]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Introduce HAS_64BIT_RELOC
[thirdparty/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
5d723d7a 35#include "intel_frontbuffer.h"
0ccdacf6 36#include "intel_mocs.h"
c13d87ea 37#include <linux/reservation.h>
5949eac4 38#include <linux/shmem_fs.h>
5a0e3ad6 39#include <linux/slab.h>
673a394b 40#include <linux/swap.h>
79e53945 41#include <linux/pci.h>
1286ff73 42#include <linux/dma-buf.h>
673a394b 43
fbbd37b3 44static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
05394f39 45static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 46static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
61050808 47
c76ce038
CW
48static bool cpu_cache_is_coherent(struct drm_device *dev,
49 enum i915_cache_level level)
50{
51 return HAS_LLC(dev) || level != I915_CACHE_NONE;
52}
53
2c22569b
CW
54static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
55{
b50a5371
AS
56 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
57 return false;
58
2c22569b
CW
59 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
60 return true;
61
62 return obj->pin_display;
63}
64
4f1959ee 65static int
bb6dc8d9 66insert_mappable_node(struct i915_ggtt *ggtt,
4f1959ee
AS
67 struct drm_mm_node *node, u32 size)
68{
69 memset(node, 0, sizeof(*node));
bb6dc8d9
CW
70 return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
71 size, 0, -1,
72 0, ggtt->mappable_end,
4f1959ee
AS
73 DRM_MM_SEARCH_DEFAULT,
74 DRM_MM_CREATE_DEFAULT);
75}
76
77static void
78remove_mappable_node(struct drm_mm_node *node)
79{
80 drm_mm_remove_node(node);
81}
82
73aa808f
CW
83/* some bookkeeping */
84static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
3ef7f228 85 u64 size)
73aa808f 86{
c20e8355 87 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
88 dev_priv->mm.object_count++;
89 dev_priv->mm.object_memory += size;
c20e8355 90 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
91}
92
93static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
3ef7f228 94 u64 size)
73aa808f 95{
c20e8355 96 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
97 dev_priv->mm.object_count--;
98 dev_priv->mm.object_memory -= size;
c20e8355 99 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
100}
101
21dd3734 102static int
33196ded 103i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 104{
30dbf0c0
CW
105 int ret;
106
4c7d62c6
CW
107 might_sleep();
108
d98c52cf 109 if (!i915_reset_in_progress(error))
30dbf0c0
CW
110 return 0;
111
0a6759c6
DV
112 /*
113 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
114 * userspace. If it takes that long something really bad is going on and
115 * we should simply try to bail out and fail as gracefully as possible.
116 */
1f83fee0 117 ret = wait_event_interruptible_timeout(error->reset_queue,
d98c52cf 118 !i915_reset_in_progress(error),
b52992c0 119 I915_RESET_TIMEOUT);
0a6759c6
DV
120 if (ret == 0) {
121 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
122 return -EIO;
123 } else if (ret < 0) {
30dbf0c0 124 return ret;
d98c52cf
CW
125 } else {
126 return 0;
0a6759c6 127 }
30dbf0c0
CW
128}
129
54cf91dc 130int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 131{
fac5e23e 132 struct drm_i915_private *dev_priv = to_i915(dev);
76c1dec1
CW
133 int ret;
134
33196ded 135 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
136 if (ret)
137 return ret;
138
139 ret = mutex_lock_interruptible(&dev->struct_mutex);
140 if (ret)
141 return ret;
142
76c1dec1
CW
143 return 0;
144}
30dbf0c0 145
5a125c3c
EA
146int
147i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 148 struct drm_file *file)
5a125c3c 149{
72e96d64 150 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 151 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 152 struct drm_i915_gem_get_aperture *args = data;
ca1543be 153 struct i915_vma *vma;
6299f992 154 size_t pinned;
5a125c3c 155
6299f992 156 pinned = 0;
73aa808f 157 mutex_lock(&dev->struct_mutex);
1c7f4bca 158 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
20dfbde4 159 if (i915_vma_is_pinned(vma))
ca1543be 160 pinned += vma->node.size;
1c7f4bca 161 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
20dfbde4 162 if (i915_vma_is_pinned(vma))
ca1543be 163 pinned += vma->node.size;
73aa808f 164 mutex_unlock(&dev->struct_mutex);
5a125c3c 165
72e96d64 166 args->aper_size = ggtt->base.total;
0206e353 167 args->aper_available_size = args->aper_size - pinned;
6299f992 168
5a125c3c
EA
169 return 0;
170}
171
03ac84f1 172static struct sg_table *
6a2c4232 173i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 174{
93c76a3d 175 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232
CW
176 char *vaddr = obj->phys_handle->vaddr;
177 struct sg_table *st;
178 struct scatterlist *sg;
179 int i;
00731155 180
6a2c4232 181 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
03ac84f1 182 return ERR_PTR(-EINVAL);
6a2c4232
CW
183
184 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
185 struct page *page;
186 char *src;
187
188 page = shmem_read_mapping_page(mapping, i);
189 if (IS_ERR(page))
03ac84f1 190 return ERR_CAST(page);
6a2c4232
CW
191
192 src = kmap_atomic(page);
193 memcpy(vaddr, src, PAGE_SIZE);
194 drm_clflush_virt_range(vaddr, PAGE_SIZE);
195 kunmap_atomic(src);
196
09cbfeaf 197 put_page(page);
6a2c4232
CW
198 vaddr += PAGE_SIZE;
199 }
200
c033666a 201 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
202
203 st = kmalloc(sizeof(*st), GFP_KERNEL);
204 if (st == NULL)
03ac84f1 205 return ERR_PTR(-ENOMEM);
6a2c4232
CW
206
207 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
208 kfree(st);
03ac84f1 209 return ERR_PTR(-ENOMEM);
6a2c4232
CW
210 }
211
212 sg = st->sgl;
213 sg->offset = 0;
214 sg->length = obj->base.size;
00731155 215
6a2c4232
CW
216 sg_dma_address(sg) = obj->phys_handle->busaddr;
217 sg_dma_len(sg) = obj->base.size;
218
03ac84f1 219 return st;
6a2c4232
CW
220}
221
222static void
03ac84f1 223__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj)
6a2c4232 224{
a4f5ea64 225 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
00731155 226
a4f5ea64
CW
227 if (obj->mm.madv == I915_MADV_DONTNEED)
228 obj->mm.dirty = false;
6a2c4232 229
03ac84f1
CW
230 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
231 i915_gem_clflush_object(obj, false);
232
233 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
234 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
235}
236
237static void
238i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
239 struct sg_table *pages)
240{
241 __i915_gem_object_release_shmem(obj);
242
a4f5ea64 243 if (obj->mm.dirty) {
93c76a3d 244 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232 245 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
246 int i;
247
248 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
249 struct page *page;
250 char *dst;
251
252 page = shmem_read_mapping_page(mapping, i);
253 if (IS_ERR(page))
254 continue;
255
256 dst = kmap_atomic(page);
257 drm_clflush_virt_range(vaddr, PAGE_SIZE);
258 memcpy(dst, vaddr, PAGE_SIZE);
259 kunmap_atomic(dst);
260
261 set_page_dirty(page);
a4f5ea64 262 if (obj->mm.madv == I915_MADV_WILLNEED)
00731155 263 mark_page_accessed(page);
09cbfeaf 264 put_page(page);
00731155
CW
265 vaddr += PAGE_SIZE;
266 }
a4f5ea64 267 obj->mm.dirty = false;
00731155
CW
268 }
269
03ac84f1
CW
270 sg_free_table(pages);
271 kfree(pages);
6a2c4232
CW
272}
273
274static void
275i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
276{
277 drm_pci_free(obj->base.dev, obj->phys_handle);
a4f5ea64 278 i915_gem_object_unpin_pages(obj);
6a2c4232
CW
279}
280
281static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
282 .get_pages = i915_gem_object_get_pages_phys,
283 .put_pages = i915_gem_object_put_pages_phys,
284 .release = i915_gem_object_release_phys,
285};
286
35a9611c 287int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
aa653a68
CW
288{
289 struct i915_vma *vma;
290 LIST_HEAD(still_in_list);
02bef8f9
CW
291 int ret;
292
293 lockdep_assert_held(&obj->base.dev->struct_mutex);
aa653a68 294
02bef8f9
CW
295 /* Closed vma are removed from the obj->vma_list - but they may
296 * still have an active binding on the object. To remove those we
297 * must wait for all rendering to complete to the object (as unbinding
298 * must anyway), and retire the requests.
aa653a68 299 */
e95433c7
CW
300 ret = i915_gem_object_wait(obj,
301 I915_WAIT_INTERRUPTIBLE |
302 I915_WAIT_LOCKED |
303 I915_WAIT_ALL,
304 MAX_SCHEDULE_TIMEOUT,
305 NULL);
02bef8f9
CW
306 if (ret)
307 return ret;
308
309 i915_gem_retire_requests(to_i915(obj->base.dev));
310
aa653a68
CW
311 while ((vma = list_first_entry_or_null(&obj->vma_list,
312 struct i915_vma,
313 obj_link))) {
314 list_move_tail(&vma->obj_link, &still_in_list);
315 ret = i915_vma_unbind(vma);
316 if (ret)
317 break;
318 }
319 list_splice(&still_in_list, &obj->vma_list);
320
321 return ret;
322}
323
e95433c7
CW
324static long
325i915_gem_object_wait_fence(struct dma_fence *fence,
326 unsigned int flags,
327 long timeout,
328 struct intel_rps_client *rps)
00e60f26 329{
e95433c7 330 struct drm_i915_gem_request *rq;
00e60f26 331
e95433c7 332 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
00e60f26 333
e95433c7
CW
334 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
335 return timeout;
336
337 if (!dma_fence_is_i915(fence))
338 return dma_fence_wait_timeout(fence,
339 flags & I915_WAIT_INTERRUPTIBLE,
340 timeout);
341
342 rq = to_request(fence);
343 if (i915_gem_request_completed(rq))
344 goto out;
345
346 /* This client is about to stall waiting for the GPU. In many cases
347 * this is undesirable and limits the throughput of the system, as
348 * many clients cannot continue processing user input/output whilst
349 * blocked. RPS autotuning may take tens of milliseconds to respond
350 * to the GPU load and thus incurs additional latency for the client.
351 * We can circumvent that by promoting the GPU frequency to maximum
352 * before we wait. This makes the GPU throttle up much more quickly
353 * (good for benchmarks and user experience, e.g. window animations),
354 * but at a cost of spending more power processing the workload
355 * (bad for battery). Not all clients even want their results
356 * immediately and for them we should just let the GPU select its own
357 * frequency to maximise efficiency. To prevent a single client from
358 * forcing the clocks too high for the whole system, we only allow
359 * each client to waitboost once in a busy period.
360 */
361 if (rps) {
362 if (INTEL_GEN(rq->i915) >= 6)
363 gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
364 else
365 rps = NULL;
00e60f26
CW
366 }
367
e95433c7
CW
368 timeout = i915_wait_request(rq, flags, timeout);
369
370out:
371 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
372 i915_gem_request_retire_upto(rq);
373
cb399eab 374 if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
e95433c7
CW
375 /* The GPU is now idle and this client has stalled.
376 * Since no other client has submitted a request in the
377 * meantime, assume that this client is the only one
378 * supplying work to the GPU but is unable to keep that
379 * work supplied because it is waiting. Since the GPU is
380 * then never kept fully busy, RPS autoclocking will
381 * keep the clocks relatively low, causing further delays.
382 * Compensate by giving the synchronous client credit for
383 * a waitboost next time.
384 */
385 spin_lock(&rq->i915->rps.client_lock);
386 list_del_init(&rps->link);
387 spin_unlock(&rq->i915->rps.client_lock);
388 }
389
390 return timeout;
391}
392
393static long
394i915_gem_object_wait_reservation(struct reservation_object *resv,
395 unsigned int flags,
396 long timeout,
397 struct intel_rps_client *rps)
398{
399 struct dma_fence *excl;
400
401 if (flags & I915_WAIT_ALL) {
402 struct dma_fence **shared;
403 unsigned int count, i;
00e60f26
CW
404 int ret;
405
e95433c7
CW
406 ret = reservation_object_get_fences_rcu(resv,
407 &excl, &count, &shared);
00e60f26
CW
408 if (ret)
409 return ret;
00e60f26 410
e95433c7
CW
411 for (i = 0; i < count; i++) {
412 timeout = i915_gem_object_wait_fence(shared[i],
413 flags, timeout,
414 rps);
415 if (timeout <= 0)
416 break;
00e60f26 417
e95433c7
CW
418 dma_fence_put(shared[i]);
419 }
420
421 for (; i < count; i++)
422 dma_fence_put(shared[i]);
423 kfree(shared);
424 } else {
425 excl = reservation_object_get_excl_rcu(resv);
00e60f26
CW
426 }
427
e95433c7
CW
428 if (excl && timeout > 0)
429 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
430
431 dma_fence_put(excl);
432
433 return timeout;
00e60f26
CW
434}
435
e95433c7
CW
436/**
437 * Waits for rendering to the object to be completed
438 * @obj: i915 gem object
439 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
440 * @timeout: how long to wait
441 * @rps: client (user process) to charge for any waitboosting
00e60f26 442 */
e95433c7
CW
443int
444i915_gem_object_wait(struct drm_i915_gem_object *obj,
445 unsigned int flags,
446 long timeout,
447 struct intel_rps_client *rps)
00e60f26 448{
e95433c7
CW
449 might_sleep();
450#if IS_ENABLED(CONFIG_LOCKDEP)
451 GEM_BUG_ON(debug_locks &&
452 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
453 !!(flags & I915_WAIT_LOCKED));
454#endif
455 GEM_BUG_ON(timeout < 0);
00e60f26 456
d07f0e59
CW
457 timeout = i915_gem_object_wait_reservation(obj->resv,
458 flags, timeout,
459 rps);
e95433c7 460 return timeout < 0 ? timeout : 0;
00e60f26
CW
461}
462
463static struct intel_rps_client *to_rps_client(struct drm_file *file)
464{
465 struct drm_i915_file_private *fpriv = file->driver_priv;
466
467 return &fpriv->rps;
468}
469
00731155
CW
470int
471i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
472 int align)
473{
474 drm_dma_handle_t *phys;
6a2c4232 475 int ret;
00731155
CW
476
477 if (obj->phys_handle) {
478 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
479 return -EBUSY;
480
481 return 0;
482 }
483
a4f5ea64 484 if (obj->mm.madv != I915_MADV_WILLNEED)
00731155
CW
485 return -EFAULT;
486
487 if (obj->base.filp == NULL)
488 return -EINVAL;
489
4717ca9e
CW
490 ret = i915_gem_object_unbind(obj);
491 if (ret)
492 return ret;
493
548625ee 494 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
03ac84f1
CW
495 if (obj->mm.pages)
496 return -EBUSY;
6a2c4232 497
00731155
CW
498 /* create a new object */
499 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
500 if (!phys)
501 return -ENOMEM;
502
00731155 503 obj->phys_handle = phys;
6a2c4232
CW
504 obj->ops = &i915_gem_phys_ops;
505
a4f5ea64 506 return i915_gem_object_pin_pages(obj);
00731155
CW
507}
508
509static int
510i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
511 struct drm_i915_gem_pwrite *args,
03ac84f1 512 struct drm_file *file)
00731155
CW
513{
514 struct drm_device *dev = obj->base.dev;
515 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 516 char __user *user_data = u64_to_user_ptr(args->data_ptr);
e95433c7 517 int ret;
6a2c4232
CW
518
519 /* We manually control the domain here and pretend that it
520 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
521 */
e95433c7
CW
522 lockdep_assert_held(&obj->base.dev->struct_mutex);
523 ret = i915_gem_object_wait(obj,
524 I915_WAIT_INTERRUPTIBLE |
525 I915_WAIT_LOCKED |
526 I915_WAIT_ALL,
527 MAX_SCHEDULE_TIMEOUT,
03ac84f1 528 to_rps_client(file));
6a2c4232
CW
529 if (ret)
530 return ret;
00731155 531
77a0d1ca 532 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
533 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
534 unsigned long unwritten;
535
536 /* The physical object once assigned is fixed for the lifetime
537 * of the obj, so we can safely drop the lock and continue
538 * to access vaddr.
539 */
540 mutex_unlock(&dev->struct_mutex);
541 unwritten = copy_from_user(vaddr, user_data, args->size);
542 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
543 if (unwritten) {
544 ret = -EFAULT;
545 goto out;
546 }
00731155
CW
547 }
548
6a2c4232 549 drm_clflush_virt_range(vaddr, args->size);
c033666a 550 i915_gem_chipset_flush(to_i915(dev));
063e4e6b
PZ
551
552out:
de152b62 553 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 554 return ret;
00731155
CW
555}
556
42dcedd4
CW
557void *i915_gem_object_alloc(struct drm_device *dev)
558{
fac5e23e 559 struct drm_i915_private *dev_priv = to_i915(dev);
efab6d8d 560 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
561}
562
563void i915_gem_object_free(struct drm_i915_gem_object *obj)
564{
fac5e23e 565 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
efab6d8d 566 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
567}
568
ff72145b
DA
569static int
570i915_gem_create(struct drm_file *file,
571 struct drm_device *dev,
572 uint64_t size,
573 uint32_t *handle_p)
673a394b 574{
05394f39 575 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
576 int ret;
577 u32 handle;
673a394b 578
ff72145b 579 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
580 if (size == 0)
581 return -EINVAL;
673a394b
EA
582
583 /* Allocate the new object */
d37cd8a8 584 obj = i915_gem_object_create(dev, size);
fe3db79b
CW
585 if (IS_ERR(obj))
586 return PTR_ERR(obj);
673a394b 587
05394f39 588 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 589 /* drop reference from allocate - handle holds it now */
f0cd5182 590 i915_gem_object_put(obj);
d861e338
DV
591 if (ret)
592 return ret;
202f2fef 593
ff72145b 594 *handle_p = handle;
673a394b
EA
595 return 0;
596}
597
ff72145b
DA
598int
599i915_gem_dumb_create(struct drm_file *file,
600 struct drm_device *dev,
601 struct drm_mode_create_dumb *args)
602{
603 /* have to work out size/pitch and return them */
de45eaf7 604 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
605 args->size = args->pitch * args->height;
606 return i915_gem_create(file, dev,
da6b51d0 607 args->size, &args->handle);
ff72145b
DA
608}
609
ff72145b
DA
610/**
611 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
612 * @dev: drm device pointer
613 * @data: ioctl data blob
614 * @file: drm file pointer
ff72145b
DA
615 */
616int
617i915_gem_create_ioctl(struct drm_device *dev, void *data,
618 struct drm_file *file)
619{
620 struct drm_i915_gem_create *args = data;
63ed2cb2 621
fbbd37b3
CW
622 i915_gem_flush_free_objects(to_i915(dev));
623
ff72145b 624 return i915_gem_create(file, dev,
da6b51d0 625 args->size, &args->handle);
ff72145b
DA
626}
627
8461d226
DV
628static inline int
629__copy_to_user_swizzled(char __user *cpu_vaddr,
630 const char *gpu_vaddr, int gpu_offset,
631 int length)
632{
633 int ret, cpu_offset = 0;
634
635 while (length > 0) {
636 int cacheline_end = ALIGN(gpu_offset + 1, 64);
637 int this_length = min(cacheline_end - gpu_offset, length);
638 int swizzled_gpu_offset = gpu_offset ^ 64;
639
640 ret = __copy_to_user(cpu_vaddr + cpu_offset,
641 gpu_vaddr + swizzled_gpu_offset,
642 this_length);
643 if (ret)
644 return ret + length;
645
646 cpu_offset += this_length;
647 gpu_offset += this_length;
648 length -= this_length;
649 }
650
651 return 0;
652}
653
8c59967c 654static inline int
4f0c7cfb
BW
655__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
656 const char __user *cpu_vaddr,
8c59967c
DV
657 int length)
658{
659 int ret, cpu_offset = 0;
660
661 while (length > 0) {
662 int cacheline_end = ALIGN(gpu_offset + 1, 64);
663 int this_length = min(cacheline_end - gpu_offset, length);
664 int swizzled_gpu_offset = gpu_offset ^ 64;
665
666 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
667 cpu_vaddr + cpu_offset,
668 this_length);
669 if (ret)
670 return ret + length;
671
672 cpu_offset += this_length;
673 gpu_offset += this_length;
674 length -= this_length;
675 }
676
677 return 0;
678}
679
4c914c0c
BV
680/*
681 * Pins the specified object's pages and synchronizes the object with
682 * GPU accesses. Sets needs_clflush to non-zero if the caller should
683 * flush the object from the CPU cache.
684 */
685int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
43394c7d 686 unsigned int *needs_clflush)
4c914c0c
BV
687{
688 int ret;
689
e95433c7 690 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c914c0c 691
e95433c7 692 *needs_clflush = 0;
43394c7d
CW
693 if (!i915_gem_object_has_struct_page(obj))
694 return -ENODEV;
4c914c0c 695
e95433c7
CW
696 ret = i915_gem_object_wait(obj,
697 I915_WAIT_INTERRUPTIBLE |
698 I915_WAIT_LOCKED,
699 MAX_SCHEDULE_TIMEOUT,
700 NULL);
c13d87ea
CW
701 if (ret)
702 return ret;
703
a4f5ea64 704 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
705 if (ret)
706 return ret;
707
a314d5cb
CW
708 i915_gem_object_flush_gtt_write_domain(obj);
709
43394c7d
CW
710 /* If we're not in the cpu read domain, set ourself into the gtt
711 * read domain and manually flush cachelines (if required). This
712 * optimizes for the case when the gpu will dirty the data
713 * anyway again before the next pread happens.
714 */
715 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
4c914c0c
BV
716 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
717 obj->cache_level);
43394c7d 718
43394c7d
CW
719 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
720 ret = i915_gem_object_set_to_cpu_domain(obj, false);
9764951e
CW
721 if (ret)
722 goto err_unpin;
723
43394c7d 724 *needs_clflush = 0;
4c914c0c
BV
725 }
726
9764951e 727 /* return with the pages pinned */
43394c7d 728 return 0;
9764951e
CW
729
730err_unpin:
731 i915_gem_object_unpin_pages(obj);
732 return ret;
43394c7d
CW
733}
734
735int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
736 unsigned int *needs_clflush)
737{
738 int ret;
739
e95433c7
CW
740 lockdep_assert_held(&obj->base.dev->struct_mutex);
741
43394c7d
CW
742 *needs_clflush = 0;
743 if (!i915_gem_object_has_struct_page(obj))
744 return -ENODEV;
745
e95433c7
CW
746 ret = i915_gem_object_wait(obj,
747 I915_WAIT_INTERRUPTIBLE |
748 I915_WAIT_LOCKED |
749 I915_WAIT_ALL,
750 MAX_SCHEDULE_TIMEOUT,
751 NULL);
43394c7d
CW
752 if (ret)
753 return ret;
754
a4f5ea64 755 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
756 if (ret)
757 return ret;
758
a314d5cb
CW
759 i915_gem_object_flush_gtt_write_domain(obj);
760
43394c7d
CW
761 /* If we're not in the cpu write domain, set ourself into the
762 * gtt write domain and manually flush cachelines (as required).
763 * This optimizes for the case when the gpu will use the data
764 * right away and we therefore have to clflush anyway.
765 */
766 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
767 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
768
769 /* Same trick applies to invalidate partially written cachelines read
770 * before writing.
