]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915/selftests: Disable shrinker across mmap-exhaustion
[thirdparty/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
57822dc6 32#include "i915_gem_clflush.h"
eb82289a 33#include "i915_vgpu.h"
1c5d22f7 34#include "i915_trace.h"
652c393a 35#include "intel_drv.h"
5d723d7a 36#include "intel_frontbuffer.h"
0ccdacf6 37#include "intel_mocs.h"
59b449d5 38#include "intel_workarounds.h"
465c403c 39#include "i915_gemfs.h"
6b5e90f5 40#include <linux/dma-fence-array.h>
fe3288b5 41#include <linux/kthread.h>
c13d87ea 42#include <linux/reservation.h>
5949eac4 43#include <linux/shmem_fs.h>
5a0e3ad6 44#include <linux/slab.h>
20e4933c 45#include <linux/stop_machine.h>
673a394b 46#include <linux/swap.h>
79e53945 47#include <linux/pci.h>
1286ff73 48#include <linux/dma-buf.h>
673a394b 49
fbbd37b3 50static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
61050808 51
2c22569b
CW
52static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
53{
e27ab73d 54 if (obj->cache_dirty)
b50a5371
AS
55 return false;
56
b8f55be6 57 if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
2c22569b
CW
58 return true;
59
bd3d2252 60 return obj->pin_global; /* currently in use by HW, keep flushed */
2c22569b
CW
61}
62
4f1959ee 63static int
bb6dc8d9 64insert_mappable_node(struct i915_ggtt *ggtt,
4f1959ee
AS
65 struct drm_mm_node *node, u32 size)
66{
67 memset(node, 0, sizeof(*node));
82ad6443 68 return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
4e64e553
CW
69 size, 0, I915_COLOR_UNEVICTABLE,
70 0, ggtt->mappable_end,
71 DRM_MM_INSERT_LOW);
4f1959ee
AS
72}
73
74static void
75remove_mappable_node(struct drm_mm_node *node)
76{
77 drm_mm_remove_node(node);
78}
79
73aa808f
CW
80/* some bookkeeping */
81static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
3ef7f228 82 u64 size)
73aa808f 83{
c20e8355 84 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
85 dev_priv->mm.object_count++;
86 dev_priv->mm.object_memory += size;
c20e8355 87 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
88}
89
90static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
3ef7f228 91 u64 size)
73aa808f 92{
c20e8355 93 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
94 dev_priv->mm.object_count--;
95 dev_priv->mm.object_memory -= size;
c20e8355 96 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
97}
98
21dd3734 99static int
33196ded 100i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 101{
30dbf0c0
CW
102 int ret;
103
4c7d62c6
CW
104 might_sleep();
105
0a6759c6
DV
106 /*
107 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
108 * userspace. If it takes that long something really bad is going on and
109 * we should simply try to bail out and fail as gracefully as possible.
110 */
1f83fee0 111 ret = wait_event_interruptible_timeout(error->reset_queue,
8c185eca 112 !i915_reset_backoff(error),
b52992c0 113 I915_RESET_TIMEOUT);
0a6759c6
DV
114 if (ret == 0) {
115 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
116 return -EIO;
117 } else if (ret < 0) {
30dbf0c0 118 return ret;
d98c52cf
CW
119 } else {
120 return 0;
0a6759c6 121 }
30dbf0c0
CW
122}
123
54cf91dc 124int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 125{
fac5e23e 126 struct drm_i915_private *dev_priv = to_i915(dev);
76c1dec1
CW
127 int ret;
128
33196ded 129 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
130 if (ret)
131 return ret;
132
133 ret = mutex_lock_interruptible(&dev->struct_mutex);
134 if (ret)
135 return ret;
136
76c1dec1
CW
137 return 0;
138}
30dbf0c0 139
e4d2006f
CW
140static u32 __i915_gem_park(struct drm_i915_private *i915)
141{
4dfacb0b
CW
142 GEM_TRACE("\n");
143
e4d2006f
CW
144 lockdep_assert_held(&i915->drm.struct_mutex);
145 GEM_BUG_ON(i915->gt.active_requests);
643b450a 146 GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
e4d2006f
CW
147
148 if (!i915->gt.awake)
149 return I915_EPOCH_INVALID;
150
151 GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);
152
153 /*
154 * Be paranoid and flush a concurrent interrupt to make sure
155 * we don't reactivate any irq tasklets after parking.
156 *
157 * FIXME: Note that even though we have waited for execlists to be idle,
158 * there may still be an in-flight interrupt even though the CSB
159 * is now empty. synchronize_irq() makes sure that a residual interrupt
160 * is completed before we continue, but it doesn't prevent the HW from
161 * raising a spurious interrupt later. To complete the shield we should
162 * coordinate disabling the CS irq with flushing the interrupts.
163 */
164 synchronize_irq(i915->drm.irq);
165
166 intel_engines_park(i915);
a89d1f92 167 i915_timelines_park(i915);
e4d2006f
CW
168
169 i915_pmu_gt_parked(i915);
3365e226 170 i915_vma_parked(i915);
e4d2006f
CW
171
172 i915->gt.awake = false;
173
174 if (INTEL_GEN(i915) >= 6)
175 gen6_rps_idle(i915);
176
177 intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);
178
179 intel_runtime_pm_put(i915);
180
181 return i915->gt.epoch;
182}
183
184void i915_gem_park(struct drm_i915_private *i915)
185{
4dfacb0b
CW
186 GEM_TRACE("\n");
187
e4d2006f
CW
188 lockdep_assert_held(&i915->drm.struct_mutex);
189 GEM_BUG_ON(i915->gt.active_requests);
190
191 if (!i915->gt.awake)
192 return;
193
194 /* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
195 mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
196}
197
198void i915_gem_unpark(struct drm_i915_private *i915)
199{
4dfacb0b
CW
200 GEM_TRACE("\n");
201
e4d2006f
CW
202 lockdep_assert_held(&i915->drm.struct_mutex);
203 GEM_BUG_ON(!i915->gt.active_requests);
204
205 if (i915->gt.awake)
206 return;
207
208 intel_runtime_pm_get_noresume(i915);
209
210 /*
211 * It seems that the DMC likes to transition between the DC states a lot
212 * when there are no connected displays (no active power domains) during
213 * command submission.
214 *
215 * This activity has negative impact on the performance of the chip with
216 * huge latencies observed in the interrupt handler and elsewhere.
217 *
218 * Work around it by grabbing a GT IRQ power domain whilst there is any
219 * GT activity, preventing any DC state transitions.
220 */
221 intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
222
223 i915->gt.awake = true;
224 if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
225 i915->gt.epoch = 1;
226
227 intel_enable_gt_powersave(i915);
228 i915_update_gfx_val(i915);
229 if (INTEL_GEN(i915) >= 6)
230 gen6_rps_busy(i915);
231 i915_pmu_gt_unparked(i915);
232
233 intel_engines_unpark(i915);
234
235 i915_queue_hangcheck(i915);
236
237 queue_delayed_work(i915->wq,
238 &i915->gt.retire_work,
239 round_jiffies_up_relative(HZ));
240}
241
5a125c3c
EA
242int
243i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 244 struct drm_file *file)
5a125c3c 245{
72e96d64 246 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 247 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 248 struct drm_i915_gem_get_aperture *args = data;
ca1543be 249 struct i915_vma *vma;
ff8f7975 250 u64 pinned;
5a125c3c 251
82ad6443 252 pinned = ggtt->vm.reserved;
73aa808f 253 mutex_lock(&dev->struct_mutex);
82ad6443 254 list_for_each_entry(vma, &ggtt->vm.active_list, vm_link)
20dfbde4 255 if (i915_vma_is_pinned(vma))
ca1543be 256 pinned += vma->node.size;
82ad6443 257 list_for_each_entry(vma, &ggtt->vm.inactive_list, vm_link)
20dfbde4 258 if (i915_vma_is_pinned(vma))
ca1543be 259 pinned += vma->node.size;
73aa808f 260 mutex_unlock(&dev->struct_mutex);
5a125c3c 261
82ad6443 262 args->aper_size = ggtt->vm.total;
0206e353 263 args->aper_available_size = args->aper_size - pinned;
6299f992 264
5a125c3c
EA
265 return 0;
266}
267
b91b09ee 268static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 269{
93c76a3d 270 struct address_space *mapping = obj->base.filp->f_mapping;
dbb4351b 271 drm_dma_handle_t *phys;
6a2c4232
CW
272 struct sg_table *st;
273 struct scatterlist *sg;
dbb4351b 274 char *vaddr;
6a2c4232 275 int i;
b91b09ee 276 int err;
00731155 277
6a2c4232 278 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
b91b09ee 279 return -EINVAL;
6a2c4232 280
dbb4351b
CW
281 /* Always aligning to the object size, allows a single allocation
282 * to handle all possible callers, and given typical object sizes,
283 * the alignment of the buddy allocation will naturally match.
284 */
285 phys = drm_pci_alloc(obj->base.dev,
750fae23 286 roundup_pow_of_two(obj->base.size),
dbb4351b
CW
287 roundup_pow_of_two(obj->base.size));
288 if (!phys)
b91b09ee 289 return -ENOMEM;
dbb4351b
CW
290
291 vaddr = phys->vaddr;
6a2c4232
CW
292 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
293 struct page *page;
294 char *src;
295
296 page = shmem_read_mapping_page(mapping, i);
dbb4351b 297 if (IS_ERR(page)) {
b91b09ee 298 err = PTR_ERR(page);
dbb4351b
CW
299 goto err_phys;
300 }
6a2c4232
CW
301
302 src = kmap_atomic(page);
303 memcpy(vaddr, src, PAGE_SIZE);
304 drm_clflush_virt_range(vaddr, PAGE_SIZE);
305 kunmap_atomic(src);
306
09cbfeaf 307 put_page(page);
6a2c4232
CW
308 vaddr += PAGE_SIZE;
309 }
310
c033666a 311 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
312
313 st = kmalloc(sizeof(*st), GFP_KERNEL);
dbb4351b 314 if (!st) {
b91b09ee 315 err = -ENOMEM;
dbb4351b
CW
316 goto err_phys;
317 }
6a2c4232
CW
318
319 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
320 kfree(st);
b91b09ee 321 err = -ENOMEM;
dbb4351b 322 goto err_phys;
6a2c4232
CW
323 }
324
325 sg = st->sgl;
326 sg->offset = 0;
327 sg->length = obj->base.size;
00731155 328
dbb4351b 329 sg_dma_address(sg) = phys->busaddr;
6a2c4232
CW
330 sg_dma_len(sg) = obj->base.size;
331
dbb4351b 332 obj->phys_handle = phys;
b91b09ee 333
a5c08166 334 __i915_gem_object_set_pages(obj, st, sg->length);
b91b09ee
MA
335
336 return 0;
dbb4351b
CW
337
338err_phys:
339 drm_pci_free(obj->base.dev, phys);
b91b09ee
MA
340
341 return err;
6a2c4232
CW
342}
343
e27ab73d
CW
344static void __start_cpu_write(struct drm_i915_gem_object *obj)
345{
c0a51fd0
CK
346 obj->read_domains = I915_GEM_DOMAIN_CPU;
347 obj->write_domain = I915_GEM_DOMAIN_CPU;
e27ab73d
CW
348 if (cpu_write_needs_clflush(obj))
349 obj->cache_dirty = true;
350}
351
6a2c4232 352static void
2b3c8317 353__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
e5facdf9
CW
354 struct sg_table *pages,
355 bool needs_clflush)
6a2c4232 356{
a4f5ea64 357 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
00731155 358
a4f5ea64
CW
359 if (obj->mm.madv == I915_MADV_DONTNEED)
360 obj->mm.dirty = false;
6a2c4232 361
e5facdf9 362 if (needs_clflush &&
c0a51fd0 363 (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
b8f55be6 364 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
2b3c8317 365 drm_clflush_sg(pages);
03ac84f1 366
e27ab73d 367 __start_cpu_write(obj);
03ac84f1
CW
368}
369
370static void
371i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
372 struct sg_table *pages)
373{
e5facdf9 374 __i915_gem_object_release_shmem(obj, pages, false);
03ac84f1 375
a4f5ea64 376 if (obj->mm.dirty) {
93c76a3d 377 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232 378 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
379 int i;
380
381 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
382 struct page *page;
383 char *dst;
384
385 page = shmem_read_mapping_page(mapping, i);
386 if (IS_ERR(page))
387 continue;
388
389 dst = kmap_atomic(page);
390 drm_clflush_virt_range(vaddr, PAGE_SIZE);
391 memcpy(dst, vaddr, PAGE_SIZE);
392 kunmap_atomic(dst);
393
394 set_page_dirty(page);
a4f5ea64 395 if (obj->mm.madv == I915_MADV_WILLNEED)
00731155 396 mark_page_accessed(page);
09cbfeaf 397 put_page(page);
00731155
CW
398 vaddr += PAGE_SIZE;
399 }
a4f5ea64 400 obj->mm.dirty = false;
00731155
CW
401 }
402
03ac84f1
CW
403 sg_free_table(pages);
404 kfree(pages);
dbb4351b
CW
405
406 drm_pci_free(obj->base.dev, obj->phys_handle);
6a2c4232
CW
407}
408
409static void
410i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
411{
a4f5ea64 412 i915_gem_object_unpin_pages(obj);
6a2c4232
CW
413}
414
415static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
416 .get_pages = i915_gem_object_get_pages_phys,
417 .put_pages = i915_gem_object_put_pages_phys,
418 .release = i915_gem_object_release_phys,
419};
420
581ab1fe
CW
421static const struct drm_i915_gem_object_ops i915_gem_object_ops;
422
35a9611c 423int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
aa653a68
CW
424{
425 struct i915_vma *vma;
426 LIST_HEAD(still_in_list);
02bef8f9
CW
427 int ret;
428
429 lockdep_assert_held(&obj->base.dev->struct_mutex);
aa653a68 430
02bef8f9
CW
431 /* Closed vma are removed from the obj->vma_list - but they may
432 * still have an active binding on the object. To remove those we
433 * must wait for all rendering to complete to the object (as unbinding
434 * must anyway), and retire the requests.
aa653a68 435 */
5888fc9e 436 ret = i915_gem_object_set_to_cpu_domain(obj, false);
02bef8f9
CW
437 if (ret)
438 return ret;
439
aa653a68
CW
440 while ((vma = list_first_entry_or_null(&obj->vma_list,
441 struct i915_vma,
442 obj_link))) {
443 list_move_tail(&vma->obj_link, &still_in_list);
444 ret = i915_vma_unbind(vma);
445 if (ret)
446 break;
447 }
448 list_splice(&still_in_list, &obj->vma_list);
449
450 return ret;
451}
452
e95433c7
CW
453static long
454i915_gem_object_wait_fence(struct dma_fence *fence,
455 unsigned int flags,
456 long timeout,
562d9bae 457 struct intel_rps_client *rps_client)
00e60f26 458{
e61e0f51 459 struct i915_request *rq;
00e60f26 460
e95433c7 461 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
00e60f26 462
e95433c7
CW
463 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
464 return timeout;
465
466 if (!dma_fence_is_i915(fence))
467 return dma_fence_wait_timeout(fence,
468 flags & I915_WAIT_INTERRUPTIBLE,
469 timeout);
470
471 rq = to_request(fence);
e61e0f51 472 if (i915_request_completed(rq))
e95433c7
CW
473 goto out;
474
e9af4ea2
CW
475 /*
476 * This client is about to stall waiting for the GPU. In many cases
e95433c7
CW
477 * this is undesirable and limits the throughput of the system, as
478 * many clients cannot continue processing user input/output whilst
479 * blocked. RPS autotuning may take tens of milliseconds to respond
480 * to the GPU load and thus incurs additional latency for the client.
481 * We can circumvent that by promoting the GPU frequency to maximum
482 * before we wait. This makes the GPU throttle up much more quickly
483 * (good for benchmarks and user experience, e.g. window animations),
484 * but at a cost of spending more power processing the workload
485 * (bad for battery). Not all clients even want their results
486 * immediately and for them we should just let the GPU select its own
487 * frequency to maximise efficiency. To prevent a single client from
488 * forcing the clocks too high for the whole system, we only allow
489 * each client to waitboost once in a busy period.
490 */
e61e0f51 491 if (rps_client && !i915_request_started(rq)) {
e95433c7 492 if (INTEL_GEN(rq->i915) >= 6)
562d9bae 493 gen6_rps_boost(rq, rps_client);
00e60f26
CW
494 }
495
e61e0f51 496 timeout = i915_request_wait(rq, flags, timeout);
e95433c7
CW
497
498out:
e61e0f51
CW
499 if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
500 i915_request_retire_upto(rq);
e95433c7 501
e95433c7
CW
502 return timeout;
503}
504
505static long
506i915_gem_object_wait_reservation(struct reservation_object *resv,
507 unsigned int flags,
508 long timeout,
562d9bae 509 struct intel_rps_client *rps_client)
e95433c7 510{
e54ca977 511 unsigned int seq = __read_seqcount_begin(&resv->seq);
e95433c7 512 struct dma_fence *excl;
e54ca977 513 bool prune_fences = false;
e95433c7
CW
514
515 if (flags & I915_WAIT_ALL) {
516 struct dma_fence **shared;
517 unsigned int count, i;
00e60f26
CW
518 int ret;
519
e95433c7
CW
520 ret = reservation_object_get_fences_rcu(resv,
521 &excl, &count, &shared);
00e60f26
CW
522 if (ret)
523 return ret;
00e60f26 524
e95433c7
CW
525 for (i = 0; i < count; i++) {
526 timeout = i915_gem_object_wait_fence(shared[i],
527 flags, timeout,
562d9bae 528 rps_client);
d892e939 529 if (timeout < 0)
e95433c7 530 break;
00e60f26 531
e95433c7
CW
532 dma_fence_put(shared[i]);
533 }
534
535 for (; i < count; i++)
536 dma_fence_put(shared[i]);
537 kfree(shared);
e54ca977 538
fa73055b
CW
539 /*
540 * If both shared fences and an exclusive fence exist,
541 * then by construction the shared fences must be later
542 * than the exclusive fence. If we successfully wait for
543 * all the shared fences, we know that the exclusive fence
544 * must all be signaled. If all the shared fences are
545 * signaled, we can prune the array and recover the
546 * floating references on the fences/requests.
547 */
e54ca977 548 prune_fences = count && timeout >= 0;
e95433c7
CW
549 } else {
550 excl = reservation_object_get_excl_rcu(resv);
00e60f26
CW
551 }
552
fa73055b 553 if (excl && timeout >= 0)
562d9bae
SAK
554 timeout = i915_gem_object_wait_fence(excl, flags, timeout,
555 rps_client);
e95433c7
CW
556
557 dma_fence_put(excl);
558
fa73055b
CW
559 /*
560 * Opportunistically prune the fences iff we know they have *all* been
03d1cac6
CW
561 * signaled and that the reservation object has not been changed (i.e.
562 * no new fences have been added).
563 */
e54ca977 564 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
03d1cac6
CW
565 if (reservation_object_trylock(resv)) {
566 if (!__read_seqcount_retry(&resv->seq, seq))
567 reservation_object_add_excl_fence(resv, NULL);
568 reservation_object_unlock(resv);
569 }
e54ca977
CW
570 }
571
e95433c7 572 return timeout;
00e60f26
CW
573}
574
b7268c5e
CW
575static void __fence_set_priority(struct dma_fence *fence,
576 const struct i915_sched_attr *attr)
6b5e90f5 577{
e61e0f51 578 struct i915_request *rq;
6b5e90f5
CW
579 struct intel_engine_cs *engine;
580
c218ee03 581 if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
6b5e90f5
CW
582 return;
583
584 rq = to_request(fence);
585 engine = rq->engine;
6b5e90f5 586
4f6d8fcf
CW
587 local_bh_disable();
588 rcu_read_lock(); /* RCU serialisation for set-wedged protection */
47650db0 589 if (engine->schedule)
b7268c5e 590 engine->schedule(rq, attr);
47650db0 591 rcu_read_unlock();
4f6d8fcf 592 local_bh_enable(); /* kick the tasklets if queues were reprioritised */
6b5e90f5
CW
593}
594
b7268c5e
CW
595static void fence_set_priority(struct dma_fence *fence,
596 const struct i915_sched_attr *attr)
6b5e90f5
CW
597{
598 /* Recurse once into a fence-array */
599 if (dma_fence_is_array(fence)) {
600 struct dma_fence_array *array = to_dma_fence_array(fence);
601 int i;
602
603 for (i = 0; i < array->num_fences; i++)
b7268c5e 604 __fence_set_priority(array->fences[i], attr);
6b5e90f5 605 } else {
b7268c5e 606 __fence_set_priority(fence, attr);
6b5e90f5
CW
607 }
608}
609
610int
611i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
612 unsigned int flags,
b7268c5e 613 const struct i915_sched_attr *attr)
6b5e90f5
CW
614{
615 struct dma_fence *excl;
616
617 if (flags & I915_WAIT_ALL) {
618 struct dma_fence **shared;
619 unsigned int count, i;
620 int ret;
621
622 ret = reservation_object_get_fences_rcu(obj->resv,
623 &excl, &count, &shared);
624 if (ret)
625 return ret;
626
627 for (i = 0; i < count; i++) {
b7268c5e 628 fence_set_priority(shared[i], attr);
6b5e90f5
CW
629 dma_fence_put(shared[i]);
630 }
631
632 kfree(shared);
633 } else {
634 excl = reservation_object_get_excl_rcu(obj->resv);
635 }
636
637 if (excl) {
b7268c5e 638 fence_set_priority(excl, attr);
6b5e90f5
CW
639 dma_fence_put(excl);
640 }
641 return 0;
642}
643
e95433c7
CW
644/**
645 * Waits for rendering to the object to be completed
646 * @obj: i915 gem object
647 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
648 * @timeout: how long to wait
a0a8b1cf 649 * @rps_client: client (user process) to charge for any waitboosting
00e60f26 650 */
e95433c7
CW
651int
652i915_gem_object_wait(struct drm_i915_gem_object *obj,
653 unsigned int flags,
654 long timeout,
562d9bae 655 struct intel_rps_client *rps_client)
00e60f26 656{
e95433c7
CW
657 might_sleep();
658#if IS_ENABLED(CONFIG_LOCKDEP)
659 GEM_BUG_ON(debug_locks &&
660 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
661 !!(flags & I915_WAIT_LOCKED));
662#endif
663 GEM_BUG_ON(timeout < 0);
00e60f26 664
d07f0e59
CW
665 timeout = i915_gem_object_wait_reservation(obj->resv,
666 flags, timeout,
562d9bae 667 rps_client);
e95433c7 668 return timeout < 0 ? timeout : 0;
00e60f26
CW
669}
670
671static struct intel_rps_client *to_rps_client(struct drm_file *file)
672{
673 struct drm_i915_file_private *fpriv = file->driver_priv;
674
562d9bae 675 return &fpriv->rps_client;
00e60f26
CW
676}
677
00731155
CW
678static int
679i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
680 struct drm_i915_gem_pwrite *args,
03ac84f1 681 struct drm_file *file)
00731155 682{
00731155 683 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 684 char __user *user_data = u64_to_user_ptr(args->data_ptr);
6a2c4232
CW
685
686 /* We manually control the domain here and pretend that it
687 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
688 */
77a0d1ca 689 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
10466d2a
CW
690 if (copy_from_user(vaddr, user_data, args->size))
691 return -EFAULT;
00731155 692
6a2c4232 693 drm_clflush_virt_range(vaddr, args->size);
10466d2a 694 i915_gem_chipset_flush(to_i915(obj->base.dev));
063e4e6b 695
d59b21ec 696 intel_fb_obj_flush(obj, ORIGIN_CPU);
10466d2a 697 return 0;
00731155
CW
698}
699
187685cb 700void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
42dcedd4 701{
efab6d8d 702 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
703}
704
705void i915_gem_object_free(struct drm_i915_gem_object *obj)
706{
fac5e23e 707 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
efab6d8d 708 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
709}
710
ff72145b
DA
711static int
712i915_gem_create(struct drm_file *file,
12d79d78 713 struct drm_i915_private *dev_priv,
ff72145b
DA
714 uint64_t size,
715 uint32_t *handle_p)
673a394b 716{
05394f39 717 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
718 int ret;
719 u32 handle;
673a394b 720
ff72145b 721 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
722 if (size == 0)
723 return -EINVAL;
673a394b
EA
724
725 /* Allocate the new object */
12d79d78 726 obj = i915_gem_object_create(dev_priv, size);
fe3db79b
CW
727 if (IS_ERR(obj))
728 return PTR_ERR(obj);
673a394b 729
05394f39 730 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 731 /* drop reference from allocate - handle holds it now */
f0cd5182 732 i915_gem_object_put(obj);
d861e338
DV
733 if (ret)
734 return ret;
202f2fef 735
ff72145b 736 *handle_p = handle;
673a394b
EA
737 return 0;
738}
739
ff72145b
DA
740int
741i915_gem_dumb_create(struct drm_file *file,
742 struct drm_device *dev,
743 struct drm_mode_create_dumb *args)
744{
745 /* have to work out size/pitch and return them */
de45eaf7 746 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b 747 args->size = args->pitch * args->height;
12d79d78 748 return i915_gem_create(file, to_i915(dev),
da6b51d0 749 args->size, &args->handle);
ff72145b
DA
750}
751
e27ab73d
CW
752static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
753{
754 return !(obj->cache_level == I915_CACHE_NONE ||
755 obj->cache_level == I915_CACHE_WT);
756}
757
ff72145b
DA
758/**
759 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
760 * @dev: drm device pointer
761 * @data: ioctl data blob
762 * @file: drm file pointer
ff72145b
DA
763 */
764int
765i915_gem_create_ioctl(struct drm_device *dev, void *data,
766 struct drm_file *file)
767{
12d79d78 768 struct drm_i915_private *dev_priv = to_i915(dev);
ff72145b 769 struct drm_i915_gem_create *args = data;
63ed2cb2 770
12d79d78 771 i915_gem_flush_free_objects(dev_priv);
fbbd37b3 772
12d79d78 773 return i915_gem_create(file, dev_priv,
da6b51d0 774 args->size, &args->handle);
ff72145b
DA
775}
776
ef74921b
CW
777static inline enum fb_op_origin
778fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
779{
780 return (domain == I915_GEM_DOMAIN_GTT ?
781 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
782}
783
7125397b 784void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
ef74921b 785{
7125397b
CW
786 /*
787 * No actual flushing is required for the GTT write domain for reads
788 * from the GTT domain. Writes to it "immediately" go to main memory
789 * as far as we know, so there's no chipset flush. It also doesn't
790 * land in the GPU render cache.
ef74921b
CW
791 *
792 * However, we do have to enforce the order so that all writes through
793 * the GTT land before any writes to the device, such as updates to
794 * the GATT itself.
795 *
796 * We also have to wait a bit for the writes to land from the GTT.
797 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
798 * timing. This issue has only been observed when switching quickly
799 * between GTT writes and CPU reads from inside the kernel on recent hw,
800 * and it appears to only affect discrete GTT blocks (i.e. on LLC
7125397b
CW
801 * system agents we cannot reproduce this behaviour, until Cannonlake
802 * that was!).
ef74921b 803 */
7125397b 804
900ccf30
CW
805 wmb();
806
807 if (INTEL_INFO(dev_priv)->has_coherent_ggtt)
808 return;
809
a8bd3b88 810 i915_gem_chipset_flush(dev_priv);
ef74921b 811
7125397b
CW
812 intel_runtime_pm_get(dev_priv);
813 spin_lock_irq(&dev_priv->uncore.lock);
814
815 POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
816
817 spin_unlock_irq(&dev_priv->uncore.lock);
818 intel_runtime_pm_put(dev_priv);
819}
820
821static void
822flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
823{
824 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
825 struct i915_vma *vma;
826
c0a51fd0 827 if (!(obj->write_domain & flush_domains))
7125397b
CW
828 return;
829
c0a51fd0 830 switch (obj->write_domain) {
ef74921b 831 case I915_GEM_DOMAIN_GTT:
7125397b 832 i915_gem_flush_ggtt_writes(dev_priv);
ef74921b
CW
833
834 intel_fb_obj_flush(obj,
835 fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
7125397b 836
e2189dd0 837 for_each_ggtt_vma(vma, obj) {
7125397b
CW
838 if (vma->iomap)
839 continue;
840
841 i915_vma_unset_ggtt_write(vma);
842 }
ef74921b
CW
843 break;
844
add00e6d
CW
845 case I915_GEM_DOMAIN_WC:
846 wmb();
847 break;
848
ef74921b
CW
849 case I915_GEM_DOMAIN_CPU:
850 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
851 break;
e27ab73d
CW
852
853 case I915_GEM_DOMAIN_RENDER:
854 if (gpu_write_needs_clflush(obj))
855 obj->cache_dirty = true;
856 break;
ef74921b
CW
857 }
858
c0a51fd0 859 obj->write_domain = 0;
ef74921b
CW
860}
861
8461d226
DV
862static inline int
863__copy_to_user_swizzled(char __user *cpu_vaddr,
864 const char *gpu_vaddr, int gpu_offset,
865 int length)
866{
867 int ret, cpu_offset = 0;
868
869 while (length > 0) {
870 int cacheline_end = ALIGN(gpu_offset + 1, 64);
871 int this_length = min(cacheline_end - gpu_offset, length);
872 int swizzled_gpu_offset = gpu_offset ^ 64;
873
874 ret = __copy_to_user(cpu_vaddr + cpu_offset,
875 gpu_vaddr + swizzled_gpu_offset,
876 this_length);
877 if (ret)
878 return ret + length;
879
880 cpu_offset += this_length;
881 gpu_offset += this_length;
882 length -= this_length;
883 }
884
885 return 0;
886}
887
8c59967c 888static inline int
4f0c7cfb
BW
889__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
890 const char __user *cpu_vaddr,
8c59967c
DV
891 int length)
892{
893 int ret, cpu_offset = 0;
894
895 while (length > 0) {
896 int cacheline_end = ALIGN(gpu_offset + 1, 64);
897 int this_length = min(cacheline_end - gpu_offset, length);
898 int swizzled_gpu_offset = gpu_offset ^ 64;
899
900 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
901 cpu_vaddr + cpu_offset,
902 this_length);
903 if (ret)
904 return ret + length;
905
906 cpu_offset += this_length;
907 gpu_offset += this_length;
908 length -= this_length;
909 }
910
911 return 0;
912}
913
4c914c0c
BV
914/*
915 * Pins the specified object's pages and synchronizes the object with
916 * GPU accesses. Sets needs_clflush to non-zero if the caller should
917 * flush the object from the CPU cache.
