]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Force the slow path after a user-write error
[thirdparty/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
57822dc6 32#include "i915_gem_clflush.h"
eb82289a 33#include "i915_vgpu.h"
1c5d22f7 34#include "i915_trace.h"
652c393a 35#include "intel_drv.h"
5d723d7a 36#include "intel_frontbuffer.h"
0ccdacf6 37#include "intel_mocs.h"
59b449d5 38#include "intel_workarounds.h"
465c403c 39#include "i915_gemfs.h"
6b5e90f5 40#include <linux/dma-fence-array.h>
fe3288b5 41#include <linux/kthread.h>
c13d87ea 42#include <linux/reservation.h>
5949eac4 43#include <linux/shmem_fs.h>
5a0e3ad6 44#include <linux/slab.h>
20e4933c 45#include <linux/stop_machine.h>
673a394b 46#include <linux/swap.h>
79e53945 47#include <linux/pci.h>
1286ff73 48#include <linux/dma-buf.h>
673a394b 49
fbbd37b3 50static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
61050808 51
2c22569b
CW
52static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
53{
e27ab73d 54 if (obj->cache_dirty)
b50a5371
AS
55 return false;
56
b8f55be6 57 if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
2c22569b
CW
58 return true;
59
bd3d2252 60 return obj->pin_global; /* currently in use by HW, keep flushed */
2c22569b
CW
61}
62
4f1959ee 63static int
bb6dc8d9 64insert_mappable_node(struct i915_ggtt *ggtt,
4f1959ee
AS
65 struct drm_mm_node *node, u32 size)
66{
67 memset(node, 0, sizeof(*node));
82ad6443 68 return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
4e64e553
CW
69 size, 0, I915_COLOR_UNEVICTABLE,
70 0, ggtt->mappable_end,
71 DRM_MM_INSERT_LOW);
4f1959ee
AS
72}
73
74static void
75remove_mappable_node(struct drm_mm_node *node)
76{
77 drm_mm_remove_node(node);
78}
79
73aa808f
CW
80/* some bookkeeping */
81static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
3ef7f228 82 u64 size)
73aa808f 83{
c20e8355 84 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
85 dev_priv->mm.object_count++;
86 dev_priv->mm.object_memory += size;
c20e8355 87 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
88}
89
90static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
3ef7f228 91 u64 size)
73aa808f 92{
c20e8355 93 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
94 dev_priv->mm.object_count--;
95 dev_priv->mm.object_memory -= size;
c20e8355 96 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
97}
98
21dd3734 99static int
33196ded 100i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 101{
30dbf0c0
CW
102 int ret;
103
4c7d62c6
CW
104 might_sleep();
105
0a6759c6
DV
106 /*
107 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
108 * userspace. If it takes that long something really bad is going on and
109 * we should simply try to bail out and fail as gracefully as possible.
110 */
1f83fee0 111 ret = wait_event_interruptible_timeout(error->reset_queue,
8c185eca 112 !i915_reset_backoff(error),
b52992c0 113 I915_RESET_TIMEOUT);
0a6759c6
DV
114 if (ret == 0) {
115 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
116 return -EIO;
117 } else if (ret < 0) {
30dbf0c0 118 return ret;
d98c52cf
CW
119 } else {
120 return 0;
0a6759c6 121 }
30dbf0c0
CW
122}
123
54cf91dc 124int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 125{
fac5e23e 126 struct drm_i915_private *dev_priv = to_i915(dev);
76c1dec1
CW
127 int ret;
128
33196ded 129 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
130 if (ret)
131 return ret;
132
133 ret = mutex_lock_interruptible(&dev->struct_mutex);
134 if (ret)
135 return ret;
136
76c1dec1
CW
137 return 0;
138}
30dbf0c0 139
e4d2006f
CW
140static u32 __i915_gem_park(struct drm_i915_private *i915)
141{
4dfacb0b
CW
142 GEM_TRACE("\n");
143
e4d2006f
CW
144 lockdep_assert_held(&i915->drm.struct_mutex);
145 GEM_BUG_ON(i915->gt.active_requests);
643b450a 146 GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
e4d2006f
CW
147
148 if (!i915->gt.awake)
149 return I915_EPOCH_INVALID;
150
151 GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);
152
153 /*
154 * Be paranoid and flush a concurrent interrupt to make sure
155 * we don't reactivate any irq tasklets after parking.
156 *
157 * FIXME: Note that even though we have waited for execlists to be idle,
158 * there may still be an in-flight interrupt even though the CSB
159 * is now empty. synchronize_irq() makes sure that a residual interrupt
160 * is completed before we continue, but it doesn't prevent the HW from
161 * raising a spurious interrupt later. To complete the shield we should
162 * coordinate disabling the CS irq with flushing the interrupts.