771 */
772 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
773 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
774 obj->cache_level);
775
43394c7d
CW
776 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
777 ret = i915_gem_object_set_to_cpu_domain(obj, true);
9764951e
CW
778 if (ret)
779 goto err_unpin;
780
43394c7d
CW
781 *needs_clflush = 0;
782 }
783
784 if ((*needs_clflush & CLFLUSH_AFTER) == 0)
785 obj->cache_dirty = true;
786
787 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
a4f5ea64 788 obj->mm.dirty = true;
9764951e 789 /* return with the pages pinned */
43394c7d 790 return 0;
9764951e
CW
791
792err_unpin:
793 i915_gem_object_unpin_pages(obj);
794 return ret;
4c914c0c
BV
795}
796
23c18c71
DV
797static void
798shmem_clflush_swizzled_range(char *addr, unsigned long length,
799 bool swizzled)
800{
e7e58eb5 801 if (unlikely(swizzled)) {
23c18c71
DV
802 unsigned long start = (unsigned long) addr;
803 unsigned long end = (unsigned long) addr + length;
804
805 /* For swizzling simply ensure that we always flush both
806 * channels. Lame, but simple and it works. Swizzled
807 * pwrite/pread is far from a hotpath - current userspace
808 * doesn't use it at all. */
809 start = round_down(start, 128);
810 end = round_up(end, 128);
811
812 drm_clflush_virt_range((void *)start, end - start);
813 } else {
814 drm_clflush_virt_range(addr, length);
815 }
816
817}
818
d174bd64
DV
819/* Only difference to the fast-path function is that this can handle bit17
820 * and uses non-atomic copy and kmap functions. */
821static int
bb6dc8d9 822shmem_pread_slow(struct page *page, int offset, int length,
d174bd64
DV
823 char __user *user_data,
824 bool page_do_bit17_swizzling, bool needs_clflush)
825{
826 char *vaddr;
827 int ret;
828
829 vaddr = kmap(page);
830 if (needs_clflush)
bb6dc8d9 831 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 832 page_do_bit17_swizzling);
d174bd64
DV
833
834 if (page_do_bit17_swizzling)
bb6dc8d9 835 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
d174bd64 836 else
bb6dc8d9 837 ret = __copy_to_user(user_data, vaddr + offset, length);
d174bd64
DV
838 kunmap(page);
839
f60d7f0c 840 return ret ? - EFAULT : 0;
d174bd64
DV
841}
842
bb6dc8d9
CW
843static int
844shmem_pread(struct page *page, int offset, int length, char __user *user_data,
845 bool page_do_bit17_swizzling, bool needs_clflush)
846{
847 int ret;
848
849 ret = -ENODEV;
850 if (!page_do_bit17_swizzling) {
851 char *vaddr = kmap_atomic(page);
852
853 if (needs_clflush)
854 drm_clflush_virt_range(vaddr + offset, length);
855 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
856 kunmap_atomic(vaddr);
857 }
858 if (ret == 0)
859 return 0;
860
861 return shmem_pread_slow(page, offset, length, user_data,
862 page_do_bit17_swizzling, needs_clflush);
863}
864
865static int
866i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
867 struct drm_i915_gem_pread *args)
868{
869 char __user *user_data;
870 u64 remain;
871 unsigned int obj_do_bit17_swizzling;
872 unsigned int needs_clflush;
873 unsigned int idx, offset;
874 int ret;
875
876 obj_do_bit17_swizzling = 0;
877 if (i915_gem_object_needs_bit17_swizzle(obj))
878 obj_do_bit17_swizzling = BIT(17);
879
880 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
881 if (ret)
882 return ret;
883
884 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
885 mutex_unlock(&obj->base.dev->struct_mutex);
886 if (ret)
887 return ret;
888
889 remain = args->size;
890 user_data = u64_to_user_ptr(args->data_ptr);
891 offset = offset_in_page(args->offset);
892 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
893 struct page *page = i915_gem_object_get_page(obj, idx);
894 int length;
895
896 length = remain;
897 if (offset + length > PAGE_SIZE)
898 length = PAGE_SIZE - offset;
899
900 ret = shmem_pread(page, offset, length, user_data,
901 page_to_phys(page) & obj_do_bit17_swizzling,
902 needs_clflush);
903 if (ret)
904 break;
905
906 remain -= length;
907 user_data += length;
908 offset = 0;
909 }
910
911 i915_gem_obj_finish_shmem_access(obj);
912 return ret;
913}
914
915static inline bool
916gtt_user_read(struct io_mapping *mapping,
917 loff_t base, int offset,
918 char __user *user_data, int length)
b50a5371 919{
b50a5371 920 void *vaddr;
bb6dc8d9 921 unsigned long unwritten;
b50a5371 922
b50a5371 923 /* We can use the cpu mem copy function because this is X86. */
bb6dc8d9
CW
924 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
925 unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
926 io_mapping_unmap_atomic(vaddr);
927 if (unwritten) {
928 vaddr = (void __force *)
929 io_mapping_map_wc(mapping, base, PAGE_SIZE);
930 unwritten = copy_to_user(user_data, vaddr + offset, length);
931 io_mapping_unmap(vaddr);
932 }
b50a5371
AS
933 return unwritten;
934}
935
936static int
bb6dc8d9
CW
937i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
938 const struct drm_i915_gem_pread *args)
b50a5371 939{
bb6dc8d9
CW
940 struct drm_i915_private *i915 = to_i915(obj->base.dev);
941 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 942 struct drm_mm_node node;
bb6dc8d9
CW
943 struct i915_vma *vma;
944 void __user *user_data;
945 u64 remain, offset;
b50a5371
AS
946 int ret;
947
bb6dc8d9
CW
948 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
949 if (ret)
950 return ret;
951
952 intel_runtime_pm_get(i915);
953 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
954 PIN_MAPPABLE | PIN_NONBLOCK);
18034584
CW
955 if (!IS_ERR(vma)) {
956 node.start = i915_ggtt_offset(vma);
957 node.allocated = false;
49ef5294 958 ret = i915_vma_put_fence(vma);
18034584
CW
959 if (ret) {
960 i915_vma_unpin(vma);
961 vma = ERR_PTR(ret);
962 }
963 }
058d88c4 964 if (IS_ERR(vma)) {
bb6dc8d9 965 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
b50a5371 966 if (ret)
bb6dc8d9
CW
967 goto out_unlock;
968 GEM_BUG_ON(!node.allocated);
b50a5371
AS
969 }
970
971 ret = i915_gem_object_set_to_gtt_domain(obj, false);
972 if (ret)
973 goto out_unpin;
974
bb6dc8d9 975 mutex_unlock(&i915->drm.struct_mutex);
b50a5371 976
bb6dc8d9
CW
977 user_data = u64_to_user_ptr(args->data_ptr);
978 remain = args->size;
979 offset = args->offset;
b50a5371
AS
980
981 while (remain > 0) {
982 /* Operation in this page
983 *
984 * page_base = page offset within aperture
985 * page_offset = offset within page
986 * page_length = bytes to copy for this page
987 */
988 u32 page_base = node.start;
989 unsigned page_offset = offset_in_page(offset);
990 unsigned page_length = PAGE_SIZE - page_offset;
991 page_length = remain < page_length ? remain : page_length;
992 if (node.allocated) {
993 wmb();
994 ggtt->base.insert_page(&ggtt->base,
995 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
bb6dc8d9 996 node.start, I915_CACHE_NONE, 0);
b50a5371
AS
997 wmb();
998 } else {
999 page_base += offset & PAGE_MASK;
1000 }
bb6dc8d9
CW
1001
1002 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1003 user_data, page_length)) {
b50a5371
AS
1004 ret = -EFAULT;
1005 break;
1006 }
1007
1008 remain -= page_length;
1009 user_data += page_length;
1010 offset += page_length;
1011 }
1012
bb6dc8d9 1013 mutex_lock(&i915->drm.struct_mutex);
b50a5371
AS
1014out_unpin:
1015 if (node.allocated) {
1016 wmb();
1017 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1018 node.start, node.size);
b50a5371
AS
1019 remove_mappable_node(&node);
1020 } else {
058d88c4 1021 i915_vma_unpin(vma);
b50a5371 1022 }
bb6dc8d9
CW
1023out_unlock:
1024 intel_runtime_pm_put(i915);
1025 mutex_unlock(&i915->drm.struct_mutex);
f60d7f0c 1026
eb01459f
EA
1027 return ret;
1028}
1029
673a394b
EA
1030/**
1031 * Reads data from the object referenced by handle.
14bb2c11
TU
1032 * @dev: drm device pointer
1033 * @data: ioctl data blob
1034 * @file: drm file pointer
673a394b
EA
1035 *
1036 * On error, the contents of *data are undefined.
1037 */
1038int
1039i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 1040 struct drm_file *file)
673a394b
EA
1041{
1042 struct drm_i915_gem_pread *args = data;
05394f39 1043 struct drm_i915_gem_object *obj;
bb6dc8d9 1044 int ret;
673a394b 1045
51311d0a
CW
1046 if (args->size == 0)
1047 return 0;
1048
1049 if (!access_ok(VERIFY_WRITE,
3ed605bc 1050 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1051 args->size))
1052 return -EFAULT;
1053
03ac0642 1054 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1055 if (!obj)
1056 return -ENOENT;
673a394b 1057
7dcd2499 1058 /* Bounds check source. */
05394f39
CW
1059 if (args->offset > obj->base.size ||
1060 args->size > obj->base.size - args->offset) {
ce9d419d 1061 ret = -EINVAL;
bb6dc8d9 1062 goto out;
ce9d419d
CW
1063 }
1064
db53a302
CW
1065 trace_i915_gem_object_pread(obj, args->offset, args->size);
1066
e95433c7
CW
1067 ret = i915_gem_object_wait(obj,
1068 I915_WAIT_INTERRUPTIBLE,
1069 MAX_SCHEDULE_TIMEOUT,
1070 to_rps_client(file));
258a5ede 1071 if (ret)
bb6dc8d9 1072 goto out;
258a5ede 1073
bb6dc8d9 1074 ret = i915_gem_object_pin_pages(obj);
258a5ede 1075 if (ret)
bb6dc8d9 1076 goto out;
673a394b 1077
bb6dc8d9 1078 ret = i915_gem_shmem_pread(obj, args);
9c870d03 1079 if (ret == -EFAULT || ret == -ENODEV)
bb6dc8d9 1080 ret = i915_gem_gtt_pread(obj, args);
b50a5371 1081
bb6dc8d9
CW
1082 i915_gem_object_unpin_pages(obj);
1083out:
f0cd5182 1084 i915_gem_object_put(obj);
eb01459f 1085 return ret;
673a394b
EA
1086}
1087
0839ccb8
KP
1088/* This is the fast write path which cannot handle
1089 * page faults in the source data
9b7530cc 1090 */
0839ccb8 1091
fe115628
CW
1092static inline bool
1093ggtt_write(struct io_mapping *mapping,
1094 loff_t base, int offset,
1095 char __user *user_data, int length)
9b7530cc 1096{
4f0c7cfb 1097 void *vaddr;
0839ccb8 1098 unsigned long unwritten;
9b7530cc 1099
4f0c7cfb 1100 /* We can use the cpu mem copy function because this is X86. */
fe115628
CW
1101 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1102 unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
0839ccb8 1103 user_data, length);
fe115628
CW
1104 io_mapping_unmap_atomic(vaddr);
1105 if (unwritten) {
1106 vaddr = (void __force *)
1107 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1108 unwritten = copy_from_user(vaddr + offset, user_data, length);
1109 io_mapping_unmap(vaddr);
1110 }
bb6dc8d9 1111
bb6dc8d9
CW
1112 return unwritten;
1113}
1114
3de09aa3
EA
1115/**
1116 * This is the fast pwrite path, where we copy the data directly from the
1117 * user into the GTT, uncached.
fe115628 1118 * @obj: i915 GEM object
14bb2c11 1119 * @args: pwrite arguments structure
3de09aa3 1120 */
673a394b 1121static int
fe115628
CW
1122i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1123 const struct drm_i915_gem_pwrite *args)
673a394b 1124{
fe115628 1125 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4f1959ee
AS
1126 struct i915_ggtt *ggtt = &i915->ggtt;
1127 struct drm_mm_node node;
fe115628
CW
1128 struct i915_vma *vma;
1129 u64 remain, offset;
1130 void __user *user_data;
4f1959ee 1131 int ret;
b50a5371 1132
fe115628
CW
1133 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1134 if (ret)
1135 return ret;
935aaa69 1136
9c870d03 1137 intel_runtime_pm_get(i915);
058d88c4 1138 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
de895082 1139 PIN_MAPPABLE | PIN_NONBLOCK);
18034584
CW
1140 if (!IS_ERR(vma)) {
1141 node.start = i915_ggtt_offset(vma);
1142 node.allocated = false;
49ef5294 1143 ret = i915_vma_put_fence(vma);
18034584
CW
1144 if (ret) {
1145 i915_vma_unpin(vma);
1146 vma = ERR_PTR(ret);
1147 }
1148 }
058d88c4 1149 if (IS_ERR(vma)) {
bb6dc8d9 1150 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
4f1959ee 1151 if (ret)
fe115628
CW
1152 goto out_unlock;
1153 GEM_BUG_ON(!node.allocated);
4f1959ee 1154 }
935aaa69
DV
1155
1156 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1157 if (ret)
1158 goto out_unpin;
1159
fe115628
CW
1160 mutex_unlock(&i915->drm.struct_mutex);
1161
b19482d7 1162 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 1163
4f1959ee
AS
1164 user_data = u64_to_user_ptr(args->data_ptr);
1165 offset = args->offset;
1166 remain = args->size;
1167 while (remain) {
673a394b
EA
1168 /* Operation in this page
1169 *
0839ccb8
KP
1170 * page_base = page offset within aperture
1171 * page_offset = offset within page
1172 * page_length = bytes to copy for this page
673a394b 1173 */
4f1959ee 1174 u32 page_base = node.start;
bb6dc8d9
CW
1175 unsigned int page_offset = offset_in_page(offset);
1176 unsigned int page_length = PAGE_SIZE - page_offset;
4f1959ee
AS
1177 page_length = remain < page_length ? remain : page_length;
1178 if (node.allocated) {
1179 wmb(); /* flush the write before we modify the GGTT */
1180 ggtt->base.insert_page(&ggtt->base,
1181 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1182 node.start, I915_CACHE_NONE, 0);
1183 wmb(); /* flush modifications to the GGTT (insert_page) */
1184 } else {
1185 page_base += offset & PAGE_MASK;
1186 }
0839ccb8 1187 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
1188 * source page isn't available. Return the error and we'll
1189 * retry in the slow path.
b50a5371
AS
1190 * If the object is non-shmem backed, we retry again with the
1191 * path that handles page fault.
0839ccb8 1192 */
fe115628
CW
1193 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1194 user_data, page_length)) {
1195 ret = -EFAULT;
1196 break;
935aaa69 1197 }
673a394b 1198
0839ccb8
KP
1199 remain -= page_length;
1200 user_data += page_length;
1201 offset += page_length;
673a394b 1202 }
b19482d7 1203 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
fe115628
CW
1204
1205 mutex_lock(&i915->drm.struct_mutex);
935aaa69 1206out_unpin:
4f1959ee
AS
1207 if (node.allocated) {
1208 wmb();
1209 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1210 node.start, node.size);
4f1959ee
AS
1211 remove_mappable_node(&node);
1212 } else {
058d88c4 1213 i915_vma_unpin(vma);
4f1959ee 1214 }
fe115628 1215out_unlock:
9c870d03 1216 intel_runtime_pm_put(i915);
fe115628 1217 mutex_unlock(&i915->drm.struct_mutex);
3de09aa3 1218 return ret;
673a394b
EA
1219}
1220
3043c60c 1221static int
fe115628 1222shmem_pwrite_slow(struct page *page, int offset, int length,
d174bd64
DV
1223 char __user *user_data,
1224 bool page_do_bit17_swizzling,
1225 bool needs_clflush_before,
1226 bool needs_clflush_after)
673a394b 1227{
d174bd64
DV
1228 char *vaddr;
1229 int ret;
e5281ccd 1230
d174bd64 1231 vaddr = kmap(page);
e7e58eb5 1232 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
fe115628 1233 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1234 page_do_bit17_swizzling);
d174bd64 1235 if (page_do_bit17_swizzling)
fe115628
CW
1236 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1237 length);
d174bd64 1238 else
fe115628 1239 ret = __copy_from_user(vaddr + offset, user_data, length);
d174bd64 1240 if (needs_clflush_after)
fe115628 1241 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1242 page_do_bit17_swizzling);
d174bd64 1243 kunmap(page);
40123c1f 1244
755d2218 1245 return ret ? -EFAULT : 0;
40123c1f
EA
1246}
1247
fe115628
CW
1248/* Per-page copy function for the shmem pwrite fastpath.
1249 * Flushes invalid cachelines before writing to the target if
1250 * needs_clflush_before is set and flushes out any written cachelines after
1251 * writing if needs_clflush is set.
1252 */
40123c1f 1253static int
fe115628
CW
1254shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1255 bool page_do_bit17_swizzling,
1256 bool needs_clflush_before,
1257 bool needs_clflush_after)
40123c1f 1258{
fe115628
CW
1259 int ret;
1260
1261 ret = -ENODEV;
1262 if (!page_do_bit17_swizzling) {
1263 char *vaddr = kmap_atomic(page);
1264
1265 if (needs_clflush_before)
1266 drm_clflush_virt_range(vaddr + offset, len);
1267 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1268 if (needs_clflush_after)
1269 drm_clflush_virt_range(vaddr + offset, len);
1270
1271 kunmap_atomic(vaddr);
1272 }
1273 if (ret == 0)
1274 return ret;
1275
1276 return shmem_pwrite_slow(page, offset, len, user_data,
1277 page_do_bit17_swizzling,
1278 needs_clflush_before,
1279 needs_clflush_after);
1280}
1281
1282static int
1283i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1284 const struct drm_i915_gem_pwrite *args)
1285{
1286 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1287 void __user *user_data;
1288 u64 remain;
1289 unsigned int obj_do_bit17_swizzling;
1290 unsigned int partial_cacheline_write;
43394c7d 1291 unsigned int needs_clflush;
fe115628
CW
1292 unsigned int offset, idx;
1293 int ret;
40123c1f 1294
fe115628 1295 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
755d2218
CW
1296 if (ret)
1297 return ret;
1298
fe115628
CW
1299 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1300 mutex_unlock(&i915->drm.struct_mutex);
1301 if (ret)
1302 return ret;
673a394b 1303
fe115628
CW
1304 obj_do_bit17_swizzling = 0;
1305 if (i915_gem_object_needs_bit17_swizzle(obj))
1306 obj_do_bit17_swizzling = BIT(17);
e5281ccd 1307
fe115628
CW
1308 /* If we don't overwrite a cacheline completely we need to be
1309 * careful to have up-to-date data by first clflushing. Don't
1310 * overcomplicate things and flush the entire patch.
1311 */
1312 partial_cacheline_write = 0;
1313 if (needs_clflush & CLFLUSH_BEFORE)
1314 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
9da3da66 1315
fe115628
CW
1316 user_data = u64_to_user_ptr(args->data_ptr);
1317 remain = args->size;
1318 offset = offset_in_page(args->offset);
1319 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1320 struct page *page = i915_gem_object_get_page(obj, idx);
1321 int length;
40123c1f 1322
fe115628
CW
1323 length = remain;
1324 if (offset + length > PAGE_SIZE)
1325 length = PAGE_SIZE - offset;
755d2218 1326
fe115628
CW
1327 ret = shmem_pwrite(page, offset, length, user_data,
1328 page_to_phys(page) & obj_do_bit17_swizzling,
1329 (offset | length) & partial_cacheline_write,
1330 needs_clflush & CLFLUSH_AFTER);
755d2218 1331 if (ret)
fe115628 1332 break;
755d2218 1333
fe115628
CW
1334 remain -= length;
1335 user_data += length;
1336 offset = 0;
8c59967c 1337 }
673a394b 1338
de152b62 1339 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
fe115628 1340 i915_gem_obj_finish_shmem_access(obj);
40123c1f 1341 return ret;
673a394b
EA
1342}
1343
1344/**
1345 * Writes data to the object referenced by handle.
14bb2c11
TU
1346 * @dev: drm device
1347 * @data: ioctl data blob
1348 * @file: drm file
673a394b
EA
1349 *
1350 * On error, the contents of the buffer that were to be modified are undefined.
1351 */
1352int
1353i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1354 struct drm_file *file)
673a394b
EA
1355{
1356 struct drm_i915_gem_pwrite *args = data;
05394f39 1357 struct drm_i915_gem_object *obj;
51311d0a
CW
1358 int ret;
1359
1360 if (args->size == 0)
1361 return 0;
1362
1363 if (!access_ok(VERIFY_READ,
3ed605bc 1364 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1365 args->size))
1366 return -EFAULT;
1367
03ac0642 1368 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1369 if (!obj)
1370 return -ENOENT;
673a394b 1371
7dcd2499 1372 /* Bounds check destination. */
05394f39
CW
1373 if (args->offset > obj->base.size ||
1374 args->size > obj->base.size - args->offset) {
ce9d419d 1375 ret = -EINVAL;
258a5ede 1376 goto err;
ce9d419d
CW
1377 }
1378
db53a302
CW
1379 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1380
e95433c7
CW
1381 ret = i915_gem_object_wait(obj,
1382 I915_WAIT_INTERRUPTIBLE |
1383 I915_WAIT_ALL,
1384 MAX_SCHEDULE_TIMEOUT,
1385 to_rps_client(file));
258a5ede
CW
1386 if (ret)
1387 goto err;
1388
fe115628 1389 ret = i915_gem_object_pin_pages(obj);
258a5ede 1390 if (ret)
fe115628 1391 goto err;
258a5ede 1392
935aaa69 1393 ret = -EFAULT;
673a394b
EA
1394 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1395 * it would end up going through the fenced access, and we'll get
1396 * different detiling behavior between reading and writing.
1397 * pread/pwrite currently are reading and writing from the CPU
1398 * perspective, requiring manual detiling by the client.
1399 */
6eae0059 1400 if (!i915_gem_object_has_struct_page(obj) ||
9c870d03 1401 cpu_write_needs_clflush(obj))
935aaa69
DV
1402 /* Note that the gtt paths might fail with non-page-backed user
1403 * pointers (e.g. gtt mappings when moving data between
9c870d03
CW
1404 * textures). Fallback to the shmem path in that case.
1405 */
fe115628 1406 ret = i915_gem_gtt_pwrite_fast(obj, args);
673a394b 1407
d1054ee4 1408 if (ret == -EFAULT || ret == -ENOSPC) {
6a2c4232
CW
1409 if (obj->phys_handle)
1410 ret = i915_gem_phys_pwrite(obj, args, file);
b50a5371 1411 else
fe115628 1412 ret = i915_gem_shmem_pwrite(obj, args);
6a2c4232 1413 }
5c0480f2 1414
fe115628 1415 i915_gem_object_unpin_pages(obj);
258a5ede 1416err:
f0cd5182 1417 i915_gem_object_put(obj);
258a5ede 1418 return ret;
673a394b
EA
1419}
1420
d243ad82 1421static inline enum fb_op_origin
aeecc969
CW
1422write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1423{
50349247
CW
1424 return (domain == I915_GEM_DOMAIN_GTT ?
