]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: refactor i915_gem_object_pin_map()
[thirdparty/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
0ccdacf6 35#include "intel_mocs.h"
5949eac4 36#include <linux/shmem_fs.h>
5a0e3ad6 37#include <linux/slab.h>
673a394b 38#include <linux/swap.h>
79e53945 39#include <linux/pci.h>
1286ff73 40#include <linux/dma-buf.h>
673a394b 41
05394f39 42static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 43static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
c8725f3d 44static void
b4716185
CW
45i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
46static void
47i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
61050808 48
c76ce038
CW
49static bool cpu_cache_is_coherent(struct drm_device *dev,
50 enum i915_cache_level level)
51{
52 return HAS_LLC(dev) || level != I915_CACHE_NONE;
53}
54
2c22569b
CW
55static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56{
57 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
58 return true;
59
60 return obj->pin_display;
61}
62
73aa808f
CW
63/* some bookkeeping */
64static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 size_t size)
66{
c20e8355 67 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
68 dev_priv->mm.object_count++;
69 dev_priv->mm.object_memory += size;
c20e8355 70 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
71}
72
73static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
74 size_t size)
75{
c20e8355 76 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
77 dev_priv->mm.object_count--;
78 dev_priv->mm.object_memory -= size;
c20e8355 79 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
80}
81
21dd3734 82static int
33196ded 83i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 84{
30dbf0c0
CW
85 int ret;
86
d98c52cf 87 if (!i915_reset_in_progress(error))
30dbf0c0
CW
88 return 0;
89
0a6759c6
DV
90 /*
91 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
92 * userspace. If it takes that long something really bad is going on and
93 * we should simply try to bail out and fail as gracefully as possible.
94 */
1f83fee0 95 ret = wait_event_interruptible_timeout(error->reset_queue,
d98c52cf 96 !i915_reset_in_progress(error),
1f83fee0 97 10*HZ);
0a6759c6
DV
98 if (ret == 0) {
99 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
100 return -EIO;
101 } else if (ret < 0) {
30dbf0c0 102 return ret;
d98c52cf
CW
103 } else {
104 return 0;
0a6759c6 105 }
30dbf0c0
CW
106}
107
54cf91dc 108int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 109{
33196ded 110 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
111 int ret;
112
33196ded 113 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
114 if (ret)
115 return ret;
116
117 ret = mutex_lock_interruptible(&dev->struct_mutex);
118 if (ret)
119 return ret;
120
23bc5982 121 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
122 return 0;
123}
30dbf0c0 124
5a125c3c
EA
125int
126i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 127 struct drm_file *file)
5a125c3c 128{
72e96d64 129 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 130 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 131 struct drm_i915_gem_get_aperture *args = data;
ca1543be 132 struct i915_vma *vma;
6299f992 133 size_t pinned;
5a125c3c 134
6299f992 135 pinned = 0;
73aa808f 136 mutex_lock(&dev->struct_mutex);
1c7f4bca 137 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
ca1543be
TU
138 if (vma->pin_count)
139 pinned += vma->node.size;
1c7f4bca 140 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
ca1543be
TU
141 if (vma->pin_count)
142 pinned += vma->node.size;
73aa808f 143 mutex_unlock(&dev->struct_mutex);
5a125c3c 144
72e96d64 145 args->aper_size = ggtt->base.total;
0206e353 146 args->aper_available_size = args->aper_size - pinned;
6299f992 147
5a125c3c
EA
148 return 0;
149}
150
6a2c4232
CW
151static int
152i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 153{
6a2c4232
CW
154 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
155 char *vaddr = obj->phys_handle->vaddr;
156 struct sg_table *st;
157 struct scatterlist *sg;
158 int i;
00731155 159
6a2c4232
CW
160 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
161 return -EINVAL;
162
163 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
164 struct page *page;
165 char *src;
166
167 page = shmem_read_mapping_page(mapping, i);
168 if (IS_ERR(page))
169 return PTR_ERR(page);
170
171 src = kmap_atomic(page);
172 memcpy(vaddr, src, PAGE_SIZE);
173 drm_clflush_virt_range(vaddr, PAGE_SIZE);
174 kunmap_atomic(src);
175
09cbfeaf 176 put_page(page);
6a2c4232
CW
177 vaddr += PAGE_SIZE;
178 }
179
c033666a 180 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
181
182 st = kmalloc(sizeof(*st), GFP_KERNEL);
183 if (st == NULL)
184 return -ENOMEM;
185
186 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
187 kfree(st);
188 return -ENOMEM;
189 }
190
191 sg = st->sgl;
192 sg->offset = 0;
193 sg->length = obj->base.size;
00731155 194
6a2c4232
CW
195 sg_dma_address(sg) = obj->phys_handle->busaddr;
196 sg_dma_len(sg) = obj->base.size;
197
198 obj->pages = st;
6a2c4232
CW
199 return 0;
200}
201
202static void
203i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
204{
205 int ret;
206
207 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 208
6a2c4232 209 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 210 if (WARN_ON(ret)) {
6a2c4232
CW
211 /* In the event of a disaster, abandon all caches and
212 * hope for the best.
213 */
6a2c4232
CW
214 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
215 }
216
217 if (obj->madv == I915_MADV_DONTNEED)
218 obj->dirty = 0;
219
220 if (obj->dirty) {
00731155 221 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 222 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
223 int i;
224
225 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
226 struct page *page;
227 char *dst;
228
229 page = shmem_read_mapping_page(mapping, i);
230 if (IS_ERR(page))
231 continue;
232
233 dst = kmap_atomic(page);
234 drm_clflush_virt_range(vaddr, PAGE_SIZE);
235 memcpy(dst, vaddr, PAGE_SIZE);
236 kunmap_atomic(dst);
237
238 set_page_dirty(page);
239 if (obj->madv == I915_MADV_WILLNEED)
00731155 240 mark_page_accessed(page);
09cbfeaf 241 put_page(page);
00731155
CW
242 vaddr += PAGE_SIZE;
243 }
6a2c4232 244 obj->dirty = 0;
00731155
CW
245 }
246
6a2c4232
CW
247 sg_free_table(obj->pages);
248 kfree(obj->pages);
6a2c4232
CW
249}
250
251static void
252i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
253{
254 drm_pci_free(obj->base.dev, obj->phys_handle);
255}
256
257static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
258 .get_pages = i915_gem_object_get_pages_phys,
259 .put_pages = i915_gem_object_put_pages_phys,
260 .release = i915_gem_object_release_phys,
261};
262
263static int
264drop_pages(struct drm_i915_gem_object *obj)
265{
266 struct i915_vma *vma, *next;
267 int ret;
268
269 drm_gem_object_reference(&obj->base);
1c7f4bca 270 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
6a2c4232
CW
271 if (i915_vma_unbind(vma))
272 break;
273
274 ret = i915_gem_object_put_pages(obj);
275 drm_gem_object_unreference(&obj->base);
276
277 return ret;
00731155
CW
278}
279
280int
281i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
282 int align)
283{
284 drm_dma_handle_t *phys;
6a2c4232 285 int ret;
00731155
CW
286
287 if (obj->phys_handle) {
288 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
289 return -EBUSY;
290
291 return 0;
292 }
293
294 if (obj->madv != I915_MADV_WILLNEED)
295 return -EFAULT;
296
297 if (obj->base.filp == NULL)
298 return -EINVAL;
299
6a2c4232
CW
300 ret = drop_pages(obj);
301 if (ret)
302 return ret;
303
00731155
CW
304 /* create a new object */
305 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
306 if (!phys)
307 return -ENOMEM;
308
00731155 309 obj->phys_handle = phys;
6a2c4232
CW
310 obj->ops = &i915_gem_phys_ops;
311
312 return i915_gem_object_get_pages(obj);
00731155
CW
313}
314
315static int
316i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
317 struct drm_i915_gem_pwrite *args,
318 struct drm_file *file_priv)
319{
320 struct drm_device *dev = obj->base.dev;
321 void *vaddr = obj->phys_handle->vaddr + args->offset;
322 char __user *user_data = to_user_ptr(args->data_ptr);
063e4e6b 323 int ret = 0;
6a2c4232
CW
324
325 /* We manually control the domain here and pretend that it
326 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
327 */
328 ret = i915_gem_object_wait_rendering(obj, false);
329 if (ret)
330 return ret;
00731155 331
77a0d1ca 332 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
333 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
334 unsigned long unwritten;
335
336 /* The physical object once assigned is fixed for the lifetime
337 * of the obj, so we can safely drop the lock and continue
338 * to access vaddr.
339 */
340 mutex_unlock(&dev->struct_mutex);
341 unwritten = copy_from_user(vaddr, user_data, args->size);
342 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
343 if (unwritten) {
344 ret = -EFAULT;
345 goto out;
346 }
00731155
CW
347 }
348
6a2c4232 349 drm_clflush_virt_range(vaddr, args->size);
c033666a 350 i915_gem_chipset_flush(to_i915(dev));
063e4e6b
PZ
351
352out:
de152b62 353 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 354 return ret;
00731155
CW
355}
356
42dcedd4
CW
357void *i915_gem_object_alloc(struct drm_device *dev)
358{
359 struct drm_i915_private *dev_priv = dev->dev_private;
efab6d8d 360 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
361}
362
363void i915_gem_object_free(struct drm_i915_gem_object *obj)
364{
365 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
efab6d8d 366 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
367}
368
ff72145b
DA
369static int
370i915_gem_create(struct drm_file *file,
371 struct drm_device *dev,
372 uint64_t size,
373 uint32_t *handle_p)
673a394b 374{
05394f39 375 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
376 int ret;
377 u32 handle;
673a394b 378
ff72145b 379 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
380 if (size == 0)
381 return -EINVAL;
673a394b
EA
382
383 /* Allocate the new object */
d37cd8a8 384 obj = i915_gem_object_create(dev, size);
fe3db79b
CW
385 if (IS_ERR(obj))
386 return PTR_ERR(obj);
673a394b 387
05394f39 388 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 389 /* drop reference from allocate - handle holds it now */
d861e338
DV
390 drm_gem_object_unreference_unlocked(&obj->base);
391 if (ret)
392 return ret;
202f2fef 393
ff72145b 394 *handle_p = handle;
673a394b
EA
395 return 0;
396}
397
ff72145b
DA
398int
399i915_gem_dumb_create(struct drm_file *file,
400 struct drm_device *dev,
401 struct drm_mode_create_dumb *args)
402{
403 /* have to work out size/pitch and return them */
de45eaf7 404 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
405 args->size = args->pitch * args->height;
406 return i915_gem_create(file, dev,
da6b51d0 407 args->size, &args->handle);
ff72145b
DA
408}
409
ff72145b
DA
410/**
411 * Creates a new mm object and returns a handle to it.
412 */
413int
414i915_gem_create_ioctl(struct drm_device *dev, void *data,
415 struct drm_file *file)
416{
417 struct drm_i915_gem_create *args = data;
63ed2cb2 418
ff72145b 419 return i915_gem_create(file, dev,
da6b51d0 420 args->size, &args->handle);
ff72145b
DA
421}
422
8461d226
DV
423static inline int
424__copy_to_user_swizzled(char __user *cpu_vaddr,
425 const char *gpu_vaddr, int gpu_offset,
426 int length)
427{
428 int ret, cpu_offset = 0;
429
430 while (length > 0) {
431 int cacheline_end = ALIGN(gpu_offset + 1, 64);
432 int this_length = min(cacheline_end - gpu_offset, length);
433 int swizzled_gpu_offset = gpu_offset ^ 64;
434
435 ret = __copy_to_user(cpu_vaddr + cpu_offset,
436 gpu_vaddr + swizzled_gpu_offset,
437 this_length);
438 if (ret)
439 return ret + length;
440
441 cpu_offset += this_length;
442 gpu_offset += this_length;
443 length -= this_length;
444 }
445
446 return 0;
447}
448
8c59967c 449static inline int
4f0c7cfb
BW
450__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
451 const char __user *cpu_vaddr,
8c59967c
DV
452 int length)
453{
454 int ret, cpu_offset = 0;
455
456 while (length > 0) {
457 int cacheline_end = ALIGN(gpu_offset + 1, 64);
458 int this_length = min(cacheline_end - gpu_offset, length);
459 int swizzled_gpu_offset = gpu_offset ^ 64;
460
461 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
462 cpu_vaddr + cpu_offset,
463 this_length);
464 if (ret)
465 return ret + length;
466
467 cpu_offset += this_length;
468 gpu_offset += this_length;
469 length -= this_length;
470 }
471
472 return 0;
473}
474
4c914c0c
BV
475/*
476 * Pins the specified object's pages and synchronizes the object with
477 * GPU accesses. Sets needs_clflush to non-zero if the caller should
478 * flush the object from the CPU cache.
479 */
480int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
481 int *needs_clflush)
482{
483 int ret;
484
485 *needs_clflush = 0;
486
1db6e2e7 487 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
4c914c0c
BV
488 return -EINVAL;
489
490 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
491 /* If we're not in the cpu read domain, set ourself into the gtt
492 * read domain and manually flush cachelines (if required). This
493 * optimizes for the case when the gpu will dirty the data
494 * anyway again before the next pread happens. */
495 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
496 obj->cache_level);
497 ret = i915_gem_object_wait_rendering(obj, true);
498 if (ret)
499 return ret;
500 }
501
502 ret = i915_gem_object_get_pages(obj);
503 if (ret)
504 return ret;
505
506 i915_gem_object_pin_pages(obj);
507
508 return ret;
509}
510
d174bd64
DV
511/* Per-page copy function for the shmem pread fastpath.
512 * Flushes invalid cachelines before reading the target if
513 * needs_clflush is set. */
eb01459f 514static int
d174bd64
DV
515shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
516 char __user *user_data,
517 bool page_do_bit17_swizzling, bool needs_clflush)
518{
519 char *vaddr;
520 int ret;
521
e7e58eb5 522 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
523 return -EINVAL;
524
525 vaddr = kmap_atomic(page);
526 if (needs_clflush)
527 drm_clflush_virt_range(vaddr + shmem_page_offset,
528 page_length);
529 ret = __copy_to_user_inatomic(user_data,
530 vaddr + shmem_page_offset,
531 page_length);
532 kunmap_atomic(vaddr);
533
f60d7f0c 534 return ret ? -EFAULT : 0;
d174bd64
DV
535}
536
23c18c71
DV
537static void
538shmem_clflush_swizzled_range(char *addr, unsigned long length,
539 bool swizzled)
540{
e7e58eb5 541 if (unlikely(swizzled)) {
23c18c71
DV
542 unsigned long start = (unsigned long) addr;
543 unsigned long end = (unsigned long) addr + length;
544
545 /* For swizzling simply ensure that we always flush both
546 * channels. Lame, but simple and it works. Swizzled
547 * pwrite/pread is far from a hotpath - current userspace
548 * doesn't use it at all. */
549 start = round_down(start, 128);
550 end = round_up(end, 128);
551
552 drm_clflush_virt_range((void *)start, end - start);
553 } else {
554 drm_clflush_virt_range(addr, length);
555 }
556
557}
558
d174bd64
DV
559/* Only difference to the fast-path function is that this can handle bit17
560 * and uses non-atomic copy and kmap functions. */
561static int
562shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
563 char __user *user_data,
564 bool page_do_bit17_swizzling, bool needs_clflush)
565{
566 char *vaddr;
567 int ret;
568
569 vaddr = kmap(page);
570 if (needs_clflush)
23c18c71
DV
571 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
572 page_length,
573 page_do_bit17_swizzling);
d174bd64
DV
574
575 if (page_do_bit17_swizzling)
576 ret = __copy_to_user_swizzled(user_data,
577 vaddr, shmem_page_offset,
578 page_length);
579 else
580 ret = __copy_to_user(user_data,
581 vaddr + shmem_page_offset,
582 page_length);
583 kunmap(page);
584
f60d7f0c 585 return ret ? - EFAULT : 0;
d174bd64
DV
586}
587
eb01459f 588static int
dbf7bff0
DV
589i915_gem_shmem_pread(struct drm_device *dev,
590 struct drm_i915_gem_object *obj,
591 struct drm_i915_gem_pread *args,
592 struct drm_file *file)
eb01459f 593{
8461d226 594 char __user *user_data;
eb01459f 595 ssize_t remain;
8461d226 596 loff_t offset;
eb2c0c81 597 int shmem_page_offset, page_length, ret = 0;
8461d226 598 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 599 int prefaulted = 0;
8489731c 600 int needs_clflush = 0;
67d5a50c 601 struct sg_page_iter sg_iter;
eb01459f 602
2bb4629a 603 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
604 remain = args->size;
605
8461d226 606 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 607
4c914c0c 608 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
609 if (ret)
610 return ret;
611
8461d226 612 offset = args->offset;
eb01459f 613
67d5a50c
ID
614 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
615 offset >> PAGE_SHIFT) {
2db76d7c 616 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
617
618 if (remain <= 0)
619 break;
620
eb01459f
EA
621 /* Operation in this page
622 *
eb01459f 623 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
624 * page_length = bytes to copy for this page
625 */
c8cbbb8b 626 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
627 page_length = remain;
628 if ((shmem_page_offset + page_length) > PAGE_SIZE)
629 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 630
8461d226
DV
631 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
632 (page_to_phys(page) & (1 << 17)) != 0;
633
d174bd64
DV
634 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
635 user_data, page_do_bit17_swizzling,
636 needs_clflush);
637 if (ret == 0)
638 goto next_page;
dbf7bff0 639
dbf7bff0
DV
640 mutex_unlock(&dev->struct_mutex);
641
d330a953 642 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 643 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
644 /* Userspace is tricking us, but we've already clobbered
645 * its pages with the prefault and promised to write the
646 * data up to the first fault. Hence ignore any errors
647 * and just continue. */
648 (void)ret;
649 prefaulted = 1;
650 }
eb01459f 651
d174bd64
DV
652 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
653 user_data, page_do_bit17_swizzling,
654 needs_clflush);
eb01459f 655
dbf7bff0 656 mutex_lock(&dev->struct_mutex);
f60d7f0c 657
f60d7f0c 658 if (ret)
8461d226 659 goto out;
8461d226 660
17793c9a 661next_page:
eb01459f 662 remain -= page_length;
8461d226 663 user_data += page_length;
eb01459f
EA
664 offset += page_length;
665 }
666
4f27b75d 667out:
f60d7f0c
CW
668 i915_gem_object_unpin_pages(obj);
669
eb01459f
EA
670 return ret;
671}
672
673a394b
EA
673/**
674 * Reads data from the object referenced by handle.
675 *
676 * On error, the contents of *data are undefined.
677 */
678int
679i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 680 struct drm_file *file)
673a394b
EA
681{
682 struct drm_i915_gem_pread *args = data;
05394f39 683 struct drm_i915_gem_object *obj;
35b62a89 684 int ret = 0;
673a394b 685
51311d0a
CW
686 if (args->size == 0)
687 return 0;
688
689 if (!access_ok(VERIFY_WRITE,
2bb4629a 690 to_user_ptr(args->data_ptr),
51311d0a
CW
691 args->size))
692 return -EFAULT;
693
4f27b75d 694 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 695 if (ret)
4f27b75d 696 return ret;
673a394b 697
05394f39 698 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 699 if (&obj->base == NULL) {
1d7cfea1
CW
700 ret = -ENOENT;
701 goto unlock;
4f27b75d 702 }
673a394b 703
7dcd2499 704 /* Bounds check source. */
05394f39
CW
705 if (args->offset > obj->base.size ||
706 args->size > obj->base.size - args->offset) {
ce9d419d 707 ret = -EINVAL;
35b62a89 708 goto out;
ce9d419d
CW
709 }
710
1286ff73
DV
711 /* prime objects have no backing filp to GEM pread/pwrite
712 * pages from.
713 */
714 if (!obj->base.filp) {
715 ret = -EINVAL;
716 goto out;
717 }
718
db53a302
CW
719 trace_i915_gem_object_pread(obj, args->offset, args->size);
720
dbf7bff0 721 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 722
35b62a89 723out:
05394f39 724 drm_gem_object_unreference(&obj->base);
1d7cfea1 725unlock:
4f27b75d 726 mutex_unlock(&dev->struct_mutex);
eb01459f 727 return ret;
673a394b
EA
728}
729
0839ccb8
KP
730/* This is the fast write path which cannot handle
731 * page faults in the source data
9b7530cc 732 */
0839ccb8
KP
733
734static inline int
735fast_user_write(struct io_mapping *mapping,
736 loff_t page_base, int page_offset,
737 char __user *user_data,
738 int length)
9b7530cc 739{
4f0c7cfb
BW
740 void __iomem *vaddr_atomic;
741 void *vaddr;
0839ccb8 742 unsigned long unwritten;
9b7530cc 743
3e4d3af5 744 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
745 /* We can use the cpu mem copy function because this is X86. */
746 vaddr = (void __force*)vaddr_atomic + page_offset;
747 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 748 user_data, length);
3e4d3af5 749 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 750 return unwritten;
0839ccb8
KP
751}
752
3de09aa3
EA
753/**
754 * This is the fast pwrite path, where we copy the data directly from the
755 * user into the GTT, uncached.
756 */
673a394b 757static int
05394f39
CW
758i915_gem_gtt_pwrite_fast(struct drm_device *dev,
759 struct drm_i915_gem_object *obj,
3de09aa3 760 struct drm_i915_gem_pwrite *args,
05394f39 761 struct drm_file *file)
673a394b 762{
72e96d64
JL
763 struct drm_i915_private *dev_priv = to_i915(dev);
764 struct i915_ggtt *ggtt = &dev_priv->ggtt;
673a394b 765 ssize_t remain;
0839ccb8 766 loff_t offset, page_base;
673a394b 767 char __user *user_data;
935aaa69
DV
768 int page_offset, page_length, ret;
769
1ec9e26d 770 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
771 if (ret)
772 goto out;
773
774 ret = i915_gem_object_set_to_gtt_domain(obj, true);
775 if (ret)
776 goto out_unpin;
777
778 ret = i915_gem_object_put_fence(obj);
779 if (ret)
780 goto out_unpin;
673a394b 781
2bb4629a 782 user_data = to_user_ptr(args->data_ptr);
673a394b 783 remain = args->size;
673a394b 784
f343c5f6 785 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b 786
77a0d1ca 787 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
063e4e6b 788
673a394b
EA
789 while (remain > 0) {
790 /* Operation in this page
791 *
0839ccb8
KP
792 * page_base = page offset within aperture
793 * page_offset = offset within page
794 * page_length = bytes to copy for this page
673a394b 795 */
c8cbbb8b
CW
796 page_base = offset & PAGE_MASK;
797 page_offset = offset_in_page(offset);
0839ccb8
KP
798 page_length = remain;
799 if ((page_offset + remain) > PAGE_SIZE)
800 page_length = PAGE_SIZE - page_offset;
801
0839ccb8 802 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
803 * source page isn't available. Return the error and we'll
804 * retry in the slow path.
