes for the case when the gpu will dirty the data
797 * anyway again before the next pread happens.
798 */
799 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
4c914c0c
BV
800 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
801 obj->cache_level);
43394c7d 802
43394c7d
CW
803 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
804 ret = i915_gem_object_set_to_cpu_domain(obj, false);
9764951e
CW
805 if (ret)
806 goto err_unpin;
807
43394c7d 808 *needs_clflush = 0;
4c914c0c
BV
809 }
810
9764951e 811 /* return with the pages pinned */
43394c7d 812 return 0;
9764951e
CW
813
814err_unpin:
815 i915_gem_object_unpin_pages(obj);
816 return ret;
43394c7d
CW
817}
818
819int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
820 unsigned int *needs_clflush)
821{
822 int ret;
823
e95433c7
CW
824 lockdep_assert_held(&obj->base.dev->struct_mutex);
825
43394c7d
CW
826 *needs_clflush = 0;
827 if (!i915_gem_object_has_struct_page(obj))
828 return -ENODEV;
829
e95433c7
CW
830 ret = i915_gem_object_wait(obj,
831 I915_WAIT_INTERRUPTIBLE |
832 I915_WAIT_LOCKED |
833 I915_WAIT_ALL,
834 MAX_SCHEDULE_TIMEOUT,
835 NULL);
43394c7d
CW
836 if (ret)
837 return ret;
838
a4f5ea64 839 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
840 if (ret)
841 return ret;
842
a314d5cb
CW
843 i915_gem_object_flush_gtt_write_domain(obj);
844
43394c7d
CW
845 /* If we're not in the cpu write domain, set ourself into the
846 * gtt write domain and manually flush cachelines (as required).
847 * This optimizes for the case when the gpu will use the data
848 * right away and we therefore have to clflush anyway.
849 */
850 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
851 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
852
853 /* Same trick applies to invalidate partially written cachelines read
854 * before writing.
855 */
856 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
857 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
858 obj->cache_level);
859
43394c7d
CW
860 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
861 ret = i915_gem_object_set_to_cpu_domain(obj, true);
9764951e
CW
862 if (ret)
863 goto err_unpin;
864
43394c7d
CW
865 *needs_clflush = 0;
866 }
867
868 if ((*needs_clflush & CLFLUSH_AFTER) == 0)
869 obj->cache_dirty = true;
870
871 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
a4f5ea64 872 obj->mm.dirty = true;
9764951e 873 /* return with the pages pinned */
43394c7d 874 return 0;
9764951e
CW
875
876err_unpin:
877 i915_gem_object_unpin_pages(obj);
878 return ret;
4c914c0c
BV
879}
880
23c18c71
DV
881static void
882shmem_clflush_swizzled_range(char *addr, unsigned long length,
883 bool swizzled)
884{
e7e58eb5 885 if (unlikely(swizzled)) {
23c18c71
DV
886 unsigned long start = (unsigned long) addr;
887 unsigned long end = (unsigned long) addr + length;
888
889 /* For swizzling simply ensure that we always flush both
890 * channels. Lame, but simple and it works. Swizzled
891 * pwrite/pread is far from a hotpath - current userspace
892 * doesn't use it at all. */
893 start = round_down(start, 128);
894 end = round_up(end, 128);
895
896 drm_clflush_virt_range((void *)start, end - start);
897 } else {
898 drm_clflush_virt_range(addr, length);
899 }
900
901}
902
d174bd64
DV
903/* Only difference to the fast-path function is that this can handle bit17
904 * and uses non-atomic copy and kmap functions. */
905static int
bb6dc8d9 906shmem_pread_slow(struct page *page, int offset, int length,
d174bd64
DV
907 char __user *user_data,
908 bool page_do_bit17_swizzling, bool needs_clflush)
909{
910 char *vaddr;
911 int ret;
912
913 vaddr = kmap(page);
914 if (needs_clflush)
bb6dc8d9 915 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 916 page_do_bit17_swizzling);
d174bd64
DV
917
918 if (page_do_bit17_swizzling)
bb6dc8d9 919 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
d174bd64 920 else
bb6dc8d9 921 ret = __copy_to_user(user_data, vaddr + offset, length);
d174bd64
DV
922 kunmap(page);
923
f60d7f0c 924 return ret ? - EFAULT : 0;
d174bd64
DV
925}
926
bb6dc8d9
CW
927static int
928shmem_pread(struct page *page, int offset, int length, char __user *user_data,
929 bool page_do_bit17_swizzling, bool needs_clflush)
930{
931 int ret;
932
933 ret = -ENODEV;
934 if (!page_do_bit17_swizzling) {
935 char *vaddr = kmap_atomic(page);
936
937 if (needs_clflush)
938 drm_clflush_virt_range(vaddr + offset, length);
939 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
940 kunmap_atomic(vaddr);
941 }
942 if (ret == 0)
943 return 0;
944
945 return shmem_pread_slow(page, offset, length, user_data,
946 page_do_bit17_swizzling, needs_clflush);
947}
948
949static int
950i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
951 struct drm_i915_gem_pread *args)
952{
953 char __user *user_data;
954 u64 remain;
955 unsigned int obj_do_bit17_swizzling;
956 unsigned int needs_clflush;
957 unsigned int idx, offset;
958 int ret;
959
960 obj_do_bit17_swizzling = 0;
961 if (i915_gem_object_needs_bit17_swizzle(obj))
962 obj_do_bit17_swizzling = BIT(17);
963
964 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
965 if (ret)
966 return ret;
967
968 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
969 mutex_unlock(&obj->base.dev->struct_mutex);
970 if (ret)
971 return ret;
972
973 remain = args->size;
974 user_data = u64_to_user_ptr(args->data_ptr);
975 offset = offset_in_page(args->offset);
976 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
977 struct page *page = i915_gem_object_get_page(obj, idx);
978 int length;
979
980 length = remain;
981 if (offset + length > PAGE_SIZE)
982 length = PAGE_SIZE - offset;
983
984 ret = shmem_pread(page, offset, length, user_data,
985 page_to_phys(page) & obj_do_bit17_swizzling,
986 needs_clflush);
987 if (ret)
988 break;
989
990 remain -= length;
991 user_data += length;
992 offset = 0;
993 }
994
995 i915_gem_obj_finish_shmem_access(obj);
996 return ret;
997}
998
999static inline bool
1000gtt_user_read(struct io_mapping *mapping,
1001 loff_t base, int offset,
1002 char __user *user_data, int length)
b50a5371 1003{
b50a5371 1004 void *vaddr;
bb6dc8d9 1005 unsigned long unwritten;
b50a5371 1006
b50a5371 1007 /* We can use the cpu mem copy function because this is X86. */
bb6dc8d9
CW
1008 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1009 unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1010 io_mapping_unmap_atomic(vaddr);
1011 if (unwritten) {
1012 vaddr = (void __force *)
1013 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1014 unwritten = copy_to_user(user_data, vaddr + offset, length);
1015 io_mapping_unmap(vaddr);
1016 }
b50a5371
AS
1017 return unwritten;
1018}
1019
1020static int
bb6dc8d9
CW
1021i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1022 const struct drm_i915_gem_pread *args)
b50a5371 1023{
bb6dc8d9
CW
1024 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1025 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 1026 struct drm_mm_node node;
bb6dc8d9
CW
1027 struct i915_vma *vma;
1028 void __user *user_data;
1029 u64 remain, offset;
b50a5371
AS
1030 int ret;
1031
bb6dc8d9
CW
1032 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1033 if (ret)
1034 return ret;
1035
1036 intel_runtime_pm_get(i915);
1037 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1038 PIN_MAPPABLE | PIN_NONBLOCK);
18034584
CW
1039 if (!IS_ERR(vma)) {
1040 node.start = i915_ggtt_offset(vma);
1041 node.allocated = false;
49ef5294 1042 ret = i915_vma_put_fence(vma);
18034584
CW
1043 if (ret) {
1044 i915_vma_unpin(vma);
1045 vma = ERR_PTR(ret);
1046 }
1047 }
058d88c4 1048 if (IS_ERR(vma)) {
bb6dc8d9 1049 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
b50a5371 1050 if (ret)
bb6dc8d9
CW
1051 goto out_unlock;
1052 GEM_BUG_ON(!node.allocated);
b50a5371
AS
1053 }
1054
1055 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1056 if (ret)
1057 goto out_unpin;
1058
bb6dc8d9 1059 mutex_unlock(&i915->drm.struct_mutex);
b50a5371 1060
bb6dc8d9
CW
1061 user_data = u64_to_user_ptr(args->data_ptr);
1062 remain = args->size;
1063 offset = args->offset;
b50a5371
AS
1064
1065 while (remain > 0) {
1066 /* Operation in this page
1067 *
1068 * page_base = page offset within aperture
1069 * page_offset = offset within page
1070 * page_length = bytes to copy for this page
1071 */
1072 u32 page_base = node.start;
1073 unsigned page_offset = offset_in_page(offset);
1074 unsigned page_length = PAGE_SIZE - page_offset;
1075 page_length = remain < page_length ? remain : page_length;
1076 if (node.allocated) {
1077 wmb();
1078 ggtt->base.insert_page(&ggtt->base,
1079 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
bb6dc8d9 1080 node.start, I915_CACHE_NONE, 0);
b50a5371
AS
1081 wmb();
1082 } else {
1083 page_base += offset & PAGE_MASK;
1084 }
bb6dc8d9
CW
1085
1086 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1087 user_data, page_length)) {
b50a5371
AS
1088 ret = -EFAULT;
1089 break;
1090 }
1091
1092 remain -= page_length;
1093 user_data += page_length;
1094 offset += page_length;
1095 }
1096
bb6dc8d9 1097 mutex_lock(&i915->drm.struct_mutex);
b50a5371
AS
1098out_unpin:
1099 if (node.allocated) {
1100 wmb();
1101 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1102 node.start, node.size);
b50a5371
AS
1103 remove_mappable_node(&node);
1104 } else {
058d88c4 1105 i915_vma_unpin(vma);
b50a5371 1106 }
bb6dc8d9
CW
1107out_unlock:
1108 intel_runtime_pm_put(i915);
1109 mutex_unlock(&i915->drm.struct_mutex);
f60d7f0c 1110
eb01459f
EA
1111 return ret;
1112}
1113
673a394b
EA
1114/**
1115 * Reads data from the object referenced by handle.
14bb2c11
TU
1116 * @dev: drm device pointer
1117 * @data: ioctl data blob
1118 * @file: drm file pointer
673a394b
EA
1119 *
1120 * On error, the contents of *data are undefined.
1121 */
1122int
1123i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 1124 struct drm_file *file)
673a394b
EA
1125{
1126 struct drm_i915_gem_pread *args = data;
05394f39 1127 struct drm_i915_gem_object *obj;
bb6dc8d9 1128 int ret;
673a394b 1129
51311d0a
CW
1130 if (args->size == 0)
1131 return 0;
1132
1133 if (!access_ok(VERIFY_WRITE,
3ed605bc 1134 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1135 args->size))
1136 return -EFAULT;
1137
03ac0642 1138 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1139 if (!obj)
1140 return -ENOENT;
673a394b 1141
7dcd2499 1142 /* Bounds check source. */
966d5bf5 1143 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
ce9d419d 1144 ret = -EINVAL;
bb6dc8d9 1145 goto out;
ce9d419d
CW
1146 }
1147
db53a302
CW
1148 trace_i915_gem_object_pread(obj, args->offset, args->size);
1149
e95433c7
CW
1150 ret = i915_gem_object_wait(obj,
1151 I915_WAIT_INTERRUPTIBLE,
1152 MAX_SCHEDULE_TIMEOUT,
1153 to_rps_client(file));
258a5ede 1154 if (ret)
bb6dc8d9 1155 goto out;
258a5ede 1156
bb6dc8d9 1157 ret = i915_gem_object_pin_pages(obj);
258a5ede 1158 if (ret)
bb6dc8d9 1159 goto out;
673a394b 1160
bb6dc8d9 1161 ret = i915_gem_shmem_pread(obj, args);
9c870d03 1162 if (ret == -EFAULT || ret == -ENODEV)
bb6dc8d9 1163 ret = i915_gem_gtt_pread(obj, args);
b50a5371 1164
bb6dc8d9
CW
1165 i915_gem_object_unpin_pages(obj);
1166out:
f0cd5182 1167 i915_gem_object_put(obj);
eb01459f 1168 return ret;
673a394b
EA
1169}
1170
0839ccb8
KP
1171/* This is the fast write path which cannot handle
1172 * page faults in the source data
9b7530cc 1173 */
0839ccb8 1174
fe115628
CW
1175static inline bool
1176ggtt_write(struct io_mapping *mapping,
1177 loff_t base, int offset,
1178 char __user *user_data, int length)
9b7530cc 1179{
4f0c7cfb 1180 void *vaddr;
0839ccb8 1181 unsigned long unwritten;
9b7530cc 1182
4f0c7cfb 1183 /* We can use the cpu mem copy function because this is X86. */
fe115628
CW
1184 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1185 unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
0839ccb8 1186 user_data, length);
fe115628
CW
1187 io_mapping_unmap_atomic(vaddr);
1188 if (unwritten) {
1189 vaddr = (void __force *)
1190 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1191 unwritten = copy_from_user(vaddr + offset, user_data, length);
1192 io_mapping_unmap(vaddr);
1193 }
bb6dc8d9 1194
bb6dc8d9
CW
1195 return unwritten;
1196}
1197
3de09aa3
EA
1198/**
1199 * This is the fast pwrite path, where we copy the data directly from the
1200 * user into the GTT, uncached.
fe115628 1201 * @obj: i915 GEM object
14bb2c11 1202 * @args: pwrite arguments structure
3de09aa3 1203 */
673a394b 1204static int
fe115628
CW
1205i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1206 const struct drm_i915_gem_pwrite *args)
673a394b 1207{
fe115628 1208 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4f1959ee
AS
1209 struct i915_ggtt *ggtt = &i915->ggtt;
1210 struct drm_mm_node node;
fe115628
CW
1211 struct i915_vma *vma;
1212 u64 remain, offset;
1213 void __user *user_data;
4f1959ee 1214 int ret;
b50a5371 1215
fe115628
CW
1216 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1217 if (ret)
1218 return ret;
935aaa69 1219
9c870d03 1220 intel_runtime_pm_get(i915);
058d88c4 1221 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
de895082 1222 PIN_MAPPABLE | PIN_NONBLOCK);
18034584
CW
1223 if (!IS_ERR(vma)) {
1224 node.start = i915_ggtt_offset(vma);
1225 node.allocated = false;
49ef5294 1226 ret = i915_vma_put_fence(vma);
18034584
CW
1227 if (ret) {
1228 i915_vma_unpin(vma);
1229 vma = ERR_PTR(ret);
1230 }
1231 }
058d88c4 1232 if (IS_ERR(vma)) {
bb6dc8d9 1233 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
4f1959ee 1234 if (ret)
fe115628
CW
1235 goto out_unlock;
1236 GEM_BUG_ON(!node.allocated);
4f1959ee 1237 }
935aaa69
DV
1238
1239 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1240 if (ret)
1241 goto out_unpin;
1242
fe115628
CW
1243 mutex_unlock(&i915->drm.struct_mutex);
1244
b19482d7 1245 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 1246
4f1959ee
AS
1247 user_data = u64_to_user_ptr(args->data_ptr);
1248 offset = args->offset;
1249 remain = args->size;
1250 while (remain) {
673a394b
EA
1251 /* Operation in this page
1252 *
0839ccb8
KP
1253 * page_base = page offset within aperture
1254 * page_offset = offset within page
1255 * page_length = bytes to copy for this page
673a394b 1256 */
4f1959ee 1257 u32 page_base = node.start;
bb6dc8d9
CW
1258 unsigned int page_offset = offset_in_page(offset);
1259 unsigned int page_length = PAGE_SIZE - page_offset;
4f1959ee
AS
1260 page_length = remain < page_length ? remain : page_length;
1261 if (node.allocated) {
1262 wmb(); /* flush the write before we modify the GGTT */
1263 ggtt->base.insert_page(&ggtt->base,
1264 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1265 node.start, I915_CACHE_NONE, 0);
1266 wmb(); /* flush modifications to the GGTT (insert_page) */
1267 } else {
1268 page_base += offset & PAGE_MASK;
1269 }
0839ccb8 1270 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
1271 * source page isn't available. Return the error and we'll
1272 * retry in the slow path.
b50a5371
AS
1273 * If the object is non-shmem backed, we retry again with the
1274 * path that handles page fault.
0839ccb8 1275 */
fe115628
CW
1276 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1277 user_data, page_length)) {
1278 ret = -EFAULT;
1279 break;
935aaa69 1280 }
673a394b 1281
0839ccb8
KP
1282 remain -= page_length;
1283 user_data += page_length;
1284 offset += page_length;
673a394b 1285 }
b19482d7 1286 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
fe115628
CW
1287
1288 mutex_lock(&i915->drm.struct_mutex);
935aaa69 1289out_unpin:
4f1959ee
AS
1290 if (node.allocated) {
1291 wmb();
1292 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1293 node.start, node.size);
4f1959ee
AS
1294 remove_mappable_node(&node);
1295 } else {
058d88c4 1296 i915_vma_unpin(vma);
4f1959ee 1297 }
fe115628 1298out_unlock:
9c870d03 1299 intel_runtime_pm_put(i915);
fe115628 1300 mutex_unlock(&i915->drm.struct_mutex);
3de09aa3 1301 return ret;
673a394b
EA
1302}
1303
3043c60c 1304static int
fe115628 1305shmem_pwrite_slow(struct page *page, int offset, int length,
d174bd64
DV
1306 char __user *user_data,
1307 bool page_do_bit17_swizzling,
1308 bool needs_clflush_before,
1309 bool needs_clflush_after)
673a394b 1310{
d174bd64
DV
1311 char *vaddr;
1312 int ret;
e5281ccd 1313
d174bd64 1314 vaddr = kmap(page);
e7e58eb5 1315 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
fe115628 1316 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1317 page_do_bit17_swizzling);
d174bd64 1318 if (page_do_bit17_swizzling)
fe115628
CW
1319 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1320 length);
d174bd64 1321 else
fe115628 1322 ret = __copy_from_user(vaddr + offset, user_data, length);
d174bd64 1323 if (needs_clflush_after)
fe115628 1324 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1325 page_do_bit17_swizzling);
d174bd64 1326 kunmap(page);
40123c1f 1327
755d2218 1328 return ret ? -EFAULT : 0;
40123c1f
EA
1329}
1330
fe115628
CW
1331/* Per-page copy function for the shmem pwrite fastpath.
1332 * Flushes invalid cachelines before writing to the target if
1333 * needs_clflush_before is set and flushes out any written cachelines after
1334 * writing if needs_clflush is set.