1425 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
aeecc969
CW
1426}
1427
40e62d5d
CW
1428static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1429{
1430 struct drm_i915_private *i915;
1431 struct list_head *list;
1432 struct i915_vma *vma;
1433
1434 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1435 if (!i915_vma_is_ggtt(vma))
1436 continue;
1437
1438 if (i915_vma_is_active(vma))
1439 continue;
1440
1441 if (!drm_mm_node_allocated(&vma->node))
1442 continue;
1443
1444 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1445 }
1446
1447 i915 = to_i915(obj->base.dev);
1448 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
56cea323 1449 list_move_tail(&obj->global_link, list);
40e62d5d
CW
1450}
1451
673a394b 1452/**
2ef7eeaa
EA
1453 * Called when user space prepares to use an object with the CPU, either
1454 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1455 * @dev: drm device
1456 * @data: ioctl data blob
1457 * @file: drm file
673a394b
EA
1458 */
1459int
1460i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1461 struct drm_file *file)
673a394b
EA
1462{
1463 struct drm_i915_gem_set_domain *args = data;
05394f39 1464 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1465 uint32_t read_domains = args->read_domains;
1466 uint32_t write_domain = args->write_domain;
40e62d5d 1467 int err;
673a394b 1468
2ef7eeaa 1469 /* Only handle setting domains to types used by the CPU. */
b8f9096d 1470 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1471 return -EINVAL;
1472
1473 /* Having something in the write domain implies it's in the read
1474 * domain, and only that read domain. Enforce that in the request.
1475 */
1476 if (write_domain != 0 && read_domains != write_domain)
1477 return -EINVAL;
1478
03ac0642 1479 obj = i915_gem_object_lookup(file, args->handle);
b8f9096d
CW
1480 if (!obj)
1481 return -ENOENT;
673a394b 1482
3236f57a
CW
1483 /* Try to flush the object off the GPU without holding the lock.
1484 * We will repeat the flush holding the lock in the normal manner
1485 * to catch cases where we are gazumped.
1486 */
40e62d5d 1487 err = i915_gem_object_wait(obj,
e95433c7
CW
1488 I915_WAIT_INTERRUPTIBLE |
1489 (write_domain ? I915_WAIT_ALL : 0),
1490 MAX_SCHEDULE_TIMEOUT,
1491 to_rps_client(file));
40e62d5d 1492 if (err)
f0cd5182 1493 goto out;
b8f9096d 1494
40e62d5d
CW
1495 /* Flush and acquire obj->pages so that we are coherent through
1496 * direct access in memory with previous cached writes through
1497 * shmemfs and that our cache domain tracking remains valid.
1498 * For example, if the obj->filp was moved to swap without us
1499 * being notified and releasing the pages, we would mistakenly
1500 * continue to assume that the obj remained out of the CPU cached
1501 * domain.
1502 */
1503 err = i915_gem_object_pin_pages(obj);
1504 if (err)
f0cd5182 1505 goto out;
40e62d5d
CW
1506
1507 err = i915_mutex_lock_interruptible(dev);
1508 if (err)
f0cd5182 1509 goto out_unpin;
3236f57a 1510
43566ded 1511 if (read_domains & I915_GEM_DOMAIN_GTT)
40e62d5d 1512 err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1513 else
40e62d5d 1514 err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1515
40e62d5d
CW
1516 /* And bump the LRU for this access */
1517 i915_gem_object_bump_inactive_ggtt(obj);
031b698a 1518
673a394b 1519 mutex_unlock(&dev->struct_mutex);
b8f9096d 1520
40e62d5d
CW
1521 if (write_domain != 0)
1522 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1523
f0cd5182 1524out_unpin:
40e62d5d 1525 i915_gem_object_unpin_pages(obj);
f0cd5182
CW
1526out:
1527 i915_gem_object_put(obj);
40e62d5d 1528 return err;
673a394b
EA
1529}
1530
1531/**
1532 * Called when user space has done writes to this buffer
14bb2c11
TU
1533 * @dev: drm device
1534 * @data: ioctl data blob
1535 * @file: drm file
673a394b
EA
1536 */
1537int
1538i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1539 struct drm_file *file)
673a394b
EA
1540{
1541 struct drm_i915_gem_sw_finish *args = data;
05394f39 1542 struct drm_i915_gem_object *obj;
c21724cc 1543 int err = 0;
1d7cfea1 1544
03ac0642 1545 obj = i915_gem_object_lookup(file, args->handle);
c21724cc
CW
1546 if (!obj)
1547 return -ENOENT;
673a394b 1548
673a394b 1549 /* Pinned buffers may be scanout, so flush the cache */
c21724cc
CW
1550 if (READ_ONCE(obj->pin_display)) {
1551 err = i915_mutex_lock_interruptible(dev);
1552 if (!err) {
1553 i915_gem_object_flush_cpu_write_domain(obj);
1554 mutex_unlock(&dev->struct_mutex);
1555 }
1556 }
e47c68e9 1557
f0cd5182 1558 i915_gem_object_put(obj);
c21724cc 1559 return err;
673a394b
EA
1560}
1561
1562/**
14bb2c11
TU
1563 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1564 * it is mapped to.
1565 * @dev: drm device
1566 * @data: ioctl data blob
1567 * @file: drm file
673a394b
EA
1568 *
1569 * While the mapping holds a reference on the contents of the object, it doesn't
1570 * imply a ref on the object itself.
34367381
DV
1571 *
1572 * IMPORTANT:
1573 *
1574 * DRM driver writers who look a this function as an example for how to do GEM
1575 * mmap support, please don't implement mmap support like here. The modern way
1576 * to implement DRM mmap support is with an mmap offset ioctl (like
1577 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1578 * That way debug tooling like valgrind will understand what's going on, hiding
1579 * the mmap call in a driver private ioctl will break that. The i915 driver only
1580 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1581 */
1582int
1583i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1584 struct drm_file *file)
673a394b
EA
1585{
1586 struct drm_i915_gem_mmap *args = data;
03ac0642 1587 struct drm_i915_gem_object *obj;
673a394b
EA
1588 unsigned long addr;
1589
1816f923
AG
1590 if (args->flags & ~(I915_MMAP_WC))
1591 return -EINVAL;
1592
568a58e5 1593 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1594 return -ENODEV;
1595
03ac0642
CW
1596 obj = i915_gem_object_lookup(file, args->handle);
1597 if (!obj)
bf79cb91 1598 return -ENOENT;
673a394b 1599
1286ff73
DV
1600 /* prime objects have no backing filp to GEM mmap
1601 * pages from.
1602 */
03ac0642 1603 if (!obj->base.filp) {
f0cd5182 1604 i915_gem_object_put(obj);
1286ff73
DV
1605 return -EINVAL;
1606 }
1607
03ac0642 1608 addr = vm_mmap(obj->base.filp, 0, args->size,
673a394b
EA
1609 PROT_READ | PROT_WRITE, MAP_SHARED,
1610 args->offset);
1816f923
AG
1611 if (args->flags & I915_MMAP_WC) {
1612 struct mm_struct *mm = current->mm;
1613 struct vm_area_struct *vma;
1614
80a89a5e 1615 if (down_write_killable(&mm->mmap_sem)) {
f0cd5182 1616 i915_gem_object_put(obj);
80a89a5e
MH
1617 return -EINTR;
1618 }
1816f923
AG
1619 vma = find_vma(mm, addr);
1620 if (vma)
1621 vma->vm_page_prot =
1622 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1623 else
1624 addr = -ENOMEM;
1625 up_write(&mm->mmap_sem);
aeecc969
CW
1626
1627 /* This may race, but that's ok, it only gets set */
50349247 1628 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1816f923 1629 }
f0cd5182 1630 i915_gem_object_put(obj);
673a394b
EA
1631 if (IS_ERR((void *)addr))
1632 return addr;
1633
1634 args->addr_ptr = (uint64_t) addr;
1635
1636 return 0;
1637}
1638
03af84fe
CW
1639static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1640{
1641 u64 size;
1642
1643 size = i915_gem_object_get_stride(obj);
1644 size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1645
1646 return size >> PAGE_SHIFT;
1647}
1648
4cc69075
CW
1649/**
1650 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1651 *
1652 * A history of the GTT mmap interface:
1653 *
1654 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1655 * aligned and suitable for fencing, and still fit into the available
1656 * mappable space left by the pinned display objects. A classic problem
1657 * we called the page-fault-of-doom where we would ping-pong between
1658 * two objects that could not fit inside the GTT and so the memcpy
1659 * would page one object in at the expense of the other between every
1660 * single byte.
1661 *
1662 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1663 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1664 * object is too large for the available space (or simply too large
1665 * for the mappable aperture!), a view is created instead and faulted
1666 * into userspace. (This view is aligned and sized appropriately for
1667 * fenced access.)
1668 *
1669 * Restrictions:
1670 *
1671 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1672 * hangs on some architectures, corruption on others. An attempt to service
1673 * a GTT page fault from a snoopable object will generate a SIGBUS.
1674 *
1675 * * the object must be able to fit into RAM (physical memory, though no
1676 * limited to the mappable aperture).
1677 *
1678 *
1679 * Caveats:
1680 *
1681 * * a new GTT page fault will synchronize rendering from the GPU and flush
1682 * all data to system memory. Subsequent access will not be synchronized.
1683 *
1684 * * all mappings are revoked on runtime device suspend.
1685 *
1686 * * there are only 8, 16 or 32 fence registers to share between all users
1687 * (older machines require fence register for display and blitter access
1688 * as well). Contention of the fence registers will cause the previous users
1689 * to be unmapped and any new access will generate new page faults.
1690 *
1691 * * running out of memory while servicing a fault may generate a SIGBUS,
1692 * rather than the expected SIGSEGV.
1693 */
1694int i915_gem_mmap_gtt_version(void)
1695{
1696 return 1;
1697}
1698
de151cf6
JB
1699/**
1700 * i915_gem_fault - fault a page into the GTT
058d88c4 1701 * @area: CPU VMA in question
d9072a3e 1702 * @vmf: fault info
de151cf6
JB
1703 *
1704 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1705 * from userspace. The fault handler takes care of binding the object to
1706 * the GTT (if needed), allocating and programming a fence register (again,
1707 * only if needed based on whether the old reg is still valid or the object
1708 * is tiled) and inserting a new PTE into the faulting process.
1709 *
1710 * Note that the faulting process may involve evicting existing objects
1711 * from the GTT and/or fence registers to make room. So performance may
1712 * suffer if the GTT working set is large or there are few fence registers
1713 * left.
4cc69075
CW
1714 *
1715 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1716 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
de151cf6 1717 */
058d88c4 1718int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
de151cf6 1719{
03af84fe 1720#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
058d88c4 1721 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
05394f39 1722 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1723 struct drm_i915_private *dev_priv = to_i915(dev);
1724 struct i915_ggtt *ggtt = &dev_priv->ggtt;
b8f9096d 1725 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
058d88c4 1726 struct i915_vma *vma;
de151cf6 1727 pgoff_t page_offset;
82118877 1728 unsigned int flags;
b8f9096d 1729 int ret;
f65c9168 1730
de151cf6 1731 /* We don't use vmf->pgoff since that has the fake offset */
058d88c4 1732 page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
de151cf6
JB
1733 PAGE_SHIFT;
1734
db53a302
CW
1735 trace_i915_gem_object_fault(obj, page_offset, true, write);
1736
6e4930f6 1737 /* Try to flush the object off the GPU first without holding the lock.
b8f9096d 1738 * Upon acquiring the lock, we will perform our sanity checks and then
6e4930f6
CW
1739 * repeat the flush holding the lock in the normal manner to catch cases
1740 * where we are gazumped.
1741 */
e95433c7
CW
1742 ret = i915_gem_object_wait(obj,
1743 I915_WAIT_INTERRUPTIBLE,
1744 MAX_SCHEDULE_TIMEOUT,
1745 NULL);
6e4930f6 1746 if (ret)
b8f9096d
CW
1747 goto err;
1748
40e62d5d
CW
1749 ret = i915_gem_object_pin_pages(obj);
1750 if (ret)
1751 goto err;
1752
b8f9096d
CW
1753 intel_runtime_pm_get(dev_priv);
1754
1755 ret = i915_mutex_lock_interruptible(dev);
1756 if (ret)
1757 goto err_rpm;
6e4930f6 1758
eb119bd6
CW
1759 /* Access to snoopable pages through the GTT is incoherent. */
1760 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1761 ret = -EFAULT;
b8f9096d 1762 goto err_unlock;
eb119bd6
CW
1763 }
1764
82118877
CW
1765 /* If the object is smaller than a couple of partial vma, it is
1766 * not worth only creating a single partial vma - we may as well
1767 * clear enough space for the full object.
1768 */
1769 flags = PIN_MAPPABLE;
1770 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1771 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1772
a61007a8 1773 /* Now pin it into the GTT as needed */
82118877 1774 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
a61007a8
CW
1775 if (IS_ERR(vma)) {
1776 struct i915_ggtt_view view;
03af84fe
CW
1777 unsigned int chunk_size;
1778
a61007a8 1779 /* Use a partial view if it is bigger than available space */
03af84fe
CW
1780 chunk_size = MIN_CHUNK_PAGES;
1781 if (i915_gem_object_is_tiled(obj))
1782 chunk_size = max(chunk_size, tile_row_pages(obj));
e7ded2d7 1783
c5ad54cf
JL
1784 memset(&view, 0, sizeof(view));
1785 view.type = I915_GGTT_VIEW_PARTIAL;
1786 view.params.partial.offset = rounddown(page_offset, chunk_size);
1787 view.params.partial.size =
a61007a8 1788 min_t(unsigned int, chunk_size,
908b1232 1789 vma_pages(area) - view.params.partial.offset);
c5ad54cf 1790
aa136d9d
CW
1791 /* If the partial covers the entire object, just create a
1792 * normal VMA.
1793 */
1794 if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1795 view.type = I915_GGTT_VIEW_NORMAL;
1796
50349247
CW
1797 /* Userspace is now writing through an untracked VMA, abandon
1798 * all hope that the hardware is able to track future writes.
1799 */
1800 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1801
a61007a8
CW
1802 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1803 }
058d88c4
CW
1804 if (IS_ERR(vma)) {
1805 ret = PTR_ERR(vma);
b8f9096d 1806 goto err_unlock;
058d88c4 1807 }
4a684a41 1808
c9839303
CW
1809 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1810 if (ret)
b8f9096d 1811 goto err_unpin;
74898d7e 1812
49ef5294 1813 ret = i915_vma_get_fence(vma);
d9e86c0e 1814 if (ret)
b8f9096d 1815 goto err_unpin;
7d1c4804 1816
275f039d 1817 /* Mark as being mmapped into userspace for later revocation */
9c870d03 1818 assert_rpm_wakelock_held(dev_priv);
275f039d
CW
1819 if (list_empty(&obj->userfault_link))
1820 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
275f039d 1821
b90b91d8 1822 /* Finally, remap it using the new GTT offset */
c58305af
CW
1823 ret = remap_io_mapping(area,
1824 area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
1825 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1826 min_t(u64, vma->size, area->vm_end - area->vm_start),
1827 &ggtt->mappable);
a61007a8 1828
b8f9096d 1829err_unpin:
058d88c4 1830 __i915_vma_unpin(vma);
b8f9096d 1831err_unlock:
de151cf6 1832 mutex_unlock(&dev->struct_mutex);
b8f9096d
CW
1833err_rpm:
1834 intel_runtime_pm_put(dev_priv);
40e62d5d 1835 i915_gem_object_unpin_pages(obj);
b8f9096d 1836err:
de151cf6 1837 switch (ret) {
d9bc7e9f 1838 case -EIO:
2232f031
DV
1839 /*
1840 * We eat errors when the gpu is terminally wedged to avoid
1841 * userspace unduly crashing (gl has no provisions for mmaps to
1842 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1843 * and so needs to be reported.
1844 */
1845 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1846 ret = VM_FAULT_SIGBUS;
1847 break;
1848 }
045e769a 1849 case -EAGAIN:
571c608d
DV
1850 /*
1851 * EAGAIN means the gpu is hung and we'll wait for the error
1852 * handler to reset everything when re-faulting in
1853 * i915_mutex_lock_interruptible.
d9bc7e9f 1854 */
c715089f
CW
1855 case 0:
1856 case -ERESTARTSYS:
bed636ab 1857 case -EINTR:
e79e0fe3
DR
1858 case -EBUSY:
1859 /*
1860 * EBUSY is ok: this just means that another thread
1861 * already did the job.
1862 */
f65c9168
PZ
1863 ret = VM_FAULT_NOPAGE;
1864 break;
de151cf6 1865 case -ENOMEM:
f65c9168
PZ
1866 ret = VM_FAULT_OOM;
1867 break;
a7c2e1aa 1868 case -ENOSPC:
45d67817 1869 case -EFAULT:
f65c9168
PZ
1870 ret = VM_FAULT_SIGBUS;
1871 break;
de151cf6 1872 default:
a7c2e1aa 1873 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1874 ret = VM_FAULT_SIGBUS;
1875 break;
de151cf6 1876 }
f65c9168 1877 return ret;
de151cf6
JB
1878}
1879
901782b2
CW
1880/**
1881 * i915_gem_release_mmap - remove physical page mappings
1882 * @obj: obj in question
1883 *
af901ca1 1884 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1885 * relinquish ownership of the pages back to the system.
1886 *
1887 * It is vital that we remove the page mapping if we have mapped a tiled
1888 * object through the GTT and then lose the fence register due to
1889 * resource pressure. Similarly if the object has been moved out of the
1890 * aperture, than pages mapped into userspace must be revoked. Removing the
1891 * mapping will then trigger a page fault on the next user access, allowing
1892 * fixup by i915_gem_fault().
1893 */
d05ca301 1894void
05394f39 1895i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1896{
275f039d 1897 struct drm_i915_private *i915 = to_i915(obj->base.dev);
275f039d 1898
349f2ccf
CW
1899 /* Serialisation between user GTT access and our code depends upon
1900 * revoking the CPU's PTE whilst the mutex is held. The next user
1901 * pagefault then has to wait until we release the mutex.
9c870d03
CW
1902 *
1903 * Note that RPM complicates somewhat by adding an additional
1904 * requirement that operations to the GGTT be made holding the RPM
1905 * wakeref.
349f2ccf 1906 */
275f039d 1907 lockdep_assert_held(&i915->drm.struct_mutex);
9c870d03 1908 intel_runtime_pm_get(i915);
349f2ccf 1909
3594a3e2 1910 if (list_empty(&obj->userfault_link))
9c870d03 1911 goto out;
901782b2 1912
3594a3e2 1913 list_del_init(&obj->userfault_link);
6796cb16
DR
1914 drm_vma_node_unmap(&obj->base.vma_node,
1915 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
1916
1917 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1918 * memory transactions from userspace before we return. The TLB
1919 * flushing implied above by changing the PTE above *should* be
1920 * sufficient, an extra barrier here just provides us with a bit
1921 * of paranoid documentation about our requirement to serialise
1922 * memory writes before touching registers / GSM.
1923 */
1924 wmb();
9c870d03
CW
1925
1926out:
1927 intel_runtime_pm_put(i915);
901782b2
CW
1928}
1929
7c108fd8 1930void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
eedd10f4 1931{
3594a3e2 1932 struct drm_i915_gem_object *obj, *on;
7c108fd8 1933 int i;
eedd10f4 1934
3594a3e2
CW
1935 /*
1936 * Only called during RPM suspend. All users of the userfault_list
1937 * must be holding an RPM wakeref to ensure that this can not
1938 * run concurrently with themselves (and use the struct_mutex for
1939 * protection between themselves).
1940 */
275f039d 1941
3594a3e2
CW
1942 list_for_each_entry_safe(obj, on,
1943 &dev_priv->mm.userfault_list, userfault_link) {
1944 list_del_init(&obj->userfault_link);
275f039d
CW
1945 drm_vma_node_unmap(&obj->base.vma_node,
1946 obj->base.dev->anon_inode->i_mapping);
275f039d 1947 }
7c108fd8
CW
1948
1949 /* The fence will be lost when the device powers down. If any were
1950 * in use by hardware (i.e. they are pinned), we should not be powering
1951 * down! All other fences will be reacquired by the user upon waking.
1952 */
1953 for (i = 0; i < dev_priv->num_fence_regs; i++) {
1954 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1955
1956 if (WARN_ON(reg->pin_count))
1957 continue;
1958
1959 if (!reg->vma)
1960 continue;
1961
1962 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
1963 reg->dirty = true;
1964 }
eedd10f4
CW
1965}
1966
ad1a7d20
CW
1967/**
1968 * i915_gem_get_ggtt_size - return required global GTT size for an object
a9f1481f 1969 * @dev_priv: i915 device
ad1a7d20
CW
1970 * @size: object size
1971 * @tiling_mode: tiling mode
1972 *
1973 * Return the required global GTT size for an object, taking into account
1974 * potential fence register mapping.
1975 */
a9f1481f
CW
1976u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
1977 u64 size, int tiling_mode)
92b88aeb 1978{
ad1a7d20 1979 u64 ggtt_size;
92b88aeb 1980
ad1a7d20
CW
1981 GEM_BUG_ON(size == 0);
1982
a9f1481f 1983 if (INTEL_GEN(dev_priv) >= 4 ||
e28f8711
CW
1984 tiling_mode == I915_TILING_NONE)
1985 return size;
92b88aeb
CW
1986
1987 /* Previous chips need a power-of-two fence region when tiling */
a9f1481f 1988 if (IS_GEN3(dev_priv))
ad1a7d20 1989 ggtt_size = 1024*1024;
92b88aeb 1990 else
ad1a7d20 1991 ggtt_size = 512*1024;
92b88aeb 1992
ad1a7d20
CW
1993 while (ggtt_size < size)
1994 ggtt_size <<= 1;
92b88aeb 1995
ad1a7d20 1996 return ggtt_size;
92b88aeb
CW
1997}
1998
de151cf6 1999/**
ad1a7d20 2000 * i915_gem_get_ggtt_alignment - return required global GTT alignment
a9f1481f 2001 * @dev_priv: i915 device
14bb2c11
TU
2002 * @size: object size
2003 * @tiling_mode: tiling mode
ad1a7d20 2004 * @fenced: is fenced alignment required or not
de151cf6 2005 *
ad1a7d20 2006 * Return the required global GTT alignment for an object, taking into account
5e783301 2007 * potential fence register mapping.
de151cf6 2008 */
a9f1481f 2009u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
ad1a7d20 2010 int tiling_mode, bool fenced)
de151cf6 2011{
ad1a7d20
CW
2012 GEM_BUG_ON(size == 0);
2013
de151cf6
JB
2014 /*
2015 * Minimum alignment is 4k (GTT page size), but might be greater
2016 * if a fence register is needed for the object.
2017 */
a9f1481f 2018 if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
e28f8711 2019 tiling_mode == I915_TILING_NONE)
de151cf6
JB
2020 return 4096;
2021
a00b10c3
CW
2022 /*
2023 * Previous chips need to be aligned to the size of the smallest
2024 * fence register that can contain the object.