163 */
164 synchronize_irq(i915->drm.irq);
165
166 intel_engines_park(i915);
a89d1f92 167 i915_timelines_park(i915);
e4d2006f
CW
168
169 i915_pmu_gt_parked(i915);
3365e226 170 i915_vma_parked(i915);
e4d2006f
CW
171
172 i915->gt.awake = false;
173
174 if (INTEL_GEN(i915) >= 6)
175 gen6_rps_idle(i915);
176
177 intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);
178
179 intel_runtime_pm_put(i915);
180
181 return i915->gt.epoch;
182}
183
184void i915_gem_park(struct drm_i915_private *i915)
185{
4dfacb0b
CW
186 GEM_TRACE("\n");
187
e4d2006f
CW
188 lockdep_assert_held(&i915->drm.struct_mutex);
189 GEM_BUG_ON(i915->gt.active_requests);
190
191 if (!i915->gt.awake)
192 return;
193
194 /* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
195 mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
196}
197
198void i915_gem_unpark(struct drm_i915_private *i915)
199{
4dfacb0b
CW
200 GEM_TRACE("\n");
201
e4d2006f
CW
202 lockdep_assert_held(&i915->drm.struct_mutex);
203 GEM_BUG_ON(!i915->gt.active_requests);
204
205 if (i915->gt.awake)
206 return;
207
208 intel_runtime_pm_get_noresume(i915);
209
210 /*
211 * It seems that the DMC likes to transition between the DC states a lot
212 * when there are no connected displays (no active power domains) during
213 * command submission.
214 *
215 * This activity has negative impact on the performance of the chip with
216 * huge latencies observed in the interrupt handler and elsewhere.
217 *
218 * Work around it by grabbing a GT IRQ power domain whilst there is any
219 * GT activity, preventing any DC state transitions.
220 */
221 intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
222
223 i915->gt.awake = true;
224 if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
225 i915->gt.epoch = 1;
226
227 intel_enable_gt_powersave(i915);
228 i915_update_gfx_val(i915);
229 if (INTEL_GEN(i915) >= 6)
230 gen6_rps_busy(i915);
231 i915_pmu_gt_unparked(i915);
232
233 intel_engines_unpark(i915);
234
235 i915_queue_hangcheck(i915);
236
237 queue_delayed_work(i915->wq,
238 &i915->gt.retire_work,
239 round_jiffies_up_relative(HZ));
240}
241
5a125c3c
EA
242int
243i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 244 struct drm_file *file)
5a125c3c 245{
72e96d64 246 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 247 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 248 struct drm_i915_gem_get_aperture *args = data;
ca1543be 249 struct i915_vma *vma;
ff8f7975 250 u64 pinned;
5a125c3c 251
82ad6443 252 pinned = ggtt->vm.reserved;
73aa808f 253 mutex_lock(&dev->struct_mutex);
82ad6443 254 list_for_each_entry(vma, &ggtt->vm.active_list, vm_link)
20dfbde4 255 if (i915_vma_is_pinned(vma))
ca1543be 256 pinned += vma->node.size;
82ad6443 257 list_for_each_entry(vma, &ggtt->vm.inactive_list, vm_link)
20dfbde4 258 if (i915_vma_is_pinned(vma))
ca1543be 259 pinned += vma->node.size;
73aa808f 260 mutex_unlock(&dev->struct_mutex);
5a125c3c 261
82ad6443 262 args->aper_size = ggtt->vm.total;
0206e353 263 args->aper_available_size = args->aper_size - pinned;
6299f992 264
5a125c3c
EA
265 return 0;
266}
267
b91b09ee 268static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 269{
93c76a3d 270 struct address_space *mapping = obj->base.filp->f_mapping;
dbb4351b 271 drm_dma_handle_t *phys;
6a2c4232
CW
272 struct sg_table *st;
273 struct scatterlist *sg;
dbb4351b 274 char *vaddr;
6a2c4232 275 int i;
b91b09ee 276 int err;
00731155 277
6a2c4232 278 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
b91b09ee 279 return -EINVAL;
6a2c4232 280
dbb4351b
CW
281 /* Always aligning to the object size, allows a single allocation
282 * to handle all possible callers, and given typical object sizes,
283 * the alignment of the buddy allocation will naturally match.
284 */
285 phys = drm_pci_alloc(obj->base.dev,
750fae23 286 roundup_pow_of_two(obj->base.size),
dbb4351b
CW
287 roundup_pow_of_two(obj->base.size));
288 if (!phys)
b91b09ee 289 return -ENOMEM;
dbb4351b
CW
290
291 vaddr = phys->vaddr;
6a2c4232
CW
292 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
293 struct page *page;
294 char *src;
295
296 page = shmem_read_mapping_page(mapping, i);
dbb4351b 297 if (IS_ERR(page)) {
b91b09ee 298 err = PTR_ERR(page);
dbb4351b
CW
299 goto err_phys;
300 }
6a2c4232
CW
301
302 src = kmap_atomic(page);
303 memcpy(vaddr, src, PAGE_SIZE);
304 drm_clflush_virt_range(vaddr, PAGE_SIZE);
305 kunmap_atomic(src);
306
09cbfeaf 307 put_page(page);
6a2c4232
CW
308 vaddr += PAGE_SIZE;
309 }
310
c033666a 311 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
312
313 st = kmalloc(sizeof(*st), GFP_KERNEL);
dbb4351b 314 if (!st) {
b91b09ee 315 err = -ENOMEM;
dbb4351b
CW
316 goto err_phys;
317 }
6a2c4232
CW
318
319 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
320 kfree(st);
b91b09ee 321 err = -ENOMEM;
dbb4351b 322 goto err_phys;
6a2c4232
CW
323 }
324