1335 */
40123c1f 1336static int
fe115628
CW
1337shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1338 bool page_do_bit17_swizzling,
1339 bool needs_clflush_before,
1340 bool needs_clflush_after)
40123c1f 1341{
fe115628
CW
1342 int ret;
1343
1344 ret = -ENODEV;
1345 if (!page_do_bit17_swizzling) {
1346 char *vaddr = kmap_atomic(page);
1347
1348 if (needs_clflush_before)
1349 drm_clflush_virt_range(vaddr + offset, len);
1350 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1351 if (needs_clflush_after)
1352 drm_clflush_virt_range(vaddr + offset, len);
1353
1354 kunmap_atomic(vaddr);
1355 }
1356 if (ret == 0)
1357 return ret;
1358
1359 return shmem_pwrite_slow(page, offset, len, user_data,
1360 page_do_bit17_swizzling,
1361 needs_clflush_before,
1362 needs_clflush_after);
1363}
1364
1365static int
1366i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1367 const struct drm_i915_gem_pwrite *args)
1368{
1369 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1370 void __user *user_data;
1371 u64 remain;
1372 unsigned int obj_do_bit17_swizzling;
1373 unsigned int partial_cacheline_write;
43394c7d 1374 unsigned int needs_clflush;
fe115628
CW
1375 unsigned int offset, idx;
1376 int ret;
40123c1f 1377
fe115628 1378 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
755d2218
CW
1379 if (ret)
1380 return ret;
1381
fe115628
CW
1382 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1383 mutex_unlock(&i915->drm.struct_mutex);
1384 if (ret)
1385 return ret;
673a394b 1386
fe115628
CW
1387 obj_do_bit17_swizzling = 0;
1388 if (i915_gem_object_needs_bit17_swizzle(obj))
1389 obj_do_bit17_swizzling = BIT(17);
e5281ccd 1390
fe115628
CW
1391 /* If we don't overwrite a cacheline completely we need to be
1392 * careful to have up-to-date data by first clflushing. Don't
1393 * overcomplicate things and flush the entire patch.
1394 */
1395 partial_cacheline_write = 0;
1396 if (needs_clflush & CLFLUSH_BEFORE)
1397 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
9da3da66 1398
fe115628
CW
1399 user_data = u64_to_user_ptr(args->data_ptr);
1400 remain = args->size;
1401 offset = offset_in_page(args->offset);
1402 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1403 struct page *page = i915_gem_object_get_page(obj, idx);
1404 int length;
40123c1f 1405
fe115628
CW
1406 length = remain;
1407 if (offset + length > PAGE_SIZE)
1408 length = PAGE_SIZE - offset;
755d2218 1409
fe115628
CW
1410 ret = shmem_pwrite(page, offset, length, user_data,
1411 page_to_phys(page) & obj_do_bit17_swizzling,
1412 (offset | length) & partial_cacheline_write,
1413 needs_clflush & CLFLUSH_AFTER);
755d2218 1414 if (ret)
fe115628 1415 break;
755d2218 1416
fe115628
CW
1417 remain -= length;
1418 user_data += length;
1419 offset = 0;
8c59967c 1420 }
673a394b 1421
de152b62 1422 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
fe115628 1423 i915_gem_obj_finish_shmem_access(obj);
40123c1f 1424 return ret;
673a394b
EA
1425}
1426
1427/**
1428 * Writes data to the object referenced by handle.
14bb2c11
TU
1429 * @dev: drm device
1430 * @data: ioctl data blob
1431 * @file: drm file
673a394b
EA
1432 *
1433 * On error, the contents of the buffer that were to be modified are undefined.
1434 */
1435int
1436i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1437 struct drm_file *file)
673a394b
EA
1438{
1439 struct drm_i915_gem_pwrite *args = data;
05394f39 1440 struct drm_i915_gem_object *obj;
51311d0a
CW
1441 int ret;
1442
1443 if (args->size == 0)
1444 return 0;
1445
1446 if (!access_ok(VERIFY_READ,
3ed605bc 1447 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1448 args->size))
1449 return -EFAULT;
1450
03ac0642 1451 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1452 if (!obj)
1453 return -ENOENT;
673a394b 1454
7dcd2499 1455 /* Bounds check destination. */
966d5bf5 1456 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
ce9d419d 1457 ret = -EINVAL;
258a5ede 1458 goto err;
ce9d419d
CW
1459 }
1460
db53a302
CW
1461 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1462
e95433c7
CW
1463 ret = i915_gem_object_wait(obj,
1464 I915_WAIT_INTERRUPTIBLE |
1465 I915_WAIT_ALL,
1466 MAX_SCHEDULE_TIMEOUT,
1467 to_rps_client(file));
258a5ede
CW
1468 if (ret)
1469 goto err;
1470
fe115628 1471 ret = i915_gem_object_pin_pages(obj);
258a5ede 1472 if (ret)
fe115628 1473 goto err;
258a5ede 1474
935aaa69 1475 ret = -EFAULT;
673a394b
EA
1476 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1477 * it would end up going through the fenced access, and we'll get
1478 * different detiling behavior between reading and writing.
1479 * pread/pwrite currently are reading and writing from the CPU
1480 * perspective, requiring manual detiling by the client.
1481 */
6eae0059 1482 if (!i915_gem_object_has_struct_page(obj) ||
9c870d03 1483 cpu_write_needs_clflush(obj))
935aaa69
DV
1484 /* Note that the gtt paths might fail with non-page-backed user
1485 * pointers (e.g. gtt mappings when moving data between
9c870d03
CW
1486 * textures). Fallback to the shmem path in that case.
1487 */
fe115628 1488 ret = i915_gem_gtt_pwrite_fast(obj, args);
673a394b 1489
d1054ee4 1490 if (ret == -EFAULT || ret == -ENOSPC) {
6a2c4232
CW
1491 if (obj->phys_handle)
1492 ret = i915_gem_phys_pwrite(obj, args, file);
b50a5371 1493 else
fe115628 1494 ret = i915_gem_shmem_pwrite(obj, args);
6a2c4232 1495 }
5c0480f2 1496
fe115628 1497 i915_gem_object_unpin_pages(obj);
258a5ede 1498err:
f0cd5182 1499 i915_gem_object_put(obj);
258a5ede 1500 return ret;
673a394b
EA
1501}
1502
d243ad82 1503static inline enum fb_op_origin
aeecc969
CW
1504write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1505{
50349247
CW
1506 return (domain == I915_GEM_DOMAIN_GTT ?
1507 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
aeecc969
CW
1508}
1509
40e62d5d
CW
1510static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1511{
1512 struct drm_i915_private *i915;
1513 struct list_head *list;
1514 struct i915_vma *vma;
1515
1516 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1517 if (!i915_vma_is_ggtt(vma))
1518 continue;
1519
1520 if (i915_vma_is_active(vma))
1521 continue;
1522
1523 if (!drm_mm_node_allocated(&vma->node))
1524 continue;
1525
1526 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1527 }
1528
1529 i915 = to_i915(obj->base.dev);
1530 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
56cea323 1531 list_move_tail(&obj->global_link, list);
40e62d5d
CW
1532}
1533
673a394b 1534/**
2ef7eeaa
EA
1535 * Called when user space prepares to use an object with the CPU, either
1536 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1537 * @dev: drm device
1538 * @data: ioctl data blob
1539 * @file: drm file
673a394b
EA
1540 */
1541int
1542i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1543 struct drm_file *file)
673a394b
EA
1544{
1545 struct drm_i915_gem_set_domain *args = data;
05394f39 1546 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1547 uint32_t read_domains = args->read_domains;
1548 uint32_t write_domain = args->write_domain;
40e62d5d 1549 int err;
673a394b 1550
2ef7eeaa 1551 /* Only handle setting domains to types used by the CPU. */
b8f9096d 1552 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1553 return -EINVAL;
1554
1555 /* Having something in the write domain implies it's in the read
1556 * domain, and only that read domain. Enforce that in the request.
1557 */
1558 if (write_domain != 0 && read_domains != write_domain)
1559 return -EINVAL;
1560
03ac0642 1561 obj = i915_gem_object_lookup(file, args->handle);
b8f9096d
CW
1562 if (!obj)
1563 return -ENOENT;
673a394b 1564
3236f57a
CW
1565 /* Try to flush the object off the GPU without holding the lock.
1566 * We will repeat the flush holding the lock in the normal manner
1567 * to catch cases where we are gazumped.
1568 */
40e62d5d 1569 err = i915_gem_object_wait(obj,
e95433c7
CW
1570 I915_WAIT_INTERRUPTIBLE |
1571 (write_domain ? I915_WAIT_ALL : 0),
1572 MAX_SCHEDULE_TIMEOUT,
1573 to_rps_client(file));
40e62d5d 1574 if (err)
f0cd5182 1575 goto out;
b8f9096d 1576
40e62d5d
CW
1577 /* Flush and acquire obj->pages so that we are coherent through
1578 * direct access in memory with previous cached writes through
1579 * shmemfs and that our cache domain tracking remains valid.
1580 * For example, if the obj->filp was moved to swap without us
1581 * being notified and releasing the pages, we would mistakenly
1582 * continue to assume that the obj remained out of the CPU cached
1583 * domain.
1584 */
1585 err = i915_gem_object_pin_pages(obj);
1586 if (err)
f0cd5182 1587 goto out;
40e62d5d
CW
1588
1589 err = i915_mutex_lock_interruptible(dev);
1590 if (err)
f0cd5182 1591 goto out_unpin;
3236f57a 1592
43566ded 1593 if (read_domains & I915_GEM_DOMAIN_GTT)
40e62d5d 1594 err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1595 else
40e62d5d 1596 err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1597
40e62d5d
CW
1598 /* And bump the LRU for this access */
1599 i915_gem_object_bump_inactive_ggtt(obj);
031b698a 1600
673a394b 1601 mutex_unlock(&dev->struct_mutex);
b8f9096d 1602
40e62d5d
CW
1603 if (write_domain != 0)
1604 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1605
f0cd5182 1606out_unpin:
40e62d5d 1607 i915_gem_object_unpin_pages(obj);
f0cd5182
CW
1608out:
1609 i915_gem_object_put(obj);
40e62d5d 1610 return err;
673a394b
EA
1611}
1612
1613/**
1614 * Called when user space has done writes to this buffer
14bb2c11
TU
1615 * @dev: drm device
1616 * @data: ioctl data blob
1617 * @file: drm file
673a394b
EA
1618 */
1619int
1620i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1621 struct drm_file *file)
673a394b
EA
1622{
1623 struct drm_i915_gem_sw_finish *args = data;
05394f39 1624 struct drm_i915_gem_object *obj;
c21724cc 1625 int err = 0;
1d7cfea1 1626
03ac0642 1627 obj = i915_gem_object_lookup(file, args->handle);
c21724cc
CW
1628 if (!obj)
1629 return -ENOENT;
673a394b 1630
673a394b 1631 /* Pinned buffers may be scanout, so flush the cache */
c21724cc
CW
1632 if (READ_ONCE(obj->pin_display)) {
1633 err = i915_mutex_lock_interruptible(dev);
1634 if (!err) {
1635 i915_gem_object_flush_cpu_write_domain(obj);
1636 mutex_unlock(&dev->struct_mutex);
1637 }
1638 }
e47c68e9 1639
f0cd5182 1640 i915_gem_object_put(obj);
c21724cc 1641 return err;
673a394b
EA
1642}
1643
1644/**
14bb2c11
TU
1645 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1646 * it is mapped to.
1647 * @dev: drm device
1648 * @data: ioctl data blob
1649 * @file: drm file
673a394b
EA
1650 *
1651 * While the mapping holds a reference on the contents of the object, it doesn't
1652 * imply a ref on the object itself.
34367381
DV
1653 *
1654 * IMPORTANT:
1655 *
1656 * DRM driver writers who look a this function as an example for how to do GEM
1657 * mmap support, please don't implement mmap support like here. The modern way
1658 * to implement DRM mmap support is with an mmap offset ioctl (like
1659 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1660 * That way debug tooling like valgrind will understand what's going on, hiding
1661 * the mmap call in a driver private ioctl will break that. The i915 driver only
1662 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1663 */
1664int
1665i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1666 struct drm_file *file)
673a394b
EA
1667{
1668 struct drm_i915_gem_mmap *args = data;
03ac0642 1669 struct drm_i915_gem_object *obj;
673a394b
EA
1670 unsigned long addr;
1671
1816f923
AG
1672 if (args->flags & ~(I915_MMAP_WC))
1673 return -EINVAL;
1674
568a58e5 1675 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1676 return -ENODEV;
1677
03ac0642
CW
1678 obj = i915_gem_object_lookup(file, args->handle);
1679 if (!obj)
bf79cb91 1680 return -ENOENT;
673a394b 1681
1286ff73
DV
1682 /* prime objects have no backing filp to GEM mmap
1683 * pages from.
1684 */
03ac0642 1685 if (!obj->base.filp) {
f0cd5182 1686 i915_gem_object_put(obj);
1286ff73
DV
1687 return -EINVAL;
1688 }
1689
03ac0642 1690 addr = vm_mmap(obj->base.filp, 0, args->size,
673a394b
EA
1691 PROT_READ | PROT_WRITE, MAP_SHARED,
1692 args->offset);
1816f923
AG
1693 if (args->flags & I915_MMAP_WC) {
1694 struct mm_struct *mm = current->mm;
1695 struct vm_area_struct *vma;
1696
80a89a5e 1697 if (down_write_killable(&mm->mmap_sem)) {
f0cd5182 1698 i915_gem_object_put(obj);
80a89a5e
MH
1699 return -EINTR;
1700 }
1816f923
AG
1701 vma = find_vma(mm, addr);
1702 if (vma)
1703 vma->vm_page_prot =
1704 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1705 else
1706 addr = -ENOMEM;
1707 up_write(&mm->mmap_sem);
aeecc969
CW
1708
1709 /* This may race, but that's ok, it only gets set */
50349247 1710 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1816f923 1711 }
f0cd5182 1712 i915_gem_object_put(obj);
673a394b
EA
1713 if (IS_ERR((void *)addr))
1714 return addr;
1715
1716 args->addr_ptr = (uint64_t) addr;
1717
1718 return 0;
1719}
1720
03af84fe
CW
1721static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1722{
1723 u64 size;
1724
1725 size = i915_gem_object_get_stride(obj);
1726 size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1727
1728 return size >> PAGE_SHIFT;
1729}
1730
4cc69075
CW
1731/**
1732 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1733 *
1734 * A history of the GTT mmap interface:
1735 *
1736 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1737 * aligned and suitable for fencing, and still fit into the available
1738 * mappable space left by the pinned display objects. A classic problem
1739 * we called the page-fault-of-doom where we would ping-pong between
1740 * two objects that could not fit inside the GTT and so the memcpy
1741 * would page one object in at the expense of the other between every
1742 * single byte.
1743 *
1744 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1745 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1746 * object is too large for the available space (or simply too large
1747 * for the mappable aperture!), a view is created instead and faulted
1748 * into userspace. (This view is aligned and sized appropriately for
1749 * fenced access.)
1750 *
1751 * Restrictions:
1752 *
1753 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1754 * hangs on some architectures, corruption on others. An attempt to service
1755 * a GTT page fault from a snoopable object will generate a SIGBUS.
1756 *
1757 * * the object must be able to fit into RAM (physical memory, though no
1758 * limited to the mappable aperture).
1759 *
1760 *
1761 * Caveats:
1762 *
1763 * * a new GTT page fault will synchronize rendering from the GPU and flush
1764 * all data to system memory. Subsequent access will not be synchronized.
1765 *
1766 * * all mappings are revoked on runtime device suspend.
1767 *
1768 * * there are only 8, 16 or 32 fence registers to share between all users
1769 * (older machines require fence register for display and blitter access
1770 * as well). Contention of the fence registers will cause the previous users
1771 * to be unmapped and any new access will generate new page faults.
1772 *
1773 * * running out of memory while servicing a fault may generate a SIGBUS,
1774 * rather than the expected SIGSEGV.
1775 */
1776int i915_gem_mmap_gtt_version(void)
1777{
1778 return 1;
1779}
1780
de151cf6
JB
1781/**
1782 * i915_gem_fault - fault a page into the GTT
058d88c4 1783 * @area: CPU VMA in question
d9072a3e 1784 * @vmf: fault info
de151cf6
JB
1785 *
1786 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1787 * from userspace. The fault handler takes care of binding the object to
1788 * the GTT (if needed), allocating and programming a fence register (again,
1789 * only if needed based on whether the old reg is still valid or the object
1790 * is tiled) and inserting a new PTE into the faulting process.
1791 *
1792 * Note that the faulting process may involve evicting existing objects
1793 * from the GTT and/or fence registers to make room. So performance may
1794 * suffer if the GTT working set is large or there are few fence registers
1795 * left.
4cc69075
CW
1796 *
1797 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1798 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
de151cf6 1799 */
058d88c4 1800int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
de151cf6 1801{
03af84fe 1802#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
058d88c4 1803 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
05394f39 1804 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1805 struct drm_i915_private *dev_priv = to_i915(dev);
1806 struct i915_ggtt *ggtt = &dev_priv->ggtt;
b8f9096d 1807 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
058d88c4 1808 struct i915_vma *vma;
de151cf6 1809 pgoff_t page_offset;
82118877 1810 unsigned int flags;
b8f9096d 1811 int ret;
f65c9168 1812
de151cf6 1813 /* We don't use vmf->pgoff since that has the fake offset */
058d88c4 1814 page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
de151cf6
JB
1815 PAGE_SHIFT;
1816
db53a302
CW
1817 trace_i915_gem_object_fault(obj, page_offset, true, write);
1818
6e4930f6 1819 /* Try to flush the object off the GPU first without holding the lock.
b8f9096d 1820 * Upon acquiring the lock, we will perform our sanity checks and then
6e4930f6
CW
1821 * repeat the flush holding the lock in the normal manner to catch cases
1822 * where we are gazumped.
1823 */
e95433c7
CW
1824 ret = i915_gem_object_wait(obj,
1825 I915_WAIT_INTERRUPTIBLE,
1826 MAX_SCHEDULE_TIMEOUT,
1827 NULL);
6e4930f6 1828 if (ret)
b8f9096d
CW
1829 goto err;
1830
40e62d5d
CW
1831 ret = i915_gem_object_pin_pages(obj);
1832 if (ret)
1833 goto err;
1834
b8f9096d
CW
1835 intel_runtime_pm_get(dev_priv);
1836
1837 ret = i915_mutex_lock_interruptible(dev);
1838 if (ret)
1839 goto err_rpm;
6e4930f6 1840
eb119bd6 1841 /* Access to snoopable pages through the GTT is incoherent. */
0031fb96 1842 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
ddeff6ee 1843 ret = -EFAULT;
b8f9096d 1844 goto err_unlock;
eb119bd6
CW
1845 }
1846
82118877
CW
1847 /* If the object is smaller than a couple of partial vma, it is
1848 * not worth only creating a single partial vma - we may as well
1849 * clear enough space for the full object.
1850 */
1851 flags = PIN_MAPPABLE;
1852 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1853 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1854
a61007a8 1855 /* Now pin it into the GTT as needed */
82118877 1856 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
a61007a8
CW
1857 if (IS_ERR(vma)) {
1858 struct i915_ggtt_view view;
03af84fe
CW
1859 unsigned int chunk_size;
1860
a61007a8 1861 /* Use a partial view if it is bigger than available space */
03af84fe
CW
1862 chunk_size = MIN_CHUNK_PAGES;
1863 if (i915_gem_object_is_tiled(obj))
0ef723cb 1864 chunk_size = roundup(chunk_size, tile_row_pages(obj));
e7ded2d7 1865
c5ad54cf
JL
1866 memset(&view, 0, sizeof(view));
1867 view.type = I915_GGTT_VIEW_PARTIAL;
1868 view.params.partial.offset = rounddown(page_offset, chunk_size);
1869 view.params.partial.size =
a61007a8 1870 min_t(unsigned int, chunk_size,
908b1232 1871 vma_pages(area) - view.params.partial.offset);
c5ad54cf 1872
aa136d9d
CW
1873 /* If the partial covers the entire object, just create a
1874 * normal VMA.