2025 */
a9f1481f 2026 return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
a00b10c3
CW
2027}
2028
d8cb5086
CW
2029static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2030{
fac5e23e 2031 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
f3f6184c 2032 int err;
da494d7c 2033
f3f6184c
CW
2034 err = drm_gem_create_mmap_offset(&obj->base);
2035 if (!err)
2036 return 0;
d8cb5086 2037
f3f6184c
CW
2038 /* We can idle the GPU locklessly to flush stale objects, but in order
2039 * to claim that space for ourselves, we need to take the big
2040 * struct_mutex to free the requests+objects and allocate our slot.
d8cb5086 2041 */
ea746f36 2042 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
f3f6184c
CW
2043 if (err)
2044 return err;
2045
2046 err = i915_mutex_lock_interruptible(&dev_priv->drm);
2047 if (!err) {
2048 i915_gem_retire_requests(dev_priv);
2049 err = drm_gem_create_mmap_offset(&obj->base);
2050 mutex_unlock(&dev_priv->drm.struct_mutex);
2051 }
da494d7c 2052
f3f6184c 2053 return err;
d8cb5086
CW
2054}
2055
2056static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2057{
d8cb5086
CW
2058 drm_gem_free_mmap_offset(&obj->base);
2059}
2060
da6b51d0 2061int
ff72145b
DA
2062i915_gem_mmap_gtt(struct drm_file *file,
2063 struct drm_device *dev,
da6b51d0 2064 uint32_t handle,
ff72145b 2065 uint64_t *offset)
de151cf6 2066{
05394f39 2067 struct drm_i915_gem_object *obj;
de151cf6
JB
2068 int ret;
2069
03ac0642 2070 obj = i915_gem_object_lookup(file, handle);
f3f6184c
CW
2071 if (!obj)
2072 return -ENOENT;
ab18282d 2073
d8cb5086 2074 ret = i915_gem_object_create_mmap_offset(obj);
f3f6184c
CW
2075 if (ret == 0)
2076 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2077
f0cd5182 2078 i915_gem_object_put(obj);
1d7cfea1 2079 return ret;
de151cf6
JB
2080}
2081
ff72145b
DA
2082/**
2083 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2084 * @dev: DRM device
2085 * @data: GTT mapping ioctl data
2086 * @file: GEM object info
2087 *
2088 * Simply returns the fake offset to userspace so it can mmap it.
2089 * The mmap call will end up in drm_gem_mmap(), which will set things
2090 * up so we can get faults in the handler above.
2091 *
2092 * The fault handler will take care of binding the object into the GTT
2093 * (since it may have been evicted to make room for something), allocating
2094 * a fence register, and mapping the appropriate aperture address into
2095 * userspace.
2096 */
2097int
2098i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2099 struct drm_file *file)
2100{
2101 struct drm_i915_gem_mmap_gtt *args = data;
2102
da6b51d0 2103 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2104}
2105
225067ee
DV
2106/* Immediately discard the backing storage */
2107static void
2108i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2109{
4d6294bf 2110 i915_gem_object_free_mmap_offset(obj);
1286ff73 2111
4d6294bf
CW
2112 if (obj->base.filp == NULL)
2113 return;
e5281ccd 2114
225067ee
DV
2115 /* Our goal here is to return as much of the memory as
2116 * is possible back to the system as we are called from OOM.
2117 * To do this we must instruct the shmfs to drop all of its
2118 * backing pages, *now*.
2119 */
5537252b 2120 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
a4f5ea64 2121 obj->mm.madv = __I915_MADV_PURGED;
225067ee 2122}
e5281ccd 2123
5537252b 2124/* Try to discard unwanted pages */
03ac84f1 2125void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2126{
5537252b
CW
2127 struct address_space *mapping;
2128
1233e2db
CW
2129 lockdep_assert_held(&obj->mm.lock);
2130 GEM_BUG_ON(obj->mm.pages);
2131
a4f5ea64 2132 switch (obj->mm.madv) {
5537252b
CW
2133 case I915_MADV_DONTNEED:
2134 i915_gem_object_truncate(obj);
2135 case __I915_MADV_PURGED:
2136 return;
2137 }
2138
2139 if (obj->base.filp == NULL)
2140 return;
2141
93c76a3d 2142 mapping = obj->base.filp->f_mapping,
5537252b 2143 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2144}
2145
5cdf5881 2146static void
03ac84f1
CW
2147i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2148 struct sg_table *pages)
673a394b 2149{
85d1225e
DG
2150 struct sgt_iter sgt_iter;
2151 struct page *page;
1286ff73 2152
03ac84f1 2153 __i915_gem_object_release_shmem(obj);
673a394b 2154
03ac84f1 2155 i915_gem_gtt_finish_pages(obj, pages);
e2273302 2156
6dacfd2f 2157 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2158 i915_gem_object_save_bit_17_swizzle(obj, pages);
280b713b 2159
03ac84f1 2160 for_each_sgt_page(page, sgt_iter, pages) {
a4f5ea64 2161 if (obj->mm.dirty)
9da3da66 2162 set_page_dirty(page);
3ef94daa 2163
a4f5ea64 2164 if (obj->mm.madv == I915_MADV_WILLNEED)
9da3da66 2165 mark_page_accessed(page);
3ef94daa 2166
09cbfeaf 2167 put_page(page);
3ef94daa 2168 }
a4f5ea64 2169 obj->mm.dirty = false;
673a394b 2170
03ac84f1
CW
2171 sg_free_table(pages);
2172 kfree(pages);
37e680a1 2173}
6c085a72 2174
96d77634
CW
2175static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2176{
2177 struct radix_tree_iter iter;
2178 void **slot;
2179
a4f5ea64
CW
2180 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2181 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
96d77634
CW
2182}
2183
548625ee
CW
2184void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2185 enum i915_mm_subclass subclass)
37e680a1 2186{
03ac84f1 2187 struct sg_table *pages;
37e680a1 2188
a4f5ea64 2189 if (i915_gem_object_has_pinned_pages(obj))
03ac84f1 2190 return;
a5570178 2191
15717de2 2192 GEM_BUG_ON(obj->bind_count);
1233e2db
CW
2193 if (!READ_ONCE(obj->mm.pages))
2194 return;
2195
2196 /* May be called by shrinker from within get_pages() (on another bo) */
548625ee 2197 mutex_lock_nested(&obj->mm.lock, subclass);
1233e2db
CW
2198 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2199 goto unlock;
3e123027 2200
a2165e31
CW
2201 /* ->put_pages might need to allocate memory for the bit17 swizzle
2202 * array, hence protect them from being reaped by removing them from gtt
2203 * lists early. */
03ac84f1
CW
2204 pages = fetch_and_zero(&obj->mm.pages);
2205 GEM_BUG_ON(!pages);
a2165e31 2206
a4f5ea64 2207 if (obj->mm.mapping) {
4b30cb23
CW
2208 void *ptr;
2209
a4f5ea64 2210 ptr = ptr_mask_bits(obj->mm.mapping);
4b30cb23
CW
2211 if (is_vmalloc_addr(ptr))
2212 vunmap(ptr);
fb8621d3 2213 else
4b30cb23
CW
2214 kunmap(kmap_to_page(ptr));
2215
a4f5ea64 2216 obj->mm.mapping = NULL;
0a798eb9
CW
2217 }
2218
96d77634
CW
2219 __i915_gem_object_reset_page_iter(obj);
2220
03ac84f1 2221 obj->ops->put_pages(obj, pages);
1233e2db
CW
2222unlock:
2223 mutex_unlock(&obj->mm.lock);
6c085a72
CW
2224}
2225
4ff340f0 2226static unsigned int swiotlb_max_size(void)
871dfbd6
CW
2227{
2228#if IS_ENABLED(CONFIG_SWIOTLB)
2229 return rounddown(swiotlb_nr_tbl() << IO_TLB_SHIFT, PAGE_SIZE);
2230#else
2231 return 0;
2232#endif
2233}
2234
03ac84f1 2235static struct sg_table *
6c085a72 2236i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2237{
fac5e23e 2238 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
e5281ccd
CW
2239 int page_count, i;
2240 struct address_space *mapping;
9da3da66
CW
2241 struct sg_table *st;
2242 struct scatterlist *sg;
85d1225e 2243 struct sgt_iter sgt_iter;
e5281ccd 2244 struct page *page;
90797e6d 2245 unsigned long last_pfn = 0; /* suppress gcc warning */
4ff340f0 2246 unsigned int max_segment;
e2273302 2247 int ret;
6c085a72 2248 gfp_t gfp;
e5281ccd 2249
6c085a72
CW
2250 /* Assert that the object is not currently in any GPU domain. As it
2251 * wasn't in the GTT, there shouldn't be any way it could have been in
2252 * a GPU cache
2253 */
03ac84f1
CW
2254 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2255 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
6c085a72 2256
871dfbd6
CW
2257 max_segment = swiotlb_max_size();
2258 if (!max_segment)
4ff340f0 2259 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
871dfbd6 2260
9da3da66
CW
2261 st = kmalloc(sizeof(*st), GFP_KERNEL);
2262 if (st == NULL)
03ac84f1 2263 return ERR_PTR(-ENOMEM);
9da3da66 2264
05394f39 2265 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2266 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2267 kfree(st);
03ac84f1 2268 return ERR_PTR(-ENOMEM);
9da3da66 2269 }
e5281ccd 2270
9da3da66
CW
2271 /* Get the list of pages out of our struct file. They'll be pinned
2272 * at this point until we release them.
2273 *
2274 * Fail silently without starting the shrinker
2275 */
93c76a3d 2276 mapping = obj->base.filp->f_mapping;
c62d2555 2277 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2278 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2279 sg = st->sgl;
2280 st->nents = 0;
2281 for (i = 0; i < page_count; i++) {
6c085a72
CW
2282 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2283 if (IS_ERR(page)) {
21ab4e74
CW
2284 i915_gem_shrink(dev_priv,
2285 page_count,
2286 I915_SHRINK_BOUND |
2287 I915_SHRINK_UNBOUND |
2288 I915_SHRINK_PURGEABLE);
6c085a72
CW
2289 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2290 }
2291 if (IS_ERR(page)) {
2292 /* We've tried hard to allocate the memory by reaping
2293 * our own buffer, now let the real VM do its job and
2294 * go down in flames if truly OOM.
2295 */
f461d1be 2296 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2297 if (IS_ERR(page)) {
2298 ret = PTR_ERR(page);
6c085a72 2299 goto err_pages;
e2273302 2300 }
6c085a72 2301 }
871dfbd6
CW
2302 if (!i ||
2303 sg->length >= max_segment ||
2304 page_to_pfn(page) != last_pfn + 1) {
90797e6d
ID
2305 if (i)
2306 sg = sg_next(sg);
2307 st->nents++;
2308 sg_set_page(sg, page, PAGE_SIZE, 0);
2309 } else {
2310 sg->length += PAGE_SIZE;
2311 }
2312 last_pfn = page_to_pfn(page);
3bbbe706
DV
2313
2314 /* Check that the i965g/gm workaround works. */
2315 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2316 }
871dfbd6 2317 if (sg) /* loop terminated early; short sg table */
426729dc 2318 sg_mark_end(sg);
74ce6b6c 2319
03ac84f1 2320 ret = i915_gem_gtt_prepare_pages(obj, st);
e2273302
ID
2321 if (ret)
2322 goto err_pages;
2323
6dacfd2f 2324 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2325 i915_gem_object_do_bit_17_swizzle(obj, st);
e5281ccd 2326
3e510a8e 2327 if (i915_gem_object_is_tiled(obj) &&
bc0629a7 2328 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
a4f5ea64 2329 __i915_gem_object_pin_pages(obj);
bc0629a7
CW
2330 obj->mm.quirked = true;
2331 }
656bfa3a 2332
03ac84f1 2333 return st;
e5281ccd
CW
2334
2335err_pages:
90797e6d 2336 sg_mark_end(sg);
85d1225e
DG
2337 for_each_sgt_page(page, sgt_iter, st)
2338 put_page(page);
9da3da66
CW
2339 sg_free_table(st);
2340 kfree(st);
0820baf3
CW
2341
2342 /* shmemfs first checks if there is enough memory to allocate the page
2343 * and reports ENOSPC should there be insufficient, along with the usual
2344 * ENOMEM for a genuine allocation failure.
2345 *
2346 * We use ENOSPC in our driver to mean that we have run out of aperture
2347 * space and so want to translate the error from shmemfs back to our
2348 * usual understanding of ENOMEM.
2349 */
e2273302
ID
2350 if (ret == -ENOSPC)
2351 ret = -ENOMEM;
2352
03ac84f1
CW
2353 return ERR_PTR(ret);
2354}
2355
2356void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2357 struct sg_table *pages)
2358{
1233e2db 2359 lockdep_assert_held(&obj->mm.lock);
03ac84f1
CW
2360
2361 obj->mm.get_page.sg_pos = pages->sgl;
2362 obj->mm.get_page.sg_idx = 0;
2363
2364 obj->mm.pages = pages;
2365}
2366
2367static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2368{
2369 struct sg_table *pages;
2370
2371 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2372 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2373 return -EFAULT;
2374 }
2375
2376 pages = obj->ops->get_pages(obj);
2377 if (unlikely(IS_ERR(pages)))
2378 return PTR_ERR(pages);
2379
2380 __i915_gem_object_set_pages(obj, pages);
2381 return 0;
673a394b
EA
2382}
2383
37e680a1 2384/* Ensure that the associated pages are gathered from the backing storage
1233e2db 2385 * and pinned into our object. i915_gem_object_pin_pages() may be called
37e680a1 2386 * multiple times before they are released by a single call to
1233e2db 2387 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
37e680a1
CW
2388 * either as a result of memory pressure (reaping pages under the shrinker)
2389 * or as the object is itself released.
2390 */
a4f5ea64 2391int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
37e680a1 2392{
03ac84f1 2393 int err;
37e680a1 2394
1233e2db
CW
2395 err = mutex_lock_interruptible(&obj->mm.lock);
2396 if (err)
2397 return err;
4c7d62c6 2398
1233e2db
CW
2399 if (likely(obj->mm.pages)) {
2400 __i915_gem_object_pin_pages(obj);
2401 goto unlock;
2402 }
2403
2404 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
37e680a1 2405
03ac84f1 2406 err = ____i915_gem_object_get_pages(obj);
1233e2db
CW
2407 if (!err)
2408 atomic_set_release(&obj->mm.pages_pin_count, 1);
ee286370 2409
1233e2db
CW
2410unlock:
2411 mutex_unlock(&obj->mm.lock);
03ac84f1 2412 return err;
673a394b
EA
2413}
2414
dd6034c6 2415/* The 'mapping' part of i915_gem_object_pin_map() below */
d31d7cb1
CW
2416static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2417 enum i915_map_type type)
dd6034c6
DG
2418{
2419 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
a4f5ea64 2420 struct sg_table *sgt = obj->mm.pages;
85d1225e
DG
2421 struct sgt_iter sgt_iter;
2422 struct page *page;
b338fa47
DG
2423 struct page *stack_pages[32];
2424 struct page **pages = stack_pages;
dd6034c6 2425 unsigned long i = 0;
d31d7cb1 2426 pgprot_t pgprot;
dd6034c6
DG
2427 void *addr;
2428
2429 /* A single page can always be kmapped */
d31d7cb1 2430 if (n_pages == 1 && type == I915_MAP_WB)
dd6034c6
DG
2431 return kmap(sg_page(sgt->sgl));
2432
b338fa47
DG
2433 if (n_pages > ARRAY_SIZE(stack_pages)) {
2434 /* Too big for stack -- allocate temporary array instead */
2435 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2436 if (!pages)
2437 return NULL;
2438 }
dd6034c6 2439
85d1225e
DG
2440 for_each_sgt_page(page, sgt_iter, sgt)
2441 pages[i++] = page;
dd6034c6
DG
2442
2443 /* Check that we have the expected number of pages */
2444 GEM_BUG_ON(i != n_pages);
2445
d31d7cb1
CW
2446 switch (type) {
2447 case I915_MAP_WB:
2448 pgprot = PAGE_KERNEL;
2449 break;
2450 case I915_MAP_WC:
2451 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2452 break;
2453 }
2454 addr = vmap(pages, n_pages, 0, pgprot);
dd6034c6 2455
b338fa47
DG
2456 if (pages != stack_pages)
2457 drm_free_large(pages);
dd6034c6
DG
2458
2459 return addr;
2460}
2461
2462/* get, pin, and map the pages of the object into kernel space */
d31d7cb1
CW
2463void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2464 enum i915_map_type type)
0a798eb9 2465{
d31d7cb1
CW
2466 enum i915_map_type has_type;
2467 bool pinned;
2468 void *ptr;
0a798eb9
CW
2469 int ret;
2470
d31d7cb1 2471 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
0a798eb9 2472
1233e2db 2473 ret = mutex_lock_interruptible(&obj->mm.lock);
0a798eb9
CW
2474 if (ret)
2475 return ERR_PTR(ret);
2476
1233e2db
CW
2477 pinned = true;
2478 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2479 ret = ____i915_gem_object_get_pages(obj);
2480 if (ret)
2481 goto err_unlock;
2482
2483 GEM_BUG_ON(atomic_read(&obj->mm.pages_pin_count));
2484 atomic_set_release(&obj->mm.pages_pin_count, 1);
2485 pinned = false;
2486 }
2487 GEM_BUG_ON(!obj->mm.pages);
0a798eb9 2488
a4f5ea64 2489 ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
d31d7cb1
CW
2490 if (ptr && has_type != type) {
2491 if (pinned) {
2492 ret = -EBUSY;
1233e2db 2493 goto err_unpin;
0a798eb9 2494 }
d31d7cb1
CW
2495
2496 if (is_vmalloc_addr(ptr))
2497 vunmap(ptr);
2498 else
2499 kunmap(kmap_to_page(ptr));
2500
a4f5ea64 2501 ptr = obj->mm.mapping = NULL;
0a798eb9
CW
2502 }
2503
d31d7cb1
CW
2504 if (!ptr) {
2505 ptr = i915_gem_object_map(obj, type);
2506 if (!ptr) {
2507 ret = -ENOMEM;
1233e2db 2508 goto err_unpin;
d31d7cb1
CW
2509 }
2510
a4f5ea64 2511 obj->mm.mapping = ptr_pack_bits(ptr, type);
d31d7cb1
CW
2512 }
2513
1233e2db
CW
2514out_unlock:
2515 mutex_unlock(&obj->mm.lock);
d31d7cb1
CW
2516 return ptr;
2517
1233e2db
CW
2518err_unpin:
2519 atomic_dec(&obj->mm.pages_pin_count);
2520err_unlock:
2521 ptr = ERR_PTR(ret);
2522 goto out_unlock;
0a798eb9
CW
2523}
2524
7b4d3a16 2525static bool i915_context_is_banned(const struct i915_gem_context *ctx)
be62acb4 2526{
44e2c070 2527 unsigned long elapsed;
be62acb4 2528
44e2c070 2529 if (ctx->hang_stats.banned)
be62acb4
MK
2530 return true;
2531
7b4d3a16 2532 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
676fa572
CW
2533 if (ctx->hang_stats.ban_period_seconds &&
2534 elapsed <= ctx->hang_stats.ban_period_seconds) {
7b4d3a16
CW
2535 DRM_DEBUG("context hanging too fast, banning!\n");
2536 return true;
be62acb4
MK
2537 }
2538
2539 return false;
2540}
2541
7b4d3a16 2542static void i915_set_reset_status(struct i915_gem_context *ctx,
b6b0fac0 2543 const bool guilty)
aa60c664 2544{
7b4d3a16 2545 struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
44e2c070
MK
2546
2547 if (guilty) {
7b4d3a16 2548 hs->banned = i915_context_is_banned(ctx);
44e2c070
MK
2549 hs->batch_active++;
2550 hs->guilty_ts = get_seconds();
2551 } else {
2552 hs->batch_pending++;
aa60c664
MK
2553 }
2554}
2555
8d9fc7fd 2556struct drm_i915_gem_request *
0bc40be8 2557i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2558{
4db080f9
CW
2559 struct drm_i915_gem_request *request;
2560
f69a02c9
CW
2561 /* We are called by the error capture and reset at a random
2562 * point in time. In particular, note that neither is crucially
2563 * ordered with an interrupt. After a hang, the GPU is dead and we
2564 * assume that no more writes can happen (we waited long enough for
2565 * all writes that were in transaction to be flushed) - adding an
2566 * extra delay for a recent interrupt is pointless. Hence, we do
2567 * not need an engine->irq_seqno_barrier() before the seqno reads.
2568 */
73cb9701 2569 list_for_each_entry(request, &engine->timeline->requests, link) {
80b204bc 2570 if (__i915_gem_request_completed(request))
4db080f9 2571 continue;
aa60c664 2572
b6b0fac0 2573 return request;
4db080f9 2574 }
b6b0fac0
MK
2575
2576 return NULL;
2577}
2578
821ed7df
CW
2579static void reset_request(struct drm_i915_gem_request *request)
2580{
2581 void *vaddr = request->ring->vaddr;
2582 u32 head;
2583
2584 /* As this request likely depends on state from the lost
2585 * context, clear out all the user operations leaving the
2586 * breadcrumb at the end (so we get the fence notifications).
2587 */
2588 head = request->head;
2589 if (request->postfix < head) {
2590 memset(vaddr + head, 0, request->ring->size - head);
2591 head = 0;
2592 }
2593 memset(vaddr + head, 0, request->postfix - head);
2594}
2595
2596static void i915_gem_reset_engine(struct intel_engine_cs *engine)
b6b0fac0
MK
2597{
2598 struct drm_i915_gem_request *request;
821ed7df 2599 struct i915_gem_context *incomplete_ctx;
80b204bc 2600 struct intel_timeline *timeline;
b6b0fac0
MK
2601 bool ring_hung;
2602
821ed7df
CW
2603 if (engine->irq_seqno_barrier)
2604 engine->irq_seqno_barrier(engine);
2605
0bc40be8 2606 request = i915_gem_find_active_request(engine);
821ed7df 2607 if (!request)
b6b0fac0
MK
2608 return;
2609
0bc40be8 2610 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
77c60701
CW
2611 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine))
2612 ring_hung = false;
2613
7b4d3a16 2614 i915_set_reset_status(request->ctx, ring_hung);
821ed7df
CW
2615 if (!ring_hung)
2616 return;
2617
2618 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
65e4760e 2619 engine->name, request->global_seqno);
821ed7df
CW
2620
2621 /* Setup the CS to resume from the breadcrumb of the hung request */
2622 engine->reset_hw(engine, request);
2623
2624 /* Users of the default context do not rely on logical state
2625 * preserved between batches. They have to emit full state on
2626 * every batch and so it is safe to execute queued requests following
2627 * the hang.
2628 *
2629 * Other contexts preserve state, now corrupt. We want to skip all
2630 * queued requests that reference the corrupt context.