918 */
919int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
43394c7d 920 unsigned int *needs_clflush)
4c914c0c
BV
921{
922 int ret;
923
e95433c7 924 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c914c0c 925
e95433c7 926 *needs_clflush = 0;
43394c7d
CW
927 if (!i915_gem_object_has_struct_page(obj))
928 return -ENODEV;
4c914c0c 929
e95433c7
CW
930 ret = i915_gem_object_wait(obj,
931 I915_WAIT_INTERRUPTIBLE |
932 I915_WAIT_LOCKED,
933 MAX_SCHEDULE_TIMEOUT,
934 NULL);
c13d87ea
CW
935 if (ret)
936 return ret;
937
a4f5ea64 938 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
939 if (ret)
940 return ret;
941
b8f55be6
CW
942 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
943 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
7f5f95d8
CW
944 ret = i915_gem_object_set_to_cpu_domain(obj, false);
945 if (ret)
946 goto err_unpin;
947 else
948 goto out;
949 }
950
ef74921b 951 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
a314d5cb 952
43394c7d
CW
953 /* If we're not in the cpu read domain, set ourself into the gtt
954 * read domain and manually flush cachelines (if required). This
955 * optimizes for the case when the gpu will dirty the data
956 * anyway again before the next pread happens.
957 */
e27ab73d 958 if (!obj->cache_dirty &&
c0a51fd0 959 !(obj->read_domains & I915_GEM_DOMAIN_CPU))
7f5f95d8 960 *needs_clflush = CLFLUSH_BEFORE;
4c914c0c 961
7f5f95d8 962out:
9764951e 963 /* return with the pages pinned */
43394c7d 964 return 0;
9764951e
CW
965
966err_unpin:
967 i915_gem_object_unpin_pages(obj);
968 return ret;
43394c7d
CW
969}
970
971int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
972 unsigned int *needs_clflush)
973{
974 int ret;
975
e95433c7
CW
976 lockdep_assert_held(&obj->base.dev->struct_mutex);
977
43394c7d
CW
978 *needs_clflush = 0;
979 if (!i915_gem_object_has_struct_page(obj))
980 return -ENODEV;
981
e95433c7
CW
982 ret = i915_gem_object_wait(obj,
983 I915_WAIT_INTERRUPTIBLE |
984 I915_WAIT_LOCKED |
985 I915_WAIT_ALL,
986 MAX_SCHEDULE_TIMEOUT,
987 NULL);
43394c7d
CW
988 if (ret)
989 return ret;
990
a4f5ea64 991 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
992 if (ret)
993 return ret;
994
b8f55be6
CW
995 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
996 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
7f5f95d8
CW
997 ret = i915_gem_object_set_to_cpu_domain(obj, true);
998 if (ret)
999 goto err_unpin;
1000 else
1001 goto out;
1002 }
1003
ef74921b 1004 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
a314d5cb 1005
43394c7d
CW
1006 /* If we're not in the cpu write domain, set ourself into the
1007 * gtt write domain and manually flush cachelines (as required).
1008 * This optimizes for the case when the gpu will use the data
1009 * right away and we therefore have to clflush anyway.
1010 */
e27ab73d 1011 if (!obj->cache_dirty) {
7f5f95d8 1012 *needs_clflush |= CLFLUSH_AFTER;
43394c7d 1013
e27ab73d
CW
1014 /*
1015 * Same trick applies to invalidate partially written
1016 * cachelines read before writing.
1017 */
c0a51fd0 1018 if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
e27ab73d
CW
1019 *needs_clflush |= CLFLUSH_BEFORE;
1020 }
43394c7d 1021
7f5f95d8 1022out:
43394c7d 1023 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
a4f5ea64 1024 obj->mm.dirty = true;
9764951e 1025 /* return with the pages pinned */
43394c7d 1026 return 0;
9764951e
CW
1027
1028err_unpin:
1029 i915_gem_object_unpin_pages(obj);
1030 return ret;
4c914c0c
BV
1031}
1032
23c18c71
DV
1033static void
1034shmem_clflush_swizzled_range(char *addr, unsigned long length,
1035 bool swizzled)
1036{
e7e58eb5 1037 if (unlikely(swizzled)) {
23c18c71
DV
1038 unsigned long start = (unsigned long) addr;
1039 unsigned long end = (unsigned long) addr + length;
1040
1041 /* For swizzling simply ensure that we always flush both
1042 * channels. Lame, but simple and it works. Swizzled
1043 * pwrite/pread is far from a hotpath - current userspace
1044 * doesn't use it at all. */
1045 start = round_down(start, 128);
1046 end = round_up(end, 128);
1047
1048 drm_clflush_virt_range((void *)start, end - start);
1049 } else {
1050 drm_clflush_virt_range(addr, length);
1051 }
1052
1053}
1054
d174bd64
DV
1055/* Only difference to the fast-path function is that this can handle bit17
1056 * and uses non-atomic copy and kmap functions. */
1057static int
bb6dc8d9 1058shmem_pread_slow(struct page *page, int offset, int length,
d174bd64
DV
1059 char __user *user_data,
1060 bool page_do_bit17_swizzling, bool needs_clflush)
1061{
1062 char *vaddr;
1063 int ret;
1064
1065 vaddr = kmap(page);
1066 if (needs_clflush)
bb6dc8d9 1067 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1068 page_do_bit17_swizzling);
d174bd64
DV
1069
1070 if (page_do_bit17_swizzling)
bb6dc8d9 1071 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
d174bd64 1072 else
bb6dc8d9 1073 ret = __copy_to_user(user_data, vaddr + offset, length);
d174bd64
DV
1074 kunmap(page);
1075
f60d7f0c 1076 return ret ? - EFAULT : 0;
d174bd64
DV
1077}
1078
bb6dc8d9
CW
1079static int
1080shmem_pread(struct page *page, int offset, int length, char __user *user_data,
1081 bool page_do_bit17_swizzling, bool needs_clflush)
1082{
1083 int ret;
1084
1085 ret = -ENODEV;
1086 if (!page_do_bit17_swizzling) {
1087 char *vaddr = kmap_atomic(page);
1088
1089 if (needs_clflush)
1090 drm_clflush_virt_range(vaddr + offset, length);
1091 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1092 kunmap_atomic(vaddr);
1093 }
1094 if (ret == 0)
1095 return 0;
1096
1097 return shmem_pread_slow(page, offset, length, user_data,
1098 page_do_bit17_swizzling, needs_clflush);
1099}
1100
1101static int
1102i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
1103 struct drm_i915_gem_pread *args)
1104{
1105 char __user *user_data;
1106 u64 remain;
1107 unsigned int obj_do_bit17_swizzling;
1108 unsigned int needs_clflush;
1109 unsigned int idx, offset;
1110 int ret;
1111
1112 obj_do_bit17_swizzling = 0;
1113 if (i915_gem_object_needs_bit17_swizzle(obj))
1114 obj_do_bit17_swizzling = BIT(17);
1115
1116 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1117 if (ret)
1118 return ret;
1119
1120 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1121 mutex_unlock(&obj->base.dev->struct_mutex);
1122 if (ret)
1123 return ret;
1124
1125 remain = args->size;
1126 user_data = u64_to_user_ptr(args->data_ptr);
1127 offset = offset_in_page(args->offset);
1128 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1129 struct page *page = i915_gem_object_get_page(obj, idx);
1130 int length;
1131
1132 length = remain;
1133 if (offset + length > PAGE_SIZE)
1134 length = PAGE_SIZE - offset;
1135
1136 ret = shmem_pread(page, offset, length, user_data,
1137 page_to_phys(page) & obj_do_bit17_swizzling,
1138 needs_clflush);
1139 if (ret)
1140 break;
1141
1142 remain -= length;
1143 user_data += length;
1144 offset = 0;
1145 }
1146
1147 i915_gem_obj_finish_shmem_access(obj);
1148 return ret;
1149}
1150
1151static inline bool
1152gtt_user_read(struct io_mapping *mapping,
1153 loff_t base, int offset,
1154 char __user *user_data, int length)
b50a5371 1155{
afe722be 1156 void __iomem *vaddr;
bb6dc8d9 1157 unsigned long unwritten;
b50a5371 1158
b50a5371 1159 /* We can use the cpu mem copy function because this is X86. */
afe722be
VS
1160 vaddr = io_mapping_map_atomic_wc(mapping, base);
1161 unwritten = __copy_to_user_inatomic(user_data,
1162 (void __force *)vaddr + offset,
1163 length);
bb6dc8d9
CW
1164 io_mapping_unmap_atomic(vaddr);
1165 if (unwritten) {
afe722be
VS
1166 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1167 unwritten = copy_to_user(user_data,
1168 (void __force *)vaddr + offset,
1169 length);
bb6dc8d9
CW
1170 io_mapping_unmap(vaddr);
1171 }
b50a5371
AS
1172 return unwritten;
1173}
1174
1175static int
bb6dc8d9
CW
1176i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1177 const struct drm_i915_gem_pread *args)
b50a5371 1178{
bb6dc8d9
CW
1179 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1180 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 1181 struct drm_mm_node node;
bb6dc8d9
CW
1182 struct i915_vma *vma;
1183 void __user *user_data;
1184 u64 remain, offset;
b50a5371
AS
1185 int ret;
1186
bb6dc8d9
CW
1187 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1188 if (ret)
1189 return ret;
1190
1191 intel_runtime_pm_get(i915);
1192 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
a3259ca9
CW
1193 PIN_MAPPABLE |
1194 PIN_NONFAULT |
1195 PIN_NONBLOCK);
18034584
CW
1196 if (!IS_ERR(vma)) {
1197 node.start = i915_ggtt_offset(vma);
1198 node.allocated = false;
49ef5294 1199 ret = i915_vma_put_fence(vma);
18034584
CW
1200 if (ret) {
1201 i915_vma_unpin(vma);
1202 vma = ERR_PTR(ret);
1203 }
1204 }
058d88c4 1205 if (IS_ERR(vma)) {
bb6dc8d9 1206 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
b50a5371 1207 if (ret)
bb6dc8d9
CW
1208 goto out_unlock;
1209 GEM_BUG_ON(!node.allocated);
b50a5371
AS
1210 }
1211
1212 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1213 if (ret)
1214 goto out_unpin;
1215
bb6dc8d9 1216 mutex_unlock(&i915->drm.struct_mutex);
b50a5371 1217
bb6dc8d9
CW
1218 user_data = u64_to_user_ptr(args->data_ptr);
1219 remain = args->size;
1220 offset = args->offset;
b50a5371
AS
1221
1222 while (remain > 0) {
1223 /* Operation in this page
1224 *
1225 * page_base = page offset within aperture
1226 * page_offset = offset within page
1227 * page_length = bytes to copy for this page
1228 */
1229 u32 page_base = node.start;
1230 unsigned page_offset = offset_in_page(offset);
1231 unsigned page_length = PAGE_SIZE - page_offset;
1232 page_length = remain < page_length ? remain : page_length;
1233 if (node.allocated) {
1234 wmb();
82ad6443
CW
1235 ggtt->vm.insert_page(&ggtt->vm,
1236 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1237 node.start, I915_CACHE_NONE, 0);
b50a5371
AS
1238 wmb();
1239 } else {
1240 page_base += offset & PAGE_MASK;
1241 }
bb6dc8d9 1242
73ebd503 1243 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
bb6dc8d9 1244 user_data, page_length)) {
b50a5371
AS
1245 ret = -EFAULT;
1246 break;
1247 }
1248
1249 remain -= page_length;
1250 user_data += page_length;
1251 offset += page_length;
1252 }
1253
bb6dc8d9 1254 mutex_lock(&i915->drm.struct_mutex);
b50a5371
AS
1255out_unpin:
1256 if (node.allocated) {
1257 wmb();
82ad6443 1258 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
b50a5371
AS
1259 remove_mappable_node(&node);
1260 } else {
058d88c4 1261 i915_vma_unpin(vma);
b50a5371 1262 }
bb6dc8d9
CW
1263out_unlock:
1264 intel_runtime_pm_put(i915);
1265 mutex_unlock(&i915->drm.struct_mutex);
f60d7f0c 1266
eb01459f
EA
1267 return ret;
1268}
1269
673a394b
EA
1270/**
1271 * Reads data from the object referenced by handle.
14bb2c11
TU
1272 * @dev: drm device pointer
1273 * @data: ioctl data blob
1274 * @file: drm file pointer
673a394b
EA
1275 *
1276 * On error, the contents of *data are undefined.
1277 */
1278int
1279i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 1280 struct drm_file *file)
673a394b
EA
1281{
1282 struct drm_i915_gem_pread *args = data;
05394f39 1283 struct drm_i915_gem_object *obj;
bb6dc8d9 1284 int ret;
673a394b 1285
51311d0a
CW
1286 if (args->size == 0)
1287 return 0;
1288
1289 if (!access_ok(VERIFY_WRITE,
3ed605bc 1290 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1291 args->size))
1292 return -EFAULT;
1293
03ac0642 1294 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1295 if (!obj)
1296 return -ENOENT;
673a394b 1297
7dcd2499 1298 /* Bounds check source. */
966d5bf5 1299 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
ce9d419d 1300 ret = -EINVAL;
bb6dc8d9 1301 goto out;
ce9d419d
CW
1302 }
1303
db53a302
CW
1304 trace_i915_gem_object_pread(obj, args->offset, args->size);
1305
e95433c7
CW
1306 ret = i915_gem_object_wait(obj,
1307 I915_WAIT_INTERRUPTIBLE,
1308 MAX_SCHEDULE_TIMEOUT,
1309 to_rps_client(file));
258a5ede 1310 if (ret)
bb6dc8d9 1311 goto out;
258a5ede 1312
bb6dc8d9 1313 ret = i915_gem_object_pin_pages(obj);
258a5ede 1314 if (ret)
bb6dc8d9 1315 goto out;
673a394b 1316
bb6dc8d9 1317 ret = i915_gem_shmem_pread(obj, args);
9c870d03 1318 if (ret == -EFAULT || ret == -ENODEV)
bb6dc8d9 1319 ret = i915_gem_gtt_pread(obj, args);
b50a5371 1320
bb6dc8d9
CW
1321 i915_gem_object_unpin_pages(obj);
1322out:
f0cd5182 1323 i915_gem_object_put(obj);
eb01459f 1324 return ret;
673a394b
EA
1325}
1326
0839ccb8
KP
1327/* This is the fast write path which cannot handle
1328 * page faults in the source data
9b7530cc 1329 */
0839ccb8 1330
fe115628
CW
1331static inline bool
1332ggtt_write(struct io_mapping *mapping,
1333 loff_t base, int offset,
1334 char __user *user_data, int length)
9b7530cc 1335{
afe722be 1336 void __iomem *vaddr;
0839ccb8 1337 unsigned long unwritten;
9b7530cc 1338
4f0c7cfb 1339 /* We can use the cpu mem copy function because this is X86. */
afe722be
VS
1340 vaddr = io_mapping_map_atomic_wc(mapping, base);
1341 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
0839ccb8 1342 user_data, length);
fe115628
CW
1343 io_mapping_unmap_atomic(vaddr);
1344 if (unwritten) {
afe722be
VS
1345 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1346 unwritten = copy_from_user((void __force *)vaddr + offset,
1347 user_data, length);
fe115628
CW
1348 io_mapping_unmap(vaddr);
1349 }
bb6dc8d9 1350
bb6dc8d9
CW
1351 return unwritten;
1352}
1353
3de09aa3
EA
1354/**
1355 * This is the fast pwrite path, where we copy the data directly from the
1356 * user into the GTT, uncached.
fe115628 1357 * @obj: i915 GEM object
14bb2c11 1358 * @args: pwrite arguments structure
3de09aa3 1359 */
673a394b 1360static int
fe115628
CW
1361i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1362 const struct drm_i915_gem_pwrite *args)
673a394b 1363{
fe115628 1364 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4f1959ee
AS
1365 struct i915_ggtt *ggtt = &i915->ggtt;
1366 struct drm_mm_node node;
fe115628
CW
1367 struct i915_vma *vma;
1368 u64 remain, offset;
1369 void __user *user_data;
4f1959ee 1370 int ret;
b50a5371 1371
fe115628
CW
1372 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1373 if (ret)
1374 return ret;
935aaa69 1375
8bd81815
CW
1376 if (i915_gem_object_has_struct_page(obj)) {
1377 /*
1378 * Avoid waking the device up if we can fallback, as
1379 * waking/resuming is very slow (worst-case 10-100 ms
1380 * depending on PCI sleeps and our own resume time).
1381 * This easily dwarfs any performance advantage from
1382 * using the cache bypass of indirect GGTT access.
1383 */
1384 if (!intel_runtime_pm_get_if_in_use(i915)) {
1385 ret = -EFAULT;
1386 goto out_unlock;
1387 }
1388 } else {
1389 /* No backing pages, no fallback, we must force GGTT access */
1390 intel_runtime_pm_get(i915);
1391 }
1392
058d88c4 1393 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
a3259ca9
CW
1394 PIN_MAPPABLE |
1395 PIN_NONFAULT |
1396 PIN_NONBLOCK);
18034584
CW
1397 if (!IS_ERR(vma)) {
1398 node.start = i915_ggtt_offset(vma);
1399 node.allocated = false;
49ef5294 1400 ret = i915_vma_put_fence(vma);
18034584
CW
1401 if (ret) {
1402 i915_vma_unpin(vma);
1403 vma = ERR_PTR(ret);
1404 }
1405 }
058d88c4 1406 if (IS_ERR(vma)) {
bb6dc8d9 1407 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
4f1959ee 1408 if (ret)
8bd81815 1409 goto out_rpm;
fe115628 1410 GEM_BUG_ON(!node.allocated);
4f1959ee 1411 }
935aaa69
DV
1412
1413 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1414 if (ret)
1415 goto out_unpin;
1416
fe115628
CW
1417 mutex_unlock(&i915->drm.struct_mutex);
1418
b19482d7 1419 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 1420
4f1959ee
AS
1421 user_data = u64_to_user_ptr(args->data_ptr);
1422 offset = args->offset;
1423 remain = args->size;
1424 while (remain) {
673a394b
EA
1425 /* Operation in this page
1426 *
0839ccb8
KP
1427 * page_base = page offset within aperture
1428 * page_offset = offset within page
1429 * page_length = bytes to copy for this page
673a394b 1430 */
4f1959ee 1431 u32 page_base = node.start;
bb6dc8d9
CW
1432 unsigned int page_offset = offset_in_page(offset);
1433 unsigned int page_length = PAGE_SIZE - page_offset;
4f1959ee
AS
1434 page_length = remain < page_length ? remain : page_length;
1435 if (node.allocated) {
1436 wmb(); /* flush the write before we modify the GGTT */
82ad6443
CW
1437 ggtt->vm.insert_page(&ggtt->vm,
1438 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1439 node.start, I915_CACHE_NONE, 0);
4f1959ee
AS
1440 wmb(); /* flush modifications to the GGTT (insert_page) */
1441 } else {
1442 page_base += offset & PAGE_MASK;
1443 }
0839ccb8 1444 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
1445 * source page isn't available. Return the error and we'll
1446 * retry in the slow path.
b50a5371
AS
1447 * If the object is non-shmem backed, we retry again with the
1448 * path that handles page fault.
0839ccb8 1449 */
73ebd503 1450 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
fe115628
CW
1451 user_data, page_length)) {
1452 ret = -EFAULT;
1453 break;
935aaa69 1454 }
673a394b 1455
0839ccb8
KP
1456 remain -= page_length;
1457 user_data += page_length;
1458 offset += page_length;
673a394b 1459 }
d59b21ec 1460 intel_fb_obj_flush(obj, ORIGIN_CPU);
fe115628
CW
1461
1462 mutex_lock(&i915->drm.struct_mutex);
935aaa69 1463out_unpin:
4f1959ee
AS
1464 if (node.allocated) {
1465 wmb();
82ad6443 1466 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
4f1959ee
AS
1467 remove_mappable_node(&node);
1468 } else {
058d88c4 1469 i915_vma_unpin(vma);
4f1959ee 1470 }
8bd81815 1471out_rpm:
9c870d03 1472 intel_runtime_pm_put(i915);
8bd81815 1473out_unlock:
fe115628 1474 mutex_unlock(&i915->drm.struct_mutex);
3de09aa3 1475 return ret;
673a394b
EA
1476}
1477
3043c60c 1478static int
fe115628 1479shmem_pwrite_slow(struct page *page, int offset, int length,
d174bd64
DV
1480 char __user *user_data,
1481 bool page_do_bit17_swizzling,
1482 bool needs_clflush_before,
1483 bool needs_clflush_after)
673a394b 1484{
d174bd64
DV
1485 char *vaddr;
1486 int ret;
e5281ccd 1487
d174bd64 1488 vaddr = kmap(page);
e7e58eb5 1489 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
fe115628 1490 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1491 page_do_bit17_swizzling);
d174bd64 1492 if (page_do_bit17_swizzling)
fe115628
CW
1493 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1494 length);
d174bd64 1495 else
fe115628 1496 ret = __copy_from_user(vaddr + offset, user_data, length);
d174bd64 1497 if (needs_clflush_after)
fe115628 1498 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1499 page_do_bit17_swizzling);
d174bd64 1500 kunmap(page);
40123c1f 1501
755d2218 1502 return ret ? -EFAULT : 0;
40123c1f
EA
1503}
1504
fe115628
CW
1505/* Per-page copy function for the shmem pwrite fastpath.
1506 * Flushes invalid cachelines before writing to the target if
1507 * needs_clflush_before is set and flushes out any written cachelines after
1508 * writing if needs_clflush is set.
1509 */
40123c1f 1510static int
fe115628
CW
1511shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1512 bool page_do_bit17_swizzling,
1513 bool needs_clflush_before,
1514 bool needs_clflush_after)
40123c1f 1515{
fe115628
CW
1516 int ret;
1517
1518 ret = -ENODEV;
1519 if (!page_do_bit17_swizzling) {
1520 char *vaddr = kmap_atomic(page);
1521
1522 if (needs_clflush_before)
1523 drm_clflush_virt_range(vaddr + offset, len);
1524 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1525 if (needs_clflush_after)
1526 drm_clflush_virt_range(vaddr + offset, len);
1527
1528 kunmap_atomic(vaddr);
1529 }
1530 if (ret == 0)
1531 return ret;
1532
1533 return shmem_pwrite_slow(page, offset, len, user_data,
1534 page_do_bit17_swizzling,
1535 needs_clflush_before,
1536 needs_clflush_after);
1537}
1538
1539static int
1540i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1541 const struct drm_i915_gem_pwrite *args)
1542{
1543 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1544 void __user *user_data;
1545 u64 remain;
1546 unsigned int obj_do_bit17_swizzling;
1547 unsigned int partial_cacheline_write;
43394c7d 1548 unsigned int needs_clflush;
fe115628
CW
1549 unsigned int offset, idx;
1550 int ret;
40123c1f 1551
fe115628 1552 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
755d2218
CW
1553 if (ret)
1554 return ret;
1555
fe115628
CW
1556 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1557 mutex_unlock(&i915->drm.struct_mutex);
1558 if (ret)
1559 return ret;
673a394b 1560
fe115628
CW
1561 obj_do_bit17_swizzling = 0;
1562 if (i915_gem_object_needs_bit17_swizzle(obj))
1563 obj_do_bit17_swizzling = BIT(17);
e5281ccd 1564
fe115628
CW
1565 /* If we don't overwrite a cacheline completely we need to be
1566 * careful to have up-to-date data by first clflushing. Don't
1567 * overcomplicate things and flush the entire patch.
1568 */
1569 partial_cacheline_write = 0;
1570 if (needs_clflush & CLFLUSH_BEFORE)
1571 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
9da3da66 1572
fe115628
CW
1573 user_data = u64_to_user_ptr(args->data_ptr);
1574 remain = args->size;
1575 offset = offset_in_page(args->offset);
1576 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1577 struct page *page = i915_gem_object_get_page(obj, idx);
1578 int length;
40123c1f 1579
fe115628
CW
1580 length = remain;
1581 if (offset + length > PAGE_SIZE)
1582 length = PAGE_SIZE - offset;
755d2218 1583
fe115628
CW
1584 ret = shmem_pwrite(page, offset, length, user_data,
1585 page_to_phys(page) & obj_do_bit17_swizzling,
1586 (offset | length) & partial_cacheline_write,
1587 needs_clflush & CLFLUSH_AFTER);
755d2218 1588 if (ret)
fe115628 1589 break;
755d2218 1590
fe115628
CW
1591 remain -= length;
1592 user_data += length;
1593 offset = 0;
8c59967c 1594 }
673a394b 1595
d59b21ec 1596 intel_fb_obj_flush(obj, ORIGIN_CPU);
fe115628 1597 i915_gem_obj_finish_shmem_access(obj);
40123c1f 1598 return ret;
673a394b
EA
1599}
1600
1601/**
1602 * Writes data to the object referenced by handle.
14bb2c11
TU
1603 * @dev: drm device
1604 * @data: ioctl data blob
1605 * @file: drm file
673a394b
EA
1606 *
1607 * On error, the contents of the buffer that were to be modified are undefined.
1608 */
1609int
1610i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1611 struct drm_file *file)
673a394b
EA
1612{
1613 struct drm_i915_gem_pwrite *args = data;
05394f39 1614 struct drm_i915_gem_object *obj;
51311d0a
CW
1615 int ret;
1616
1617 if (args->size == 0)
1618 return 0;
1619
1620 if (!access_ok(VERIFY_READ,
3ed605bc 1621 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1622 args->size))
1623 return -EFAULT;
1624
03ac0642 1625 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1626 if (!obj)
1627 return -ENOENT;
673a394b 1628
7dcd2499 1629 /* Bounds check destination. */
966d5bf5 1630 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
ce9d419d 1631 ret = -EINVAL;
258a5ede 1632 goto err;
ce9d419d
CW
1633 }
1634
f8c1cce3
CW
1635 /* Writes not allowed into this read-only object */
1636 if (i915_gem_object_is_readonly(obj)) {
1637 ret = -EINVAL;
1638 goto err;
1639 }
1640
db53a302
CW
1641 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1642
7c55e2c5
CW
1643 ret = -ENODEV;
1644 if (obj->ops->pwrite)
1645 ret = obj->ops->pwrite(obj, args);
1646 if (ret != -ENODEV)
1647 goto err;
1648
e95433c7
CW
1649 ret = i915_gem_object_wait(obj,
1650 I915_WAIT_INTERRUPTIBLE |
1651 I915_WAIT_ALL,
1652 MAX_SCHEDULE_TIMEOUT,
1653 to_rps_client(file));
258a5ede
CW
1654 if (ret)
1655 goto err;
1656
fe115628 1657 ret = i915_gem_object_pin_pages(obj);
258a5ede 1658 if (ret)
fe115628 1659 goto err;
258a5ede 1660
935aaa69 1661 ret = -EFAULT;
673a394b
EA
1662 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1663 * it would end up going through the fenced access, and we'll get
1664 * different detiling behavior between reading and writing.
1665 * pread/pwrite currently are reading and writing from the CPU
1666 * perspective, requiring manual detiling by the client.
1667 */
6eae0059 1668 if (!i915_gem_object_has_struct_page(obj) ||
9c870d03 1669 cpu_write_needs_clflush(obj))
935aaa69
DV
1670 /* Note that the gtt paths might fail with non-page-backed user
1671 * pointers (e.g. gtt mappings when moving data between
9c870d03
CW
1672 * textures). Fallback to the shmem path in that case.
1673 */
fe115628 1674 ret = i915_gem_gtt_pwrite_fast(obj, args);
673a394b 1675
d1054ee4 1676 if (ret == -EFAULT || ret == -ENOSPC) {
6a2c4232
CW
1677 if (obj->phys_handle)
1678 ret = i915_gem_phys_pwrite(obj, args, file);
b50a5371 1679 else
fe115628 1680 ret = i915_gem_shmem_pwrite(obj, args);
6a2c4232 1681 }
5c0480f2 1682
fe115628 1683 i915_gem_object_unpin_pages(obj);
258a5ede 1684err:
f0cd5182 1685 i915_gem_object_put(obj);
258a5ede 1686 return ret;
673a394b
EA
1687}
1688
40e62d5d
CW
1689static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1690{
1691 struct drm_i915_private *i915;
1692 struct list_head *list;
1693 struct i915_vma *vma;
1694
f2123818
CW
1695 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1696
e2189dd0 1697 for_each_ggtt_vma(vma, obj) {
40e62d5d
CW
1698 if (i915_vma_is_active(vma))
1699 continue;
1700
1701 if (!drm_mm_node_allocated(&vma->node))
1702 continue;
1703
1704 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1705 }
1706
1707 i915 = to_i915(obj->base.dev);
f2123818 1708 spin_lock(&i915->mm.obj_lock);
40e62d5d 1709 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
f2123818
CW
1710 list_move_tail(&obj->mm.link, list);
1711 spin_unlock(&i915->mm.obj_lock);
40e62d5d
CW
1712}
1713
673a394b 1714/**
2ef7eeaa
EA
1715 * Called when user space prepares to use an object with the CPU, either
1716 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1717 * @dev: drm device
1718 * @data: ioctl data blob
1719 * @file: drm file
673a394b
EA
1720 */
1721int
1722i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1723 struct drm_file *file)
673a394b
EA
1724{
1725 struct drm_i915_gem_set_domain *args = data;
05394f39 1726 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1727 uint32_t read_domains = args->read_domains;
1728 uint32_t write_domain = args->write_domain;
40e62d5d 1729 int err;
673a394b 1730
2ef7eeaa 1731 /* Only handle setting domains to types used by the CPU. */
b8f9096d 1732 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1733 return -EINVAL;
1734
1735 /* Having something in the write domain implies it's in the read
1736 * domain, and only that read domain. Enforce that in the request.