0839ccb8 805 */
72e96d64 806 if (fast_user_write(ggtt->mappable, page_base,
935aaa69
DV
807 page_offset, user_data, page_length)) {
808 ret = -EFAULT;
063e4e6b 809 goto out_flush;
935aaa69 810 }
673a394b 811
0839ccb8
KP
812 remain -= page_length;
813 user_data += page_length;
814 offset += page_length;
673a394b 815 }
673a394b 816
063e4e6b 817out_flush:
de152b62 818 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
935aaa69 819out_unpin:
d7f46fc4 820 i915_gem_object_ggtt_unpin(obj);
935aaa69 821out:
3de09aa3 822 return ret;
673a394b
EA
823}
824
d174bd64
DV
825/* Per-page copy function for the shmem pwrite fastpath.
826 * Flushes invalid cachelines before writing to the target if
827 * needs_clflush_before is set and flushes out any written cachelines after
828 * writing if needs_clflush is set. */
3043c60c 829static int
d174bd64
DV
830shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
831 char __user *user_data,
832 bool page_do_bit17_swizzling,
833 bool needs_clflush_before,
834 bool needs_clflush_after)
673a394b 835{
d174bd64 836 char *vaddr;
673a394b 837 int ret;
3de09aa3 838
e7e58eb5 839 if (unlikely(page_do_bit17_swizzling))
d174bd64 840 return -EINVAL;
3de09aa3 841
d174bd64
DV
842 vaddr = kmap_atomic(page);
843 if (needs_clflush_before)
844 drm_clflush_virt_range(vaddr + shmem_page_offset,
845 page_length);
c2831a94
CW
846 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
847 user_data, page_length);
d174bd64
DV
848 if (needs_clflush_after)
849 drm_clflush_virt_range(vaddr + shmem_page_offset,
850 page_length);
851 kunmap_atomic(vaddr);
3de09aa3 852
755d2218 853 return ret ? -EFAULT : 0;
3de09aa3
EA
854}
855
d174bd64
DV
856/* Only difference to the fast-path function is that this can handle bit17
857 * and uses non-atomic copy and kmap functions. */
3043c60c 858static int
d174bd64
DV
859shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
860 char __user *user_data,
861 bool page_do_bit17_swizzling,
862 bool needs_clflush_before,
863 bool needs_clflush_after)
673a394b 864{
d174bd64
DV
865 char *vaddr;
866 int ret;
e5281ccd 867
d174bd64 868 vaddr = kmap(page);
e7e58eb5 869 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
870 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
871 page_length,
872 page_do_bit17_swizzling);
d174bd64
DV
873 if (page_do_bit17_swizzling)
874 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
875 user_data,
876 page_length);
d174bd64
DV
877 else
878 ret = __copy_from_user(vaddr + shmem_page_offset,
879 user_data,
880 page_length);
881 if (needs_clflush_after)
23c18c71
DV
882 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
883 page_length,
884 page_do_bit17_swizzling);
d174bd64 885 kunmap(page);
40123c1f 886
755d2218 887 return ret ? -EFAULT : 0;
40123c1f
EA
888}
889
40123c1f 890static int
e244a443
DV
891i915_gem_shmem_pwrite(struct drm_device *dev,
892 struct drm_i915_gem_object *obj,
893 struct drm_i915_gem_pwrite *args,
894 struct drm_file *file)
40123c1f 895{
40123c1f 896 ssize_t remain;
8c59967c
DV
897 loff_t offset;
898 char __user *user_data;
eb2c0c81 899 int shmem_page_offset, page_length, ret = 0;
8c59967c 900 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 901 int hit_slowpath = 0;
58642885
DV
902 int needs_clflush_after = 0;
903 int needs_clflush_before = 0;
67d5a50c 904 struct sg_page_iter sg_iter;
40123c1f 905
2bb4629a 906 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
907 remain = args->size;
908
8c59967c 909 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 910
58642885
DV
911 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
912 /* If we're not in the cpu write domain, set ourself into the gtt
913 * write domain and manually flush cachelines (if required). This
914 * optimizes for the case when the gpu will use the data
915 * right away and we therefore have to clflush anyway. */
2c22569b 916 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
917 ret = i915_gem_object_wait_rendering(obj, false);
918 if (ret)
919 return ret;
58642885 920 }
c76ce038
CW
921 /* Same trick applies to invalidate partially written cachelines read
922 * before writing. */
923 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
924 needs_clflush_before =
925 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 926
755d2218
CW
927 ret = i915_gem_object_get_pages(obj);
928 if (ret)
929 return ret;
930
77a0d1ca 931 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 932
755d2218
CW
933 i915_gem_object_pin_pages(obj);
934
673a394b 935 offset = args->offset;
05394f39 936 obj->dirty = 1;
673a394b 937
67d5a50c
ID
938 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
939 offset >> PAGE_SHIFT) {
2db76d7c 940 struct page *page = sg_page_iter_page(&sg_iter);
58642885 941 int partial_cacheline_write;
e5281ccd 942
9da3da66
CW
943 if (remain <= 0)
944 break;
945
40123c1f
EA
946 /* Operation in this page
947 *
40123c1f 948 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
949 * page_length = bytes to copy for this page
950 */
c8cbbb8b 951 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
952
953 page_length = remain;
954 if ((shmem_page_offset + page_length) > PAGE_SIZE)
955 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 956
58642885
DV
957 /* If we don't overwrite a cacheline completely we need to be
958 * careful to have up-to-date data by first clflushing. Don't
959 * overcomplicate things and flush the entire patch. */
960 partial_cacheline_write = needs_clflush_before &&
961 ((shmem_page_offset | page_length)
962 & (boot_cpu_data.x86_clflush_size - 1));
963
8c59967c
DV
964 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
965 (page_to_phys(page) & (1 << 17)) != 0;
966
d174bd64
DV
967 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
968 user_data, page_do_bit17_swizzling,
969 partial_cacheline_write,
970 needs_clflush_after);
971 if (ret == 0)
972 goto next_page;
e244a443
DV
973
974 hit_slowpath = 1;
e244a443 975 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
976 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
977 user_data, page_do_bit17_swizzling,
978 partial_cacheline_write,
979 needs_clflush_after);
40123c1f 980
e244a443 981 mutex_lock(&dev->struct_mutex);
755d2218 982
755d2218 983 if (ret)
8c59967c 984 goto out;
8c59967c 985
17793c9a 986next_page:
40123c1f 987 remain -= page_length;
8c59967c 988 user_data += page_length;
40123c1f 989 offset += page_length;
673a394b
EA
990 }
991
fbd5a26d 992out:
755d2218
CW
993 i915_gem_object_unpin_pages(obj);
994
e244a443 995 if (hit_slowpath) {
8dcf015e
DV
996 /*
997 * Fixup: Flush cpu caches in case we didn't flush the dirty
998 * cachelines in-line while writing and the object moved
999 * out of the cpu write domain while we've dropped the lock.
1000 */
1001 if (!needs_clflush_after &&
1002 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6 1003 if (i915_gem_clflush_object(obj, obj->pin_display))
ed75a55b 1004 needs_clflush_after = true;
e244a443 1005 }
8c59967c 1006 }
673a394b 1007
58642885 1008 if (needs_clflush_after)
c033666a 1009 i915_gem_chipset_flush(to_i915(dev));
ed75a55b
VS
1010 else
1011 obj->cache_dirty = true;
58642885 1012
de152b62 1013 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1014 return ret;
673a394b
EA
1015}
1016
1017/**
1018 * Writes data to the object referenced by handle.
1019 *
1020 * On error, the contents of the buffer that were to be modified are undefined.
1021 */
1022int
1023i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1024 struct drm_file *file)
673a394b 1025{
5d77d9c5 1026 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1027 struct drm_i915_gem_pwrite *args = data;
05394f39 1028 struct drm_i915_gem_object *obj;
51311d0a
CW
1029 int ret;
1030
1031 if (args->size == 0)
1032 return 0;
1033
1034 if (!access_ok(VERIFY_READ,
2bb4629a 1035 to_user_ptr(args->data_ptr),
51311d0a
CW
1036 args->size))
1037 return -EFAULT;
1038
d330a953 1039 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1040 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1041 args->size);
1042 if (ret)
1043 return -EFAULT;
1044 }
673a394b 1045
5d77d9c5
ID
1046 intel_runtime_pm_get(dev_priv);
1047
fbd5a26d 1048 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1049 if (ret)
5d77d9c5 1050 goto put_rpm;
1d7cfea1 1051
05394f39 1052 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1053 if (&obj->base == NULL) {
1d7cfea1
CW
1054 ret = -ENOENT;
1055 goto unlock;
fbd5a26d 1056 }
673a394b 1057
7dcd2499 1058 /* Bounds check destination. */
05394f39
CW
1059 if (args->offset > obj->base.size ||
1060 args->size > obj->base.size - args->offset) {
ce9d419d 1061 ret = -EINVAL;
35b62a89 1062 goto out;
ce9d419d
CW
1063 }
1064
1286ff73
DV
1065 /* prime objects have no backing filp to GEM pread/pwrite
1066 * pages from.
1067 */
1068 if (!obj->base.filp) {
1069 ret = -EINVAL;
1070 goto out;
1071 }
1072
db53a302
CW
1073 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1074
935aaa69 1075 ret = -EFAULT;
673a394b
EA
1076 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1077 * it would end up going through the fenced access, and we'll get
1078 * different detiling behavior between reading and writing.
1079 * pread/pwrite currently are reading and writing from the CPU
1080 * perspective, requiring manual detiling by the client.
1081 */
2c22569b
CW
1082 if (obj->tiling_mode == I915_TILING_NONE &&
1083 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1084 cpu_write_needs_clflush(obj)) {
fbd5a26d 1085 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1086 /* Note that the gtt paths might fail with non-page-backed user
1087 * pointers (e.g. gtt mappings when moving data between
1088 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1089 }
673a394b 1090
6a2c4232
CW
1091 if (ret == -EFAULT || ret == -ENOSPC) {
1092 if (obj->phys_handle)
1093 ret = i915_gem_phys_pwrite(obj, args, file);
1094 else
1095 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1096 }
5c0480f2 1097
35b62a89 1098out:
05394f39 1099 drm_gem_object_unreference(&obj->base);
1d7cfea1 1100unlock:
fbd5a26d 1101 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1102put_rpm:
1103 intel_runtime_pm_put(dev_priv);
1104
673a394b
EA
1105 return ret;
1106}
1107
f4457ae7
CW
1108static int
1109i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
b361237b 1110{
f4457ae7
CW
1111 if (__i915_terminally_wedged(reset_counter))
1112 return -EIO;
d98c52cf 1113
f4457ae7 1114 if (__i915_reset_in_progress(reset_counter)) {
b361237b
CW
1115 /* Non-interruptible callers can't handle -EAGAIN, hence return
1116 * -EIO unconditionally for these. */
1117 if (!interruptible)
1118 return -EIO;
1119
d98c52cf 1120 return -EAGAIN;
b361237b
CW
1121 }
1122
1123 return 0;
1124}
1125
094f9a54
CW
1126static void fake_irq(unsigned long data)
1127{
1128 wake_up_process((struct task_struct *)data);
1129}
1130
1131static bool missed_irq(struct drm_i915_private *dev_priv,
0bc40be8 1132 struct intel_engine_cs *engine)
094f9a54 1133{
0bc40be8 1134 return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
094f9a54
CW
1135}
1136
ca5b721e
CW
1137static unsigned long local_clock_us(unsigned *cpu)
1138{
1139 unsigned long t;
1140
1141 /* Cheaply and approximately convert from nanoseconds to microseconds.
1142 * The result and subsequent calculations are also defined in the same
1143 * approximate microseconds units. The principal source of timing
1144 * error here is from the simple truncation.
1145 *
1146 * Note that local_clock() is only defined wrt to the current CPU;
1147 * the comparisons are no longer valid if we switch CPUs. Instead of
1148 * blocking preemption for the entire busywait, we can detect the CPU
1149 * switch and use that as indicator of system load and a reason to
1150 * stop busywaiting, see busywait_stop().
1151 */
1152 *cpu = get_cpu();
1153 t = local_clock() >> 10;
1154 put_cpu();
1155
1156 return t;
1157}
1158
1159static bool busywait_stop(unsigned long timeout, unsigned cpu)
1160{
1161 unsigned this_cpu;
1162
1163 if (time_after(local_clock_us(&this_cpu), timeout))
1164 return true;
1165
1166 return this_cpu != cpu;
1167}
1168
91b0c352 1169static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
b29c19b6 1170{
2def4ad9 1171 unsigned long timeout;
ca5b721e
CW
1172 unsigned cpu;
1173
1174 /* When waiting for high frequency requests, e.g. during synchronous
1175 * rendering split between the CPU and GPU, the finite amount of time
1176 * required to set up the irq and wait upon it limits the response
1177 * rate. By busywaiting on the request completion for a short while we
1178 * can service the high frequency waits as quick as possible. However,
1179 * if it is a slow request, we want to sleep as quickly as possible.
1180 * The tradeoff between waiting and sleeping is roughly the time it
1181 * takes to sleep on a request, on the order of a microsecond.
1182 */
2def4ad9 1183
4a570db5 1184 if (req->engine->irq_refcount)
2def4ad9
CW
1185 return -EBUSY;
1186
821485dc
CW
1187 /* Only spin if we know the GPU is processing this request */
1188 if (!i915_gem_request_started(req, true))
1189 return -EAGAIN;
1190
ca5b721e 1191 timeout = local_clock_us(&cpu) + 5;
2def4ad9 1192 while (!need_resched()) {
eed29a5b 1193 if (i915_gem_request_completed(req, true))
2def4ad9
CW
1194 return 0;
1195
91b0c352
CW
1196 if (signal_pending_state(state, current))
1197 break;
1198
ca5b721e 1199 if (busywait_stop(timeout, cpu))
2def4ad9 1200 break;
b29c19b6 1201
2def4ad9
CW
1202 cpu_relax_lowlatency();
1203 }
821485dc 1204
eed29a5b 1205 if (i915_gem_request_completed(req, false))
2def4ad9
CW
1206 return 0;
1207
1208 return -EAGAIN;
b29c19b6
CW
1209}
1210
b361237b 1211/**
9c654818
JH
1212 * __i915_wait_request - wait until execution of request has finished
1213 * @req: duh!
b361237b
CW
1214 * @interruptible: do an interruptible wait (normally yes)
1215 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1216 *
f69061be
DV
1217 * Note: It is of utmost importance that the passed in seqno and reset_counter
1218 * values have been read by the caller in an smp safe manner. Where read-side
1219 * locks are involved, it is sufficient to read the reset_counter before
1220 * unlocking the lock that protects the seqno. For lockless tricks, the
1221 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1222 * inserted.
1223 *
9c654818 1224 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1225 * errno with remaining time filled in timeout argument.
1226 */
9c654818 1227int __i915_wait_request(struct drm_i915_gem_request *req,
b29c19b6 1228 bool interruptible,
5ed0bdf2 1229 s64 *timeout,
2e1b8730 1230 struct intel_rps_client *rps)
b361237b 1231{
666796da 1232 struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
c033666a 1233 struct drm_i915_private *dev_priv = req->i915;
168c3f21 1234 const bool irq_test_in_progress =
666796da 1235 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
91b0c352 1236 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
094f9a54 1237 DEFINE_WAIT(wait);
47e9766d 1238 unsigned long timeout_expire;
e0313db0 1239 s64 before = 0; /* Only to silence a compiler warning. */
b361237b
CW
1240 int ret;
1241
9df7575f 1242 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1243
b4716185
CW
1244 if (list_empty(&req->list))
1245 return 0;
1246
1b5a433a 1247 if (i915_gem_request_completed(req, true))
b361237b
CW
1248 return 0;
1249
bb6d1984
CW
1250 timeout_expire = 0;
1251 if (timeout) {
1252 if (WARN_ON(*timeout < 0))
1253 return -EINVAL;
1254
1255 if (*timeout == 0)
1256 return -ETIME;
1257
1258 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
e0313db0
TU
1259
1260 /*
1261 * Record current time in case interrupted by signal, or wedged.
1262 */
1263 before = ktime_get_raw_ns();
bb6d1984 1264 }
b361237b 1265
2e1b8730 1266 if (INTEL_INFO(dev_priv)->gen >= 6)
e61b9958 1267 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
b361237b 1268
74328ee5 1269 trace_i915_gem_request_wait_begin(req);
2def4ad9
CW
1270
1271 /* Optimistic spin for the next jiffie before touching IRQs */
91b0c352 1272 ret = __i915_spin_request(req, state);
2def4ad9
CW
1273 if (ret == 0)
1274 goto out;
1275
e2f80391 1276 if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
2def4ad9
CW
1277 ret = -ENODEV;
1278 goto out;
1279 }
1280
094f9a54
CW
1281 for (;;) {
1282 struct timer_list timer;
b361237b 1283
e2f80391 1284 prepare_to_wait(&engine->irq_queue, &wait, state);
b361237b 1285
f69061be 1286 /* We need to check whether any gpu reset happened in between
f4457ae7
CW
1287 * the request being submitted and now. If a reset has occurred,
1288 * the request is effectively complete (we either are in the
1289 * process of or have discarded the rendering and completely
1290 * reset the GPU. The results of the request are lost and we
1291 * are free to continue on with the original operation.
1292 */
299259a3 1293 if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
f4457ae7 1294 ret = 0;
094f9a54
CW
1295 break;
1296 }
f69061be 1297
1b5a433a 1298 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1299 ret = 0;
1300 break;
1301 }
b361237b 1302
91b0c352 1303 if (signal_pending_state(state, current)) {
094f9a54
CW
1304 ret = -ERESTARTSYS;
1305 break;
1306 }
1307
47e9766d 1308 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1309 ret = -ETIME;
1310 break;
1311 }
1312
1313 timer.function = NULL;
e2f80391 1314 if (timeout || missed_irq(dev_priv, engine)) {
47e9766d
MK
1315 unsigned long expire;
1316
094f9a54 1317 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
e2f80391 1318 expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1319 mod_timer(&timer, expire);
1320 }
1321
5035c275 1322 io_schedule();
094f9a54 1323
094f9a54
CW
1324 if (timer.function) {
1325 del_singleshot_timer_sync(&timer);
1326 destroy_timer_on_stack(&timer);
1327 }
1328 }
168c3f21 1329 if (!irq_test_in_progress)
e2f80391 1330 engine->irq_put(engine);
094f9a54 1331
e2f80391 1332 finish_wait(&engine->irq_queue, &wait);
b361237b 1333
2def4ad9 1334out:
2def4ad9
CW
1335 trace_i915_gem_request_wait_end(req);
1336
b361237b 1337 if (timeout) {
e0313db0 1338 s64 tres = *timeout - (ktime_get_raw_ns() - before);
5ed0bdf2
TG
1339
1340 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1341
1342 /*
1343 * Apparently ktime isn't accurate enough and occasionally has a
1344 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1345 * things up to make the test happy. We allow up to 1 jiffy.
1346 *
1347 * This is a regrssion from the timespec->ktime conversion.
1348 */
1349 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1350 *timeout = 0;
b361237b
CW
1351 }
1352
094f9a54 1353 return ret;
b361237b
CW
1354}
1355
fcfa423c
JH
1356int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1357 struct drm_file *file)
1358{
fcfa423c
JH
1359 struct drm_i915_file_private *file_priv;
1360
1361 WARN_ON(!req || !file || req->file_priv);
1362
1363 if (!req || !file)
1364 return -EINVAL;
1365
1366 if (req->file_priv)
1367 return -EINVAL;
1368
fcfa423c
JH
1369 file_priv = file->driver_priv;
1370
1371 spin_lock(&file_priv->mm.lock);
1372 req->file_priv = file_priv;
1373 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1374 spin_unlock(&file_priv->mm.lock);
1375
1376 req->pid = get_pid(task_pid(current));
1377
1378 return 0;
1379}
1380
b4716185
CW
1381static inline void
1382i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1383{
1384 struct drm_i915_file_private *file_priv = request->file_priv;
1385
1386 if (!file_priv)
1387 return;
1388
1389 spin_lock(&file_priv->mm.lock);
1390 list_del(&request->client_list);
1391 request->file_priv = NULL;
1392 spin_unlock(&file_priv->mm.lock);
fcfa423c
JH
1393
1394 put_pid(request->pid);
1395 request->pid = NULL;
b4716185
CW
1396}
1397
1398static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1399{
1400 trace_i915_gem_request_retire(request);
1401
1402 /* We know the GPU must have read the request to have
1403 * sent us the seqno + interrupt, so use the position
1404 * of tail of the request to update the last known position
1405 * of the GPU head.
1406 *
1407 * Note this requires that we are always called in request
1408 * completion order.
1409 */
1410 request->ringbuf->last_retired_head = request->postfix;
1411
1412 list_del_init(&request->list);
1413 i915_gem_request_remove_from_client(request);
1414
a16a4052 1415 if (request->previous_context) {
73db04cf 1416 if (i915.enable_execlists)
a16a4052
CW
1417 intel_lr_context_unpin(request->previous_context,
1418 request->engine);
73db04cf
CW
1419 }
1420
a16a4052 1421 i915_gem_context_unreference(request->ctx);
b4716185
CW
1422 i915_gem_request_unreference(request);
1423}
1424
1425static void
1426__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1427{
4a570db5 1428 struct intel_engine_cs *engine = req->engine;
b4716185
CW
1429 struct drm_i915_gem_request *tmp;
1430
c033666a 1431 lockdep_assert_held(&engine->i915->dev->struct_mutex);
b4716185
CW
1432
1433 if (list_empty(&req->list))
1434 return;
1435
1436 do {
1437 tmp = list_first_entry(&engine->request_list,
1438 typeof(*tmp), list);
1439
1440 i915_gem_request_retire(tmp);
1441 } while (tmp != req);
1442
1443 WARN_ON(i915_verify_lists(engine->dev));
1444}
1445
b361237b 1446/**
a4b3a571 1447 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1448 * request and object lists appropriately for that event.