2631 */
2632 incomplete_ctx = request->ctx;
2633 if (i915_gem_context_is_default(incomplete_ctx))
2634 return;
2635
73cb9701 2636 list_for_each_entry_continue(request, &engine->timeline->requests, link)
821ed7df
CW
2637 if (request->ctx == incomplete_ctx)
2638 reset_request(request);
80b204bc
CW
2639
2640 timeline = i915_gem_context_lookup_timeline(incomplete_ctx, engine);
2641 list_for_each_entry(request, &timeline->requests, link)
2642 reset_request(request);
4db080f9 2643}
aa60c664 2644
821ed7df 2645void i915_gem_reset(struct drm_i915_private *dev_priv)
4db080f9 2646{
821ed7df 2647 struct intel_engine_cs *engine;
3b3f1650 2648 enum intel_engine_id id;
608c1a52 2649
4c7d62c6
CW
2650 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2651
821ed7df
CW
2652 i915_gem_retire_requests(dev_priv);
2653
3b3f1650 2654 for_each_engine(engine, dev_priv, id)
821ed7df
CW
2655 i915_gem_reset_engine(engine);
2656
2657 i915_gem_restore_fences(&dev_priv->drm);
f2a91d1a
CW
2658
2659 if (dev_priv->gt.awake) {
2660 intel_sanitize_gt_powersave(dev_priv);
2661 intel_enable_gt_powersave(dev_priv);
2662 if (INTEL_GEN(dev_priv) >= 6)
2663 gen6_rps_busy(dev_priv);
2664 }
821ed7df
CW
2665}
2666
2667static void nop_submit_request(struct drm_i915_gem_request *request)
2668{
2669}
2670
2671static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
2672{
2673 engine->submit_request = nop_submit_request;
70c2a24d 2674
c4b0930b
CW
2675 /* Mark all pending requests as complete so that any concurrent
2676 * (lockless) lookup doesn't try and wait upon the request as we
2677 * reset it.
2678 */
73cb9701 2679 intel_engine_init_global_seqno(engine,
cb399eab 2680 intel_engine_last_submit(engine));
c4b0930b 2681
dcb4c12a
OM
2682 /*
2683 * Clear the execlists queue up before freeing the requests, as those
2684 * are the ones that keep the context and ringbuffer backing objects
2685 * pinned in place.
2686 */
dcb4c12a 2687
7de1691a 2688 if (i915.enable_execlists) {
70c2a24d
CW
2689 spin_lock(&engine->execlist_lock);
2690 INIT_LIST_HEAD(&engine->execlist_queue);
2691 i915_gem_request_put(engine->execlist_port[0].request);
2692 i915_gem_request_put(engine->execlist_port[1].request);
2693 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2694 spin_unlock(&engine->execlist_lock);
dcb4c12a 2695 }
673a394b
EA
2696}
2697
821ed7df 2698void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
673a394b 2699{
e2f80391 2700 struct intel_engine_cs *engine;
3b3f1650 2701 enum intel_engine_id id;
673a394b 2702
821ed7df
CW
2703 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2704 set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
4db080f9 2705
821ed7df 2706 i915_gem_context_lost(dev_priv);
3b3f1650 2707 for_each_engine(engine, dev_priv, id)
821ed7df 2708 i915_gem_cleanup_engine(engine);
b913b33c 2709 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
dfaae392 2710
821ed7df 2711 i915_gem_retire_requests(dev_priv);
673a394b
EA
2712}
2713
75ef9da2 2714static void
673a394b
EA
2715i915_gem_retire_work_handler(struct work_struct *work)
2716{
b29c19b6 2717 struct drm_i915_private *dev_priv =
67d97da3 2718 container_of(work, typeof(*dev_priv), gt.retire_work.work);
91c8a326 2719 struct drm_device *dev = &dev_priv->drm;
673a394b 2720
891b48cf 2721 /* Come back later if the device is busy... */
b29c19b6 2722 if (mutex_trylock(&dev->struct_mutex)) {
67d97da3 2723 i915_gem_retire_requests(dev_priv);
b29c19b6 2724 mutex_unlock(&dev->struct_mutex);
673a394b 2725 }
67d97da3
CW
2726
2727 /* Keep the retire handler running until we are finally idle.
2728 * We do not need to do this test under locking as in the worst-case
2729 * we queue the retire worker once too often.
2730 */
c9615613
CW
2731 if (READ_ONCE(dev_priv->gt.awake)) {
2732 i915_queue_hangcheck(dev_priv);
67d97da3
CW
2733 queue_delayed_work(dev_priv->wq,
2734 &dev_priv->gt.retire_work,
bcb45086 2735 round_jiffies_up_relative(HZ));
c9615613 2736 }
b29c19b6 2737}
0a58705b 2738
b29c19b6
CW
2739static void
2740i915_gem_idle_work_handler(struct work_struct *work)
2741{
2742 struct drm_i915_private *dev_priv =
67d97da3 2743 container_of(work, typeof(*dev_priv), gt.idle_work.work);
91c8a326 2744 struct drm_device *dev = &dev_priv->drm;
b4ac5afc 2745 struct intel_engine_cs *engine;
3b3f1650 2746 enum intel_engine_id id;
67d97da3
CW
2747 bool rearm_hangcheck;
2748
2749 if (!READ_ONCE(dev_priv->gt.awake))
2750 return;
2751
28176ef4 2752 if (READ_ONCE(dev_priv->gt.active_requests))
67d97da3
CW
2753 return;
2754
2755 rearm_hangcheck =
2756 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2757
2758 if (!mutex_trylock(&dev->struct_mutex)) {
2759 /* Currently busy, come back later */
2760 mod_delayed_work(dev_priv->wq,
2761 &dev_priv->gt.idle_work,
2762 msecs_to_jiffies(50));
2763 goto out_rearm;
2764 }
2765
28176ef4 2766 if (dev_priv->gt.active_requests)
67d97da3 2767 goto out_unlock;
b29c19b6 2768
3b3f1650 2769 for_each_engine(engine, dev_priv, id)
67d97da3 2770 i915_gem_batch_pool_fini(&engine->batch_pool);
35c94185 2771
67d97da3
CW
2772 GEM_BUG_ON(!dev_priv->gt.awake);
2773 dev_priv->gt.awake = false;
2774 rearm_hangcheck = false;
30ecad77 2775
67d97da3
CW
2776 if (INTEL_GEN(dev_priv) >= 6)
2777 gen6_rps_idle(dev_priv);
2778 intel_runtime_pm_put(dev_priv);
2779out_unlock:
2780 mutex_unlock(&dev->struct_mutex);
b29c19b6 2781
67d97da3
CW
2782out_rearm:
2783 if (rearm_hangcheck) {
2784 GEM_BUG_ON(!dev_priv->gt.awake);
2785 i915_queue_hangcheck(dev_priv);
35c94185 2786 }
673a394b
EA
2787}
2788
b1f788c6
CW
2789void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2790{
2791 struct drm_i915_gem_object *obj = to_intel_bo(gem);
2792 struct drm_i915_file_private *fpriv = file->driver_priv;
2793 struct i915_vma *vma, *vn;
2794
2795 mutex_lock(&obj->base.dev->struct_mutex);
2796 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2797 if (vma->vm->file == fpriv)
2798 i915_vma_close(vma);
f8a7fde4
CW
2799
2800 if (i915_gem_object_is_active(obj) &&
2801 !i915_gem_object_has_active_reference(obj)) {
2802 i915_gem_object_set_active_reference(obj);
2803 i915_gem_object_get(obj);
2804 }
b1f788c6
CW
2805 mutex_unlock(&obj->base.dev->struct_mutex);
2806}
2807
e95433c7
CW
2808static unsigned long to_wait_timeout(s64 timeout_ns)
2809{
2810 if (timeout_ns < 0)
2811 return MAX_SCHEDULE_TIMEOUT;
2812
2813 if (timeout_ns == 0)
2814 return 0;
2815
2816 return nsecs_to_jiffies_timeout(timeout_ns);
2817}
2818
23ba4fd0
BW
2819/**
2820 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
2821 * @dev: drm device pointer
2822 * @data: ioctl data blob
2823 * @file: drm file pointer
23ba4fd0
BW
2824 *
2825 * Returns 0 if successful, else an error is returned with the remaining time in
2826 * the timeout parameter.
2827 * -ETIME: object is still busy after timeout
2828 * -ERESTARTSYS: signal interrupted the wait
2829 * -ENONENT: object doesn't exist
2830 * Also possible, but rare:
2831 * -EAGAIN: GPU wedged
2832 * -ENOMEM: damn
2833 * -ENODEV: Internal IRQ fail
2834 * -E?: The add request failed
2835 *
2836 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2837 * non-zero timeout parameter the wait ioctl will wait for the given number of
2838 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2839 * without holding struct_mutex the object may become re-busied before this
2840 * function completes. A similar but shorter * race condition exists in the busy
2841 * ioctl
2842 */
2843int
2844i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2845{
2846 struct drm_i915_gem_wait *args = data;
2847 struct drm_i915_gem_object *obj;
e95433c7
CW
2848 ktime_t start;
2849 long ret;
23ba4fd0 2850
11b5d511
DV
2851 if (args->flags != 0)
2852 return -EINVAL;
2853
03ac0642 2854 obj = i915_gem_object_lookup(file, args->bo_handle);
033d549b 2855 if (!obj)
23ba4fd0 2856 return -ENOENT;
23ba4fd0 2857
e95433c7
CW
2858 start = ktime_get();
2859
2860 ret = i915_gem_object_wait(obj,
2861 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
2862 to_wait_timeout(args->timeout_ns),
2863 to_rps_client(file));
2864
2865 if (args->timeout_ns > 0) {
2866 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
2867 if (args->timeout_ns < 0)
2868 args->timeout_ns = 0;
b4716185
CW
2869 }
2870
f0cd5182 2871 i915_gem_object_put(obj);
ff865885 2872 return ret;
23ba4fd0
BW
2873}
2874
8ef8561f
CW
2875static void __i915_vma_iounmap(struct i915_vma *vma)
2876{
20dfbde4 2877 GEM_BUG_ON(i915_vma_is_pinned(vma));
8ef8561f
CW
2878
2879 if (vma->iomap == NULL)
2880 return;
2881
2882 io_mapping_unmap(vma->iomap);
2883 vma->iomap = NULL;
2884}
2885
df0e9a28 2886int i915_vma_unbind(struct i915_vma *vma)
673a394b 2887{
07fe0b12 2888 struct drm_i915_gem_object *obj = vma->obj;
b0decaf7 2889 unsigned long active;
43e28f09 2890 int ret;
673a394b 2891
4c7d62c6
CW
2892 lockdep_assert_held(&obj->base.dev->struct_mutex);
2893
b0decaf7
CW
2894 /* First wait upon any activity as retiring the request may
2895 * have side-effects such as unpinning or even unbinding this vma.
2896 */
2897 active = i915_vma_get_active(vma);
df0e9a28 2898 if (active) {
b0decaf7
CW
2899 int idx;
2900
b1f788c6
CW
2901 /* When a closed VMA is retired, it is unbound - eek.
2902 * In order to prevent it from being recursively closed,
2903 * take a pin on the vma so that the second unbind is
2904 * aborted.
d07f0e59
CW
2905 *
2906 * Even more scary is that the retire callback may free
2907 * the object (last active vma). To prevent the explosion
2908 * we defer the actual object free to a worker that can
2909 * only proceed once it acquires the struct_mutex (which
2910 * we currently hold, therefore it cannot free this object
2911 * before we are finished).
b1f788c6 2912 */
20dfbde4 2913 __i915_vma_pin(vma);
b1f788c6 2914
b0decaf7
CW
2915 for_each_active(active, idx) {
2916 ret = i915_gem_active_retire(&vma->last_read[idx],
2917 &vma->vm->dev->struct_mutex);
2918 if (ret)
b1f788c6 2919 break;
b0decaf7
CW
2920 }
2921
20dfbde4 2922 __i915_vma_unpin(vma);
b1f788c6
CW
2923 if (ret)
2924 return ret;
2925
b0decaf7
CW
2926 GEM_BUG_ON(i915_vma_is_active(vma));
2927 }
2928
20dfbde4 2929 if (i915_vma_is_pinned(vma))
b0decaf7
CW
2930 return -EBUSY;
2931
b1f788c6
CW
2932 if (!drm_mm_node_allocated(&vma->node))
2933 goto destroy;
433544bd 2934
15717de2 2935 GEM_BUG_ON(obj->bind_count == 0);
a4f5ea64 2936 GEM_BUG_ON(!obj->mm.pages);
c4670ad0 2937
05a20d09 2938 if (i915_vma_is_map_and_fenceable(vma)) {
8b1bc9b4 2939 /* release the fence reg _after_ flushing */
49ef5294 2940 ret = i915_vma_put_fence(vma);
8b1bc9b4
DV
2941 if (ret)
2942 return ret;
8ef8561f 2943
cd3127d6
CW
2944 /* Force a pagefault for domain tracking on next user access */
2945 i915_gem_release_mmap(obj);
2946
8ef8561f 2947 __i915_vma_iounmap(vma);
05a20d09 2948 vma->flags &= ~I915_VMA_CAN_FENCE;
8b1bc9b4 2949 }
96b47b65 2950
50e046b6
CW
2951 if (likely(!vma->vm->closed)) {
2952 trace_i915_vma_unbind(vma);
2953 vma->vm->unbind_vma(vma);
2954 }
3272db53 2955 vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
6f65e29a 2956
50e046b6
CW
2957 drm_mm_remove_node(&vma->node);
2958 list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
2959
a4f5ea64 2960 if (vma->pages != obj->mm.pages) {
05a20d09
CW
2961 GEM_BUG_ON(!vma->pages);
2962 sg_free_table(vma->pages);
2963 kfree(vma->pages);
fe14d5f4 2964 }
247177dd 2965 vma->pages = NULL;
673a394b 2966
2f633156 2967 /* Since the unbound list is global, only move to that list if
b93dab6e 2968 * no more VMAs exist. */
15717de2 2969 if (--obj->bind_count == 0)
56cea323 2970 list_move_tail(&obj->global_link,
15717de2 2971 &to_i915(obj->base.dev)->mm.unbound_list);
673a394b 2972
70903c3b
CW
2973 /* And finally now the object is completely decoupled from this vma,
2974 * we can drop its hold on the backing storage and allow it to be
2975 * reaped by the shrinker.
2976 */
2977 i915_gem_object_unpin_pages(obj);
2978
b1f788c6 2979destroy:
3272db53 2980 if (unlikely(i915_vma_is_closed(vma)))
b1f788c6
CW
2981 i915_vma_destroy(vma);
2982
88241785 2983 return 0;
54cf91dc
CW
2984}
2985
73cb9701 2986static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
4df2faf4 2987{
73cb9701 2988 int ret, i;
4df2faf4 2989
73cb9701
CW
2990 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
2991 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
2992 if (ret)
2993 return ret;
2994 }
62e63007 2995
73cb9701
CW
2996 return 0;
2997}
2998
2999int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3000{
3001 struct i915_gem_timeline *tl;
3002 int ret;
3003
3004 list_for_each_entry(tl, &i915->gt.timelines, link) {
3005 ret = wait_for_timeline(tl, flags);
1ec14ad3
CW
3006 if (ret)
3007 return ret;
3008 }
4df2faf4 3009
8a1a49f9 3010 return 0;
4df2faf4
DV
3011}
3012
4144f9b5 3013static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3014 unsigned long cache_level)
3015{
4144f9b5 3016 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3017 struct drm_mm_node *other;
3018
4144f9b5
CW
3019 /*
3020 * On some machines we have to be careful when putting differing types
3021 * of snoopable memory together to avoid the prefetcher crossing memory
3022 * domains and dying. During vm initialisation, we decide whether or not
3023 * these constraints apply and set the drm_mm.color_adjust
3024 * appropriately.
42d6ab48 3025 */
4144f9b5 3026 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3027 return true;
3028
c6cfb325 3029 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3030 return true;
3031
3032 if (list_empty(&gtt_space->node_list))
3033 return true;
3034
3035 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3036 if (other->allocated && !other->hole_follows && other->color != cache_level)
3037 return false;
3038
3039 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3040 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3041 return false;
3042
3043 return true;
3044}
3045
673a394b 3046/**
59bfa124
CW
3047 * i915_vma_insert - finds a slot for the vma in its address space
3048 * @vma: the vma
91b2db6f 3049 * @size: requested size in bytes (can be larger than the VMA)
59bfa124 3050 * @alignment: required alignment
14bb2c11 3051 * @flags: mask of PIN_* flags to use
59bfa124
CW
3052 *
3053 * First we try to allocate some free space that meets the requirements for
3054 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
3055 * preferrably the oldest idle entry to make room for the new VMA.
3056 *
3057 * Returns:
3058 * 0 on success, negative error code otherwise.
673a394b 3059 */
59bfa124
CW
3060static int
3061i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
673a394b 3062{
59bfa124
CW
3063 struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
3064 struct drm_i915_gem_object *obj = vma->obj;
de180033 3065 u64 start, end;
07f73f69 3066 int ret;
673a394b 3067
3272db53 3068 GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
59bfa124 3069 GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
de180033
CW
3070
3071 size = max(size, vma->size);
3072 if (flags & PIN_MAPPABLE)
3e510a8e
CW
3073 size = i915_gem_get_ggtt_size(dev_priv, size,
3074 i915_gem_object_get_tiling(obj));
de180033 3075
d8923dcf
CW
3076 alignment = max(max(alignment, vma->display_alignment),
3077 i915_gem_get_ggtt_alignment(dev_priv, size,
3078 i915_gem_object_get_tiling(obj),
3079 flags & PIN_MAPPABLE));
a00b10c3 3080
101b506a 3081 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
de180033
CW
3082
3083 end = vma->vm->total;
101b506a 3084 if (flags & PIN_MAPPABLE)
91b2db6f 3085 end = min_t(u64, end, dev_priv->ggtt.mappable_end);
101b506a 3086 if (flags & PIN_ZONE_4G)
48ea1e32 3087 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
101b506a 3088
91e6711e
JL
3089 /* If binding the object/GGTT view requires more space than the entire
3090 * aperture has, reject it early before evicting everything in a vain
3091 * attempt to find space.
654fc607 3092 */
91e6711e 3093 if (size > end) {
de180033 3094 DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
91b2db6f 3095 size, obj->base.size,
1ec9e26d 3096 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3097 end);
59bfa124 3098 return -E2BIG;
654fc607
CW
3099 }
3100
a4f5ea64 3101 ret = i915_gem_object_pin_pages(obj);
6c085a72 3102 if (ret)
59bfa124 3103 return ret;
6c085a72 3104
506a8e87 3105 if (flags & PIN_OFFSET_FIXED) {
59bfa124 3106 u64 offset = flags & PIN_OFFSET_MASK;
de180033 3107 if (offset & (alignment - 1) || offset > end - size) {
506a8e87 3108 ret = -EINVAL;
de180033 3109 goto err_unpin;
506a8e87 3110 }
de180033 3111
506a8e87
CW
3112 vma->node.start = offset;
3113 vma->node.size = size;
3114 vma->node.color = obj->cache_level;
de180033 3115 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
506a8e87
CW
3116 if (ret) {
3117 ret = i915_gem_evict_for_vma(vma);
3118 if (ret == 0)
de180033
CW
3119 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3120 if (ret)
3121 goto err_unpin;
506a8e87 3122 }
101b506a 3123 } else {
de180033
CW
3124 u32 search_flag, alloc_flag;
3125
506a8e87
CW
3126 if (flags & PIN_HIGH) {
3127 search_flag = DRM_MM_SEARCH_BELOW;
3128 alloc_flag = DRM_MM_CREATE_TOP;
3129 } else {
3130 search_flag = DRM_MM_SEARCH_DEFAULT;
3131 alloc_flag = DRM_MM_CREATE_DEFAULT;
3132 }
101b506a 3133
954c4691
CW
3134 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3135 * so we know that we always have a minimum alignment of 4096.
3136 * The drm_mm range manager is optimised to return results
3137 * with zero alignment, so where possible use the optimal
3138 * path.
3139 */
3140 if (alignment <= 4096)
3141 alignment = 0;
3142
0a9ae0d7 3143search_free:
de180033
CW
3144 ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
3145 &vma->node,
506a8e87
CW
3146 size, alignment,
3147 obj->cache_level,
3148 start, end,
3149 search_flag,
3150 alloc_flag);
3151 if (ret) {
de180033 3152 ret = i915_gem_evict_something(vma->vm, size, alignment,
506a8e87
CW
3153 obj->cache_level,
3154 start, end,
3155 flags);
3156 if (ret == 0)
3157 goto search_free;
9731129c 3158
de180033 3159 goto err_unpin;
506a8e87 3160 }
ad16d2ed
CW
3161
3162 GEM_BUG_ON(vma->node.start < start);
3163 GEM_BUG_ON(vma->node.start + vma->node.size > end);
673a394b 3164 }
37508589 3165 GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
673a394b 3166
56cea323 3167 list_move_tail(&obj->global_link, &dev_priv->mm.bound_list);
de180033 3168 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
15717de2 3169 obj->bind_count++;
bf1a1092 3170
59bfa124 3171 return 0;
2f633156 3172
bc6bc15b 3173err_unpin:
2f633156 3174 i915_gem_object_unpin_pages(obj);
59bfa124 3175 return ret;
673a394b
EA
3176}
3177
000433b6 3178bool
2c22569b
CW
3179i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3180 bool force)
673a394b 3181{
673a394b
EA
3182 /* If we don't have a page list set up, then we're not pinned
3183 * to GPU, and we can ignore the cache flush because it'll happen
3184 * again at bind time.
3185 */
a4f5ea64 3186 if (!obj->mm.pages)
000433b6 3187 return false;
673a394b 3188
769ce464
ID
3189 /*
3190 * Stolen memory is always coherent with the GPU as it is explicitly
3191 * marked as wc by the system, or the system is cache-coherent.
3192 */
6a2c4232 3193 if (obj->stolen || obj->phys_handle)
000433b6 3194 return false;
769ce464 3195
9c23f7fc
CW
3196 /* If the GPU is snooping the contents of the CPU cache,
3197 * we do not need to manually clear the CPU cache lines. However,
3198 * the caches are only snooped when the render cache is
3199 * flushed/invalidated. As we always have to emit invalidations
3200 * and flushes when moving into and out of the RENDER domain, correct
3201 * snooping behaviour occurs naturally as the result of our domain
3202 * tracking.
3203 */
0f71979a
CW
3204 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3205 obj->cache_dirty = true;
000433b6 3206 return false;
0f71979a 3207 }
9c23f7fc 3208
1c5d22f7 3209 trace_i915_gem_object_clflush(obj);
a4f5ea64 3210 drm_clflush_sg(obj->mm.pages);
0f71979a 3211 obj->cache_dirty = false;
000433b6
CW
3212
3213 return true;
e47c68e9
EA
3214}
3215
3216/** Flushes the GTT write domain for the object if it's dirty. */
3217static void
05394f39 3218i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3219{
3b5724d7 3220 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1c5d22f7 3221
05394f39 3222 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3223 return;
3224
63256ec5 3225 /* No actual flushing is required for the GTT write domain. Writes
3b5724d7 3226 * to it "immediately" go to main memory as far as we know, so there's
e47c68e9 3227 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3228 *
3229 * However, we do have to enforce the order so that all writes through
3230 * the GTT land before any writes to the device, such as updates to
3231 * the GATT itself.
3b5724d7
CW
3232 *
3233 * We also have to wait a bit for the writes to land from the GTT.