325 sg = st->sgl;
326 sg->offset = 0;
327 sg->length = obj->base.size;
00731155 328
dbb4351b 329 sg_dma_address(sg) = phys->busaddr;
6a2c4232
CW
330 sg_dma_len(sg) = obj->base.size;
331
dbb4351b 332 obj->phys_handle = phys;
b91b09ee 333
a5c08166 334 __i915_gem_object_set_pages(obj, st, sg->length);
b91b09ee
MA
335
336 return 0;
dbb4351b
CW
337
338err_phys:
339 drm_pci_free(obj->base.dev, phys);
b91b09ee
MA
340
341 return err;
6a2c4232
CW
342}
343
e27ab73d
CW
344static void __start_cpu_write(struct drm_i915_gem_object *obj)
345{
c0a51fd0
CK
346 obj->read_domains = I915_GEM_DOMAIN_CPU;
347 obj->write_domain = I915_GEM_DOMAIN_CPU;
e27ab73d
CW
348 if (cpu_write_needs_clflush(obj))
349 obj->cache_dirty = true;
350}
351
6a2c4232 352static void
2b3c8317 353__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
e5facdf9
CW
354 struct sg_table *pages,
355 bool needs_clflush)
6a2c4232 356{
a4f5ea64 357 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
00731155 358
a4f5ea64
CW
359 if (obj->mm.madv == I915_MADV_DONTNEED)
360 obj->mm.dirty = false;
6a2c4232 361
e5facdf9 362 if (needs_clflush &&
c0a51fd0 363 (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
b8f55be6 364 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
2b3c8317 365 drm_clflush_sg(pages);
03ac84f1 366
e27ab73d 367 __start_cpu_write(obj);
03ac84f1
CW
368}
369
370static void
371i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
372 struct sg_table *pages)
373{
e5facdf9 374 __i915_gem_object_release_shmem(obj, pages, false);
03ac84f1 375
a4f5ea64 376 if (obj->mm.dirty) {
93c76a3d 377 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232 378 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
379 int i;
380
381 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
382 struct page *page;
383 char *dst;
384
385 page = shmem_read_mapping_page(mapping, i);
386 if (IS_ERR(page))
387 continue;
388
389 dst = kmap_atomic(page);
390 drm_clflush_virt_range(vaddr, PAGE_SIZE);
391 memcpy(dst, vaddr, PAGE_SIZE);
392 kunmap_atomic(dst);
393
394 set_page_dirty(page);
a4f5ea64 395 if (obj->mm.madv == I915_MADV_WILLNEED)
00731155 396 mark_page_accessed(page);
09cbfeaf 397 put_page(page);
00731155
CW
398 vaddr += PAGE_SIZE;
399 }
a4f5ea64 400 obj->mm.dirty = false;
00731155
CW
401 }
402
03ac84f1
CW
403 sg_free_table(pages);
404 kfree(pages);
dbb4351b
CW
405
406 drm_pci_free(obj->base.dev, obj->phys_handle);
6a2c4232
CW
407}
408
409static void
410i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
411{
a4f5ea64 412 i915_gem_object_unpin_pages(obj);
6a2c4232
CW
413}
414
415static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
416 .get_pages = i915_gem_object_get_pages_phys,
417 .put_pages = i915_gem_object_put_pages_phys,
418 .release = i915_gem_object_release_phys,
419};
420
581ab1fe
CW
421static const struct drm_i915_gem_object_ops i915_gem_object_ops;
422
35a9611c 423int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
aa653a68
CW
424{
425 struct i915_vma *vma;
426 LIST_HEAD(still_in_list);
02bef8f9
CW
427 int ret;
428
429 lockdep_assert_held(&obj->base.dev->struct_mutex);
aa653a68 430
02bef8f9
CW
431 /* Closed vma are removed from the obj->vma_list - but they may
432 * still have an active binding on the object. To remove those we
433 * must wait for all rendering to complete to the object (as unbinding
434 * must anyway), and retire the requests.
aa653a68 435 */
5888fc9e 436 ret = i915_gem_object_set_to_cpu_domain(obj, false);
02bef8f9
CW
437 if (ret)
438 return ret;
439
aa653a68
CW
440 while ((vma = list_first_entry_or_null(&obj->vma_list,
441 struct i915_vma,
442 obj_link))) {
443 list_move_tail(&vma->obj_link, &still_in_list);
444 ret = i915_vma_unbind(vma);
445 if (ret)
446 break;
447 }
448 list_splice(&still_in_list, &obj->vma_list);
449
450 return ret;
451}
452
e95433c7
CW
453static long
454i915_gem_object_wait_fence(struct dma_fence *fence,
455 unsigned int flags,
456 long timeout,
562d9bae 457 struct intel_rps_client *rps_client)
00e60f26 458{
e61e0f51 459 struct i915_request *rq;
00e60f26 460
e95433c7 461 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
00e60f26 462
e95433c7
CW
463 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
464 return timeout;
465
466 if (!dma_fence_is_i915(fence))
467 return dma_fence_wait_timeout(fence,
468 flags & I915_WAIT_INTERRUPTIBLE,
469 timeout);
470
471 rq = to_request(fence);
e61e0f51 472 if (i915_request_completed(rq))
e95433c7
CW
473 goto out;
474
e9af4ea2
CW
475 /*
476 * This client is about to stall waiting for the GPU. In many cases
e95433c7
CW
477 * this is undesirable and limits the throughput of the system, as
478 * many clients cannot continue processing user input/output whilst
479 * blocked. RPS autotuning may take tens of milliseconds to respond
480 * to the GPU load and thus incurs additional latency for the client.