1449 */
1450int
a4b3a571 1451i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1452{
791bee12 1453 struct drm_i915_private *dev_priv = req->i915;
a4b3a571 1454 bool interruptible;
b361237b
CW
1455 int ret;
1456
a4b3a571
DV
1457 interruptible = dev_priv->mm.interruptible;
1458
791bee12 1459 BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
b361237b 1460
299259a3 1461 ret = __i915_wait_request(req, interruptible, NULL, NULL);
b4716185
CW
1462 if (ret)
1463 return ret;
d26e3af8 1464
e075a32f
CW
1465 /* If the GPU hung, we want to keep the requests to find the guilty. */
1466 if (req->reset_counter == i915_reset_counter(&dev_priv->gpu_error))
1467 __i915_gem_request_retire__upto(req);
1468
d26e3af8
CW
1469 return 0;
1470}
1471
b361237b
CW
1472/**
1473 * Ensures that all rendering to the object has completed and the object is
1474 * safe to unbind from the GTT or access from the CPU.
1475 */
2e2f351d 1476int
b361237b
CW
1477i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1478 bool readonly)
1479{
b4716185 1480 int ret, i;
b361237b 1481
b4716185 1482 if (!obj->active)
b361237b
CW
1483 return 0;
1484
b4716185
CW
1485 if (readonly) {
1486 if (obj->last_write_req != NULL) {
1487 ret = i915_wait_request(obj->last_write_req);
1488 if (ret)
1489 return ret;
b361237b 1490
4a570db5 1491 i = obj->last_write_req->engine->id;
b4716185
CW
1492 if (obj->last_read_req[i] == obj->last_write_req)
1493 i915_gem_object_retire__read(obj, i);
1494 else
1495 i915_gem_object_retire__write(obj);
1496 }
1497 } else {
666796da 1498 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
1499 if (obj->last_read_req[i] == NULL)
1500 continue;
1501
1502 ret = i915_wait_request(obj->last_read_req[i]);
1503 if (ret)
1504 return ret;
1505
1506 i915_gem_object_retire__read(obj, i);
1507 }
d501b1d2 1508 GEM_BUG_ON(obj->active);
b4716185
CW
1509 }
1510
1511 return 0;
1512}
1513
1514static void
1515i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1516 struct drm_i915_gem_request *req)
1517{
4a570db5 1518 int ring = req->engine->id;
b4716185
CW
1519
1520 if (obj->last_read_req[ring] == req)
1521 i915_gem_object_retire__read(obj, ring);
1522 else if (obj->last_write_req == req)
1523 i915_gem_object_retire__write(obj);
1524
e075a32f
CW
1525 if (req->reset_counter == i915_reset_counter(&req->i915->gpu_error))
1526 __i915_gem_request_retire__upto(req);
b361237b
CW
1527}
1528
3236f57a
CW
1529/* A nonblocking variant of the above wait. This is a highly dangerous routine
1530 * as the object state may change during this call.
1531 */
1532static __must_check int
1533i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
2e1b8730 1534 struct intel_rps_client *rps,
3236f57a
CW
1535 bool readonly)
1536{
1537 struct drm_device *dev = obj->base.dev;
1538 struct drm_i915_private *dev_priv = dev->dev_private;
666796da 1539 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
b4716185 1540 int ret, i, n = 0;
3236f57a
CW
1541
1542 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1543 BUG_ON(!dev_priv->mm.interruptible);
1544
b4716185 1545 if (!obj->active)
3236f57a
CW
1546 return 0;
1547
b4716185
CW
1548 if (readonly) {
1549 struct drm_i915_gem_request *req;
1550
1551 req = obj->last_write_req;
1552 if (req == NULL)
1553 return 0;
1554
b4716185
CW
1555 requests[n++] = i915_gem_request_reference(req);
1556 } else {
666796da 1557 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
1558 struct drm_i915_gem_request *req;
1559
1560 req = obj->last_read_req[i];
1561 if (req == NULL)
1562 continue;
1563
b4716185
CW
1564 requests[n++] = i915_gem_request_reference(req);
1565 }
1566 }
1567
3236f57a 1568 mutex_unlock(&dev->struct_mutex);
299259a3 1569 ret = 0;
b4716185 1570 for (i = 0; ret == 0 && i < n; i++)
299259a3 1571 ret = __i915_wait_request(requests[i], true, NULL, rps);
3236f57a
CW
1572 mutex_lock(&dev->struct_mutex);
1573
b4716185
CW
1574 for (i = 0; i < n; i++) {
1575 if (ret == 0)
1576 i915_gem_object_retire_request(obj, requests[i]);
1577 i915_gem_request_unreference(requests[i]);
1578 }
1579
1580 return ret;
3236f57a
CW
1581}
1582
2e1b8730
CW
1583static struct intel_rps_client *to_rps_client(struct drm_file *file)
1584{
1585 struct drm_i915_file_private *fpriv = file->driver_priv;
1586 return &fpriv->rps;
1587}
1588
673a394b 1589/**
2ef7eeaa
EA
1590 * Called when user space prepares to use an object with the CPU, either
1591 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1592 */
1593int
1594i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1595 struct drm_file *file)
673a394b
EA
1596{
1597 struct drm_i915_gem_set_domain *args = data;
05394f39 1598 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1599 uint32_t read_domains = args->read_domains;
1600 uint32_t write_domain = args->write_domain;
673a394b
EA
1601 int ret;
1602
2ef7eeaa 1603 /* Only handle setting domains to types used by the CPU. */
21d509e3 1604 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1605 return -EINVAL;
1606
21d509e3 1607 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1608 return -EINVAL;
1609
1610 /* Having something in the write domain implies it's in the read
1611 * domain, and only that read domain. Enforce that in the request.
1612 */
1613 if (write_domain != 0 && read_domains != write_domain)
1614 return -EINVAL;
1615
76c1dec1 1616 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1617 if (ret)
76c1dec1 1618 return ret;
1d7cfea1 1619
05394f39 1620 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1621 if (&obj->base == NULL) {
1d7cfea1
CW
1622 ret = -ENOENT;
1623 goto unlock;
76c1dec1 1624 }
673a394b 1625
3236f57a
CW
1626 /* Try to flush the object off the GPU without holding the lock.
1627 * We will repeat the flush holding the lock in the normal manner
1628 * to catch cases where we are gazumped.
1629 */
6e4930f6 1630 ret = i915_gem_object_wait_rendering__nonblocking(obj,
2e1b8730 1631 to_rps_client(file),
6e4930f6 1632 !write_domain);
3236f57a
CW
1633 if (ret)
1634 goto unref;
1635
43566ded 1636 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1637 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1638 else
e47c68e9 1639 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1640
031b698a
DV
1641 if (write_domain != 0)
1642 intel_fb_obj_invalidate(obj,
1643 write_domain == I915_GEM_DOMAIN_GTT ?
1644 ORIGIN_GTT : ORIGIN_CPU);
1645
3236f57a 1646unref:
05394f39 1647 drm_gem_object_unreference(&obj->base);
1d7cfea1 1648unlock:
673a394b
EA
1649 mutex_unlock(&dev->struct_mutex);
1650 return ret;
1651}
1652
1653/**
1654 * Called when user space has done writes to this buffer
1655 */
1656int
1657i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1658 struct drm_file *file)
673a394b
EA
1659{
1660 struct drm_i915_gem_sw_finish *args = data;
05394f39 1661 struct drm_i915_gem_object *obj;
673a394b
EA
1662 int ret = 0;
1663
76c1dec1 1664 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1665 if (ret)
76c1dec1 1666 return ret;
1d7cfea1 1667
05394f39 1668 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1669 if (&obj->base == NULL) {
1d7cfea1
CW
1670 ret = -ENOENT;
1671 goto unlock;
673a394b
EA
1672 }
1673
673a394b 1674 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1675 if (obj->pin_display)
e62b59e4 1676 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1677
05394f39 1678 drm_gem_object_unreference(&obj->base);
1d7cfea1 1679unlock:
673a394b
EA
1680 mutex_unlock(&dev->struct_mutex);
1681 return ret;
1682}
1683
1684/**
1685 * Maps the contents of an object, returning the address it is mapped
1686 * into.
1687 *
1688 * While the mapping holds a reference on the contents of the object, it doesn't
1689 * imply a ref on the object itself.
34367381
DV
1690 *
1691 * IMPORTANT:
1692 *
1693 * DRM driver writers who look a this function as an example for how to do GEM
1694 * mmap support, please don't implement mmap support like here. The modern way
1695 * to implement DRM mmap support is with an mmap offset ioctl (like
1696 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1697 * That way debug tooling like valgrind will understand what's going on, hiding
1698 * the mmap call in a driver private ioctl will break that. The i915 driver only
1699 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1700 */
1701int
1702i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1703 struct drm_file *file)
673a394b
EA
1704{
1705 struct drm_i915_gem_mmap *args = data;
1706 struct drm_gem_object *obj;
673a394b
EA
1707 unsigned long addr;
1708
1816f923
AG
1709 if (args->flags & ~(I915_MMAP_WC))
1710 return -EINVAL;
1711
1712 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1713 return -ENODEV;
1714
05394f39 1715 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1716 if (obj == NULL)
bf79cb91 1717 return -ENOENT;
673a394b 1718
1286ff73
DV
1719 /* prime objects have no backing filp to GEM mmap
1720 * pages from.
1721 */
1722 if (!obj->filp) {
1723 drm_gem_object_unreference_unlocked(obj);
1724 return -EINVAL;
1725 }
1726
6be5ceb0 1727 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1728 PROT_READ | PROT_WRITE, MAP_SHARED,
1729 args->offset);
1816f923
AG
1730 if (args->flags & I915_MMAP_WC) {
1731 struct mm_struct *mm = current->mm;
1732 struct vm_area_struct *vma;
1733
1734 down_write(&mm->mmap_sem);
1735 vma = find_vma(mm, addr);
1736 if (vma)
1737 vma->vm_page_prot =
1738 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1739 else
1740 addr = -ENOMEM;
1741 up_write(&mm->mmap_sem);
1742 }
bc9025bd 1743 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1744 if (IS_ERR((void *)addr))
1745 return addr;
1746
1747 args->addr_ptr = (uint64_t) addr;
1748
1749 return 0;
1750}
1751
de151cf6
JB
1752/**
1753 * i915_gem_fault - fault a page into the GTT
d9072a3e
GT
1754 * @vma: VMA in question
1755 * @vmf: fault info
de151cf6
JB
1756 *
1757 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1758 * from userspace. The fault handler takes care of binding the object to
1759 * the GTT (if needed), allocating and programming a fence register (again,
1760 * only if needed based on whether the old reg is still valid or the object
1761 * is tiled) and inserting a new PTE into the faulting process.
1762 *
1763 * Note that the faulting process may involve evicting existing objects
1764 * from the GTT and/or fence registers to make room. So performance may
1765 * suffer if the GTT working set is large or there are few fence registers
1766 * left.
1767 */
1768int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1769{
05394f39
CW
1770 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1771 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1772 struct drm_i915_private *dev_priv = to_i915(dev);
1773 struct i915_ggtt *ggtt = &dev_priv->ggtt;
c5ad54cf 1774 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
1775 pgoff_t page_offset;
1776 unsigned long pfn;
1777 int ret = 0;
0f973f27 1778 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1779
f65c9168
PZ
1780 intel_runtime_pm_get(dev_priv);
1781
de151cf6
JB
1782 /* We don't use vmf->pgoff since that has the fake offset */
1783 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1784 PAGE_SHIFT;
1785
d9bc7e9f
CW
1786 ret = i915_mutex_lock_interruptible(dev);
1787 if (ret)
1788 goto out;
a00b10c3 1789
db53a302
CW
1790 trace_i915_gem_object_fault(obj, page_offset, true, write);
1791
6e4930f6
CW
1792 /* Try to flush the object off the GPU first without holding the lock.
1793 * Upon reacquiring the lock, we will perform our sanity checks and then
1794 * repeat the flush holding the lock in the normal manner to catch cases
1795 * where we are gazumped.
1796 */
1797 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1798 if (ret)
1799 goto unlock;
1800
eb119bd6
CW
1801 /* Access to snoopable pages through the GTT is incoherent. */
1802 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1803 ret = -EFAULT;
eb119bd6
CW
1804 goto unlock;
1805 }
1806
c5ad54cf 1807 /* Use a partial view if the object is bigger than the aperture. */
72e96d64 1808 if (obj->base.size >= ggtt->mappable_end &&
e7ded2d7 1809 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 1810 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1811
c5ad54cf
JL
1812 memset(&view, 0, sizeof(view));
1813 view.type = I915_GGTT_VIEW_PARTIAL;
1814 view.params.partial.offset = rounddown(page_offset, chunk_size);
1815 view.params.partial.size =
1816 min_t(unsigned int,
1817 chunk_size,
1818 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1819 view.params.partial.offset);
1820 }
1821
1822 /* Now pin it into the GTT if needed */
1823 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
c9839303
CW
1824 if (ret)
1825 goto unlock;
4a684a41 1826
c9839303
CW
1827 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1828 if (ret)
1829 goto unpin;
74898d7e 1830
06d98131 1831 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1832 if (ret)
c9839303 1833 goto unpin;
7d1c4804 1834
b90b91d8 1835 /* Finally, remap it using the new GTT offset */
72e96d64 1836 pfn = ggtt->mappable_base +
c5ad54cf 1837 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 1838 pfn >>= PAGE_SHIFT;
de151cf6 1839
c5ad54cf
JL
1840 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1841 /* Overriding existing pages in partial view does not cause
1842 * us any trouble as TLBs are still valid because the fault
1843 * is due to userspace losing part of the mapping or never
1844 * having accessed it before (at this partials' range).
1845 */
1846 unsigned long base = vma->vm_start +
1847 (view.params.partial.offset << PAGE_SHIFT);
1848 unsigned int i;
b90b91d8 1849
c5ad54cf
JL
1850 for (i = 0; i < view.params.partial.size; i++) {
1851 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
1852 if (ret)
1853 break;
1854 }
1855
1856 obj->fault_mappable = true;
c5ad54cf
JL
1857 } else {
1858 if (!obj->fault_mappable) {
1859 unsigned long size = min_t(unsigned long,
1860 vma->vm_end - vma->vm_start,
1861 obj->base.size);
1862 int i;
1863
1864 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1865 ret = vm_insert_pfn(vma,
1866 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1867 pfn + i);
1868 if (ret)
1869 break;
1870 }
1871
1872 obj->fault_mappable = true;
1873 } else
1874 ret = vm_insert_pfn(vma,
1875 (unsigned long)vmf->virtual_address,
1876 pfn + page_offset);
1877 }
c9839303 1878unpin:
c5ad54cf 1879 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 1880unlock:
de151cf6 1881 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1882out:
de151cf6 1883 switch (ret) {
d9bc7e9f 1884 case -EIO:
2232f031
DV
1885 /*
1886 * We eat errors when the gpu is terminally wedged to avoid
1887 * userspace unduly crashing (gl has no provisions for mmaps to
1888 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1889 * and so needs to be reported.
1890 */
1891 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1892 ret = VM_FAULT_SIGBUS;
1893 break;
1894 }
045e769a 1895 case -EAGAIN:
571c608d
DV
1896 /*
1897 * EAGAIN means the gpu is hung and we'll wait for the error
1898 * handler to reset everything when re-faulting in
1899 * i915_mutex_lock_interruptible.
d9bc7e9f 1900 */
c715089f
CW
1901 case 0:
1902 case -ERESTARTSYS:
bed636ab 1903 case -EINTR:
e79e0fe3
DR
1904 case -EBUSY:
1905 /*
1906 * EBUSY is ok: this just means that another thread
1907 * already did the job.
1908 */
f65c9168
PZ
1909 ret = VM_FAULT_NOPAGE;
1910 break;
de151cf6 1911 case -ENOMEM:
f65c9168
PZ
1912 ret = VM_FAULT_OOM;
1913 break;
a7c2e1aa 1914 case -ENOSPC:
45d67817 1915 case -EFAULT:
f65c9168
PZ
1916 ret = VM_FAULT_SIGBUS;
1917 break;
de151cf6 1918 default:
a7c2e1aa 1919 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1920 ret = VM_FAULT_SIGBUS;
1921 break;
de151cf6 1922 }
f65c9168
PZ
1923
1924 intel_runtime_pm_put(dev_priv);
1925 return ret;
de151cf6
JB
1926}
1927
901782b2
CW
1928/**
1929 * i915_gem_release_mmap - remove physical page mappings
1930 * @obj: obj in question
1931 *
af901ca1 1932 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1933 * relinquish ownership of the pages back to the system.
1934 *
1935 * It is vital that we remove the page mapping if we have mapped a tiled
1936 * object through the GTT and then lose the fence register due to
1937 * resource pressure. Similarly if the object has been moved out of the
1938 * aperture, than pages mapped into userspace must be revoked. Removing the
1939 * mapping will then trigger a page fault on the next user access, allowing
1940 * fixup by i915_gem_fault().
1941 */
d05ca301 1942void
05394f39 1943i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1944{
349f2ccf
CW
1945 /* Serialisation between user GTT access and our code depends upon
1946 * revoking the CPU's PTE whilst the mutex is held. The next user
1947 * pagefault then has to wait until we release the mutex.
1948 */
1949 lockdep_assert_held(&obj->base.dev->struct_mutex);
1950
6299f992
CW
1951 if (!obj->fault_mappable)
1952 return;
901782b2 1953
6796cb16
DR
1954 drm_vma_node_unmap(&obj->base.vma_node,
1955 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
1956
1957 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1958 * memory transactions from userspace before we return. The TLB
1959 * flushing implied above by changing the PTE above *should* be
1960 * sufficient, an extra barrier here just provides us with a bit
1961 * of paranoid documentation about our requirement to serialise
1962 * memory writes before touching registers / GSM.
1963 */
1964 wmb();
1965
6299f992 1966 obj->fault_mappable = false;
901782b2
CW
1967}
1968
eedd10f4
CW
1969void
1970i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1971{
1972 struct drm_i915_gem_object *obj;
1973
1974 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1975 i915_gem_release_mmap(obj);
1976}
1977
0fa87796 1978uint32_t
e28f8711 1979i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1980{
e28f8711 1981 uint32_t gtt_size;
92b88aeb
CW
1982
1983 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1984 tiling_mode == I915_TILING_NONE)
1985 return size;
92b88aeb
CW
1986
1987 /* Previous chips need a power-of-two fence region when tiling */
7e22dbbb 1988 if (IS_GEN3(dev))
e28f8711 1989 gtt_size = 1024*1024;
92b88aeb 1990 else
e28f8711 1991 gtt_size = 512*1024;
92b88aeb 1992
e28f8711
CW
1993 while (gtt_size < size)
1994 gtt_size <<= 1;
92b88aeb 1995
e28f8711 1996 return gtt_size;
92b88aeb
CW
1997}
1998
de151cf6
JB
1999/**
2000 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2001 * @obj: object to check
2002 *
2003 * Return the required GTT alignment for an object, taking into account
5e783301 2004 * potential fence register mapping.
de151cf6 2005 */
d865110c
ID
2006uint32_t
2007i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2008 int tiling_mode, bool fenced)
de151cf6 2009{
de151cf6
JB
2010 /*
2011 * Minimum alignment is 4k (GTT page size), but might be greater
2012 * if a fence register is needed for the object.
2013 */
d865110c 2014 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 2015 tiling_mode == I915_TILING_NONE)
de151cf6
JB
2016 return 4096;
2017
a00b10c3
CW
2018 /*
2019 * Previous chips need to be aligned to the size of the smallest
2020 * fence register that can contain the object.
2021 */
e28f8711 2022 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
2023}
2024
d8cb5086
CW
2025static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2026{
2027 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2028 int ret;
2029
da494d7c
DV
2030 dev_priv->mm.shrinker_no_lock_stealing = true;
2031
d8cb5086
CW
2032 ret = drm_gem_create_mmap_offset(&obj->base);
2033 if (ret != -ENOSPC)
da494d7c 2034 goto out;
d8cb5086
CW
2035
2036 /* Badly fragmented mmap space? The only way we can recover
2037 * space is by destroying unwanted objects. We can't randomly release
2038 * mmap_offsets as userspace expects them to be persistent for the
2039 * lifetime of the objects. The closest we can is to release the
2040 * offsets on purgeable objects by truncating it and marking it purged,
2041 * which prevents userspace from ever using that object again.
2042 */
21ab4e74
CW
2043 i915_gem_shrink(dev_priv,
2044 obj->base.size >> PAGE_SHIFT,
2045 I915_SHRINK_BOUND |
2046 I915_SHRINK_UNBOUND |
2047 I915_SHRINK_PURGEABLE);
d8cb5086
CW
2048 ret = drm_gem_create_mmap_offset(&obj->base);
2049 if (ret != -ENOSPC)
da494d7c 2050 goto out;
d8cb5086
CW
2051
2052 i915_gem_shrink_all(dev_priv);
da494d7c
DV
2053 ret = drm_gem_create_mmap_offset(&obj->base);
2054out:
2055 dev_priv->mm.shrinker_no_lock_stealing = false;
2056
2057 return ret;
d8cb5086
CW
2058}
2059
2060static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2061{
d8cb5086
CW
2062 drm_gem_free_mmap_offset(&obj->base);
2063}
2064
da6b51d0 2065int
ff72145b
DA
2066i915_gem_mmap_gtt(struct drm_file *file,
2067 struct drm_device *dev,
da6b51d0 2068 uint32_t handle,
ff72145b 2069 uint64_t *offset)
de151cf6 2070{
05394f39 2071 struct drm_i915_gem_object *obj;
de151cf6
JB
2072 int ret;
2073
76c1dec1 2074 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 2075 if (ret)
76c1dec1 2076 return ret;
de151cf6 2077
ff72145b 2078 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 2079 if (&obj->base == NULL) {
1d7cfea1
CW
2080 ret = -ENOENT;
2081 goto unlock;
2082 }
de151cf6 2083
05394f39 2084 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2085 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 2086 ret = -EFAULT;
1d7cfea1 2087 goto out;
ab18282d
CW
2088 }
2089
d8cb5086
CW
2090 ret = i915_gem_object_create_mmap_offset(obj);
2091 if (ret)
2092 goto out;
de151cf6 2093
0de23977 2094 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2095
1d7cfea1 2096out:
05394f39 2097 drm_gem_object_unreference(&obj->base);
1d7cfea1 2098unlock:
de151cf6 2099 mutex_unlock(&dev->struct_mutex);
1d7cfea1 2100 return ret;
de151cf6
JB
2101}
2102
ff72145b
DA
2103/**
2104 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2105 * @dev: DRM device
2106 * @data: GTT mapping ioctl data
2107 * @file: GEM object info
2108 *
2109 * Simply returns the fake offset to userspace so it can mmap it.
2110 * The mmap call will end up in drm_gem_mmap(), which will set things
2111 * up so we can get faults in the handler above.