1737 */
1738 if (write_domain != 0 && read_domains != write_domain)
1739 return -EINVAL;
1740
03ac0642 1741 obj = i915_gem_object_lookup(file, args->handle);
b8f9096d
CW
1742 if (!obj)
1743 return -ENOENT;
673a394b 1744
3236f57a
CW
1745 /* Try to flush the object off the GPU without holding the lock.
1746 * We will repeat the flush holding the lock in the normal manner
1747 * to catch cases where we are gazumped.
1748 */
40e62d5d 1749 err = i915_gem_object_wait(obj,
e95433c7
CW
1750 I915_WAIT_INTERRUPTIBLE |
1751 (write_domain ? I915_WAIT_ALL : 0),
1752 MAX_SCHEDULE_TIMEOUT,
1753 to_rps_client(file));
40e62d5d 1754 if (err)
f0cd5182 1755 goto out;
b8f9096d 1756
a03f395a
TZ
1757 /*
1758 * Proxy objects do not control access to the backing storage, ergo
1759 * they cannot be used as a means to manipulate the cache domain
1760 * tracking for that backing storage. The proxy object is always
1761 * considered to be outside of any cache domain.
1762 */
1763 if (i915_gem_object_is_proxy(obj)) {
1764 err = -ENXIO;
1765 goto out;
1766 }
1767
1768 /*
1769 * Flush and acquire obj->pages so that we are coherent through
40e62d5d
CW
1770 * direct access in memory with previous cached writes through
1771 * shmemfs and that our cache domain tracking remains valid.
1772 * For example, if the obj->filp was moved to swap without us
1773 * being notified and releasing the pages, we would mistakenly
1774 * continue to assume that the obj remained out of the CPU cached
1775 * domain.
1776 */
1777 err = i915_gem_object_pin_pages(obj);
1778 if (err)
f0cd5182 1779 goto out;
40e62d5d
CW
1780
1781 err = i915_mutex_lock_interruptible(dev);
1782 if (err)
f0cd5182 1783 goto out_unpin;
3236f57a 1784
e22d8e3c
CW
1785 if (read_domains & I915_GEM_DOMAIN_WC)
1786 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1787 else if (read_domains & I915_GEM_DOMAIN_GTT)
1788 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
43566ded 1789 else
e22d8e3c 1790 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
2ef7eeaa 1791
40e62d5d
CW
1792 /* And bump the LRU for this access */
1793 i915_gem_object_bump_inactive_ggtt(obj);
031b698a 1794
673a394b 1795 mutex_unlock(&dev->struct_mutex);
b8f9096d 1796
40e62d5d 1797 if (write_domain != 0)
ef74921b
CW
1798 intel_fb_obj_invalidate(obj,
1799 fb_write_origin(obj, write_domain));
40e62d5d 1800
f0cd5182 1801out_unpin:
40e62d5d 1802 i915_gem_object_unpin_pages(obj);
f0cd5182
CW
1803out:
1804 i915_gem_object_put(obj);
40e62d5d 1805 return err;
673a394b
EA
1806}
1807
1808/**
1809 * Called when user space has done writes to this buffer
14bb2c11
TU
1810 * @dev: drm device
1811 * @data: ioctl data blob
1812 * @file: drm file
673a394b
EA
1813 */
1814int
1815i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1816 struct drm_file *file)
673a394b
EA
1817{
1818 struct drm_i915_gem_sw_finish *args = data;
05394f39 1819 struct drm_i915_gem_object *obj;
1d7cfea1 1820
03ac0642 1821 obj = i915_gem_object_lookup(file, args->handle);
c21724cc
CW
1822 if (!obj)
1823 return -ENOENT;
673a394b 1824
a03f395a
TZ
1825 /*
1826 * Proxy objects are barred from CPU access, so there is no
1827 * need to ban sw_finish as it is a nop.
1828 */
1829
673a394b 1830 /* Pinned buffers may be scanout, so flush the cache */
5a97bcc6 1831 i915_gem_object_flush_if_display(obj);
f0cd5182 1832 i915_gem_object_put(obj);
5a97bcc6
CW
1833
1834 return 0;
673a394b
EA
1835}
1836
1837/**
14bb2c11
TU
1838 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1839 * it is mapped to.
1840 * @dev: drm device
1841 * @data: ioctl data blob
1842 * @file: drm file
673a394b
EA
1843 *
1844 * While the mapping holds a reference on the contents of the object, it doesn't
1845 * imply a ref on the object itself.
34367381
DV
1846 *
1847 * IMPORTANT:
1848 *
1849 * DRM driver writers who look a this function as an example for how to do GEM
1850 * mmap support, please don't implement mmap support like here. The modern way
1851 * to implement DRM mmap support is with an mmap offset ioctl (like
1852 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1853 * That way debug tooling like valgrind will understand what's going on, hiding
1854 * the mmap call in a driver private ioctl will break that. The i915 driver only
1855 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1856 */
1857int
1858i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1859 struct drm_file *file)
673a394b
EA
1860{
1861 struct drm_i915_gem_mmap *args = data;
03ac0642 1862 struct drm_i915_gem_object *obj;
673a394b
EA
1863 unsigned long addr;
1864
1816f923
AG
1865 if (args->flags & ~(I915_MMAP_WC))
1866 return -EINVAL;
1867
568a58e5 1868 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1869 return -ENODEV;
1870
03ac0642
CW
1871 obj = i915_gem_object_lookup(file, args->handle);
1872 if (!obj)
bf79cb91 1873 return -ENOENT;
673a394b 1874
1286ff73
DV
1875 /* prime objects have no backing filp to GEM mmap
1876 * pages from.
1877 */
03ac0642 1878 if (!obj->base.filp) {
f0cd5182 1879 i915_gem_object_put(obj);
274b2462 1880 return -ENXIO;
1286ff73
DV
1881 }
1882
03ac0642 1883 addr = vm_mmap(obj->base.filp, 0, args->size,
673a394b
EA
1884 PROT_READ | PROT_WRITE, MAP_SHARED,
1885 args->offset);
1816f923
AG
1886 if (args->flags & I915_MMAP_WC) {
1887 struct mm_struct *mm = current->mm;
1888 struct vm_area_struct *vma;
1889
80a89a5e 1890 if (down_write_killable(&mm->mmap_sem)) {
f0cd5182 1891 i915_gem_object_put(obj);
80a89a5e
MH
1892 return -EINTR;
1893 }
1816f923
AG
1894 vma = find_vma(mm, addr);
1895 if (vma)
1896 vma->vm_page_prot =
1897 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1898 else
1899 addr = -ENOMEM;
1900 up_write(&mm->mmap_sem);
aeecc969
CW
1901
1902 /* This may race, but that's ok, it only gets set */
50349247 1903 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1816f923 1904 }
f0cd5182 1905 i915_gem_object_put(obj);
673a394b
EA
1906 if (IS_ERR((void *)addr))
1907 return addr;
1908
1909 args->addr_ptr = (uint64_t) addr;
1910
1911 return 0;
1912}
1913
d899aceb 1914static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
03af84fe 1915{
6649a0b6 1916 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
03af84fe
CW
1917}
1918
4cc69075
CW
1919/**
1920 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1921 *
1922 * A history of the GTT mmap interface:
1923 *
1924 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1925 * aligned and suitable for fencing, and still fit into the available
1926 * mappable space left by the pinned display objects. A classic problem
1927 * we called the page-fault-of-doom where we would ping-pong between
1928 * two objects that could not fit inside the GTT and so the memcpy
1929 * would page one object in at the expense of the other between every
1930 * single byte.
1931 *
1932 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1933 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1934 * object is too large for the available space (or simply too large
1935 * for the mappable aperture!), a view is created instead and faulted
1936 * into userspace. (This view is aligned and sized appropriately for
1937 * fenced access.)
1938 *
e22d8e3c
CW
1939 * 2 - Recognise WC as a separate cache domain so that we can flush the
1940 * delayed writes via GTT before performing direct access via WC.
1941 *
4cc69075
CW
1942 * Restrictions:
1943 *
1944 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1945 * hangs on some architectures, corruption on others. An attempt to service
1946 * a GTT page fault from a snoopable object will generate a SIGBUS.
1947 *
1948 * * the object must be able to fit into RAM (physical memory, though no
1949 * limited to the mappable aperture).
1950 *
1951 *
1952 * Caveats:
1953 *
1954 * * a new GTT page fault will synchronize rendering from the GPU and flush
1955 * all data to system memory. Subsequent access will not be synchronized.
1956 *
1957 * * all mappings are revoked on runtime device suspend.
1958 *
1959 * * there are only 8, 16 or 32 fence registers to share between all users
1960 * (older machines require fence register for display and blitter access
1961 * as well). Contention of the fence registers will cause the previous users
1962 * to be unmapped and any new access will generate new page faults.
1963 *
1964 * * running out of memory while servicing a fault may generate a SIGBUS,
1965 * rather than the expected SIGSEGV.
1966 */
1967int i915_gem_mmap_gtt_version(void)
1968{
e22d8e3c 1969 return 2;
4cc69075
CW
1970}
1971
2d4281bb 1972static inline struct i915_ggtt_view
d899aceb 1973compute_partial_view(const struct drm_i915_gem_object *obj,
2d4281bb
CW
1974 pgoff_t page_offset,
1975 unsigned int chunk)
1976{
1977 struct i915_ggtt_view view;
1978
1979 if (i915_gem_object_is_tiled(obj))
1980 chunk = roundup(chunk, tile_row_pages(obj));
1981
2d4281bb 1982 view.type = I915_GGTT_VIEW_PARTIAL;
8bab1193
CW
1983 view.partial.offset = rounddown(page_offset, chunk);
1984 view.partial.size =
2d4281bb 1985 min_t(unsigned int, chunk,
8bab1193 1986 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
2d4281bb
CW
1987
1988 /* If the partial covers the entire object, just create a normal VMA. */
1989 if (chunk >= obj->base.size >> PAGE_SHIFT)
1990 view.type = I915_GGTT_VIEW_NORMAL;
1991
1992 return view;
1993}
1994
de151cf6
JB
1995/**
1996 * i915_gem_fault - fault a page into the GTT
d9072a3e 1997 * @vmf: fault info
de151cf6
JB
1998 *
1999 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
2000 * from userspace. The fault handler takes care of binding the object to
2001 * the GTT (if needed), allocating and programming a fence register (again,
2002 * only if needed based on whether the old reg is still valid or the object
2003 * is tiled) and inserting a new PTE into the faulting process.
2004 *
2005 * Note that the faulting process may involve evicting existing objects
2006 * from the GTT and/or fence registers to make room. So performance may
2007 * suffer if the GTT working set is large or there are few fence registers
2008 * left.
4cc69075
CW
2009 *
2010 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
2011 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
de151cf6 2012 */
52137010 2013vm_fault_t i915_gem_fault(struct vm_fault *vmf)
de151cf6 2014{
420980ca 2015#define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
11bac800 2016 struct vm_area_struct *area = vmf->vma;
058d88c4 2017 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
05394f39 2018 struct drm_device *dev = obj->base.dev;
72e96d64
JL
2019 struct drm_i915_private *dev_priv = to_i915(dev);
2020 struct i915_ggtt *ggtt = &dev_priv->ggtt;
aae7c06b 2021 bool write = area->vm_flags & VM_WRITE;
058d88c4 2022 struct i915_vma *vma;
de151cf6 2023 pgoff_t page_offset;
b8f9096d 2024 int ret;
f65c9168 2025
3e977ac6
CW
2026 /* Sanity check that we allow writing into this object */
2027 if (i915_gem_object_is_readonly(obj) && write)
2028 return VM_FAULT_SIGBUS;
2029
de151cf6 2030 /* We don't use vmf->pgoff since that has the fake offset */
1a29d85e 2031 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
de151cf6 2032
db53a302
CW
2033 trace_i915_gem_object_fault(obj, page_offset, true, write);
2034
6e4930f6 2035 /* Try to flush the object off the GPU first without holding the lock.
b8f9096d 2036 * Upon acquiring the lock, we will perform our sanity checks and then
6e4930f6
CW
2037 * repeat the flush holding the lock in the normal manner to catch cases
2038 * where we are gazumped.
2039 */
e95433c7
CW
2040 ret = i915_gem_object_wait(obj,
2041 I915_WAIT_INTERRUPTIBLE,
2042 MAX_SCHEDULE_TIMEOUT,
2043 NULL);
6e4930f6 2044 if (ret)
b8f9096d
CW
2045 goto err;
2046
40e62d5d
CW
2047 ret = i915_gem_object_pin_pages(obj);
2048 if (ret)
2049 goto err;
2050
b8f9096d
CW
2051 intel_runtime_pm_get(dev_priv);
2052
2053 ret = i915_mutex_lock_interruptible(dev);
2054 if (ret)
2055 goto err_rpm;
6e4930f6 2056
eb119bd6 2057 /* Access to snoopable pages through the GTT is incoherent. */
0031fb96 2058 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
ddeff6ee 2059 ret = -EFAULT;
b8f9096d 2060 goto err_unlock;
eb119bd6
CW
2061 }
2062
82118877 2063
a61007a8 2064 /* Now pin it into the GTT as needed */
7e7367d3
CW
2065 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
2066 PIN_MAPPABLE |
2067 PIN_NONBLOCK |
2068 PIN_NONFAULT);
a61007a8 2069 if (IS_ERR(vma)) {
a61007a8 2070 /* Use a partial view if it is bigger than available space */
2d4281bb 2071 struct i915_ggtt_view view =
8201c1fa 2072 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
7e7367d3 2073 unsigned int flags;
aa136d9d 2074
7e7367d3
CW
2075 flags = PIN_MAPPABLE;
2076 if (view.type == I915_GGTT_VIEW_NORMAL)
2077 flags |= PIN_NONBLOCK; /* avoid warnings for pinned */
2078
2079 /*
2080 * Userspace is now writing through an untracked VMA, abandon
50349247
CW
2081 * all hope that the hardware is able to track future writes.
2082 */
2083 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
2084
7e7367d3
CW
2085 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2086 if (IS_ERR(vma) && !view.type) {
2087 flags = PIN_MAPPABLE;
2088 view.type = I915_GGTT_VIEW_PARTIAL;
2089 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2090 }
a61007a8 2091 }
058d88c4
CW
2092 if (IS_ERR(vma)) {
2093 ret = PTR_ERR(vma);
b8f9096d 2094 goto err_unlock;
058d88c4 2095 }
4a684a41 2096
c9839303
CW
2097 ret = i915_gem_object_set_to_gtt_domain(obj, write);
2098 if (ret)
b8f9096d 2099 goto err_unpin;
74898d7e 2100
3bd40735 2101 ret = i915_vma_pin_fence(vma);
d9e86c0e 2102 if (ret)
b8f9096d 2103 goto err_unpin;
7d1c4804 2104
b90b91d8 2105 /* Finally, remap it using the new GTT offset */
c58305af 2106 ret = remap_io_mapping(area,
8bab1193 2107 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
73ebd503 2108 (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
c58305af 2109 min_t(u64, vma->size, area->vm_end - area->vm_start),
73ebd503 2110 &ggtt->iomap);
a65adaf8
CW
2111 if (ret)
2112 goto err_fence;
a61007a8 2113
a65adaf8
CW
2114 /* Mark as being mmapped into userspace for later revocation */
2115 assert_rpm_wakelock_held(dev_priv);
2116 if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
2117 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
2118 GEM_BUG_ON(!obj->userfault_count);
2119
7125397b
CW
2120 i915_vma_set_ggtt_write(vma);
2121
a65adaf8 2122err_fence:
3bd40735 2123 i915_vma_unpin_fence(vma);
b8f9096d 2124err_unpin:
058d88c4 2125 __i915_vma_unpin(vma);
b8f9096d 2126err_unlock:
de151cf6 2127 mutex_unlock(&dev->struct_mutex);
b8f9096d
CW
2128err_rpm:
2129 intel_runtime_pm_put(dev_priv);
40e62d5d 2130 i915_gem_object_unpin_pages(obj);
b8f9096d 2131err:
de151cf6 2132 switch (ret) {
d9bc7e9f 2133 case -EIO:
2232f031
DV
2134 /*
2135 * We eat errors when the gpu is terminally wedged to avoid
2136 * userspace unduly crashing (gl has no provisions for mmaps to
2137 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2138 * and so needs to be reported.
2139 */
52137010
CW
2140 if (!i915_terminally_wedged(&dev_priv->gpu_error))
2141 return VM_FAULT_SIGBUS;
f0d759f0 2142 /* else: fall through */
045e769a 2143 case -EAGAIN:
571c608d
DV
2144 /*
2145 * EAGAIN means the gpu is hung and we'll wait for the error
2146 * handler to reset everything when re-faulting in
2147 * i915_mutex_lock_interruptible.
d9bc7e9f 2148 */
c715089f
CW
2149 case 0:
2150 case -ERESTARTSYS:
bed636ab 2151 case -EINTR:
e79e0fe3
DR
2152 case -EBUSY:
2153 /*
2154 * EBUSY is ok: this just means that another thread
2155 * already did the job.
2156 */
52137010 2157 return VM_FAULT_NOPAGE;
de151cf6 2158 case -ENOMEM:
52137010 2159 return VM_FAULT_OOM;
a7c2e1aa 2160 case -ENOSPC:
45d67817 2161 case -EFAULT:
52137010 2162 return VM_FAULT_SIGBUS;
de151cf6 2163 default:
a7c2e1aa 2164 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
52137010 2165 return VM_FAULT_SIGBUS;
de151cf6
JB
2166 }
2167}
2168
a65adaf8
CW
2169static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2170{
2171 struct i915_vma *vma;
2172
2173 GEM_BUG_ON(!obj->userfault_count);
2174
2175 obj->userfault_count = 0;
2176 list_del(&obj->userfault_link);
2177 drm_vma_node_unmap(&obj->base.vma_node,
2178 obj->base.dev->anon_inode->i_mapping);
2179
e2189dd0 2180 for_each_ggtt_vma(vma, obj)
a65adaf8 2181 i915_vma_unset_userfault(vma);
a65adaf8
CW
2182}
2183
901782b2
CW
2184/**
2185 * i915_gem_release_mmap - remove physical page mappings
2186 * @obj: obj in question
2187 *
af901ca1 2188 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
2189 * relinquish ownership of the pages back to the system.
2190 *
2191 * It is vital that we remove the page mapping if we have mapped a tiled
2192 * object through the GTT and then lose the fence register due to
2193 * resource pressure. Similarly if the object has been moved out of the
2194 * aperture, than pages mapped into userspace must be revoked. Removing the
2195 * mapping will then trigger a page fault on the next user access, allowing
2196 * fixup by i915_gem_fault().
2197 */
d05ca301 2198void
05394f39 2199i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 2200{
275f039d 2201 struct drm_i915_private *i915 = to_i915(obj->base.dev);
275f039d 2202
349f2ccf
CW
2203 /* Serialisation between user GTT access and our code depends upon
2204 * revoking the CPU's PTE whilst the mutex is held. The next user
2205 * pagefault then has to wait until we release the mutex.
9c870d03
CW
2206 *
2207 * Note that RPM complicates somewhat by adding an additional
2208 * requirement that operations to the GGTT be made holding the RPM
2209 * wakeref.
349f2ccf 2210 */
275f039d 2211 lockdep_assert_held(&i915->drm.struct_mutex);
9c870d03 2212 intel_runtime_pm_get(i915);
349f2ccf 2213
a65adaf8 2214 if (!obj->userfault_count)
9c870d03 2215 goto out;
901782b2 2216
a65adaf8 2217 __i915_gem_object_release_mmap(obj);
349f2ccf
CW
2218
2219 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2220 * memory transactions from userspace before we return. The TLB
2221 * flushing implied above by changing the PTE above *should* be
2222 * sufficient, an extra barrier here just provides us with a bit
2223 * of paranoid documentation about our requirement to serialise
2224 * memory writes before touching registers / GSM.
2225 */
2226 wmb();
9c870d03
CW
2227
2228out:
2229 intel_runtime_pm_put(i915);
901782b2
CW
2230}
2231
7c108fd8 2232void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
eedd10f4 2233{
3594a3e2 2234 struct drm_i915_gem_object *obj, *on;
7c108fd8 2235 int i;
eedd10f4 2236
3594a3e2
CW
2237 /*
2238 * Only called during RPM suspend. All users of the userfault_list
2239 * must be holding an RPM wakeref to ensure that this can not
2240 * run concurrently with themselves (and use the struct_mutex for
2241 * protection between themselves).
2242 */
275f039d 2243
3594a3e2 2244 list_for_each_entry_safe(obj, on,
a65adaf8
CW
2245 &dev_priv->mm.userfault_list, userfault_link)
2246 __i915_gem_object_release_mmap(obj);
7c108fd8
CW
2247
2248 /* The fence will be lost when the device powers down. If any were
2249 * in use by hardware (i.e. they are pinned), we should not be powering
2250 * down! All other fences will be reacquired by the user upon waking.
2251 */
2252 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2253 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2254
e0ec3ec6
CW
2255 /* Ideally we want to assert that the fence register is not
2256 * live at this point (i.e. that no piece of code will be
2257 * trying to write through fence + GTT, as that both violates
2258 * our tracking of activity and associated locking/barriers,
2259 * but also is illegal given that the hw is powered down).
2260 *
2261 * Previously we used reg->pin_count as a "liveness" indicator.
2262 * That is not sufficient, and we need a more fine-grained
2263 * tool if we want to have a sanity check here.
2264 */
7c108fd8
CW
2265
2266 if (!reg->vma)
2267 continue;
2268
a65adaf8 2269 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
7c108fd8
CW
2270 reg->dirty = true;
2271 }
eedd10f4
CW
2272}
2273
d8cb5086
CW
2274static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2275{
fac5e23e 2276 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
f3f6184c 2277 int err;
da494d7c 2278
f3f6184c 2279 err = drm_gem_create_mmap_offset(&obj->base);
b42a13d9 2280 if (likely(!err))
f3f6184c 2281 return 0;
d8cb5086 2282
b42a13d9
CW
2283 /* Attempt to reap some mmap space from dead objects */
2284 do {
ec625fb9
CW
2285 err = i915_gem_wait_for_idle(dev_priv,
2286 I915_WAIT_INTERRUPTIBLE,
2287 MAX_SCHEDULE_TIMEOUT);
b42a13d9
CW
2288 if (err)
2289 break;
f3f6184c 2290
b42a13d9 2291 i915_gem_drain_freed_objects(dev_priv);
f3f6184c 2292 err = drm_gem_create_mmap_offset(&obj->base);
b42a13d9
CW
2293 if (!err)
2294 break;
2295
2296 } while (flush_delayed_work(&dev_priv->gt.retire_work));
da494d7c 2297
f3f6184c 2298 return err;
d8cb5086
CW
2299}
2300
2301static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2302{
d8cb5086
CW
2303 drm_gem_free_mmap_offset(&obj->base);
2304}
2305
da6b51d0 2306int
ff72145b
DA
2307i915_gem_mmap_gtt(struct drm_file *file,
2308 struct drm_device *dev,
da6b51d0 2309 uint32_t handle,
ff72145b 2310 uint64_t *offset)
de151cf6 2311{
05394f39 2312 struct drm_i915_gem_object *obj;
de151cf6
JB
2313 int ret;
2314
03ac0642 2315 obj = i915_gem_object_lookup(file, handle);
f3f6184c
CW
2316 if (!obj)
2317 return -ENOENT;
ab18282d 2318
d8cb5086 2319 ret = i915_gem_object_create_mmap_offset(obj);
f3f6184c
CW
2320 if (ret == 0)
2321 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2322
f0cd5182 2323 i915_gem_object_put(obj);
1d7cfea1 2324 return ret;
de151cf6
JB
2325}
2326
ff72145b
DA
2327/**
2328 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2329 * @dev: DRM device
2330 * @data: GTT mapping ioctl data
2331 * @file: GEM object info
2332 *
2333 * Simply returns the fake offset to userspace so it can mmap it.
2334 * The mmap call will end up in drm_gem_mmap(), which will set things
2335 * up so we can get faults in the handler above.
2336 *
2337 * The fault handler will take care of binding the object into the GTT
2338 * (since it may have been evicted to make room for something), allocating
2339 * a fence register, and mapping the appropriate aperture address into
2340 * userspace.
2341 */
2342int
2343i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2344 struct drm_file *file)
2345{
2346 struct drm_i915_gem_mmap_gtt *args = data;
2347
da6b51d0 2348 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2349}
2350
225067ee
DV
2351/* Immediately discard the backing storage */
2352static void
2353i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2354{
4d6294bf 2355 i915_gem_object_free_mmap_offset(obj);
1286ff73 2356
4d6294bf
CW
2357 if (obj->base.filp == NULL)
2358 return;
e5281ccd 2359
225067ee
DV
2360 /* Our goal here is to return as much of the memory as
2361 * is possible back to the system as we are called from OOM.
2362 * To do this we must instruct the shmfs to drop all of its
2363 * backing pages, *now*.
2364 */
5537252b 2365 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
a4f5ea64 2366 obj->mm.madv = __I915_MADV_PURGED;
4e5462ee 2367 obj->mm.pages = ERR_PTR(-EFAULT);
225067ee 2368}
e5281ccd 2369
5537252b 2370/* Try to discard unwanted pages */
03ac84f1 2371void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2372{
5537252b
CW
2373 struct address_space *mapping;
2374
1233e2db 2375 lockdep_assert_held(&obj->mm.lock);
f1fa4f44 2376 GEM_BUG_ON(i915_gem_object_has_pages(obj));
1233e2db 2377
a4f5ea64 2378 switch (obj->mm.madv) {
5537252b
CW
2379 case I915_MADV_DONTNEED:
2380 i915_gem_object_truncate(obj);
2381 case __I915_MADV_PURGED:
2382 return;
2383 }
2384
2385 if (obj->base.filp == NULL)
2386 return;
2387
93c76a3d 2388 mapping = obj->base.filp->f_mapping,
5537252b 2389 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2390}
2391
5cdf5881 2392static void
03ac84f1
CW
2393i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2394 struct sg_table *pages)
673a394b 2395{
85d1225e
DG
2396 struct sgt_iter sgt_iter;
2397 struct page *page;
1286ff73 2398
e5facdf9 2399 __i915_gem_object_release_shmem(obj, pages, true);
673a394b 2400
03ac84f1 2401 i915_gem_gtt_finish_pages(obj, pages);
e2273302 2402
6dacfd2f 2403 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2404 i915_gem_object_save_bit_17_swizzle(obj, pages);
280b713b 2405
03ac84f1 2406 for_each_sgt_page(page, sgt_iter, pages) {
a4f5ea64 2407 if (obj->mm.dirty)
9da3da66 2408 set_page_dirty(page);
3ef94daa 2409
a4f5ea64 2410 if (obj->mm.madv == I915_MADV_WILLNEED)
9da3da66 2411 mark_page_accessed(page);
3ef94daa 2412
09cbfeaf 2413 put_page(page);
3ef94daa 2414 }
a4f5ea64 2415 obj->mm.dirty = false;
673a394b 2416
03ac84f1
CW
2417 sg_free_table(pages);
2418 kfree(pages);
37e680a1 2419}
6c085a72 2420
96d77634
CW
2421static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2422{
2423 struct radix_tree_iter iter;
c23aa71b 2424 void __rcu **slot;
96d77634 2425
bea6e987 2426 rcu_read_lock();
a4f5ea64
CW
2427 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2428 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
bea6e987 2429 rcu_read_unlock();
96d77634
CW
2430}
2431
acd1c1e6
CW
2432static struct sg_table *
2433__i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
37e680a1 2434{
f2123818 2435 struct drm_i915_private *i915 = to_i915(obj->base.dev);
03ac84f1 2436 struct sg_table *pages;
37e680a1 2437
03ac84f1 2438 pages = fetch_and_zero(&obj->mm.pages);
acd1c1e6
CW
2439 if (!pages)
2440 return NULL;
a2165e31 2441
f2123818
CW
2442 spin_lock(&i915->mm.obj_lock);
2443 list_del(&obj->mm.link);
2444 spin_unlock(&i915->mm.obj_lock);
2445
a4f5ea64 2446 if (obj->mm.mapping) {
4b30cb23
CW
2447 void *ptr;
2448
0ce81788 2449 ptr = page_mask_bits(obj->mm.mapping);
4b30cb23
CW
2450 if (is_vmalloc_addr(ptr))
2451 vunmap(ptr);
fb8621d3 2452 else
4b30cb23
CW
2453 kunmap(kmap_to_page(ptr));
2454
a4f5ea64 2455 obj->mm.mapping = NULL;
0a798eb9
CW
2456 }
2457
96d77634 2458 __i915_gem_object_reset_page_iter(obj);
acd1c1e6
CW
2459 obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2460
2461 return pages;
2462}
96d77634 2463
acd1c1e6
CW
2464void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2465 enum i915_mm_subclass subclass)
2466{
2467 struct sg_table *pages;
2468
2469 if (i915_gem_object_has_pinned_pages(obj))
2470 return;
2471
2472 GEM_BUG_ON(obj->bind_count);
2473 if (!i915_gem_object_has_pages(obj))
2474 return;
2475
2476 /* May be called by shrinker from within get_pages() (on another bo) */
2477 mutex_lock_nested(&obj->mm.lock, subclass);
2478 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2479 goto unlock;
2480
2481 /*
2482 * ->put_pages might need to allocate memory for the bit17 swizzle
2483 * array, hence protect them from being reaped by removing them from gtt
2484 * lists early.