1875 */
1876 if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1877 view.type = I915_GGTT_VIEW_NORMAL;
1878
50349247
CW
1879 /* Userspace is now writing through an untracked VMA, abandon
1880 * all hope that the hardware is able to track future writes.
1881 */
1882 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1883
a61007a8
CW
1884 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1885 }
058d88c4
CW
1886 if (IS_ERR(vma)) {
1887 ret = PTR_ERR(vma);
b8f9096d 1888 goto err_unlock;
058d88c4 1889 }
4a684a41 1890
c9839303
CW
1891 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1892 if (ret)
b8f9096d 1893 goto err_unpin;
74898d7e 1894
49ef5294 1895 ret = i915_vma_get_fence(vma);
d9e86c0e 1896 if (ret)
b8f9096d 1897 goto err_unpin;
7d1c4804 1898
275f039d 1899 /* Mark as being mmapped into userspace for later revocation */
9c870d03 1900 assert_rpm_wakelock_held(dev_priv);
275f039d
CW
1901 if (list_empty(&obj->userfault_link))
1902 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
275f039d 1903
b90b91d8 1904 /* Finally, remap it using the new GTT offset */
c58305af
CW
1905 ret = remap_io_mapping(area,
1906 area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
1907 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1908 min_t(u64, vma->size, area->vm_end - area->vm_start),
1909 &ggtt->mappable);
a61007a8 1910
b8f9096d 1911err_unpin:
058d88c4 1912 __i915_vma_unpin(vma);
b8f9096d 1913err_unlock:
de151cf6 1914 mutex_unlock(&dev->struct_mutex);
b8f9096d
CW
1915err_rpm:
1916 intel_runtime_pm_put(dev_priv);
40e62d5d 1917 i915_gem_object_unpin_pages(obj);
b8f9096d 1918err:
de151cf6 1919 switch (ret) {
d9bc7e9f 1920 case -EIO:
2232f031
DV
1921 /*
1922 * We eat errors when the gpu is terminally wedged to avoid
1923 * userspace unduly crashing (gl has no provisions for mmaps to
1924 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1925 * and so needs to be reported.
1926 */
1927 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1928 ret = VM_FAULT_SIGBUS;
1929 break;
1930 }
045e769a 1931 case -EAGAIN:
571c608d
DV
1932 /*
1933 * EAGAIN means the gpu is hung and we'll wait for the error
1934 * handler to reset everything when re-faulting in
1935 * i915_mutex_lock_interruptible.
d9bc7e9f 1936 */
c715089f
CW
1937 case 0:
1938 case -ERESTARTSYS:
bed636ab 1939 case -EINTR:
e79e0fe3
DR
1940 case -EBUSY:
1941 /*
1942 * EBUSY is ok: this just means that another thread
1943 * already did the job.
1944 */
f65c9168
PZ
1945 ret = VM_FAULT_NOPAGE;
1946 break;
de151cf6 1947 case -ENOMEM:
f65c9168
PZ
1948 ret = VM_FAULT_OOM;
1949 break;
a7c2e1aa 1950 case -ENOSPC:
45d67817 1951 case -EFAULT:
f65c9168
PZ
1952 ret = VM_FAULT_SIGBUS;
1953 break;
de151cf6 1954 default:
a7c2e1aa 1955 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1956 ret = VM_FAULT_SIGBUS;
1957 break;
de151cf6 1958 }
f65c9168 1959 return ret;
de151cf6
JB
1960}
1961
901782b2
CW
1962/**
1963 * i915_gem_release_mmap - remove physical page mappings
1964 * @obj: obj in question
1965 *
af901ca1 1966 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1967 * relinquish ownership of the pages back to the system.
1968 *
1969 * It is vital that we remove the page mapping if we have mapped a tiled
1970 * object through the GTT and then lose the fence register due to
1971 * resource pressure. Similarly if the object has been moved out of the
1972 * aperture, than pages mapped into userspace must be revoked. Removing the
1973 * mapping will then trigger a page fault on the next user access, allowing
1974 * fixup by i915_gem_fault().
1975 */
d05ca301 1976void
05394f39 1977i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1978{
275f039d 1979 struct drm_i915_private *i915 = to_i915(obj->base.dev);
275f039d 1980
349f2ccf
CW
1981 /* Serialisation between user GTT access and our code depends upon
1982 * revoking the CPU's PTE whilst the mutex is held. The next user
1983 * pagefault then has to wait until we release the mutex.
9c870d03
CW
1984 *
1985 * Note that RPM complicates somewhat by adding an additional
1986 * requirement that operations to the GGTT be made holding the RPM
1987 * wakeref.
349f2ccf 1988 */
275f039d 1989 lockdep_assert_held(&i915->drm.struct_mutex);
9c870d03 1990 intel_runtime_pm_get(i915);
349f2ccf 1991
3594a3e2 1992 if (list_empty(&obj->userfault_link))
9c870d03 1993 goto out;
901782b2 1994
3594a3e2 1995 list_del_init(&obj->userfault_link);
6796cb16
DR
1996 drm_vma_node_unmap(&obj->base.vma_node,
1997 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
1998
1999 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2000 * memory transactions from userspace before we return. The TLB
2001 * flushing implied above by changing the PTE above *should* be
2002 * sufficient, an extra barrier here just provides us with a bit
2003 * of paranoid documentation about our requirement to serialise
2004 * memory writes before touching registers / GSM.
2005 */
2006 wmb();
9c870d03
CW
2007
2008out:
2009 intel_runtime_pm_put(i915);
901782b2
CW
2010}
2011
7c108fd8 2012void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
eedd10f4 2013{
3594a3e2 2014 struct drm_i915_gem_object *obj, *on;
7c108fd8 2015 int i;
eedd10f4 2016
3594a3e2
CW
2017 /*
2018 * Only called during RPM suspend. All users of the userfault_list
2019 * must be holding an RPM wakeref to ensure that this can not
2020 * run concurrently with themselves (and use the struct_mutex for
2021 * protection between themselves).
2022 */
275f039d 2023
3594a3e2
CW
2024 list_for_each_entry_safe(obj, on,
2025 &dev_priv->mm.userfault_list, userfault_link) {
2026 list_del_init(&obj->userfault_link);
275f039d
CW
2027 drm_vma_node_unmap(&obj->base.vma_node,
2028 obj->base.dev->anon_inode->i_mapping);
275f039d 2029 }
7c108fd8
CW
2030
2031 /* The fence will be lost when the device powers down. If any were
2032 * in use by hardware (i.e. they are pinned), we should not be powering
2033 * down! All other fences will be reacquired by the user upon waking.
2034 */
2035 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2036 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2037
2038 if (WARN_ON(reg->pin_count))
2039 continue;
2040
2041 if (!reg->vma)
2042 continue;
2043
2044 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2045 reg->dirty = true;
2046 }
eedd10f4
CW
2047}
2048
ad1a7d20
CW
2049/**
2050 * i915_gem_get_ggtt_size - return required global GTT size for an object
a9f1481f 2051 * @dev_priv: i915 device
ad1a7d20
CW
2052 * @size: object size
2053 * @tiling_mode: tiling mode
2054 *
2055 * Return the required global GTT size for an object, taking into account
2056 * potential fence register mapping.
2057 */
a9f1481f
CW
2058u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
2059 u64 size, int tiling_mode)
92b88aeb 2060{
ad1a7d20 2061 u64 ggtt_size;
92b88aeb 2062
ad1a7d20
CW
2063 GEM_BUG_ON(size == 0);
2064
a9f1481f 2065 if (INTEL_GEN(dev_priv) >= 4 ||
e28f8711
CW
2066 tiling_mode == I915_TILING_NONE)
2067 return size;
92b88aeb
CW
2068
2069 /* Previous chips need a power-of-two fence region when tiling */
a9f1481f 2070 if (IS_GEN3(dev_priv))
ad1a7d20 2071 ggtt_size = 1024*1024;
92b88aeb 2072 else
ad1a7d20 2073 ggtt_size = 512*1024;
92b88aeb 2074
ad1a7d20
CW
2075 while (ggtt_size < size)
2076 ggtt_size <<= 1;
92b88aeb 2077
ad1a7d20 2078 return ggtt_size;
92b88aeb
CW
2079}
2080
de151cf6 2081/**
ad1a7d20 2082 * i915_gem_get_ggtt_alignment - return required global GTT alignment
a9f1481f 2083 * @dev_priv: i915 device
14bb2c11
TU
2084 * @size: object size
2085 * @tiling_mode: tiling mode
ad1a7d20 2086 * @fenced: is fenced alignment required or not
de151cf6 2087 *
ad1a7d20 2088 * Return the required global GTT alignment for an object, taking into account
5e783301 2089 * potential fence register mapping.
de151cf6 2090 */
a9f1481f 2091u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
ad1a7d20 2092 int tiling_mode, bool fenced)
de151cf6 2093{
ad1a7d20
CW
2094 GEM_BUG_ON(size == 0);
2095
de151cf6
JB
2096 /*
2097 * Minimum alignment is 4k (GTT page size), but might be greater
2098 * if a fence register is needed for the object.
2099 */
73f67aa8
JN
2100 if (INTEL_GEN(dev_priv) >= 4 ||
2101 (!fenced && (IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))) ||
e28f8711 2102 tiling_mode == I915_TILING_NONE)
de151cf6
JB
2103 return 4096;
2104
a00b10c3
CW
2105 /*
2106 * Previous chips need to be aligned to the size of the smallest
2107 * fence register that can contain the object.
2108 */
a9f1481f 2109 return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
a00b10c3
CW
2110}
2111
d8cb5086
CW
2112static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2113{
fac5e23e 2114 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
f3f6184c 2115 int err;
da494d7c 2116
f3f6184c
CW
2117 err = drm_gem_create_mmap_offset(&obj->base);
2118 if (!err)
2119 return 0;
d8cb5086 2120
f3f6184c
CW
2121 /* We can idle the GPU locklessly to flush stale objects, but in order
2122 * to claim that space for ourselves, we need to take the big
2123 * struct_mutex to free the requests+objects and allocate our slot.
d8cb5086 2124 */
ea746f36 2125 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
f3f6184c
CW
2126 if (err)
2127 return err;
2128
2129 err = i915_mutex_lock_interruptible(&dev_priv->drm);
2130 if (!err) {
2131 i915_gem_retire_requests(dev_priv);
2132 err = drm_gem_create_mmap_offset(&obj->base);
2133 mutex_unlock(&dev_priv->drm.struct_mutex);
2134 }
da494d7c 2135
f3f6184c 2136 return err;
d8cb5086
CW
2137}
2138
2139static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2140{
d8cb5086
CW
2141 drm_gem_free_mmap_offset(&obj->base);
2142}
2143
da6b51d0 2144int
ff72145b
DA
2145i915_gem_mmap_gtt(struct drm_file *file,
2146 struct drm_device *dev,
da6b51d0 2147 uint32_t handle,
ff72145b 2148 uint64_t *offset)
de151cf6 2149{
05394f39 2150 struct drm_i915_gem_object *obj;
de151cf6
JB
2151 int ret;
2152
03ac0642 2153 obj = i915_gem_object_lookup(file, handle);
f3f6184c
CW
2154 if (!obj)
2155 return -ENOENT;
ab18282d 2156
d8cb5086 2157 ret = i915_gem_object_create_mmap_offset(obj);
f3f6184c
CW
2158 if (ret == 0)
2159 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2160
f0cd5182 2161 i915_gem_object_put(obj);
1d7cfea1 2162 return ret;
de151cf6
JB
2163}
2164
ff72145b
DA
2165/**
2166 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2167 * @dev: DRM device
2168 * @data: GTT mapping ioctl data
2169 * @file: GEM object info
2170 *
2171 * Simply returns the fake offset to userspace so it can mmap it.
2172 * The mmap call will end up in drm_gem_mmap(), which will set things
2173 * up so we can get faults in the handler above.
2174 *
2175 * The fault handler will take care of binding the object into the GTT
2176 * (since it may have been evicted to make room for something), allocating
2177 * a fence register, and mapping the appropriate aperture address into
2178 * userspace.
2179 */
2180int
2181i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2182 struct drm_file *file)
2183{
2184 struct drm_i915_gem_mmap_gtt *args = data;
2185
da6b51d0 2186 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2187}
2188
225067ee
DV
2189/* Immediately discard the backing storage */
2190static void
2191i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2192{
4d6294bf 2193 i915_gem_object_free_mmap_offset(obj);
1286ff73 2194
4d6294bf
CW
2195 if (obj->base.filp == NULL)
2196 return;
e5281ccd 2197
225067ee
DV
2198 /* Our goal here is to return as much of the memory as
2199 * is possible back to the system as we are called from OOM.
2200 * To do this we must instruct the shmfs to drop all of its
2201 * backing pages, *now*.
2202 */
5537252b 2203 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
a4f5ea64 2204 obj->mm.madv = __I915_MADV_PURGED;
225067ee 2205}
e5281ccd 2206
5537252b 2207/* Try to discard unwanted pages */
03ac84f1 2208void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2209{
5537252b
CW
2210 struct address_space *mapping;
2211
1233e2db
CW
2212 lockdep_assert_held(&obj->mm.lock);
2213 GEM_BUG_ON(obj->mm.pages);
2214
a4f5ea64 2215 switch (obj->mm.madv) {
5537252b
CW
2216 case I915_MADV_DONTNEED:
2217 i915_gem_object_truncate(obj);
2218 case __I915_MADV_PURGED:
2219 return;
2220 }
2221
2222 if (obj->base.filp == NULL)
2223 return;
2224
93c76a3d 2225 mapping = obj->base.filp->f_mapping,
5537252b 2226 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2227}
2228
5cdf5881 2229static void
03ac84f1
CW
2230i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2231 struct sg_table *pages)
673a394b 2232{
85d1225e
DG
2233 struct sgt_iter sgt_iter;
2234 struct page *page;
1286ff73 2235
2b3c8317 2236 __i915_gem_object_release_shmem(obj, pages);
673a394b 2237
03ac84f1 2238 i915_gem_gtt_finish_pages(obj, pages);
e2273302 2239
6dacfd2f 2240 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2241 i915_gem_object_save_bit_17_swizzle(obj, pages);
280b713b 2242
03ac84f1 2243 for_each_sgt_page(page, sgt_iter, pages) {
a4f5ea64 2244 if (obj->mm.dirty)
9da3da66 2245 set_page_dirty(page);
3ef94daa 2246
a4f5ea64 2247 if (obj->mm.madv == I915_MADV_WILLNEED)
9da3da66 2248 mark_page_accessed(page);
3ef94daa 2249
09cbfeaf 2250 put_page(page);
3ef94daa 2251 }
a4f5ea64 2252 obj->mm.dirty = false;
673a394b 2253
03ac84f1
CW
2254 sg_free_table(pages);
2255 kfree(pages);
37e680a1 2256}
6c085a72 2257
96d77634
CW
2258static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2259{
2260 struct radix_tree_iter iter;
2261 void **slot;
2262
a4f5ea64
CW
2263 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2264 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
96d77634
CW
2265}
2266
548625ee
CW
2267void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2268 enum i915_mm_subclass subclass)
37e680a1 2269{
03ac84f1 2270 struct sg_table *pages;
37e680a1 2271
a4f5ea64 2272 if (i915_gem_object_has_pinned_pages(obj))
03ac84f1 2273 return;
a5570178 2274
15717de2 2275 GEM_BUG_ON(obj->bind_count);
1233e2db
CW
2276 if (!READ_ONCE(obj->mm.pages))
2277 return;
2278
2279 /* May be called by shrinker from within get_pages() (on another bo) */
548625ee 2280 mutex_lock_nested(&obj->mm.lock, subclass);
1233e2db
CW
2281 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2282 goto unlock;
3e123027 2283
a2165e31
CW
2284 /* ->put_pages might need to allocate memory for the bit17 swizzle
2285 * array, hence protect them from being reaped by removing them from gtt
2286 * lists early. */
03ac84f1
CW
2287 pages = fetch_and_zero(&obj->mm.pages);
2288 GEM_BUG_ON(!pages);
a2165e31 2289
a4f5ea64 2290 if (obj->mm.mapping) {
4b30cb23
CW
2291 void *ptr;
2292
a4f5ea64 2293 ptr = ptr_mask_bits(obj->mm.mapping);
4b30cb23
CW
2294 if (is_vmalloc_addr(ptr))
2295 vunmap(ptr);
fb8621d3 2296 else
4b30cb23
CW
2297 kunmap(kmap_to_page(ptr));
2298
a4f5ea64 2299 obj->mm.mapping = NULL;
0a798eb9
CW
2300 }
2301
96d77634
CW
2302 __i915_gem_object_reset_page_iter(obj);
2303
03ac84f1 2304 obj->ops->put_pages(obj, pages);
1233e2db
CW
2305unlock:
2306 mutex_unlock(&obj->mm.lock);
6c085a72
CW
2307}
2308
4ff340f0 2309static unsigned int swiotlb_max_size(void)
871dfbd6
CW
2310{
2311#if IS_ENABLED(CONFIG_SWIOTLB)
2312 return rounddown(swiotlb_nr_tbl() << IO_TLB_SHIFT, PAGE_SIZE);
2313#else
2314 return 0;
2315#endif
2316}
2317
0c40ce13
TU
2318static void i915_sg_trim(struct sg_table *orig_st)
2319{
2320 struct sg_table new_st;
2321 struct scatterlist *sg, *new_sg;
2322 unsigned int i;
2323
2324 if (orig_st->nents == orig_st->orig_nents)
2325 return;
2326
2327 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL))
2328 return;
2329
2330 new_sg = new_st.sgl;
2331 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2332 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2333 /* called before being DMA mapped, no need to copy sg->dma_* */
2334 new_sg = sg_next(new_sg);
2335 }
2336
2337 sg_free_table(orig_st);
2338
2339 *orig_st = new_st;
2340}
2341
03ac84f1 2342static struct sg_table *
6c085a72 2343i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2344{
fac5e23e 2345 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
d766ef53
CW
2346 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2347 unsigned long i;
e5281ccd 2348 struct address_space *mapping;
9da3da66
CW
2349 struct sg_table *st;
2350 struct scatterlist *sg;
85d1225e 2351 struct sgt_iter sgt_iter;
e5281ccd 2352 struct page *page;
90797e6d 2353 unsigned long last_pfn = 0; /* suppress gcc warning */
4ff340f0 2354 unsigned int max_segment;
e2273302 2355 int ret;
6c085a72 2356 gfp_t gfp;
e5281ccd 2357
6c085a72
CW
2358 /* Assert that the object is not currently in any GPU domain. As it
2359 * wasn't in the GTT, there shouldn't be any way it could have been in
2360 * a GPU cache
2361 */
03ac84f1
CW
2362 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2363 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
6c085a72 2364
871dfbd6
CW
2365 max_segment = swiotlb_max_size();
2366 if (!max_segment)
4ff340f0 2367 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
871dfbd6 2368
9da3da66
CW
2369 st = kmalloc(sizeof(*st), GFP_KERNEL);
2370 if (st == NULL)
03ac84f1 2371 return ERR_PTR(-ENOMEM);
9da3da66 2372
d766ef53 2373rebuild_st:
9da3da66 2374 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2375 kfree(st);
03ac84f1 2376 return ERR_PTR(-ENOMEM);
9da3da66 2377 }
e5281ccd 2378
9da3da66
CW
2379 /* Get the list of pages out of our struct file. They'll be pinned
2380 * at this point until we release them.