3234 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3235 * timing. This issue has only been observed when switching quickly
3236 * between GTT writes and CPU reads from inside the kernel on recent hw,
3237 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3238 * system agents we cannot reproduce this behaviour).
e47c68e9 3239 */
63256ec5 3240 wmb();
3b5724d7 3241 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3b3f1650 3242 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
63256ec5 3243
d243ad82 3244 intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
f99d7069 3245
b0dc465f 3246 obj->base.write_domain = 0;
1c5d22f7 3247 trace_i915_gem_object_change_domain(obj,
05394f39 3248 obj->base.read_domains,
b0dc465f 3249 I915_GEM_DOMAIN_GTT);
e47c68e9
EA
3250}
3251
3252/** Flushes the CPU write domain for the object if it's dirty. */
3253static void
e62b59e4 3254i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3255{
05394f39 3256 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3257 return;
3258
e62b59e4 3259 if (i915_gem_clflush_object(obj, obj->pin_display))
c033666a 3260 i915_gem_chipset_flush(to_i915(obj->base.dev));
000433b6 3261
de152b62 3262 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3263
b0dc465f 3264 obj->base.write_domain = 0;
1c5d22f7 3265 trace_i915_gem_object_change_domain(obj,
05394f39 3266 obj->base.read_domains,
b0dc465f 3267 I915_GEM_DOMAIN_CPU);
e47c68e9
EA
3268}
3269
2ef7eeaa
EA
3270/**
3271 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3272 * @obj: object to act on
3273 * @write: ask for write access or read only
2ef7eeaa
EA
3274 *
3275 * This function returns when the move is complete, including waiting on
3276 * flushes to occur.
3277 */
79e53945 3278int
2021746e 3279i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3280{
1c5d22f7 3281 uint32_t old_write_domain, old_read_domains;
e47c68e9 3282 int ret;
2ef7eeaa 3283
e95433c7 3284 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3285
e95433c7
CW
3286 ret = i915_gem_object_wait(obj,
3287 I915_WAIT_INTERRUPTIBLE |
3288 I915_WAIT_LOCKED |
3289 (write ? I915_WAIT_ALL : 0),
3290 MAX_SCHEDULE_TIMEOUT,
3291 NULL);
88241785
CW
3292 if (ret)
3293 return ret;
3294
c13d87ea
CW
3295 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3296 return 0;
3297
43566ded
CW
3298 /* Flush and acquire obj->pages so that we are coherent through
3299 * direct access in memory with previous cached writes through
3300 * shmemfs and that our cache domain tracking remains valid.
3301 * For example, if the obj->filp was moved to swap without us
3302 * being notified and releasing the pages, we would mistakenly
3303 * continue to assume that the obj remained out of the CPU cached
3304 * domain.
3305 */
a4f5ea64 3306 ret = i915_gem_object_pin_pages(obj);
43566ded
CW
3307 if (ret)
3308 return ret;
3309
e62b59e4 3310 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3311
d0a57789
CW
3312 /* Serialise direct access to this object with the barriers for
3313 * coherent writes from the GPU, by effectively invalidating the
3314 * GTT domain upon first access.
3315 */
3316 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3317 mb();
3318
05394f39
CW
3319 old_write_domain = obj->base.write_domain;
3320 old_read_domains = obj->base.read_domains;
1c5d22f7 3321
e47c68e9
EA
3322 /* It should now be out of any other write domains, and we can update
3323 * the domain values for our changes.
3324 */
40e62d5d 3325 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 3326 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3327 if (write) {
05394f39
CW
3328 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3329 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
a4f5ea64 3330 obj->mm.dirty = true;
2ef7eeaa
EA
3331 }
3332
1c5d22f7
CW
3333 trace_i915_gem_object_change_domain(obj,
3334 old_read_domains,
3335 old_write_domain);
3336
a4f5ea64 3337 i915_gem_object_unpin_pages(obj);
e47c68e9
EA
3338 return 0;
3339}
3340
ef55f92a
CW
3341/**
3342 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
3343 * @obj: object to act on
3344 * @cache_level: new cache level to set for the object
ef55f92a
CW
3345 *
3346 * After this function returns, the object will be in the new cache-level
3347 * across all GTT and the contents of the backing storage will be coherent,
3348 * with respect to the new cache-level. In order to keep the backing storage
3349 * coherent for all users, we only allow a single cache level to be set
3350 * globally on the object and prevent it from being changed whilst the
3351 * hardware is reading from the object. That is if the object is currently
3352 * on the scanout it will be set to uncached (or equivalent display
3353 * cache coherency) and all non-MOCS GPU access will also be uncached so
3354 * that all direct access to the scanout remains coherent.
3355 */
e4ffd173
CW
3356int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3357 enum i915_cache_level cache_level)
3358{
aa653a68 3359 struct i915_vma *vma;
ed75a55b 3360 int ret = 0;
e4ffd173 3361
4c7d62c6
CW
3362 lockdep_assert_held(&obj->base.dev->struct_mutex);
3363
e4ffd173 3364 if (obj->cache_level == cache_level)
ed75a55b 3365 goto out;
e4ffd173 3366
ef55f92a
CW
3367 /* Inspect the list of currently bound VMA and unbind any that would
3368 * be invalid given the new cache-level. This is principally to
3369 * catch the issue of the CS prefetch crossing page boundaries and
3370 * reading an invalid PTE on older architectures.
3371 */
aa653a68
CW
3372restart:
3373 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3374 if (!drm_mm_node_allocated(&vma->node))
3375 continue;
3376
20dfbde4 3377 if (i915_vma_is_pinned(vma)) {
ef55f92a
CW
3378 DRM_DEBUG("can not change the cache level of pinned objects\n");
3379 return -EBUSY;
3380 }
3381
aa653a68
CW
3382 if (i915_gem_valid_gtt_space(vma, cache_level))
3383 continue;
3384
3385 ret = i915_vma_unbind(vma);
3386 if (ret)
3387 return ret;
3388
3389 /* As unbinding may affect other elements in the
3390 * obj->vma_list (due to side-effects from retiring
3391 * an active vma), play safe and restart the iterator.
3392 */
3393 goto restart;
42d6ab48
CW
3394 }
3395
ef55f92a
CW
3396 /* We can reuse the existing drm_mm nodes but need to change the
3397 * cache-level on the PTE. We could simply unbind them all and
3398 * rebind with the correct cache-level on next use. However since
3399 * we already have a valid slot, dma mapping, pages etc, we may as
3400 * rewrite the PTE in the belief that doing so tramples upon less
3401 * state and so involves less work.
3402 */
15717de2 3403 if (obj->bind_count) {
ef55f92a
CW
3404 /* Before we change the PTE, the GPU must not be accessing it.
3405 * If we wait upon the object, we know that all the bound
3406 * VMA are no longer active.
3407 */
e95433c7
CW
3408 ret = i915_gem_object_wait(obj,
3409 I915_WAIT_INTERRUPTIBLE |
3410 I915_WAIT_LOCKED |
3411 I915_WAIT_ALL,
3412 MAX_SCHEDULE_TIMEOUT,
3413 NULL);
e4ffd173
CW
3414 if (ret)
3415 return ret;
3416
aa653a68 3417 if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
ef55f92a
CW
3418 /* Access to snoopable pages through the GTT is
3419 * incoherent and on some machines causes a hard
3420 * lockup. Relinquish the CPU mmaping to force
3421 * userspace to refault in the pages and we can
3422 * then double check if the GTT mapping is still
3423 * valid for that pointer access.
3424 */
3425 i915_gem_release_mmap(obj);
3426
3427 /* As we no longer need a fence for GTT access,
3428 * we can relinquish it now (and so prevent having
3429 * to steal a fence from someone else on the next
3430 * fence request). Note GPU activity would have
3431 * dropped the fence as all snoopable access is
3432 * supposed to be linear.
3433 */
49ef5294
CW
3434 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3435 ret = i915_vma_put_fence(vma);
3436 if (ret)
3437 return ret;
3438 }
ef55f92a
CW
3439 } else {
3440 /* We either have incoherent backing store and
3441 * so no GTT access or the architecture is fully
3442 * coherent. In such cases, existing GTT mmaps
3443 * ignore the cache bit in the PTE and we can
3444 * rewrite it without confusing the GPU or having
3445 * to force userspace to fault back in its mmaps.
3446 */
e4ffd173
CW
3447 }
3448
1c7f4bca 3449 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3450 if (!drm_mm_node_allocated(&vma->node))
3451 continue;
3452
3453 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3454 if (ret)
3455 return ret;
3456 }
e4ffd173
CW
3457 }
3458
1c7f4bca 3459 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
3460 vma->node.color = cache_level;
3461 obj->cache_level = cache_level;
3462
ed75a55b 3463out:
ef55f92a
CW
3464 /* Flush the dirty CPU caches to the backing storage so that the
3465 * object is now coherent at its new cache level (with respect
3466 * to the access domain).
3467 */
b50a5371 3468 if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
0f71979a 3469 if (i915_gem_clflush_object(obj, true))
c033666a 3470 i915_gem_chipset_flush(to_i915(obj->base.dev));
e4ffd173
CW
3471 }
3472
e4ffd173
CW
3473 return 0;
3474}
3475
199adf40
BW
3476int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3477 struct drm_file *file)
e6994aee 3478{
199adf40 3479 struct drm_i915_gem_caching *args = data;
e6994aee 3480 struct drm_i915_gem_object *obj;
fbbd37b3 3481 int err = 0;
e6994aee 3482
fbbd37b3
CW
3483 rcu_read_lock();
3484 obj = i915_gem_object_lookup_rcu(file, args->handle);
3485 if (!obj) {
3486 err = -ENOENT;
3487 goto out;
3488 }
e6994aee 3489
651d794f
CW
3490 switch (obj->cache_level) {
3491 case I915_CACHE_LLC:
3492 case I915_CACHE_L3_LLC:
3493 args->caching = I915_CACHING_CACHED;
3494 break;
3495
4257d3ba
CW
3496 case I915_CACHE_WT:
3497 args->caching = I915_CACHING_DISPLAY;
3498 break;
3499
651d794f
CW
3500 default:
3501 args->caching = I915_CACHING_NONE;
3502 break;
3503 }
fbbd37b3
CW
3504out:
3505 rcu_read_unlock();
3506 return err;
e6994aee
CW
3507}
3508
199adf40
BW
3509int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3510 struct drm_file *file)
e6994aee 3511{
9c870d03 3512 struct drm_i915_private *i915 = to_i915(dev);
199adf40 3513 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3514 struct drm_i915_gem_object *obj;
3515 enum i915_cache_level level;
3516 int ret;
3517
199adf40
BW
3518 switch (args->caching) {
3519 case I915_CACHING_NONE:
e6994aee
CW
3520 level = I915_CACHE_NONE;
3521 break;
199adf40 3522 case I915_CACHING_CACHED:
e5756c10
ID
3523 /*
3524 * Due to a HW issue on BXT A stepping, GPU stores via a
3525 * snooped mapping may leave stale data in a corresponding CPU
3526 * cacheline, whereas normally such cachelines would get
3527 * invalidated.
3528 */
9c870d03 3529 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
e5756c10
ID
3530 return -ENODEV;
3531
e6994aee
CW
3532 level = I915_CACHE_LLC;
3533 break;
4257d3ba 3534 case I915_CACHING_DISPLAY:
9c870d03 3535 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4257d3ba 3536 break;
e6994aee
CW
3537 default:
3538 return -EINVAL;
3539 }
3540
3bc2913e
BW
3541 ret = i915_mutex_lock_interruptible(dev);
3542 if (ret)
9c870d03 3543 return ret;
3bc2913e 3544
03ac0642
CW
3545 obj = i915_gem_object_lookup(file, args->handle);
3546 if (!obj) {
e6994aee
CW
3547 ret = -ENOENT;
3548 goto unlock;
3549 }
3550
3551 ret = i915_gem_object_set_cache_level(obj, level);
f8c417cd 3552 i915_gem_object_put(obj);
e6994aee
CW
3553unlock:
3554 mutex_unlock(&dev->struct_mutex);
3555 return ret;
3556}
3557
b9241ea3 3558/*
2da3b9b9
CW
3559 * Prepare buffer for display plane (scanout, cursors, etc).
3560 * Can be called from an uninterruptible phase (modesetting) and allows
3561 * any flushes to be pipelined (for pageflips).
b9241ea3 3562 */
058d88c4 3563struct i915_vma *
2da3b9b9
CW
3564i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3565 u32 alignment,
e6617330 3566 const struct i915_ggtt_view *view)
b9241ea3 3567{
058d88c4 3568 struct i915_vma *vma;
2da3b9b9 3569 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3570 int ret;
3571
4c7d62c6
CW
3572 lockdep_assert_held(&obj->base.dev->struct_mutex);
3573
cc98b413
CW
3574 /* Mark the pin_display early so that we account for the
3575 * display coherency whilst setting up the cache domains.
3576 */
8a0c39b1 3577 obj->pin_display++;
cc98b413 3578
a7ef0640
EA
3579 /* The display engine is not coherent with the LLC cache on gen6. As
3580 * a result, we make sure that the pinning that is about to occur is
3581 * done with uncached PTEs. This is lowest common denominator for all
3582 * chipsets.
3583 *
3584 * However for gen6+, we could do better by using the GFDT bit instead
3585 * of uncaching, which would allow us to flush all the LLC-cached data
3586 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3587 */
651d794f 3588 ret = i915_gem_object_set_cache_level(obj,
8652744b
TU
3589 HAS_WT(to_i915(obj->base.dev)) ?
3590 I915_CACHE_WT : I915_CACHE_NONE);
058d88c4
CW
3591 if (ret) {
3592 vma = ERR_PTR(ret);
cc98b413 3593 goto err_unpin_display;
058d88c4 3594 }
a7ef0640 3595
2da3b9b9
CW
3596 /* As the user may map the buffer once pinned in the display plane
3597 * (e.g. libkms for the bootup splash), we have to ensure that we
2efb813d
CW
3598 * always use map_and_fenceable for all scanout buffers. However,
3599 * it may simply be too big to fit into mappable, in which case
3600 * put it anyway and hope that userspace can cope (but always first
3601 * try to preserve the existing ABI).
2da3b9b9 3602 */
2efb813d
CW
3603 vma = ERR_PTR(-ENOSPC);
3604 if (view->type == I915_GGTT_VIEW_NORMAL)
3605 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3606 PIN_MAPPABLE | PIN_NONBLOCK);
3607 if (IS_ERR(vma))
3608 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, 0);
058d88c4 3609 if (IS_ERR(vma))
cc98b413 3610 goto err_unpin_display;
2da3b9b9 3611
d8923dcf
CW
3612 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3613
e62b59e4 3614 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 3615
2da3b9b9 3616 old_write_domain = obj->base.write_domain;
05394f39 3617 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3618
3619 /* It should now be out of any other write domains, and we can update
3620 * the domain values for our changes.
3621 */
e5f1d962 3622 obj->base.write_domain = 0;
05394f39 3623 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3624
3625 trace_i915_gem_object_change_domain(obj,
3626 old_read_domains,
2da3b9b9 3627 old_write_domain);
b9241ea3 3628
058d88c4 3629 return vma;
cc98b413
CW
3630
3631err_unpin_display:
8a0c39b1 3632 obj->pin_display--;
058d88c4 3633 return vma;
cc98b413
CW
3634}
3635
3636void
058d88c4 3637i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
cc98b413 3638{
4c7d62c6
CW
3639 lockdep_assert_held(&vma->vm->dev->struct_mutex);
3640
058d88c4 3641 if (WARN_ON(vma->obj->pin_display == 0))
8a0c39b1
TU
3642 return;
3643
d8923dcf
CW
3644 if (--vma->obj->pin_display == 0)
3645 vma->display_alignment = 0;
e6617330 3646
383d5823
CW
3647 /* Bump the LRU to try and avoid premature eviction whilst flipping */
3648 if (!i915_vma_is_active(vma))
3649 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3650
058d88c4 3651 i915_vma_unpin(vma);
b9241ea3
ZW
3652}
3653
e47c68e9
EA
3654/**
3655 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
3656 * @obj: object to act on
3657 * @write: requesting write or read-only access
e47c68e9
EA
3658 *
3659 * This function returns when the move is complete, including waiting on
3660 * flushes to occur.
3661 */
dabdfe02 3662int
919926ae 3663i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3664{
1c5d22f7 3665 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3666 int ret;
3667
e95433c7 3668 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3669
e95433c7
CW
3670 ret = i915_gem_object_wait(obj,
3671 I915_WAIT_INTERRUPTIBLE |
3672 I915_WAIT_LOCKED |
3673 (write ? I915_WAIT_ALL : 0),
3674 MAX_SCHEDULE_TIMEOUT,
3675 NULL);
88241785
CW
3676 if (ret)
3677 return ret;
3678
c13d87ea
CW
3679 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3680 return 0;
3681
e47c68e9 3682 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3683
05394f39
CW
3684 old_write_domain = obj->base.write_domain;
3685 old_read_domains = obj->base.read_domains;
1c5d22f7 3686
e47c68e9 3687 /* Flush the CPU cache if it's still invalid. */
05394f39 3688 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3689 i915_gem_clflush_object(obj, false);
2ef7eeaa 3690
05394f39 3691 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3692 }
3693
3694 /* It should now be out of any other write domains, and we can update
3695 * the domain values for our changes.
3696 */
40e62d5d 3697 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3698
3699 /* If we're writing through the CPU, then the GPU read domains will
3700 * need to be invalidated at next use.
3701 */
3702 if (write) {
05394f39
CW
3703 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3704 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3705 }
2ef7eeaa 3706
1c5d22f7
CW
3707 trace_i915_gem_object_change_domain(obj,
3708 old_read_domains,
3709 old_write_domain);
3710
2ef7eeaa
EA
3711 return 0;
3712}
3713
673a394b
EA
3714/* Throttle our rendering by waiting until the ring has completed our requests
3715 * emitted over 20 msec ago.
3716 *
b962442e
EA
3717 * Note that if we were to use the current jiffies each time around the loop,
3718 * we wouldn't escape the function with any frames outstanding if the time to
3719 * render a frame was over 20ms.
3720 *
673a394b
EA
3721 * This should get us reasonable parallelism between CPU and GPU but also
3722 * relatively low latency when blocking on a particular request to finish.
3723 */
40a5f0de 3724static int
f787a5f5 3725i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3726{
fac5e23e 3727 struct drm_i915_private *dev_priv = to_i915(dev);
f787a5f5 3728 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 3729 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 3730 struct drm_i915_gem_request *request, *target = NULL;
e95433c7 3731 long ret;
93533c29 3732
f4457ae7
CW
3733 /* ABI: return -EIO if already wedged */
3734 if (i915_terminally_wedged(&dev_priv->gpu_error))
3735 return -EIO;
e110e8d6 3736
1c25595f 3737 spin_lock(&file_priv->mm.lock);
f787a5f5 3738 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3739 if (time_after_eq(request->emitted_jiffies, recent_enough))
3740 break;
40a5f0de 3741
fcfa423c
JH
3742 /*
3743 * Note that the request might not have been submitted yet.
3744 * In which case emitted_jiffies will be zero.
3745 */
3746 if (!request->emitted_jiffies)
3747 continue;
3748
54fb2411 3749 target = request;
b962442e 3750 }
ff865885 3751 if (target)
e8a261ea 3752 i915_gem_request_get(target);
1c25595f 3753 spin_unlock(&file_priv->mm.lock);
40a5f0de 3754
54fb2411 3755 if (target == NULL)
f787a5f5 3756 return 0;
2bc43b5c 3757
e95433c7
CW
3758 ret = i915_wait_request(target,
3759 I915_WAIT_INTERRUPTIBLE,
3760 MAX_SCHEDULE_TIMEOUT);
e8a261ea 3761 i915_gem_request_put(target);
ff865885 3762
e95433c7 3763 return ret < 0 ? ret : 0;
40a5f0de
EA
3764}
3765
d23db88c 3766static bool
91b2db6f 3767i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
d23db88c 3768{
59bfa124
CW
3769 if (!drm_mm_node_allocated(&vma->node))
3770 return false;
3771
91b2db6f
CW
3772 if (vma->node.size < size)
3773 return true;
3774
3775 if (alignment && vma->node.start & (alignment - 1))
d23db88c
CW
3776 return true;
3777
05a20d09 3778 if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
d23db88c
CW
3779 return true;
3780
3781 if (flags & PIN_OFFSET_BIAS &&
3782 vma->node.start < (flags & PIN_OFFSET_MASK))
3783 return true;
3784
506a8e87
CW
3785 if (flags & PIN_OFFSET_FIXED &&
3786 vma->node.start != (flags & PIN_OFFSET_MASK))
3787 return true;
3788
d23db88c
CW
3789 return false;
3790}
3791
d0710abb
CW
3792void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
3793{
3794 struct drm_i915_gem_object *obj = vma->obj;
a9f1481f 3795 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
d0710abb
CW
3796 bool mappable, fenceable;
3797 u32 fence_size, fence_alignment;
3798
a9f1481f 3799 fence_size = i915_gem_get_ggtt_size(dev_priv,
05a20d09 3800 vma->size,
3e510a8e 3801 i915_gem_object_get_tiling(obj));
a9f1481f 3802 fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
05a20d09 3803 vma->size,
3e510a8e 3804 i915_gem_object_get_tiling(obj),
ad1a7d20 3805 true);
d0710abb
CW
3806
3807 fenceable = (vma->node.size == fence_size &&
3808 (vma->node.start & (fence_alignment - 1)) == 0);
3809
3810 mappable = (vma->node.start + fence_size <=
a9f1481f 3811 dev_priv->ggtt.mappable_end);
d0710abb 3812
07ee2bce
TU
3813 /*
3814 * Explicitly disable for rotated VMA since the display does not
3815 * need the fence and the VMA is not accessible to other users.
3816 */
3817 if (mappable && fenceable &&
3818 vma->ggtt_view.type != I915_GGTT_VIEW_ROTATED)
05a20d09
CW
3819 vma->flags |= I915_VMA_CAN_FENCE;
3820 else
3821 vma->flags &= ~I915_VMA_CAN_FENCE;
d0710abb
CW
3822}
3823
305bc234
CW
3824int __i915_vma_do_pin(struct i915_vma *vma,
3825 u64 size, u64 alignment, u64 flags)
673a394b 3826{
305bc234 3827 unsigned int bound = vma->flags;
673a394b
EA
3828 int ret;
3829
4c7d62c6 3830 lockdep_assert_held(&vma->vm->dev->struct_mutex);
59bfa124 3831 GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3272db53 3832 GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
d7f46fc4 3833
305bc234
CW
3834 if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
3835 ret = -EBUSY;
3836 goto err;
3837 }
ac0c6b5a 3838
de895082 3839 if ((bound & I915_VMA_BIND_MASK) == 0) {
59bfa124
CW
3840 ret = i915_vma_insert(vma, size, alignment, flags);
3841 if (ret)
3842 goto err;
fe14d5f4 3843 }
74898d7e 3844
59bfa124 3845 ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3b16525c 3846 if (ret)
59bfa124 3847 goto err;
3b16525c 3848
3272db53 3849 if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
d0710abb 3850 __i915_vma_set_map_and_fenceable(vma);
ef79e17c 3851
3b16525c 3852 GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
673a394b 3853 return 0;
673a394b 3854
59bfa124
CW
3855err:
3856 __i915_vma_unpin(vma);
3857 return ret;
ec7adb6e
JL
3858}
3859
058d88c4 3860struct i915_vma *
ec7adb6e
JL
3861i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3862 const struct i915_ggtt_view *view,
91b2db6f 3863 u64 size,
2ffffd0f
CW
3864 u64 alignment,
3865 u64 flags)
ec7adb6e 3866{
ad16d2ed
CW
3867 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3868 struct i915_address_space *vm = &dev_priv->ggtt.base;
59bfa124
CW
3869 struct i915_vma *vma;
3870 int ret;
72e96d64 3871
4c7d62c6
CW
3872 lockdep_assert_held(&obj->base.dev->struct_mutex);
3873
058d88c4 3874 vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
59bfa124 3875 if (IS_ERR(vma))
058d88c4 3876 return vma;
59bfa124
CW
3877
3878 if (i915_vma_misplaced(vma, size, alignment, flags)) {
3879 if (flags & PIN_NONBLOCK &&
3880 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
058d88c4 3881 return ERR_PTR(-ENOSPC);
59bfa124 3882
ad16d2ed
CW
3883 if (flags & PIN_MAPPABLE) {
3884 u32 fence_size;
3885
3886 fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
3887 i915_gem_object_get_tiling(obj));
3888 /* If the required space is larger than the available
3889 * aperture, we will not able to find a slot for the
3890 * object and unbinding the object now will be in
3891 * vain. Worse, doing so may cause us to ping-pong
3892 * the object in and out of the Global GTT and
3893 * waste a lot of cycles under the mutex.