2485 */
2486 pages = __i915_gem_object_unset_pages(obj);
4e5462ee
CW
2487 if (!IS_ERR(pages))
2488 obj->ops->put_pages(obj, pages);
2489
1233e2db
CW
2490unlock:
2491 mutex_unlock(&obj->mm.lock);
6c085a72
CW
2492}
2493
935a2f77 2494static bool i915_sg_trim(struct sg_table *orig_st)
0c40ce13
TU
2495{
2496 struct sg_table new_st;
2497 struct scatterlist *sg, *new_sg;
2498 unsigned int i;
2499
2500 if (orig_st->nents == orig_st->orig_nents)
935a2f77 2501 return false;
0c40ce13 2502
8bfc478f 2503 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
935a2f77 2504 return false;
0c40ce13
TU
2505
2506 new_sg = new_st.sgl;
2507 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2508 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
c6d22ab6
MA
2509 sg_dma_address(new_sg) = sg_dma_address(sg);
2510 sg_dma_len(new_sg) = sg_dma_len(sg);
2511
0c40ce13
TU
2512 new_sg = sg_next(new_sg);
2513 }
c2dc6cc9 2514 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
0c40ce13
TU
2515
2516 sg_free_table(orig_st);
2517
2518 *orig_st = new_st;
935a2f77 2519 return true;
0c40ce13
TU
2520}
2521
b91b09ee 2522static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2523{
fac5e23e 2524 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
d766ef53
CW
2525 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2526 unsigned long i;
e5281ccd 2527 struct address_space *mapping;
9da3da66
CW
2528 struct sg_table *st;
2529 struct scatterlist *sg;
85d1225e 2530 struct sgt_iter sgt_iter;
e5281ccd 2531 struct page *page;
90797e6d 2532 unsigned long last_pfn = 0; /* suppress gcc warning */
5602452e 2533 unsigned int max_segment = i915_sg_segment_size();
84e8978e 2534 unsigned int sg_page_sizes;
4846bf0c 2535 gfp_t noreclaim;
e2273302 2536 int ret;
e5281ccd 2537
e0ff7a7c
CW
2538 /*
2539 * Assert that the object is not currently in any GPU domain. As it
6c085a72
CW
2540 * wasn't in the GTT, there shouldn't be any way it could have been in
2541 * a GPU cache
2542 */
c0a51fd0
CK
2543 GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2544 GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
6c085a72 2545
e0ff7a7c
CW
2546 /*
2547 * If there's no chance of allocating enough pages for the whole
2548 * object, bail early.
2549 */
2550 if (page_count > totalram_pages)
2551 return -ENOMEM;
2552
9da3da66
CW
2553 st = kmalloc(sizeof(*st), GFP_KERNEL);
2554 if (st == NULL)
b91b09ee 2555 return -ENOMEM;
9da3da66 2556
d766ef53 2557rebuild_st:
9da3da66 2558 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2559 kfree(st);
b91b09ee 2560 return -ENOMEM;
9da3da66 2561 }
e5281ccd 2562
e0ff7a7c
CW
2563 /*
2564 * Get the list of pages out of our struct file. They'll be pinned
9da3da66
CW
2565 * at this point until we release them.
2566 *
2567 * Fail silently without starting the shrinker
2568 */
93c76a3d 2569 mapping = obj->base.filp->f_mapping;
0f6ab55d 2570 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
4846bf0c
CW
2571 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2572
90797e6d
ID
2573 sg = st->sgl;
2574 st->nents = 0;
84e8978e 2575 sg_page_sizes = 0;
90797e6d 2576 for (i = 0; i < page_count; i++) {
4846bf0c
CW
2577 const unsigned int shrink[] = {
2578 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2579 0,
2580 }, *s = shrink;
2581 gfp_t gfp = noreclaim;
2582
2583 do {
6c085a72 2584 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
4846bf0c
CW
2585 if (likely(!IS_ERR(page)))
2586 break;
2587
2588 if (!*s) {
2589 ret = PTR_ERR(page);
2590 goto err_sg;
2591 }
2592
912d572d 2593 i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
4846bf0c 2594 cond_resched();
24f8e00a 2595
e0ff7a7c
CW
2596 /*
2597 * We've tried hard to allocate the memory by reaping
6c085a72
CW
2598 * our own buffer, now let the real VM do its job and
2599 * go down in flames if truly OOM.
24f8e00a
CW
2600 *
2601 * However, since graphics tend to be disposable,
2602 * defer the oom here by reporting the ENOMEM back
2603 * to userspace.
6c085a72 2604 */
4846bf0c
CW
2605 if (!*s) {
2606 /* reclaim and warn, but no oom */
2607 gfp = mapping_gfp_mask(mapping);
eaf41801 2608
e0ff7a7c
CW
2609 /*
2610 * Our bo are always dirty and so we require
eaf41801
CW
2611 * kswapd to reclaim our pages (direct reclaim
2612 * does not effectively begin pageout of our
2613 * buffers on its own). However, direct reclaim
2614 * only waits for kswapd when under allocation
2615 * congestion. So as a result __GFP_RECLAIM is
2616 * unreliable and fails to actually reclaim our
2617 * dirty pages -- unless you try over and over
2618 * again with !__GFP_NORETRY. However, we still
2619 * want to fail this allocation rather than
2620 * trigger the out-of-memory killer and for
dbb32956 2621 * this we want __GFP_RETRY_MAYFAIL.
eaf41801 2622 */
dbb32956 2623 gfp |= __GFP_RETRY_MAYFAIL;
e2273302 2624 }
4846bf0c
CW
2625 } while (1);
2626
871dfbd6
CW
2627 if (!i ||
2628 sg->length >= max_segment ||
2629 page_to_pfn(page) != last_pfn + 1) {
a5c08166 2630 if (i) {
84e8978e 2631 sg_page_sizes |= sg->length;
90797e6d 2632 sg = sg_next(sg);
a5c08166 2633 }
90797e6d
ID
2634 st->nents++;
2635 sg_set_page(sg, page, PAGE_SIZE, 0);
2636 } else {
2637 sg->length += PAGE_SIZE;
2638 }
2639 last_pfn = page_to_pfn(page);
3bbbe706
DV
2640
2641 /* Check that the i965g/gm workaround works. */
2642 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2643 }
a5c08166 2644 if (sg) { /* loop terminated early; short sg table */
84e8978e 2645 sg_page_sizes |= sg->length;
426729dc 2646 sg_mark_end(sg);
a5c08166 2647 }
74ce6b6c 2648
0c40ce13
TU
2649 /* Trim unused sg entries to avoid wasting memory. */
2650 i915_sg_trim(st);
2651
03ac84f1 2652 ret = i915_gem_gtt_prepare_pages(obj, st);
d766ef53 2653 if (ret) {
e0ff7a7c
CW
2654 /*
2655 * DMA remapping failed? One possible cause is that
d766ef53
CW
2656 * it could not reserve enough large entries, asking
2657 * for PAGE_SIZE chunks instead may be helpful.
2658 */
2659 if (max_segment > PAGE_SIZE) {
2660 for_each_sgt_page(page, sgt_iter, st)
2661 put_page(page);
2662 sg_free_table(st);
2663
2664 max_segment = PAGE_SIZE;
2665 goto rebuild_st;
2666 } else {
2667 dev_warn(&dev_priv->drm.pdev->dev,
2668 "Failed to DMA remap %lu pages\n",
2669 page_count);
2670 goto err_pages;
2671 }
2672 }
e2273302 2673
6dacfd2f 2674 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2675 i915_gem_object_do_bit_17_swizzle(obj, st);
e5281ccd 2676
84e8978e 2677 __i915_gem_object_set_pages(obj, st, sg_page_sizes);
b91b09ee
MA
2678
2679 return 0;
e5281ccd 2680
b17993b7 2681err_sg:
90797e6d 2682 sg_mark_end(sg);
b17993b7 2683err_pages:
85d1225e
DG
2684 for_each_sgt_page(page, sgt_iter, st)
2685 put_page(page);
9da3da66
CW
2686 sg_free_table(st);
2687 kfree(st);
0820baf3 2688
e0ff7a7c
CW
2689 /*
2690 * shmemfs first checks if there is enough memory to allocate the page
0820baf3
CW
2691 * and reports ENOSPC should there be insufficient, along with the usual
2692 * ENOMEM for a genuine allocation failure.
2693 *
2694 * We use ENOSPC in our driver to mean that we have run out of aperture
2695 * space and so want to translate the error from shmemfs back to our
2696 * usual understanding of ENOMEM.
2697 */
e2273302
ID
2698 if (ret == -ENOSPC)
2699 ret = -ENOMEM;
2700
b91b09ee 2701 return ret;
03ac84f1
CW
2702}
2703
2704void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
a5c08166 2705 struct sg_table *pages,
84e8978e 2706 unsigned int sg_page_sizes)
03ac84f1 2707{
a5c08166
MA
2708 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2709 unsigned long supported = INTEL_INFO(i915)->page_sizes;
2710 int i;
2711
1233e2db 2712 lockdep_assert_held(&obj->mm.lock);
03ac84f1
CW
2713
2714 obj->mm.get_page.sg_pos = pages->sgl;
2715 obj->mm.get_page.sg_idx = 0;
2716
2717 obj->mm.pages = pages;
2c3a3f44
CW
2718
2719 if (i915_gem_object_is_tiled(obj) &&
f2123818 2720 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2c3a3f44
CW
2721 GEM_BUG_ON(obj->mm.quirked);
2722 __i915_gem_object_pin_pages(obj);
2723 obj->mm.quirked = true;
2724 }
a5c08166 2725
84e8978e
MA
2726 GEM_BUG_ON(!sg_page_sizes);
2727 obj->mm.page_sizes.phys = sg_page_sizes;
a5c08166
MA
2728
2729 /*
84e8978e
MA
2730 * Calculate the supported page-sizes which fit into the given
2731 * sg_page_sizes. This will give us the page-sizes which we may be able
2732 * to use opportunistically when later inserting into the GTT. For
2733 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2734 * 64K or 4K pages, although in practice this will depend on a number of
2735 * other factors.
a5c08166
MA
2736 */
2737 obj->mm.page_sizes.sg = 0;
2738 for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2739 if (obj->mm.page_sizes.phys & ~0u << i)
2740 obj->mm.page_sizes.sg |= BIT(i);
2741 }
a5c08166 2742 GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
f2123818
CW
2743
2744 spin_lock(&i915->mm.obj_lock);
2745 list_add(&obj->mm.link, &i915->mm.unbound_list);
2746 spin_unlock(&i915->mm.obj_lock);
03ac84f1
CW
2747}
2748
2749static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2750{
b91b09ee 2751 int err;
03ac84f1
CW
2752
2753 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2754 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2755 return -EFAULT;
2756 }
2757
b91b09ee 2758 err = obj->ops->get_pages(obj);
b65a9b98 2759 GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
03ac84f1 2760
b91b09ee 2761 return err;
673a394b
EA
2762}
2763
37e680a1 2764/* Ensure that the associated pages are gathered from the backing storage
1233e2db 2765 * and pinned into our object. i915_gem_object_pin_pages() may be called
37e680a1 2766 * multiple times before they are released by a single call to
1233e2db 2767 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
37e680a1
CW
2768 * either as a result of memory pressure (reaping pages under the shrinker)
2769 * or as the object is itself released.
2770 */
a4f5ea64 2771int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
37e680a1 2772{
03ac84f1 2773 int err;
37e680a1 2774
1233e2db
CW
2775 err = mutex_lock_interruptible(&obj->mm.lock);
2776 if (err)
2777 return err;
4c7d62c6 2778
f1fa4f44 2779 if (unlikely(!i915_gem_object_has_pages(obj))) {
88c880bb
CW
2780 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2781
2c3a3f44
CW
2782 err = ____i915_gem_object_get_pages(obj);
2783 if (err)
2784 goto unlock;
37e680a1 2785
2c3a3f44
CW
2786 smp_mb__before_atomic();
2787 }
2788 atomic_inc(&obj->mm.pages_pin_count);
ee286370 2789
1233e2db
CW
2790unlock:
2791 mutex_unlock(&obj->mm.lock);
03ac84f1 2792 return err;
673a394b
EA
2793}
2794
dd6034c6 2795/* The 'mapping' part of i915_gem_object_pin_map() below */
d31d7cb1
CW
2796static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2797 enum i915_map_type type)
dd6034c6
DG
2798{
2799 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
a4f5ea64 2800 struct sg_table *sgt = obj->mm.pages;
85d1225e
DG
2801 struct sgt_iter sgt_iter;
2802 struct page *page;
b338fa47
DG
2803 struct page *stack_pages[32];
2804 struct page **pages = stack_pages;
dd6034c6 2805 unsigned long i = 0;
d31d7cb1 2806 pgprot_t pgprot;
dd6034c6
DG
2807 void *addr;
2808
2809 /* A single page can always be kmapped */
d31d7cb1 2810 if (n_pages == 1 && type == I915_MAP_WB)
dd6034c6
DG
2811 return kmap(sg_page(sgt->sgl));
2812
b338fa47
DG
2813 if (n_pages > ARRAY_SIZE(stack_pages)) {
2814 /* Too big for stack -- allocate temporary array instead */
0ee931c4 2815 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
b338fa47
DG
2816 if (!pages)
2817 return NULL;
2818 }
dd6034c6 2819
85d1225e
DG
2820 for_each_sgt_page(page, sgt_iter, sgt)
2821 pages[i++] = page;
dd6034c6
DG
2822
2823 /* Check that we have the expected number of pages */
2824 GEM_BUG_ON(i != n_pages);
2825
d31d7cb1 2826 switch (type) {
a575c676
CW
2827 default:
2828 MISSING_CASE(type);
2829 /* fallthrough to use PAGE_KERNEL anyway */
d31d7cb1
CW
2830 case I915_MAP_WB:
2831 pgprot = PAGE_KERNEL;
2832 break;
2833 case I915_MAP_WC:
2834 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2835 break;
2836 }
2837 addr = vmap(pages, n_pages, 0, pgprot);
dd6034c6 2838
b338fa47 2839 if (pages != stack_pages)
2098105e 2840 kvfree(pages);
dd6034c6
DG
2841
2842 return addr;
2843}
2844
2845/* get, pin, and map the pages of the object into kernel space */
d31d7cb1
CW
2846void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2847 enum i915_map_type type)
0a798eb9 2848{
d31d7cb1
CW
2849 enum i915_map_type has_type;
2850 bool pinned;
2851 void *ptr;
0a798eb9
CW
2852 int ret;
2853
a03f395a
TZ
2854 if (unlikely(!i915_gem_object_has_struct_page(obj)))
2855 return ERR_PTR(-ENXIO);
0a798eb9 2856
1233e2db 2857 ret = mutex_lock_interruptible(&obj->mm.lock);
0a798eb9
CW
2858 if (ret)
2859 return ERR_PTR(ret);
2860
a575c676
CW
2861 pinned = !(type & I915_MAP_OVERRIDE);
2862 type &= ~I915_MAP_OVERRIDE;
2863
1233e2db 2864 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
f1fa4f44 2865 if (unlikely(!i915_gem_object_has_pages(obj))) {
88c880bb
CW
2866 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2867
2c3a3f44
CW
2868 ret = ____i915_gem_object_get_pages(obj);
2869 if (ret)
2870 goto err_unlock;
1233e2db 2871
2c3a3f44
CW
2872 smp_mb__before_atomic();
2873 }
2874 atomic_inc(&obj->mm.pages_pin_count);
1233e2db
CW
2875 pinned = false;
2876 }
f1fa4f44 2877 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
0a798eb9 2878
0ce81788 2879 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
d31d7cb1
CW
2880 if (ptr && has_type != type) {
2881 if (pinned) {
2882 ret = -EBUSY;
1233e2db 2883 goto err_unpin;
0a798eb9 2884 }
d31d7cb1
CW
2885
2886 if (is_vmalloc_addr(ptr))
2887 vunmap(ptr);
2888 else
2889 kunmap(kmap_to_page(ptr));
2890
a4f5ea64 2891 ptr = obj->mm.mapping = NULL;
0a798eb9
CW
2892 }
2893
d31d7cb1
CW
2894 if (!ptr) {
2895 ptr = i915_gem_object_map(obj, type);
2896 if (!ptr) {
2897 ret = -ENOMEM;
1233e2db 2898 goto err_unpin;
d31d7cb1
CW
2899 }
2900
0ce81788 2901 obj->mm.mapping = page_pack_bits(ptr, type);
d31d7cb1
CW
2902 }
2903
1233e2db
CW
2904out_unlock:
2905 mutex_unlock(&obj->mm.lock);
d31d7cb1
CW
2906 return ptr;
2907
1233e2db
CW
2908err_unpin:
2909 atomic_dec(&obj->mm.pages_pin_count);
2910err_unlock:
2911 ptr = ERR_PTR(ret);
2912 goto out_unlock;
0a798eb9
CW
2913}
2914
7c55e2c5
CW
2915static int
2916i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2917 const struct drm_i915_gem_pwrite *arg)
2918{
2919 struct address_space *mapping = obj->base.filp->f_mapping;
2920 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2921 u64 remain, offset;
2922 unsigned int pg;
2923
2924 /* Before we instantiate/pin the backing store for our use, we
2925 * can prepopulate the shmemfs filp efficiently using a write into
2926 * the pagecache. We avoid the penalty of instantiating all the
2927 * pages, important if the user is just writing to a few and never
2928 * uses the object on the GPU, and using a direct write into shmemfs
2929 * allows it to avoid the cost of retrieving a page (either swapin
2930 * or clearing-before-use) before it is overwritten.
2931 */
f1fa4f44 2932 if (i915_gem_object_has_pages(obj))
7c55e2c5
CW
2933 return -ENODEV;
2934
a6d65e45
CW
2935 if (obj->mm.madv != I915_MADV_WILLNEED)
2936 return -EFAULT;
2937
7c55e2c5
CW
2938 /* Before the pages are instantiated the object is treated as being
2939 * in the CPU domain. The pages will be clflushed as required before
2940 * use, and we can freely write into the pages directly. If userspace
2941 * races pwrite with any other operation; corruption will ensue -
2942 * that is userspace's prerogative!
2943 */
2944
2945 remain = arg->size;
2946 offset = arg->offset;
2947 pg = offset_in_page(offset);
2948
2949 do {
2950 unsigned int len, unwritten;
2951 struct page *page;
2952 void *data, *vaddr;
2953 int err;
2954
2955 len = PAGE_SIZE - pg;
2956 if (len > remain)
2957 len = remain;
2958
2959 err = pagecache_write_begin(obj->base.filp, mapping,
2960 offset, len, 0,
2961 &page, &data);
2962 if (err < 0)
2963 return err;
2964
2965 vaddr = kmap(page);
2966 unwritten = copy_from_user(vaddr + pg, user_data, len);
2967 kunmap(page);
2968
2969 err = pagecache_write_end(obj->base.filp, mapping,
2970 offset, len, len - unwritten,
2971 page, data);
2972 if (err < 0)
2973 return err;
2974
2975 if (unwritten)
2976 return -EFAULT;
2977
2978 remain -= len;
2979 user_data += len;
2980 offset += len;
2981 pg = 0;
2982 } while (remain);
2983
2984 return 0;
2985}
2986
14921f3c
MK
2987static void i915_gem_client_mark_guilty(struct drm_i915_file_private *file_priv,
2988 const struct i915_gem_context *ctx)
2989{
2990 unsigned int score;
2991 unsigned long prev_hang;
2992
2993 if (i915_gem_context_is_banned(ctx))
2994 score = I915_CLIENT_SCORE_CONTEXT_BAN;
2995 else
2996 score = 0;
2997
2998 prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
2999 if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
3000 score += I915_CLIENT_SCORE_HANG_FAST;
3001
3002 if (score) {
3003 atomic_add(score, &file_priv->ban_score);
3004
3005 DRM_DEBUG_DRIVER("client %s: gained %u ban score, now %u\n",
3006 ctx->name, score,
3007 atomic_read(&file_priv->ban_score));
3008 }
3009}
3010
e5e1fc47 3011static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
aa60c664 3012{
14921f3c
MK
3013 unsigned int score;
3014 bool banned, bannable;
b083a087 3015
77b25a97 3016 atomic_inc(&ctx->guilty_count);
b083a087 3017
14921f3c
MK
3018 bannable = i915_gem_context_is_bannable(ctx);
3019 score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
3020 banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
24eae08d 3021
14921f3c
MK
3022 /* Cool contexts don't accumulate client ban score */
3023 if (!bannable)
b083a087
MK
3024 return;
3025
bcc2661e
CW
3026 if (banned) {
3027 DRM_DEBUG_DRIVER("context %s: guilty %d, score %u, banned\n",
3028 ctx->name, atomic_read(&ctx->guilty_count),
3029 score);
14921f3c 3030 i915_gem_context_set_banned(ctx);
bcc2661e 3031 }
14921f3c
MK
3032
3033 if (!IS_ERR_OR_NULL(ctx->file_priv))
3034 i915_gem_client_mark_guilty(ctx->file_priv, ctx);
e5e1fc47
MK
3035}
3036
3037static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
3038{
77b25a97 3039 atomic_inc(&ctx->active_count);
aa60c664
MK
3040}
3041
e61e0f51 3042struct i915_request *
0bc40be8 3043i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 3044{
e61e0f51 3045 struct i915_request *request, *active = NULL;
754c9fd5 3046 unsigned long flags;
4db080f9 3047
cc7cc534
CW
3048 /*
3049 * We are called by the error capture, reset and to dump engine
3050 * state at random points in time. In particular, note that neither is
3051 * crucially ordered with an interrupt. After a hang, the GPU is dead
3052 * and we assume that no more writes can happen (we waited long enough
3053 * for all writes that were in transaction to be flushed) - adding an
f69a02c9
CW
3054 * extra delay for a recent interrupt is pointless. Hence, we do
3055 * not need an engine->irq_seqno_barrier() before the seqno reads.
cc7cc534
CW
3056 * At all other times, we must assume the GPU is still running, but
3057 * we only care about the snapshot of this moment.
f69a02c9 3058 */
a89d1f92
CW
3059 spin_lock_irqsave(&engine->timeline.lock, flags);
3060 list_for_each_entry(request, &engine->timeline.requests, link) {
e61e0f51 3061 if (__i915_request_completed(request, request->global_seqno))
4db080f9 3062 continue;
aa60c664 3063
754c9fd5
CW
3064 active = request;
3065 break;
4db080f9 3066 }
a89d1f92 3067 spin_unlock_irqrestore(&engine->timeline.lock, flags);
b6b0fac0 3068
754c9fd5 3069 return active;
b6b0fac0
MK
3070}
3071
a1ef70e1
MT
3072/*
3073 * Ensure irq handler finishes, and not run again.
3074 * Also return the active request so that we only search for it once.
3075 */
e61e0f51 3076struct i915_request *
a1ef70e1
MT
3077i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
3078{
5adfb772 3079 struct i915_request *request;
a1ef70e1 3080
1749d90f
CW
3081 /*
3082 * During the reset sequence, we must prevent the engine from
3083 * entering RC6. As the context state is undefined until we restart
3084 * the engine, if it does enter RC6 during the reset, the state
3085 * written to the powercontext is undefined and so we may lose
3086 * GPU state upon resume, i.e. fail to restart after a reset.
3087 */
3088 intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
3089
5adfb772 3090 request = engine->reset.prepare(engine);
d1d1ebf4
CW
3091 if (request && request->fence.error == -EIO)
3092 request = ERR_PTR(-EIO); /* Previous reset failed! */
a1ef70e1
MT
3093
3094 return request;
3095}
3096
0e178aef 3097int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
4c965543
CW
3098{
3099 struct intel_engine_cs *engine;
e61e0f51 3100 struct i915_request *request;
4c965543 3101 enum intel_engine_id id;
0e178aef 3102 int err = 0;
4c965543 3103
0e178aef 3104 for_each_engine(engine, dev_priv, id) {
a1ef70e1
MT
3105 request = i915_gem_reset_prepare_engine(engine);
3106 if (IS_ERR(request)) {
3107 err = PTR_ERR(request);
3108 continue;
0e178aef 3109 }
c64992e0
MT
3110
3111 engine->hangcheck.active_request = request;
0e178aef
CW
3112 }
3113
4c965543 3114 i915_gem_revoke_fences(dev_priv);
c37d5728 3115 intel_uc_sanitize(dev_priv);
0e178aef
CW
3116
3117 return err;
4c965543
CW
3118}
3119
e61e0f51 3120static void engine_skip_context(struct i915_request *request)
36193acd
MK
3121{
3122 struct intel_engine_cs *engine = request->engine;
4e0d64db 3123 struct i915_gem_context *hung_ctx = request->gem_context;
a89d1f92 3124 struct i915_timeline *timeline = request->timeline;
36193acd
MK
3125 unsigned long flags;
3126
a89d1f92 3127 GEM_BUG_ON(timeline == &engine->timeline);
36193acd 3128
a89d1f92 3129 spin_lock_irqsave(&engine->timeline.lock, flags);
890fd185 3130 spin_lock(&timeline->lock);
36193acd 3131
a89d1f92 3132 list_for_each_entry_continue(request, &engine->timeline.requests, link)
4e0d64db 3133 if (request->gem_context == hung_ctx)
6dd7526f 3134 i915_request_skip(request, -EIO);
36193acd
MK
3135
3136 list_for_each_entry(request, &timeline->requests, link)
6dd7526f 3137 i915_request_skip(request, -EIO);
36193acd
MK
3138
3139 spin_unlock(&timeline->lock);
a89d1f92 3140 spin_unlock_irqrestore(&engine->timeline.lock, flags);
36193acd
MK
3141}
3142
d1d1ebf4 3143/* Returns the request if it was guilty of the hang */
e61e0f51 3144static struct i915_request *
d1d1ebf4 3145i915_gem_reset_request(struct intel_engine_cs *engine,
bba0869b
CW
3146 struct i915_request *request,
3147 bool stalled)
61da5362 3148{
71895a08
MK
3149 /* The guilty request will get skipped on a hung engine.
3150 *
3151 * Users of client default contexts do not rely on logical
3152 * state preserved between batches so it is safe to execute
3153 * queued requests following the hang. Non default contexts
3154 * rely on preserved state, so skipping a batch loses the
3155 * evolution of the state and it needs to be considered corrupted.
3156 * Executing more queued batches on top of corrupted state is
3157 * risky. But we take the risk by trying to advance through
3158 * the queued requests in order to make the client behaviour
3159 * more predictable around resets, by not throwing away random
3160 * amount of batches it has prepared for execution. Sophisticated
3161 * clients can use gem_reset_stats_ioctl and dma fence status
3162 * (exported via sync_file info ioctl on explicit fences) to observe
3163 * when it loses the context state and should rebuild accordingly.
3164 *
3165 * The context ban, and ultimately the client ban, mechanism are safety
3166 * valves if client submission ends up resulting in nothing more than
3167 * subsequent hangs.
3168 */
3169
bba0869b
CW
3170 if (i915_request_completed(request)) {
3171 GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
3172 engine->name, request->global_seqno,
3173 request->fence.context, request->fence.seqno,
3174 intel_engine_get_seqno(engine));
3175 stalled = false;
3176 }
3177
3178 if (stalled) {
4e0d64db 3179 i915_gem_context_mark_guilty(request->gem_context);
6dd7526f 3180 i915_request_skip(request, -EIO);
d1d1ebf4
CW
3181
3182 /* If this context is now banned, skip all pending requests. */
4e0d64db 3183 if (i915_gem_context_is_banned(request->gem_context))
d1d1ebf4 3184 engine_skip_context(request);
61da5362 3185 } else {
d1d1ebf4
CW
3186 /*
3187 * Since this is not the hung engine, it may have advanced
3188 * since the hang declaration. Double check by refinding
3189 * the active request at the time of the reset.
3190 */
3191 request = i915_gem_find_active_request(engine);
3192 if (request) {
042ed2db
CW
3193 unsigned long flags;
3194
4e0d64db 3195 i915_gem_context_mark_innocent(request->gem_context);
d1d1ebf4
CW
3196 dma_fence_set_error(&request->fence, -EAGAIN);
3197
3198 /* Rewind the engine to replay the incomplete rq */
042ed2db 3199 spin_lock_irqsave(&engine->timeline.lock, flags);
d1d1ebf4 3200 request = list_prev_entry(request, link);
a89d1f92 3201 if (&request->link == &engine->timeline.requests)
d1d1ebf4 3202 request = NULL;
042ed2db 3203 spin_unlock_irqrestore(&engine->timeline.lock, flags);
d1d1ebf4 3204 }
61da5362
MK
3205 }
3206
d1d1ebf4 3207 return request;
61da5362
MK
3208}
3209
a1ef70e1 3210void i915_gem_reset_engine(struct intel_engine_cs *engine,
bba0869b
CW
3211 struct i915_request *request,
3212 bool stalled)
b6b0fac0 3213{
fcb1de54
CW
3214 /*
3215 * Make sure this write is visible before we re-enable the interrupt
3216 * handlers on another CPU, as tasklet_enable() resolves to just
3217 * a compiler barrier which is insufficient for our purpose here.