2381 *
2382 * Fail silently without starting the shrinker
2383 */
93c76a3d 2384 mapping = obj->base.filp->f_mapping;
c62d2555 2385 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2386 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2387 sg = st->sgl;
2388 st->nents = 0;
2389 for (i = 0; i < page_count; i++) {
6c085a72
CW
2390 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2391 if (IS_ERR(page)) {
21ab4e74
CW
2392 i915_gem_shrink(dev_priv,
2393 page_count,
2394 I915_SHRINK_BOUND |
2395 I915_SHRINK_UNBOUND |
2396 I915_SHRINK_PURGEABLE);
6c085a72
CW
2397 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2398 }
2399 if (IS_ERR(page)) {
2400 /* We've tried hard to allocate the memory by reaping
2401 * our own buffer, now let the real VM do its job and
2402 * go down in flames if truly OOM.
2403 */
f461d1be 2404 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2405 if (IS_ERR(page)) {
2406 ret = PTR_ERR(page);
b17993b7 2407 goto err_sg;
e2273302 2408 }
6c085a72 2409 }
871dfbd6
CW
2410 if (!i ||
2411 sg->length >= max_segment ||
2412 page_to_pfn(page) != last_pfn + 1) {
90797e6d
ID
2413 if (i)
2414 sg = sg_next(sg);
2415 st->nents++;
2416 sg_set_page(sg, page, PAGE_SIZE, 0);
2417 } else {
2418 sg->length += PAGE_SIZE;
2419 }
2420 last_pfn = page_to_pfn(page);
3bbbe706
DV
2421
2422 /* Check that the i965g/gm workaround works. */
2423 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2424 }
871dfbd6 2425 if (sg) /* loop terminated early; short sg table */
426729dc 2426 sg_mark_end(sg);
74ce6b6c 2427
0c40ce13
TU
2428 /* Trim unused sg entries to avoid wasting memory. */
2429 i915_sg_trim(st);
2430
03ac84f1 2431 ret = i915_gem_gtt_prepare_pages(obj, st);
d766ef53
CW
2432 if (ret) {
2433 /* DMA remapping failed? One possible cause is that
2434 * it could not reserve enough large entries, asking
2435 * for PAGE_SIZE chunks instead may be helpful.
2436 */
2437 if (max_segment > PAGE_SIZE) {
2438 for_each_sgt_page(page, sgt_iter, st)
2439 put_page(page);
2440 sg_free_table(st);
2441
2442 max_segment = PAGE_SIZE;
2443 goto rebuild_st;
2444 } else {
2445 dev_warn(&dev_priv->drm.pdev->dev,
2446 "Failed to DMA remap %lu pages\n",
2447 page_count);
2448 goto err_pages;
2449 }
2450 }
e2273302 2451
6dacfd2f 2452 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2453 i915_gem_object_do_bit_17_swizzle(obj, st);
e5281ccd 2454
03ac84f1 2455 return st;
e5281ccd 2456
b17993b7 2457err_sg:
90797e6d 2458 sg_mark_end(sg);
b17993b7 2459err_pages:
85d1225e
DG
2460 for_each_sgt_page(page, sgt_iter, st)
2461 put_page(page);
9da3da66
CW
2462 sg_free_table(st);
2463 kfree(st);
0820baf3
CW
2464
2465 /* shmemfs first checks if there is enough memory to allocate the page
2466 * and reports ENOSPC should there be insufficient, along with the usual
2467 * ENOMEM for a genuine allocation failure.
2468 *
2469 * We use ENOSPC in our driver to mean that we have run out of aperture
2470 * space and so want to translate the error from shmemfs back to our
2471 * usual understanding of ENOMEM.
2472 */
e2273302
ID
2473 if (ret == -ENOSPC)
2474 ret = -ENOMEM;
2475
03ac84f1
CW
2476 return ERR_PTR(ret);
2477}
2478
2479void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2480 struct sg_table *pages)
2481{
1233e2db 2482 lockdep_assert_held(&obj->mm.lock);
03ac84f1
CW
2483
2484 obj->mm.get_page.sg_pos = pages->sgl;
2485 obj->mm.get_page.sg_idx = 0;
2486
2487 obj->mm.pages = pages;
2c3a3f44
CW
2488
2489 if (i915_gem_object_is_tiled(obj) &&
2490 to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2491 GEM_BUG_ON(obj->mm.quirked);
2492 __i915_gem_object_pin_pages(obj);
2493 obj->mm.quirked = true;
2494 }
03ac84f1
CW
2495}
2496
2497static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2498{
2499 struct sg_table *pages;
2500
2c3a3f44
CW
2501 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2502
03ac84f1
CW
2503 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2504 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2505 return -EFAULT;
2506 }
2507
2508 pages = obj->ops->get_pages(obj);
2509 if (unlikely(IS_ERR(pages)))
2510 return PTR_ERR(pages);
2511
2512 __i915_gem_object_set_pages(obj, pages);
2513 return 0;
673a394b
EA
2514}
2515
37e680a1 2516/* Ensure that the associated pages are gathered from the backing storage
1233e2db 2517 * and pinned into our object. i915_gem_object_pin_pages() may be called
37e680a1 2518 * multiple times before they are released by a single call to
1233e2db 2519 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
37e680a1
CW
2520 * either as a result of memory pressure (reaping pages under the shrinker)
2521 * or as the object is itself released.
2522 */
a4f5ea64 2523int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
37e680a1 2524{
03ac84f1 2525 int err;
37e680a1 2526
1233e2db
CW
2527 err = mutex_lock_interruptible(&obj->mm.lock);
2528 if (err)
2529 return err;
4c7d62c6 2530
2c3a3f44
CW
2531 if (unlikely(!obj->mm.pages)) {
2532 err = ____i915_gem_object_get_pages(obj);
2533 if (err)
2534 goto unlock;
37e680a1 2535
2c3a3f44
CW
2536 smp_mb__before_atomic();
2537 }
2538 atomic_inc(&obj->mm.pages_pin_count);
ee286370 2539
1233e2db
CW
2540unlock:
2541 mutex_unlock(&obj->mm.lock);
03ac84f1 2542 return err;
673a394b
EA
2543}
2544
dd6034c6 2545/* The 'mapping' part of i915_gem_object_pin_map() below */
d31d7cb1
CW
2546static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2547 enum i915_map_type type)
dd6034c6
DG
2548{
2549 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
a4f5ea64 2550 struct sg_table *sgt = obj->mm.pages;
85d1225e
DG
2551 struct sgt_iter sgt_iter;
2552 struct page *page;
b338fa47
DG
2553 struct page *stack_pages[32];
2554 struct page **pages = stack_pages;
dd6034c6 2555 unsigned long i = 0;
d31d7cb1 2556 pgprot_t pgprot;
dd6034c6
DG
2557 void *addr;
2558
2559 /* A single page can always be kmapped */
d31d7cb1 2560 if (n_pages == 1 && type == I915_MAP_WB)
dd6034c6
DG
2561 return kmap(sg_page(sgt->sgl));
2562
b338fa47
DG
2563 if (n_pages > ARRAY_SIZE(stack_pages)) {
2564 /* Too big for stack -- allocate temporary array instead */
2565 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2566 if (!pages)
2567 return NULL;
2568 }
dd6034c6 2569
85d1225e
DG
2570 for_each_sgt_page(page, sgt_iter, sgt)
2571 pages[i++] = page;
dd6034c6
DG
2572
2573 /* Check that we have the expected number of pages */
2574 GEM_BUG_ON(i != n_pages);
2575
d31d7cb1
CW
2576 switch (type) {
2577 case I915_MAP_WB:
2578 pgprot = PAGE_KERNEL;
2579 break;
2580 case I915_MAP_WC:
2581 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2582 break;
2583 }
2584 addr = vmap(pages, n_pages, 0, pgprot);
dd6034c6 2585
b338fa47
DG
2586 if (pages != stack_pages)
2587 drm_free_large(pages);
dd6034c6
DG
2588
2589 return addr;
2590}
2591
2592/* get, pin, and map the pages of the object into kernel space */
d31d7cb1
CW
2593void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2594 enum i915_map_type type)
0a798eb9 2595{
d31d7cb1
CW
2596 enum i915_map_type has_type;
2597 bool pinned;
2598 void *ptr;
0a798eb9
CW
2599 int ret;
2600
d31d7cb1 2601 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
0a798eb9 2602
1233e2db 2603 ret = mutex_lock_interruptible(&obj->mm.lock);
0a798eb9
CW
2604 if (ret)
2605 return ERR_PTR(ret);
2606
1233e2db
CW
2607 pinned = true;
2608 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2c3a3f44
CW
2609 if (unlikely(!obj->mm.pages)) {
2610 ret = ____i915_gem_object_get_pages(obj);
2611 if (ret)
2612 goto err_unlock;
1233e2db 2613
2c3a3f44
CW
2614 smp_mb__before_atomic();
2615 }
2616 atomic_inc(&obj->mm.pages_pin_count);
1233e2db
CW
2617 pinned = false;
2618 }
2619 GEM_BUG_ON(!obj->mm.pages);
0a798eb9 2620
a4f5ea64 2621 ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
d31d7cb1
CW
2622 if (ptr && has_type != type) {
2623 if (pinned) {
2624 ret = -EBUSY;
1233e2db 2625 goto err_unpin;
0a798eb9 2626 }
d31d7cb1
CW
2627
2628 if (is_vmalloc_addr(ptr))
2629 vunmap(ptr);
2630 else
2631 kunmap(kmap_to_page(ptr));
2632
a4f5ea64 2633 ptr = obj->mm.mapping = NULL;
0a798eb9
CW
2634 }
2635
d31d7cb1
CW
2636 if (!ptr) {
2637 ptr = i915_gem_object_map(obj, type);
2638 if (!ptr) {
2639 ret = -ENOMEM;
1233e2db 2640 goto err_unpin;
d31d7cb1
CW
2641 }
2642
a4f5ea64 2643 obj->mm.mapping = ptr_pack_bits(ptr, type);
d31d7cb1
CW
2644 }
2645
1233e2db
CW
2646out_unlock:
2647 mutex_unlock(&obj->mm.lock);
d31d7cb1
CW
2648 return ptr;
2649
1233e2db
CW
2650err_unpin:
2651 atomic_dec(&obj->mm.pages_pin_count);
2652err_unlock:
2653 ptr = ERR_PTR(ret);
2654 goto out_unlock;
0a798eb9
CW
2655}
2656
7b4d3a16 2657static bool i915_context_is_banned(const struct i915_gem_context *ctx)
be62acb4 2658{
bc1d53c6 2659 if (ctx->banned)
be62acb4
MK
2660 return true;
2661
bc1d53c6 2662 if (!ctx->bannable)
e5e1fc47
MK
2663 return false;
2664
bc1d53c6 2665 if (ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD) {
e5e1fc47
MK
2666 DRM_DEBUG("context hanging too often, banning!\n");
2667 return true;
2668 }
2669
be62acb4
MK
2670 return false;
2671}
2672
e5e1fc47 2673static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
aa60c664 2674{
bc1d53c6 2675 ctx->ban_score += CONTEXT_SCORE_GUILTY;
e5e1fc47 2676
bc1d53c6
MK
2677 ctx->banned = i915_context_is_banned(ctx);
2678 ctx->guilty_count++;
b083a087
MK
2679
2680 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
bc1d53c6
MK
2681 ctx->name, ctx->ban_score,
2682 yesno(ctx->banned));
b083a087 2683
d9e9da64 2684 if (!ctx->banned || IS_ERR_OR_NULL(ctx->file_priv))
b083a087
MK
2685 return;
2686
d9e9da64
CW
2687 ctx->file_priv->context_bans++;
2688 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2689 ctx->name, ctx->file_priv->context_bans);
e5e1fc47
MK
2690}
2691
2692static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2693{
bc1d53c6 2694 ctx->active_count++;
aa60c664
MK
2695}
2696
8d9fc7fd 2697struct drm_i915_gem_request *
0bc40be8 2698i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2699{
4db080f9
CW
2700 struct drm_i915_gem_request *request;
2701
f69a02c9
CW
2702 /* We are called by the error capture and reset at a random
2703 * point in time. In particular, note that neither is crucially
2704 * ordered with an interrupt. After a hang, the GPU is dead and we
2705 * assume that no more writes can happen (we waited long enough for
2706 * all writes that were in transaction to be flushed) - adding an
2707 * extra delay for a recent interrupt is pointless. Hence, we do
2708 * not need an engine->irq_seqno_barrier() before the seqno reads.
2709 */
73cb9701 2710 list_for_each_entry(request, &engine->timeline->requests, link) {
80b204bc 2711 if (__i915_gem_request_completed(request))
4db080f9 2712 continue;
aa60c664 2713
b6b0fac0 2714 return request;
4db080f9 2715 }
b6b0fac0
MK
2716
2717 return NULL;
2718}
2719
821ed7df
CW
2720static void reset_request(struct drm_i915_gem_request *request)
2721{
2722 void *vaddr = request->ring->vaddr;
2723 u32 head;
2724
2725 /* As this request likely depends on state from the lost
2726 * context, clear out all the user operations leaving the
2727 * breadcrumb at the end (so we get the fence notifications).
2728 */
2729 head = request->head;
2730 if (request->postfix < head) {
2731 memset(vaddr + head, 0, request->ring->size - head);
2732 head = 0;
2733 }
2734 memset(vaddr + head, 0, request->postfix - head);
2735}
2736
2737static void i915_gem_reset_engine(struct intel_engine_cs *engine)
b6b0fac0
MK
2738{
2739 struct drm_i915_gem_request *request;
821ed7df 2740 struct i915_gem_context *incomplete_ctx;
80b204bc 2741 struct intel_timeline *timeline;
b6b0fac0
MK
2742 bool ring_hung;
2743
821ed7df
CW
2744 if (engine->irq_seqno_barrier)
2745 engine->irq_seqno_barrier(engine);
2746
0bc40be8 2747 request = i915_gem_find_active_request(engine);
821ed7df 2748 if (!request)
b6b0fac0
MK
2749 return;
2750
3fe3b030
MK
2751 ring_hung = engine->hangcheck.stalled;
2752 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2753 DRM_DEBUG_DRIVER("%s pardoned, was guilty? %s\n",
2754 engine->name,
2755 yesno(ring_hung));
77c60701 2756 ring_hung = false;
3fe3b030 2757 }
77c60701 2758
e5e1fc47
MK
2759 if (ring_hung)
2760 i915_gem_context_mark_guilty(request->ctx);
2761 else
2762 i915_gem_context_mark_innocent(request->ctx);
2763
821ed7df
CW
2764 if (!ring_hung)
2765 return;
2766
2767 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
65e4760e 2768 engine->name, request->global_seqno);
821ed7df
CW
2769
2770 /* Setup the CS to resume from the breadcrumb of the hung request */
2771 engine->reset_hw(engine, request);
2772
2773 /* Users of the default context do not rely on logical state
2774 * preserved between batches. They have to emit full state on
2775 * every batch and so it is safe to execute queued requests following
2776 * the hang.
2777 *
2778 * Other contexts preserve state, now corrupt. We want to skip all
2779 * queued requests that reference the corrupt context.
2780 */
2781 incomplete_ctx = request->ctx;
2782 if (i915_gem_context_is_default(incomplete_ctx))
2783 return;
2784
73cb9701 2785 list_for_each_entry_continue(request, &engine->timeline->requests, link)
821ed7df
CW
2786 if (request->ctx == incomplete_ctx)
2787 reset_request(request);
80b204bc
CW
2788
2789 timeline = i915_gem_context_lookup_timeline(incomplete_ctx, engine);
2790 list_for_each_entry(request, &timeline->requests, link)
2791 reset_request(request);
4db080f9 2792}
aa60c664 2793
821ed7df 2794void i915_gem_reset(struct drm_i915_private *dev_priv)
4db080f9 2795{
821ed7df 2796 struct intel_engine_cs *engine;
3b3f1650 2797 enum intel_engine_id id;
608c1a52 2798
4c7d62c6
CW
2799 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2800
821ed7df
CW
2801 i915_gem_retire_requests(dev_priv);
2802
3b3f1650 2803 for_each_engine(engine, dev_priv, id)
821ed7df
CW
2804 i915_gem_reset_engine(engine);
2805
4362f4f6 2806 i915_gem_restore_fences(dev_priv);
f2a91d1a
CW
2807
2808 if (dev_priv->gt.awake) {
2809 intel_sanitize_gt_powersave(dev_priv);
2810 intel_enable_gt_powersave(dev_priv);
2811 if (INTEL_GEN(dev_priv) >= 6)
2812 gen6_rps_busy(dev_priv);
2813 }
821ed7df
CW
2814}
2815
2816static void nop_submit_request(struct drm_i915_gem_request *request)
2817{
3dcf93f7
CW
2818 i915_gem_request_submit(request);
2819 intel_engine_init_global_seqno(request->engine, request->global_seqno);
821ed7df
CW
2820}
2821
2822static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
2823{
20e4933c
CW
2824 /* We need to be sure that no thread is running the old callback as
2825 * we install the nop handler (otherwise we would submit a request
2826 * to hardware that will never complete). In order to prevent this
2827 * race, we wait until the machine is idle before making the swap
2828 * (using stop_machine()).
2829 */
821ed7df 2830 engine->submit_request = nop_submit_request;
70c2a24d 2831
c4b0930b
CW
2832 /* Mark all pending requests as complete so that any concurrent
2833 * (lockless) lookup doesn't try and wait upon the request as we
2834 * reset it.
2835 */
73cb9701 2836 intel_engine_init_global_seqno(engine,
cb399eab 2837 intel_engine_last_submit(engine));
c4b0930b 2838
dcb4c12a
OM
2839 /*
2840 * Clear the execlists queue up before freeing the requests, as those
2841 * are the ones that keep the context and ringbuffer backing objects
2842 * pinned in place.
2843 */
dcb4c12a 2844
7de1691a 2845 if (i915.enable_execlists) {
663f71e7
CW
2846 unsigned long flags;
2847
2848 spin_lock_irqsave(&engine->timeline->lock, flags);
2849
70c2a24d
CW
2850 i915_gem_request_put(engine->execlist_port[0].request);
2851 i915_gem_request_put(engine->execlist_port[1].request);
2852 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
20311bd3
CW
2853 engine->execlist_queue = RB_ROOT;
2854 engine->execlist_first = NULL;
663f71e7
CW
2855
2856 spin_unlock_irqrestore(&engine->timeline->lock, flags);
dcb4c12a 2857 }
673a394b
EA
2858}
2859
20e4933c 2860static int __i915_gem_set_wedged_BKL(void *data)
673a394b 2861{
20e4933c 2862 struct drm_i915_private *i915 = data;
e2f80391 2863 struct intel_engine_cs *engine;
3b3f1650 2864 enum intel_engine_id id;
673a394b 2865
20e4933c
CW
2866 for_each_engine(engine, i915, id)
2867 i915_gem_cleanup_engine(engine);
2868
2869 return 0;
2870}
2871
2872void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2873{
821ed7df
CW
2874 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2875 set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
4db080f9 2876
20e4933c 2877 stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
dfaae392 2878
20e4933c 2879 i915_gem_context_lost(dev_priv);
821ed7df 2880 i915_gem_retire_requests(dev_priv);
20e4933c
CW
2881
2882 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
673a394b
EA
2883}
2884
75ef9da2 2885static void
673a394b
EA
2886i915_gem_retire_work_handler(struct work_struct *work)
2887{
b29c19b6 2888 struct drm_i915_private *dev_priv =
67d97da3 2889 container_of(work, typeof(*dev_priv), gt.retire_work.work);
91c8a326 2890 struct drm_device *dev = &dev_priv->drm;
673a394b 2891
891b48cf 2892 /* Come back later if the device is busy... */
b29c19b6 2893 if (mutex_trylock(&dev->struct_mutex)) {
67d97da3 2894 i915_gem_retire_requests(dev_priv);
b29c19b6 2895 mutex_unlock(&dev->struct_mutex);
673a394b 2896 }
67d97da3
CW
2897
2898 /* Keep the retire handler running until we are finally idle.