481 * We can circumvent that by promoting the GPU frequency to maximum
482 * before we wait. This makes the GPU throttle up much more quickly
483 * (good for benchmarks and user experience, e.g. window animations),
484 * but at a cost of spending more power processing the workload
485 * (bad for battery). Not all clients even want their results
486 * immediately and for them we should just let the GPU select its own
487 * frequency to maximise efficiency. To prevent a single client from
488 * forcing the clocks too high for the whole system, we only allow
489 * each client to waitboost once in a busy period.
490 */
e61e0f51 491 if (rps_client && !i915_request_started(rq)) {
e95433c7 492 if (INTEL_GEN(rq->i915) >= 6)
562d9bae 493 gen6_rps_boost(rq, rps_client);
00e60f26
CW
494 }
495
e61e0f51 496 timeout = i915_request_wait(rq, flags, timeout);
e95433c7
CW
497
498out:
e61e0f51
CW
499 if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
500 i915_request_retire_upto(rq);
e95433c7 501
e95433c7
CW
502 return timeout;
503}
504
505static long
506i915_gem_object_wait_reservation(struct reservation_object *resv,
507 unsigned int flags,
508 long timeout,
562d9bae 509 struct intel_rps_client *rps_client)
e95433c7 510{
e54ca977 511 unsigned int seq = __read_seqcount_begin(&resv->seq);
e95433c7 512 struct dma_fence *excl;
e54ca977 513 bool prune_fences = false;
e95433c7
CW
514
515 if (flags & I915_WAIT_ALL) {
516 struct dma_fence **shared;
517 unsigned int count, i;
00e60f26
CW
518 int ret;
519
e95433c7
CW
520 ret = reservation_object_get_fences_rcu(resv,
521 &excl, &count, &shared);
00e60f26
CW
522 if (ret)
523 return ret;
00e60f26 524
e95433c7
CW
525 for (i = 0; i < count; i++) {
526 timeout = i915_gem_object_wait_fence(shared[i],
527 flags, timeout,
562d9bae 528 rps_client);
d892e939 529 if (timeout < 0)
e95433c7 530 break;
00e60f26 531
e95433c7
CW
532 dma_fence_put(shared[i]);
533 }
534
535 for (; i < count; i++)
536 dma_fence_put(shared[i]);
537 kfree(shared);
e54ca977 538
fa73055b
CW
539 /*
540 * If both shared fences and an exclusive fence exist,
541 * then by construction the shared fences must be later
542 * than the exclusive fence. If we successfully wait for
543 * all the shared fences, we know that the exclusive fence
544 * must all be signaled. If all the shared fences are
545 * signaled, we can prune the array and recover the
546 * floating references on the fences/requests.
547 */
e54ca977 548 prune_fences = count && timeout >= 0;
e95433c7
CW
549 } else {
550 excl = reservation_object_get_excl_rcu(resv);
00e60f26
CW
551 }
552
fa73055b 553 if (excl && timeout >= 0)
562d9bae
SAK
554 timeout = i915_gem_object_wait_fence(excl, flags, timeout,
555 rps_client);
e95433c7
CW
556
557 dma_fence_put(excl);
558
fa73055b
CW
559 /*
560 * Opportunistically prune the fences iff we know they have *all* been
03d1cac6
CW
561 * signaled and that the reservation object has not been changed (i.e.
562 * no new fences have been added).
563 */
e54ca977 564 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
03d1cac6
CW
565 if (reservation_object_trylock(resv)) {
566 if (!__read_seqcount_retry(&resv->seq, seq))
567 reservation_object_add_excl_fence(resv, NULL);
568 reservation_object_unlock(resv);
569 }
e54ca977
CW
570 }
571
e95433c7 572 return timeout;
00e60f26
CW
573}
574
b7268c5e
CW
575static void __fence_set_priority(struct dma_fence *fence,
576 const struct i915_sched_attr *attr)
6b5e90f5 577{
e61e0f51 578 struct i915_request *rq;
6b5e90f5
CW
579 struct intel_engine_cs *engine;
580
c218ee03 581 if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
6b5e90f5
CW
582 return;
583
584 rq = to_request(fence);
585 engine = rq->engine;
6b5e90f5 586
4f6d8fcf
CW
587 local_bh_disable();
588 rcu_read_lock(); /* RCU serialisation for set-wedged protection */
47650db0 589 if (engine->schedule)
b7268c5e 590 engine->schedule(rq, attr);
47650db0 591 rcu_read_unlock();
4f6d8fcf 592 local_bh_enable(); /* kick the tasklets if queues were reprioritised */
6b5e90f5
CW
593}
594
b7268c5e
CW
595static void fence_set_priority(struct dma_fence *fence,
596 const struct i915_sched_attr *attr)
6b5e90f5
CW
597{
598 /* Recurse once into a fence-array */
599 if (dma_fence_is_array(fence)) {
600 struct dma_fence_array *array = to_dma_fence_array(fence);
601 int i;
602
603 for (i = 0; i < array->num_fences; i++)
b7268c5e 604 __fence_set_priority(array->fences[i], attr);
6b5e90f5 605 } else {
b7268c5e 606 __fence_set_priority(fence, attr);
6b5e90f5
CW
607 }
608}
609
610int
611i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
612 unsigned int flags,
b7268c5e 613 const struct i915_sched_attr *attr)
6b5e90f5
CW
614{
615 struct dma_fence *excl;
616
617 if (flags & I915_WAIT_ALL) {
618 struct dma_fence **shared;
619 unsigned int count, i;
620 int ret;
621
622 ret = reservation_object_get_fences_rcu(obj->resv,
623 &excl, &count, &shared);
624 if (ret)