2112 *
2113 * The fault handler will take care of binding the object into the GTT
2114 * (since it may have been evicted to make room for something), allocating
2115 * a fence register, and mapping the appropriate aperture address into
2116 * userspace.
2117 */
2118int
2119i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2120 struct drm_file *file)
2121{
2122 struct drm_i915_gem_mmap_gtt *args = data;
2123
da6b51d0 2124 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2125}
2126
225067ee
DV
2127/* Immediately discard the backing storage */
2128static void
2129i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2130{
4d6294bf 2131 i915_gem_object_free_mmap_offset(obj);
1286ff73 2132
4d6294bf
CW
2133 if (obj->base.filp == NULL)
2134 return;
e5281ccd 2135
225067ee
DV
2136 /* Our goal here is to return as much of the memory as
2137 * is possible back to the system as we are called from OOM.
2138 * To do this we must instruct the shmfs to drop all of its
2139 * backing pages, *now*.
2140 */
5537252b 2141 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2142 obj->madv = __I915_MADV_PURGED;
2143}
e5281ccd 2144
5537252b
CW
2145/* Try to discard unwanted pages */
2146static void
2147i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2148{
5537252b
CW
2149 struct address_space *mapping;
2150
2151 switch (obj->madv) {
2152 case I915_MADV_DONTNEED:
2153 i915_gem_object_truncate(obj);
2154 case __I915_MADV_PURGED:
2155 return;
2156 }
2157
2158 if (obj->base.filp == NULL)
2159 return;
2160
2161 mapping = file_inode(obj->base.filp)->i_mapping,
2162 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2163}
2164
5cdf5881 2165static void
05394f39 2166i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2167{
90797e6d
ID
2168 struct sg_page_iter sg_iter;
2169 int ret;
1286ff73 2170
05394f39 2171 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2172
6c085a72 2173 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 2174 if (WARN_ON(ret)) {
6c085a72
CW
2175 /* In the event of a disaster, abandon all caches and
2176 * hope for the best.
2177 */
2c22569b 2178 i915_gem_clflush_object(obj, true);
6c085a72
CW
2179 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2180 }
2181
e2273302
ID
2182 i915_gem_gtt_finish_object(obj);
2183
6dacfd2f 2184 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2185 i915_gem_object_save_bit_17_swizzle(obj);
2186
05394f39
CW
2187 if (obj->madv == I915_MADV_DONTNEED)
2188 obj->dirty = 0;
3ef94daa 2189
90797e6d 2190 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 2191 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 2192
05394f39 2193 if (obj->dirty)
9da3da66 2194 set_page_dirty(page);
3ef94daa 2195
05394f39 2196 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2197 mark_page_accessed(page);
3ef94daa 2198
09cbfeaf 2199 put_page(page);
3ef94daa 2200 }
05394f39 2201 obj->dirty = 0;
673a394b 2202
9da3da66
CW
2203 sg_free_table(obj->pages);
2204 kfree(obj->pages);
37e680a1 2205}
6c085a72 2206
dd624afd 2207int
37e680a1
CW
2208i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2209{
2210 const struct drm_i915_gem_object_ops *ops = obj->ops;
2211
2f745ad3 2212 if (obj->pages == NULL)
37e680a1
CW
2213 return 0;
2214
a5570178
CW
2215 if (obj->pages_pin_count)
2216 return -EBUSY;
2217
9843877d 2218 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2219
a2165e31
CW
2220 /* ->put_pages might need to allocate memory for the bit17 swizzle
2221 * array, hence protect them from being reaped by removing them from gtt
2222 * lists early. */
35c20a60 2223 list_del(&obj->global_list);
a2165e31 2224
0a798eb9 2225 if (obj->mapping) {
fb8621d3
CW
2226 if (is_vmalloc_addr(obj->mapping))
2227 vunmap(obj->mapping);
2228 else
2229 kunmap(kmap_to_page(obj->mapping));
0a798eb9
CW
2230 obj->mapping = NULL;
2231 }
2232
37e680a1 2233 ops->put_pages(obj);
05394f39 2234 obj->pages = NULL;
37e680a1 2235
5537252b 2236 i915_gem_object_invalidate(obj);
6c085a72
CW
2237
2238 return 0;
2239}
2240
37e680a1 2241static int
6c085a72 2242i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2243{
6c085a72 2244 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2245 int page_count, i;
2246 struct address_space *mapping;
9da3da66
CW
2247 struct sg_table *st;
2248 struct scatterlist *sg;
90797e6d 2249 struct sg_page_iter sg_iter;
e5281ccd 2250 struct page *page;
90797e6d 2251 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2252 int ret;
6c085a72 2253 gfp_t gfp;
e5281ccd 2254
6c085a72
CW
2255 /* Assert that the object is not currently in any GPU domain. As it
2256 * wasn't in the GTT, there shouldn't be any way it could have been in
2257 * a GPU cache
2258 */
2259 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2260 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2261
9da3da66
CW
2262 st = kmalloc(sizeof(*st), GFP_KERNEL);
2263 if (st == NULL)
2264 return -ENOMEM;
2265
05394f39 2266 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2267 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2268 kfree(st);
e5281ccd 2269 return -ENOMEM;
9da3da66 2270 }
e5281ccd 2271
9da3da66
CW
2272 /* Get the list of pages out of our struct file. They'll be pinned
2273 * at this point until we release them.
2274 *
2275 * Fail silently without starting the shrinker
2276 */
496ad9aa 2277 mapping = file_inode(obj->base.filp)->i_mapping;
c62d2555 2278 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2279 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2280 sg = st->sgl;
2281 st->nents = 0;
2282 for (i = 0; i < page_count; i++) {
6c085a72
CW
2283 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2284 if (IS_ERR(page)) {
21ab4e74
CW
2285 i915_gem_shrink(dev_priv,
2286 page_count,
2287 I915_SHRINK_BOUND |
2288 I915_SHRINK_UNBOUND |
2289 I915_SHRINK_PURGEABLE);
6c085a72
CW
2290 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2291 }
2292 if (IS_ERR(page)) {
2293 /* We've tried hard to allocate the memory by reaping
2294 * our own buffer, now let the real VM do its job and
2295 * go down in flames if truly OOM.
2296 */
6c085a72 2297 i915_gem_shrink_all(dev_priv);
f461d1be 2298 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2299 if (IS_ERR(page)) {
2300 ret = PTR_ERR(page);
6c085a72 2301 goto err_pages;
e2273302 2302 }
6c085a72 2303 }
426729dc
KRW
2304#ifdef CONFIG_SWIOTLB
2305 if (swiotlb_nr_tbl()) {
2306 st->nents++;
2307 sg_set_page(sg, page, PAGE_SIZE, 0);
2308 sg = sg_next(sg);
2309 continue;
2310 }
2311#endif
90797e6d
ID
2312 if (!i || page_to_pfn(page) != last_pfn + 1) {
2313 if (i)
2314 sg = sg_next(sg);
2315 st->nents++;
2316 sg_set_page(sg, page, PAGE_SIZE, 0);
2317 } else {
2318 sg->length += PAGE_SIZE;
2319 }
2320 last_pfn = page_to_pfn(page);
3bbbe706
DV
2321
2322 /* Check that the i965g/gm workaround works. */
2323 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2324 }
426729dc
KRW
2325#ifdef CONFIG_SWIOTLB
2326 if (!swiotlb_nr_tbl())
2327#endif
2328 sg_mark_end(sg);
74ce6b6c
CW
2329 obj->pages = st;
2330
e2273302
ID
2331 ret = i915_gem_gtt_prepare_object(obj);
2332 if (ret)
2333 goto err_pages;
2334
6dacfd2f 2335 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2336 i915_gem_object_do_bit_17_swizzle(obj);
2337
656bfa3a
DV
2338 if (obj->tiling_mode != I915_TILING_NONE &&
2339 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2340 i915_gem_object_pin_pages(obj);
2341
e5281ccd
CW
2342 return 0;
2343
2344err_pages:
90797e6d
ID
2345 sg_mark_end(sg);
2346 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
09cbfeaf 2347 put_page(sg_page_iter_page(&sg_iter));
9da3da66
CW
2348 sg_free_table(st);
2349 kfree(st);
0820baf3
CW
2350
2351 /* shmemfs first checks if there is enough memory to allocate the page
2352 * and reports ENOSPC should there be insufficient, along with the usual
2353 * ENOMEM for a genuine allocation failure.
2354 *
2355 * We use ENOSPC in our driver to mean that we have run out of aperture
2356 * space and so want to translate the error from shmemfs back to our
2357 * usual understanding of ENOMEM.
2358 */
e2273302
ID
2359 if (ret == -ENOSPC)
2360 ret = -ENOMEM;
2361
2362 return ret;
673a394b
EA
2363}
2364
37e680a1
CW
2365/* Ensure that the associated pages are gathered from the backing storage
2366 * and pinned into our object. i915_gem_object_get_pages() may be called
2367 * multiple times before they are released by a single call to
2368 * i915_gem_object_put_pages() - once the pages are no longer referenced
2369 * either as a result of memory pressure (reaping pages under the shrinker)
2370 * or as the object is itself released.
2371 */
2372int
2373i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2374{
2375 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2376 const struct drm_i915_gem_object_ops *ops = obj->ops;
2377 int ret;
2378
2f745ad3 2379 if (obj->pages)
37e680a1
CW
2380 return 0;
2381
43e28f09 2382 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2383 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2384 return -EFAULT;
43e28f09
CW
2385 }
2386
a5570178
CW
2387 BUG_ON(obj->pages_pin_count);
2388
37e680a1
CW
2389 ret = ops->get_pages(obj);
2390 if (ret)
2391 return ret;
2392
35c20a60 2393 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2394
2395 obj->get_page.sg = obj->pages->sgl;
2396 obj->get_page.last = 0;
2397
37e680a1 2398 return 0;
673a394b
EA
2399}
2400
dd6034c6
DG
2401/* The 'mapping' part of i915_gem_object_pin_map() below */
2402static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
2403{
2404 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2405 struct sg_table *sgt = obj->pages;
2406 struct sg_page_iter sg_iter;
2407 struct page **pages;
2408 unsigned long i = 0;
2409 void *addr;
2410
2411 /* A single page can always be kmapped */
2412 if (n_pages == 1)
2413 return kmap(sg_page(sgt->sgl));
2414
2415 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2416 if (!pages)
2417 return NULL;
2418
2419 for_each_sg_page(sgt->sgl, &sg_iter, sgt->nents, 0)
2420 pages[i++] = sg_page_iter_page(&sg_iter);
2421
2422 /* Check that we have the expected number of pages */
2423 GEM_BUG_ON(i != n_pages);
2424
2425 addr = vmap(pages, n_pages, 0, PAGE_KERNEL);
2426
2427 drm_free_large(pages);
2428
2429 return addr;
2430}
2431
2432/* get, pin, and map the pages of the object into kernel space */
0a798eb9
CW
2433void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2434{
2435 int ret;
2436
2437 lockdep_assert_held(&obj->base.dev->struct_mutex);
2438
2439 ret = i915_gem_object_get_pages(obj);
2440 if (ret)
2441 return ERR_PTR(ret);
2442
2443 i915_gem_object_pin_pages(obj);
2444
dd6034c6
DG
2445 if (!obj->mapping) {
2446 obj->mapping = i915_gem_object_map(obj);
2447 if (!obj->mapping) {
0a798eb9
CW
2448 i915_gem_object_unpin_pages(obj);
2449 return ERR_PTR(-ENOMEM);
2450 }
2451 }
2452
2453 return obj->mapping;
2454}
2455
b4716185 2456void i915_vma_move_to_active(struct i915_vma *vma,
b2af0376 2457 struct drm_i915_gem_request *req)
673a394b 2458{
b4716185 2459 struct drm_i915_gem_object *obj = vma->obj;
e2f80391 2460 struct intel_engine_cs *engine;
b2af0376 2461
666796da 2462 engine = i915_gem_request_get_engine(req);
673a394b
EA
2463
2464 /* Add a reference if we're newly entering the active list. */
b4716185 2465 if (obj->active == 0)
05394f39 2466 drm_gem_object_reference(&obj->base);
666796da 2467 obj->active |= intel_engine_flag(engine);
e35a41de 2468
117897f4 2469 list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
e2f80391 2470 i915_gem_request_assign(&obj->last_read_req[engine->id], req);
caea7476 2471
1c7f4bca 2472 list_move_tail(&vma->vm_link, &vma->vm->active_list);
caea7476
CW
2473}
2474
b4716185
CW
2475static void
2476i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
e2d05a8b 2477{
d501b1d2
CW
2478 GEM_BUG_ON(obj->last_write_req == NULL);
2479 GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
b4716185
CW
2480
2481 i915_gem_request_assign(&obj->last_write_req, NULL);
de152b62 2482 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2483}
2484
caea7476 2485static void
b4716185 2486i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
ce44b0ea 2487{
feb822cf 2488 struct i915_vma *vma;
ce44b0ea 2489
d501b1d2
CW
2490 GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2491 GEM_BUG_ON(!(obj->active & (1 << ring)));
b4716185 2492
117897f4 2493 list_del_init(&obj->engine_list[ring]);
b4716185
CW
2494 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2495
4a570db5 2496 if (obj->last_write_req && obj->last_write_req->engine->id == ring)
b4716185
CW
2497 i915_gem_object_retire__write(obj);
2498
2499 obj->active &= ~(1 << ring);
2500 if (obj->active)
2501 return;
caea7476 2502
6c246959
CW
2503 /* Bump our place on the bound list to keep it roughly in LRU order
2504 * so that we don't steal from recently used but inactive objects
2505 * (unless we are forced to ofc!)
2506 */
2507 list_move_tail(&obj->global_list,
2508 &to_i915(obj->base.dev)->mm.bound_list);
2509
1c7f4bca
CW
2510 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2511 if (!list_empty(&vma->vm_link))
2512 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
feb822cf 2513 }
caea7476 2514
97b2a6a1 2515 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476 2516 drm_gem_object_unreference(&obj->base);
c8725f3d
CW
2517}
2518
9d773091 2519static int
c033666a 2520i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
53d227f2 2521{
e2f80391 2522 struct intel_engine_cs *engine;
29dcb570 2523 int ret;
53d227f2 2524
107f27a5 2525 /* Carefully retire all requests without writing to the rings */
b4ac5afc 2526 for_each_engine(engine, dev_priv) {
666796da 2527 ret = intel_engine_idle(engine);
107f27a5
CW
2528 if (ret)
2529 return ret;
9d773091 2530 }
c033666a 2531 i915_gem_retire_requests(dev_priv);
107f27a5
CW
2532
2533 /* Finally reset hw state */
29dcb570 2534 for_each_engine(engine, dev_priv)
e2f80391 2535 intel_ring_init_seqno(engine, seqno);
498d2ac1 2536
9d773091 2537 return 0;
53d227f2
DV
2538}
2539
fca26bb4
MK
2540int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2541{
2542 struct drm_i915_private *dev_priv = dev->dev_private;
2543 int ret;
2544
2545 if (seqno == 0)
2546 return -EINVAL;
2547
2548 /* HWS page needs to be set less than what we
2549 * will inject to ring
2550 */
c033666a 2551 ret = i915_gem_init_seqno(dev_priv, seqno - 1);
fca26bb4
MK
2552 if (ret)
2553 return ret;
2554
2555 /* Carefully set the last_seqno value so that wrap
2556 * detection still works
2557 */
2558 dev_priv->next_seqno = seqno;
2559 dev_priv->last_seqno = seqno - 1;
2560 if (dev_priv->last_seqno == 0)
2561 dev_priv->last_seqno--;
2562
2563 return 0;
2564}
2565
9d773091 2566int
c033666a 2567i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
53d227f2 2568{
9d773091
CW
2569 /* reserve 0 for non-seqno */
2570 if (dev_priv->next_seqno == 0) {
c033666a 2571 int ret = i915_gem_init_seqno(dev_priv, 0);
9d773091
CW
2572 if (ret)
2573 return ret;
53d227f2 2574
9d773091
CW
2575 dev_priv->next_seqno = 1;
2576 }
53d227f2 2577
f72b3435 2578 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2579 return 0;
53d227f2
DV
2580}
2581
bf7dc5b7
JH
2582/*
2583 * NB: This function is not allowed to fail. Doing so would mean the the
2584 * request is not being tracked for completion but the work itself is
2585 * going to happen on the hardware. This would be a Bad Thing(tm).
2586 */
75289874 2587void __i915_add_request(struct drm_i915_gem_request *request,
5b4a60c2
JH
2588 struct drm_i915_gem_object *obj,
2589 bool flush_caches)
673a394b 2590{
e2f80391 2591 struct intel_engine_cs *engine;
75289874 2592 struct drm_i915_private *dev_priv;
48e29f55 2593 struct intel_ringbuffer *ringbuf;
6d3d8274 2594 u32 request_start;
0251a963 2595 u32 reserved_tail;
3cce469c
CW
2596 int ret;
2597
48e29f55 2598 if (WARN_ON(request == NULL))
bf7dc5b7 2599 return;
48e29f55 2600
4a570db5 2601 engine = request->engine;
39dabecd 2602 dev_priv = request->i915;
75289874
JH
2603 ringbuf = request->ringbuf;
2604
29b1b415
JH
2605 /*
2606 * To ensure that this call will not fail, space for its emissions
2607 * should already have been reserved in the ring buffer. Let the ring
2608 * know that it is time to use that space up.
2609 */
48e29f55 2610 request_start = intel_ring_get_tail(ringbuf);
0251a963
CW
2611 reserved_tail = request->reserved_space;
2612 request->reserved_space = 0;
2613
cc889e0f
DV
2614 /*
2615 * Emit any outstanding flushes - execbuf can fail to emit the flush
2616 * after having emitted the batchbuffer command. Hence we need to fix
2617 * things up similar to emitting the lazy request. The difference here
2618 * is that the flush _must_ happen before the next request, no matter
2619 * what.
2620 */
5b4a60c2
JH
2621 if (flush_caches) {
2622 if (i915.enable_execlists)
4866d729 2623 ret = logical_ring_flush_all_caches(request);
5b4a60c2 2624 else
4866d729 2625 ret = intel_ring_flush_all_caches(request);
5b4a60c2
JH
2626 /* Not allowed to fail! */
2627 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2628 }
cc889e0f 2629
7c90b7de
CW
2630 trace_i915_gem_request_add(request);
2631
2632 request->head = request_start;
2633
2634 /* Whilst this request exists, batch_obj will be on the
2635 * active_list, and so will hold the active reference. Only when this
2636 * request is retired will the the batch_obj be moved onto the
2637 * inactive_list and lose its active reference. Hence we do not need
2638 * to explicitly hold another reference here.
2639 */
2640 request->batch_obj = obj;
2641
2642 /* Seal the request and mark it as pending execution. Note that
2643 * we may inspect this state, without holding any locks, during
2644 * hangcheck. Hence we apply the barrier to ensure that we do not
2645 * see a more recent value in the hws than we are tracking.
2646 */
2647 request->emitted_jiffies = jiffies;
2648 request->previous_seqno = engine->last_submitted_seqno;
2649 smp_store_mb(engine->last_submitted_seqno, request->seqno);
2650 list_add_tail(&request->list, &engine->request_list);
2651
a71d8d94
CW
2652 /* Record the position of the start of the request so that
2653 * should we detect the updated seqno part-way through the
2654 * GPU processing the request, we never over-estimate the
2655 * position of the head.
2656 */
6d3d8274 2657 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2658
bf7dc5b7 2659 if (i915.enable_execlists)
e2f80391 2660 ret = engine->emit_request(request);
bf7dc5b7 2661 else {
e2f80391 2662 ret = engine->add_request(request);
53292cdb
MT
2663
2664 request->tail = intel_ring_get_tail(ringbuf);
48e29f55 2665 }
bf7dc5b7
JH
2666 /* Not allowed to fail! */
2667 WARN(ret, "emit|add_request failed: %d!\n", ret);
673a394b 2668
c033666a 2669 i915_queue_hangcheck(engine->i915);
10cd45b6 2670
87255483
DV
2671 queue_delayed_work(dev_priv->wq,
2672 &dev_priv->mm.retire_work,
2673 round_jiffies_up_relative(HZ));
7d993739 2674 intel_mark_busy(dev_priv);
cc889e0f 2675
29b1b415 2676 /* Sanity check that the reserved size was large enough. */
0251a963
CW
2677 ret = intel_ring_get_tail(ringbuf) - request_start;
2678 if (ret < 0)
2679 ret += ringbuf->size;
2680 WARN_ONCE(ret > reserved_tail,
2681 "Not enough space reserved (%d bytes) "
2682 "for adding the request (%d bytes)\n",
2683 reserved_tail, ret);
673a394b
EA
2684}
2685
939fd762 2686static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2687 const struct intel_context *ctx)
be62acb4 2688{
44e2c070 2689 unsigned long elapsed;
be62acb4 2690
44e2c070
MK
2691 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2692
2693 if (ctx->hang_stats.banned)
be62acb4
MK
2694 return true;
2695
676fa572
CW
2696 if (ctx->hang_stats.ban_period_seconds &&
2697 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2698 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2699 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2700 return true;
88b4aa87
MK
2701 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2702 if (i915_stop_ring_allow_warn(dev_priv))
2703 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2704 return true;
3fac8978 2705 }
be62acb4
MK
2706 }
2707
2708 return false;
2709}
2710
939fd762 2711static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2712 struct intel_context *ctx,
b6b0fac0 2713 const bool guilty)
aa60c664 2714{
44e2c070
MK
2715 struct i915_ctx_hang_stats *hs;
2716
2717 if (WARN_ON(!ctx))
2718 return;
aa60c664 2719
44e2c070
MK
2720 hs = &ctx->hang_stats;
2721
2722 if (guilty) {
939fd762 2723 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2724 hs->batch_active++;
2725 hs->guilty_ts = get_seconds();
2726 } else {
2727 hs->batch_pending++;
aa60c664
MK
2728 }
2729}
2730
abfe262a
JH
2731void i915_gem_request_free(struct kref *req_ref)
2732{
2733 struct drm_i915_gem_request *req = container_of(req_ref,
2734 typeof(*req), ref);
efab6d8d 2735 kmem_cache_free(req->i915->requests, req);
0e50e96b
MK
2736}
2737
26827088 2738static inline int
0bc40be8 2739__i915_gem_request_alloc(struct intel_engine_cs *engine,
26827088
DG
2740 struct intel_context *ctx,
2741 struct drm_i915_gem_request **req_out)
6689cb2b 2742{
c033666a 2743 struct drm_i915_private *dev_priv = engine->i915;
299259a3 2744 unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
eed29a5b 2745 struct drm_i915_gem_request *req;
6689cb2b 2746 int ret;
6689cb2b 2747
217e46b5
JH
2748 if (!req_out)
2749 return -EINVAL;
2750
bccca494 2751 *req_out = NULL;
6689cb2b 2752
f4457ae7
CW
2753 /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2754 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
2755 * and restart.