3894 */
3895 if (fence_size > dev_priv->ggtt.mappable_end)
3896 return ERR_PTR(-E2BIG);
3897
3898 /* If NONBLOCK is set the caller is optimistically
3899 * trying to cache the full object within the mappable
3900 * aperture, and *must* have a fallback in place for
3901 * situations where we cannot bind the object. We
3902 * can be a little more lax here and use the fallback
3903 * more often to avoid costly migrations of ourselves
3904 * and other objects within the aperture.
3905 *
3906 * Half-the-aperture is used as a simple heuristic.
3907 * More interesting would to do search for a free
3908 * block prior to making the commitment to unbind.
3909 * That caters for the self-harm case, and with a
3910 * little more heuristics (e.g. NOFAULT, NOEVICT)
3911 * we could try to minimise harm to others.
3912 */
3913 if (flags & PIN_NONBLOCK &&
3914 fence_size > dev_priv->ggtt.mappable_end / 2)
3915 return ERR_PTR(-ENOSPC);
3916 }
3917
59bfa124
CW
3918 WARN(i915_vma_is_pinned(vma),
3919 "bo is already pinned in ggtt with incorrect alignment:"
05a20d09
CW
3920 " offset=%08x, req.alignment=%llx,"
3921 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3922 i915_ggtt_offset(vma), alignment,
59bfa124 3923 !!(flags & PIN_MAPPABLE),
05a20d09 3924 i915_vma_is_map_and_fenceable(vma));
59bfa124
CW
3925 ret = i915_vma_unbind(vma);
3926 if (ret)
058d88c4 3927 return ERR_PTR(ret);
59bfa124
CW
3928 }
3929
058d88c4
CW
3930 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3931 if (ret)
3932 return ERR_PTR(ret);
ec7adb6e 3933
058d88c4 3934 return vma;
673a394b
EA
3935}
3936
edf6b76f 3937static __always_inline unsigned int __busy_read_flag(unsigned int id)
3fdc13c7
CW
3938{
3939 /* Note that we could alias engines in the execbuf API, but
3940 * that would be very unwise as it prevents userspace from
3941 * fine control over engine selection. Ahem.
3942 *
3943 * This should be something like EXEC_MAX_ENGINE instead of
3944 * I915_NUM_ENGINES.
3945 */
3946 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3947 return 0x10000 << id;
3948}
3949
3950static __always_inline unsigned int __busy_write_id(unsigned int id)
3951{
70cb472c
CW
3952 /* The uABI guarantees an active writer is also amongst the read
3953 * engines. This would be true if we accessed the activity tracking
3954 * under the lock, but as we perform the lookup of the object and
3955 * its activity locklessly we can not guarantee that the last_write
3956 * being active implies that we have set the same engine flag from
3957 * last_read - hence we always set both read and write busy for
3958 * last_write.
3959 */
3960 return id | __busy_read_flag(id);
3fdc13c7
CW
3961}
3962
edf6b76f 3963static __always_inline unsigned int
d07f0e59 3964__busy_set_if_active(const struct dma_fence *fence,
3fdc13c7
CW
3965 unsigned int (*flag)(unsigned int id))
3966{
d07f0e59 3967 struct drm_i915_gem_request *rq;
3fdc13c7 3968
d07f0e59
CW
3969 /* We have to check the current hw status of the fence as the uABI
3970 * guarantees forward progress. We could rely on the idle worker
3971 * to eventually flush us, but to minimise latency just ask the
3972 * hardware.
1255501d 3973 *
d07f0e59 3974 * Note we only report on the status of native fences.
1255501d 3975 */
d07f0e59
CW
3976 if (!dma_fence_is_i915(fence))
3977 return 0;
3978
3979 /* opencode to_request() in order to avoid const warnings */
3980 rq = container_of(fence, struct drm_i915_gem_request, fence);
3981 if (i915_gem_request_completed(rq))
3982 return 0;
3983
3984 return flag(rq->engine->exec_id);
3fdc13c7
CW
3985}
3986
edf6b76f 3987static __always_inline unsigned int
d07f0e59 3988busy_check_reader(const struct dma_fence *fence)
3fdc13c7 3989{
d07f0e59 3990 return __busy_set_if_active(fence, __busy_read_flag);
3fdc13c7
CW
3991}
3992
edf6b76f 3993static __always_inline unsigned int
d07f0e59 3994busy_check_writer(const struct dma_fence *fence)
3fdc13c7 3995{
d07f0e59
CW
3996 if (!fence)
3997 return 0;
3998
3999 return __busy_set_if_active(fence, __busy_write_id);
3fdc13c7
CW
4000}
4001
673a394b
EA
4002int
4003i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4004 struct drm_file *file)
673a394b
EA
4005{
4006 struct drm_i915_gem_busy *args = data;
05394f39 4007 struct drm_i915_gem_object *obj;
d07f0e59
CW
4008 struct reservation_object_list *list;
4009 unsigned int seq;
fbbd37b3 4010 int err;
673a394b 4011
d07f0e59 4012 err = -ENOENT;
fbbd37b3
CW
4013 rcu_read_lock();
4014 obj = i915_gem_object_lookup_rcu(file, args->handle);
d07f0e59 4015 if (!obj)
fbbd37b3 4016 goto out;
d1b851fc 4017
d07f0e59
CW
4018 /* A discrepancy here is that we do not report the status of
4019 * non-i915 fences, i.e. even though we may report the object as idle,
4020 * a call to set-domain may still stall waiting for foreign rendering.
4021 * This also means that wait-ioctl may report an object as busy,
4022 * where busy-ioctl considers it idle.
4023 *
4024 * We trade the ability to warn of foreign fences to report on which
4025 * i915 engines are active for the object.
4026 *
4027 * Alternatively, we can trade that extra information on read/write
4028 * activity with
4029 * args->busy =
4030 * !reservation_object_test_signaled_rcu(obj->resv, true);
4031 * to report the overall busyness. This is what the wait-ioctl does.
4032 *
4033 */
4034retry:
4035 seq = raw_read_seqcount(&obj->resv->seq);
426960be 4036
d07f0e59
CW
4037 /* Translate the exclusive fence to the READ *and* WRITE engine */
4038 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3fdc13c7 4039
d07f0e59
CW
4040 /* Translate shared fences to READ set of engines */
4041 list = rcu_dereference(obj->resv->fence);
4042 if (list) {
4043 unsigned int shared_count = list->shared_count, i;
3fdc13c7 4044
d07f0e59
CW
4045 for (i = 0; i < shared_count; ++i) {
4046 struct dma_fence *fence =
4047 rcu_dereference(list->shared[i]);
4048
4049 args->busy |= busy_check_reader(fence);
4050 }
426960be 4051 }
673a394b 4052
d07f0e59
CW
4053 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4054 goto retry;
4055
4056 err = 0;
fbbd37b3
CW
4057out:
4058 rcu_read_unlock();
4059 return err;
673a394b
EA
4060}
4061
4062int
4063i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4064 struct drm_file *file_priv)
4065{
0206e353 4066 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4067}
4068
3ef94daa
CW
4069int
4070i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4071 struct drm_file *file_priv)
4072{
fac5e23e 4073 struct drm_i915_private *dev_priv = to_i915(dev);
3ef94daa 4074 struct drm_i915_gem_madvise *args = data;
05394f39 4075 struct drm_i915_gem_object *obj;
1233e2db 4076 int err;
3ef94daa
CW
4077
4078 switch (args->madv) {
4079 case I915_MADV_DONTNEED:
4080 case I915_MADV_WILLNEED:
4081 break;
4082 default:
4083 return -EINVAL;
4084 }
4085
03ac0642 4086 obj = i915_gem_object_lookup(file_priv, args->handle);
1233e2db
CW
4087 if (!obj)
4088 return -ENOENT;
4089
4090 err = mutex_lock_interruptible(&obj->mm.lock);
4091 if (err)
4092 goto out;
3ef94daa 4093
a4f5ea64 4094 if (obj->mm.pages &&
3e510a8e 4095 i915_gem_object_is_tiled(obj) &&
656bfa3a 4096 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
bc0629a7
CW
4097 if (obj->mm.madv == I915_MADV_WILLNEED) {
4098 GEM_BUG_ON(!obj->mm.quirked);
a4f5ea64 4099 __i915_gem_object_unpin_pages(obj);
bc0629a7
CW
4100 obj->mm.quirked = false;
4101 }
4102 if (args->madv == I915_MADV_WILLNEED) {
a4f5ea64 4103 __i915_gem_object_pin_pages(obj);
bc0629a7
CW
4104 obj->mm.quirked = true;
4105 }
656bfa3a
DV
4106 }
4107
a4f5ea64
CW
4108 if (obj->mm.madv != __I915_MADV_PURGED)
4109 obj->mm.madv = args->madv;
3ef94daa 4110
6c085a72 4111 /* if the object is no longer attached, discard its backing storage */
a4f5ea64 4112 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
2d7ef395
CW
4113 i915_gem_object_truncate(obj);
4114
a4f5ea64 4115 args->retained = obj->mm.madv != __I915_MADV_PURGED;
1233e2db 4116 mutex_unlock(&obj->mm.lock);
bb6baf76 4117
1233e2db 4118out:
f8c417cd 4119 i915_gem_object_put(obj);
1233e2db 4120 return err;
3ef94daa
CW
4121}
4122
37e680a1
CW
4123void i915_gem_object_init(struct drm_i915_gem_object *obj,
4124 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4125{
1233e2db
CW
4126 mutex_init(&obj->mm.lock);
4127
56cea323 4128 INIT_LIST_HEAD(&obj->global_link);
275f039d 4129 INIT_LIST_HEAD(&obj->userfault_link);
b25cb2f8 4130 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4131 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4132 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4133
37e680a1
CW
4134 obj->ops = ops;
4135
d07f0e59
CW
4136 reservation_object_init(&obj->__builtin_resv);
4137 obj->resv = &obj->__builtin_resv;
4138
50349247 4139 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
a4f5ea64
CW
4140
4141 obj->mm.madv = I915_MADV_WILLNEED;
4142 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4143 mutex_init(&obj->mm.get_page.lock);
0327d6ba 4144
f19ec8cb 4145 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
0327d6ba
CW
4146}
4147
37e680a1 4148static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3599a91c
TU
4149 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4150 I915_GEM_OBJECT_IS_SHRINKABLE,
37e680a1
CW
4151 .get_pages = i915_gem_object_get_pages_gtt,
4152 .put_pages = i915_gem_object_put_pages_gtt,
4153};
4154
b4bcbe2a
CW
4155/* Note we don't consider signbits :| */
4156#define overflows_type(x, T) \
4157 (sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))
4158
4159struct drm_i915_gem_object *
4160i915_gem_object_create(struct drm_device *dev, u64 size)
ac52bc56 4161{
a26e5239 4162 struct drm_i915_private *dev_priv = to_i915(dev);
c397b908 4163 struct drm_i915_gem_object *obj;
5949eac4 4164 struct address_space *mapping;
1a240d4d 4165 gfp_t mask;
fe3db79b 4166 int ret;
ac52bc56 4167
b4bcbe2a
CW
4168 /* There is a prevalence of the assumption that we fit the object's
4169 * page count inside a 32bit _signed_ variable. Let's document this and
4170 * catch if we ever need to fix it. In the meantime, if you do spot
4171 * such a local variable, please consider fixing!
4172 */
4173 if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
4174 return ERR_PTR(-E2BIG);
4175
4176 if (overflows_type(size, obj->base.size))
4177 return ERR_PTR(-E2BIG);
4178
42dcedd4 4179 obj = i915_gem_object_alloc(dev);
c397b908 4180 if (obj == NULL)
fe3db79b 4181 return ERR_PTR(-ENOMEM);
673a394b 4182
fe3db79b
CW
4183 ret = drm_gem_object_init(dev, &obj->base, size);
4184 if (ret)
4185 goto fail;
673a394b 4186
bed1ea95 4187 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
a26e5239 4188 if (IS_CRESTLINE(dev_priv) || IS_BROADWATER(dev_priv)) {
bed1ea95
CW
4189 /* 965gm cannot relocate objects above 4GiB. */
4190 mask &= ~__GFP_HIGHMEM;
4191 mask |= __GFP_DMA32;
4192 }
4193
93c76a3d 4194 mapping = obj->base.filp->f_mapping;
bed1ea95 4195 mapping_set_gfp_mask(mapping, mask);
5949eac4 4196
37e680a1 4197 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4198
c397b908
DV
4199 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4200 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4201
3d29b842
ED
4202 if (HAS_LLC(dev)) {
4203 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4204 * cache) for about a 10% performance improvement
4205 * compared to uncached. Graphics requests other than
4206 * display scanout are coherent with the CPU in
4207 * accessing this cache. This means in this mode we
4208 * don't need to clflush on the CPU side, and on the
4209 * GPU side we only need to flush internal caches to
4210 * get data visible to the CPU.
4211 *
4212 * However, we maintain the display planes as UC, and so
4213 * need to rebind when first used as such.
4214 */
4215 obj->cache_level = I915_CACHE_LLC;
4216 } else
4217 obj->cache_level = I915_CACHE_NONE;
4218
d861e338
DV
4219 trace_i915_gem_object_create(obj);
4220
05394f39 4221 return obj;
fe3db79b
CW
4222
4223fail:
4224 i915_gem_object_free(obj);
fe3db79b 4225 return ERR_PTR(ret);
c397b908
DV
4226}
4227
340fbd8c
CW
4228static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4229{
4230 /* If we are the last user of the backing storage (be it shmemfs
4231 * pages or stolen etc), we know that the pages are going to be
4232 * immediately released. In this case, we can then skip copying
4233 * back the contents from the GPU.
4234 */
4235
a4f5ea64 4236 if (obj->mm.madv != I915_MADV_WILLNEED)
340fbd8c
CW
4237 return false;
4238
4239 if (obj->base.filp == NULL)
4240 return true;
4241
4242 /* At first glance, this looks racy, but then again so would be
4243 * userspace racing mmap against close. However, the first external
4244 * reference to the filp can only be obtained through the
4245 * i915_gem_mmap_ioctl() which safeguards us against the user
4246 * acquiring such a reference whilst we are in the middle of
4247 * freeing the object.
4248 */
4249 return atomic_long_read(&obj->base.filp->f_count) == 1;
4250}
4251
fbbd37b3
CW
4252static void __i915_gem_free_objects(struct drm_i915_private *i915,
4253 struct llist_node *freed)
673a394b 4254{
fbbd37b3 4255 struct drm_i915_gem_object *obj, *on;
673a394b 4256
fbbd37b3
CW
4257 mutex_lock(&i915->drm.struct_mutex);
4258 intel_runtime_pm_get(i915);
4259 llist_for_each_entry(obj, freed, freed) {
4260 struct i915_vma *vma, *vn;
4261
4262 trace_i915_gem_object_destroy(obj);
4263
4264 GEM_BUG_ON(i915_gem_object_is_active(obj));
4265 list_for_each_entry_safe(vma, vn,
4266 &obj->vma_list, obj_link) {
4267 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4268 GEM_BUG_ON(i915_vma_is_active(vma));
4269 vma->flags &= ~I915_VMA_PIN_MASK;
4270 i915_vma_close(vma);
4271 }
db6c2b41
CW
4272 GEM_BUG_ON(!list_empty(&obj->vma_list));
4273 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
fbbd37b3 4274
56cea323 4275 list_del(&obj->global_link);
fbbd37b3
CW
4276 }
4277 intel_runtime_pm_put(i915);
4278 mutex_unlock(&i915->drm.struct_mutex);
4279
4280 llist_for_each_entry_safe(obj, on, freed, freed) {
4281 GEM_BUG_ON(obj->bind_count);
4282 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4283
4284 if (obj->ops->release)
4285 obj->ops->release(obj);
f65c9168 4286
fbbd37b3
CW
4287 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4288 atomic_set(&obj->mm.pages_pin_count, 0);
548625ee 4289 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
fbbd37b3
CW
4290 GEM_BUG_ON(obj->mm.pages);
4291
4292 if (obj->base.import_attach)
4293 drm_prime_gem_destroy(&obj->base, NULL);
4294
d07f0e59 4295 reservation_object_fini(&obj->__builtin_resv);
fbbd37b3
CW
4296 drm_gem_object_release(&obj->base);
4297 i915_gem_info_remove_obj(i915, obj->base.size);
4298
4299 kfree(obj->bit_17);
4300 i915_gem_object_free(obj);
4301 }
4302}
4303
4304static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4305{
4306 struct llist_node *freed;
4307
4308 freed = llist_del_all(&i915->mm.free_list);
4309 if (unlikely(freed))
4310 __i915_gem_free_objects(i915, freed);
4311}
4312
4313static void __i915_gem_free_work(struct work_struct *work)
4314{
4315 struct drm_i915_private *i915 =
4316 container_of(work, struct drm_i915_private, mm.free_work);
4317 struct llist_node *freed;
26e12f89 4318
b1f788c6
CW
4319 /* All file-owned VMA should have been released by this point through
4320 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4321 * However, the object may also be bound into the global GTT (e.g.
4322 * older GPUs without per-process support, or for direct access through
4323 * the GTT either for the user or for scanout). Those VMA still need to
4324 * unbound now.
4325 */
1488fc08 4326
fbbd37b3
CW
4327 while ((freed = llist_del_all(&i915->mm.free_list)))
4328 __i915_gem_free_objects(i915, freed);
4329}
a071fa00 4330
fbbd37b3
CW
4331static void __i915_gem_free_object_rcu(struct rcu_head *head)
4332{
4333 struct drm_i915_gem_object *obj =
4334 container_of(head, typeof(*obj), rcu);
4335 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4336
4337 /* We can't simply use call_rcu() from i915_gem_free_object()
4338 * as we need to block whilst unbinding, and the call_rcu
4339 * task may be called from softirq context. So we take a
4340 * detour through a worker.
4341 */
4342 if (llist_add(&obj->freed, &i915->mm.free_list))
4343 schedule_work(&i915->mm.free_work);
4344}
656bfa3a 4345
fbbd37b3
CW
4346void i915_gem_free_object(struct drm_gem_object *gem_obj)
4347{
4348 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
a4f5ea64 4349
bc0629a7
CW
4350 if (obj->mm.quirked)
4351 __i915_gem_object_unpin_pages(obj);
4352
340fbd8c 4353 if (discard_backing_storage(obj))
a4f5ea64 4354 obj->mm.madv = I915_MADV_DONTNEED;
de151cf6 4355
fbbd37b3
CW
4356 /* Before we free the object, make sure any pure RCU-only
4357 * read-side critical sections are complete, e.g.
4358 * i915_gem_busy_ioctl(). For the corresponding synchronized
4359 * lookup see i915_gem_object_lookup_rcu().
4360 */
4361 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
673a394b
EA
4362}
4363
f8a7fde4
CW
4364void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4365{
4366 lockdep_assert_held(&obj->base.dev->struct_mutex);
4367
4368 GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4369 if (i915_gem_object_is_active(obj))
4370 i915_gem_object_set_active_reference(obj);
4371 else
4372 i915_gem_object_put(obj);
4373}
4374
3033acab
CW
4375static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4376{
4377 struct intel_engine_cs *engine;
4378 enum intel_engine_id id;
4379
4380 for_each_engine(engine, dev_priv, id)
4381 GEM_BUG_ON(engine->last_context != dev_priv->kernel_context);
4382}
4383
dcff85c8 4384int i915_gem_suspend(struct drm_device *dev)
29105ccc 4385{
fac5e23e 4386 struct drm_i915_private *dev_priv = to_i915(dev);
dcff85c8 4387 int ret;
28dfe52a 4388
54b4f68f
CW
4389 intel_suspend_gt_powersave(dev_priv);
4390
45c5f202 4391 mutex_lock(&dev->struct_mutex);
5ab57c70
CW
4392
4393 /* We have to flush all the executing contexts to main memory so
4394 * that they can saved in the hibernation image. To ensure the last
4395 * context image is coherent, we have to switch away from it. That
4396 * leaves the dev_priv->kernel_context still active when
4397 * we actually suspend, and its image in memory may not match the GPU
4398 * state. Fortunately, the kernel_context is disposable and we do
4399 * not rely on its state.
4400 */
4401 ret = i915_gem_switch_to_kernel_context(dev_priv);
4402 if (ret)
4403 goto err;
4404
22dd3bb9
CW
4405 ret = i915_gem_wait_for_idle(dev_priv,
4406 I915_WAIT_INTERRUPTIBLE |
4407 I915_WAIT_LOCKED);
f7403347 4408 if (ret)
45c5f202 4409 goto err;
f7403347 4410
c033666a 4411 i915_gem_retire_requests(dev_priv);
28176ef4 4412 GEM_BUG_ON(dev_priv->gt.active_requests);
673a394b 4413
3033acab 4414 assert_kernel_context_is_current(dev_priv);
b2e862d0 4415 i915_gem_context_lost(dev_priv);
45c5f202
CW
4416 mutex_unlock(&dev->struct_mutex);
4417
737b1506 4418 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
67d97da3
CW
4419 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4420 flush_delayed_work(&dev_priv->gt.idle_work);
fbbd37b3 4421 flush_work(&dev_priv->mm.free_work);
29105ccc 4422
bdcf120b
CW
4423 /* Assert that we sucessfully flushed all the work and
4424 * reset the GPU back to its idle, low power state.
4425 */
67d97da3 4426 WARN_ON(dev_priv->gt.awake);
bdcf120b 4427
1c777c5d
ID
4428 /*
4429 * Neither the BIOS, ourselves or any other kernel
4430 * expects the system to be in execlists mode on startup,
4431 * so we need to reset the GPU back to legacy mode. And the only
4432 * known way to disable logical contexts is through a GPU reset.
4433 *
4434 * So in order to leave the system in a known default configuration,
4435 * always reset the GPU upon unload and suspend. Afterwards we then
4436 * clean up the GEM state tracking, flushing off the requests and
4437 * leaving the system in a known idle state.
4438 *
4439 * Note that is of the upmost importance that the GPU is idle and
4440 * all stray writes are flushed *before* we dismantle the backing
4441 * storage for the pinned objects.
4442 *
4443 * However, since we are uncertain that resetting the GPU on older
4444 * machines is a good idea, we don't - just in case it leaves the
4445 * machine in an unusable condition.