3218 */
3219 smp_store_mb(engine->irq_posted, 0);
ed454f2c 3220
d1d1ebf4 3221 if (request)
bba0869b 3222 request = i915_gem_reset_request(engine, request, stalled);
d1d1ebf4 3223
821ed7df 3224 /* Setup the CS to resume from the breadcrumb of the hung request */
5adfb772 3225 engine->reset.reset(engine, request);
4db080f9 3226}
aa60c664 3227
d0667e9c
CW
3228void i915_gem_reset(struct drm_i915_private *dev_priv,
3229 unsigned int stalled_mask)
4db080f9 3230{
821ed7df 3231 struct intel_engine_cs *engine;
3b3f1650 3232 enum intel_engine_id id;
608c1a52 3233
4c7d62c6
CW
3234 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3235
e61e0f51 3236 i915_retire_requests(dev_priv);
821ed7df 3237
2ae55738 3238 for_each_engine(engine, dev_priv, id) {
1fc44d9b 3239 struct intel_context *ce;
2ae55738 3240
bba0869b
CW
3241 i915_gem_reset_engine(engine,
3242 engine->hangcheck.active_request,
d0667e9c 3243 stalled_mask & ENGINE_MASK(id));
1fc44d9b
CW
3244 ce = fetch_and_zero(&engine->last_retired_context);
3245 if (ce)
3246 intel_context_unpin(ce);
7b6da818
CW
3247
3248 /*
3249 * Ostensibily, we always want a context loaded for powersaving,
3250 * so if the engine is idle after the reset, send a request
3251 * to load our scratch kernel_context.
3252 *
3253 * More mysteriously, if we leave the engine idle after a reset,
3254 * the next userspace batch may hang, with what appears to be
3255 * an incoherent read by the CS (presumably stale TLB). An
3256 * empty request appears sufficient to paper over the glitch.
3257 */
01b8fdc5 3258 if (intel_engine_is_idle(engine)) {
e61e0f51 3259 struct i915_request *rq;
7b6da818 3260
e61e0f51
CW
3261 rq = i915_request_alloc(engine,
3262 dev_priv->kernel_context);
7b6da818 3263 if (!IS_ERR(rq))
697b9a87 3264 i915_request_add(rq);
7b6da818 3265 }
2ae55738 3266 }
821ed7df 3267
4362f4f6 3268 i915_gem_restore_fences(dev_priv);
821ed7df
CW
3269}
3270
a1ef70e1
MT
3271void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3272{
5adfb772
CW
3273 engine->reset.finish(engine);
3274
1749d90f 3275 intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
a1ef70e1
MT
3276}
3277
d8027093
CW
3278void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3279{
1f7b847d
CW
3280 struct intel_engine_cs *engine;
3281 enum intel_engine_id id;
3282
d8027093 3283 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1f7b847d 3284
fe3288b5 3285 for_each_engine(engine, dev_priv, id) {
c64992e0 3286 engine->hangcheck.active_request = NULL;
a1ef70e1 3287 i915_gem_reset_finish_engine(engine);
fe3288b5 3288 }
d8027093
CW
3289}
3290
e61e0f51 3291static void nop_submit_request(struct i915_request *request)
af7a8ffa 3292{
d9b13c4d
CW
3293 GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3294 request->engine->name,
3295 request->fence.context, request->fence.seqno);
af7a8ffa
DV
3296 dma_fence_set_error(&request->fence, -EIO);
3297
e61e0f51 3298 i915_request_submit(request);
af7a8ffa
DV
3299}
3300
e61e0f51 3301static void nop_complete_submit_request(struct i915_request *request)
821ed7df 3302{
8d550824
CW
3303 unsigned long flags;
3304
d9b13c4d
CW
3305 GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3306 request->engine->name,
3307 request->fence.context, request->fence.seqno);
3cd9442f 3308 dma_fence_set_error(&request->fence, -EIO);
8d550824 3309
a89d1f92 3310 spin_lock_irqsave(&request->engine->timeline.lock, flags);
e61e0f51 3311 __i915_request_submit(request);
3dcf93f7 3312 intel_engine_init_global_seqno(request->engine, request->global_seqno);
a89d1f92 3313 spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
821ed7df
CW
3314}
3315
af7a8ffa 3316void i915_gem_set_wedged(struct drm_i915_private *i915)
821ed7df 3317{
af7a8ffa
DV
3318 struct intel_engine_cs *engine;
3319 enum intel_engine_id id;
3320
d9b13c4d
CW
3321 GEM_TRACE("start\n");
3322
7f961d79 3323 if (GEM_SHOW_DEBUG()) {
559e040f
CW
3324 struct drm_printer p = drm_debug_printer(__func__);
3325
3326 for_each_engine(engine, i915, id)
3327 intel_engine_dump(engine, &p, "%s\n", engine->name);
3328 }
3329
3970c65c
CW
3330 if (test_and_set_bit(I915_WEDGED, &i915->gpu_error.flags))
3331 goto out;
0d73e7a0 3332
af7a8ffa
DV
3333 /*
3334 * First, stop submission to hw, but do not yet complete requests by
3335 * rolling the global seqno forward (since this would complete requests
3336 * for which we haven't set the fence error to EIO yet).
3337 */
963ddd63
CW
3338 for_each_engine(engine, i915, id) {
3339 i915_gem_reset_prepare_engine(engine);
47650db0 3340
af7a8ffa 3341 engine->submit_request = nop_submit_request;
47650db0 3342 engine->schedule = NULL;
963ddd63 3343 }
47650db0 3344 i915->caps.scheduler = 0;
af7a8ffa 3345
ac697ae8 3346 /* Even if the GPU reset fails, it should still stop the engines */
ec5b65a9
CW
3347 if (INTEL_GEN(i915) >= 5)
3348 intel_gpu_reset(i915, ALL_ENGINES);
ac697ae8 3349
af7a8ffa
DV
3350 /*
3351 * Make sure no one is running the old callback before we proceed with
3352 * cancelling requests and resetting the completion tracking. Otherwise
3353 * we might submit a request to the hardware which never completes.
20e4933c 3354 */
af7a8ffa 3355 synchronize_rcu();
70c2a24d 3356
af7a8ffa
DV
3357 for_each_engine(engine, i915, id) {
3358 /* Mark all executing requests as skipped */
3359 engine->cancel_requests(engine);
5e32d748 3360
af7a8ffa
DV
3361 /*
3362 * Only once we've force-cancelled all in-flight requests can we
3363 * start to complete all requests.
3364 */
3365 engine->submit_request = nop_complete_submit_request;
3366 }
3367
3368 /*
3369 * Make sure no request can slip through without getting completed by
3370 * either this call here to intel_engine_init_global_seqno, or the one
3371 * in nop_complete_submit_request.
5e32d748 3372 */
af7a8ffa 3373 synchronize_rcu();
673a394b 3374
af7a8ffa
DV
3375 for_each_engine(engine, i915, id) {
3376 unsigned long flags;
673a394b 3377
0d73e7a0
CW
3378 /*
3379 * Mark all pending requests as complete so that any concurrent
af7a8ffa
DV
3380 * (lockless) lookup doesn't try and wait upon the request as we
3381 * reset it.
3382 */
a89d1f92 3383 spin_lock_irqsave(&engine->timeline.lock, flags);
af7a8ffa
DV
3384 intel_engine_init_global_seqno(engine,
3385 intel_engine_last_submit(engine));
a89d1f92 3386 spin_unlock_irqrestore(&engine->timeline.lock, flags);
963ddd63
CW
3387
3388 i915_gem_reset_finish_engine(engine);
af7a8ffa 3389 }
20e4933c 3390
3970c65c 3391out:
d9b13c4d
CW
3392 GEM_TRACE("end\n");
3393
3d7adbbf 3394 wake_up_all(&i915->gpu_error.reset_queue);
673a394b
EA
3395}
3396
2e8f9d32
CW
3397bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3398{
a89d1f92 3399 struct i915_timeline *tl;
2e8f9d32
CW
3400
3401 lockdep_assert_held(&i915->drm.struct_mutex);
3402 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3403 return true;
3404
d9b13c4d
CW
3405 GEM_TRACE("start\n");
3406
2d4ecace
CW
3407 /*
3408 * Before unwedging, make sure that all pending operations
2e8f9d32
CW
3409 * are flushed and errored out - we may have requests waiting upon
3410 * third party fences. We marked all inflight requests as EIO, and
3411 * every execbuf since returned EIO, for consistency we want all
3412 * the currently pending requests to also be marked as EIO, which
3413 * is done inside our nop_submit_request - and so we must wait.
3414 *
3415 * No more can be submitted until we reset the wedged bit.
3416 */
3417 list_for_each_entry(tl, &i915->gt.timelines, link) {
a89d1f92 3418 struct i915_request *rq;
2e8f9d32 3419
a89d1f92
CW
3420 rq = i915_gem_active_peek(&tl->last_request,
3421 &i915->drm.struct_mutex);
3422 if (!rq)
3423 continue;
2e8f9d32 3424
a89d1f92
CW
3425 /*
3426 * We can't use our normal waiter as we want to
3427 * avoid recursively trying to handle the current
3428 * reset. The basic dma_fence_default_wait() installs
3429 * a callback for dma_fence_signal(), which is
3430 * triggered by our nop handler (indirectly, the
3431 * callback enables the signaler thread which is
3432 * woken by the nop_submit_request() advancing the seqno
3433 * and when the seqno passes the fence, the signaler
3434 * then signals the fence waking us up).
3435 */
3436 if (dma_fence_default_wait(&rq->fence, true,
3437 MAX_SCHEDULE_TIMEOUT) < 0)
3438 return false;
2e8f9d32 3439 }
2d4ecace
CW
3440 i915_retire_requests(i915);
3441 GEM_BUG_ON(i915->gt.active_requests);
2e8f9d32 3442
8db601f0
CW
3443 if (!intel_gpu_reset(i915, ALL_ENGINES))
3444 intel_engines_sanitize(i915);
3445
2d4ecace
CW
3446 /*
3447 * Undo nop_submit_request. We prevent all new i915 requests from
2e8f9d32
CW
3448 * being queued (by disallowing execbuf whilst wedged) so having
3449 * waited for all active requests above, we know the system is idle
3450 * and do not have to worry about a thread being inside
3451 * engine->submit_request() as we swap over. So unlike installing
3452 * the nop_submit_request on reset, we can do this from normal
3453 * context and do not require stop_machine().
3454 */
3455 intel_engines_reset_default_submission(i915);
36703e79 3456 i915_gem_contexts_lost(i915);
2e8f9d32 3457
d9b13c4d
CW
3458 GEM_TRACE("end\n");
3459
2e8f9d32
CW
3460 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3461 clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3462
3463 return true;
3464}
3465
75ef9da2 3466static void
673a394b
EA
3467i915_gem_retire_work_handler(struct work_struct *work)
3468{
b29c19b6 3469 struct drm_i915_private *dev_priv =
67d97da3 3470 container_of(work, typeof(*dev_priv), gt.retire_work.work);
91c8a326 3471 struct drm_device *dev = &dev_priv->drm;
673a394b 3472
891b48cf 3473 /* Come back later if the device is busy... */
b29c19b6 3474 if (mutex_trylock(&dev->struct_mutex)) {
e61e0f51 3475 i915_retire_requests(dev_priv);
b29c19b6 3476 mutex_unlock(&dev->struct_mutex);
673a394b 3477 }
67d97da3 3478
88923048
CW
3479 /*
3480 * Keep the retire handler running until we are finally idle.
67d97da3
CW
3481 * We do not need to do this test under locking as in the worst-case
3482 * we queue the retire worker once too often.
3483 */
88923048 3484 if (READ_ONCE(dev_priv->gt.awake))
67d97da3
CW
3485 queue_delayed_work(dev_priv->wq,
3486 &dev_priv->gt.retire_work,
bcb45086 3487 round_jiffies_up_relative(HZ));
b29c19b6 3488}
0a58705b 3489
84a10749
CW
3490static void shrink_caches(struct drm_i915_private *i915)
3491{
3492 /*
3493 * kmem_cache_shrink() discards empty slabs and reorders partially
3494 * filled slabs to prioritise allocating from the mostly full slabs,
3495 * with the aim of reducing fragmentation.
3496 */
3497 kmem_cache_shrink(i915->priorities);
3498 kmem_cache_shrink(i915->dependencies);
3499 kmem_cache_shrink(i915->requests);
3500 kmem_cache_shrink(i915->luts);
3501 kmem_cache_shrink(i915->vmas);
3502 kmem_cache_shrink(i915->objects);
3503}
3504
3505struct sleep_rcu_work {
3506 union {
3507 struct rcu_head rcu;
3508 struct work_struct work;
3509 };
3510 struct drm_i915_private *i915;
3511 unsigned int epoch;
3512};
3513
3514static inline bool
3515same_epoch(struct drm_i915_private *i915, unsigned int epoch)
3516{
3517 /*
3518 * There is a small chance that the epoch wrapped since we started
3519 * sleeping. If we assume that epoch is at least a u32, then it will
3520 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
3521 */
3522 return epoch == READ_ONCE(i915->gt.epoch);
3523}
3524
3525static void __sleep_work(struct work_struct *work)
3526{
3527 struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
3528 struct drm_i915_private *i915 = s->i915;
3529 unsigned int epoch = s->epoch;
3530
3531 kfree(s);
3532 if (same_epoch(i915, epoch))
3533 shrink_caches(i915);
3534}
3535
3536static void __sleep_rcu(struct rcu_head *rcu)
3537{
3538 struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
3539 struct drm_i915_private *i915 = s->i915;
3540
3541 if (same_epoch(i915, s->epoch)) {
3542 INIT_WORK(&s->work, __sleep_work);
3543 queue_work(i915->wq, &s->work);
3544 } else {
3545 kfree(s);
3546 }
3547}
3548
5427f207
CW
3549static inline bool
3550new_requests_since_last_retire(const struct drm_i915_private *i915)
3551{
3552 return (READ_ONCE(i915->gt.active_requests) ||
3553 work_pending(&i915->gt.idle_work.work));
3554}
3555
1934f5de
CW
3556static void assert_kernel_context_is_current(struct drm_i915_private *i915)
3557{
3558 struct intel_engine_cs *engine;
3559 enum intel_engine_id id;
3560
3561 if (i915_terminally_wedged(&i915->gpu_error))
3562 return;
3563
3564 GEM_BUG_ON(i915->gt.active_requests);
3565 for_each_engine(engine, i915, id) {
3566 GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
3567 GEM_BUG_ON(engine->last_retired_context !=
3568 to_intel_context(i915->kernel_context, engine));
3569 }
3570}
3571
b29c19b6
CW
3572static void
3573i915_gem_idle_work_handler(struct work_struct *work)
3574{
3575 struct drm_i915_private *dev_priv =
67d97da3 3576 container_of(work, typeof(*dev_priv), gt.idle_work.work);
84a10749 3577 unsigned int epoch = I915_EPOCH_INVALID;
67d97da3
CW
3578 bool rearm_hangcheck;
3579
3580 if (!READ_ONCE(dev_priv->gt.awake))
3581 return;
3582
4dfacb0b
CW
3583 if (READ_ONCE(dev_priv->gt.active_requests))
3584 return;
3585
3586 /*
3587 * Flush out the last user context, leaving only the pinned
3588 * kernel context resident. When we are idling on the kernel_context,
3589 * no more new requests (with a context switch) are emitted and we
3590 * can finally rest. A consequence is that the idle work handler is
3591 * always called at least twice before idling (and if the system is
3592 * idle that implies a round trip through the retire worker).
3593 */
3594 mutex_lock(&dev_priv->drm.struct_mutex);
3595 i915_gem_switch_to_kernel_context(dev_priv);
3596 mutex_unlock(&dev_priv->drm.struct_mutex);
3597
3598 GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
3599 READ_ONCE(dev_priv->gt.active_requests));
3600
0cb5670b
ID
3601 /*
3602 * Wait for last execlists context complete, but bail out in case a
ffed7bd2
CW
3603 * new request is submitted. As we don't trust the hardware, we
3604 * continue on if the wait times out. This is necessary to allow
3605 * the machine to suspend even if the hardware dies, and we will
3606 * try to recover in resume (after depriving the hardware of power,
3607 * it may be in a better mmod).
0cb5670b 3608 */
ffed7bd2
CW
3609 __wait_for(if (new_requests_since_last_retire(dev_priv)) return,
3610 intel_engines_are_idle(dev_priv),
3611 I915_IDLE_ENGINES_TIMEOUT * 1000,
3612 10, 500);
67d97da3
CW
3613
3614 rearm_hangcheck =
3615 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3616
5427f207 3617 if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
67d97da3
CW
3618 /* Currently busy, come back later */
3619 mod_delayed_work(dev_priv->wq,
3620 &dev_priv->gt.idle_work,
3621 msecs_to_jiffies(50));
3622 goto out_rearm;
3623 }
3624
93c97dc1
ID
3625 /*
3626 * New request retired after this work handler started, extend active
3627 * period until next instance of the work.
3628 */
5427f207 3629 if (new_requests_since_last_retire(dev_priv))
67d97da3 3630 goto out_unlock;
b29c19b6 3631
e4d2006f 3632 epoch = __i915_gem_park(dev_priv);
35c94185 3633
1934f5de
CW
3634 assert_kernel_context_is_current(dev_priv);
3635
67d97da3 3636 rearm_hangcheck = false;
67d97da3 3637out_unlock:
5427f207 3638 mutex_unlock(&dev_priv->drm.struct_mutex);
b29c19b6 3639
67d97da3
CW
3640out_rearm:
3641 if (rearm_hangcheck) {
3642 GEM_BUG_ON(!dev_priv->gt.awake);
3643 i915_queue_hangcheck(dev_priv);
35c94185 3644 }
84a10749
CW
3645
3646 /*
3647 * When we are idle, it is an opportune time to reap our caches.
3648 * However, we have many objects that utilise RCU and the ordered
3649 * i915->wq that this work is executing on. To try and flush any
3650 * pending frees now we are idle, we first wait for an RCU grace
3651 * period, and then queue a task (that will run last on the wq) to
3652 * shrink and re-optimize the caches.
3653 */
3654 if (same_epoch(dev_priv, epoch)) {
3655 struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
3656 if (s) {
3657 s->i915 = dev_priv;
3658 s->epoch = epoch;
3659 call_rcu(&s->rcu, __sleep_rcu);
3660 }
3661 }
673a394b
EA
3662}
3663
b1f788c6
CW
3664void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3665{
d1b48c1e 3666 struct drm_i915_private *i915 = to_i915(gem->dev);
b1f788c6
CW
3667 struct drm_i915_gem_object *obj = to_intel_bo(gem);
3668 struct drm_i915_file_private *fpriv = file->driver_priv;
d1b48c1e 3669 struct i915_lut_handle *lut, *ln;
b1f788c6 3670
d1b48c1e
CW
3671 mutex_lock(&i915->drm.struct_mutex);
3672
3673 list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3674 struct i915_gem_context *ctx = lut->ctx;
3675 struct i915_vma *vma;
3676
432295d7 3677 GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
d1b48c1e
CW
3678 if (ctx->file_priv != fpriv)
3679 continue;
3680
3681 vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3ffff017
CW
3682 GEM_BUG_ON(vma->obj != obj);
3683
3684 /* We allow the process to have multiple handles to the same
3685 * vma, in the same fd namespace, by virtue of flink/open.
3686 */
3687 GEM_BUG_ON(!vma->open_count);
3688 if (!--vma->open_count && !i915_vma_is_ggtt(vma))
b1f788c6 3689 i915_vma_close(vma);
f8a7fde4 3690
d1b48c1e
CW
3691 list_del(&lut->obj_link);
3692 list_del(&lut->ctx_link);
4ff4b44c 3693
d1b48c1e
CW
3694 kmem_cache_free(i915->luts, lut);
3695 __i915_gem_object_release_unless_active(obj);
f8a7fde4 3696 }
d1b48c1e
CW
3697
3698 mutex_unlock(&i915->drm.struct_mutex);
b1f788c6
CW
3699}
3700
e95433c7
CW
3701static unsigned long to_wait_timeout(s64 timeout_ns)
3702{
3703 if (timeout_ns < 0)
3704 return MAX_SCHEDULE_TIMEOUT;
3705
3706 if (timeout_ns == 0)
3707 return 0;
3708
3709 return nsecs_to_jiffies_timeout(timeout_ns);
3710}
3711
23ba4fd0
BW
3712/**
3713 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
3714 * @dev: drm device pointer
3715 * @data: ioctl data blob
3716 * @file: drm file pointer
23ba4fd0
BW
3717 *
3718 * Returns 0 if successful, else an error is returned with the remaining time in
3719 * the timeout parameter.
3720 * -ETIME: object is still busy after timeout
3721 * -ERESTARTSYS: signal interrupted the wait
3722 * -ENONENT: object doesn't exist
3723 * Also possible, but rare:
b8050148 3724 * -EAGAIN: incomplete, restart syscall
23ba4fd0
BW
3725 * -ENOMEM: damn
3726 * -ENODEV: Internal IRQ fail
3727 * -E?: The add request failed
3728 *
3729 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3730 * non-zero timeout parameter the wait ioctl will wait for the given number of
3731 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3732 * without holding struct_mutex the object may become re-busied before this
3733 * function completes. A similar but shorter * race condition exists in the busy
3734 * ioctl
3735 */
3736int
3737i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3738{
3739 struct drm_i915_gem_wait *args = data;
3740 struct drm_i915_gem_object *obj;
e95433c7
CW
3741 ktime_t start;
3742 long ret;
23ba4fd0 3743
11b5d511
DV
3744 if (args->flags != 0)
3745 return -EINVAL;
3746
03ac0642 3747 obj = i915_gem_object_lookup(file, args->bo_handle);
033d549b 3748 if (!obj)
23ba4fd0 3749 return -ENOENT;
23ba4fd0 3750
e95433c7
CW
3751 start = ktime_get();
3752
3753 ret = i915_gem_object_wait(obj,
3754 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3755 to_wait_timeout(args->timeout_ns),
3756 to_rps_client(file));
3757
3758 if (args->timeout_ns > 0) {
3759 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3760 if (args->timeout_ns < 0)
3761 args->timeout_ns = 0;
c1d2061b
CW
3762
3763 /*
3764 * Apparently ktime isn't accurate enough and occasionally has a
3765 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3766 * things up to make the test happy. We allow up to 1 jiffy.
3767 *
3768 * This is a regression from the timespec->ktime conversion.
3769 */
3770 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3771 args->timeout_ns = 0;
b8050148
CW
3772
3773 /* Asked to wait beyond the jiffie/scheduler precision? */
3774 if (ret == -ETIME && args->timeout_ns)
3775 ret = -EAGAIN;
b4716185
CW
3776 }
3777
f0cd5182 3778 i915_gem_object_put(obj);
ff865885 3779 return ret;
23ba4fd0
BW
3780}
3781
ec625fb9
CW
3782static long wait_for_timeline(struct i915_timeline *tl,
3783 unsigned int flags, long timeout)
4df2faf4 3784{
0606035f 3785 struct i915_request *rq;
0606035f
CW
3786
3787 rq = i915_gem_active_get_unlocked(&tl->last_request);
3788 if (!rq)
ec625fb9 3789 return timeout;
0606035f
CW
3790
3791 /*
3792 * "Race-to-idle".
3793 *
3794 * Switching to the kernel context is often used a synchronous
3795 * step prior to idling, e.g. in suspend for flushing all
3796 * current operations to memory before sleeping. These we
3797 * want to complete as quickly as possible to avoid prolonged
3798 * stalls, so allow the gpu to boost to maximum clocks.
3799 */
3800 if (flags & I915_WAIT_FOR_IDLE_BOOST)
3801 gen6_rps_boost(rq, NULL);
3802
ec625fb9 3803 timeout = i915_request_wait(rq, flags, timeout);
0606035f
CW
3804 i915_request_put(rq);
3805
ec625fb9 3806 return timeout;
73cb9701
CW
3807}
3808
25112b64
CW
3809static int wait_for_engines(struct drm_i915_private *i915)
3810{
ee42c00e 3811 if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
59e4b19d
CW
3812 dev_err(i915->drm.dev,
3813 "Failed to idle engines, declaring wedged!\n");
629820fc 3814 GEM_TRACE_DUMP();
cad9946c
CW
3815 i915_gem_set_wedged(i915);
3816 return -EIO;
25112b64
CW
3817 }
3818
3819 return 0;
3820}
3821
ec625fb9
CW
3822int i915_gem_wait_for_idle(struct drm_i915_private *i915,
3823 unsigned int flags, long timeout)
73cb9701 3824{
ec625fb9
CW
3825 GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
3826 flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
3827 timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
09a4c02e 3828
863e9fde
CW
3829 /* If the device is asleep, we have no requests outstanding */
3830 if (!READ_ONCE(i915->gt.awake))
3831 return 0;
3832
9caa34aa 3833 if (flags & I915_WAIT_LOCKED) {
a89d1f92
CW
3834 struct i915_timeline *tl;
3835 int err;
9caa34aa
CW
3836
3837 lockdep_assert_held(&i915->drm.struct_mutex);
3838
3839 list_for_each_entry(tl, &i915->gt.timelines, link) {
ec625fb9
CW
3840 timeout = wait_for_timeline(tl, flags, timeout);
3841 if (timeout < 0)
3842 return timeout;
9caa34aa 3843 }
c1e63f6d
CW
3844 if (GEM_SHOW_DEBUG() && !timeout) {
3845 /* Presume that timeout was non-zero to begin with! */
3846 dev_warn(&i915->drm.pdev->dev,
3847 "Missed idle-completion interrupt!\n");
3848 GEM_TRACE_DUMP();
3849 }
a61b47f6
CW
3850
3851 err = wait_for_engines(i915);
3852 if (err)
3853 return err;
3854
e61e0f51 3855 i915_retire_requests(i915);
09a4c02e 3856 GEM_BUG_ON(i915->gt.active_requests);
9caa34aa 3857 } else {
a89d1f92
CW
3858 struct intel_engine_cs *engine;
3859 enum intel_engine_id id;
4df2faf4 3860
a89d1f92 3861 for_each_engine(engine, i915, id) {
ec625fb9
CW
3862 struct i915_timeline *tl = &engine->timeline;
3863
3864 timeout = wait_for_timeline(tl, flags, timeout);
3865 if (timeout < 0)
3866 return timeout;
a89d1f92 3867 }
a89d1f92 3868 }
a61b47f6
CW
3869
3870 return 0;
4df2faf4
DV
3871}
3872
5a97bcc6
CW
3873static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3874{
e27ab73d
CW
3875 /*
3876 * We manually flush the CPU domain so that we can override and
3877 * force the flush for the display, and perform it asyncrhonously.
3878 */
3879 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3880 if (obj->cache_dirty)
3881 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
c0a51fd0 3882 obj->write_domain = 0;
5a97bcc6
CW
3883}
3884
3885void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3886{
bd3d2252 3887 if (!READ_ONCE(obj->pin_global))
5a97bcc6
CW
3888 return;
3889
3890 mutex_lock(&obj->base.dev->struct_mutex);
3891 __i915_gem_object_flush_for_display(obj);
3892 mutex_unlock(&obj->base.dev->struct_mutex);
3893}
3894
e22d8e3c
CW
3895/**
3896 * Moves a single object to the WC read, and possibly write domain.
3897 * @obj: object to act on
3898 * @write: ask for write access or read only
3899 *
3900 * This function returns when the move is complete, including waiting on
3901 * flushes to occur.
3902 */
3903int
3904i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3905{
3906 int ret;
3907
3908 lockdep_assert_held(&obj->base.dev->struct_mutex);
3909
3910 ret = i915_gem_object_wait(obj,
3911 I915_WAIT_INTERRUPTIBLE |
3912 I915_WAIT_LOCKED |
3913 (write ? I915_WAIT_ALL : 0),
3914 MAX_SCHEDULE_TIMEOUT,
3915 NULL);
3916 if (ret)
3917 return ret;
3918
c0a51fd0 3919 if (obj->write_domain == I915_GEM_DOMAIN_WC)
e22d8e3c
CW
3920 return 0;
3921
3922 /* Flush and acquire obj->pages so that we are coherent through
3923 * direct access in memory with previous cached writes through
3924 * shmemfs and that our cache domain tracking remains valid.
3925 * For example, if the obj->filp was moved to swap without us
3926 * being notified and releasing the pages, we would mistakenly
3927 * continue to assume that the obj remained out of the CPU cached
3928 * domain.
3929 */
3930 ret = i915_gem_object_pin_pages(obj);
3931 if (ret)
3932 return ret;
3933
3934 flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3935
3936 /* Serialise direct access to this object with the barriers for
3937 * coherent writes from the GPU, by effectively invalidating the
3938 * WC domain upon first access.
3939 */
c0a51fd0 3940 if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
e22d8e3c
CW
3941 mb();
3942
3943 /* It should now be out of any other write domains, and we can update
3944 * the domain values for our changes.
3945 */
c0a51fd0
CK
3946 GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3947 obj->read_domains |= I915_GEM_DOMAIN_WC;
e22d8e3c 3948 if (write) {
c0a51fd0
CK
3949 obj->read_domains = I915_GEM_DOMAIN_WC;
3950 obj->write_domain = I915_GEM_DOMAIN_WC;
e22d8e3c
CW
3951 obj->mm.dirty = true;
3952 }
3953
3954 i915_gem_object_unpin_pages(obj);
3955 return 0;
3956}
3957
2ef7eeaa
EA
3958/**
3959 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3960 * @obj: object to act on
3961 * @write: ask for write access or read only
2ef7eeaa
EA
3962 *
3963 * This function returns when the move is complete, including waiting on
3964 * flushes to occur.