625 return ret;
626
627 for (i = 0; i < count; i++) {
b7268c5e 628 fence_set_priority(shared[i], attr);
6b5e90f5
CW
629 dma_fence_put(shared[i]);
630 }
631
632 kfree(shared);
633 } else {
634 excl = reservation_object_get_excl_rcu(obj->resv);
635 }
636
637 if (excl) {
b7268c5e 638 fence_set_priority(excl, attr);
6b5e90f5
CW
639 dma_fence_put(excl);
640 }
641 return 0;
642}
643
e95433c7
CW
644/**
645 * Waits for rendering to the object to be completed
646 * @obj: i915 gem object
647 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
648 * @timeout: how long to wait
a0a8b1cf 649 * @rps_client: client (user process) to charge for any waitboosting
00e60f26 650 */
e95433c7
CW
651int
652i915_gem_object_wait(struct drm_i915_gem_object *obj,
653 unsigned int flags,
654 long timeout,
562d9bae 655 struct intel_rps_client *rps_client)
00e60f26 656{
e95433c7
CW
657 might_sleep();
658#if IS_ENABLED(CONFIG_LOCKDEP)
659 GEM_BUG_ON(debug_locks &&
660 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
661 !!(flags & I915_WAIT_LOCKED));
662#endif
663 GEM_BUG_ON(timeout < 0);
00e60f26 664
d07f0e59
CW
665 timeout = i915_gem_object_wait_reservation(obj->resv,
666 flags, timeout,
562d9bae 667 rps_client);
e95433c7 668 return timeout < 0 ? timeout : 0;
00e60f26
CW
669}
670
671static struct intel_rps_client *to_rps_client(struct drm_file *file)
672{
673 struct drm_i915_file_private *fpriv = file->driver_priv;
674
562d9bae 675 return &fpriv->rps_client;
00e60f26
CW
676}
677
00731155
CW
678static int
679i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
680 struct drm_i915_gem_pwrite *args,
03ac84f1 681 struct drm_file *file)
00731155 682{
00731155 683 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 684 char __user *user_data = u64_to_user_ptr(args->data_ptr);
6a2c4232
CW
685
686 /* We manually control the domain here and pretend that it
687 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
688 */
77a0d1ca 689 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
10466d2a
CW
690 if (copy_from_user(vaddr, user_data, args->size))
691 return -EFAULT;
00731155 692
6a2c4232 693 drm_clflush_virt_range(vaddr, args->size);
10466d2a 694 i915_gem_chipset_flush(to_i915(obj->base.dev));
063e4e6b 695
d59b21ec 696 intel_fb_obj_flush(obj, ORIGIN_CPU);
10466d2a 697 return 0;
00731155
CW
698}
699
187685cb 700void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
42dcedd4 701{
efab6d8d 702 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
703}
704
705void i915_gem_object_free(struct drm_i915_gem_object *obj)
706{
fac5e23e 707 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
efab6d8d 708 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
709}
710
ff72145b
DA
711static int
712i915_gem_create(struct drm_file *file,
12d79d78 713 struct drm_i915_private *dev_priv,
ff72145b
DA
714 uint64_t size,
715 uint32_t *handle_p)
673a394b 716{
05394f39 717 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
718 int ret;
719 u32 handle;
673a394b 720
ff72145b 721 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
722 if (size == 0)
723 return -EINVAL;
673a394b
EA
724
725 /* Allocate the new object */
12d79d78 726 obj = i915_gem_object_create(dev_priv, size);
fe3db79b
CW
727 if (IS_ERR(obj))
728 return PTR_ERR(obj);
673a394b 729
05394f39 730 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 731 /* drop reference from allocate - handle holds it now */
f0cd5182 732 i915_gem_object_put(obj);
d861e338
DV
733 if (ret)
734 return ret;
202f2fef 735
ff72145b 736 *handle_p = handle;
673a394b
EA
737 return 0;
738}
739
ff72145b
DA
740int
741i915_gem_dumb_create(struct drm_file *file,
742 struct drm_device *dev,
743 struct drm_mode_create_dumb *args)
744{
745 /* have to work out size/pitch and return them */
de45eaf7 746 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b 747 args->size = args->pitch * args->height;
12d79d78 748 return i915_gem_create(file, to_i915(dev),
da6b51d0 749 args->size, &args->handle);
ff72145b
DA
750}
751
e27ab73d
CW
752static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
753{
754 return !(obj->cache_level == I915_CACHE_NONE ||
755 obj->cache_level == I915_CACHE_WT);
756}
757
ff72145b
DA
758/**
759 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
760 * @dev: drm device pointer
761 * @data: ioctl data blob
762 * @file: drm file pointer
ff72145b
DA
763 */
764int
765i915_gem_create_ioctl(struct drm_device *dev, void *data,
766 struct drm_file *file)
767{
12d79d78 768 struct drm_i915_private *dev_priv = to_i915(dev);
ff72145b 769 struct drm_i915_gem_create *args = data;
63ed2cb2 770
12d79d78 771 i915_gem_flush_free_objects(dev_priv);
fbbd37b3 772
12d79d78 773 return i915_gem_create(file, dev_priv,
da6b51d0 774 args->size, &args->handle);
ff72145b
DA
775}
776
ef74921b
CW
777static inline enum fb_op_origin
778fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
779{
780 return (domain == I915_GEM_DOMAIN_GTT ?