4446 */
4447 if (HAS_HW_CONTEXTS(dev)) {
4448 int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
4449 WARN_ON(reset && reset != -ENODEV);
4450 }
4451
673a394b 4452 return 0;
45c5f202
CW
4453
4454err:
4455 mutex_unlock(&dev->struct_mutex);
4456 return ret;
673a394b
EA
4457}
4458
5ab57c70
CW
4459void i915_gem_resume(struct drm_device *dev)
4460{
4461 struct drm_i915_private *dev_priv = to_i915(dev);
4462
4463 mutex_lock(&dev->struct_mutex);
4464 i915_gem_restore_gtt_mappings(dev);
4465
4466 /* As we didn't flush the kernel context before suspend, we cannot
4467 * guarantee that the context image is complete. So let's just reset
4468 * it and start again.
4469 */
821ed7df 4470 dev_priv->gt.resume(dev_priv);
5ab57c70
CW
4471
4472 mutex_unlock(&dev->struct_mutex);
4473}
4474
f691e2f4
DV
4475void i915_gem_init_swizzling(struct drm_device *dev)
4476{
fac5e23e 4477 struct drm_i915_private *dev_priv = to_i915(dev);
f691e2f4 4478
11782b02 4479 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4480 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4481 return;
4482
4483 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4484 DISP_TILE_SURFACE_SWIZZLING);
4485
5db94019 4486 if (IS_GEN5(dev_priv))
11782b02
DV
4487 return;
4488
f691e2f4 4489 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5db94019 4490 if (IS_GEN6(dev_priv))
6b26c86d 4491 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5db94019 4492 else if (IS_GEN7(dev_priv))
6b26c86d 4493 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5db94019 4494 else if (IS_GEN8(dev_priv))
31a5336e 4495 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4496 else
4497 BUG();
f691e2f4 4498}
e21af88d 4499
50a0bc90 4500static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
81e7f200 4501{
81e7f200
VS
4502 I915_WRITE(RING_CTL(base), 0);
4503 I915_WRITE(RING_HEAD(base), 0);
4504 I915_WRITE(RING_TAIL(base), 0);
4505 I915_WRITE(RING_START(base), 0);
4506}
4507
50a0bc90 4508static void init_unused_rings(struct drm_i915_private *dev_priv)
81e7f200 4509{
50a0bc90
TU
4510 if (IS_I830(dev_priv)) {
4511 init_unused_ring(dev_priv, PRB1_BASE);
4512 init_unused_ring(dev_priv, SRB0_BASE);
4513 init_unused_ring(dev_priv, SRB1_BASE);
4514 init_unused_ring(dev_priv, SRB2_BASE);
4515 init_unused_ring(dev_priv, SRB3_BASE);
4516 } else if (IS_GEN2(dev_priv)) {
4517 init_unused_ring(dev_priv, SRB0_BASE);
4518 init_unused_ring(dev_priv, SRB1_BASE);
4519 } else if (IS_GEN3(dev_priv)) {
4520 init_unused_ring(dev_priv, PRB1_BASE);
4521 init_unused_ring(dev_priv, PRB2_BASE);
81e7f200
VS
4522 }
4523}
4524
4fc7c971
BW
4525int
4526i915_gem_init_hw(struct drm_device *dev)
4527{
fac5e23e 4528 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4529 struct intel_engine_cs *engine;
3b3f1650 4530 enum intel_engine_id id;
d200cda6 4531 int ret;
4fc7c971 4532
de867c20
CW
4533 dev_priv->gt.last_init_time = ktime_get();
4534
5e4f5189
CW
4535 /* Double layer security blanket, see i915_gem_init() */
4536 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4537
3accaf7e 4538 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4539 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4540
772c2a51 4541 if (IS_HASWELL(dev_priv))
50a0bc90 4542 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
0bf21347 4543 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4544
6e266956 4545 if (HAS_PCH_NOP(dev_priv)) {
fd6b8f43 4546 if (IS_IVYBRIDGE(dev_priv)) {
6ba844b0
DV
4547 u32 temp = I915_READ(GEN7_MSG_CTL);
4548 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4549 I915_WRITE(GEN7_MSG_CTL, temp);
4550 } else if (INTEL_INFO(dev)->gen >= 7) {
4551 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4552 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4553 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4554 }
88a2b2a3
BW
4555 }
4556
4fc7c971
BW
4557 i915_gem_init_swizzling(dev);
4558
d5abdfda
DV
4559 /*
4560 * At least 830 can leave some of the unused rings
4561 * "active" (ie. head != tail) after resume which
4562 * will prevent c3 entry. Makes sure all unused rings
4563 * are totally idle.
4564 */
50a0bc90 4565 init_unused_rings(dev_priv);
d5abdfda 4566
ed54c1a1 4567 BUG_ON(!dev_priv->kernel_context);
90638cc1 4568
4ad2fd88
JH
4569 ret = i915_ppgtt_init_hw(dev);
4570 if (ret) {
4571 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4572 goto out;
4573 }
4574
4575 /* Need to do basic initialisation of all rings first: */
3b3f1650 4576 for_each_engine(engine, dev_priv, id) {
e2f80391 4577 ret = engine->init_hw(engine);
35a57ffb 4578 if (ret)
5e4f5189 4579 goto out;
35a57ffb 4580 }
99433931 4581
0ccdacf6
PA
4582 intel_mocs_init_l3cc_table(dev);
4583
33a732f4 4584 /* We can't enable contexts until all firmware is loaded */
e556f7c1
DG
4585 ret = intel_guc_setup(dev);
4586 if (ret)
4587 goto out;
33a732f4 4588
5e4f5189
CW
4589out:
4590 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4591 return ret;
8187a2b7
ZN
4592}
4593
39df9190
CW
4594bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4595{
4596 if (INTEL_INFO(dev_priv)->gen < 6)
4597 return false;
4598
4599 /* TODO: make semaphores and Execlists play nicely together */
4600 if (i915.enable_execlists)
4601 return false;
4602
4603 if (value >= 0)
4604 return value;
4605
4606#ifdef CONFIG_INTEL_IOMMU
4607 /* Enable semaphores on SNB when IO remapping is off */
4608 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4609 return false;
4610#endif
4611
4612 return true;
4613}
4614
1070a42b
CW
4615int i915_gem_init(struct drm_device *dev)
4616{
fac5e23e 4617 struct drm_i915_private *dev_priv = to_i915(dev);
1070a42b
CW
4618 int ret;
4619
1070a42b 4620 mutex_lock(&dev->struct_mutex);
d62b4892 4621
a83014d3 4622 if (!i915.enable_execlists) {
821ed7df 4623 dev_priv->gt.resume = intel_legacy_submission_resume;
7e37f889 4624 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
454afebd 4625 } else {
821ed7df 4626 dev_priv->gt.resume = intel_lr_context_resume;
117897f4 4627 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
a83014d3
OM
4628 }
4629
5e4f5189
CW
4630 /* This is just a security blanket to placate dragons.
4631 * On some systems, we very sporadically observe that the first TLBs
4632 * used by the CS may be stale, despite us poking the TLB reset. If
4633 * we hold the forcewake during initialisation these problems
4634 * just magically go away.
4635 */
4636 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4637
72778cb2 4638 i915_gem_init_userptr(dev_priv);
f6b9d5ca
CW
4639
4640 ret = i915_gem_init_ggtt(dev_priv);
4641 if (ret)
4642 goto out_unlock;
d62b4892 4643
2fa48d8d 4644 ret = i915_gem_context_init(dev);
7bcc3777
JN
4645 if (ret)
4646 goto out_unlock;
2fa48d8d 4647
8b3e2d36 4648 ret = intel_engines_init(dev);
35a57ffb 4649 if (ret)
7bcc3777 4650 goto out_unlock;
2fa48d8d 4651
1070a42b 4652 ret = i915_gem_init_hw(dev);
60990320 4653 if (ret == -EIO) {
7e21d648 4654 /* Allow engine initialisation to fail by marking the GPU as
60990320
CW
4655 * wedged. But we only want to do this where the GPU is angry,
4656 * for all other failure, such as an allocation failure, bail.
4657 */
4658 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
821ed7df 4659 i915_gem_set_wedged(dev_priv);
60990320 4660 ret = 0;
1070a42b 4661 }
7bcc3777
JN
4662
4663out_unlock:
5e4f5189 4664 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4665 mutex_unlock(&dev->struct_mutex);
1070a42b 4666
60990320 4667 return ret;
1070a42b
CW
4668}
4669
8187a2b7 4670void
117897f4 4671i915_gem_cleanup_engines(struct drm_device *dev)
8187a2b7 4672{
fac5e23e 4673 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4674 struct intel_engine_cs *engine;
3b3f1650 4675 enum intel_engine_id id;
8187a2b7 4676
3b3f1650 4677 for_each_engine(engine, dev_priv, id)
117897f4 4678 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
4679}
4680
40ae4e16
ID
4681void
4682i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4683{
91c8a326 4684 struct drm_device *dev = &dev_priv->drm;
49ef5294 4685 int i;
40ae4e16
ID
4686
4687 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4688 !IS_CHERRYVIEW(dev_priv))
4689 dev_priv->num_fence_regs = 32;
4690 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4691 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4692 dev_priv->num_fence_regs = 16;
4693 else
4694 dev_priv->num_fence_regs = 8;
4695
c033666a 4696 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
4697 dev_priv->num_fence_regs =
4698 I915_READ(vgtif_reg(avail_rs.fence_num));
4699
4700 /* Initialize fence registers to zero */
49ef5294
CW
4701 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4702 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4703
4704 fence->i915 = dev_priv;
4705 fence->id = i;
4706 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4707 }
40ae4e16
ID
4708 i915_gem_restore_fences(dev);
4709
4710 i915_gem_detect_bit_6_swizzle(dev);
4711}
4712
73cb9701 4713int
d64aa096 4714i915_gem_load_init(struct drm_device *dev)
673a394b 4715{
fac5e23e 4716 struct drm_i915_private *dev_priv = to_i915(dev);
73cb9701 4717 int err;
42dcedd4 4718
efab6d8d 4719 dev_priv->objects =
42dcedd4
CW
4720 kmem_cache_create("i915_gem_object",
4721 sizeof(struct drm_i915_gem_object), 0,
4722 SLAB_HWCACHE_ALIGN,
4723 NULL);
73cb9701
CW
4724 if (!dev_priv->objects) {
4725 err = -ENOMEM;
4726 goto err_out;
4727 }
4728
e20d2ab7
CW
4729 dev_priv->vmas =
4730 kmem_cache_create("i915_gem_vma",
4731 sizeof(struct i915_vma), 0,
4732 SLAB_HWCACHE_ALIGN,
4733 NULL);
73cb9701
CW
4734 if (!dev_priv->vmas) {
4735 err = -ENOMEM;
4736 goto err_objects;
4737 }
4738
efab6d8d
CW
4739 dev_priv->requests =
4740 kmem_cache_create("i915_gem_request",
4741 sizeof(struct drm_i915_gem_request), 0,
0eafec6d
CW
4742 SLAB_HWCACHE_ALIGN |
4743 SLAB_RECLAIM_ACCOUNT |
4744 SLAB_DESTROY_BY_RCU,
efab6d8d 4745 NULL);
73cb9701
CW
4746 if (!dev_priv->requests) {
4747 err = -ENOMEM;
4748 goto err_vmas;
4749 }
4750
4751 mutex_lock(&dev_priv->drm.struct_mutex);
4752 INIT_LIST_HEAD(&dev_priv->gt.timelines);
4753 err = i915_gem_timeline_init(dev_priv,
4754 &dev_priv->gt.global_timeline,
4755 "[execution]");
4756 mutex_unlock(&dev_priv->drm.struct_mutex);
4757 if (err)
4758 goto err_requests;
673a394b 4759
a33afea5 4760 INIT_LIST_HEAD(&dev_priv->context_list);
fbbd37b3
CW
4761 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4762 init_llist_head(&dev_priv->mm.free_list);
6c085a72
CW
4763 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4764 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4765 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
275f039d 4766 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
67d97da3 4767 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
673a394b 4768 i915_gem_retire_work_handler);
67d97da3 4769 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
b29c19b6 4770 i915_gem_idle_work_handler);
1f15b76f 4771 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1f83fee0 4772 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4773
72bfa19c
CW
4774 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4775
6b95a207 4776 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4777
ce453d81
CW
4778 dev_priv->mm.interruptible = true;
4779
6f633402
JL
4780 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4781
b5add959 4782 spin_lock_init(&dev_priv->fb_tracking.lock);
73cb9701
CW
4783
4784 return 0;
4785
4786err_requests:
4787 kmem_cache_destroy(dev_priv->requests);
4788err_vmas:
4789 kmem_cache_destroy(dev_priv->vmas);
4790err_objects:
4791 kmem_cache_destroy(dev_priv->objects);
4792err_out:
4793 return err;
673a394b 4794}
71acb5eb 4795
d64aa096
ID
4796void i915_gem_load_cleanup(struct drm_device *dev)
4797{
4798 struct drm_i915_private *dev_priv = to_i915(dev);
4799
7d5d59e5
CW
4800 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4801
d64aa096
ID
4802 kmem_cache_destroy(dev_priv->requests);
4803 kmem_cache_destroy(dev_priv->vmas);
4804 kmem_cache_destroy(dev_priv->objects);
0eafec6d
CW
4805
4806 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4807 rcu_barrier();
d64aa096
ID
4808}
4809
6a800eab
CW
4810int i915_gem_freeze(struct drm_i915_private *dev_priv)
4811{
4812 intel_runtime_pm_get(dev_priv);
4813
4814 mutex_lock(&dev_priv->drm.struct_mutex);
4815 i915_gem_shrink_all(dev_priv);
4816 mutex_unlock(&dev_priv->drm.struct_mutex);
4817
4818 intel_runtime_pm_put(dev_priv);
4819
4820 return 0;
4821}
4822
461fb99c
CW
4823int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4824{
4825 struct drm_i915_gem_object *obj;
7aab2d53
CW
4826 struct list_head *phases[] = {
4827 &dev_priv->mm.unbound_list,
4828 &dev_priv->mm.bound_list,
4829 NULL
4830 }, **p;
461fb99c
CW
4831
4832 /* Called just before we write the hibernation image.
4833 *
4834 * We need to update the domain tracking to reflect that the CPU
4835 * will be accessing all the pages to create and restore from the
4836 * hibernation, and so upon restoration those pages will be in the
4837 * CPU domain.
4838 *
4839 * To make sure the hibernation image contains the latest state,
4840 * we update that state just before writing out the image.
7aab2d53
CW
4841 *
4842 * To try and reduce the hibernation image, we manually shrink
4843 * the objects as well.
461fb99c
CW
4844 */
4845
6a800eab
CW
4846 mutex_lock(&dev_priv->drm.struct_mutex);
4847 i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
461fb99c 4848
7aab2d53 4849 for (p = phases; *p; p++) {
56cea323 4850 list_for_each_entry(obj, *p, global_link) {
7aab2d53
CW
4851 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4852 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4853 }
461fb99c 4854 }
6a800eab 4855 mutex_unlock(&dev_priv->drm.struct_mutex);
461fb99c
CW
4856
4857 return 0;
4858}
4859
f787a5f5 4860void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4861{
f787a5f5 4862 struct drm_i915_file_private *file_priv = file->driver_priv;
15f7bbc7 4863 struct drm_i915_gem_request *request;
b962442e
EA
4864
4865 /* Clean up our request list when the client is going away, so that
4866 * later retire_requests won't dereference our soon-to-be-gone
4867 * file_priv.
4868 */
1c25595f 4869 spin_lock(&file_priv->mm.lock);
15f7bbc7 4870 list_for_each_entry(request, &file_priv->mm.request_list, client_list)
f787a5f5 4871 request->file_priv = NULL;
1c25595f 4872 spin_unlock(&file_priv->mm.lock);
b29c19b6 4873
2e1b8730 4874 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 4875 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 4876 list_del(&file_priv->rps.link);
8d3afd7d 4877 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 4878 }
b29c19b6
CW
4879}
4880
4881int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4882{
4883 struct drm_i915_file_private *file_priv;
e422b888 4884 int ret;
b29c19b6
CW
4885
4886 DRM_DEBUG_DRIVER("\n");
4887
4888 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4889 if (!file_priv)
4890 return -ENOMEM;
4891
4892 file->driver_priv = file_priv;
f19ec8cb 4893 file_priv->dev_priv = to_i915(dev);
ab0e7ff9 4894 file_priv->file = file;
2e1b8730 4895 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
4896
4897 spin_lock_init(&file_priv->mm.lock);
4898 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 4899
c80ff16e 4900 file_priv->bsd_engine = -1;
de1add36 4901
e422b888
BW
4902 ret = i915_gem_context_open(dev, file);
4903 if (ret)
4904 kfree(file_priv);
b29c19b6 4905
e422b888 4906 return ret;
b29c19b6
CW
4907}
4908
b680c37a
DV
4909/**
4910 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
4911 * @old: current GEM buffer for the frontbuffer slots
4912 * @new: new GEM buffer for the frontbuffer slots
4913 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
4914 *
4915 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4916 * from @old and setting them in @new. Both @old and @new can be NULL.
4917 */
a071fa00
DV
4918void i915_gem_track_fb(struct drm_i915_gem_object *old,
4919 struct drm_i915_gem_object *new,
4920 unsigned frontbuffer_bits)
4921{
faf5bf0a
CW
4922 /* Control of individual bits within the mask are guarded by
4923 * the owning plane->mutex, i.e. we can never see concurrent
4924 * manipulation of individual bits. But since the bitfield as a whole
4925 * is updated using RMW, we need to use atomics in order to update
4926 * the bits.
4927 */
4928 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4929 sizeof(atomic_t) * BITS_PER_BYTE);
4930
a071fa00 4931 if (old) {
faf5bf0a
CW
4932 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4933 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
a071fa00
DV
4934 }
4935
4936 if (new) {
faf5bf0a
CW
4937 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4938 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
a071fa00
DV
4939 }
4940}
4941
ea70299d
DG
4942/* Allocate a new GEM object and fill it with the supplied data */
4943struct drm_i915_gem_object *
4944i915_gem_object_create_from_data(struct drm_device *dev,
4945 const void *data, size_t size)
4946{
4947 struct drm_i915_gem_object *obj;
4948 struct sg_table *sg;
4949 size_t bytes;
4950 int ret;
4951
d37cd8a8 4952 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
fe3db79b 4953 if (IS_ERR(obj))
ea70299d
DG
4954 return obj;
4955
4956 ret = i915_gem_object_set_to_cpu_domain(obj, true);
4957 if (ret)
4958 goto fail;
4959
a4f5ea64 4960 ret = i915_gem_object_pin_pages(obj);
ea70299d
DG
4961 if (ret)
4962 goto fail;
4963
a4f5ea64 4964 sg = obj->mm.pages;
ea70299d 4965 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
a4f5ea64 4966 obj->mm.dirty = true; /* Backing store is now out of date */
ea70299d
DG
4967 i915_gem_object_unpin_pages(obj);
4968
4969 if (WARN_ON(bytes != size)) {
4970 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4971 ret = -EFAULT;
4972 goto fail;
4973 }
4974
4975 return obj;
4976
4977fail:
f8c417cd 4978 i915_gem_object_put(obj);
ea70299d
DG
4979 return ERR_PTR(ret);
4980}
96d77634
CW
4981
4982struct scatterlist *
4983i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4984 unsigned int n,
4985 unsigned int *offset)
4986{
a4f5ea64 4987 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
96d77634
CW
4988 struct scatterlist *sg;
4989 unsigned int idx, count;
4990
4991 might_sleep();
4992 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
a4f5ea64 4993 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
96d77634
CW
4994
4995 /* As we iterate forward through the sg, we record each entry in a
4996 * radixtree for quick repeated (backwards) lookups. If we have seen
4997 * this index previously, we will have an entry for it.
4998 *
4999 * Initial lookup is O(N), but this is amortized to O(1) for
5000 * sequential page access (where each new request is consecutive
5001 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5002 * i.e. O(1) with a large constant!
5003 */
5004 if (n < READ_ONCE(iter->sg_idx))
5005 goto lookup;
5006
5007 mutex_lock(&iter->lock);
5008
5009 /* We prefer to reuse the last sg so that repeated lookup of this
5010 * (or the subsequent) sg are fast - comparing against the last
5011 * sg is faster than going through the radixtree.
5012 */
5013
5014 sg = iter->sg_pos;
5015 idx = iter->sg_idx;
5016 count = __sg_page_count(sg);
5017
5018 while (idx + count <= n) {
5019 unsigned long exception, i;
5020 int ret;
5021
5022 /* If we cannot allocate and insert this entry, or the
5023 * individual pages from this range, cancel updating the
5024 * sg_idx so that on this lookup we are forced to linearly
5025 * scan onwards, but on future lookups we will try the
5026 * insertion again (in which case we need to be careful of
5027 * the error return reporting that we have already inserted
5028 * this index).
5029 */
5030 ret = radix_tree_insert(&iter->radix, idx, sg);
5031 if (ret && ret != -EEXIST)
5032 goto scan;
5033
5034 exception =
5035 RADIX_TREE_EXCEPTIONAL_ENTRY |
5036 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5037 for (i = 1; i < count; i++) {
5038 ret = radix_tree_insert(&iter->radix, idx + i,
5039 (void *)exception);
5040 if (ret && ret != -EEXIST)
5041 goto scan;
5042 }
5043
5044 idx += count;
5045 sg = ____sg_next(sg);
5046 count = __sg_page_count(sg);
5047 }
5048
5049scan:
5050 iter->sg_pos = sg;
5051 iter->sg_idx = idx;
5052
5053 mutex_unlock(&iter->lock);
5054
5055 if (unlikely(n < idx)) /* insertion completed by another thread */
5056 goto lookup;
5057
5058 /* In case we failed to insert the entry into the radixtree, we need
5059 * to look beyond the current sg.
5060 */
5061 while (idx + count <= n) {
5062 idx += count;
5063 sg = ____sg_next(sg);
5064 count = __sg_page_count(sg);
5065 }
5066
5067 *offset = n - idx;
5068 return sg;
5069
5070lookup:
5071 rcu_read_lock();
5072
5073 sg = radix_tree_lookup(&iter->radix, n);
5074 GEM_BUG_ON(!sg);
5075
5076 /* If this index is in the middle of multi-page sg entry,
5077 * the radixtree will contain an exceptional entry that points
5078 * to the start of that range. We will return the pointer to
5079 * the base page and the offset of this page within the
5080 * sg entry's range.
5081 */
5082 *offset = 0;
5083 if (unlikely(radix_tree_exception(sg))) {
5084 unsigned long base =
5085 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5086
5087 sg = radix_tree_lookup(&iter->radix, base);
5088 GEM_BUG_ON(!sg);
5089
5090 *offset = n - base;
5091 }
5092
5093 rcu_read_unlock();
5094
5095 return sg;
5096}
5097
5098struct page *
5099i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5100{
5101 struct scatterlist *sg;
5102 unsigned int offset;
5103
5104 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5105
5106 sg = i915_gem_object_get_sg(obj, n, &offset);
5107 return nth_page(sg_page(sg), offset);
5108}
5109
5110/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5111struct page *
5112i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5113 unsigned int n)
5114{
5115 struct page *page;
5116
5117 page = i915_gem_object_get_page(obj, n);
a4f5ea64 5118 if (!obj->mm.dirty)
96d77634
CW
5119 set_page_dirty(page);
5120
5121 return page;
5122}
5123
5124dma_addr_t
5125i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5126 unsigned long n)
5127{
5128 struct scatterlist *sg;
5129 unsigned int offset;
5130
5131 sg = i915_gem_object_get_sg(obj, n, &offset);
5132 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5133}