2756 */
2757 ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
299259a3
CW
2758 if (ret)
2759 return ret;
2760
eed29a5b
DV
2761 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2762 if (req == NULL)
6689cb2b
JH
2763 return -ENOMEM;
2764
c033666a 2765 ret = i915_gem_get_seqno(engine->i915, &req->seqno);
9a0c1e27
CW
2766 if (ret)
2767 goto err;
6689cb2b 2768
40e895ce
JH
2769 kref_init(&req->ref);
2770 req->i915 = dev_priv;
4a570db5 2771 req->engine = engine;
299259a3 2772 req->reset_counter = reset_counter;
40e895ce
JH
2773 req->ctx = ctx;
2774 i915_gem_context_reference(req->ctx);
6689cb2b 2775
29b1b415
JH
2776 /*
2777 * Reserve space in the ring buffer for all the commands required to
2778 * eventually emit this request. This is to guarantee that the
2779 * i915_add_request() call can't fail. Note that the reserve may need
2780 * to be redone if the request is not actually submitted straight
2781 * away, e.g. because a GPU scheduler has deferred it.
29b1b415 2782 */
0251a963 2783 req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
bfa01200
CW
2784
2785 if (i915.enable_execlists)
2786 ret = intel_logical_ring_alloc_request_extras(req);
2787 else
2788 ret = intel_ring_alloc_request_extras(req);
2789 if (ret)
2790 goto err_ctx;
29b1b415 2791
bccca494 2792 *req_out = req;
6689cb2b 2793 return 0;
9a0c1e27 2794
bfa01200
CW
2795err_ctx:
2796 i915_gem_context_unreference(ctx);
9a0c1e27
CW
2797err:
2798 kmem_cache_free(dev_priv->requests, req);
2799 return ret;
0e50e96b
MK
2800}
2801
26827088
DG
2802/**
2803 * i915_gem_request_alloc - allocate a request structure
2804 *
2805 * @engine: engine that we wish to issue the request on.
2806 * @ctx: context that the request will be associated with.
2807 * This can be NULL if the request is not directly related to
2808 * any specific user context, in which case this function will
2809 * choose an appropriate context to use.
2810 *
2811 * Returns a pointer to the allocated request if successful,
2812 * or an error code if not.
2813 */
2814struct drm_i915_gem_request *
2815i915_gem_request_alloc(struct intel_engine_cs *engine,
2816 struct intel_context *ctx)
2817{
2818 struct drm_i915_gem_request *req;
2819 int err;
2820
2821 if (ctx == NULL)
c033666a 2822 ctx = engine->i915->kernel_context;
26827088
DG
2823 err = __i915_gem_request_alloc(engine, ctx, &req);
2824 return err ? ERR_PTR(err) : req;
2825}
2826
8d9fc7fd 2827struct drm_i915_gem_request *
0bc40be8 2828i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2829{
4db080f9
CW
2830 struct drm_i915_gem_request *request;
2831
0bc40be8 2832 list_for_each_entry(request, &engine->request_list, list) {
1b5a433a 2833 if (i915_gem_request_completed(request, false))
4db080f9 2834 continue;
aa60c664 2835
b6b0fac0 2836 return request;
4db080f9 2837 }
b6b0fac0
MK
2838
2839 return NULL;
2840}
2841
666796da 2842static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
0bc40be8 2843 struct intel_engine_cs *engine)
b6b0fac0
MK
2844{
2845 struct drm_i915_gem_request *request;
2846 bool ring_hung;
2847
0bc40be8 2848 request = i915_gem_find_active_request(engine);
b6b0fac0
MK
2849
2850 if (request == NULL)
2851 return;
2852
0bc40be8 2853 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
b6b0fac0 2854
939fd762 2855 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0 2856
0bc40be8 2857 list_for_each_entry_continue(request, &engine->request_list, list)
939fd762 2858 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2859}
aa60c664 2860
666796da 2861static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
0bc40be8 2862 struct intel_engine_cs *engine)
4db080f9 2863{
608c1a52
CW
2864 struct intel_ringbuffer *buffer;
2865
0bc40be8 2866 while (!list_empty(&engine->active_list)) {
05394f39 2867 struct drm_i915_gem_object *obj;
9375e446 2868
0bc40be8 2869 obj = list_first_entry(&engine->active_list,
05394f39 2870 struct drm_i915_gem_object,
117897f4 2871 engine_list[engine->id]);
9375e446 2872
0bc40be8 2873 i915_gem_object_retire__read(obj, engine->id);
673a394b 2874 }
1d62beea 2875
dcb4c12a
OM
2876 /*
2877 * Clear the execlists queue up before freeing the requests, as those
2878 * are the ones that keep the context and ringbuffer backing objects
2879 * pinned in place.
2880 */
dcb4c12a 2881
7de1691a 2882 if (i915.enable_execlists) {
27af5eea
TU
2883 /* Ensure irq handler finishes or is cancelled. */
2884 tasklet_kill(&engine->irq_tasklet);
1197b4f2 2885
e39d42fa 2886 intel_execlists_cancel_requests(engine);
dcb4c12a
OM
2887 }
2888
1d62beea
BW
2889 /*
2890 * We must free the requests after all the corresponding objects have
2891 * been moved off active lists. Which is the same order as the normal
2892 * retire_requests function does. This is important if object hold
2893 * implicit references on things like e.g. ppgtt address spaces through
2894 * the request.
2895 */
0bc40be8 2896 while (!list_empty(&engine->request_list)) {
1d62beea
BW
2897 struct drm_i915_gem_request *request;
2898
0bc40be8 2899 request = list_first_entry(&engine->request_list,
1d62beea
BW
2900 struct drm_i915_gem_request,
2901 list);
2902
b4716185 2903 i915_gem_request_retire(request);
1d62beea 2904 }
608c1a52
CW
2905
2906 /* Having flushed all requests from all queues, we know that all
2907 * ringbuffers must now be empty. However, since we do not reclaim
2908 * all space when retiring the request (to prevent HEADs colliding
2909 * with rapid ringbuffer wraparound) the amount of available space
2910 * upon reset is less than when we start. Do one more pass over
2911 * all the ringbuffers to reset last_retired_head.
2912 */
0bc40be8 2913 list_for_each_entry(buffer, &engine->buffers, link) {
608c1a52
CW
2914 buffer->last_retired_head = buffer->tail;
2915 intel_ring_update_space(buffer);
2916 }
2ed53a94
CW
2917
2918 intel_ring_init_seqno(engine, engine->last_submitted_seqno);
673a394b
EA
2919}
2920
069efc1d 2921void i915_gem_reset(struct drm_device *dev)
673a394b 2922{
77f01230 2923 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 2924 struct intel_engine_cs *engine;
673a394b 2925
4db080f9
CW
2926 /*
2927 * Before we free the objects from the requests, we need to inspect
2928 * them for finding the guilty party. As the requests only borrow
2929 * their reference to the objects, the inspection must be done first.
2930 */
b4ac5afc 2931 for_each_engine(engine, dev_priv)
666796da 2932 i915_gem_reset_engine_status(dev_priv, engine);
4db080f9 2933
b4ac5afc 2934 for_each_engine(engine, dev_priv)
666796da 2935 i915_gem_reset_engine_cleanup(dev_priv, engine);
dfaae392 2936
acce9ffa
BW
2937 i915_gem_context_reset(dev);
2938
19b2dbde 2939 i915_gem_restore_fences(dev);
b4716185
CW
2940
2941 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2942}
2943
2944/**
2945 * This function clears the request list as sequence numbers are passed.
2946 */
1cf0ba14 2947void
0bc40be8 2948i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
673a394b 2949{
0bc40be8 2950 WARN_ON(i915_verify_lists(engine->dev));
673a394b 2951
832a3aad
CW
2952 /* Retire requests first as we use it above for the early return.
2953 * If we retire requests last, we may use a later seqno and so clear
2954 * the requests lists without clearing the active list, leading to
2955 * confusion.
e9103038 2956 */
0bc40be8 2957 while (!list_empty(&engine->request_list)) {
673a394b 2958 struct drm_i915_gem_request *request;
673a394b 2959
0bc40be8 2960 request = list_first_entry(&engine->request_list,
673a394b
EA
2961 struct drm_i915_gem_request,
2962 list);
673a394b 2963
1b5a433a 2964 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2965 break;
2966
b4716185 2967 i915_gem_request_retire(request);
b84d5f0c 2968 }
673a394b 2969
832a3aad
CW
2970 /* Move any buffers on the active list that are no longer referenced
2971 * by the ringbuffer to the flushing/inactive lists as appropriate,
2972 * before we free the context associated with the requests.
2973 */
0bc40be8 2974 while (!list_empty(&engine->active_list)) {
832a3aad
CW
2975 struct drm_i915_gem_object *obj;
2976
0bc40be8
TU
2977 obj = list_first_entry(&engine->active_list,
2978 struct drm_i915_gem_object,
117897f4 2979 engine_list[engine->id]);
832a3aad 2980
0bc40be8 2981 if (!list_empty(&obj->last_read_req[engine->id]->list))
832a3aad
CW
2982 break;
2983
0bc40be8 2984 i915_gem_object_retire__read(obj, engine->id);
832a3aad
CW
2985 }
2986
0bc40be8
TU
2987 if (unlikely(engine->trace_irq_req &&
2988 i915_gem_request_completed(engine->trace_irq_req, true))) {
2989 engine->irq_put(engine);
2990 i915_gem_request_assign(&engine->trace_irq_req, NULL);
9d34e5db 2991 }
23bc5982 2992
0bc40be8 2993 WARN_ON(i915_verify_lists(engine->dev));
673a394b
EA
2994}
2995
b29c19b6 2996bool
c033666a 2997i915_gem_retire_requests(struct drm_i915_private *dev_priv)
b09a1fec 2998{
e2f80391 2999 struct intel_engine_cs *engine;
b29c19b6 3000 bool idle = true;
b09a1fec 3001
b4ac5afc 3002 for_each_engine(engine, dev_priv) {
e2f80391
TU
3003 i915_gem_retire_requests_ring(engine);
3004 idle &= list_empty(&engine->request_list);
c86ee3a9 3005 if (i915.enable_execlists) {
27af5eea 3006 spin_lock_bh(&engine->execlist_lock);
e2f80391 3007 idle &= list_empty(&engine->execlist_queue);
27af5eea 3008 spin_unlock_bh(&engine->execlist_lock);
c86ee3a9 3009 }
b29c19b6
CW
3010 }
3011
3012 if (idle)
3013 mod_delayed_work(dev_priv->wq,
3014 &dev_priv->mm.idle_work,
3015 msecs_to_jiffies(100));
3016
3017 return idle;
b09a1fec
CW
3018}
3019
75ef9da2 3020static void
673a394b
EA
3021i915_gem_retire_work_handler(struct work_struct *work)
3022{
b29c19b6
CW
3023 struct drm_i915_private *dev_priv =
3024 container_of(work, typeof(*dev_priv), mm.retire_work.work);
3025 struct drm_device *dev = dev_priv->dev;
0a58705b 3026 bool idle;
673a394b 3027
891b48cf 3028 /* Come back later if the device is busy... */
b29c19b6
CW
3029 idle = false;
3030 if (mutex_trylock(&dev->struct_mutex)) {
c033666a 3031 idle = i915_gem_retire_requests(dev_priv);
b29c19b6 3032 mutex_unlock(&dev->struct_mutex);
673a394b 3033 }
b29c19b6 3034 if (!idle)
bcb45086
CW
3035 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3036 round_jiffies_up_relative(HZ));
b29c19b6 3037}
0a58705b 3038
b29c19b6
CW
3039static void
3040i915_gem_idle_work_handler(struct work_struct *work)
3041{
3042 struct drm_i915_private *dev_priv =
3043 container_of(work, typeof(*dev_priv), mm.idle_work.work);
35c94185 3044 struct drm_device *dev = dev_priv->dev;
b4ac5afc 3045 struct intel_engine_cs *engine;
b29c19b6 3046
b4ac5afc
DG
3047 for_each_engine(engine, dev_priv)
3048 if (!list_empty(&engine->request_list))
423795cb 3049 return;
35c94185 3050
30ecad77 3051 /* we probably should sync with hangcheck here, using cancel_work_sync.
b4ac5afc 3052 * Also locking seems to be fubar here, engine->request_list is protected
30ecad77
DV
3053 * by dev->struct_mutex. */
3054
7d993739 3055 intel_mark_idle(dev_priv);
35c94185
CW
3056
3057 if (mutex_trylock(&dev->struct_mutex)) {
b4ac5afc 3058 for_each_engine(engine, dev_priv)
e2f80391 3059 i915_gem_batch_pool_fini(&engine->batch_pool);
b29c19b6 3060
35c94185
CW
3061 mutex_unlock(&dev->struct_mutex);
3062 }
673a394b
EA
3063}
3064
30dfebf3
DV
3065/**
3066 * Ensures that an object will eventually get non-busy by flushing any required
3067 * write domains, emitting any outstanding lazy request and retiring and
3068 * completed requests.
3069 */
3070static int
3071i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3072{
a5ac0f90 3073 int i;
b4716185
CW
3074
3075 if (!obj->active)
3076 return 0;
30dfebf3 3077
666796da 3078 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185 3079 struct drm_i915_gem_request *req;
41c52415 3080
b4716185
CW
3081 req = obj->last_read_req[i];
3082 if (req == NULL)
3083 continue;
3084
e6db7469 3085 if (i915_gem_request_completed(req, true))
b4716185 3086 i915_gem_object_retire__read(obj, i);
30dfebf3
DV
3087 }
3088
3089 return 0;
3090}
3091
23ba4fd0
BW
3092/**
3093 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3094 * @DRM_IOCTL_ARGS: standard ioctl arguments
3095 *
3096 * Returns 0 if successful, else an error is returned with the remaining time in
3097 * the timeout parameter.
3098 * -ETIME: object is still busy after timeout
3099 * -ERESTARTSYS: signal interrupted the wait
3100 * -ENONENT: object doesn't exist
3101 * Also possible, but rare:
3102 * -EAGAIN: GPU wedged
3103 * -ENOMEM: damn
3104 * -ENODEV: Internal IRQ fail
3105 * -E?: The add request failed
3106 *
3107 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3108 * non-zero timeout parameter the wait ioctl will wait for the given number of
3109 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3110 * without holding struct_mutex the object may become re-busied before this
3111 * function completes. A similar but shorter * race condition exists in the busy
3112 * ioctl
3113 */
3114int
3115i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3116{
3117 struct drm_i915_gem_wait *args = data;
3118 struct drm_i915_gem_object *obj;
666796da 3119 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
b4716185
CW
3120 int i, n = 0;
3121 int ret;
23ba4fd0 3122
11b5d511
DV
3123 if (args->flags != 0)
3124 return -EINVAL;
3125
23ba4fd0
BW
3126 ret = i915_mutex_lock_interruptible(dev);
3127 if (ret)
3128 return ret;
3129
3130 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3131 if (&obj->base == NULL) {
3132 mutex_unlock(&dev->struct_mutex);
3133 return -ENOENT;
3134 }
3135
30dfebf3
DV
3136 /* Need to make sure the object gets inactive eventually. */
3137 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
3138 if (ret)
3139 goto out;
3140
b4716185 3141 if (!obj->active)
97b2a6a1 3142 goto out;
23ba4fd0 3143
23ba4fd0 3144 /* Do this after OLR check to make sure we make forward progress polling
762e4583 3145 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 3146 */
762e4583 3147 if (args->timeout_ns == 0) {
23ba4fd0
BW
3148 ret = -ETIME;
3149 goto out;
3150 }
3151
3152 drm_gem_object_unreference(&obj->base);
b4716185 3153
666796da 3154 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
3155 if (obj->last_read_req[i] == NULL)
3156 continue;
3157
3158 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3159 }
3160
23ba4fd0
BW
3161 mutex_unlock(&dev->struct_mutex);
3162
b4716185
CW
3163 for (i = 0; i < n; i++) {
3164 if (ret == 0)
299259a3 3165 ret = __i915_wait_request(req[i], true,
b4716185 3166 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
b6aa0873 3167 to_rps_client(file));
73db04cf 3168 i915_gem_request_unreference(req[i]);
b4716185 3169 }
ff865885 3170 return ret;
23ba4fd0
BW
3171
3172out:
3173 drm_gem_object_unreference(&obj->base);
3174 mutex_unlock(&dev->struct_mutex);
3175 return ret;
3176}
3177
b4716185
CW
3178static int
3179__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3180 struct intel_engine_cs *to,
91af127f
JH
3181 struct drm_i915_gem_request *from_req,
3182 struct drm_i915_gem_request **to_req)
b4716185
CW
3183{
3184 struct intel_engine_cs *from;
3185 int ret;
3186
666796da 3187 from = i915_gem_request_get_engine(from_req);
b4716185
CW
3188 if (to == from)
3189 return 0;
3190
91af127f 3191 if (i915_gem_request_completed(from_req, true))
b4716185
CW
3192 return 0;
3193
c033666a 3194 if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
a6f766f3 3195 struct drm_i915_private *i915 = to_i915(obj->base.dev);
91af127f 3196 ret = __i915_wait_request(from_req,
a6f766f3
CW
3197 i915->mm.interruptible,
3198 NULL,
3199 &i915->rps.semaphores);
b4716185
CW
3200 if (ret)
3201 return ret;
3202
91af127f 3203 i915_gem_object_retire_request(obj, from_req);
b4716185
CW
3204 } else {
3205 int idx = intel_ring_sync_index(from, to);
91af127f
JH
3206 u32 seqno = i915_gem_request_get_seqno(from_req);
3207
3208 WARN_ON(!to_req);
b4716185
CW
3209
3210 if (seqno <= from->semaphore.sync_seqno[idx])
3211 return 0;
3212
91af127f 3213 if (*to_req == NULL) {
26827088
DG
3214 struct drm_i915_gem_request *req;
3215
3216 req = i915_gem_request_alloc(to, NULL);
3217 if (IS_ERR(req))
3218 return PTR_ERR(req);
3219
3220 *to_req = req;
91af127f
JH
3221 }
3222
599d924c
JH
3223 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3224 ret = to->semaphore.sync_to(*to_req, from, seqno);
b4716185
CW
3225 if (ret)
3226 return ret;
3227
3228 /* We use last_read_req because sync_to()
3229 * might have just caused seqno wrap under
3230 * the radar.
3231 */
3232 from->semaphore.sync_seqno[idx] =
3233 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3234 }
3235
3236 return 0;
3237}
3238
5816d648
BW
3239/**
3240 * i915_gem_object_sync - sync an object to a ring.
3241 *
3242 * @obj: object which may be in use on another ring.
3243 * @to: ring we wish to use the object on. May be NULL.
91af127f
JH
3244 * @to_req: request we wish to use the object for. See below.
3245 * This will be allocated and returned if a request is
3246 * required but not passed in.
5816d648
BW
3247 *
3248 * This code is meant to abstract object synchronization with the GPU.
3249 * Calling with NULL implies synchronizing the object with the CPU
b4716185 3250 * rather than a particular GPU ring. Conceptually we serialise writes
91af127f 3251 * between engines inside the GPU. We only allow one engine to write
b4716185
CW
3252 * into a buffer at any time, but multiple readers. To ensure each has
3253 * a coherent view of memory, we must:
3254 *
3255 * - If there is an outstanding write request to the object, the new
3256 * request must wait for it to complete (either CPU or in hw, requests
3257 * on the same ring will be naturally ordered).
3258 *
3259 * - If we are a write request (pending_write_domain is set), the new
3260 * request must wait for outstanding read requests to complete.
5816d648 3261 *
91af127f
JH
3262 * For CPU synchronisation (NULL to) no request is required. For syncing with
3263 * rings to_req must be non-NULL. However, a request does not have to be
3264 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3265 * request will be allocated automatically and returned through *to_req. Note
3266 * that it is not guaranteed that commands will be emitted (because the system
3267 * might already be idle). Hence there is no need to create a request that
3268 * might never have any work submitted. Note further that if a request is
3269 * returned in *to_req, it is the responsibility of the caller to submit
3270 * that request (after potentially adding more work to it).
3271 *
5816d648
BW
3272 * Returns 0 if successful, else propagates up the lower layer error.