2899 * We do not need to do this test under locking as in the worst-case
2900 * we queue the retire worker once too often.
2901 */
c9615613
CW
2902 if (READ_ONCE(dev_priv->gt.awake)) {
2903 i915_queue_hangcheck(dev_priv);
67d97da3
CW
2904 queue_delayed_work(dev_priv->wq,
2905 &dev_priv->gt.retire_work,
bcb45086 2906 round_jiffies_up_relative(HZ));
c9615613 2907 }
b29c19b6 2908}
0a58705b 2909
b29c19b6
CW
2910static void
2911i915_gem_idle_work_handler(struct work_struct *work)
2912{
2913 struct drm_i915_private *dev_priv =
67d97da3 2914 container_of(work, typeof(*dev_priv), gt.idle_work.work);
91c8a326 2915 struct drm_device *dev = &dev_priv->drm;
b4ac5afc 2916 struct intel_engine_cs *engine;
3b3f1650 2917 enum intel_engine_id id;
67d97da3
CW
2918 bool rearm_hangcheck;
2919
2920 if (!READ_ONCE(dev_priv->gt.awake))
2921 return;
2922
0cb5670b
ID
2923 /*
2924 * Wait for last execlists context complete, but bail out in case a
2925 * new request is submitted.
2926 */
2927 wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
2928 intel_execlists_idle(dev_priv), 10);
2929
28176ef4 2930 if (READ_ONCE(dev_priv->gt.active_requests))
67d97da3
CW
2931 return;
2932
2933 rearm_hangcheck =
2934 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2935
2936 if (!mutex_trylock(&dev->struct_mutex)) {
2937 /* Currently busy, come back later */
2938 mod_delayed_work(dev_priv->wq,
2939 &dev_priv->gt.idle_work,
2940 msecs_to_jiffies(50));
2941 goto out_rearm;
2942 }
2943
93c97dc1
ID
2944 /*
2945 * New request retired after this work handler started, extend active
2946 * period until next instance of the work.
2947 */
2948 if (work_pending(work))
2949 goto out_unlock;
2950
28176ef4 2951 if (dev_priv->gt.active_requests)
67d97da3 2952 goto out_unlock;
b29c19b6 2953
0cb5670b
ID
2954 if (wait_for(intel_execlists_idle(dev_priv), 10))
2955 DRM_ERROR("Timeout waiting for engines to idle\n");
2956
3b3f1650 2957 for_each_engine(engine, dev_priv, id)
67d97da3 2958 i915_gem_batch_pool_fini(&engine->batch_pool);
35c94185 2959
67d97da3
CW
2960 GEM_BUG_ON(!dev_priv->gt.awake);
2961 dev_priv->gt.awake = false;
2962 rearm_hangcheck = false;
30ecad77 2963
67d97da3
CW
2964 if (INTEL_GEN(dev_priv) >= 6)
2965 gen6_rps_idle(dev_priv);
2966 intel_runtime_pm_put(dev_priv);
2967out_unlock:
2968 mutex_unlock(&dev->struct_mutex);
b29c19b6 2969
67d97da3
CW
2970out_rearm:
2971 if (rearm_hangcheck) {
2972 GEM_BUG_ON(!dev_priv->gt.awake);
2973 i915_queue_hangcheck(dev_priv);
35c94185 2974 }
673a394b
EA
2975}
2976
b1f788c6
CW
2977void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2978{
2979 struct drm_i915_gem_object *obj = to_intel_bo(gem);
2980 struct drm_i915_file_private *fpriv = file->driver_priv;
2981 struct i915_vma *vma, *vn;
2982
2983 mutex_lock(&obj->base.dev->struct_mutex);
2984 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2985 if (vma->vm->file == fpriv)
2986 i915_vma_close(vma);
f8a7fde4
CW
2987
2988 if (i915_gem_object_is_active(obj) &&
2989 !i915_gem_object_has_active_reference(obj)) {
2990 i915_gem_object_set_active_reference(obj);
2991 i915_gem_object_get(obj);
2992 }
b1f788c6
CW
2993 mutex_unlock(&obj->base.dev->struct_mutex);
2994}
2995
e95433c7
CW
2996static unsigned long to_wait_timeout(s64 timeout_ns)
2997{
2998 if (timeout_ns < 0)
2999 return MAX_SCHEDULE_TIMEOUT;
3000
3001 if (timeout_ns == 0)
3002 return 0;
3003
3004 return nsecs_to_jiffies_timeout(timeout_ns);
3005}
3006
23ba4fd0
BW
3007/**
3008 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
3009 * @dev: drm device pointer
3010 * @data: ioctl data blob
3011 * @file: drm file pointer
23ba4fd0
BW
3012 *
3013 * Returns 0 if successful, else an error is returned with the remaining time in
3014 * the timeout parameter.
3015 * -ETIME: object is still busy after timeout
3016 * -ERESTARTSYS: signal interrupted the wait
3017 * -ENONENT: object doesn't exist
3018 * Also possible, but rare:
3019 * -EAGAIN: GPU wedged
3020 * -ENOMEM: damn
3021 * -ENODEV: Internal IRQ fail
3022 * -E?: The add request failed
3023 *
3024 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3025 * non-zero timeout parameter the wait ioctl will wait for the given number of
3026 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3027 * without holding struct_mutex the object may become re-busied before this
3028 * function completes. A similar but shorter * race condition exists in the busy
3029 * ioctl
3030 */
3031int
3032i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3033{
3034 struct drm_i915_gem_wait *args = data;
3035 struct drm_i915_gem_object *obj;
e95433c7
CW
3036 ktime_t start;
3037 long ret;
23ba4fd0 3038
11b5d511
DV
3039 if (args->flags != 0)
3040 return -EINVAL;
3041
03ac0642 3042 obj = i915_gem_object_lookup(file, args->bo_handle);
033d549b 3043 if (!obj)
23ba4fd0 3044 return -ENOENT;
23ba4fd0 3045
e95433c7
CW
3046 start = ktime_get();
3047
3048 ret = i915_gem_object_wait(obj,
3049 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3050 to_wait_timeout(args->timeout_ns),
3051 to_rps_client(file));
3052
3053 if (args->timeout_ns > 0) {
3054 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3055 if (args->timeout_ns < 0)
3056 args->timeout_ns = 0;
b4716185
CW
3057 }
3058
f0cd5182 3059 i915_gem_object_put(obj);
ff865885 3060 return ret;
23ba4fd0
BW
3061}
3062
73cb9701 3063static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
4df2faf4 3064{
73cb9701 3065 int ret, i;
4df2faf4 3066
73cb9701
CW
3067 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3068 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3069 if (ret)
3070 return ret;
3071 }
62e63007 3072
73cb9701
CW
3073 return 0;
3074}
3075
3076int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3077{
73cb9701
CW
3078 int ret;
3079
9caa34aa
CW
3080 if (flags & I915_WAIT_LOCKED) {
3081 struct i915_gem_timeline *tl;
3082
3083 lockdep_assert_held(&i915->drm.struct_mutex);
3084
3085 list_for_each_entry(tl, &i915->gt.timelines, link) {
3086 ret = wait_for_timeline(tl, flags);
3087 if (ret)
3088 return ret;
3089 }
3090 } else {
3091 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
1ec14ad3
CW
3092 if (ret)
3093 return ret;
3094 }
4df2faf4 3095
8a1a49f9 3096 return 0;
4df2faf4
DV
3097}
3098
d0da48cf
CW
3099void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3100 bool force)
673a394b 3101{
673a394b
EA
3102 /* If we don't have a page list set up, then we're not pinned
3103 * to GPU, and we can ignore the cache flush because it'll happen
3104 * again at bind time.
3105 */
a4f5ea64 3106 if (!obj->mm.pages)
d0da48cf 3107 return;
673a394b 3108
769ce464
ID
3109 /*
3110 * Stolen memory is always coherent with the GPU as it is explicitly
3111 * marked as wc by the system, or the system is cache-coherent.
3112 */
6a2c4232 3113 if (obj->stolen || obj->phys_handle)
d0da48cf 3114 return;
769ce464 3115
9c23f7fc
CW
3116 /* If the GPU is snooping the contents of the CPU cache,
3117 * we do not need to manually clear the CPU cache lines. However,
3118 * the caches are only snooped when the render cache is
3119 * flushed/invalidated. As we always have to emit invalidations
3120 * and flushes when moving into and out of the RENDER domain, correct
3121 * snooping behaviour occurs naturally as the result of our domain
3122 * tracking.
3123 */
0f71979a
CW
3124 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3125 obj->cache_dirty = true;
d0da48cf 3126 return;
0f71979a 3127 }
9c23f7fc 3128
1c5d22f7 3129 trace_i915_gem_object_clflush(obj);
a4f5ea64 3130 drm_clflush_sg(obj->mm.pages);
0f71979a 3131 obj->cache_dirty = false;
e47c68e9
EA
3132}
3133
3134/** Flushes the GTT write domain for the object if it's dirty. */
3135static void
05394f39 3136i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3137{
3b5724d7 3138 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1c5d22f7 3139
05394f39 3140 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3141 return;
3142
63256ec5 3143 /* No actual flushing is required for the GTT write domain. Writes
3b5724d7 3144 * to it "immediately" go to main memory as far as we know, so there's
e47c68e9 3145 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3146 *
3147 * However, we do have to enforce the order so that all writes through
3148 * the GTT land before any writes to the device, such as updates to
3149 * the GATT itself.
3b5724d7
CW
3150 *
3151 * We also have to wait a bit for the writes to land from the GTT.
3152 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3153 * timing. This issue has only been observed when switching quickly
3154 * between GTT writes and CPU reads from inside the kernel on recent hw,
3155 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3156 * system agents we cannot reproduce this behaviour).
e47c68e9 3157 */
63256ec5 3158 wmb();
3b5724d7 3159 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3b3f1650 3160 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
63256ec5 3161
d243ad82 3162 intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
f99d7069 3163
b0dc465f 3164 obj->base.write_domain = 0;
1c5d22f7 3165 trace_i915_gem_object_change_domain(obj,
05394f39 3166 obj->base.read_domains,
b0dc465f 3167 I915_GEM_DOMAIN_GTT);
e47c68e9
EA
3168}
3169
3170/** Flushes the CPU write domain for the object if it's dirty. */
3171static void
e62b59e4 3172i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3173{
05394f39 3174 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3175 return;
3176
d0da48cf 3177 i915_gem_clflush_object(obj, obj->pin_display);
de152b62 3178 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3179
b0dc465f 3180 obj->base.write_domain = 0;
1c5d22f7 3181 trace_i915_gem_object_change_domain(obj,
05394f39 3182 obj->base.read_domains,
b0dc465f 3183 I915_GEM_DOMAIN_CPU);
e47c68e9
EA
3184}
3185
2ef7eeaa
EA
3186/**
3187 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3188 * @obj: object to act on
3189 * @write: ask for write access or read only
2ef7eeaa
EA
3190 *
3191 * This function returns when the move is complete, including waiting on
3192 * flushes to occur.
3193 */
79e53945 3194int
2021746e 3195i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3196{
1c5d22f7 3197 uint32_t old_write_domain, old_read_domains;
e47c68e9 3198 int ret;
2ef7eeaa 3199
e95433c7 3200 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3201
e95433c7
CW
3202 ret = i915_gem_object_wait(obj,
3203 I915_WAIT_INTERRUPTIBLE |
3204 I915_WAIT_LOCKED |
3205 (write ? I915_WAIT_ALL : 0),
3206 MAX_SCHEDULE_TIMEOUT,
3207 NULL);
88241785
CW
3208 if (ret)
3209 return ret;
3210
c13d87ea
CW
3211 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3212 return 0;
3213
43566ded
CW
3214 /* Flush and acquire obj->pages so that we are coherent through
3215 * direct access in memory with previous cached writes through
3216 * shmemfs and that our cache domain tracking remains valid.
3217 * For example, if the obj->filp was moved to swap without us
3218 * being notified and releasing the pages, we would mistakenly
3219 * continue to assume that the obj remained out of the CPU cached
3220 * domain.
3221 */
a4f5ea64 3222 ret = i915_gem_object_pin_pages(obj);
43566ded
CW
3223 if (ret)
3224 return ret;
3225
e62b59e4 3226 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3227
d0a57789
CW
3228 /* Serialise direct access to this object with the barriers for
3229 * coherent writes from the GPU, by effectively invalidating the
3230 * GTT domain upon first access.
3231 */
3232 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3233 mb();
3234
05394f39
CW
3235 old_write_domain = obj->base.write_domain;
3236 old_read_domains = obj->base.read_domains;
1c5d22f7 3237
e47c68e9
EA
3238 /* It should now be out of any other write domains, and we can update
3239 * the domain values for our changes.
3240 */
40e62d5d 3241 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 3242 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3243 if (write) {
05394f39
CW
3244 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3245 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
a4f5ea64 3246 obj->mm.dirty = true;
2ef7eeaa
EA
3247 }
3248
1c5d22f7
CW
3249 trace_i915_gem_object_change_domain(obj,
3250 old_read_domains,
3251 old_write_domain);
3252
a4f5ea64 3253 i915_gem_object_unpin_pages(obj);
e47c68e9
EA
3254 return 0;
3255}
3256
ef55f92a
CW
3257/**
3258 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
3259 * @obj: object to act on
3260 * @cache_level: new cache level to set for the object
ef55f92a
CW
3261 *
3262 * After this function returns, the object will be in the new cache-level
3263 * across all GTT and the contents of the backing storage will be coherent,
3264 * with respect to the new cache-level. In order to keep the backing storage
3265 * coherent for all users, we only allow a single cache level to be set
3266 * globally on the object and prevent it from being changed whilst the
3267 * hardware is reading from the object. That is if the object is currently
3268 * on the scanout it will be set to uncached (or equivalent display
3269 * cache coherency) and all non-MOCS GPU access will also be uncached so
3270 * that all direct access to the scanout remains coherent.
3271 */
e4ffd173
CW
3272int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3273 enum i915_cache_level cache_level)
3274{
aa653a68 3275 struct i915_vma *vma;
a6a7cc4b 3276 int ret;
e4ffd173 3277
4c7d62c6
CW
3278 lockdep_assert_held(&obj->base.dev->struct_mutex);
3279
e4ffd173 3280 if (obj->cache_level == cache_level)
a6a7cc4b 3281 return 0;
e4ffd173 3282
ef55f92a
CW
3283 /* Inspect the list of currently bound VMA and unbind any that would
3284 * be invalid given the new cache-level. This is principally to
3285 * catch the issue of the CS prefetch crossing page boundaries and
3286 * reading an invalid PTE on older architectures.
3287 */
aa653a68
CW
3288restart:
3289 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3290 if (!drm_mm_node_allocated(&vma->node))
3291 continue;
3292
20dfbde4 3293 if (i915_vma_is_pinned(vma)) {
ef55f92a
CW
3294 DRM_DEBUG("can not change the cache level of pinned objects\n");
3295 return -EBUSY;
3296 }
3297
aa653a68
CW
3298 if (i915_gem_valid_gtt_space(vma, cache_level))
3299 continue;
3300
3301 ret = i915_vma_unbind(vma);
3302 if (ret)
3303 return ret;
3304
3305 /* As unbinding may affect other elements in the
3306 * obj->vma_list (due to side-effects from retiring
3307 * an active vma), play safe and restart the iterator.
3308 */
3309 goto restart;
42d6ab48
CW
3310 }
3311
ef55f92a
CW
3312 /* We can reuse the existing drm_mm nodes but need to change the
3313 * cache-level on the PTE. We could simply unbind them all and
3314 * rebind with the correct cache-level on next use. However since
3315 * we already have a valid slot, dma mapping, pages etc, we may as
3316 * rewrite the PTE in the belief that doing so tramples upon less
3317 * state and so involves less work.
3318 */
15717de2 3319 if (obj->bind_count) {
ef55f92a
CW
3320 /* Before we change the PTE, the GPU must not be accessing it.
3321 * If we wait upon the object, we know that all the bound
3322 * VMA are no longer active.
3323 */
e95433c7
CW
3324 ret = i915_gem_object_wait(obj,
3325 I915_WAIT_INTERRUPTIBLE |
3326 I915_WAIT_LOCKED |
3327 I915_WAIT_ALL,
3328 MAX_SCHEDULE_TIMEOUT,
3329 NULL);
e4ffd173
CW
3330 if (ret)
3331 return ret;
3332
0031fb96
TU
3333 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3334 cache_level != I915_CACHE_NONE) {
ef55f92a
CW
3335 /* Access to snoopable pages through the GTT is
3336 * incoherent and on some machines causes a hard
3337 * lockup. Relinquish the CPU mmaping to force
3338 * userspace to refault in the pages and we can
3339 * then double check if the GTT mapping is still
3340 * valid for that pointer access.
3341 */
3342 i915_gem_release_mmap(obj);
3343
3344 /* As we no longer need a fence for GTT access,
3345 * we can relinquish it now (and so prevent having
3346 * to steal a fence from someone else on the next
3347 * fence request). Note GPU activity would have
3348 * dropped the fence as all snoopable access is
3349 * supposed to be linear.
3350 */
49ef5294
CW
3351 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3352 ret = i915_vma_put_fence(vma);
3353 if (ret)
3354 return ret;
3355 }
ef55f92a
CW
3356 } else {
3357 /* We either have incoherent backing store and
3358 * so no GTT access or the architecture is fully
3359 * coherent. In such cases, existing GTT mmaps
3360 * ignore the cache bit in the PTE and we can
3361 * rewrite it without confusing the GPU or having
3362 * to force userspace to fault back in its mmaps.
3363 */
e4ffd173
CW
3364 }
3365
1c7f4bca 3366 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3367 if (!drm_mm_node_allocated(&vma->node))
3368 continue;
3369
3370 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3371 if (ret)
3372 return ret;
3373 }
e4ffd173
CW
3374 }
3375
a6a7cc4b
CW
3376 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3377 cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3378 obj->cache_dirty = true;
3379
1c7f4bca 3380 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
3381 vma->node.color = cache_level;
3382 obj->cache_level = cache_level;
3383
e4ffd173
CW
3384 return 0;
3385}
3386
199adf40
BW
3387int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3388 struct drm_file *file)
e6994aee 3389{
199adf40 3390 struct drm_i915_gem_caching *args = data;
e6994aee 3391 struct drm_i915_gem_object *obj;
fbbd37b3 3392 int err = 0;
e6994aee 3393
fbbd37b3
CW
3394 rcu_read_lock();
3395 obj = i915_gem_object_lookup_rcu(file, args->handle);
3396 if (!obj) {
3397 err = -ENOENT;
3398 goto out;
3399 }
e6994aee 3400
651d794f
CW
3401 switch (obj->cache_level) {
3402 case I915_CACHE_LLC:
3403 case I915_CACHE_L3_LLC:
3404 args->caching = I915_CACHING_CACHED;
3405 break;
3406
4257d3ba
CW
3407 case I915_CACHE_WT:
3408 args->caching = I915_CACHING_DISPLAY;
3409 break;
3410
651d794f
CW
3411 default:
3412 args->caching = I915_CACHING_NONE;
3413 break;
3414 }
fbbd37b3
CW
3415out:
3416 rcu_read_unlock();
3417 return err;
e6994aee
CW
3418}
3419
199adf40
BW
3420int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3421 struct drm_file *file)
e6994aee 3422{
9c870d03 3423 struct drm_i915_private *i915 = to_i915(dev);
199adf40 3424 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3425 struct drm_i915_gem_object *obj;
3426 enum i915_cache_level level;
3427 int ret;
3428
199adf40
BW
3429 switch (args->caching) {
3430 case I915_CACHING_NONE:
e6994aee
CW
3431 level = I915_CACHE_NONE;
3432 break;
199adf40 3433 case I915_CACHING_CACHED:
e5756c10
ID
3434 /*
3435 * Due to a HW issue on BXT A stepping, GPU stores via a
3436 * snooped mapping may leave stale data in a corresponding CPU
3437 * cacheline, whereas normally such cachelines would get
3438 * invalidated.