781 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
782}
783
7125397b 784void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
ef74921b 785{
7125397b
CW
786 /*
787 * No actual flushing is required for the GTT write domain for reads
788 * from the GTT domain. Writes to it "immediately" go to main memory
789 * as far as we know, so there's no chipset flush. It also doesn't
790 * land in the GPU render cache.
ef74921b
CW
791 *
792 * However, we do have to enforce the order so that all writes through
793 * the GTT land before any writes to the device, such as updates to
794 * the GATT itself.
795 *
796 * We also have to wait a bit for the writes to land from the GTT.
797 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
798 * timing. This issue has only been observed when switching quickly
799 * between GTT writes and CPU reads from inside the kernel on recent hw,
800 * and it appears to only affect discrete GTT blocks (i.e. on LLC
7125397b
CW
801 * system agents we cannot reproduce this behaviour, until Cannonlake
802 * that was!).
ef74921b 803 */
7125397b 804
900ccf30
CW
805 wmb();
806
807 if (INTEL_INFO(dev_priv)->has_coherent_ggtt)
808 return;
809
a8bd3b88 810 i915_gem_chipset_flush(dev_priv);
ef74921b 811
7125397b
CW
812 intel_runtime_pm_get(dev_priv);
813 spin_lock_irq(&dev_priv->uncore.lock);
814
815 POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
816
817 spin_unlock_irq(&dev_priv->uncore.lock);
818 intel_runtime_pm_put(dev_priv);
819}
820
821static void
822flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
823{
824 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
825 struct i915_vma *vma;
826
c0a51fd0 827 if (!(obj->write_domain & flush_domains))
7125397b
CW
828 return;
829
c0a51fd0 830 switch (obj->write_domain) {
ef74921b 831 case I915_GEM_DOMAIN_GTT:
7125397b 832 i915_gem_flush_ggtt_writes(dev_priv);
ef74921b
CW
833
834 intel_fb_obj_flush(obj,
835 fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
7125397b 836
e2189dd0 837 for_each_ggtt_vma(vma, obj) {
7125397b
CW
838 if (vma->iomap)
839 continue;
840
841 i915_vma_unset_ggtt_write(vma);
842 }
ef74921b
CW
843 break;
844
add00e6d
CW
845 case I915_GEM_DOMAIN_WC:
846 wmb();
847 break;
848
ef74921b
CW
849 case I915_GEM_DOMAIN_CPU:
850 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
851 break;
e27ab73d
CW
852
853 case I915_GEM_DOMAIN_RENDER:
854 if (gpu_write_needs_clflush(obj))
855 obj->cache_dirty = true;
856 break;
ef74921b
CW
857 }
858
c0a51fd0 859 obj->write_domain = 0;
ef74921b
CW
860}
861
8461d226
DV
862static inline int
863__copy_to_user_swizzled(char __user *cpu_vaddr,
864 const char *gpu_vaddr, int gpu_offset,
865 int length)
866{
867 int ret, cpu_offset = 0;
868
869 while (length > 0) {
870 int cacheline_end = ALIGN(gpu_offset + 1, 64);
871 int this_length = min(cacheline_end - gpu_offset, length);
872 int swizzled_gpu_offset = gpu_offset ^ 64;
873
874 ret = __copy_to_user(cpu_vaddr + cpu_offset,
875 gpu_vaddr + swizzled_gpu_offset,
876 this_length);
877 if (ret)
878 return ret + length;
879
880 cpu_offset += this_length;
881 gpu_offset += this_length;
882 length -= this_length;
883 }
884
885 return 0;
886}
887
8c59967c 888static inline int
4f0c7cfb
BW
889__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
890 const char __user *cpu_vaddr,
8c59967c
DV
891 int length)
892{
893 int ret, cpu_offset = 0;
894
895 while (length > 0) {
896 int cacheline_end = ALIGN(gpu_offset + 1, 64);
897 int this_length = min(cacheline_end - gpu_offset, length);
898 int swizzled_gpu_offset = gpu_offset ^ 64;
899
900 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
901 cpu_vaddr + cpu_offset,
902 this_length);
903 if (ret)
904 return ret + length;
905
906 cpu_offset += this_length;
907 gpu_offset += this_length;
908 length -= this_length;
909 }
910
911 return 0;
912}
913
4c914c0c
BV
914/*
915 * Pins the specified object's pages and synchronizes the object with
916 * GPU accesses. Sets needs_clflush to non-zero if the caller should
917 * flush the object from the CPU cache.