3273 */
2911a35b
BW
3274int
3275i915_gem_object_sync(struct drm_i915_gem_object *obj,
91af127f
JH
3276 struct intel_engine_cs *to,
3277 struct drm_i915_gem_request **to_req)
2911a35b 3278{
b4716185 3279 const bool readonly = obj->base.pending_write_domain == 0;
666796da 3280 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
b4716185 3281 int ret, i, n;
41c52415 3282
b4716185 3283 if (!obj->active)
2911a35b
BW
3284 return 0;
3285
b4716185
CW
3286 if (to == NULL)
3287 return i915_gem_object_wait_rendering(obj, readonly);
2911a35b 3288
b4716185
CW
3289 n = 0;
3290 if (readonly) {
3291 if (obj->last_write_req)
3292 req[n++] = obj->last_write_req;
3293 } else {
666796da 3294 for (i = 0; i < I915_NUM_ENGINES; i++)
b4716185
CW
3295 if (obj->last_read_req[i])
3296 req[n++] = obj->last_read_req[i];
3297 }
3298 for (i = 0; i < n; i++) {
91af127f 3299 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
b4716185
CW
3300 if (ret)
3301 return ret;
3302 }
2911a35b 3303
b4716185 3304 return 0;
2911a35b
BW
3305}
3306
b5ffc9bc
CW
3307static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3308{
3309 u32 old_write_domain, old_read_domains;
3310
b5ffc9bc
CW
3311 /* Force a pagefault for domain tracking on next user access */
3312 i915_gem_release_mmap(obj);
3313
b97c3d9c
KP
3314 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3315 return;
3316
b5ffc9bc
CW
3317 old_read_domains = obj->base.read_domains;
3318 old_write_domain = obj->base.write_domain;
3319
3320 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3321 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3322
3323 trace_i915_gem_object_change_domain(obj,
3324 old_read_domains,
3325 old_write_domain);
3326}
3327
8ef8561f
CW
3328static void __i915_vma_iounmap(struct i915_vma *vma)
3329{
3330 GEM_BUG_ON(vma->pin_count);
3331
3332 if (vma->iomap == NULL)
3333 return;
3334
3335 io_mapping_unmap(vma->iomap);
3336 vma->iomap = NULL;
3337}
3338
e9f24d5f 3339static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
673a394b 3340{
07fe0b12 3341 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3342 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3343 int ret;
673a394b 3344
1c7f4bca 3345 if (list_empty(&vma->obj_link))
673a394b
EA
3346 return 0;
3347
0ff501cb
DV
3348 if (!drm_mm_node_allocated(&vma->node)) {
3349 i915_gem_vma_destroy(vma);
0ff501cb
DV
3350 return 0;
3351 }
433544bd 3352
d7f46fc4 3353 if (vma->pin_count)
31d8d651 3354 return -EBUSY;
673a394b 3355
c4670ad0
CW
3356 BUG_ON(obj->pages == NULL);
3357
e9f24d5f
TU
3358 if (wait) {
3359 ret = i915_gem_object_wait_rendering(obj, false);
3360 if (ret)
3361 return ret;
3362 }
a8198eea 3363
596c5923 3364 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3365 i915_gem_object_finish_gtt(obj);
5323fd04 3366
8b1bc9b4
DV
3367 /* release the fence reg _after_ flushing */
3368 ret = i915_gem_object_put_fence(obj);
3369 if (ret)
3370 return ret;
8ef8561f
CW
3371
3372 __i915_vma_iounmap(vma);
8b1bc9b4 3373 }
96b47b65 3374
07fe0b12 3375 trace_i915_vma_unbind(vma);
db53a302 3376
777dc5bb 3377 vma->vm->unbind_vma(vma);
5e562f1d 3378 vma->bound = 0;
6f65e29a 3379
1c7f4bca 3380 list_del_init(&vma->vm_link);
596c5923 3381 if (vma->is_ggtt) {
fe14d5f4
TU
3382 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3383 obj->map_and_fenceable = false;
3384 } else if (vma->ggtt_view.pages) {
3385 sg_free_table(vma->ggtt_view.pages);
3386 kfree(vma->ggtt_view.pages);
fe14d5f4 3387 }
016a65a3 3388 vma->ggtt_view.pages = NULL;
fe14d5f4 3389 }
673a394b 3390
2f633156
BW
3391 drm_mm_remove_node(&vma->node);
3392 i915_gem_vma_destroy(vma);
3393
3394 /* Since the unbound list is global, only move to that list if
b93dab6e 3395 * no more VMAs exist. */
e2273302 3396 if (list_empty(&obj->vma_list))
2f633156 3397 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 3398
70903c3b
CW
3399 /* And finally now the object is completely decoupled from this vma,
3400 * we can drop its hold on the backing storage and allow it to be
3401 * reaped by the shrinker.
3402 */
3403 i915_gem_object_unpin_pages(obj);
3404
88241785 3405 return 0;
54cf91dc
CW
3406}
3407
e9f24d5f
TU
3408int i915_vma_unbind(struct i915_vma *vma)
3409{
3410 return __i915_vma_unbind(vma, true);
3411}
3412
3413int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3414{
3415 return __i915_vma_unbind(vma, false);
3416}
3417
b2da9fe5 3418int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3419{
3e31c6c0 3420 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 3421 struct intel_engine_cs *engine;
b4ac5afc 3422 int ret;
4df2faf4 3423
4df2faf4 3424 /* Flush everything onto the inactive list. */
b4ac5afc 3425 for_each_engine(engine, dev_priv) {
ecdb5fd8 3426 if (!i915.enable_execlists) {
73cfa865
JH
3427 struct drm_i915_gem_request *req;
3428
e2f80391 3429 req = i915_gem_request_alloc(engine, NULL);
26827088
DG
3430 if (IS_ERR(req))
3431 return PTR_ERR(req);
73cfa865 3432
ba01cc93 3433 ret = i915_switch_context(req);
75289874 3434 i915_add_request_no_flush(req);
aa9b7810
CW
3435 if (ret)
3436 return ret;
ecdb5fd8 3437 }
b6c7488d 3438
666796da 3439 ret = intel_engine_idle(engine);
1ec14ad3
CW
3440 if (ret)
3441 return ret;
3442 }
4df2faf4 3443
b4716185 3444 WARN_ON(i915_verify_lists(dev));
8a1a49f9 3445 return 0;
4df2faf4
DV
3446}
3447
4144f9b5 3448static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3449 unsigned long cache_level)
3450{
4144f9b5 3451 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3452 struct drm_mm_node *other;
3453
4144f9b5
CW
3454 /*
3455 * On some machines we have to be careful when putting differing types
3456 * of snoopable memory together to avoid the prefetcher crossing memory
3457 * domains and dying. During vm initialisation, we decide whether or not
3458 * these constraints apply and set the drm_mm.color_adjust
3459 * appropriately.
42d6ab48 3460 */
4144f9b5 3461 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3462 return true;
3463
c6cfb325 3464 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3465 return true;
3466
3467 if (list_empty(&gtt_space->node_list))
3468 return true;
3469
3470 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3471 if (other->allocated && !other->hole_follows && other->color != cache_level)
3472 return false;
3473
3474 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3475 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3476 return false;
3477
3478 return true;
3479}
3480
673a394b 3481/**
91e6711e
JL
3482 * Finds free space in the GTT aperture and binds the object or a view of it
3483 * there.
673a394b 3484 */
262de145 3485static struct i915_vma *
07fe0b12
BW
3486i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3487 struct i915_address_space *vm,
ec7adb6e 3488 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3489 unsigned alignment,
ec7adb6e 3490 uint64_t flags)
673a394b 3491{
05394f39 3492 struct drm_device *dev = obj->base.dev;
72e96d64
JL
3493 struct drm_i915_private *dev_priv = to_i915(dev);
3494 struct i915_ggtt *ggtt = &dev_priv->ggtt;
65bd342f 3495 u32 fence_alignment, unfenced_alignment;
101b506a
MT
3496 u32 search_flag, alloc_flag;
3497 u64 start, end;
65bd342f 3498 u64 size, fence_size;
2f633156 3499 struct i915_vma *vma;
07f73f69 3500 int ret;
673a394b 3501
91e6711e
JL
3502 if (i915_is_ggtt(vm)) {
3503 u32 view_size;
3504
3505 if (WARN_ON(!ggtt_view))
3506 return ERR_PTR(-EINVAL);
ec7adb6e 3507
91e6711e
JL
3508 view_size = i915_ggtt_view_size(obj, ggtt_view);
3509
3510 fence_size = i915_gem_get_gtt_size(dev,
3511 view_size,
3512 obj->tiling_mode);
3513 fence_alignment = i915_gem_get_gtt_alignment(dev,
3514 view_size,
3515 obj->tiling_mode,
3516 true);
3517 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3518 view_size,
3519 obj->tiling_mode,
3520 false);
3521 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3522 } else {
3523 fence_size = i915_gem_get_gtt_size(dev,
3524 obj->base.size,
3525 obj->tiling_mode);
3526 fence_alignment = i915_gem_get_gtt_alignment(dev,
3527 obj->base.size,
3528 obj->tiling_mode,
3529 true);
3530 unfenced_alignment =
3531 i915_gem_get_gtt_alignment(dev,
3532 obj->base.size,
3533 obj->tiling_mode,
3534 false);
3535 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3536 }
a00b10c3 3537
101b506a
MT
3538 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3539 end = vm->total;
3540 if (flags & PIN_MAPPABLE)
72e96d64 3541 end = min_t(u64, end, ggtt->mappable_end);
101b506a 3542 if (flags & PIN_ZONE_4G)
48ea1e32 3543 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
101b506a 3544
673a394b 3545 if (alignment == 0)
1ec9e26d 3546 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3547 unfenced_alignment;
1ec9e26d 3548 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
91e6711e
JL
3549 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3550 ggtt_view ? ggtt_view->type : 0,
3551 alignment);
262de145 3552 return ERR_PTR(-EINVAL);
673a394b
EA
3553 }
3554
91e6711e
JL
3555 /* If binding the object/GGTT view requires more space than the entire
3556 * aperture has, reject it early before evicting everything in a vain
3557 * attempt to find space.
654fc607 3558 */
91e6711e 3559 if (size > end) {
65bd342f 3560 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
91e6711e
JL
3561 ggtt_view ? ggtt_view->type : 0,
3562 size,
1ec9e26d 3563 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3564 end);
262de145 3565 return ERR_PTR(-E2BIG);
654fc607
CW
3566 }
3567
37e680a1 3568 ret = i915_gem_object_get_pages(obj);
6c085a72 3569 if (ret)
262de145 3570 return ERR_PTR(ret);
6c085a72 3571
fbdda6fb
CW
3572 i915_gem_object_pin_pages(obj);
3573
ec7adb6e
JL
3574 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3575 i915_gem_obj_lookup_or_create_vma(obj, vm);
3576
262de145 3577 if (IS_ERR(vma))
bc6bc15b 3578 goto err_unpin;
2f633156 3579
506a8e87
CW
3580 if (flags & PIN_OFFSET_FIXED) {
3581 uint64_t offset = flags & PIN_OFFSET_MASK;
3582
3583 if (offset & (alignment - 1) || offset + size > end) {
3584 ret = -EINVAL;
3585 goto err_free_vma;
3586 }
3587 vma->node.start = offset;
3588 vma->node.size = size;
3589 vma->node.color = obj->cache_level;
3590 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3591 if (ret) {
3592 ret = i915_gem_evict_for_vma(vma);
3593 if (ret == 0)
3594 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3595 }
3596 if (ret)
3597 goto err_free_vma;
101b506a 3598 } else {
506a8e87
CW
3599 if (flags & PIN_HIGH) {
3600 search_flag = DRM_MM_SEARCH_BELOW;
3601 alloc_flag = DRM_MM_CREATE_TOP;
3602 } else {
3603 search_flag = DRM_MM_SEARCH_DEFAULT;
3604 alloc_flag = DRM_MM_CREATE_DEFAULT;
3605 }
101b506a 3606
0a9ae0d7 3607search_free:
506a8e87
CW
3608 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3609 size, alignment,
3610 obj->cache_level,
3611 start, end,
3612 search_flag,
3613 alloc_flag);
3614 if (ret) {
3615 ret = i915_gem_evict_something(dev, vm, size, alignment,
3616 obj->cache_level,
3617 start, end,
3618 flags);
3619 if (ret == 0)
3620 goto search_free;
9731129c 3621
506a8e87
CW
3622 goto err_free_vma;
3623 }
673a394b 3624 }
4144f9b5 3625 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3626 ret = -EINVAL;
bc6bc15b 3627 goto err_remove_node;
673a394b
EA
3628 }
3629
fe14d5f4 3630 trace_i915_vma_bind(vma, flags);
0875546c 3631 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4 3632 if (ret)
e2273302 3633 goto err_remove_node;
fe14d5f4 3634
35c20a60 3635 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
1c7f4bca 3636 list_add_tail(&vma->vm_link, &vm->inactive_list);
bf1a1092 3637
262de145 3638 return vma;
2f633156 3639
bc6bc15b 3640err_remove_node:
6286ef9b 3641 drm_mm_remove_node(&vma->node);
bc6bc15b 3642err_free_vma:
2f633156 3643 i915_gem_vma_destroy(vma);
262de145 3644 vma = ERR_PTR(ret);
bc6bc15b 3645err_unpin:
2f633156 3646 i915_gem_object_unpin_pages(obj);
262de145 3647 return vma;
673a394b
EA
3648}
3649
000433b6 3650bool
2c22569b
CW
3651i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3652 bool force)
673a394b 3653{
673a394b
EA
3654 /* If we don't have a page list set up, then we're not pinned
3655 * to GPU, and we can ignore the cache flush because it'll happen
3656 * again at bind time.
3657 */
05394f39 3658 if (obj->pages == NULL)
000433b6 3659 return false;
673a394b 3660
769ce464
ID
3661 /*
3662 * Stolen memory is always coherent with the GPU as it is explicitly
3663 * marked as wc by the system, or the system is cache-coherent.
3664 */
6a2c4232 3665 if (obj->stolen || obj->phys_handle)
000433b6 3666 return false;
769ce464 3667
9c23f7fc
CW
3668 /* If the GPU is snooping the contents of the CPU cache,
3669 * we do not need to manually clear the CPU cache lines. However,
3670 * the caches are only snooped when the render cache is
3671 * flushed/invalidated. As we always have to emit invalidations
3672 * and flushes when moving into and out of the RENDER domain, correct
3673 * snooping behaviour occurs naturally as the result of our domain
3674 * tracking.
3675 */
0f71979a
CW
3676 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3677 obj->cache_dirty = true;
000433b6 3678 return false;
0f71979a 3679 }
9c23f7fc 3680
1c5d22f7 3681 trace_i915_gem_object_clflush(obj);
9da3da66 3682 drm_clflush_sg(obj->pages);
0f71979a 3683 obj->cache_dirty = false;
000433b6
CW
3684
3685 return true;
e47c68e9
EA
3686}
3687
3688/** Flushes the GTT write domain for the object if it's dirty. */
3689static void
05394f39 3690i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3691{
1c5d22f7
CW
3692 uint32_t old_write_domain;
3693
05394f39 3694 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3695 return;
3696
63256ec5 3697 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3698 * to it immediately go to main memory as far as we know, so there's
3699 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3700 *
3701 * However, we do have to enforce the order so that all writes through
3702 * the GTT land before any writes to the device, such as updates to
3703 * the GATT itself.
e47c68e9 3704 */
63256ec5
CW
3705 wmb();
3706
05394f39
CW
3707 old_write_domain = obj->base.write_domain;
3708 obj->base.write_domain = 0;
1c5d22f7 3709
de152b62 3710 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
f99d7069 3711
1c5d22f7 3712 trace_i915_gem_object_change_domain(obj,
05394f39 3713 obj->base.read_domains,
1c5d22f7 3714 old_write_domain);
e47c68e9
EA
3715}
3716
3717/** Flushes the CPU write domain for the object if it's dirty. */
3718static void
e62b59e4 3719i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3720{
1c5d22f7 3721 uint32_t old_write_domain;
e47c68e9 3722
05394f39 3723 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3724 return;
3725
e62b59e4 3726 if (i915_gem_clflush_object(obj, obj->pin_display))
c033666a 3727 i915_gem_chipset_flush(to_i915(obj->base.dev));
000433b6 3728
05394f39
CW
3729 old_write_domain = obj->base.write_domain;
3730 obj->base.write_domain = 0;
1c5d22f7 3731
de152b62 3732 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3733
1c5d22f7 3734 trace_i915_gem_object_change_domain(obj,
05394f39 3735 obj->base.read_domains,
1c5d22f7 3736 old_write_domain);
e47c68e9
EA
3737}
3738
2ef7eeaa
EA
3739/**
3740 * Moves a single object to the GTT read, and possibly write domain.
3741 *
3742 * This function returns when the move is complete, including waiting on
3743 * flushes to occur.
3744 */
79e53945 3745int
2021746e 3746i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3747{
72e96d64
JL
3748 struct drm_device *dev = obj->base.dev;
3749 struct drm_i915_private *dev_priv = to_i915(dev);
3750 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1c5d22f7 3751 uint32_t old_write_domain, old_read_domains;
43566ded 3752 struct i915_vma *vma;
e47c68e9 3753 int ret;
2ef7eeaa 3754
8d7e3de1
CW
3755 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3756 return 0;
3757
0201f1ec 3758 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3759 if (ret)
3760 return ret;
3761
43566ded
CW
3762 /* Flush and acquire obj->pages so that we are coherent through
3763 * direct access in memory with previous cached writes through
3764 * shmemfs and that our cache domain tracking remains valid.
3765 * For example, if the obj->filp was moved to swap without us
3766 * being notified and releasing the pages, we would mistakenly
3767 * continue to assume that the obj remained out of the CPU cached
3768 * domain.
3769 */
3770 ret = i915_gem_object_get_pages(obj);
3771 if (ret)
3772 return ret;
3773
e62b59e4 3774 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3775
d0a57789
CW
3776 /* Serialise direct access to this object with the barriers for
3777 * coherent writes from the GPU, by effectively invalidating the
3778 * GTT domain upon first access.
3779 */
3780 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3781 mb();
3782
05394f39
CW
3783 old_write_domain = obj->base.write_domain;
3784 old_read_domains = obj->base.read_domains;
1c5d22f7 3785
e47c68e9
EA
3786 /* It should now be out of any other write domains, and we can update
3787 * the domain values for our changes.
3788 */
05394f39
CW
3789 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3790 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3791 if (write) {
05394f39
CW
3792 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3793 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3794 obj->dirty = 1;
2ef7eeaa
EA
3795 }
3796
1c5d22f7
CW
3797 trace_i915_gem_object_change_domain(obj,
3798 old_read_domains,
3799 old_write_domain);
3800
8325a09d 3801 /* And bump the LRU for this access */
43566ded
CW
3802 vma = i915_gem_obj_to_ggtt(obj);
3803 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
1c7f4bca 3804 list_move_tail(&vma->vm_link,
72e96d64 3805 &ggtt->base.inactive_list);
8325a09d 3806
e47c68e9
EA
3807 return 0;
3808}
3809
ef55f92a
CW
3810/**
3811 * Changes the cache-level of an object across all VMA.
3812 *
3813 * After this function returns, the object will be in the new cache-level
3814 * across all GTT and the contents of the backing storage will be coherent,
3815 * with respect to the new cache-level. In order to keep the backing storage
3816 * coherent for all users, we only allow a single cache level to be set
3817 * globally on the object and prevent it from being changed whilst the
3818 * hardware is reading from the object. That is if the object is currently
3819 * on the scanout it will be set to uncached (or equivalent display
3820 * cache coherency) and all non-MOCS GPU access will also be uncached so
3821 * that all direct access to the scanout remains coherent.
3822 */
e4ffd173
CW
3823int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3824 enum i915_cache_level cache_level)
3825{
7bddb01f 3826 struct drm_device *dev = obj->base.dev;
df6f783a 3827 struct i915_vma *vma, *next;
ef55f92a 3828 bool bound = false;
ed75a55b 3829 int ret = 0;
e4ffd173
CW
3830
3831 if (obj->cache_level == cache_level)
ed75a55b 3832 goto out;
e4ffd173 3833
ef55f92a
CW
3834 /* Inspect the list of currently bound VMA and unbind any that would
3835 * be invalid given the new cache-level. This is principally to
3836 * catch the issue of the CS prefetch crossing page boundaries and
3837 * reading an invalid PTE on older architectures.
3838 */
1c7f4bca 3839 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
ef55f92a
CW
3840 if (!drm_mm_node_allocated(&vma->node))
3841 continue;
3842
3843 if (vma->pin_count) {
3844 DRM_DEBUG("can not change the cache level of pinned objects\n");
3845 return -EBUSY;
3846 }
3847
4144f9b5 3848 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3849 ret = i915_vma_unbind(vma);
3089c6f2
BW
3850 if (ret)
3851 return ret;
ef55f92a
CW
3852 } else
3853 bound = true;
42d6ab48
CW
3854 }
3855
ef55f92a
CW
3856 /* We can reuse the existing drm_mm nodes but need to change the
3857 * cache-level on the PTE. We could simply unbind them all and
3858 * rebind with the correct cache-level on next use. However since
3859 * we already have a valid slot, dma mapping, pages etc, we may as
3860 * rewrite the PTE in the belief that doing so tramples upon less
3861 * state and so involves less work.
3862 */
3863 if (bound) {
3864 /* Before we change the PTE, the GPU must not be accessing it.
3865 * If we wait upon the object, we know that all the bound
3866 * VMA are no longer active.
3867 */
2e2f351d 3868 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
3869 if (ret)
3870 return ret;
3871
ef55f92a
CW
3872 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3873 /* Access to snoopable pages through the GTT is
3874 * incoherent and on some machines causes a hard
3875 * lockup. Relinquish the CPU mmaping to force
3876 * userspace to refault in the pages and we can
3877 * then double check if the GTT mapping is still
3878 * valid for that pointer access.
3879 */
3880 i915_gem_release_mmap(obj);
3881
3882 /* As we no longer need a fence for GTT access,
3883 * we can relinquish it now (and so prevent having
3884 * to steal a fence from someone else on the next
3885 * fence request). Note GPU activity would have
3886 * dropped the fence as all snoopable access is
3887 * supposed to be linear.
3888 */
e4ffd173
CW
3889 ret = i915_gem_object_put_fence(obj);
3890 if (ret)
3891 return ret;
ef55f92a
CW
3892 } else {
3893 /* We either have incoherent backing store and
3894 * so no GTT access or the architecture is fully
3895 * coherent. In such cases, existing GTT mmaps
3896 * ignore the cache bit in the PTE and we can
3897 * rewrite it without confusing the GPU or having
3898 * to force userspace to fault back in its mmaps.
3899 */
e4ffd173
CW
3900 }
3901
1c7f4bca 3902 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3903 if (!drm_mm_node_allocated(&vma->node))
3904 continue;
3905
3906 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3907 if (ret)
3908 return ret;
3909 }
e4ffd173
CW
3910 }
3911
1c7f4bca 3912 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
3913 vma->node.color = cache_level;
3914 obj->cache_level = cache_level;
3915
ed75a55b 3916out:
ef55f92a
CW
3917 /* Flush the dirty CPU caches to the backing storage so that the
3918 * object is now coherent at its new cache level (with respect
3919 * to the access domain).
3920 */
0f71979a
CW
3921 if (obj->cache_dirty &&
3922 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3923 cpu_write_needs_clflush(obj)) {
3924 if (i915_gem_clflush_object(obj, true))
c033666a 3925 i915_gem_chipset_flush(to_i915(obj->base.dev));
e4ffd173
CW
3926 }
3927
e4ffd173
CW
3928 return 0;
3929}
3930
199adf40
BW
3931int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3932 struct drm_file *file)
e6994aee 3933{
199adf40 3934 struct drm_i915_gem_caching *args = data;
e6994aee 3935 struct drm_i915_gem_object *obj;
e6994aee
CW
3936
3937 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
432be69d
CW
3938 if (&obj->base == NULL)
3939 return -ENOENT;
e6994aee 3940
651d794f
CW
3941 switch (obj->cache_level) {
3942 case I915_CACHE_LLC:
3943 case I915_CACHE_L3_LLC:
3944 args->caching = I915_CACHING_CACHED;
3945 break;
3946
4257d3ba
CW
3947 case I915_CACHE_WT:
3948 args->caching = I915_CACHING_DISPLAY;
3949 break;
3950
651d794f
CW
3951 default:
3952 args->caching = I915_CACHING_NONE;
3953 break;
3954 }
e6994aee 3955
432be69d
CW
3956 drm_gem_object_unreference_unlocked(&obj->base);
3957 return 0;
e6994aee
CW
3958}
3959
199adf40
BW
3960int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3961 struct drm_file *file)
e6994aee 3962{
fd0fe6ac 3963 struct drm_i915_private *dev_priv = dev->dev_private;
199adf40 3964 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3965 struct drm_i915_gem_object *obj;
3966 enum i915_cache_level level;
3967 int ret;
3968
199adf40
BW
3969 switch (args->caching) {
3970 case I915_CACHING_NONE:
e6994aee
CW
3971 level = I915_CACHE_NONE;
3972 break;
199adf40 3973 case I915_CACHING_CACHED:
e5756c10
ID
3974 /*
3975 * Due to a HW issue on BXT A stepping, GPU stores via a
3976 * snooped mapping may leave stale data in a corresponding CPU
3977 * cacheline, whereas normally such cachelines would get
3978 * invalidated.