3439 */
9c870d03 3440 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
e5756c10
ID
3441 return -ENODEV;
3442
e6994aee
CW
3443 level = I915_CACHE_LLC;
3444 break;
4257d3ba 3445 case I915_CACHING_DISPLAY:
9c870d03 3446 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4257d3ba 3447 break;
e6994aee
CW
3448 default:
3449 return -EINVAL;
3450 }
3451
3bc2913e
BW
3452 ret = i915_mutex_lock_interruptible(dev);
3453 if (ret)
9c870d03 3454 return ret;
3bc2913e 3455
03ac0642
CW
3456 obj = i915_gem_object_lookup(file, args->handle);
3457 if (!obj) {
e6994aee
CW
3458 ret = -ENOENT;
3459 goto unlock;
3460 }
3461
3462 ret = i915_gem_object_set_cache_level(obj, level);
f8c417cd 3463 i915_gem_object_put(obj);
e6994aee
CW
3464unlock:
3465 mutex_unlock(&dev->struct_mutex);
3466 return ret;
3467}
3468
b9241ea3 3469/*
2da3b9b9
CW
3470 * Prepare buffer for display plane (scanout, cursors, etc).
3471 * Can be called from an uninterruptible phase (modesetting) and allows
3472 * any flushes to be pipelined (for pageflips).
b9241ea3 3473 */
058d88c4 3474struct i915_vma *
2da3b9b9
CW
3475i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3476 u32 alignment,
e6617330 3477 const struct i915_ggtt_view *view)
b9241ea3 3478{
058d88c4 3479 struct i915_vma *vma;
2da3b9b9 3480 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3481 int ret;
3482
4c7d62c6
CW
3483 lockdep_assert_held(&obj->base.dev->struct_mutex);
3484
cc98b413
CW
3485 /* Mark the pin_display early so that we account for the
3486 * display coherency whilst setting up the cache domains.
3487 */
8a0c39b1 3488 obj->pin_display++;
cc98b413 3489
a7ef0640
EA
3490 /* The display engine is not coherent with the LLC cache on gen6. As
3491 * a result, we make sure that the pinning that is about to occur is
3492 * done with uncached PTEs. This is lowest common denominator for all
3493 * chipsets.
3494 *
3495 * However for gen6+, we could do better by using the GFDT bit instead
3496 * of uncaching, which would allow us to flush all the LLC-cached data
3497 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3498 */
651d794f 3499 ret = i915_gem_object_set_cache_level(obj,
8652744b
TU
3500 HAS_WT(to_i915(obj->base.dev)) ?
3501 I915_CACHE_WT : I915_CACHE_NONE);
058d88c4
CW
3502 if (ret) {
3503 vma = ERR_PTR(ret);
cc98b413 3504 goto err_unpin_display;
058d88c4 3505 }
a7ef0640 3506
2da3b9b9
CW
3507 /* As the user may map the buffer once pinned in the display plane
3508 * (e.g. libkms for the bootup splash), we have to ensure that we
2efb813d
CW
3509 * always use map_and_fenceable for all scanout buffers. However,
3510 * it may simply be too big to fit into mappable, in which case
3511 * put it anyway and hope that userspace can cope (but always first
3512 * try to preserve the existing ABI).
2da3b9b9 3513 */
2efb813d
CW
3514 vma = ERR_PTR(-ENOSPC);
3515 if (view->type == I915_GGTT_VIEW_NORMAL)
3516 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3517 PIN_MAPPABLE | PIN_NONBLOCK);
767a222e
CW
3518 if (IS_ERR(vma)) {
3519 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3520 unsigned int flags;
3521
3522 /* Valleyview is definitely limited to scanning out the first
3523 * 512MiB. Lets presume this behaviour was inherited from the
3524 * g4x display engine and that all earlier gen are similarly
3525 * limited. Testing suggests that it is a little more
3526 * complicated than this. For example, Cherryview appears quite
3527 * happy to scanout from anywhere within its global aperture.
3528 */
3529 flags = 0;
3530 if (HAS_GMCH_DISPLAY(i915))
3531 flags = PIN_MAPPABLE;
3532 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3533 }
058d88c4 3534 if (IS_ERR(vma))
cc98b413 3535 goto err_unpin_display;
2da3b9b9 3536
d8923dcf
CW
3537 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3538
a6a7cc4b
CW
3539 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3540 if (obj->cache_dirty) {
3541 i915_gem_clflush_object(obj, true);
3542 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
3543 }
b118c1e3 3544
2da3b9b9 3545 old_write_domain = obj->base.write_domain;
05394f39 3546 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3547
3548 /* It should now be out of any other write domains, and we can update
3549 * the domain values for our changes.
3550 */
e5f1d962 3551 obj->base.write_domain = 0;
05394f39 3552 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3553
3554 trace_i915_gem_object_change_domain(obj,
3555 old_read_domains,
2da3b9b9 3556 old_write_domain);
b9241ea3 3557
058d88c4 3558 return vma;
cc98b413
CW
3559
3560err_unpin_display:
8a0c39b1 3561 obj->pin_display--;
058d88c4 3562 return vma;
cc98b413
CW
3563}
3564
3565void
058d88c4 3566i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
cc98b413 3567{
49d73912 3568 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4c7d62c6 3569
058d88c4 3570 if (WARN_ON(vma->obj->pin_display == 0))
8a0c39b1
TU
3571 return;
3572
d8923dcf
CW
3573 if (--vma->obj->pin_display == 0)
3574 vma->display_alignment = 0;
e6617330 3575
383d5823
CW
3576 /* Bump the LRU to try and avoid premature eviction whilst flipping */
3577 if (!i915_vma_is_active(vma))
3578 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3579
058d88c4 3580 i915_vma_unpin(vma);
b9241ea3
ZW
3581}
3582
e47c68e9
EA
3583/**
3584 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
3585 * @obj: object to act on
3586 * @write: requesting write or read-only access
e47c68e9
EA
3587 *
3588 * This function returns when the move is complete, including waiting on
3589 * flushes to occur.
3590 */
dabdfe02 3591int
919926ae 3592i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3593{
1c5d22f7 3594 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3595 int ret;
3596
e95433c7 3597 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3598
e95433c7
CW
3599 ret = i915_gem_object_wait(obj,
3600 I915_WAIT_INTERRUPTIBLE |
3601 I915_WAIT_LOCKED |
3602 (write ? I915_WAIT_ALL : 0),
3603 MAX_SCHEDULE_TIMEOUT,
3604 NULL);
88241785
CW
3605 if (ret)
3606 return ret;
3607
c13d87ea
CW
3608 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3609 return 0;
3610
e47c68e9 3611 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3612
05394f39
CW
3613 old_write_domain = obj->base.write_domain;
3614 old_read_domains = obj->base.read_domains;
1c5d22f7 3615
e47c68e9 3616 /* Flush the CPU cache if it's still invalid. */
05394f39 3617 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3618 i915_gem_clflush_object(obj, false);
2ef7eeaa 3619
05394f39 3620 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3621 }
3622
3623 /* It should now be out of any other write domains, and we can update
3624 * the domain values for our changes.
3625 */
40e62d5d 3626 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3627
3628 /* If we're writing through the CPU, then the GPU read domains will
3629 * need to be invalidated at next use.
3630 */
3631 if (write) {
05394f39
CW
3632 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3633 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3634 }
2ef7eeaa 3635
1c5d22f7
CW
3636 trace_i915_gem_object_change_domain(obj,
3637 old_read_domains,
3638 old_write_domain);
3639
2ef7eeaa
EA
3640 return 0;
3641}
3642
673a394b
EA
3643/* Throttle our rendering by waiting until the ring has completed our requests
3644 * emitted over 20 msec ago.
3645 *
b962442e
EA
3646 * Note that if we were to use the current jiffies each time around the loop,
3647 * we wouldn't escape the function with any frames outstanding if the time to
3648 * render a frame was over 20ms.
3649 *
673a394b
EA
3650 * This should get us reasonable parallelism between CPU and GPU but also
3651 * relatively low latency when blocking on a particular request to finish.
3652 */
40a5f0de 3653static int
f787a5f5 3654i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3655{
fac5e23e 3656 struct drm_i915_private *dev_priv = to_i915(dev);
f787a5f5 3657 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 3658 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 3659 struct drm_i915_gem_request *request, *target = NULL;
e95433c7 3660 long ret;
93533c29 3661
f4457ae7
CW
3662 /* ABI: return -EIO if already wedged */
3663 if (i915_terminally_wedged(&dev_priv->gpu_error))
3664 return -EIO;
e110e8d6 3665
1c25595f 3666 spin_lock(&file_priv->mm.lock);
f787a5f5 3667 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3668 if (time_after_eq(request->emitted_jiffies, recent_enough))
3669 break;
40a5f0de 3670
fcfa423c
JH
3671 /*
3672 * Note that the request might not have been submitted yet.
3673 * In which case emitted_jiffies will be zero.
3674 */
3675 if (!request->emitted_jiffies)
3676 continue;
3677
54fb2411 3678 target = request;
b962442e 3679 }
ff865885 3680 if (target)
e8a261ea 3681 i915_gem_request_get(target);
1c25595f 3682 spin_unlock(&file_priv->mm.lock);
40a5f0de 3683
54fb2411 3684 if (target == NULL)
f787a5f5 3685 return 0;
2bc43b5c 3686
e95433c7
CW
3687 ret = i915_wait_request(target,
3688 I915_WAIT_INTERRUPTIBLE,
3689 MAX_SCHEDULE_TIMEOUT);
e8a261ea 3690 i915_gem_request_put(target);
ff865885 3691
e95433c7 3692 return ret < 0 ? ret : 0;
40a5f0de
EA
3693}
3694
058d88c4 3695struct i915_vma *
ec7adb6e
JL
3696i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3697 const struct i915_ggtt_view *view,
91b2db6f 3698 u64 size,
2ffffd0f
CW
3699 u64 alignment,
3700 u64 flags)
ec7adb6e 3701{
ad16d2ed
CW
3702 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3703 struct i915_address_space *vm = &dev_priv->ggtt.base;
59bfa124
CW
3704 struct i915_vma *vma;
3705 int ret;
72e96d64 3706
4c7d62c6
CW
3707 lockdep_assert_held(&obj->base.dev->struct_mutex);
3708
058d88c4 3709 vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
59bfa124 3710 if (IS_ERR(vma))
058d88c4 3711 return vma;
59bfa124
CW
3712
3713 if (i915_vma_misplaced(vma, size, alignment, flags)) {
3714 if (flags & PIN_NONBLOCK &&
3715 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
058d88c4 3716 return ERR_PTR(-ENOSPC);
59bfa124 3717
ad16d2ed
CW
3718 if (flags & PIN_MAPPABLE) {
3719 u32 fence_size;
3720
3721 fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
3722 i915_gem_object_get_tiling(obj));
3723 /* If the required space is larger than the available
3724 * aperture, we will not able to find a slot for the
3725 * object and unbinding the object now will be in
3726 * vain. Worse, doing so may cause us to ping-pong
3727 * the object in and out of the Global GTT and
3728 * waste a lot of cycles under the mutex.
3729 */
3730 if (fence_size > dev_priv->ggtt.mappable_end)
3731 return ERR_PTR(-E2BIG);
3732
3733 /* If NONBLOCK is set the caller is optimistically
3734 * trying to cache the full object within the mappable
3735 * aperture, and *must* have a fallback in place for
3736 * situations where we cannot bind the object. We
3737 * can be a little more lax here and use the fallback
3738 * more often to avoid costly migrations of ourselves
3739 * and other objects within the aperture.
3740 *
3741 * Half-the-aperture is used as a simple heuristic.
3742 * More interesting would to do search for a free
3743 * block prior to making the commitment to unbind.
3744 * That caters for the self-harm case, and with a
3745 * little more heuristics (e.g. NOFAULT, NOEVICT)
3746 * we could try to minimise harm to others.
3747 */
3748 if (flags & PIN_NONBLOCK &&
3749 fence_size > dev_priv->ggtt.mappable_end / 2)
3750 return ERR_PTR(-ENOSPC);
3751 }
3752
59bfa124
CW
3753 WARN(i915_vma_is_pinned(vma),
3754 "bo is already pinned in ggtt with incorrect alignment:"
05a20d09
CW
3755 " offset=%08x, req.alignment=%llx,"
3756 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3757 i915_ggtt_offset(vma), alignment,
59bfa124 3758 !!(flags & PIN_MAPPABLE),
05a20d09 3759 i915_vma_is_map_and_fenceable(vma));
59bfa124
CW
3760 ret = i915_vma_unbind(vma);
3761 if (ret)
058d88c4 3762 return ERR_PTR(ret);
59bfa124
CW
3763 }
3764
058d88c4
CW
3765 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3766 if (ret)
3767 return ERR_PTR(ret);
ec7adb6e 3768
058d88c4 3769 return vma;
673a394b
EA
3770}
3771
edf6b76f 3772static __always_inline unsigned int __busy_read_flag(unsigned int id)
3fdc13c7
CW
3773{
3774 /* Note that we could alias engines in the execbuf API, but
3775 * that would be very unwise as it prevents userspace from
3776 * fine control over engine selection. Ahem.
3777 *
3778 * This should be something like EXEC_MAX_ENGINE instead of
3779 * I915_NUM_ENGINES.
3780 */
3781 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3782 return 0x10000 << id;
3783}
3784
3785static __always_inline unsigned int __busy_write_id(unsigned int id)
3786{
70cb472c
CW
3787 /* The uABI guarantees an active writer is also amongst the read
3788 * engines. This would be true if we accessed the activity tracking
3789 * under the lock, but as we perform the lookup of the object and
3790 * its activity locklessly we can not guarantee that the last_write
3791 * being active implies that we have set the same engine flag from
3792 * last_read - hence we always set both read and write busy for
3793 * last_write.
3794 */
3795 return id | __busy_read_flag(id);
3fdc13c7
CW
3796}
3797
edf6b76f 3798static __always_inline unsigned int
d07f0e59 3799__busy_set_if_active(const struct dma_fence *fence,
3fdc13c7
CW
3800 unsigned int (*flag)(unsigned int id))
3801{
d07f0e59 3802 struct drm_i915_gem_request *rq;
3fdc13c7 3803
d07f0e59
CW
3804 /* We have to check the current hw status of the fence as the uABI
3805 * guarantees forward progress. We could rely on the idle worker
3806 * to eventually flush us, but to minimise latency just ask the
3807 * hardware.
1255501d 3808 *
d07f0e59 3809 * Note we only report on the status of native fences.
1255501d 3810 */
d07f0e59
CW
3811 if (!dma_fence_is_i915(fence))
3812 return 0;
3813
3814 /* opencode to_request() in order to avoid const warnings */
3815 rq = container_of(fence, struct drm_i915_gem_request, fence);
3816 if (i915_gem_request_completed(rq))
3817 return 0;
3818
3819 return flag(rq->engine->exec_id);
3fdc13c7
CW
3820}
3821
edf6b76f 3822static __always_inline unsigned int
d07f0e59 3823busy_check_reader(const struct dma_fence *fence)
3fdc13c7 3824{
d07f0e59 3825 return __busy_set_if_active(fence, __busy_read_flag);
3fdc13c7
CW
3826}
3827
edf6b76f 3828static __always_inline unsigned int
d07f0e59 3829busy_check_writer(const struct dma_fence *fence)
3fdc13c7 3830{
d07f0e59
CW
3831 if (!fence)
3832 return 0;
3833
3834 return __busy_set_if_active(fence, __busy_write_id);
3fdc13c7
CW
3835}
3836
673a394b
EA
3837int
3838i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3839 struct drm_file *file)
673a394b
EA
3840{
3841 struct drm_i915_gem_busy *args = data;
05394f39 3842 struct drm_i915_gem_object *obj;
d07f0e59
CW
3843 struct reservation_object_list *list;
3844 unsigned int seq;
fbbd37b3 3845 int err;
673a394b 3846
d07f0e59 3847 err = -ENOENT;
fbbd37b3
CW
3848 rcu_read_lock();
3849 obj = i915_gem_object_lookup_rcu(file, args->handle);
d07f0e59 3850 if (!obj)
fbbd37b3 3851 goto out;
d1b851fc 3852
d07f0e59
CW
3853 /* A discrepancy here is that we do not report the status of
3854 * non-i915 fences, i.e. even though we may report the object as idle,
3855 * a call to set-domain may still stall waiting for foreign rendering.
3856 * This also means that wait-ioctl may report an object as busy,
3857 * where busy-ioctl considers it idle.
3858 *
3859 * We trade the ability to warn of foreign fences to report on which
3860 * i915 engines are active for the object.
3861 *
3862 * Alternatively, we can trade that extra information on read/write
3863 * activity with
3864 * args->busy =
3865 * !reservation_object_test_signaled_rcu(obj->resv, true);
3866 * to report the overall busyness. This is what the wait-ioctl does.