3965 */
79e53945 3966int
2021746e 3967i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3968{
e47c68e9 3969 int ret;
2ef7eeaa 3970
e95433c7 3971 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3972
e95433c7
CW
3973 ret = i915_gem_object_wait(obj,
3974 I915_WAIT_INTERRUPTIBLE |
3975 I915_WAIT_LOCKED |
3976 (write ? I915_WAIT_ALL : 0),
3977 MAX_SCHEDULE_TIMEOUT,
3978 NULL);
88241785
CW
3979 if (ret)
3980 return ret;
3981
c0a51fd0 3982 if (obj->write_domain == I915_GEM_DOMAIN_GTT)
c13d87ea
CW
3983 return 0;
3984
43566ded
CW
3985 /* Flush and acquire obj->pages so that we are coherent through
3986 * direct access in memory with previous cached writes through
3987 * shmemfs and that our cache domain tracking remains valid.
3988 * For example, if the obj->filp was moved to swap without us
3989 * being notified and releasing the pages, we would mistakenly
3990 * continue to assume that the obj remained out of the CPU cached
3991 * domain.
3992 */
a4f5ea64 3993 ret = i915_gem_object_pin_pages(obj);
43566ded
CW
3994 if (ret)
3995 return ret;
3996
ef74921b 3997 flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
1c5d22f7 3998
d0a57789
CW
3999 /* Serialise direct access to this object with the barriers for
4000 * coherent writes from the GPU, by effectively invalidating the
4001 * GTT domain upon first access.
4002 */
c0a51fd0 4003 if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
d0a57789
CW
4004 mb();
4005
e47c68e9
EA
4006 /* It should now be out of any other write domains, and we can update
4007 * the domain values for our changes.
4008 */
c0a51fd0
CK
4009 GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4010 obj->read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 4011 if (write) {
c0a51fd0
CK
4012 obj->read_domains = I915_GEM_DOMAIN_GTT;
4013 obj->write_domain = I915_GEM_DOMAIN_GTT;
a4f5ea64 4014 obj->mm.dirty = true;
2ef7eeaa
EA
4015 }
4016
a4f5ea64 4017 i915_gem_object_unpin_pages(obj);
e47c68e9
EA
4018 return 0;
4019}
4020
ef55f92a
CW
4021/**
4022 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
4023 * @obj: object to act on
4024 * @cache_level: new cache level to set for the object
ef55f92a
CW
4025 *
4026 * After this function returns, the object will be in the new cache-level
4027 * across all GTT and the contents of the backing storage will be coherent,
4028 * with respect to the new cache-level. In order to keep the backing storage
4029 * coherent for all users, we only allow a single cache level to be set
4030 * globally on the object and prevent it from being changed whilst the
4031 * hardware is reading from the object. That is if the object is currently
4032 * on the scanout it will be set to uncached (or equivalent display
4033 * cache coherency) and all non-MOCS GPU access will also be uncached so
4034 * that all direct access to the scanout remains coherent.
4035 */
e4ffd173
CW
4036int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4037 enum i915_cache_level cache_level)
4038{
aa653a68 4039 struct i915_vma *vma;
a6a7cc4b 4040 int ret;
e4ffd173 4041
4c7d62c6
CW
4042 lockdep_assert_held(&obj->base.dev->struct_mutex);
4043
e4ffd173 4044 if (obj->cache_level == cache_level)
a6a7cc4b 4045 return 0;
e4ffd173 4046
ef55f92a
CW
4047 /* Inspect the list of currently bound VMA and unbind any that would
4048 * be invalid given the new cache-level. This is principally to
4049 * catch the issue of the CS prefetch crossing page boundaries and
4050 * reading an invalid PTE on older architectures.
4051 */
aa653a68
CW
4052restart:
4053 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
4054 if (!drm_mm_node_allocated(&vma->node))
4055 continue;
4056
20dfbde4 4057 if (i915_vma_is_pinned(vma)) {
ef55f92a
CW
4058 DRM_DEBUG("can not change the cache level of pinned objects\n");
4059 return -EBUSY;
4060 }
4061
010e3e68
CW
4062 if (!i915_vma_is_closed(vma) &&
4063 i915_gem_valid_gtt_space(vma, cache_level))
aa653a68
CW
4064 continue;
4065
4066 ret = i915_vma_unbind(vma);
4067 if (ret)
4068 return ret;
4069
4070 /* As unbinding may affect other elements in the
4071 * obj->vma_list (due to side-effects from retiring
4072 * an active vma), play safe and restart the iterator.
4073 */
4074 goto restart;
42d6ab48
CW
4075 }
4076
ef55f92a
CW
4077 /* We can reuse the existing drm_mm nodes but need to change the
4078 * cache-level on the PTE. We could simply unbind them all and
4079 * rebind with the correct cache-level on next use. However since
4080 * we already have a valid slot, dma mapping, pages etc, we may as
4081 * rewrite the PTE in the belief that doing so tramples upon less
4082 * state and so involves less work.
4083 */
15717de2 4084 if (obj->bind_count) {
ef55f92a
CW
4085 /* Before we change the PTE, the GPU must not be accessing it.
4086 * If we wait upon the object, we know that all the bound
4087 * VMA are no longer active.
4088 */
e95433c7
CW
4089 ret = i915_gem_object_wait(obj,
4090 I915_WAIT_INTERRUPTIBLE |
4091 I915_WAIT_LOCKED |
4092 I915_WAIT_ALL,
4093 MAX_SCHEDULE_TIMEOUT,
4094 NULL);
e4ffd173
CW
4095 if (ret)
4096 return ret;
4097
0031fb96
TU
4098 if (!HAS_LLC(to_i915(obj->base.dev)) &&
4099 cache_level != I915_CACHE_NONE) {
ef55f92a
CW
4100 /* Access to snoopable pages through the GTT is
4101 * incoherent and on some machines causes a hard
4102 * lockup. Relinquish the CPU mmaping to force
4103 * userspace to refault in the pages and we can
4104 * then double check if the GTT mapping is still
4105 * valid for that pointer access.
4106 */
4107 i915_gem_release_mmap(obj);
4108
4109 /* As we no longer need a fence for GTT access,
4110 * we can relinquish it now (and so prevent having
4111 * to steal a fence from someone else on the next
4112 * fence request). Note GPU activity would have
4113 * dropped the fence as all snoopable access is
4114 * supposed to be linear.
4115 */
e2189dd0 4116 for_each_ggtt_vma(vma, obj) {
49ef5294
CW
4117 ret = i915_vma_put_fence(vma);
4118 if (ret)
4119 return ret;
4120 }
ef55f92a
CW
4121 } else {
4122 /* We either have incoherent backing store and
4123 * so no GTT access or the architecture is fully
4124 * coherent. In such cases, existing GTT mmaps
4125 * ignore the cache bit in the PTE and we can
4126 * rewrite it without confusing the GPU or having
4127 * to force userspace to fault back in its mmaps.
4128 */
e4ffd173
CW
4129 }
4130
1c7f4bca 4131 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
4132 if (!drm_mm_node_allocated(&vma->node))
4133 continue;
4134
4135 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4136 if (ret)
4137 return ret;
4138 }
e4ffd173
CW
4139 }
4140
1c7f4bca 4141 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b 4142 vma->node.color = cache_level;
b8f55be6 4143 i915_gem_object_set_cache_coherency(obj, cache_level);
e27ab73d 4144 obj->cache_dirty = true; /* Always invalidate stale cachelines */
2c22569b 4145
e4ffd173
CW
4146 return 0;
4147}
4148
199adf40
BW
4149int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4150 struct drm_file *file)
e6994aee 4151{
199adf40 4152 struct drm_i915_gem_caching *args = data;
e6994aee 4153 struct drm_i915_gem_object *obj;
fbbd37b3 4154 int err = 0;
e6994aee 4155
fbbd37b3
CW
4156 rcu_read_lock();
4157 obj = i915_gem_object_lookup_rcu(file, args->handle);
4158 if (!obj) {
4159 err = -ENOENT;
4160 goto out;
4161 }
e6994aee 4162
651d794f
CW
4163 switch (obj->cache_level) {
4164 case I915_CACHE_LLC:
4165 case I915_CACHE_L3_LLC:
4166 args->caching = I915_CACHING_CACHED;
4167 break;
4168
4257d3ba
CW
4169 case I915_CACHE_WT:
4170 args->caching = I915_CACHING_DISPLAY;
4171 break;
4172
651d794f
CW
4173 default:
4174 args->caching = I915_CACHING_NONE;
4175 break;
4176 }
fbbd37b3
CW
4177out:
4178 rcu_read_unlock();
4179 return err;
e6994aee
CW
4180}
4181
199adf40
BW
4182int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4183 struct drm_file *file)
e6994aee 4184{
9c870d03 4185 struct drm_i915_private *i915 = to_i915(dev);
199adf40 4186 struct drm_i915_gem_caching *args = data;
e6994aee
CW
4187 struct drm_i915_gem_object *obj;
4188 enum i915_cache_level level;
d65415df 4189 int ret = 0;
e6994aee 4190
199adf40
BW
4191 switch (args->caching) {
4192 case I915_CACHING_NONE:
e6994aee
CW
4193 level = I915_CACHE_NONE;
4194 break;
199adf40 4195 case I915_CACHING_CACHED:
e5756c10
ID
4196 /*
4197 * Due to a HW issue on BXT A stepping, GPU stores via a
4198 * snooped mapping may leave stale data in a corresponding CPU
4199 * cacheline, whereas normally such cachelines would get
4200 * invalidated.
4201 */
9c870d03 4202 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
e5756c10
ID
4203 return -ENODEV;
4204
e6994aee
CW
4205 level = I915_CACHE_LLC;
4206 break;
4257d3ba 4207 case I915_CACHING_DISPLAY:
9c870d03 4208 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4257d3ba 4209 break;
e6994aee
CW
4210 default:
4211 return -EINVAL;
4212 }
4213
d65415df
CW
4214 obj = i915_gem_object_lookup(file, args->handle);
4215 if (!obj)
4216 return -ENOENT;
4217
a03f395a
TZ
4218 /*
4219 * The caching mode of proxy object is handled by its generator, and
4220 * not allowed to be changed by userspace.
4221 */
4222 if (i915_gem_object_is_proxy(obj)) {
4223 ret = -ENXIO;
4224 goto out;
4225 }
4226
d65415df
CW
4227 if (obj->cache_level == level)
4228 goto out;
4229
4230 ret = i915_gem_object_wait(obj,
4231 I915_WAIT_INTERRUPTIBLE,
4232 MAX_SCHEDULE_TIMEOUT,
4233 to_rps_client(file));
3bc2913e 4234 if (ret)
d65415df 4235 goto out;
3bc2913e 4236
d65415df
CW
4237 ret = i915_mutex_lock_interruptible(dev);
4238 if (ret)
4239 goto out;
e6994aee
CW
4240
4241 ret = i915_gem_object_set_cache_level(obj, level);
e6994aee 4242 mutex_unlock(&dev->struct_mutex);
d65415df
CW
4243
4244out:
4245 i915_gem_object_put(obj);
e6994aee
CW
4246 return ret;
4247}
4248
b9241ea3 4249/*
07bcd99b
DP
4250 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
4251 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
4252 * (for pageflips). We only flush the caches while preparing the buffer for
4253 * display, the callers are responsible for frontbuffer flush.
b9241ea3 4254 */
058d88c4 4255struct i915_vma *
2da3b9b9
CW
4256i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4257 u32 alignment,
5935485f
CW
4258 const struct i915_ggtt_view *view,
4259 unsigned int flags)
b9241ea3 4260{
058d88c4 4261 struct i915_vma *vma;
b9241ea3
ZW
4262 int ret;
4263
4c7d62c6
CW
4264 lockdep_assert_held(&obj->base.dev->struct_mutex);
4265
bd3d2252 4266 /* Mark the global pin early so that we account for the
cc98b413
CW
4267 * display coherency whilst setting up the cache domains.
4268 */
bd3d2252 4269 obj->pin_global++;
cc98b413 4270
a7ef0640
EA
4271 /* The display engine is not coherent with the LLC cache on gen6. As
4272 * a result, we make sure that the pinning that is about to occur is
4273 * done with uncached PTEs. This is lowest common denominator for all
4274 * chipsets.
4275 *
4276 * However for gen6+, we could do better by using the GFDT bit instead
4277 * of uncaching, which would allow us to flush all the LLC-cached data
4278 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4279 */
651d794f 4280 ret = i915_gem_object_set_cache_level(obj,
8652744b
TU
4281 HAS_WT(to_i915(obj->base.dev)) ?
4282 I915_CACHE_WT : I915_CACHE_NONE);
058d88c4
CW
4283 if (ret) {
4284 vma = ERR_PTR(ret);
bd3d2252 4285 goto err_unpin_global;
058d88c4 4286 }
a7ef0640 4287
2da3b9b9
CW
4288 /* As the user may map the buffer once pinned in the display plane
4289 * (e.g. libkms for the bootup splash), we have to ensure that we
2efb813d
CW
4290 * always use map_and_fenceable for all scanout buffers. However,
4291 * it may simply be too big to fit into mappable, in which case
4292 * put it anyway and hope that userspace can cope (but always first
4293 * try to preserve the existing ABI).
2da3b9b9 4294 */
2efb813d 4295 vma = ERR_PTR(-ENOSPC);
5935485f
CW
4296 if ((flags & PIN_MAPPABLE) == 0 &&
4297 (!view || view->type == I915_GGTT_VIEW_NORMAL))
2efb813d 4298 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
5935485f
CW
4299 flags |
4300 PIN_MAPPABLE |
4301 PIN_NONBLOCK);
4302 if (IS_ERR(vma))
767a222e 4303 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
058d88c4 4304 if (IS_ERR(vma))
bd3d2252 4305 goto err_unpin_global;
2da3b9b9 4306
d8923dcf
CW
4307 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
4308
5a97bcc6 4309 __i915_gem_object_flush_for_display(obj);
b118c1e3 4310
2da3b9b9
CW
4311 /* It should now be out of any other write domains, and we can update
4312 * the domain values for our changes.
4313 */
c0a51fd0 4314 obj->read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3 4315
058d88c4 4316 return vma;
cc98b413 4317
bd3d2252
CW
4318err_unpin_global:
4319 obj->pin_global--;
058d88c4 4320 return vma;
cc98b413
CW
4321}
4322
4323void
058d88c4 4324i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
cc98b413 4325{
49d73912 4326 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4c7d62c6 4327
bd3d2252 4328 if (WARN_ON(vma->obj->pin_global == 0))
8a0c39b1
TU
4329 return;
4330
bd3d2252 4331 if (--vma->obj->pin_global == 0)
f51455d4 4332 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
e6617330 4333
383d5823 4334 /* Bump the LRU to try and avoid premature eviction whilst flipping */
befedbb7 4335 i915_gem_object_bump_inactive_ggtt(vma->obj);
383d5823 4336
058d88c4 4337 i915_vma_unpin(vma);
b9241ea3
ZW
4338}
4339
e47c68e9
EA
4340/**
4341 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
4342 * @obj: object to act on
4343 * @write: requesting write or read-only access
e47c68e9
EA
4344 *
4345 * This function returns when the move is complete, including waiting on
4346 * flushes to occur.
4347 */
dabdfe02 4348int
919926ae 4349i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4350{
e47c68e9
EA
4351 int ret;
4352
e95433c7 4353 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 4354
e95433c7
CW
4355 ret = i915_gem_object_wait(obj,
4356 I915_WAIT_INTERRUPTIBLE |
4357 I915_WAIT_LOCKED |
4358 (write ? I915_WAIT_ALL : 0),
4359 MAX_SCHEDULE_TIMEOUT,
4360 NULL);
88241785
CW
4361 if (ret)
4362 return ret;
4363
ef74921b 4364 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
2ef7eeaa 4365
e47c68e9 4366 /* Flush the CPU cache if it's still invalid. */
c0a51fd0 4367 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
57822dc6 4368 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
c0a51fd0 4369 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4370 }
4371
4372 /* It should now be out of any other write domains, and we can update
4373 * the domain values for our changes.
4374 */
c0a51fd0 4375 GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
e47c68e9
EA
4376
4377 /* If we're writing through the CPU, then the GPU read domains will
4378 * need to be invalidated at next use.
4379 */
e27ab73d
CW
4380 if (write)
4381 __start_cpu_write(obj);
2ef7eeaa
EA
4382
4383 return 0;
4384}
4385
673a394b
EA
4386/* Throttle our rendering by waiting until the ring has completed our requests
4387 * emitted over 20 msec ago.
4388 *
b962442e
EA
4389 * Note that if we were to use the current jiffies each time around the loop,
4390 * we wouldn't escape the function with any frames outstanding if the time to
4391 * render a frame was over 20ms.
4392 *
673a394b
EA
4393 * This should get us reasonable parallelism between CPU and GPU but also
4394 * relatively low latency when blocking on a particular request to finish.
4395 */
40a5f0de 4396static int
f787a5f5 4397i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4398{
fac5e23e 4399 struct drm_i915_private *dev_priv = to_i915(dev);
f787a5f5 4400 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4401 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
e61e0f51 4402 struct i915_request *request, *target = NULL;
e95433c7 4403 long ret;
93533c29 4404
f4457ae7
CW
4405 /* ABI: return -EIO if already wedged */
4406 if (i915_terminally_wedged(&dev_priv->gpu_error))
4407 return -EIO;
e110e8d6 4408
1c25595f 4409 spin_lock(&file_priv->mm.lock);
c8659efa 4410 list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
b962442e
EA
4411 if (time_after_eq(request->emitted_jiffies, recent_enough))
4412 break;
40a5f0de 4413
c8659efa
CW
4414 if (target) {
4415 list_del(&target->client_link);
4416 target->file_priv = NULL;
4417 }
fcfa423c 4418
54fb2411 4419 target = request;
b962442e 4420 }
ff865885 4421 if (target)
e61e0f51 4422 i915_request_get(target);
1c25595f 4423 spin_unlock(&file_priv->mm.lock);
40a5f0de 4424
54fb2411 4425 if (target == NULL)
f787a5f5 4426 return 0;
2bc43b5c 4427
e61e0f51 4428 ret = i915_request_wait(target,
e95433c7
CW
4429 I915_WAIT_INTERRUPTIBLE,
4430 MAX_SCHEDULE_TIMEOUT);
e61e0f51 4431 i915_request_put(target);
ff865885 4432
e95433c7 4433 return ret < 0 ? ret : 0;
40a5f0de
EA
4434}
4435
058d88c4 4436struct i915_vma *
ec7adb6e
JL
4437i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4438 const struct i915_ggtt_view *view,
91b2db6f 4439 u64 size,
2ffffd0f
CW
4440 u64 alignment,
4441 u64 flags)
ec7adb6e 4442{
ad16d2ed 4443 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
82ad6443 4444 struct i915_address_space *vm = &dev_priv->ggtt.vm;
59bfa124
CW
4445 struct i915_vma *vma;
4446 int ret;
72e96d64 4447
4c7d62c6
CW
4448 lockdep_assert_held(&obj->base.dev->struct_mutex);
4449
ac87a6fd
CW
4450 if (flags & PIN_MAPPABLE &&
4451 (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
43ae70d9
CW
4452 /* If the required space is larger than the available
4453 * aperture, we will not able to find a slot for the
4454 * object and unbinding the object now will be in
4455 * vain. Worse, doing so may cause us to ping-pong
4456 * the object in and out of the Global GTT and
4457 * waste a lot of cycles under the mutex.
4458 */
4459 if (obj->base.size > dev_priv->ggtt.mappable_end)
4460 return ERR_PTR(-E2BIG);
4461
4462 /* If NONBLOCK is set the caller is optimistically
4463 * trying to cache the full object within the mappable
4464 * aperture, and *must* have a fallback in place for
4465 * situations where we cannot bind the object. We
4466 * can be a little more lax here and use the fallback
4467 * more often to avoid costly migrations of ourselves
4468 * and other objects within the aperture.
4469 *
4470 * Half-the-aperture is used as a simple heuristic.
4471 * More interesting would to do search for a free
4472 * block prior to making the commitment to unbind.
4473 * That caters for the self-harm case, and with a
4474 * little more heuristics (e.g. NOFAULT, NOEVICT)
4475 * we could try to minimise harm to others.
4476 */
4477 if (flags & PIN_NONBLOCK &&
4478 obj->base.size > dev_priv->ggtt.mappable_end / 2)
4479 return ERR_PTR(-ENOSPC);
4480 }
4481
718659a6 4482 vma = i915_vma_instance(obj, vm, view);
e0216b76 4483 if (unlikely(IS_ERR(vma)))
058d88c4 4484 return vma;
59bfa124
CW
4485
4486 if (i915_vma_misplaced(vma, size, alignment, flags)) {
43ae70d9
CW
4487 if (flags & PIN_NONBLOCK) {
4488 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4489 return ERR_PTR(-ENOSPC);
59bfa124 4490
43ae70d9 4491 if (flags & PIN_MAPPABLE &&
944397f0 4492 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
ad16d2ed
CW
4493 return ERR_PTR(-ENOSPC);
4494 }
4495
59bfa124
CW
4496 WARN(i915_vma_is_pinned(vma),
4497 "bo is already pinned in ggtt with incorrect alignment:"
05a20d09
CW
4498 " offset=%08x, req.alignment=%llx,"
4499 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4500 i915_ggtt_offset(vma), alignment,
59bfa124 4501 !!(flags & PIN_MAPPABLE),
05a20d09 4502 i915_vma_is_map_and_fenceable(vma));
59bfa124
CW
4503 ret = i915_vma_unbind(vma);
4504 if (ret)
058d88c4 4505 return ERR_PTR(ret);
59bfa124
CW
4506 }
4507
058d88c4
CW
4508 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4509 if (ret)
4510 return ERR_PTR(ret);
ec7adb6e 4511
058d88c4 4512 return vma;
673a394b
EA
4513}
4514
edf6b76f 4515static __always_inline unsigned int __busy_read_flag(unsigned int id)
3fdc13c7
CW
4516{
4517 /* Note that we could alias engines in the execbuf API, but
4518 * that would be very unwise as it prevents userspace from
4519 * fine control over engine selection. Ahem.
4520 *
4521 * This should be something like EXEC_MAX_ENGINE instead of
4522 * I915_NUM_ENGINES.
4523 */
4524 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4525 return 0x10000 << id;
4526}
4527
4528static __always_inline unsigned int __busy_write_id(unsigned int id)
4529{
70cb472c
CW
4530 /* The uABI guarantees an active writer is also amongst the read
4531 * engines. This would be true if we accessed the activity tracking
4532 * under the lock, but as we perform the lookup of the object and
4533 * its activity locklessly we can not guarantee that the last_write
4534 * being active implies that we have set the same engine flag from
4535 * last_read - hence we always set both read and write busy for
4536 * last_write.
4537 */
4538 return id | __busy_read_flag(id);
3fdc13c7
CW
4539}
4540
edf6b76f 4541static __always_inline unsigned int
d07f0e59 4542__busy_set_if_active(const struct dma_fence *fence,
3fdc13c7
CW
4543 unsigned int (*flag)(unsigned int id))
4544{
e61e0f51 4545 struct i915_request *rq;
3fdc13c7 4546
d07f0e59
CW
4547 /* We have to check the current hw status of the fence as the uABI
4548 * guarantees forward progress. We could rely on the idle worker
4549 * to eventually flush us, but to minimise latency just ask the
4550 * hardware.
1255501d 4551 *
d07f0e59 4552 * Note we only report on the status of native fences.
1255501d 4553 */
d07f0e59
CW
4554 if (!dma_fence_is_i915(fence))
4555 return 0;
4556
4557 /* opencode to_request() in order to avoid const warnings */
e61e0f51
CW
4558 rq = container_of(fence, struct i915_request, fence);
4559 if (i915_request_completed(rq))
d07f0e59
CW
4560 return 0;
4561
1d39f281 4562 return flag(rq->engine->uabi_id);
3fdc13c7
CW
4563}
4564
edf6b76f 4565static __always_inline unsigned int
d07f0e59 4566busy_check_reader(const struct dma_fence *fence)
3fdc13c7 4567{
d07f0e59 4568 return __busy_set_if_active(fence, __busy_read_flag);
3fdc13c7
CW
4569}
4570
edf6b76f 4571static __always_inline unsigned int
d07f0e59 4572busy_check_writer(const struct dma_fence *fence)
3fdc13c7 4573{
d07f0e59
CW
4574 if (!fence)
4575 return 0;
4576
4577 return __busy_set_if_active(fence, __busy_write_id);
3fdc13c7
CW
4578}
4579
673a394b
EA
4580int
4581i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4582 struct drm_file *file)
673a394b
EA
4583{
4584 struct drm_i915_gem_busy *args = data;
05394f39 4585 struct drm_i915_gem_object *obj;
d07f0e59
CW
4586 struct reservation_object_list *list;
4587 unsigned int seq;
fbbd37b3 4588 int err;
673a394b 4589
d07f0e59 4590 err = -ENOENT;
fbbd37b3
CW
4591 rcu_read_lock();
4592 obj = i915_gem_object_lookup_rcu(file, args->handle);
d07f0e59 4593 if (!obj)
fbbd37b3 4594 goto out;
d1b851fc 4595
d07f0e59
CW
4596 /* A discrepancy here is that we do not report the status of
4597 * non-i915 fences, i.e. even though we may report the object as idle,
4598 * a call to set-domain may still stall waiting for foreign rendering.
4599 * This also means that wait-ioctl may report an object as busy,
4600 * where busy-ioctl considers it idle.
4601 *
4602 * We trade the ability to warn of foreign fences to report on which
4603 * i915 engines are active for the object.
4604 *
4605 * Alternatively, we can trade that extra information on read/write
4606 * activity with
4607 * args->busy =
4608 * !reservation_object_test_signaled_rcu(obj->resv, true);
4609 * to report the overall busyness. This is what the wait-ioctl does.
4610 *
4611 */
4612retry:
4613 seq = raw_read_seqcount(&obj->resv->seq);
426960be 4614
d07f0e59
CW
4615 /* Translate the exclusive fence to the READ *and* WRITE engine */
4616 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3fdc13c7 4617
d07f0e59
CW
4618 /* Translate shared fences to READ set of engines */
4619 list = rcu_dereference(obj->resv->fence);
4620 if (list) {
4621 unsigned int shared_count = list->shared_count, i;
3fdc13c7 4622
d07f0e59
CW
4623 for (i = 0; i < shared_count; ++i) {
4624 struct dma_fence *fence =
4625 rcu_dereference(list->shared[i]);
4626
4627 args->busy |= busy_check_reader(fence);
4628 }
426960be 4629 }
673a394b 4630
d07f0e59
CW
4631 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4632 goto retry;
4633
4634 err = 0;
fbbd37b3
CW
4635out:
4636 rcu_read_unlock();
4637 return err;
673a394b
EA
4638}
4639
4640int
4641i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4642 struct drm_file *file_priv)
4643{
0206e353 4644 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4645}
4646
3ef94daa
CW
4647int
4648i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4649 struct drm_file *file_priv)
4650{
fac5e23e 4651 struct drm_i915_private *dev_priv = to_i915(dev);
3ef94daa 4652 struct drm_i915_gem_madvise *args = data;
05394f39 4653 struct drm_i915_gem_object *obj;
1233e2db 4654 int err;
3ef94daa
CW
4655
4656 switch (args->madv) {
4657 case I915_MADV_DONTNEED:
4658 case I915_MADV_WILLNEED:
4659 break;
4660 default:
4661 return -EINVAL;
4662 }
4663
03ac0642 4664 obj = i915_gem_object_lookup(file_priv, args->handle);
1233e2db
CW
4665 if (!obj)
4666 return -ENOENT;
4667
4668 err = mutex_lock_interruptible(&obj->mm.lock);
4669 if (err)
4670 goto out;
3ef94daa 4671
f1fa4f44 4672 if (i915_gem_object_has_pages(obj) &&
3e510a8e 4673 i915_gem_object_is_tiled(obj) &&
656bfa3a 4674 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
bc0629a7
CW
4675 if (obj->mm.madv == I915_MADV_WILLNEED) {
4676 GEM_BUG_ON(!obj->mm.quirked);
a4f5ea64 4677 __i915_gem_object_unpin_pages(obj);
bc0629a7
CW
4678 obj->mm.quirked = false;
4679 }
4680 if (args->madv == I915_MADV_WILLNEED) {
2c3a3f44 4681 GEM_BUG_ON(obj->mm.quirked);
a4f5ea64 4682 __i915_gem_object_pin_pages(obj);
bc0629a7
CW
4683 obj->mm.quirked = true;
4684 }
656bfa3a
DV
4685 }
4686
a4f5ea64
CW
4687 if (obj->mm.madv != __I915_MADV_PURGED)
4688 obj->mm.madv = args->madv;
3ef94daa 4689
6c085a72 4690 /* if the object is no longer attached, discard its backing storage */
f1fa4f44
CW
4691 if (obj->mm.madv == I915_MADV_DONTNEED &&
4692 !i915_gem_object_has_pages(obj))
2d7ef395
CW
4693 i915_gem_object_truncate(obj);
4694
a4f5ea64 4695 args->retained = obj->mm.madv != __I915_MADV_PURGED;
1233e2db 4696 mutex_unlock(&obj->mm.lock);
bb6baf76 4697
1233e2db 4698out:
f8c417cd 4699 i915_gem_object_put(obj);
1233e2db 4700 return err;
3ef94daa
CW
4701}
4702
5b8c8aec 4703static void
e61e0f51 4704frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
5b8c8aec
CW
4705{
4706 struct drm_i915_gem_object *obj =
4707 container_of(active, typeof(*obj), frontbuffer_write);
4708
d59b21ec 4709 intel_fb_obj_flush(obj, ORIGIN_CS);
5b8c8aec
CW
4710}
4711
37e680a1
CW
4712void i915_gem_object_init(struct drm_i915_gem_object *obj,
4713 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4714{
1233e2db
CW
4715 mutex_init(&obj->mm.lock);
4716
2f633156 4717 INIT_LIST_HEAD(&obj->vma_list);
d1b48c1e 4718 INIT_LIST_HEAD(&obj->lut_list);
8d9d5744 4719 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4720
37e680a1
CW
4721 obj->ops = ops;
4722
d07f0e59
CW
4723 reservation_object_init(&obj->__builtin_resv);
4724 obj->resv = &obj->__builtin_resv;
4725
50349247 4726 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
5b8c8aec 4727 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
a4f5ea64
CW
4728
4729 obj->mm.madv = I915_MADV_WILLNEED;
4730 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4731 mutex_init(&obj->mm.get_page.lock);
0327d6ba 4732
f19ec8cb 4733 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
0327d6ba
CW
4734}
4735
37e680a1 4736static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3599a91c
TU
4737 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4738 I915_GEM_OBJECT_IS_SHRINKABLE,
7c55e2c5 4739
37e680a1
CW
4740 .get_pages = i915_gem_object_get_pages_gtt,
4741 .put_pages = i915_gem_object_put_pages_gtt,
7c55e2c5
CW
4742
4743 .pwrite = i915_gem_object_pwrite_gtt,
37e680a1
CW
4744};
4745
465c403c
MA
4746static int i915_gem_object_create_shmem(struct drm_device *dev,
4747 struct drm_gem_object *obj,
4748 size_t size)
4749{
4750 struct drm_i915_private *i915 = to_i915(dev);
4751 unsigned long flags = VM_NORESERVE;
4752 struct file *filp;
4753
4754 drm_gem_private_object_init(dev, obj, size);
4755
4756 if (i915->mm.gemfs)
4757 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4758 flags);
4759 else
4760 filp = shmem_file_setup("i915", size, flags);
4761
4762 if (IS_ERR(filp))
4763 return PTR_ERR(filp);
4764
4765 obj->filp = filp;
4766
4767 return 0;
4768}
4769
b4bcbe2a 4770struct drm_i915_gem_object *
12d79d78 4771i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
ac52bc56 4772{
c397b908 4773 struct drm_i915_gem_object *obj;
5949eac4 4774 struct address_space *mapping;
b8f55be6 4775 unsigned int cache_level;
1a240d4d 4776 gfp_t mask;
fe3db79b 4777 int ret;
ac52bc56 4778
b4bcbe2a
CW
4779 /* There is a prevalence of the assumption that we fit the object's
4780 * page count inside a 32bit _signed_ variable. Let's document this and
4781 * catch if we ever need to fix it. In the meantime, if you do spot
4782 * such a local variable, please consider fixing!