918 */
919int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
43394c7d 920 unsigned int *needs_clflush)
4c914c0c
BV
921{
922 int ret;
923
e95433c7 924 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c914c0c 925
e95433c7 926 *needs_clflush = 0;
43394c7d
CW
927 if (!i915_gem_object_has_struct_page(obj))
928 return -ENODEV;
4c914c0c 929
e95433c7
CW
930 ret = i915_gem_object_wait(obj,
931 I915_WAIT_INTERRUPTIBLE |
932 I915_WAIT_LOCKED,
933 MAX_SCHEDULE_TIMEOUT,
934 NULL);
c13d87ea
CW
935 if (ret)
936 return ret;
937
a4f5ea64 938 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
939 if (ret)
940 return ret;
941
b8f55be6
CW
942 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
943 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
7f5f95d8
CW
944 ret = i915_gem_object_set_to_cpu_domain(obj, false);
945 if (ret)
946 goto err_unpin;
947 else
948 goto out;
949 }
950
ef74921b 951 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
a314d5cb 952
43394c7d
CW
953 /* If we're not in the cpu read domain, set ourself into the gtt
954 * read domain and manually flush cachelines (if required). This
955 * optimizes for the case when the gpu will dirty the data
956 * anyway again before the next pread happens.
957 */
e27ab73d 958 if (!obj->cache_dirty &&
c0a51fd0 959 !(obj->read_domains & I915_GEM_DOMAIN_CPU))
7f5f95d8 960 *needs_clflush = CLFLUSH_BEFORE;
4c914c0c 961
7f5f95d8 962out:
9764951e 963 /* return with the pages pinned */
43394c7d 964 return 0;
9764951e
CW
965
966err_unpin:
967 i915_gem_object_unpin_pages(obj);
968 return ret;
43394c7d
CW
969}
970
971int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
972 unsigned int *needs_clflush)
973{
974 int ret;
975
e95433c7
CW
976 lockdep_assert_held(&obj->base.dev->struct_mutex);
977
43394c7d
CW
978 *needs_clflush = 0;
979 if (!i915_gem_object_has_struct_page(obj))
980 return -ENODEV;
981
e95433c7
CW
982 ret = i915_gem_object_wait(obj,
983 I915_WAIT_INTERRUPTIBLE |
984 I915_WAIT_LOCKED |
985 I915_WAIT_ALL,
986 MAX_SCHEDULE_TIMEOUT,
987 NULL);
43394c7d
CW
988 if (ret)
989 return ret;
990
a4f5ea64 991 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
992 if (ret)
993 return ret;
994
b8f55be6
CW
995 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
996 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
7f5f95d8
CW
997 ret = i915_gem_object_set_to_cpu_domain(obj, true);
998 if (ret)
999 goto err_unpin;
1000 else
1001 goto out;
1002 }
1003
ef74921b 1004 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
a314d5cb 1005
43394c7d
CW
1006 /* If we're not in the cpu write domain, set ourself into the
1007 * gtt write domain and manually flush cachelines (as required).
1008 * This optimizes for the case when the gpu will use the data
1009 * right away and we therefore have to clflush anyway.
1010 */
e27ab73d 1011 if (!obj->cache_dirty) {
7f5f95d8 1012 *needs_clflush |= CLFLUSH_AFTER;
43394c7d 1013
e27ab73d
CW
1014 /*
1015 * Same trick applies to invalidate partially written
1016 * cachelines read before writing.
1017 */
c0a51fd0 1018 if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
e27ab73d
CW
1019 *needs_clflush |= CLFLUSH_BEFORE;
1020 }
43394c7d 1021
7f5f95d8 1022out:
43394c7d 1023 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
a4f5ea64 1024 obj->mm.dirty = true;
9764951e 1025 /* return with the pages pinned */
43394c7d 1026 return 0;
9764951e
CW
1027
1028err_unpin:
1029 i915_gem_object_unpin_pages(obj);
1030 return ret;
4c914c0c
BV
1031}
1032
23c18c71
DV
1033static void
1034shmem_clflush_swizzled_range(char *addr, unsigned long length,
1035 bool swizzled)
1036{
e7e58eb5 1037 if (unlikely(swizzled)) {
23c18c71
DV
1038 unsigned long start = (unsigned long) addr;
1039 unsigned long end = (unsigned long) addr + length;
1040
1041 /* For swizzling simply ensure that we always flush both
1042 * channels. Lame, but simple and it works. Swizzled
1043 * pwrite/pread is far from a hotpath - current userspace
1044 * doesn't use it at all. */
1045 start = round_down(start, 128);
1046 end = round_up(end, 128);
1047
1048 drm_clflush_virt_range((void *)start, end - start);
1049 } else {
1050 drm_clflush_virt_range(addr, length);
1051 }
1052
1053}
1054
d174bd64
DV
1055/* Only difference to the fast-path function is that this can handle bit17
1056 * and uses non-atomic copy and kmap functions. */
1057static int
bb6dc8d9 1058shmem_pread_slow(struct page *page, int offset, int length,
d174bd64
DV
1059 char __user *user_data,
1060 bool page_do_bit17_swizzling, bool needs_clflush)
1061{
1062 char *vaddr;
1063 int ret;
1064
1065 vaddr = kmap(page);
1066 if (needs_clflush)
bb6dc8d9 1067 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1068 page_do_bit17_swizzling);
d174bd64
DV
1069
1070 if (page_do_bit17_swizzling)
bb6dc8d9 1071 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