3867 *
3868 */
3869retry:
3870 seq = raw_read_seqcount(&obj->resv->seq);
426960be 3871
d07f0e59
CW
3872 /* Translate the exclusive fence to the READ *and* WRITE engine */
3873 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3fdc13c7 3874
d07f0e59
CW
3875 /* Translate shared fences to READ set of engines */
3876 list = rcu_dereference(obj->resv->fence);
3877 if (list) {
3878 unsigned int shared_count = list->shared_count, i;
3fdc13c7 3879
d07f0e59
CW
3880 for (i = 0; i < shared_count; ++i) {
3881 struct dma_fence *fence =
3882 rcu_dereference(list->shared[i]);
3883
3884 args->busy |= busy_check_reader(fence);
3885 }
426960be 3886 }
673a394b 3887
d07f0e59
CW
3888 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
3889 goto retry;
3890
3891 err = 0;
fbbd37b3
CW
3892out:
3893 rcu_read_unlock();
3894 return err;
673a394b
EA
3895}
3896
3897int
3898i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3899 struct drm_file *file_priv)
3900{
0206e353 3901 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3902}
3903
3ef94daa
CW
3904int
3905i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3906 struct drm_file *file_priv)
3907{
fac5e23e 3908 struct drm_i915_private *dev_priv = to_i915(dev);
3ef94daa 3909 struct drm_i915_gem_madvise *args = data;
05394f39 3910 struct drm_i915_gem_object *obj;
1233e2db 3911 int err;
3ef94daa
CW
3912
3913 switch (args->madv) {
3914 case I915_MADV_DONTNEED:
3915 case I915_MADV_WILLNEED:
3916 break;
3917 default:
3918 return -EINVAL;
3919 }
3920
03ac0642 3921 obj = i915_gem_object_lookup(file_priv, args->handle);
1233e2db
CW
3922 if (!obj)
3923 return -ENOENT;
3924
3925 err = mutex_lock_interruptible(&obj->mm.lock);
3926 if (err)
3927 goto out;
3ef94daa 3928
a4f5ea64 3929 if (obj->mm.pages &&
3e510a8e 3930 i915_gem_object_is_tiled(obj) &&
656bfa3a 3931 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
bc0629a7
CW
3932 if (obj->mm.madv == I915_MADV_WILLNEED) {
3933 GEM_BUG_ON(!obj->mm.quirked);
a4f5ea64 3934 __i915_gem_object_unpin_pages(obj);
bc0629a7
CW
3935 obj->mm.quirked = false;
3936 }
3937 if (args->madv == I915_MADV_WILLNEED) {
2c3a3f44 3938 GEM_BUG_ON(obj->mm.quirked);
a4f5ea64 3939 __i915_gem_object_pin_pages(obj);
bc0629a7
CW
3940 obj->mm.quirked = true;
3941 }
656bfa3a
DV
3942 }
3943
a4f5ea64
CW
3944 if (obj->mm.madv != __I915_MADV_PURGED)
3945 obj->mm.madv = args->madv;
3ef94daa 3946
6c085a72 3947 /* if the object is no longer attached, discard its backing storage */
a4f5ea64 3948 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
2d7ef395
CW
3949 i915_gem_object_truncate(obj);
3950
a4f5ea64 3951 args->retained = obj->mm.madv != __I915_MADV_PURGED;
1233e2db 3952 mutex_unlock(&obj->mm.lock);
bb6baf76 3953
1233e2db 3954out:
f8c417cd 3955 i915_gem_object_put(obj);
1233e2db 3956 return err;
3ef94daa
CW
3957}
3958
5b8c8aec
CW
3959static void
3960frontbuffer_retire(struct i915_gem_active *active,
3961 struct drm_i915_gem_request *request)
3962{
3963 struct drm_i915_gem_object *obj =
3964 container_of(active, typeof(*obj), frontbuffer_write);
3965
3966 intel_fb_obj_flush(obj, true, ORIGIN_CS);
3967}
3968
37e680a1
CW
3969void i915_gem_object_init(struct drm_i915_gem_object *obj,
3970 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3971{
1233e2db
CW
3972 mutex_init(&obj->mm.lock);
3973
56cea323 3974 INIT_LIST_HEAD(&obj->global_link);
275f039d 3975 INIT_LIST_HEAD(&obj->userfault_link);
b25cb2f8 3976 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 3977 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 3978 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 3979
37e680a1
CW
3980 obj->ops = ops;
3981
d07f0e59
CW
3982 reservation_object_init(&obj->__builtin_resv);
3983 obj->resv = &obj->__builtin_resv;
3984
50349247 3985 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
5b8c8aec 3986 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
a4f5ea64
CW
3987
3988 obj->mm.madv = I915_MADV_WILLNEED;
3989 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
3990 mutex_init(&obj->mm.get_page.lock);
0327d6ba 3991
f19ec8cb 3992 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
0327d6ba
CW
3993}
3994
37e680a1 3995static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3599a91c
TU
3996 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
3997 I915_GEM_OBJECT_IS_SHRINKABLE,
37e680a1
CW
3998 .get_pages = i915_gem_object_get_pages_gtt,
3999 .put_pages = i915_gem_object_put_pages_gtt,
4000};
4001
b4bcbe2a
CW
4002/* Note we don't consider signbits :| */
4003#define overflows_type(x, T) \
4004 (sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))
4005
4006struct drm_i915_gem_object *
12d79d78 4007i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
ac52bc56 4008{
c397b908 4009 struct drm_i915_gem_object *obj;
5949eac4 4010 struct address_space *mapping;
1a240d4d 4011 gfp_t mask;
fe3db79b 4012 int ret;
ac52bc56 4013
b4bcbe2a
CW
4014 /* There is a prevalence of the assumption that we fit the object's
4015 * page count inside a 32bit _signed_ variable. Let's document this and
4016 * catch if we ever need to fix it. In the meantime, if you do spot
4017 * such a local variable, please consider fixing!
4018 */
4019 if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
4020 return ERR_PTR(-E2BIG);
4021
4022 if (overflows_type(size, obj->base.size))
4023 return ERR_PTR(-E2BIG);
4024
187685cb 4025 obj = i915_gem_object_alloc(dev_priv);
c397b908 4026 if (obj == NULL)
fe3db79b 4027 return ERR_PTR(-ENOMEM);
673a394b 4028
12d79d78 4029 ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
fe3db79b
CW
4030 if (ret)
4031 goto fail;
673a394b 4032
bed1ea95 4033 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
c0f86832 4034 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
bed1ea95
CW
4035 /* 965gm cannot relocate objects above 4GiB. */
4036 mask &= ~__GFP_HIGHMEM;
4037 mask |= __GFP_DMA32;
4038 }
4039
93c76a3d 4040 mapping = obj->base.filp->f_mapping;
bed1ea95 4041 mapping_set_gfp_mask(mapping, mask);
5949eac4 4042
37e680a1 4043 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4044
c397b908
DV
4045 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4046 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4047
0031fb96 4048 if (HAS_LLC(dev_priv)) {
3d29b842 4049 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4050 * cache) for about a 10% performance improvement
4051 * compared to uncached. Graphics requests other than
4052 * display scanout are coherent with the CPU in
4053 * accessing this cache. This means in this mode we
4054 * don't need to clflush on the CPU side, and on the
4055 * GPU side we only need to flush internal caches to
4056 * get data visible to the CPU.
4057 *
4058 * However, we maintain the display planes as UC, and so
4059 * need to rebind when first used as such.
4060 */
4061 obj->cache_level = I915_CACHE_LLC;
4062 } else
4063 obj->cache_level = I915_CACHE_NONE;
4064
d861e338
DV
4065 trace_i915_gem_object_create(obj);
4066
05394f39 4067 return obj;
fe3db79b
CW
4068
4069fail:
4070 i915_gem_object_free(obj);
fe3db79b 4071 return ERR_PTR(ret);
c397b908
DV
4072}
4073
340fbd8c
CW
4074static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4075{
4076 /* If we are the last user of the backing storage (be it shmemfs
4077 * pages or stolen etc), we know that the pages are going to be
4078 * immediately released. In this case, we can then skip copying
4079 * back the contents from the GPU.
4080 */
4081
a4f5ea64 4082 if (obj->mm.madv != I915_MADV_WILLNEED)
340fbd8c
CW
4083 return false;
4084
4085 if (obj->base.filp == NULL)
4086 return true;
4087
4088 /* At first glance, this looks racy, but then again so would be
4089 * userspace racing mmap against close. However, the first external
4090 * reference to the filp can only be obtained through the
4091 * i915_gem_mmap_ioctl() which safeguards us against the user
4092 * acquiring such a reference whilst we are in the middle of
4093 * freeing the object.
4094 */
4095 return atomic_long_read(&obj->base.filp->f_count) == 1;
4096}
4097
fbbd37b3
CW
4098static void __i915_gem_free_objects(struct drm_i915_private *i915,
4099 struct llist_node *freed)
673a394b 4100{
fbbd37b3 4101 struct drm_i915_gem_object *obj, *on;
673a394b 4102
fbbd37b3
CW
4103 mutex_lock(&i915->drm.struct_mutex);
4104 intel_runtime_pm_get(i915);
4105 llist_for_each_entry(obj, freed, freed) {
4106 struct i915_vma *vma, *vn;
4107
4108 trace_i915_gem_object_destroy(obj);
4109
4110 GEM_BUG_ON(i915_gem_object_is_active(obj));
4111 list_for_each_entry_safe(vma, vn,
4112 &obj->vma_list, obj_link) {
4113 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4114 GEM_BUG_ON(i915_vma_is_active(vma));
4115 vma->flags &= ~I915_VMA_PIN_MASK;
4116 i915_vma_close(vma);
4117 }
db6c2b41
CW
4118 GEM_BUG_ON(!list_empty(&obj->vma_list));
4119 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
fbbd37b3 4120
56cea323 4121 list_del(&obj->global_link);
fbbd37b3
CW
4122 }
4123 intel_runtime_pm_put(i915);
4124 mutex_unlock(&i915->drm.struct_mutex);
4125
4126 llist_for_each_entry_safe(obj, on, freed, freed) {
4127 GEM_BUG_ON(obj->bind_count);
4128 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4129
4130 if (obj->ops->release)
4131 obj->ops->release(obj);
f65c9168 4132
fbbd37b3
CW
4133 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4134 atomic_set(&obj->mm.pages_pin_count, 0);
548625ee 4135 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
fbbd37b3
CW
4136 GEM_BUG_ON(obj->mm.pages);
4137
4138 if (obj->base.import_attach)
4139 drm_prime_gem_destroy(&obj->base, NULL);
4140
d07f0e59 4141 reservation_object_fini(&obj->__builtin_resv);
fbbd37b3
CW
4142 drm_gem_object_release(&obj->base);
4143 i915_gem_info_remove_obj(i915, obj->base.size);
4144
4145 kfree(obj->bit_17);
4146 i915_gem_object_free(obj);
4147 }
4148}
4149
4150static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4151{
4152 struct llist_node *freed;
4153
4154 freed = llist_del_all(&i915->mm.free_list);
4155 if (unlikely(freed))
4156 __i915_gem_free_objects(i915, freed);
4157}
4158
4159static void __i915_gem_free_work(struct work_struct *work)
4160{
4161 struct drm_i915_private *i915 =
4162 container_of(work, struct drm_i915_private, mm.free_work);
4163 struct llist_node *freed;
26e12f89 4164
b1f788c6
CW
4165 /* All file-owned VMA should have been released by this point through
4166 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4167 * However, the object may also be bound into the global GTT (e.g.
4168 * older GPUs without per-process support, or for direct access through
4169 * the GTT either for the user or for scanout). Those VMA still need to
4170 * unbound now.
4171 */
1488fc08 4172
fbbd37b3
CW
4173 while ((freed = llist_del_all(&i915->mm.free_list)))
4174 __i915_gem_free_objects(i915, freed);
4175}
a071fa00 4176
fbbd37b3
CW
4177static void __i915_gem_free_object_rcu(struct rcu_head *head)
4178{
4179 struct drm_i915_gem_object *obj =
4180 container_of(head, typeof(*obj), rcu);
4181 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4182
4183 /* We can't simply use call_rcu() from i915_gem_free_object()
4184 * as we need to block whilst unbinding, and the call_rcu
4185 * task may be called from softirq context. So we take a
4186 * detour through a worker.
4187 */
4188 if (llist_add(&obj->freed, &i915->mm.free_list))
4189 schedule_work(&i915->mm.free_work);
4190}
656bfa3a 4191
fbbd37b3
CW
4192void i915_gem_free_object(struct drm_gem_object *gem_obj)
4193{
4194 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
a4f5ea64 4195
bc0629a7
CW
4196 if (obj->mm.quirked)
4197 __i915_gem_object_unpin_pages(obj);
4198
340fbd8c 4199 if (discard_backing_storage(obj))
a4f5ea64 4200 obj->mm.madv = I915_MADV_DONTNEED;
de151cf6 4201
fbbd37b3
CW
4202 /* Before we free the object, make sure any pure RCU-only
4203 * read-side critical sections are complete, e.g.
4204 * i915_gem_busy_ioctl(). For the corresponding synchronized
4205 * lookup see i915_gem_object_lookup_rcu().
4206 */
4207 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
673a394b
EA
4208}
4209
f8a7fde4
CW
4210void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4211{
4212 lockdep_assert_held(&obj->base.dev->struct_mutex);
4213
4214 GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4215 if (i915_gem_object_is_active(obj))
4216 i915_gem_object_set_active_reference(obj);
4217 else
4218 i915_gem_object_put(obj);
4219}
4220
3033acab
CW
4221static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4222{
4223 struct intel_engine_cs *engine;
4224 enum intel_engine_id id;
4225
4226 for_each_engine(engine, dev_priv, id)
e8a9c58f 4227 GEM_BUG_ON(engine->last_retired_context != dev_priv->kernel_context);
3033acab
CW
4228}
4229
bf9e8429 4230int i915_gem_suspend(struct drm_i915_private *dev_priv)
29105ccc 4231{
bf9e8429 4232 struct drm_device *dev = &dev_priv->drm;
dcff85c8 4233 int ret;
28dfe52a 4234
54b4f68f
CW
4235 intel_suspend_gt_powersave(dev_priv);
4236
45c5f202 4237 mutex_lock(&dev->struct_mutex);
5ab57c70
CW
4238
4239 /* We have to flush all the executing contexts to main memory so
4240 * that they can saved in the hibernation image. To ensure the last
4241 * context image is coherent, we have to switch away from it. That
4242 * leaves the dev_priv->kernel_context still active when
4243 * we actually suspend, and its image in memory may not match the GPU
4244 * state. Fortunately, the kernel_context is disposable and we do
4245 * not rely on its state.
4246 */
4247 ret = i915_gem_switch_to_kernel_context(dev_priv);
4248 if (ret)
4249 goto err;
4250
22dd3bb9
CW
4251 ret = i915_gem_wait_for_idle(dev_priv,
4252 I915_WAIT_INTERRUPTIBLE |
4253 I915_WAIT_LOCKED);
f7403347 4254 if (ret)
45c5f202 4255 goto err;
f7403347 4256
c033666a 4257 i915_gem_retire_requests(dev_priv);
28176ef4 4258 GEM_BUG_ON(dev_priv->gt.active_requests);
673a394b 4259
3033acab 4260 assert_kernel_context_is_current(dev_priv);
b2e862d0 4261 i915_gem_context_lost(dev_priv);
45c5f202
CW
4262 mutex_unlock(&dev->struct_mutex);
4263
737b1506 4264 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
67d97da3
CW
4265 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4266 flush_delayed_work(&dev_priv->gt.idle_work);
fbbd37b3 4267 flush_work(&dev_priv->mm.free_work);
29105ccc 4268
bdcf120b
CW
4269 /* Assert that we sucessfully flushed all the work and
4270 * reset the GPU back to its idle, low power state.
4271 */
67d97da3 4272 WARN_ON(dev_priv->gt.awake);
31ab49ab 4273 WARN_ON(!intel_execlists_idle(dev_priv));
bdcf120b 4274
1c777c5d
ID
4275 /*
4276 * Neither the BIOS, ourselves or any other kernel
4277 * expects the system to be in execlists mode on startup,
4278 * so we need to reset the GPU back to legacy mode. And the only
4279 * known way to disable logical contexts is through a GPU reset.
4280 *
4281 * So in order to leave the system in a known default configuration,
4282 * always reset the GPU upon unload and suspend. Afterwards we then
4283 * clean up the GEM state tracking, flushing off the requests and
4284 * leaving the system in a known idle state.
4285 *
4286 * Note that is of the upmost importance that the GPU is idle and
4287 * all stray writes are flushed *before* we dismantle the backing
4288 * storage for the pinned objects.
4289 *
4290 * However, since we are uncertain that resetting the GPU on older
4291 * machines is a good idea, we don't - just in case it leaves the
4292 * machine in an unusable condition.
4293 */
0031fb96 4294 if (HAS_HW_CONTEXTS(dev_priv)) {
1c777c5d
ID
4295 int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
4296 WARN_ON(reset && reset != -ENODEV);
4297 }
4298
673a394b 4299 return 0;
45c5f202
CW
4300
4301err:
4302 mutex_unlock(&dev->struct_mutex);
4303 return ret;
673a394b
EA
4304}
4305
bf9e8429 4306void i915_gem_resume(struct drm_i915_private *dev_priv)
5ab57c70 4307{
bf9e8429 4308 struct drm_device *dev = &dev_priv->drm;
5ab57c70 4309
31ab49ab
ID
4310 WARN_ON(dev_priv->gt.awake);
4311
5ab57c70 4312 mutex_lock(&dev->struct_mutex);
275a991c 4313 i915_gem_restore_gtt_mappings(dev_priv);
5ab57c70
CW
4314
4315 /* As we didn't flush the kernel context before suspend, we cannot
4316 * guarantee that the context image is complete. So let's just reset
4317 * it and start again.
4318 */
821ed7df 4319 dev_priv->gt.resume(dev_priv);
5ab57c70
CW
4320
4321 mutex_unlock(&dev->struct_mutex);
4322}
4323
c6be607a 4324void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
f691e2f4 4325{
c6be607a 4326 if (INTEL_GEN(dev_priv) < 5 ||
f691e2f4
DV
4327 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4328 return;
4329
4330 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4331 DISP_TILE_SURFACE_SWIZZLING);
4332
5db94019 4333 if (IS_GEN5(dev_priv))
11782b02
DV
4334 return;
4335
f691e2f4 4336 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5db94019 4337 if (IS_GEN6(dev_priv))
6b26c86d 4338 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5db94019 4339 else if (IS_GEN7(dev_priv))
6b26c86d 4340 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5db94019 4341 else if (IS_GEN8(dev_priv))
31a5336e 4342 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4343 else
4344 BUG();
f691e2f4 4345}
e21af88d 4346
50a0bc90 4347static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
81e7f200 4348{
81e7f200
VS
4349 I915_WRITE(RING_CTL(base), 0);
4350 I915_WRITE(RING_HEAD(base), 0);
4351 I915_WRITE(RING_TAIL(base), 0);
4352 I915_WRITE(RING_START(base), 0);
4353}
4354
50a0bc90 4355static void init_unused_rings(struct drm_i915_private *dev_priv)
81e7f200 4356{
50a0bc90
TU
4357 if (IS_I830(dev_priv)) {
4358 init_unused_ring(dev_priv, PRB1_BASE);
4359 init_unused_ring(dev_priv, SRB0_BASE);
4360 init_unused_ring(dev_priv, SRB1_BASE);
4361 init_unused_ring(dev_priv, SRB2_BASE);
4362 init_unused_ring(dev_priv, SRB3_BASE);
4363 } else if (IS_GEN2(dev_priv)) {
4364 init_unused_ring(dev_priv, SRB0_BASE);
4365 init_unused_ring(dev_priv, SRB1_BASE);
4366 } else if (IS_GEN3(dev_priv)) {
4367 init_unused_ring(dev_priv, PRB1_BASE);
4368 init_unused_ring(dev_priv, PRB2_BASE);
81e7f200
VS
4369 }
4370}
4371
4fc7c971 4372int
bf9e8429 4373i915_gem_init_hw(struct drm_i915_private *dev_priv)
4fc7c971 4374{
e2f80391 4375 struct intel_engine_cs *engine;
3b3f1650 4376 enum intel_engine_id id;
d200cda6 4377 int ret;
4fc7c971 4378
de867c20
CW
4379 dev_priv->gt.last_init_time = ktime_get();
4380
5e4f5189
CW
4381 /* Double layer security blanket, see i915_gem_init() */
4382 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4383
0031fb96 4384 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4385 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4386
772c2a51 4387 if (IS_HASWELL(dev_priv))
50a0bc90 4388 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
0bf21347 4389 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4390
6e266956 4391 if (HAS_PCH_NOP(dev_priv)) {
fd6b8f43 4392 if (IS_IVYBRIDGE(dev_priv)) {
6ba844b0
DV
4393 u32 temp = I915_READ(GEN7_MSG_CTL);
4394 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4395 I915_WRITE(GEN7_MSG_CTL, temp);
c6be607a 4396 } else if (INTEL_GEN(dev_priv) >= 7) {
6ba844b0
DV
4397 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4398 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4399 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4400 }
88a2b2a3
BW
4401 }
4402
c6be607a 4403 i915_gem_init_swizzling(dev_priv);
4fc7c971 4404
d5abdfda
DV
4405 /*
4406 * At least 830 can leave some of the unused rings
4407 * "active" (ie. head != tail) after resume which
4408 * will prevent c3 entry. Makes sure all unused rings
4409 * are totally idle.