3979 */
ca377809 3980 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
e5756c10
ID
3981 return -ENODEV;
3982
e6994aee
CW
3983 level = I915_CACHE_LLC;
3984 break;
4257d3ba
CW
3985 case I915_CACHING_DISPLAY:
3986 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3987 break;
e6994aee
CW
3988 default:
3989 return -EINVAL;
3990 }
3991
fd0fe6ac
ID
3992 intel_runtime_pm_get(dev_priv);
3993
3bc2913e
BW
3994 ret = i915_mutex_lock_interruptible(dev);
3995 if (ret)
fd0fe6ac 3996 goto rpm_put;
3bc2913e 3997
e6994aee
CW
3998 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3999 if (&obj->base == NULL) {
4000 ret = -ENOENT;
4001 goto unlock;
4002 }
4003
4004 ret = i915_gem_object_set_cache_level(obj, level);
4005
4006 drm_gem_object_unreference(&obj->base);
4007unlock:
4008 mutex_unlock(&dev->struct_mutex);
fd0fe6ac
ID
4009rpm_put:
4010 intel_runtime_pm_put(dev_priv);
4011
e6994aee
CW
4012 return ret;
4013}
4014
b9241ea3 4015/*
2da3b9b9
CW
4016 * Prepare buffer for display plane (scanout, cursors, etc).
4017 * Can be called from an uninterruptible phase (modesetting) and allows
4018 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
4019 */
4020int
2da3b9b9
CW
4021i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4022 u32 alignment,
e6617330 4023 const struct i915_ggtt_view *view)
b9241ea3 4024{
2da3b9b9 4025 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
4026 int ret;
4027
cc98b413
CW
4028 /* Mark the pin_display early so that we account for the
4029 * display coherency whilst setting up the cache domains.
4030 */
8a0c39b1 4031 obj->pin_display++;
cc98b413 4032
a7ef0640
EA
4033 /* The display engine is not coherent with the LLC cache on gen6. As
4034 * a result, we make sure that the pinning that is about to occur is
4035 * done with uncached PTEs. This is lowest common denominator for all
4036 * chipsets.
4037 *
4038 * However for gen6+, we could do better by using the GFDT bit instead
4039 * of uncaching, which would allow us to flush all the LLC-cached data
4040 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4041 */
651d794f
CW
4042 ret = i915_gem_object_set_cache_level(obj,
4043 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 4044 if (ret)
cc98b413 4045 goto err_unpin_display;
a7ef0640 4046
2da3b9b9
CW
4047 /* As the user may map the buffer once pinned in the display plane
4048 * (e.g. libkms for the bootup splash), we have to ensure that we
4049 * always use map_and_fenceable for all scanout buffers.
4050 */
50470bb0
TU
4051 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4052 view->type == I915_GGTT_VIEW_NORMAL ?
4053 PIN_MAPPABLE : 0);
2da3b9b9 4054 if (ret)
cc98b413 4055 goto err_unpin_display;
2da3b9b9 4056
e62b59e4 4057 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 4058
2da3b9b9 4059 old_write_domain = obj->base.write_domain;
05394f39 4060 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
4061
4062 /* It should now be out of any other write domains, and we can update
4063 * the domain values for our changes.
4064 */
e5f1d962 4065 obj->base.write_domain = 0;
05394f39 4066 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
4067
4068 trace_i915_gem_object_change_domain(obj,
4069 old_read_domains,
2da3b9b9 4070 old_write_domain);
b9241ea3
ZW
4071
4072 return 0;
cc98b413
CW
4073
4074err_unpin_display:
8a0c39b1 4075 obj->pin_display--;
cc98b413
CW
4076 return ret;
4077}
4078
4079void
e6617330
TU
4080i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4081 const struct i915_ggtt_view *view)
cc98b413 4082{
8a0c39b1
TU
4083 if (WARN_ON(obj->pin_display == 0))
4084 return;
4085
e6617330
TU
4086 i915_gem_object_ggtt_unpin_view(obj, view);
4087
8a0c39b1 4088 obj->pin_display--;
b9241ea3
ZW
4089}
4090
e47c68e9
EA
4091/**
4092 * Moves a single object to the CPU read, and possibly write domain.
4093 *
4094 * This function returns when the move is complete, including waiting on
4095 * flushes to occur.
4096 */
dabdfe02 4097int
919926ae 4098i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4099{
1c5d22f7 4100 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4101 int ret;
4102
8d7e3de1
CW
4103 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4104 return 0;
4105
0201f1ec 4106 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4107 if (ret)
4108 return ret;
4109
e47c68e9 4110 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4111
05394f39
CW
4112 old_write_domain = obj->base.write_domain;
4113 old_read_domains = obj->base.read_domains;
1c5d22f7 4114
e47c68e9 4115 /* Flush the CPU cache if it's still invalid. */
05394f39 4116 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4117 i915_gem_clflush_object(obj, false);
2ef7eeaa 4118
05394f39 4119 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4120 }
4121
4122 /* It should now be out of any other write domains, and we can update
4123 * the domain values for our changes.
4124 */
05394f39 4125 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4126
4127 /* If we're writing through the CPU, then the GPU read domains will
4128 * need to be invalidated at next use.
4129 */
4130 if (write) {
05394f39
CW
4131 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4132 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4133 }
2ef7eeaa 4134
1c5d22f7
CW
4135 trace_i915_gem_object_change_domain(obj,
4136 old_read_domains,
4137 old_write_domain);
4138
2ef7eeaa
EA
4139 return 0;
4140}
4141
673a394b
EA
4142/* Throttle our rendering by waiting until the ring has completed our requests
4143 * emitted over 20 msec ago.
4144 *
b962442e
EA
4145 * Note that if we were to use the current jiffies each time around the loop,
4146 * we wouldn't escape the function with any frames outstanding if the time to
4147 * render a frame was over 20ms.
4148 *
673a394b
EA
4149 * This should get us reasonable parallelism between CPU and GPU but also
4150 * relatively low latency when blocking on a particular request to finish.
4151 */
40a5f0de 4152static int
f787a5f5 4153i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4154{
f787a5f5
CW
4155 struct drm_i915_private *dev_priv = dev->dev_private;
4156 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4157 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 4158 struct drm_i915_gem_request *request, *target = NULL;
f787a5f5 4159 int ret;
93533c29 4160
308887aa
DV
4161 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4162 if (ret)
4163 return ret;
4164
f4457ae7
CW
4165 /* ABI: return -EIO if already wedged */
4166 if (i915_terminally_wedged(&dev_priv->gpu_error))
4167 return -EIO;
e110e8d6 4168
1c25595f 4169 spin_lock(&file_priv->mm.lock);
f787a5f5 4170 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4171 if (time_after_eq(request->emitted_jiffies, recent_enough))
4172 break;
40a5f0de 4173
fcfa423c
JH
4174 /*
4175 * Note that the request might not have been submitted yet.
4176 * In which case emitted_jiffies will be zero.
4177 */
4178 if (!request->emitted_jiffies)
4179 continue;
4180
54fb2411 4181 target = request;
b962442e 4182 }
ff865885
JH
4183 if (target)
4184 i915_gem_request_reference(target);
1c25595f 4185 spin_unlock(&file_priv->mm.lock);
40a5f0de 4186
54fb2411 4187 if (target == NULL)
f787a5f5 4188 return 0;
2bc43b5c 4189
299259a3 4190 ret = __i915_wait_request(target, true, NULL, NULL);
f787a5f5
CW
4191 if (ret == 0)
4192 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4193
73db04cf 4194 i915_gem_request_unreference(target);
ff865885 4195
40a5f0de
EA
4196 return ret;
4197}
4198
d23db88c
CW
4199static bool
4200i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4201{
4202 struct drm_i915_gem_object *obj = vma->obj;
4203
4204 if (alignment &&
4205 vma->node.start & (alignment - 1))
4206 return true;
4207
4208 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4209 return true;
4210
4211 if (flags & PIN_OFFSET_BIAS &&
4212 vma->node.start < (flags & PIN_OFFSET_MASK))
4213 return true;
4214
506a8e87
CW
4215 if (flags & PIN_OFFSET_FIXED &&
4216 vma->node.start != (flags & PIN_OFFSET_MASK))
4217 return true;
4218
d23db88c
CW
4219 return false;
4220}
4221
d0710abb
CW
4222void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4223{
4224 struct drm_i915_gem_object *obj = vma->obj;
4225 bool mappable, fenceable;
4226 u32 fence_size, fence_alignment;
4227
4228 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4229 obj->base.size,
4230 obj->tiling_mode);
4231 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4232 obj->base.size,
4233 obj->tiling_mode,
4234 true);
4235
4236 fenceable = (vma->node.size == fence_size &&
4237 (vma->node.start & (fence_alignment - 1)) == 0);
4238
4239 mappable = (vma->node.start + fence_size <=
62106b4f 4240 to_i915(obj->base.dev)->ggtt.mappable_end);
d0710abb
CW
4241
4242 obj->map_and_fenceable = mappable && fenceable;
4243}
4244
ec7adb6e
JL
4245static int
4246i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4247 struct i915_address_space *vm,
4248 const struct i915_ggtt_view *ggtt_view,
4249 uint32_t alignment,
4250 uint64_t flags)
673a394b 4251{
6e7186af 4252 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4253 struct i915_vma *vma;
ef79e17c 4254 unsigned bound;
673a394b
EA
4255 int ret;
4256
6e7186af
BW
4257 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4258 return -ENODEV;
4259
bf3d149b 4260 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4261 return -EINVAL;
07fe0b12 4262
c826c449
CW
4263 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4264 return -EINVAL;
4265
ec7adb6e
JL
4266 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4267 return -EINVAL;
4268
4269 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4270 i915_gem_obj_to_vma(obj, vm);
4271
07fe0b12 4272 if (vma) {
d7f46fc4
BW
4273 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4274 return -EBUSY;
4275
d23db88c 4276 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4277 WARN(vma->pin_count,
ec7adb6e 4278 "bo is already pinned in %s with incorrect alignment:"
088e0df4 4279 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4280 " obj->map_and_fenceable=%d\n",
ec7adb6e 4281 ggtt_view ? "ggtt" : "ppgtt",
088e0df4
MT
4282 upper_32_bits(vma->node.start),
4283 lower_32_bits(vma->node.start),
fe14d5f4 4284 alignment,
d23db88c 4285 !!(flags & PIN_MAPPABLE),
05394f39 4286 obj->map_and_fenceable);
07fe0b12 4287 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4288 if (ret)
4289 return ret;
8ea99c92
DV
4290
4291 vma = NULL;
ac0c6b5a
CW
4292 }
4293 }
4294
ef79e17c 4295 bound = vma ? vma->bound : 0;
8ea99c92 4296 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
ec7adb6e
JL
4297 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4298 flags);
262de145
DV
4299 if (IS_ERR(vma))
4300 return PTR_ERR(vma);
0875546c
DV
4301 } else {
4302 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
4303 if (ret)
4304 return ret;
4305 }
74898d7e 4306
91e6711e
JL
4307 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4308 (bound ^ vma->bound) & GLOBAL_BIND) {
d0710abb 4309 __i915_vma_set_map_and_fenceable(vma);
91e6711e
JL
4310 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4311 }
ef79e17c 4312
8ea99c92 4313 vma->pin_count++;
673a394b
EA
4314 return 0;
4315}
4316
ec7adb6e
JL
4317int
4318i915_gem_object_pin(struct drm_i915_gem_object *obj,
4319 struct i915_address_space *vm,
4320 uint32_t alignment,
4321 uint64_t flags)
4322{
4323 return i915_gem_object_do_pin(obj, vm,
4324 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4325 alignment, flags);
4326}
4327
4328int
4329i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4330 const struct i915_ggtt_view *view,
4331 uint32_t alignment,
4332 uint64_t flags)
4333{
72e96d64
JL
4334 struct drm_device *dev = obj->base.dev;
4335 struct drm_i915_private *dev_priv = to_i915(dev);
4336 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4337
ade7daa1 4338 BUG_ON(!view);
ec7adb6e 4339
72e96d64 4340 return i915_gem_object_do_pin(obj, &ggtt->base, view,
6fafab76 4341 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4342}
4343
673a394b 4344void
e6617330
TU
4345i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4346 const struct i915_ggtt_view *view)
673a394b 4347{
e6617330 4348 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4349
e6617330 4350 WARN_ON(vma->pin_count == 0);
9abc4648 4351 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4352
30154650 4353 --vma->pin_count;
673a394b
EA
4354}
4355
673a394b
EA
4356int
4357i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4358 struct drm_file *file)
673a394b
EA
4359{
4360 struct drm_i915_gem_busy *args = data;
05394f39 4361 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4362 int ret;
4363
76c1dec1 4364 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4365 if (ret)
76c1dec1 4366 return ret;
673a394b 4367
05394f39 4368 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4369 if (&obj->base == NULL) {
1d7cfea1
CW
4370 ret = -ENOENT;
4371 goto unlock;
673a394b 4372 }
d1b851fc 4373
0be555b6
CW
4374 /* Count all active objects as busy, even if they are currently not used
4375 * by the gpu. Users of this interface expect objects to eventually
4376 * become non-busy without any further actions, therefore emit any
4377 * necessary flushes here.
c4de0a5d 4378 */
30dfebf3 4379 ret = i915_gem_object_flush_active(obj);
b4716185
CW
4380 if (ret)
4381 goto unref;
0be555b6 4382
426960be
CW
4383 args->busy = 0;
4384 if (obj->active) {
4385 int i;
4386
666796da 4387 for (i = 0; i < I915_NUM_ENGINES; i++) {
426960be
CW
4388 struct drm_i915_gem_request *req;
4389
4390 req = obj->last_read_req[i];
4391 if (req)
4a570db5 4392 args->busy |= 1 << (16 + req->engine->exec_id);
426960be
CW
4393 }
4394 if (obj->last_write_req)
4a570db5 4395 args->busy |= obj->last_write_req->engine->exec_id;
426960be 4396 }
673a394b 4397
b4716185 4398unref:
05394f39 4399 drm_gem_object_unreference(&obj->base);
1d7cfea1 4400unlock:
673a394b 4401 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4402 return ret;
673a394b
EA
4403}
4404
4405int
4406i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4407 struct drm_file *file_priv)
4408{
0206e353 4409 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4410}
4411
3ef94daa
CW
4412int
4413i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4414 struct drm_file *file_priv)
4415{
656bfa3a 4416 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4417 struct drm_i915_gem_madvise *args = data;
05394f39 4418 struct drm_i915_gem_object *obj;
76c1dec1 4419 int ret;
3ef94daa
CW
4420
4421 switch (args->madv) {
4422 case I915_MADV_DONTNEED:
4423 case I915_MADV_WILLNEED:
4424 break;
4425 default:
4426 return -EINVAL;
4427 }
4428
1d7cfea1
CW
4429 ret = i915_mutex_lock_interruptible(dev);
4430 if (ret)
4431 return ret;
4432
05394f39 4433 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4434 if (&obj->base == NULL) {
1d7cfea1
CW
4435 ret = -ENOENT;
4436 goto unlock;
3ef94daa 4437 }
3ef94daa 4438
d7f46fc4 4439 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4440 ret = -EINVAL;
4441 goto out;
3ef94daa
CW
4442 }
4443
656bfa3a
DV
4444 if (obj->pages &&
4445 obj->tiling_mode != I915_TILING_NONE &&
4446 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4447 if (obj->madv == I915_MADV_WILLNEED)
4448 i915_gem_object_unpin_pages(obj);
4449 if (args->madv == I915_MADV_WILLNEED)
4450 i915_gem_object_pin_pages(obj);
4451 }
4452
05394f39
CW
4453 if (obj->madv != __I915_MADV_PURGED)
4454 obj->madv = args->madv;
3ef94daa 4455
6c085a72 4456 /* if the object is no longer attached, discard its backing storage */
be6a0376 4457 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4458 i915_gem_object_truncate(obj);
4459
05394f39 4460 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4461
1d7cfea1 4462out:
05394f39 4463 drm_gem_object_unreference(&obj->base);
1d7cfea1 4464unlock:
3ef94daa 4465 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4466 return ret;
3ef94daa
CW
4467}
4468
37e680a1
CW
4469void i915_gem_object_init(struct drm_i915_gem_object *obj,
4470 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4471{
b4716185
CW
4472 int i;
4473
35c20a60 4474 INIT_LIST_HEAD(&obj->global_list);
666796da 4475 for (i = 0; i < I915_NUM_ENGINES; i++)
117897f4 4476 INIT_LIST_HEAD(&obj->engine_list[i]);
b25cb2f8 4477 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4478 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4479 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4480
37e680a1
CW
4481 obj->ops = ops;
4482
0327d6ba
CW
4483 obj->fence_reg = I915_FENCE_REG_NONE;
4484 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4485
4486 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4487}
4488
37e680a1 4489static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
de472664 4490 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
37e680a1
CW
4491 .get_pages = i915_gem_object_get_pages_gtt,
4492 .put_pages = i915_gem_object_put_pages_gtt,
4493};
4494
d37cd8a8 4495struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
05394f39 4496 size_t size)
ac52bc56 4497{
c397b908 4498 struct drm_i915_gem_object *obj;
5949eac4 4499 struct address_space *mapping;
1a240d4d 4500 gfp_t mask;
fe3db79b 4501 int ret;
ac52bc56 4502
42dcedd4 4503 obj = i915_gem_object_alloc(dev);
c397b908 4504 if (obj == NULL)
fe3db79b 4505 return ERR_PTR(-ENOMEM);
673a394b 4506
fe3db79b
CW
4507 ret = drm_gem_object_init(dev, &obj->base, size);
4508 if (ret)
4509 goto fail;
673a394b 4510
bed1ea95
CW
4511 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4512 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4513 /* 965gm cannot relocate objects above 4GiB. */
4514 mask &= ~__GFP_HIGHMEM;
4515 mask |= __GFP_DMA32;
4516 }
4517
496ad9aa 4518 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4519 mapping_set_gfp_mask(mapping, mask);
5949eac4 4520
37e680a1 4521 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4522
c397b908
DV
4523 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4524 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4525
3d29b842
ED
4526 if (HAS_LLC(dev)) {
4527 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4528 * cache) for about a 10% performance improvement
4529 * compared to uncached. Graphics requests other than
4530 * display scanout are coherent with the CPU in
4531 * accessing this cache. This means in this mode we
4532 * don't need to clflush on the CPU side, and on the
4533 * GPU side we only need to flush internal caches to
4534 * get data visible to the CPU.
4535 *
4536 * However, we maintain the display planes as UC, and so
4537 * need to rebind when first used as such.
4538 */
4539 obj->cache_level = I915_CACHE_LLC;
4540 } else
4541 obj->cache_level = I915_CACHE_NONE;
4542
d861e338
DV
4543 trace_i915_gem_object_create(obj);
4544
05394f39 4545 return obj;
fe3db79b
CW
4546
4547fail:
4548 i915_gem_object_free(obj);
4549
4550 return ERR_PTR(ret);
c397b908
DV
4551}
4552
340fbd8c
CW
4553static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4554{
4555 /* If we are the last user of the backing storage (be it shmemfs
4556 * pages or stolen etc), we know that the pages are going to be
4557 * immediately released. In this case, we can then skip copying
4558 * back the contents from the GPU.
4559 */
4560
4561 if (obj->madv != I915_MADV_WILLNEED)
4562 return false;
4563
4564 if (obj->base.filp == NULL)
4565 return true;
4566
4567 /* At first glance, this looks racy, but then again so would be
4568 * userspace racing mmap against close. However, the first external
4569 * reference to the filp can only be obtained through the
4570 * i915_gem_mmap_ioctl() which safeguards us against the user
4571 * acquiring such a reference whilst we are in the middle of
4572 * freeing the object.