4783 */
7a3ee5de 4784 if (size >> PAGE_SHIFT > INT_MAX)
b4bcbe2a
CW
4785 return ERR_PTR(-E2BIG);
4786
4787 if (overflows_type(size, obj->base.size))
4788 return ERR_PTR(-E2BIG);
4789
187685cb 4790 obj = i915_gem_object_alloc(dev_priv);
c397b908 4791 if (obj == NULL)
fe3db79b 4792 return ERR_PTR(-ENOMEM);
673a394b 4793
465c403c 4794 ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
fe3db79b
CW
4795 if (ret)
4796 goto fail;
673a394b 4797
bed1ea95 4798 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
c0f86832 4799 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
bed1ea95
CW
4800 /* 965gm cannot relocate objects above 4GiB. */
4801 mask &= ~__GFP_HIGHMEM;
4802 mask |= __GFP_DMA32;
4803 }
4804
93c76a3d 4805 mapping = obj->base.filp->f_mapping;
bed1ea95 4806 mapping_set_gfp_mask(mapping, mask);
4846bf0c 4807 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
5949eac4 4808
37e680a1 4809 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4810
c0a51fd0
CK
4811 obj->write_domain = I915_GEM_DOMAIN_CPU;
4812 obj->read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4813
b8f55be6 4814 if (HAS_LLC(dev_priv))
3d29b842 4815 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4816 * cache) for about a 10% performance improvement
4817 * compared to uncached. Graphics requests other than
4818 * display scanout are coherent with the CPU in
4819 * accessing this cache. This means in this mode we
4820 * don't need to clflush on the CPU side, and on the
4821 * GPU side we only need to flush internal caches to
4822 * get data visible to the CPU.
4823 *
4824 * However, we maintain the display planes as UC, and so
4825 * need to rebind when first used as such.
4826 */
b8f55be6
CW
4827 cache_level = I915_CACHE_LLC;
4828 else
4829 cache_level = I915_CACHE_NONE;
a1871112 4830
b8f55be6 4831 i915_gem_object_set_cache_coherency(obj, cache_level);
e27ab73d 4832
d861e338
DV
4833 trace_i915_gem_object_create(obj);
4834
05394f39 4835 return obj;
fe3db79b
CW
4836
4837fail:
4838 i915_gem_object_free(obj);
fe3db79b 4839 return ERR_PTR(ret);
c397b908
DV
4840}
4841
340fbd8c
CW
4842static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4843{
4844 /* If we are the last user of the backing storage (be it shmemfs
4845 * pages or stolen etc), we know that the pages are going to be
4846 * immediately released. In this case, we can then skip copying
4847 * back the contents from the GPU.
4848 */
4849
a4f5ea64 4850 if (obj->mm.madv != I915_MADV_WILLNEED)
340fbd8c
CW
4851 return false;
4852
4853 if (obj->base.filp == NULL)
4854 return true;
4855
4856 /* At first glance, this looks racy, but then again so would be
4857 * userspace racing mmap against close. However, the first external
4858 * reference to the filp can only be obtained through the
4859 * i915_gem_mmap_ioctl() which safeguards us against the user
4860 * acquiring such a reference whilst we are in the middle of
4861 * freeing the object.
4862 */
4863 return atomic_long_read(&obj->base.filp->f_count) == 1;
4864}
4865
fbbd37b3
CW
4866static void __i915_gem_free_objects(struct drm_i915_private *i915,
4867 struct llist_node *freed)
673a394b 4868{
fbbd37b3 4869 struct drm_i915_gem_object *obj, *on;
673a394b 4870
fbbd37b3 4871 intel_runtime_pm_get(i915);
cc731f5a 4872 llist_for_each_entry_safe(obj, on, freed, freed) {
fbbd37b3
CW
4873 struct i915_vma *vma, *vn;
4874
4875 trace_i915_gem_object_destroy(obj);
4876
cc731f5a
CW
4877 mutex_lock(&i915->drm.struct_mutex);
4878
fbbd37b3
CW
4879 GEM_BUG_ON(i915_gem_object_is_active(obj));
4880 list_for_each_entry_safe(vma, vn,
4881 &obj->vma_list, obj_link) {
fbbd37b3
CW
4882 GEM_BUG_ON(i915_vma_is_active(vma));
4883 vma->flags &= ~I915_VMA_PIN_MASK;
3365e226 4884 i915_vma_destroy(vma);
fbbd37b3 4885 }
db6c2b41
CW
4886 GEM_BUG_ON(!list_empty(&obj->vma_list));
4887 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
fbbd37b3 4888
f2123818
CW
4889 /* This serializes freeing with the shrinker. Since the free
4890 * is delayed, first by RCU then by the workqueue, we want the
4891 * shrinker to be able to free pages of unreferenced objects,
4892 * or else we may oom whilst there are plenty of deferred
4893 * freed objects.
4894 */
4895 if (i915_gem_object_has_pages(obj)) {
4896 spin_lock(&i915->mm.obj_lock);
4897 list_del_init(&obj->mm.link);
4898 spin_unlock(&i915->mm.obj_lock);
4899 }
4900
cc731f5a 4901 mutex_unlock(&i915->drm.struct_mutex);
fbbd37b3 4902
fbbd37b3 4903 GEM_BUG_ON(obj->bind_count);
a65adaf8 4904 GEM_BUG_ON(obj->userfault_count);
fbbd37b3 4905 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
67b48040 4906 GEM_BUG_ON(!list_empty(&obj->lut_list));
fbbd37b3
CW
4907
4908 if (obj->ops->release)
4909 obj->ops->release(obj);
f65c9168 4910
fbbd37b3
CW
4911 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4912 atomic_set(&obj->mm.pages_pin_count, 0);
548625ee 4913 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
f1fa4f44 4914 GEM_BUG_ON(i915_gem_object_has_pages(obj));
fbbd37b3
CW
4915
4916 if (obj->base.import_attach)
4917 drm_prime_gem_destroy(&obj->base, NULL);
4918
d07f0e59 4919 reservation_object_fini(&obj->__builtin_resv);
fbbd37b3
CW
4920 drm_gem_object_release(&obj->base);
4921 i915_gem_info_remove_obj(i915, obj->base.size);
4922
4923 kfree(obj->bit_17);
4924 i915_gem_object_free(obj);
cc731f5a 4925
c9c70471
CW
4926 GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
4927 atomic_dec(&i915->mm.free_count);
4928
cc731f5a
CW
4929 if (on)
4930 cond_resched();
fbbd37b3 4931 }
cc731f5a 4932 intel_runtime_pm_put(i915);
fbbd37b3
CW
4933}
4934
4935static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4936{
4937 struct llist_node *freed;
4938
87701b4b
CW
4939 /* Free the oldest, most stale object to keep the free_list short */
4940 freed = NULL;
4941 if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4942 /* Only one consumer of llist_del_first() allowed */
4943 spin_lock(&i915->mm.free_lock);
4944 freed = llist_del_first(&i915->mm.free_list);
4945 spin_unlock(&i915->mm.free_lock);
4946 }
4947 if (unlikely(freed)) {
4948 freed->next = NULL;
fbbd37b3 4949 __i915_gem_free_objects(i915, freed);
87701b4b 4950 }
fbbd37b3
CW
4951}
4952
4953static void __i915_gem_free_work(struct work_struct *work)
4954{
4955 struct drm_i915_private *i915 =
4956 container_of(work, struct drm_i915_private, mm.free_work);
4957 struct llist_node *freed;
26e12f89 4958
2ef1e729
CW
4959 /*
4960 * All file-owned VMA should have been released by this point through
b1f788c6
CW
4961 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4962 * However, the object may also be bound into the global GTT (e.g.
4963 * older GPUs without per-process support, or for direct access through
4964 * the GTT either for the user or for scanout). Those VMA still need to
4965 * unbound now.
4966 */
1488fc08 4967
f991c492 4968 spin_lock(&i915->mm.free_lock);
5ad08be7 4969 while ((freed = llist_del_all(&i915->mm.free_list))) {
f991c492
CW
4970 spin_unlock(&i915->mm.free_lock);
4971
fbbd37b3 4972 __i915_gem_free_objects(i915, freed);
5ad08be7 4973 if (need_resched())
f991c492
CW
4974 return;
4975
4976 spin_lock(&i915->mm.free_lock);
5ad08be7 4977 }
f991c492 4978 spin_unlock(&i915->mm.free_lock);
fbbd37b3 4979}
a071fa00 4980
fbbd37b3
CW
4981static void __i915_gem_free_object_rcu(struct rcu_head *head)
4982{
4983 struct drm_i915_gem_object *obj =
4984 container_of(head, typeof(*obj), rcu);
4985 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4986
2ef1e729
CW
4987 /*
4988 * Since we require blocking on struct_mutex to unbind the freed
4989 * object from the GPU before releasing resources back to the
4990 * system, we can not do that directly from the RCU callback (which may
4991 * be a softirq context), but must instead then defer that work onto a
4992 * kthread. We use the RCU callback rather than move the freed object
4993 * directly onto the work queue so that we can mix between using the
4994 * worker and performing frees directly from subsequent allocations for
4995 * crude but effective memory throttling.
fbbd37b3
CW
4996 */
4997 if (llist_add(&obj->freed, &i915->mm.free_list))
beacbd16 4998 queue_work(i915->wq, &i915->mm.free_work);
fbbd37b3 4999}
656bfa3a 5000
fbbd37b3
CW
5001void i915_gem_free_object(struct drm_gem_object *gem_obj)
5002{
5003 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
a4f5ea64 5004
bc0629a7
CW
5005 if (obj->mm.quirked)
5006 __i915_gem_object_unpin_pages(obj);
5007
340fbd8c 5008 if (discard_backing_storage(obj))
a4f5ea64 5009 obj->mm.madv = I915_MADV_DONTNEED;
de151cf6 5010
2ef1e729
CW
5011 /*
5012 * Before we free the object, make sure any pure RCU-only
fbbd37b3
CW
5013 * read-side critical sections are complete, e.g.
5014 * i915_gem_busy_ioctl(). For the corresponding synchronized
5015 * lookup see i915_gem_object_lookup_rcu().
5016 */
c9c70471 5017 atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
fbbd37b3 5018 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
673a394b
EA
5019}
5020
f8a7fde4
CW
5021void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
5022{
5023 lockdep_assert_held(&obj->base.dev->struct_mutex);
5024
d1b48c1e
CW
5025 if (!i915_gem_object_has_active_reference(obj) &&
5026 i915_gem_object_is_active(obj))
f8a7fde4
CW
5027 i915_gem_object_set_active_reference(obj);
5028 else
5029 i915_gem_object_put(obj);
5030}
5031
24145517
CW
5032void i915_gem_sanitize(struct drm_i915_private *i915)
5033{
4fdd5b4e 5034 int err;
c3160da9
CW
5035
5036 GEM_TRACE("\n");
5037
4dfacb0b 5038 mutex_lock(&i915->drm.struct_mutex);
c3160da9
CW
5039
5040 intel_runtime_pm_get(i915);
5041 intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5042
5043 /*
5044 * As we have just resumed the machine and woken the device up from
5045 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
5046 * back to defaults, recovering from whatever wedged state we left it
5047 * in and so worth trying to use the device once more.
5048 */
4dfacb0b 5049 if (i915_terminally_wedged(&i915->gpu_error))
f36325f3 5050 i915_gem_unset_wedged(i915);
f36325f3 5051
24145517
CW
5052 /*
5053 * If we inherit context state from the BIOS or earlier occupants
5054 * of the GPU, the GPU may be in an inconsistent state when we
5055 * try to take over. The only way to remove the earlier state
5056 * is by resetting. However, resetting on earlier gen is tricky as
5057 * it may impact the display and we are uncertain about the stability
ea117b8d 5058 * of the reset, so this could be applied to even earlier gen.
24145517 5059 */
4fdd5b4e 5060 err = -ENODEV;
ce1599a4 5061 if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
4fdd5b4e
CW
5062 err = WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
5063 if (!err)
5064 intel_engines_sanitize(i915);
c3160da9
CW
5065
5066 intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5067 intel_runtime_pm_put(i915);
5068
4dfacb0b
CW
5069 i915_gem_contexts_lost(i915);
5070 mutex_unlock(&i915->drm.struct_mutex);
24145517
CW
5071}
5072
bf06112f 5073int i915_gem_suspend(struct drm_i915_private *i915)
29105ccc 5074{
dcff85c8 5075 int ret;
28dfe52a 5076
09a4c02e
CW
5077 GEM_TRACE("\n");
5078
bf06112f
CW
5079 intel_runtime_pm_get(i915);
5080 intel_suspend_gt_powersave(i915);
54b4f68f 5081
bf06112f 5082 mutex_lock(&i915->drm.struct_mutex);
5ab57c70 5083
bf06112f
CW
5084 /*
5085 * We have to flush all the executing contexts to main memory so
5ab57c70
CW
5086 * that they can saved in the hibernation image. To ensure the last
5087 * context image is coherent, we have to switch away from it. That
bf06112f 5088 * leaves the i915->kernel_context still active when
5ab57c70
CW
5089 * we actually suspend, and its image in memory may not match the GPU
5090 * state. Fortunately, the kernel_context is disposable and we do
5091 * not rely on its state.
5092 */
bf06112f
CW
5093 if (!i915_terminally_wedged(&i915->gpu_error)) {
5094 ret = i915_gem_switch_to_kernel_context(i915);
ecf73eb2
CW
5095 if (ret)
5096 goto err_unlock;
5ab57c70 5097
bf06112f 5098 ret = i915_gem_wait_for_idle(i915,
ecf73eb2 5099 I915_WAIT_INTERRUPTIBLE |
0606035f 5100 I915_WAIT_LOCKED |
ec625fb9
CW
5101 I915_WAIT_FOR_IDLE_BOOST,
5102 MAX_SCHEDULE_TIMEOUT);
ecf73eb2
CW
5103 if (ret && ret != -EIO)
5104 goto err_unlock;
f7403347 5105
bf06112f 5106 assert_kernel_context_is_current(i915);
ecf73eb2 5107 }
01f8f33e
CW
5108 i915_retire_requests(i915); /* ensure we flush after wedging */
5109
bf06112f 5110 mutex_unlock(&i915->drm.struct_mutex);
45c5f202 5111
bf06112f 5112 intel_uc_suspend(i915);
63987bfe 5113
bf06112f
CW
5114 cancel_delayed_work_sync(&i915->gpu_error.hangcheck_work);
5115 cancel_delayed_work_sync(&i915->gt.retire_work);
bdeb9785 5116
bf06112f
CW
5117 /*
5118 * As the idle_work is rearming if it detects a race, play safe and
bdeb9785
CW
5119 * repeat the flush until it is definitely idle.
5120 */
bf06112f 5121 drain_delayed_work(&i915->gt.idle_work);
bdeb9785 5122
bf06112f
CW
5123 /*
5124 * Assert that we successfully flushed all the work and
bdcf120b
CW
5125 * reset the GPU back to its idle, low power state.
5126 */
bf06112f
CW
5127 WARN_ON(i915->gt.awake);
5128 if (WARN_ON(!intel_engines_are_idle(i915)))
5129 i915_gem_set_wedged(i915); /* no hope, discard everything */
bdcf120b 5130
bf06112f 5131 intel_runtime_pm_put(i915);
ec92ad00
CW
5132 return 0;
5133
5134err_unlock:
bf06112f
CW
5135 mutex_unlock(&i915->drm.struct_mutex);
5136 intel_runtime_pm_put(i915);
ec92ad00
CW
5137 return ret;
5138}
5139
5140void i915_gem_suspend_late(struct drm_i915_private *i915)
5141{
9776f472
CW
5142 struct drm_i915_gem_object *obj;
5143 struct list_head *phases[] = {
5144 &i915->mm.unbound_list,
5145 &i915->mm.bound_list,
5146 NULL
5147 }, **phase;
5148
1c777c5d
ID
5149 /*
5150 * Neither the BIOS, ourselves or any other kernel
5151 * expects the system to be in execlists mode on startup,
5152 * so we need to reset the GPU back to legacy mode. And the only
5153 * known way to disable logical contexts is through a GPU reset.
5154 *
5155 * So in order to leave the system in a known default configuration,
5156 * always reset the GPU upon unload and suspend. Afterwards we then
5157 * clean up the GEM state tracking, flushing off the requests and
5158 * leaving the system in a known idle state.
5159 *
5160 * Note that is of the upmost importance that the GPU is idle and
5161 * all stray writes are flushed *before* we dismantle the backing
5162 * storage for the pinned objects.
5163 *
5164 * However, since we are uncertain that resetting the GPU on older
5165 * machines is a good idea, we don't - just in case it leaves the
5166 * machine in an unusable condition.
5167 */
1c777c5d 5168
9776f472
CW
5169 mutex_lock(&i915->drm.struct_mutex);
5170 for (phase = phases; *phase; phase++) {
5171 list_for_each_entry(obj, *phase, mm.link)
5172 WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
5173 }
5174 mutex_unlock(&i915->drm.struct_mutex);
5175
ec92ad00
CW
5176 intel_uc_sanitize(i915);
5177 i915_gem_sanitize(i915);
673a394b
EA
5178}
5179
37cd3300 5180void i915_gem_resume(struct drm_i915_private *i915)
5ab57c70 5181{
4dfacb0b
CW
5182 GEM_TRACE("\n");
5183
37cd3300 5184 WARN_ON(i915->gt.awake);
5ab57c70 5185
37cd3300
CW
5186 mutex_lock(&i915->drm.struct_mutex);
5187 intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
31ab49ab 5188
37cd3300
CW
5189 i915_gem_restore_gtt_mappings(i915);
5190 i915_gem_restore_fences(i915);
5ab57c70 5191
6ca9a2be
CW
5192 /*
5193 * As we didn't flush the kernel context before suspend, we cannot
5ab57c70
CW
5194 * guarantee that the context image is complete. So let's just reset
5195 * it and start again.
5196 */
37cd3300 5197 i915->gt.resume(i915);
5ab57c70 5198
37cd3300
CW
5199 if (i915_gem_init_hw(i915))
5200 goto err_wedged;
5201
7cfca4af 5202 intel_uc_resume(i915);
7469c62c 5203
37cd3300
CW
5204 /* Always reload a context for powersaving. */
5205 if (i915_gem_switch_to_kernel_context(i915))
5206 goto err_wedged;
5207
5208out_unlock:
5209 intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5210 mutex_unlock(&i915->drm.struct_mutex);
5211 return;
5212
5213err_wedged:
6ca9a2be
CW
5214 if (!i915_terminally_wedged(&i915->gpu_error)) {
5215 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
5216 i915_gem_set_wedged(i915);
5217 }
37cd3300 5218 goto out_unlock;
5ab57c70
CW
5219}
5220
c6be607a 5221void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
f691e2f4 5222{
c6be607a 5223 if (INTEL_GEN(dev_priv) < 5 ||
f691e2f4
DV
5224 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5225 return;
5226
5227 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5228 DISP_TILE_SURFACE_SWIZZLING);
5229
5db94019 5230 if (IS_GEN5(dev_priv))
11782b02
DV
5231 return;
5232
f691e2f4 5233 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5db94019 5234 if (IS_GEN6(dev_priv))
6b26c86d 5235 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5db94019 5236 else if (IS_GEN7(dev_priv))
6b26c86d 5237 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5db94019 5238 else if (IS_GEN8(dev_priv))
31a5336e 5239 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
5240 else
5241 BUG();
f691e2f4 5242}
e21af88d 5243
50a0bc90 5244static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
81e7f200 5245{
81e7f200
VS
5246 I915_WRITE(RING_CTL(base), 0);
5247 I915_WRITE(RING_HEAD(base), 0);
5248 I915_WRITE(RING_TAIL(base), 0);
5249 I915_WRITE(RING_START(base), 0);
5250}
5251
50a0bc90 5252static void init_unused_rings(struct drm_i915_private *dev_priv)
81e7f200 5253{
50a0bc90
TU
5254 if (IS_I830(dev_priv)) {
5255 init_unused_ring(dev_priv, PRB1_BASE);
5256 init_unused_ring(dev_priv, SRB0_BASE);
5257 init_unused_ring(dev_priv, SRB1_BASE);
5258 init_unused_ring(dev_priv, SRB2_BASE);
5259 init_unused_ring(dev_priv, SRB3_BASE);
5260 } else if (IS_GEN2(dev_priv)) {
5261 init_unused_ring(dev_priv, SRB0_BASE);
5262 init_unused_ring(dev_priv, SRB1_BASE);
5263 } else if (IS_GEN3(dev_priv)) {
5264 init_unused_ring(dev_priv, PRB1_BASE);
5265 init_unused_ring(dev_priv, PRB2_BASE);
81e7f200
VS
5266 }
5267}
5268
20a8a74a 5269static int __i915_gem_restart_engines(void *data)
4fc7c971 5270{
20a8a74a 5271 struct drm_i915_private *i915 = data;
e2f80391 5272 struct intel_engine_cs *engine;
3b3f1650 5273 enum intel_engine_id id;
20a8a74a
CW
5274 int err;
5275
5276 for_each_engine(engine, i915, id) {
5277 err = engine->init_hw(engine);
8177e112
CW
5278 if (err) {
5279 DRM_ERROR("Failed to restart %s (%d)\n",
5280 engine->name, err);
20a8a74a 5281 return err;
8177e112 5282 }
20a8a74a
CW
5283 }
5284
5285 return 0;
5286}
5287
5288int i915_gem_init_hw(struct drm_i915_private *dev_priv)
5289{
d200cda6 5290 int ret;
4fc7c971 5291
de867c20
CW
5292 dev_priv->gt.last_init_time = ktime_get();
5293
5e4f5189
CW
5294 /* Double layer security blanket, see i915_gem_init() */
5295 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5296
0031fb96 5297 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
05e21cc4 5298 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 5299
772c2a51 5300 if (IS_HASWELL(dev_priv))
50a0bc90 5301 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
0bf21347 5302 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 5303
6e266956 5304 if (HAS_PCH_NOP(dev_priv)) {
fd6b8f43 5305 if (IS_IVYBRIDGE(dev_priv)) {
6ba844b0
DV
5306 u32 temp = I915_READ(GEN7_MSG_CTL);
5307 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5308 I915_WRITE(GEN7_MSG_CTL, temp);
c6be607a 5309 } else if (INTEL_GEN(dev_priv) >= 7) {
6ba844b0
DV
5310 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5311 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5312 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5313 }
88a2b2a3
BW
5314 }
5315
59b449d5
OM
5316 intel_gt_workarounds_apply(dev_priv);
5317
c6be607a 5318 i915_gem_init_swizzling(dev_priv);
4fc7c971 5319
d5abdfda
DV
5320 /*
5321 * At least 830 can leave some of the unused rings
5322 * "active" (ie. head != tail) after resume which
5323 * will prevent c3 entry. Makes sure all unused rings
5324 * are totally idle.
5325 */
50a0bc90 5326 init_unused_rings(dev_priv);
d5abdfda 5327
ed54c1a1 5328 BUG_ON(!dev_priv->kernel_context);
6f74b36b
CW
5329 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
5330 ret = -EIO;
5331 goto out;
5332 }
90638cc1 5333
c6be607a 5334 ret = i915_ppgtt_init_hw(dev_priv);
4ad2fd88 5335 if (ret) {
8177e112 5336 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
4ad2fd88
JH
5337 goto out;
5338 }
5339
f08e2035
JL
5340 ret = intel_wopcm_init_hw(&dev_priv->wopcm);
5341 if (ret) {
5342 DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
5343 goto out;
5344 }
5345
9bdc3573
MW
5346 /* We can't enable contexts until all firmware is loaded */
5347 ret = intel_uc_init_hw(dev_priv);
8177e112
CW
5348 if (ret) {
5349 DRM_ERROR("Enabling uc failed (%d)\n", ret);
9bdc3573 5350 goto out;
8177e112 5351 }
9bdc3573 5352
bf9e8429 5353 intel_mocs_init_l3cc_table(dev_priv);
0ccdacf6 5354
136109c6
CW
5355 /* Only when the HW is re-initialised, can we replay the requests */
5356 ret = __i915_gem_restart_engines(dev_priv);
b96f6ebf
MW
5357 if (ret)
5358 goto cleanup_uc;
60c0a66e 5359
5e4f5189 5360 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60c0a66e
MW
5361
5362 return 0;
b96f6ebf
MW
5363
5364cleanup_uc:
5365 intel_uc_fini_hw(dev_priv);
60c0a66e
MW
5366out:
5367 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5368
5369 return ret;
8187a2b7
ZN
5370}
5371
d2b4b979
CW
5372static int __intel_engines_record_defaults(struct drm_i915_private *i915)
5373{
5374 struct i915_gem_context *ctx;
5375 struct intel_engine_cs *engine;
5376 enum intel_engine_id id;
5377 int err;
5378
5379 /*
5380 * As we reset the gpu during very early sanitisation, the current
5381 * register state on the GPU should reflect its defaults values.
5382 * We load a context onto the hw (with restore-inhibit), then switch
5383 * over to a second context to save that default register state. We
5384 * can then prime every new context with that state so they all start
5385 * from the same default HW values.
5386 */
5387
5388 ctx = i915_gem_context_create_kernel(i915, 0);
5389 if (IS_ERR(ctx))
5390 return PTR_ERR(ctx);
5391
5392 for_each_engine(engine, i915, id) {
e61e0f51 5393 struct i915_request *rq;
d2b4b979 5394
e61e0f51 5395 rq = i915_request_alloc(engine, ctx);
d2b4b979
CW
5396 if (IS_ERR(rq)) {
5397 err = PTR_ERR(rq);
5398 goto out_ctx;
5399 }
5400
3fef5cda 5401 err = 0;
d2b4b979
CW
5402 if (engine->init_context)
5403 err = engine->init_context(rq);
5404
697b9a87 5405 i915_request_add(rq);
d2b4b979
CW
5406 if (err)
5407 goto err_active;
5408 }
5409
5410 err = i915_gem_switch_to_kernel_context(i915);
5411 if (err)
5412 goto err_active;
5413
2621cefa
CW
5414 if (i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED, HZ / 5)) {
5415 i915_gem_set_wedged(i915);
5416 err = -EIO; /* Caller will declare us wedged */
d2b4b979 5417 goto err_active;
2621cefa 5418 }
d2b4b979
CW
5419
5420 assert_kernel_context_is_current(i915);
5421
8e1cb32d
CW
5422 /*
5423 * Immediately park the GPU so that we enable powersaving and
5424 * treat it as idle. The next time we issue a request, we will
5425 * unpark and start using the engine->pinned_default_state, otherwise
5426 * it is in limbo and an early reset may fail.