4410 */
50a0bc90 4411 init_unused_rings(dev_priv);
d5abdfda 4412
ed54c1a1 4413 BUG_ON(!dev_priv->kernel_context);
90638cc1 4414
c6be607a 4415 ret = i915_ppgtt_init_hw(dev_priv);
4ad2fd88
JH
4416 if (ret) {
4417 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4418 goto out;
4419 }
4420
4421 /* Need to do basic initialisation of all rings first: */
3b3f1650 4422 for_each_engine(engine, dev_priv, id) {
e2f80391 4423 ret = engine->init_hw(engine);
35a57ffb 4424 if (ret)
5e4f5189 4425 goto out;
35a57ffb 4426 }
99433931 4427
bf9e8429 4428 intel_mocs_init_l3cc_table(dev_priv);
0ccdacf6 4429
33a732f4 4430 /* We can't enable contexts until all firmware is loaded */
bf9e8429 4431 ret = intel_guc_setup(dev_priv);
e556f7c1
DG
4432 if (ret)
4433 goto out;
33a732f4 4434
5e4f5189
CW
4435out:
4436 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4437 return ret;
8187a2b7
ZN
4438}
4439
39df9190
CW
4440bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4441{
4442 if (INTEL_INFO(dev_priv)->gen < 6)
4443 return false;
4444
4445 /* TODO: make semaphores and Execlists play nicely together */
4446 if (i915.enable_execlists)
4447 return false;
4448
4449 if (value >= 0)
4450 return value;
4451
4452#ifdef CONFIG_INTEL_IOMMU
4453 /* Enable semaphores on SNB when IO remapping is off */
4454 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4455 return false;
4456#endif
4457
4458 return true;
4459}
4460
bf9e8429 4461int i915_gem_init(struct drm_i915_private *dev_priv)
1070a42b 4462{
1070a42b
CW
4463 int ret;
4464
bf9e8429 4465 mutex_lock(&dev_priv->drm.struct_mutex);
d62b4892 4466
a83014d3 4467 if (!i915.enable_execlists) {
821ed7df 4468 dev_priv->gt.resume = intel_legacy_submission_resume;
7e37f889 4469 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
454afebd 4470 } else {
821ed7df 4471 dev_priv->gt.resume = intel_lr_context_resume;
117897f4 4472 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
a83014d3
OM
4473 }
4474
5e4f5189
CW
4475 /* This is just a security blanket to placate dragons.
4476 * On some systems, we very sporadically observe that the first TLBs
4477 * used by the CS may be stale, despite us poking the TLB reset. If
4478 * we hold the forcewake during initialisation these problems
4479 * just magically go away.
4480 */
4481 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4482
72778cb2 4483 i915_gem_init_userptr(dev_priv);
f6b9d5ca
CW
4484
4485 ret = i915_gem_init_ggtt(dev_priv);
4486 if (ret)
4487 goto out_unlock;
d62b4892 4488
bf9e8429 4489 ret = i915_gem_context_init(dev_priv);
7bcc3777
JN
4490 if (ret)
4491 goto out_unlock;
2fa48d8d 4492
bf9e8429 4493 ret = intel_engines_init(dev_priv);
35a57ffb 4494 if (ret)
7bcc3777 4495 goto out_unlock;
2fa48d8d 4496
bf9e8429 4497 ret = i915_gem_init_hw(dev_priv);
60990320 4498 if (ret == -EIO) {
7e21d648 4499 /* Allow engine initialisation to fail by marking the GPU as
60990320
CW
4500 * wedged. But we only want to do this where the GPU is angry,
4501 * for all other failure, such as an allocation failure, bail.
4502 */
4503 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
821ed7df 4504 i915_gem_set_wedged(dev_priv);
60990320 4505 ret = 0;
1070a42b 4506 }
7bcc3777
JN
4507
4508out_unlock:
5e4f5189 4509 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
bf9e8429 4510 mutex_unlock(&dev_priv->drm.struct_mutex);
1070a42b 4511
60990320 4512 return ret;
1070a42b
CW
4513}
4514
8187a2b7 4515void
cb15d9f8 4516i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
8187a2b7 4517{
e2f80391 4518 struct intel_engine_cs *engine;
3b3f1650 4519 enum intel_engine_id id;
8187a2b7 4520
3b3f1650 4521 for_each_engine(engine, dev_priv, id)
117897f4 4522 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
4523}
4524
40ae4e16
ID
4525void
4526i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4527{
49ef5294 4528 int i;
40ae4e16
ID
4529
4530 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4531 !IS_CHERRYVIEW(dev_priv))
4532 dev_priv->num_fence_regs = 32;
73f67aa8
JN
4533 else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4534 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4535 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
40ae4e16
ID
4536 dev_priv->num_fence_regs = 16;
4537 else
4538 dev_priv->num_fence_regs = 8;
4539
c033666a 4540 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
4541 dev_priv->num_fence_regs =
4542 I915_READ(vgtif_reg(avail_rs.fence_num));
4543
4544 /* Initialize fence registers to zero */
49ef5294
CW
4545 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4546 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4547
4548 fence->i915 = dev_priv;
4549 fence->id = i;
4550 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4551 }
4362f4f6 4552 i915_gem_restore_fences(dev_priv);
40ae4e16 4553
4362f4f6 4554 i915_gem_detect_bit_6_swizzle(dev_priv);
40ae4e16
ID
4555}
4556
73cb9701 4557int
cb15d9f8 4558i915_gem_load_init(struct drm_i915_private *dev_priv)
673a394b 4559{
a933568e 4560 int err = -ENOMEM;
42dcedd4 4561
a933568e
TU
4562 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4563 if (!dev_priv->objects)
73cb9701 4564 goto err_out;
73cb9701 4565
a933568e
TU
4566 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4567 if (!dev_priv->vmas)
73cb9701 4568 goto err_objects;
73cb9701 4569
a933568e
TU
4570 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4571 SLAB_HWCACHE_ALIGN |
4572 SLAB_RECLAIM_ACCOUNT |
4573 SLAB_DESTROY_BY_RCU);
4574 if (!dev_priv->requests)
73cb9701 4575 goto err_vmas;
73cb9701 4576
52e54209
CW
4577 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4578 SLAB_HWCACHE_ALIGN |
4579 SLAB_RECLAIM_ACCOUNT);
4580 if (!dev_priv->dependencies)
4581 goto err_requests;
4582
73cb9701
CW
4583 mutex_lock(&dev_priv->drm.struct_mutex);
4584 INIT_LIST_HEAD(&dev_priv->gt.timelines);
bb89485e 4585 err = i915_gem_timeline_init__global(dev_priv);
73cb9701
CW
4586 mutex_unlock(&dev_priv->drm.struct_mutex);
4587 if (err)
52e54209 4588 goto err_dependencies;
673a394b 4589
a33afea5 4590 INIT_LIST_HEAD(&dev_priv->context_list);
fbbd37b3
CW
4591 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4592 init_llist_head(&dev_priv->mm.free_list);
6c085a72
CW
4593 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4594 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4595 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
275f039d 4596 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
67d97da3 4597 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
673a394b 4598 i915_gem_retire_work_handler);
67d97da3 4599 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
b29c19b6 4600 i915_gem_idle_work_handler);
1f15b76f 4601 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1f83fee0 4602 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4603
72bfa19c
CW
4604 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4605
6b95a207 4606 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4607
ce453d81
CW
4608 dev_priv->mm.interruptible = true;
4609
6f633402
JL
4610 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4611
b5add959 4612 spin_lock_init(&dev_priv->fb_tracking.lock);
73cb9701
CW
4613
4614 return 0;
4615
52e54209
CW
4616err_dependencies:
4617 kmem_cache_destroy(dev_priv->dependencies);
73cb9701
CW
4618err_requests:
4619 kmem_cache_destroy(dev_priv->requests);
4620err_vmas:
4621 kmem_cache_destroy(dev_priv->vmas);
4622err_objects:
4623 kmem_cache_destroy(dev_priv->objects);
4624err_out:
4625 return err;
673a394b 4626}
71acb5eb 4627
cb15d9f8 4628void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
d64aa096 4629{
7d5d59e5
CW
4630 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4631
ea84aa77
MA
4632 mutex_lock(&dev_priv->drm.struct_mutex);
4633 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4634 WARN_ON(!list_empty(&dev_priv->gt.timelines));
4635 mutex_unlock(&dev_priv->drm.struct_mutex);
4636
52e54209 4637 kmem_cache_destroy(dev_priv->dependencies);
d64aa096
ID
4638 kmem_cache_destroy(dev_priv->requests);
4639 kmem_cache_destroy(dev_priv->vmas);
4640 kmem_cache_destroy(dev_priv->objects);
0eafec6d
CW
4641
4642 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4643 rcu_barrier();
d64aa096
ID
4644}
4645
6a800eab
CW
4646int i915_gem_freeze(struct drm_i915_private *dev_priv)
4647{
4648 intel_runtime_pm_get(dev_priv);
4649
4650 mutex_lock(&dev_priv->drm.struct_mutex);
4651 i915_gem_shrink_all(dev_priv);
4652 mutex_unlock(&dev_priv->drm.struct_mutex);
4653
4654 intel_runtime_pm_put(dev_priv);
4655
4656 return 0;
4657}
4658
461fb99c
CW
4659int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4660{
4661 struct drm_i915_gem_object *obj;
7aab2d53
CW
4662 struct list_head *phases[] = {
4663 &dev_priv->mm.unbound_list,
4664 &dev_priv->mm.bound_list,
4665 NULL
4666 }, **p;
461fb99c
CW
4667
4668 /* Called just before we write the hibernation image.
4669 *
4670 * We need to update the domain tracking to reflect that the CPU
4671 * will be accessing all the pages to create and restore from the
4672 * hibernation, and so upon restoration those pages will be in the
4673 * CPU domain.
4674 *
4675 * To make sure the hibernation image contains the latest state,
4676 * we update that state just before writing out the image.
7aab2d53
CW
4677 *
4678 * To try and reduce the hibernation image, we manually shrink
4679 * the objects as well.
461fb99c
CW
4680 */
4681
6a800eab
CW
4682 mutex_lock(&dev_priv->drm.struct_mutex);
4683 i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
461fb99c 4684
7aab2d53 4685 for (p = phases; *p; p++) {
56cea323 4686 list_for_each_entry(obj, *p, global_link) {
7aab2d53
CW
4687 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4688 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4689 }
461fb99c 4690 }
6a800eab 4691 mutex_unlock(&dev_priv->drm.struct_mutex);
461fb99c
CW
4692
4693 return 0;
4694}
4695
f787a5f5 4696void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4697{
f787a5f5 4698 struct drm_i915_file_private *file_priv = file->driver_priv;
15f7bbc7 4699 struct drm_i915_gem_request *request;
b962442e
EA
4700
4701 /* Clean up our request list when the client is going away, so that
4702 * later retire_requests won't dereference our soon-to-be-gone
4703 * file_priv.
4704 */
1c25595f 4705 spin_lock(&file_priv->mm.lock);
15f7bbc7 4706 list_for_each_entry(request, &file_priv->mm.request_list, client_list)
f787a5f5 4707 request->file_priv = NULL;
1c25595f 4708 spin_unlock(&file_priv->mm.lock);
b29c19b6 4709
2e1b8730 4710 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 4711 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 4712 list_del(&file_priv->rps.link);
8d3afd7d 4713 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 4714 }
b29c19b6
CW
4715}
4716
4717int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4718{
4719 struct drm_i915_file_private *file_priv;
e422b888 4720 int ret;
b29c19b6 4721
c4c29d7b 4722 DRM_DEBUG("\n");
b29c19b6
CW
4723
4724 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4725 if (!file_priv)
4726 return -ENOMEM;
4727
4728 file->driver_priv = file_priv;
f19ec8cb 4729 file_priv->dev_priv = to_i915(dev);
ab0e7ff9 4730 file_priv->file = file;
2e1b8730 4731 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
4732
4733 spin_lock_init(&file_priv->mm.lock);
4734 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 4735
c80ff16e 4736 file_priv->bsd_engine = -1;
de1add36 4737
e422b888
BW
4738 ret = i915_gem_context_open(dev, file);
4739 if (ret)
4740 kfree(file_priv);
b29c19b6 4741
e422b888 4742 return ret;
b29c19b6
CW
4743}
4744
b680c37a
DV
4745/**
4746 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
4747 * @old: current GEM buffer for the frontbuffer slots
4748 * @new: new GEM buffer for the frontbuffer slots
4749 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
4750 *
4751 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4752 * from @old and setting them in @new. Both @old and @new can be NULL.
4753 */
a071fa00
DV
4754void i915_gem_track_fb(struct drm_i915_gem_object *old,
4755 struct drm_i915_gem_object *new,
4756 unsigned frontbuffer_bits)
4757{
faf5bf0a
CW
4758 /* Control of individual bits within the mask are guarded by
4759 * the owning plane->mutex, i.e. we can never see concurrent
4760 * manipulation of individual bits. But since the bitfield as a whole
4761 * is updated using RMW, we need to use atomics in order to update
4762 * the bits.
4763 */
4764 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4765 sizeof(atomic_t) * BITS_PER_BYTE);
4766
a071fa00 4767 if (old) {
faf5bf0a
CW
4768 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4769 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
a071fa00
DV
4770 }
4771
4772 if (new) {
faf5bf0a
CW
4773 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4774 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
a071fa00
DV
4775 }
4776}
4777
ea70299d
DG
4778/* Allocate a new GEM object and fill it with the supplied data */
4779struct drm_i915_gem_object *
12d79d78 4780i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
ea70299d
DG
4781 const void *data, size_t size)
4782{
4783 struct drm_i915_gem_object *obj;
4784 struct sg_table *sg;
4785 size_t bytes;
4786 int ret;
4787
12d79d78 4788 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
fe3db79b 4789 if (IS_ERR(obj))
ea70299d
DG
4790 return obj;
4791
4792 ret = i915_gem_object_set_to_cpu_domain(obj, true);
4793 if (ret)
4794 goto fail;
4795
a4f5ea64 4796 ret = i915_gem_object_pin_pages(obj);
ea70299d
DG
4797 if (ret)
4798 goto fail;
4799
a4f5ea64 4800 sg = obj->mm.pages;
ea70299d 4801 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
a4f5ea64 4802 obj->mm.dirty = true; /* Backing store is now out of date */
ea70299d
DG
4803 i915_gem_object_unpin_pages(obj);
4804
4805 if (WARN_ON(bytes != size)) {
4806 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4807 ret = -EFAULT;
4808 goto fail;
4809 }
4810
4811 return obj;
4812
4813fail:
f8c417cd 4814 i915_gem_object_put(obj);
ea70299d
DG
4815 return ERR_PTR(ret);
4816}
96d77634
CW
4817
4818struct scatterlist *
4819i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4820 unsigned int n,
4821 unsigned int *offset)
4822{
a4f5ea64 4823 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
96d77634
CW
4824 struct scatterlist *sg;
4825 unsigned int idx, count;
4826
4827 might_sleep();
4828 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
a4f5ea64 4829 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
96d77634
CW
4830
4831 /* As we iterate forward through the sg, we record each entry in a
4832 * radixtree for quick repeated (backwards) lookups. If we have seen
4833 * this index previously, we will have an entry for it.
4834 *
4835 * Initial lookup is O(N), but this is amortized to O(1) for
4836 * sequential page access (where each new request is consecutive
4837 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
4838 * i.e. O(1) with a large constant!
4839 */
4840 if (n < READ_ONCE(iter->sg_idx))
4841 goto lookup;
4842
4843 mutex_lock(&iter->lock);
4844
4845 /* We prefer to reuse the last sg so that repeated lookup of this
4846 * (or the subsequent) sg are fast - comparing against the last
4847 * sg is faster than going through the radixtree.
4848 */
4849
4850 sg = iter->sg_pos;
4851 idx = iter->sg_idx;
4852 count = __sg_page_count(sg);
4853
4854 while (idx + count <= n) {
4855 unsigned long exception, i;
4856 int ret;
4857
4858 /* If we cannot allocate and insert this entry, or the
4859 * individual pages from this range, cancel updating the
4860 * sg_idx so that on this lookup we are forced to linearly
4861 * scan onwards, but on future lookups we will try the
4862 * insertion again (in which case we need to be careful of
4863 * the error return reporting that we have already inserted
4864 * this index).
4865 */
4866 ret = radix_tree_insert(&iter->radix, idx, sg);
4867 if (ret && ret != -EEXIST)
4868 goto scan;
4869
4870 exception =
4871 RADIX_TREE_EXCEPTIONAL_ENTRY |
4872 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
4873 for (i = 1; i < count; i++) {
4874 ret = radix_tree_insert(&iter->radix, idx + i,
4875 (void *)exception);
4876 if (ret && ret != -EEXIST)
4877 goto scan;
4878 }
4879
4880 idx += count;
4881 sg = ____sg_next(sg);
4882 count = __sg_page_count(sg);
4883 }
4884
4885scan:
4886 iter->sg_pos = sg;
4887 iter->sg_idx = idx;
4888
4889 mutex_unlock(&iter->lock);
4890
4891 if (unlikely(n < idx)) /* insertion completed by another thread */
4892 goto lookup;
4893
4894 /* In case we failed to insert the entry into the radixtree, we need
4895 * to look beyond the current sg.
4896 */
4897 while (idx + count <= n) {
4898 idx += count;
4899 sg = ____sg_next(sg);
4900 count = __sg_page_count(sg);
4901 }
4902
4903 *offset = n - idx;
4904 return sg;
4905
4906lookup:
4907 rcu_read_lock();
4908
4909 sg = radix_tree_lookup(&iter->radix, n);
4910 GEM_BUG_ON(!sg);
4911
4912 /* If this index is in the middle of multi-page sg entry,
4913 * the radixtree will contain an exceptional entry that points
4914 * to the start of that range. We will return the pointer to
4915 * the base page and the offset of this page within the
4916 * sg entry's range.
4917 */
4918 *offset = 0;
4919 if (unlikely(radix_tree_exception(sg))) {
4920 unsigned long base =
4921 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
4922
4923 sg = radix_tree_lookup(&iter->radix, base);
4924 GEM_BUG_ON(!sg);
4925
4926 *offset = n - base;
4927 }
4928
4929 rcu_read_unlock();
4930
4931 return sg;
4932}
4933
4934struct page *
4935i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
4936{
4937 struct scatterlist *sg;
4938 unsigned int offset;
4939
4940 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
4941
4942 sg = i915_gem_object_get_sg(obj, n, &offset);
4943 return nth_page(sg_page(sg), offset);
4944}
4945
4946/* Like i915_gem_object_get_page(), but mark the returned page dirty */
4947struct page *
4948i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
4949 unsigned int n)
4950{
4951 struct page *page;
4952
4953 page = i915_gem_object_get_page(obj, n);
a4f5ea64 4954 if (!obj->mm.dirty)
96d77634
CW
4955 set_page_dirty(page);
4956
4957 return page;
4958}
4959
4960dma_addr_t
4961i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
4962 unsigned long n)
4963{
4964 struct scatterlist *sg;
4965 unsigned int offset;
4966
4967 sg = i915_gem_object_get_sg(obj, n, &offset);
4968 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
4969}