4573 */
4574 return atomic_long_read(&obj->base.filp->f_count) == 1;
4575}
4576
1488fc08 4577void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4578{
1488fc08 4579 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4580 struct drm_device *dev = obj->base.dev;
3e31c6c0 4581 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4582 struct i915_vma *vma, *next;
673a394b 4583
f65c9168
PZ
4584 intel_runtime_pm_get(dev_priv);
4585
26e12f89
CW
4586 trace_i915_gem_object_destroy(obj);
4587
1c7f4bca 4588 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
d7f46fc4
BW
4589 int ret;
4590
4591 vma->pin_count = 0;
4592 ret = i915_vma_unbind(vma);
07fe0b12
BW
4593 if (WARN_ON(ret == -ERESTARTSYS)) {
4594 bool was_interruptible;
1488fc08 4595
07fe0b12
BW
4596 was_interruptible = dev_priv->mm.interruptible;
4597 dev_priv->mm.interruptible = false;
1488fc08 4598
07fe0b12 4599 WARN_ON(i915_vma_unbind(vma));
1488fc08 4600
07fe0b12
BW
4601 dev_priv->mm.interruptible = was_interruptible;
4602 }
1488fc08
CW
4603 }
4604
1d64ae71
BW
4605 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4606 * before progressing. */
4607 if (obj->stolen)
4608 i915_gem_object_unpin_pages(obj);
4609
a071fa00
DV
4610 WARN_ON(obj->frontbuffer_bits);
4611
656bfa3a
DV
4612 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4613 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4614 obj->tiling_mode != I915_TILING_NONE)
4615 i915_gem_object_unpin_pages(obj);
4616
401c29f6
BW
4617 if (WARN_ON(obj->pages_pin_count))
4618 obj->pages_pin_count = 0;
340fbd8c 4619 if (discard_backing_storage(obj))
5537252b 4620 obj->madv = I915_MADV_DONTNEED;
37e680a1 4621 i915_gem_object_put_pages(obj);
d8cb5086 4622 i915_gem_object_free_mmap_offset(obj);
de151cf6 4623
9da3da66
CW
4624 BUG_ON(obj->pages);
4625
2f745ad3
CW
4626 if (obj->base.import_attach)
4627 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4628
5cc9ed4b
CW
4629 if (obj->ops->release)
4630 obj->ops->release(obj);
4631
05394f39
CW
4632 drm_gem_object_release(&obj->base);
4633 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4634
05394f39 4635 kfree(obj->bit_17);
42dcedd4 4636 i915_gem_object_free(obj);
f65c9168
PZ
4637
4638 intel_runtime_pm_put(dev_priv);
673a394b
EA
4639}
4640
ec7adb6e
JL
4641struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4642 struct i915_address_space *vm)
e656a6cb
DV
4643{
4644 struct i915_vma *vma;
1c7f4bca 4645 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1b683729
TU
4646 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4647 vma->vm == vm)
e656a6cb 4648 return vma;
ec7adb6e
JL
4649 }
4650 return NULL;
4651}
4652
4653struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4654 const struct i915_ggtt_view *view)
4655{
ec7adb6e 4656 struct i915_vma *vma;
e656a6cb 4657
598b9ec8 4658 GEM_BUG_ON(!view);
ec7adb6e 4659
1c7f4bca 4660 list_for_each_entry(vma, &obj->vma_list, obj_link)
598b9ec8 4661 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4662 return vma;
e656a6cb
DV
4663 return NULL;
4664}
4665
2f633156
BW
4666void i915_gem_vma_destroy(struct i915_vma *vma)
4667{
4668 WARN_ON(vma->node.allocated);
aaa05667
CW
4669
4670 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4671 if (!list_empty(&vma->exec_list))
4672 return;
4673
596c5923
CW
4674 if (!vma->is_ggtt)
4675 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
b9d06dd9 4676
1c7f4bca 4677 list_del(&vma->obj_link);
b93dab6e 4678
e20d2ab7 4679 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
2f633156
BW
4680}
4681
e3efda49 4682static void
117897f4 4683i915_gem_stop_engines(struct drm_device *dev)
e3efda49
CW
4684{
4685 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 4686 struct intel_engine_cs *engine;
e3efda49 4687
b4ac5afc 4688 for_each_engine(engine, dev_priv)
117897f4 4689 dev_priv->gt.stop_engine(engine);
e3efda49
CW
4690}
4691
29105ccc 4692int
45c5f202 4693i915_gem_suspend(struct drm_device *dev)
29105ccc 4694{
3e31c6c0 4695 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4696 int ret = 0;
28dfe52a 4697
45c5f202 4698 mutex_lock(&dev->struct_mutex);
b2da9fe5 4699 ret = i915_gpu_idle(dev);
f7403347 4700 if (ret)
45c5f202 4701 goto err;
f7403347 4702
c033666a 4703 i915_gem_retire_requests(dev_priv);
673a394b 4704
117897f4 4705 i915_gem_stop_engines(dev);
b2e862d0 4706 i915_gem_context_lost(dev_priv);
45c5f202
CW
4707 mutex_unlock(&dev->struct_mutex);
4708
737b1506 4709 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4710 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4711 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4712
bdcf120b
CW
4713 /* Assert that we sucessfully flushed all the work and
4714 * reset the GPU back to its idle, low power state.
4715 */
4716 WARN_ON(dev_priv->mm.busy);
4717
673a394b 4718 return 0;
45c5f202
CW
4719
4720err:
4721 mutex_unlock(&dev->struct_mutex);
4722 return ret;
673a394b
EA
4723}
4724
f691e2f4
DV
4725void i915_gem_init_swizzling(struct drm_device *dev)
4726{
3e31c6c0 4727 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4728
11782b02 4729 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4730 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4731 return;
4732
4733 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4734 DISP_TILE_SURFACE_SWIZZLING);
4735
11782b02
DV
4736 if (IS_GEN5(dev))
4737 return;
4738
f691e2f4
DV
4739 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4740 if (IS_GEN6(dev))
6b26c86d 4741 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4742 else if (IS_GEN7(dev))
6b26c86d 4743 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4744 else if (IS_GEN8(dev))
4745 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4746 else
4747 BUG();
f691e2f4 4748}
e21af88d 4749
81e7f200
VS
4750static void init_unused_ring(struct drm_device *dev, u32 base)
4751{
4752 struct drm_i915_private *dev_priv = dev->dev_private;
4753
4754 I915_WRITE(RING_CTL(base), 0);
4755 I915_WRITE(RING_HEAD(base), 0);
4756 I915_WRITE(RING_TAIL(base), 0);
4757 I915_WRITE(RING_START(base), 0);
4758}
4759
4760static void init_unused_rings(struct drm_device *dev)
4761{
4762 if (IS_I830(dev)) {
4763 init_unused_ring(dev, PRB1_BASE);
4764 init_unused_ring(dev, SRB0_BASE);
4765 init_unused_ring(dev, SRB1_BASE);
4766 init_unused_ring(dev, SRB2_BASE);
4767 init_unused_ring(dev, SRB3_BASE);
4768 } else if (IS_GEN2(dev)) {
4769 init_unused_ring(dev, SRB0_BASE);
4770 init_unused_ring(dev, SRB1_BASE);
4771 } else if (IS_GEN3(dev)) {
4772 init_unused_ring(dev, PRB1_BASE);
4773 init_unused_ring(dev, PRB2_BASE);
4774 }
4775}
4776
117897f4 4777int i915_gem_init_engines(struct drm_device *dev)
8187a2b7 4778{
4fc7c971 4779 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4780 int ret;
68f95ba9 4781
5c1143bb 4782 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4783 if (ret)
b6913e4b 4784 return ret;
68f95ba9
CW
4785
4786 if (HAS_BSD(dev)) {
5c1143bb 4787 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4788 if (ret)
4789 goto cleanup_render_ring;
d1b851fc 4790 }
68f95ba9 4791
d39398f5 4792 if (HAS_BLT(dev)) {
549f7365
CW
4793 ret = intel_init_blt_ring_buffer(dev);
4794 if (ret)
4795 goto cleanup_bsd_ring;
4796 }
4797
9a8a2213
BW
4798 if (HAS_VEBOX(dev)) {
4799 ret = intel_init_vebox_ring_buffer(dev);
4800 if (ret)
4801 goto cleanup_blt_ring;
4802 }
4803
845f74a7
ZY
4804 if (HAS_BSD2(dev)) {
4805 ret = intel_init_bsd2_ring_buffer(dev);
4806 if (ret)
4807 goto cleanup_vebox_ring;
4808 }
9a8a2213 4809
4fc7c971
BW
4810 return 0;
4811
9a8a2213 4812cleanup_vebox_ring:
117897f4 4813 intel_cleanup_engine(&dev_priv->engine[VECS]);
4fc7c971 4814cleanup_blt_ring:
117897f4 4815 intel_cleanup_engine(&dev_priv->engine[BCS]);
4fc7c971 4816cleanup_bsd_ring:
117897f4 4817 intel_cleanup_engine(&dev_priv->engine[VCS]);
4fc7c971 4818cleanup_render_ring:
117897f4 4819 intel_cleanup_engine(&dev_priv->engine[RCS]);
4fc7c971
BW
4820
4821 return ret;
4822}
4823
4824int
4825i915_gem_init_hw(struct drm_device *dev)
4826{
3e31c6c0 4827 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 4828 struct intel_engine_cs *engine;
d200cda6 4829 int ret;
4fc7c971 4830
5e4f5189
CW
4831 /* Double layer security blanket, see i915_gem_init() */
4832 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4833
3accaf7e 4834 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4835 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4836
0bf21347
VS
4837 if (IS_HASWELL(dev))
4838 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4839 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4840
88a2b2a3 4841 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4842 if (IS_IVYBRIDGE(dev)) {
4843 u32 temp = I915_READ(GEN7_MSG_CTL);
4844 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4845 I915_WRITE(GEN7_MSG_CTL, temp);
4846 } else if (INTEL_INFO(dev)->gen >= 7) {
4847 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4848 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4849 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4850 }
88a2b2a3
BW
4851 }
4852
4fc7c971
BW
4853 i915_gem_init_swizzling(dev);
4854
d5abdfda
DV
4855 /*
4856 * At least 830 can leave some of the unused rings
4857 * "active" (ie. head != tail) after resume which
4858 * will prevent c3 entry. Makes sure all unused rings
4859 * are totally idle.
4860 */
4861 init_unused_rings(dev);
4862
ed54c1a1 4863 BUG_ON(!dev_priv->kernel_context);
90638cc1 4864
4ad2fd88
JH
4865 ret = i915_ppgtt_init_hw(dev);
4866 if (ret) {
4867 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4868 goto out;
4869 }
4870
4871 /* Need to do basic initialisation of all rings first: */
b4ac5afc 4872 for_each_engine(engine, dev_priv) {
e2f80391 4873 ret = engine->init_hw(engine);
35a57ffb 4874 if (ret)
5e4f5189 4875 goto out;
35a57ffb 4876 }
99433931 4877
0ccdacf6
PA
4878 intel_mocs_init_l3cc_table(dev);
4879
33a732f4 4880 /* We can't enable contexts until all firmware is loaded */
87bcdd2e
JB
4881 if (HAS_GUC_UCODE(dev)) {
4882 ret = intel_guc_ucode_load(dev);
4883 if (ret) {
9f9e539f
DV
4884 DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4885 ret = -EIO;
4886 goto out;
87bcdd2e 4887 }
33a732f4
AD
4888 }
4889
e84fe803
NH
4890 /*
4891 * Increment the next seqno by 0x100 so we have a visible break
4892 * on re-initialisation
4893 */
4894 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
e21af88d 4895
5e4f5189
CW
4896out:
4897 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4898 return ret;
8187a2b7
ZN
4899}
4900
1070a42b
CW
4901int i915_gem_init(struct drm_device *dev)
4902{
4903 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4904 int ret;
4905
1070a42b 4906 mutex_lock(&dev->struct_mutex);
d62b4892 4907
a83014d3 4908 if (!i915.enable_execlists) {
f3dc74c0 4909 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
117897f4
TU
4910 dev_priv->gt.init_engines = i915_gem_init_engines;
4911 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
4912 dev_priv->gt.stop_engine = intel_stop_engine;
454afebd 4913 } else {
f3dc74c0 4914 dev_priv->gt.execbuf_submit = intel_execlists_submission;
117897f4
TU
4915 dev_priv->gt.init_engines = intel_logical_rings_init;
4916 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4917 dev_priv->gt.stop_engine = intel_logical_ring_stop;
a83014d3
OM
4918 }
4919
5e4f5189
CW
4920 /* This is just a security blanket to placate dragons.
4921 * On some systems, we very sporadically observe that the first TLBs
4922 * used by the CS may be stale, despite us poking the TLB reset. If
4923 * we hold the forcewake during initialisation these problems
4924 * just magically go away.
4925 */
4926 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4927
72778cb2 4928 i915_gem_init_userptr(dev_priv);
d85489d3 4929 i915_gem_init_ggtt(dev);
d62b4892 4930
2fa48d8d 4931 ret = i915_gem_context_init(dev);
7bcc3777
JN
4932 if (ret)
4933 goto out_unlock;
2fa48d8d 4934
117897f4 4935 ret = dev_priv->gt.init_engines(dev);
35a57ffb 4936 if (ret)
7bcc3777 4937 goto out_unlock;
2fa48d8d 4938
1070a42b 4939 ret = i915_gem_init_hw(dev);
60990320
CW
4940 if (ret == -EIO) {
4941 /* Allow ring initialisation to fail by marking the GPU as
4942 * wedged. But we only want to do this where the GPU is angry,
4943 * for all other failure, such as an allocation failure, bail.
4944 */
4945 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
805de8f4 4946 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
60990320 4947 ret = 0;
1070a42b 4948 }
7bcc3777
JN
4949
4950out_unlock:
5e4f5189 4951 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4952 mutex_unlock(&dev->struct_mutex);
1070a42b 4953
60990320 4954 return ret;
1070a42b
CW
4955}
4956
8187a2b7 4957void
117897f4 4958i915_gem_cleanup_engines(struct drm_device *dev)
8187a2b7 4959{
3e31c6c0 4960 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 4961 struct intel_engine_cs *engine;
8187a2b7 4962
b4ac5afc 4963 for_each_engine(engine, dev_priv)
117897f4 4964 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
4965}
4966
64193406 4967static void
666796da 4968init_engine_lists(struct intel_engine_cs *engine)
64193406 4969{
0bc40be8
TU
4970 INIT_LIST_HEAD(&engine->active_list);
4971 INIT_LIST_HEAD(&engine->request_list);
64193406
CW
4972}
4973
40ae4e16
ID
4974void
4975i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4976{
4977 struct drm_device *dev = dev_priv->dev;
4978
4979 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4980 !IS_CHERRYVIEW(dev_priv))
4981 dev_priv->num_fence_regs = 32;
4982 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4983 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4984 dev_priv->num_fence_regs = 16;
4985 else
4986 dev_priv->num_fence_regs = 8;
4987
c033666a 4988 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
4989 dev_priv->num_fence_regs =
4990 I915_READ(vgtif_reg(avail_rs.fence_num));
4991
4992 /* Initialize fence registers to zero */
4993 i915_gem_restore_fences(dev);
4994
4995 i915_gem_detect_bit_6_swizzle(dev);
4996}
4997
673a394b 4998void
d64aa096 4999i915_gem_load_init(struct drm_device *dev)
673a394b 5000{
3e31c6c0 5001 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
5002 int i;
5003
efab6d8d 5004 dev_priv->objects =
42dcedd4
CW
5005 kmem_cache_create("i915_gem_object",
5006 sizeof(struct drm_i915_gem_object), 0,
5007 SLAB_HWCACHE_ALIGN,
5008 NULL);
e20d2ab7
CW
5009 dev_priv->vmas =
5010 kmem_cache_create("i915_gem_vma",
5011 sizeof(struct i915_vma), 0,
5012 SLAB_HWCACHE_ALIGN,
5013 NULL);
efab6d8d
CW
5014 dev_priv->requests =
5015 kmem_cache_create("i915_gem_request",
5016 sizeof(struct drm_i915_gem_request), 0,
5017 SLAB_HWCACHE_ALIGN,
5018 NULL);
673a394b 5019
fc8c067e 5020 INIT_LIST_HEAD(&dev_priv->vm_list);
a33afea5 5021 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
5022 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5023 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 5024 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
666796da
TU
5025 for (i = 0; i < I915_NUM_ENGINES; i++)
5026 init_engine_lists(&dev_priv->engine[i]);
4b9de737 5027 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 5028 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
5029 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5030 i915_gem_retire_work_handler);
b29c19b6
CW
5031 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5032 i915_gem_idle_work_handler);
1f83fee0 5033 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5034
72bfa19c
CW
5035 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5036
e84fe803
NH
5037 /*
5038 * Set initial sequence number for requests.
5039 * Using this number allows the wraparound to happen early,
5040 * catching any obvious problems.
5041 */
5042 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5043 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5044
19b2dbde 5045 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
10ed13e4 5046
6b95a207 5047 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5048
ce453d81
CW
5049 dev_priv->mm.interruptible = true;
5050
f99d7069 5051 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5052}
71acb5eb 5053
d64aa096
ID
5054void i915_gem_load_cleanup(struct drm_device *dev)
5055{
5056 struct drm_i915_private *dev_priv = to_i915(dev);
5057
5058 kmem_cache_destroy(dev_priv->requests);
5059 kmem_cache_destroy(dev_priv->vmas);
5060 kmem_cache_destroy(dev_priv->objects);
5061}
5062
461fb99c
CW
5063int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5064{
5065 struct drm_i915_gem_object *obj;
5066
5067 /* Called just before we write the hibernation image.
5068 *
5069 * We need to update the domain tracking to reflect that the CPU
5070 * will be accessing all the pages to create and restore from the
5071 * hibernation, and so upon restoration those pages will be in the
5072 * CPU domain.
5073 *
5074 * To make sure the hibernation image contains the latest state,
5075 * we update that state just before writing out the image.
5076 */
5077
5078 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5079 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5080 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5081 }
5082
5083 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5084 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5085 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5086 }
5087
5088 return 0;
5089}
5090
f787a5f5 5091void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5092{
f787a5f5 5093 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
5094
5095 /* Clean up our request list when the client is going away, so that
5096 * later retire_requests won't dereference our soon-to-be-gone
5097 * file_priv.
5098 */
1c25595f 5099 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5100 while (!list_empty(&file_priv->mm.request_list)) {
5101 struct drm_i915_gem_request *request;
5102
5103 request = list_first_entry(&file_priv->mm.request_list,
5104 struct drm_i915_gem_request,
5105 client_list);
5106 list_del(&request->client_list);
5107 request->file_priv = NULL;
5108 }
1c25595f 5109 spin_unlock(&file_priv->mm.lock);
b29c19b6 5110
2e1b8730 5111 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 5112 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 5113 list_del(&file_priv->rps.link);
8d3afd7d 5114 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 5115 }
b29c19b6
CW
5116}
5117
5118int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5119{
5120 struct drm_i915_file_private *file_priv;
e422b888 5121 int ret;
b29c19b6
CW
5122
5123 DRM_DEBUG_DRIVER("\n");
5124
5125 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5126 if (!file_priv)
5127 return -ENOMEM;
5128
5129 file->driver_priv = file_priv;
5130 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5131 file_priv->file = file;
2e1b8730 5132 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
5133
5134 spin_lock_init(&file_priv->mm.lock);
5135 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5136
de1add36
TU
5137 file_priv->bsd_ring = -1;
5138
e422b888
BW
5139 ret = i915_gem_context_open(dev, file);
5140 if (ret)
5141 kfree(file_priv);
b29c19b6 5142
e422b888 5143 return ret;
b29c19b6
CW
5144}
5145
b680c37a
DV
5146/**
5147 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
5148 * @old: current GEM buffer for the frontbuffer slots
5149 * @new: new GEM buffer for the frontbuffer slots
5150 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
5151 *
5152 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5153 * from @old and setting them in @new. Both @old and @new can be NULL.
5154 */
a071fa00
DV
5155void i915_gem_track_fb(struct drm_i915_gem_object *old,
5156 struct drm_i915_gem_object *new,
5157 unsigned frontbuffer_bits)
5158{
5159 if (old) {
5160 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5161 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5162 old->frontbuffer_bits &= ~frontbuffer_bits;
5163 }
5164
5165 if (new) {
5166 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5167 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5168 new->frontbuffer_bits |= frontbuffer_bits;
5169 }
5170}
5171
a70a3148 5172/* All the new VM stuff */
088e0df4
MT
5173u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5174 struct i915_address_space *vm)
a70a3148
BW
5175{
5176 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5177 struct i915_vma *vma;
5178
896ab1a5 5179 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5180
1c7f4bca 5181 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5182 if (vma->is_ggtt &&
ec7adb6e
JL
5183 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5184 continue;
5185 if (vma->vm == vm)
a70a3148 5186 return vma->node.start;
a70a3148 5187 }
ec7adb6e 5188
f25748ea
DV
5189 WARN(1, "%s vma for this object not found.\n",
5190 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5191 return -1;
5192}
5193
088e0df4
MT
5194u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5195 const struct i915_ggtt_view *view)
a70a3148
BW
5196{
5197 struct i915_vma *vma;
5198
1c7f4bca 5199 list_for_each_entry(vma, &o->vma_list, obj_link)
8aac2220 5200 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
5201 return vma->node.start;
5202
5678ad73 5203 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
5204 return -1;
5205}
5206
5207bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5208 struct i915_address_space *vm)
5209{
5210 struct i915_vma *vma;
5211
1c7f4bca 5212 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5213 if (vma->is_ggtt &&
ec7adb6e
JL
5214 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5215 continue;
5216 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5217 return true;
5218 }
5219
5220 return false;
5221}
5222
5223bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 5224 const struct i915_ggtt_view *view)
ec7adb6e 5225{
ec7adb6e
JL
5226 struct i915_vma *vma;
5227
1c7f4bca 5228 list_for_each_entry(vma, &o->vma_list, obj_link)
ff5ec22d 5229 if (vma->is_ggtt &&
9abc4648 5230 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 5231 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5232 return true;
5233
5234 return false;
5235}
5236
5237bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5238{
5a1d5eb0 5239 struct i915_vma *vma;
a70a3148 5240
1c7f4bca 5241 list_for_each_entry(vma, &o->vma_list, obj_link)
5a1d5eb0 5242 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5243 return true;
5244
5245 return false;
5246}
5247
8da32727 5248unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
a70a3148 5249{
a70a3148
BW
5250 struct i915_vma *vma;
5251
8da32727 5252 GEM_BUG_ON(list_empty(&o->vma_list));
a70a3148 5253
1c7f4bca 5254 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5255 if (vma->is_ggtt &&
8da32727 5256 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
a70a3148 5257 return vma->node.size;
ec7adb6e 5258 }
8da32727 5259
a70a3148
BW
5260 return 0;
5261}
5262
ec7adb6e 5263bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
5264{
5265 struct i915_vma *vma;
1c7f4bca 5266 list_for_each_entry(vma, &obj->vma_list, obj_link)
ec7adb6e
JL
5267 if (vma->pin_count > 0)
5268 return true;
a6631ae1 5269
ec7adb6e 5270 return false;
5c2abbea 5271}
ea70299d 5272
033908ae
DG
5273/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5274struct page *
5275i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5276{
5277 struct page *page;
5278
5279 /* Only default objects have per-page dirty tracking */
de472664 5280 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
033908ae
DG
5281 return NULL;
5282
5283 page = i915_gem_object_get_page(obj, n);
5284 set_page_dirty(page);
5285 return page;
5286}
5287
ea70299d
DG
5288/* Allocate a new GEM object and fill it with the supplied data */
5289struct drm_i915_gem_object *
5290i915_gem_object_create_from_data(struct drm_device *dev,
5291 const void *data, size_t size)
5292{
5293 struct drm_i915_gem_object *obj;
5294 struct sg_table *sg;
5295 size_t bytes;
5296 int ret;
5297
d37cd8a8 5298 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
fe3db79b 5299 if (IS_ERR(obj))
ea70299d
DG
5300 return obj;
5301
5302 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5303 if (ret)
5304 goto fail;
5305
5306 ret = i915_gem_object_get_pages(obj);
5307 if (ret)
5308 goto fail;
5309
5310 i915_gem_object_pin_pages(obj);
5311 sg = obj->pages;
5312 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
9e7d18c0 5313 obj->dirty = 1; /* Backing store is now out of date */
ea70299d
DG
5314 i915_gem_object_unpin_pages(obj);
5315
5316 if (WARN_ON(bytes != size)) {
5317 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5318 ret = -EFAULT;
5319 goto fail;
5320 }
5321
5322 return obj;
5323
5324fail:
5325 drm_gem_object_unreference(&obj->base);
5326 return ERR_PTR(ret);
5327}