5427 */
5428 __i915_gem_park(i915);
5429
d2b4b979
CW
5430 for_each_engine(engine, i915, id) {
5431 struct i915_vma *state;
37d7c9cc 5432 void *vaddr;
d2b4b979 5433
666424ab
CW
5434 GEM_BUG_ON(to_intel_context(ctx, engine)->pin_count);
5435
ab82a063 5436 state = to_intel_context(ctx, engine)->state;
d2b4b979
CW
5437 if (!state)
5438 continue;
5439
5440 /*
5441 * As we will hold a reference to the logical state, it will
5442 * not be torn down with the context, and importantly the
5443 * object will hold onto its vma (making it possible for a
5444 * stray GTT write to corrupt our defaults). Unmap the vma
5445 * from the GTT to prevent such accidents and reclaim the
5446 * space.
5447 */
5448 err = i915_vma_unbind(state);
5449 if (err)
5450 goto err_active;
5451
5452 err = i915_gem_object_set_to_cpu_domain(state->obj, false);
5453 if (err)
5454 goto err_active;
5455
5456 engine->default_state = i915_gem_object_get(state->obj);
37d7c9cc
CW
5457
5458 /* Check we can acquire the image of the context state */
5459 vaddr = i915_gem_object_pin_map(engine->default_state,
666424ab 5460 I915_MAP_FORCE_WB);
37d7c9cc
CW
5461 if (IS_ERR(vaddr)) {
5462 err = PTR_ERR(vaddr);
5463 goto err_active;
5464 }
5465
5466 i915_gem_object_unpin_map(engine->default_state);
d2b4b979
CW
5467 }
5468
5469 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
5470 unsigned int found = intel_engines_has_context_isolation(i915);
5471
5472 /*
5473 * Make sure that classes with multiple engine instances all
5474 * share the same basic configuration.
5475 */
5476 for_each_engine(engine, i915, id) {
5477 unsigned int bit = BIT(engine->uabi_class);
5478 unsigned int expected = engine->default_state ? bit : 0;
5479
5480 if ((found & bit) != expected) {
5481 DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5482 engine->uabi_class, engine->name);
5483 }
5484 }
5485 }
5486
5487out_ctx:
5488 i915_gem_context_set_closed(ctx);
5489 i915_gem_context_put(ctx);
5490 return err;
5491
5492err_active:
5493 /*
5494 * If we have to abandon now, we expect the engines to be idle
5495 * and ready to be torn-down. First try to flush any remaining
5496 * request, ensure we are pointing at the kernel context and
5497 * then remove it.
5498 */
5499 if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
5500 goto out_ctx;
5501
ec625fb9
CW
5502 if (WARN_ON(i915_gem_wait_for_idle(i915,
5503 I915_WAIT_LOCKED,
5504 MAX_SCHEDULE_TIMEOUT)))
d2b4b979
CW
5505 goto out_ctx;
5506
5507 i915_gem_contexts_lost(i915);
5508 goto out_ctx;
5509}
5510
bf9e8429 5511int i915_gem_init(struct drm_i915_private *dev_priv)
1070a42b 5512{
1070a42b
CW
5513 int ret;
5514
52b2416c
CD
5515 /* We need to fallback to 4K pages if host doesn't support huge gtt. */
5516 if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
da9fe3f3
MA
5517 mkwrite_device_info(dev_priv)->page_sizes =
5518 I915_GTT_PAGE_SIZE_4K;
5519
94312828 5520 dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
57822dc6 5521
fb5c551a 5522 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
821ed7df 5523 dev_priv->gt.resume = intel_lr_context_resume;
117897f4 5524 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
fb5c551a
CW
5525 } else {
5526 dev_priv->gt.resume = intel_legacy_submission_resume;
5527 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
a83014d3
OM
5528 }
5529
ee48700d
CW
5530 ret = i915_gem_init_userptr(dev_priv);
5531 if (ret)
5532 return ret;
5533
f7dc0157 5534 ret = intel_uc_init_misc(dev_priv);
6b0478fb
JL
5535 if (ret)
5536 return ret;
5537
f7dc0157 5538 ret = intel_wopcm_init(&dev_priv->wopcm);
3176ff49 5539 if (ret)
f7dc0157 5540 goto err_uc_misc;
3176ff49 5541
5e4f5189
CW
5542 /* This is just a security blanket to placate dragons.
5543 * On some systems, we very sporadically observe that the first TLBs
5544 * used by the CS may be stale, despite us poking the TLB reset. If
5545 * we hold the forcewake during initialisation these problems
5546 * just magically go away.
5547 */
ee48700d 5548 mutex_lock(&dev_priv->drm.struct_mutex);
5e4f5189
CW
5549 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5550
f6b9d5ca 5551 ret = i915_gem_init_ggtt(dev_priv);
6ca9a2be
CW
5552 if (ret) {
5553 GEM_BUG_ON(ret == -EIO);
5554 goto err_unlock;
5555 }
d62b4892 5556
829a0af2 5557 ret = i915_gem_contexts_init(dev_priv);
6ca9a2be
CW
5558 if (ret) {
5559 GEM_BUG_ON(ret == -EIO);
5560 goto err_ggtt;
5561 }
2fa48d8d 5562
bf9e8429 5563 ret = intel_engines_init(dev_priv);
6ca9a2be
CW
5564 if (ret) {
5565 GEM_BUG_ON(ret == -EIO);
5566 goto err_context;
5567 }
2fa48d8d 5568
f58d13d5
CW
5569 intel_init_gt_powersave(dev_priv);
5570
61b5c158 5571 ret = intel_uc_init(dev_priv);
cc6a818a 5572 if (ret)
6ca9a2be 5573 goto err_pm;
cc6a818a 5574
61b5c158
MW
5575 ret = i915_gem_init_hw(dev_priv);
5576 if (ret)
5577 goto err_uc_init;
5578
cc6a818a
CW
5579 /*
5580 * Despite its name intel_init_clock_gating applies both display
5581 * clock gating workarounds; GT mmio workarounds and the occasional
5582 * GT power context workaround. Worse, sometimes it includes a context
5583 * register workaround which we need to apply before we record the
5584 * default HW state for all contexts.
5585 *
5586 * FIXME: break up the workarounds and apply them at the right time!
5587 */
5588 intel_init_clock_gating(dev_priv);
5589
d2b4b979 5590 ret = __intel_engines_record_defaults(dev_priv);
6ca9a2be
CW
5591 if (ret)
5592 goto err_init_hw;
5593
5594 if (i915_inject_load_failure()) {
5595 ret = -ENODEV;
5596 goto err_init_hw;
5597 }
5598
5599 if (i915_inject_load_failure()) {
5600 ret = -EIO;
5601 goto err_init_hw;
5602 }
5603
5604 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5605 mutex_unlock(&dev_priv->drm.struct_mutex);
5606
5607 return 0;
5608
5609 /*
5610 * Unwinding is complicated by that we want to handle -EIO to mean
5611 * disable GPU submission but keep KMS alive. We want to mark the
5612 * HW as irrevisibly wedged, but keep enough state around that the
5613 * driver doesn't explode during runtime.
5614 */
5615err_init_hw:
8571a05a
CW
5616 mutex_unlock(&dev_priv->drm.struct_mutex);
5617
5618 WARN_ON(i915_gem_suspend(dev_priv));
5619 i915_gem_suspend_late(dev_priv);
5620
8bcf9f70
CW
5621 i915_gem_drain_workqueue(dev_priv);
5622
8571a05a 5623 mutex_lock(&dev_priv->drm.struct_mutex);
6ca9a2be 5624 intel_uc_fini_hw(dev_priv);
61b5c158
MW
5625err_uc_init:
5626 intel_uc_fini(dev_priv);
6ca9a2be
CW
5627err_pm:
5628 if (ret != -EIO) {
5629 intel_cleanup_gt_powersave(dev_priv);
5630 i915_gem_cleanup_engines(dev_priv);
5631 }
5632err_context:
5633 if (ret != -EIO)
5634 i915_gem_contexts_fini(dev_priv);
5635err_ggtt:
5636err_unlock:
5637 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5638 mutex_unlock(&dev_priv->drm.struct_mutex);
5639
f7dc0157 5640err_uc_misc:
70deeadd 5641 intel_uc_fini_misc(dev_priv);
da943b5a 5642
6ca9a2be
CW
5643 if (ret != -EIO)
5644 i915_gem_cleanup_userptr(dev_priv);
5645
60990320 5646 if (ret == -EIO) {
7ed43df7
CW
5647 mutex_lock(&dev_priv->drm.struct_mutex);
5648
6ca9a2be
CW
5649 /*
5650 * Allow engine initialisation to fail by marking the GPU as
60990320
CW
5651 * wedged. But we only want to do this where the GPU is angry,
5652 * for all other failure, such as an allocation failure, bail.
5653 */
6f74b36b 5654 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
51c18bf7
CW
5655 i915_load_error(dev_priv,
5656 "Failed to initialize GPU, declaring it wedged!\n");
6f74b36b
CW
5657 i915_gem_set_wedged(dev_priv);
5658 }
7ed43df7
CW
5659
5660 /* Minimal basic recovery for KMS */
5661 ret = i915_ggtt_enable_hw(dev_priv);
5662 i915_gem_restore_gtt_mappings(dev_priv);
5663 i915_gem_restore_fences(dev_priv);
5664 intel_init_clock_gating(dev_priv);
5665
5666 mutex_unlock(&dev_priv->drm.struct_mutex);
1070a42b
CW
5667 }
5668
6ca9a2be 5669 i915_gem_drain_freed_objects(dev_priv);
60990320 5670 return ret;
1070a42b
CW
5671}
5672
8979187a
MW
5673void i915_gem_fini(struct drm_i915_private *dev_priv)
5674{
5675 i915_gem_suspend_late(dev_priv);
30b71084 5676 intel_disable_gt_powersave(dev_priv);
8979187a
MW
5677
5678 /* Flush any outstanding unpin_work. */
5679 i915_gem_drain_workqueue(dev_priv);
5680
5681 mutex_lock(&dev_priv->drm.struct_mutex);
5682 intel_uc_fini_hw(dev_priv);
5683 intel_uc_fini(dev_priv);
5684 i915_gem_cleanup_engines(dev_priv);
5685 i915_gem_contexts_fini(dev_priv);
5686 mutex_unlock(&dev_priv->drm.struct_mutex);
5687
30b71084
CW
5688 intel_cleanup_gt_powersave(dev_priv);
5689
8979187a
MW
5690 intel_uc_fini_misc(dev_priv);
5691 i915_gem_cleanup_userptr(dev_priv);
5692
5693 i915_gem_drain_freed_objects(dev_priv);
5694
5695 WARN_ON(!list_empty(&dev_priv->contexts.list));
5696}
5697
24145517
CW
5698void i915_gem_init_mmio(struct drm_i915_private *i915)
5699{
5700 i915_gem_sanitize(i915);
5701}
5702
8187a2b7 5703void
cb15d9f8 5704i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
8187a2b7 5705{
e2f80391 5706 struct intel_engine_cs *engine;
3b3f1650 5707 enum intel_engine_id id;
8187a2b7 5708
3b3f1650 5709 for_each_engine(engine, dev_priv, id)
117897f4 5710 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
5711}
5712
40ae4e16
ID
5713void
5714i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5715{
49ef5294 5716 int i;
40ae4e16 5717
c56b89f1 5718 if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
40ae4e16
ID
5719 !IS_CHERRYVIEW(dev_priv))
5720 dev_priv->num_fence_regs = 32;
c56b89f1 5721 else if (INTEL_GEN(dev_priv) >= 4 ||
73f67aa8
JN
5722 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5723 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
40ae4e16
ID
5724 dev_priv->num_fence_regs = 16;
5725 else
5726 dev_priv->num_fence_regs = 8;
5727
c033666a 5728 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
5729 dev_priv->num_fence_regs =
5730 I915_READ(vgtif_reg(avail_rs.fence_num));
5731
5732 /* Initialize fence registers to zero */
49ef5294
CW
5733 for (i = 0; i < dev_priv->num_fence_regs; i++) {
5734 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5735
5736 fence->i915 = dev_priv;
5737 fence->id = i;
5738 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5739 }
4362f4f6 5740 i915_gem_restore_fences(dev_priv);
40ae4e16 5741
4362f4f6 5742 i915_gem_detect_bit_6_swizzle(dev_priv);
40ae4e16
ID
5743}
5744
9c52d1c8
CW
5745static void i915_gem_init__mm(struct drm_i915_private *i915)
5746{
5747 spin_lock_init(&i915->mm.object_stat_lock);
5748 spin_lock_init(&i915->mm.obj_lock);
5749 spin_lock_init(&i915->mm.free_lock);
5750
5751 init_llist_head(&i915->mm.free_list);
5752
5753 INIT_LIST_HEAD(&i915->mm.unbound_list);
5754 INIT_LIST_HEAD(&i915->mm.bound_list);
5755 INIT_LIST_HEAD(&i915->mm.fence_list);
5756 INIT_LIST_HEAD(&i915->mm.userfault_list);
5757
5758 INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
5759}
5760
a0de908d 5761int i915_gem_init_early(struct drm_i915_private *dev_priv)
673a394b 5762{
a933568e 5763 int err = -ENOMEM;
42dcedd4 5764
a933568e
TU
5765 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5766 if (!dev_priv->objects)
73cb9701 5767 goto err_out;
73cb9701 5768
a933568e
TU
5769 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5770 if (!dev_priv->vmas)
73cb9701 5771 goto err_objects;
73cb9701 5772
d1b48c1e
CW
5773 dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5774 if (!dev_priv->luts)
5775 goto err_vmas;
5776
e61e0f51 5777 dev_priv->requests = KMEM_CACHE(i915_request,
a933568e
TU
5778 SLAB_HWCACHE_ALIGN |
5779 SLAB_RECLAIM_ACCOUNT |
5f0d5a3a 5780 SLAB_TYPESAFE_BY_RCU);
a933568e 5781 if (!dev_priv->requests)
d1b48c1e 5782 goto err_luts;
73cb9701 5783
52e54209
CW
5784 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5785 SLAB_HWCACHE_ALIGN |
5786 SLAB_RECLAIM_ACCOUNT);
5787 if (!dev_priv->dependencies)
5788 goto err_requests;
5789
c5cf9a91
CW
5790 dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5791 if (!dev_priv->priorities)
5792 goto err_dependencies;
5793
73cb9701 5794 INIT_LIST_HEAD(&dev_priv->gt.timelines);
643b450a 5795 INIT_LIST_HEAD(&dev_priv->gt.active_rings);
3365e226 5796 INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
643b450a 5797
9c52d1c8 5798 i915_gem_init__mm(dev_priv);
f2123818 5799
67d97da3 5800 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
673a394b 5801 i915_gem_retire_work_handler);
67d97da3 5802 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
b29c19b6 5803 i915_gem_idle_work_handler);
1f15b76f 5804 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1f83fee0 5805 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5806
6f633402
JL
5807 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5808
b5add959 5809 spin_lock_init(&dev_priv->fb_tracking.lock);
73cb9701 5810
465c403c
MA
5811 err = i915_gemfs_init(dev_priv);
5812 if (err)
5813 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5814
73cb9701
CW
5815 return 0;
5816
52e54209
CW
5817err_dependencies:
5818 kmem_cache_destroy(dev_priv->dependencies);
73cb9701
CW
5819err_requests:
5820 kmem_cache_destroy(dev_priv->requests);
d1b48c1e
CW
5821err_luts:
5822 kmem_cache_destroy(dev_priv->luts);
73cb9701
CW
5823err_vmas:
5824 kmem_cache_destroy(dev_priv->vmas);
5825err_objects:
5826 kmem_cache_destroy(dev_priv->objects);
5827err_out:
5828 return err;
673a394b 5829}
71acb5eb 5830
a0de908d 5831void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
d64aa096 5832{
c4d4c1c6 5833 i915_gem_drain_freed_objects(dev_priv);
c9c70471
CW
5834 GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
5835 GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
c4d4c1c6 5836 WARN_ON(dev_priv->mm.object_count);
ea84aa77 5837 WARN_ON(!list_empty(&dev_priv->gt.timelines));
ea84aa77 5838
c5cf9a91 5839 kmem_cache_destroy(dev_priv->priorities);
52e54209 5840 kmem_cache_destroy(dev_priv->dependencies);
d64aa096 5841 kmem_cache_destroy(dev_priv->requests);
d1b48c1e 5842 kmem_cache_destroy(dev_priv->luts);
d64aa096
ID
5843 kmem_cache_destroy(dev_priv->vmas);
5844 kmem_cache_destroy(dev_priv->objects);
0eafec6d
CW
5845
5846 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5847 rcu_barrier();
465c403c
MA
5848
5849 i915_gemfs_fini(dev_priv);
d64aa096
ID
5850}
5851
6a800eab
CW
5852int i915_gem_freeze(struct drm_i915_private *dev_priv)
5853{
d0aa301a
CW
5854 /* Discard all purgeable objects, let userspace recover those as
5855 * required after resuming.
5856 */
6a800eab 5857 i915_gem_shrink_all(dev_priv);
6a800eab 5858
6a800eab
CW
5859 return 0;
5860}
5861
95c778da 5862int i915_gem_freeze_late(struct drm_i915_private *i915)
461fb99c
CW
5863{
5864 struct drm_i915_gem_object *obj;
7aab2d53 5865 struct list_head *phases[] = {
95c778da
CW
5866 &i915->mm.unbound_list,
5867 &i915->mm.bound_list,
7aab2d53 5868 NULL
95c778da 5869 }, **phase;
461fb99c 5870
95c778da
CW
5871 /*
5872 * Called just before we write the hibernation image.
461fb99c
CW
5873 *
5874 * We need to update the domain tracking to reflect that the CPU
5875 * will be accessing all the pages to create and restore from the
5876 * hibernation, and so upon restoration those pages will be in the
5877 * CPU domain.
5878 *
5879 * To make sure the hibernation image contains the latest state,
5880 * we update that state just before writing out the image.
7aab2d53
CW
5881 *
5882 * To try and reduce the hibernation image, we manually shrink
d0aa301a 5883 * the objects as well, see i915_gem_freeze()
461fb99c
CW
5884 */
5885
95c778da
CW
5886 i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
5887 i915_gem_drain_freed_objects(i915);
461fb99c 5888
95c778da
CW
5889 mutex_lock(&i915->drm.struct_mutex);
5890 for (phase = phases; *phase; phase++) {
5891 list_for_each_entry(obj, *phase, mm.link)
5892 WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
461fb99c 5893 }
95c778da 5894 mutex_unlock(&i915->drm.struct_mutex);
461fb99c
CW
5895
5896 return 0;
5897}
5898
f787a5f5 5899void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5900{
f787a5f5 5901 struct drm_i915_file_private *file_priv = file->driver_priv;
e61e0f51 5902 struct i915_request *request;
b962442e
EA
5903
5904 /* Clean up our request list when the client is going away, so that
5905 * later retire_requests won't dereference our soon-to-be-gone
5906 * file_priv.
5907 */
1c25595f 5908 spin_lock(&file_priv->mm.lock);
c8659efa 5909 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
f787a5f5 5910 request->file_priv = NULL;
1c25595f 5911 spin_unlock(&file_priv->mm.lock);
b29c19b6
CW
5912}
5913
829a0af2 5914int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
b29c19b6
CW
5915{
5916 struct drm_i915_file_private *file_priv;
e422b888 5917 int ret;
b29c19b6 5918
c4c29d7b 5919 DRM_DEBUG("\n");
b29c19b6
CW
5920
5921 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5922 if (!file_priv)
5923 return -ENOMEM;
5924
5925 file->driver_priv = file_priv;
829a0af2 5926 file_priv->dev_priv = i915;
ab0e7ff9 5927 file_priv->file = file;
b29c19b6
CW
5928
5929 spin_lock_init(&file_priv->mm.lock);
5930 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5931
c80ff16e 5932 file_priv->bsd_engine = -1;
14921f3c 5933 file_priv->hang_timestamp = jiffies;
de1add36 5934
829a0af2 5935 ret = i915_gem_context_open(i915, file);
e422b888
BW
5936 if (ret)
5937 kfree(file_priv);
b29c19b6 5938
e422b888 5939 return ret;
b29c19b6
CW
5940}
5941
b680c37a
DV
5942/**
5943 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
5944 * @old: current GEM buffer for the frontbuffer slots
5945 * @new: new GEM buffer for the frontbuffer slots
5946 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
5947 *
5948 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5949 * from @old and setting them in @new. Both @old and @new can be NULL.
5950 */
a071fa00
DV
5951void i915_gem_track_fb(struct drm_i915_gem_object *old,
5952 struct drm_i915_gem_object *new,
5953 unsigned frontbuffer_bits)
5954{
faf5bf0a
CW
5955 /* Control of individual bits within the mask are guarded by
5956 * the owning plane->mutex, i.e. we can never see concurrent
5957 * manipulation of individual bits. But since the bitfield as a whole
5958 * is updated using RMW, we need to use atomics in order to update
5959 * the bits.
5960 */
5961 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5962 sizeof(atomic_t) * BITS_PER_BYTE);
5963
a071fa00 5964 if (old) {
faf5bf0a
CW
5965 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5966 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
a071fa00
DV
5967 }
5968
5969 if (new) {
faf5bf0a
CW
5970 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5971 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
a071fa00
DV
5972 }
5973}
5974
ea70299d
DG
5975/* Allocate a new GEM object and fill it with the supplied data */
5976struct drm_i915_gem_object *
12d79d78 5977i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
ea70299d
DG
5978 const void *data, size_t size)
5979{
5980 struct drm_i915_gem_object *obj;
be062fa4
CW
5981 struct file *file;
5982 size_t offset;
5983 int err;
ea70299d 5984
12d79d78 5985 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
fe3db79b 5986 if (IS_ERR(obj))
ea70299d
DG
5987 return obj;
5988
c0a51fd0 5989 GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
ea70299d 5990
be062fa4
CW
5991 file = obj->base.filp;
5992 offset = 0;
5993 do {
5994 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5995 struct page *page;
5996 void *pgdata, *vaddr;
ea70299d 5997
be062fa4
CW
5998 err = pagecache_write_begin(file, file->f_mapping,
5999 offset, len, 0,
6000 &page, &pgdata);
6001 if (err < 0)
6002 goto fail;
ea70299d 6003
be062fa4
CW
6004 vaddr = kmap(page);
6005 memcpy(vaddr, data, len);
6006 kunmap(page);
6007
6008 err = pagecache_write_end(file, file->f_mapping,
6009 offset, len, len,
6010 page, pgdata);
6011 if (err < 0)
6012 goto fail;
6013
6014 size -= len;
6015 data += len;
6016 offset += len;
6017 } while (size);
ea70299d
DG
6018
6019 return obj;
6020
6021fail:
f8c417cd 6022 i915_gem_object_put(obj);
be062fa4 6023 return ERR_PTR(err);
ea70299d 6024}
96d77634
CW
6025
6026struct scatterlist *
6027i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
6028 unsigned int n,
6029 unsigned int *offset)
6030{
a4f5ea64 6031 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
96d77634
CW
6032 struct scatterlist *sg;
6033 unsigned int idx, count;
6034
6035 might_sleep();
6036 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
a4f5ea64 6037 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
96d77634
CW
6038
6039 /* As we iterate forward through the sg, we record each entry in a
6040 * radixtree for quick repeated (backwards) lookups. If we have seen
6041 * this index previously, we will have an entry for it.
6042 *
6043 * Initial lookup is O(N), but this is amortized to O(1) for
6044 * sequential page access (where each new request is consecutive
6045 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
6046 * i.e. O(1) with a large constant!
6047 */
6048 if (n < READ_ONCE(iter->sg_idx))
6049 goto lookup;
6050
6051 mutex_lock(&iter->lock);
6052
6053 /* We prefer to reuse the last sg so that repeated lookup of this
6054 * (or the subsequent) sg are fast - comparing against the last
6055 * sg is faster than going through the radixtree.
6056 */
6057
6058 sg = iter->sg_pos;
6059 idx = iter->sg_idx;
6060 count = __sg_page_count(sg);
6061
6062 while (idx + count <= n) {
6063 unsigned long exception, i;
6064 int ret;
6065
6066 /* If we cannot allocate and insert this entry, or the
6067 * individual pages from this range, cancel updating the
6068 * sg_idx so that on this lookup we are forced to linearly
6069 * scan onwards, but on future lookups we will try the
6070 * insertion again (in which case we need to be careful of
6071 * the error return reporting that we have already inserted
6072 * this index).
6073 */
6074 ret = radix_tree_insert(&iter->radix, idx, sg);
6075 if (ret && ret != -EEXIST)
6076 goto scan;
6077
6078 exception =
6079 RADIX_TREE_EXCEPTIONAL_ENTRY |
6080 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
6081 for (i = 1; i < count; i++) {
6082 ret = radix_tree_insert(&iter->radix, idx + i,
6083 (void *)exception);
6084 if (ret && ret != -EEXIST)
6085 goto scan;
6086 }
6087
6088 idx += count;
6089 sg = ____sg_next(sg);
6090 count = __sg_page_count(sg);
6091 }
6092
6093scan:
6094 iter->sg_pos = sg;
6095 iter->sg_idx = idx;
6096
6097 mutex_unlock(&iter->lock);
6098
6099 if (unlikely(n < idx)) /* insertion completed by another thread */
6100 goto lookup;
6101
6102 /* In case we failed to insert the entry into the radixtree, we need
6103 * to look beyond the current sg.
6104 */
6105 while (idx + count <= n) {
6106 idx += count;
6107 sg = ____sg_next(sg);
6108 count = __sg_page_count(sg);
6109 }
6110
6111 *offset = n - idx;
6112 return sg;
6113
6114lookup:
6115 rcu_read_lock();
6116
6117 sg = radix_tree_lookup(&iter->radix, n);
6118 GEM_BUG_ON(!sg);
6119
6120 /* If this index is in the middle of multi-page sg entry,
6121 * the radixtree will contain an exceptional entry that points
6122 * to the start of that range. We will return the pointer to
6123 * the base page and the offset of this page within the
6124 * sg entry's range.
6125 */
6126 *offset = 0;
6127 if (unlikely(radix_tree_exception(sg))) {
6128 unsigned long base =
6129 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
6130
6131 sg = radix_tree_lookup(&iter->radix, base);
6132 GEM_BUG_ON(!sg);
6133
6134 *offset = n - base;
6135 }
6136
6137 rcu_read_unlock();
6138
6139 return sg;
6140}
6141
6142struct page *
6143i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
6144{
6145 struct scatterlist *sg;
6146 unsigned int offset;
6147
6148 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
6149
6150 sg = i915_gem_object_get_sg(obj, n, &offset);
6151 return nth_page(sg_page(sg), offset);
6152}
6153
6154/* Like i915_gem_object_get_page(), but mark the returned page dirty */
6155struct page *
6156i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
6157 unsigned int n)
6158{
6159 struct page *page;
6160
6161 page = i915_gem_object_get_page(obj, n);
a4f5ea64 6162 if (!obj->mm.dirty)
96d77634
CW
6163 set_page_dirty(page);
6164
6165 return page;
6166}
6167
6168dma_addr_t
6169i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
6170 unsigned long n)
6171{
6172 struct scatterlist *sg;
6173 unsigned int offset;
6174
6175 sg = i915_gem_object_get_sg(obj, n, &offset);
6176 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
6177}
935a2f77 6178
8eeb7906
CW
6179int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
6180{
6181 struct sg_table *pages;
6182 int err;
6183
6184 if (align > obj->base.size)
6185 return -EINVAL;
6186
6187 if (obj->ops == &i915_gem_phys_ops)
6188 return 0;
6189
6190 if (obj->ops != &i915_gem_object_ops)
6191 return -EINVAL;
6192
6193 err = i915_gem_object_unbind(obj);
6194 if (err)
6195 return err;
6196
6197 mutex_lock(&obj->mm.lock);
6198
6199 if (obj->mm.madv != I915_MADV_WILLNEED) {
6200 err = -EFAULT;
6201 goto err_unlock;
6202 }
6203
6204 if (obj->mm.quirked) {
6205 err = -EFAULT;
6206 goto err_unlock;
6207 }
6208
6209 if (obj->mm.mapping) {
6210 err = -EBUSY;
6211 goto err_unlock;
6212 }
6213
acd1c1e6 6214 pages = __i915_gem_object_unset_pages(obj);
f2123818 6215
8eeb7906
CW
6216 obj->ops = &i915_gem_phys_ops;
6217
8fb6a5df 6218 err = ____i915_gem_object_get_pages(obj);
8eeb7906
CW
6219 if (err)
6220 goto err_xfer;
6221
6222 /* Perma-pin (until release) the physical set of pages */
6223 __i915_gem_object_pin_pages(obj);
6224
6225 if (!IS_ERR_OR_NULL(pages))
6226 i915_gem_object_ops.put_pages(obj, pages);
6227 mutex_unlock(&obj->mm.lock);
6228 return 0;
6229
6230err_xfer:
6231 obj->ops = &i915_gem_object_ops;
acd1c1e6
CW
6232 if (!IS_ERR_OR_NULL(pages)) {
6233 unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);
6234
6235 __i915_gem_object_set_pages(obj, pages, sg_page_sizes);
6236 }
8eeb7906
CW
6237err_unlock:
6238 mutex_unlock(&obj->mm.lock);
6239 return err;
6240}
6241
935a2f77
CW
6242#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
6243#include "selftests/scatterlist.c"
66d9cb5d 6244#include "selftests/mock_gem_device.c"
44653988 6245#include "selftests/huge_gem_object.c"
4049866f 6246#include "selftests/huge_pages.c"
8335fd65 6247#include "selftests/i915_gem_object.c"
17059450 6248#include "selftests/i915_gem_coherency.c"
3f51b7e1 6249#include "selftests/i915_gem.c"
935a2f77 6250#endif