d174bd64 1072 else
bb6dc8d9 1073 ret = __copy_to_user(user_data, vaddr + offset, length);
d174bd64
DV
1074 kunmap(page);
1075
f60d7f0c 1076 return ret ? - EFAULT : 0;
d174bd64
DV
1077}
1078
bb6dc8d9
CW
1079static int
1080shmem_pread(struct page *page, int offset, int length, char __user *user_data,
1081 bool page_do_bit17_swizzling, bool needs_clflush)
1082{
1083 int ret;
1084
1085 ret = -ENODEV;
1086 if (!page_do_bit17_swizzling) {
1087 char *vaddr = kmap_atomic(page);
1088
1089 if (needs_clflush)
1090 drm_clflush_virt_range(vaddr + offset, length);
1091 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1092 kunmap_atomic(vaddr);
1093 }
1094 if (ret == 0)
1095 return 0;
1096
1097 return shmem_pread_slow(page, offset, length, user_data,
1098 page_do_bit17_swizzling, needs_clflush);
1099}
1100
1101static int
1102i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
1103 struct drm_i915_gem_pread *args)
1104{
1105 char __user *user_data;
1106 u64 remain;
1107 unsigned int obj_do_bit17_swizzling;
1108 unsigned int needs_clflush;
1109 unsigned int idx, offset;
1110 int ret;
1111
1112 obj_do_bit17_swizzling = 0;
1113 if (i915_gem_object_needs_bit17_swizzle(obj))
1114 obj_do_bit17_swizzling = BIT(17);
1115
1116 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1117 if (ret)
1118 return ret;
1119
1120 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1121 mutex_unlock(&obj->base.dev->struct_mutex);
1122 if (ret)
1123 return ret;
1124
1125 remain = args->size;
1126 user_data = u64_to_user_ptr(args->data_ptr);
1127 offset = offset_in_page(args->offset);
1128 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1129 struct page *page = i915_gem_object_get_page(obj, idx);
1130 int length;
1131
1132 length = remain;
1133 if (offset + length > PAGE_SIZE)
1134 length = PAGE_SIZE - offset;
1135
1136 ret = shmem_pread(page, offset, length, user_data,
1137 page_to_phys(page) & obj_do_bit17_swizzling,
1138 needs_clflush);
1139 if (ret)
1140 break;
1141
1142 remain -= length;
1143 user_data += length;
1144 offset = 0;
1145 }
1146
1147 i915_gem_obj_finish_shmem_access(obj);
1148 return ret;
1149}
1150
1151static inline bool
1152gtt_user_read(struct io_mapping *mapping,
1153 loff_t base, int offset,
1154 char __user *user_data, int length)
b50a5371 1155{
afe722be 1156 void __iomem *vaddr;
bb6dc8d9 1157 unsigned long unwritten;
b50a5371 1158
b50a5371 1159 /* We can use the cpu mem copy function because this is X86. */
afe722be
VS
1160 vaddr = io_mapping_map_atomic_wc(mapping, base);
1161 unwritten = __copy_to_user_inatomic(user_data,
1162 (void __force *)vaddr + offset,
1163 length);
bb6dc8d9
CW
1164 io_mapping_unmap_atomic(vaddr);
1165 if (unwritten) {
afe722be
VS
1166 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1167 unwritten = copy_to_user(user_data,
1168 (void __force *)vaddr + offset,
1169 length);
bb6dc8d9
CW
1170 io_mapping_unmap(vaddr);
1171 }
b50a5371
AS
1172 return unwritten;
1173}
1174
1175static int
bb6dc8d9
CW
1176i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1177 const struct drm_i915_gem_pread *args)
b50a5371 1178{
bb6dc8d9
CW
1179 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1180 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 1181 struct drm_mm_node node;
bb6dc8d9
CW
1182 struct i915_vma *vma;
1183 void __user *user_data;
1184 u64 remain, offset;
b50a5371
AS
1185 int ret;
1186
bb6dc8d9
CW
1187 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1188 if (ret)
1189 return ret;
1190
1191 intel_runtime_pm_get(i915);
1192 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
a3259ca9
CW
1193 PIN_MAPPABLE |
1194 PIN_NONFAULT |
1195 PIN_NONBLOCK);
18034584
CW
1196 if (!IS_ERR(vma)) {
1197 node.start = i915_ggtt_offset(vma);
1198 node.allocated = false;
49ef5294 1199 ret = i915_vma_put_fence(vma);
18034584
CW
1200 if (ret) {
1201 i915_vma_unpin(vma);
1202 vma = ERR_PTR(ret);
1203 }
1204 }
058d88c4 1205 if (IS_ERR(vma)) {
bb6dc8d9 1206 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
b50a5371 1207 if (ret)
bb6dc8d9
CW
1208 goto out_unlock;
1209 GEM_BUG_ON(!node.allocated);
b50a5371
AS
1210 }
1211
1212 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1213 if (ret)
1214 goto out_unpin;
1215
bb6dc8d9 1216 mutex_unlock(&i915->drm.struct_mutex);
b50a5371 1217
bb6dc8d9
CW
1218 user_data = u64_to_user_ptr(args->data_ptr);
1219 remain = args->size;
1220 offset = args->offset;
b50a5371
AS
1221
1222 while (remain > 0) {
1223 /* Operation in this page
1224 *
1225 * page_base = page offset within aperture
1226 * page_offset = offset within page
1227 * page_length = bytes to copy for this page
1228 */
1229 u32 page_base = node.start;
1230 unsigned page_offset = offset_in_page(offset);
1231 unsigned page_length = PAGE_SIZE - page_offset;
1232 page_length = remain < page_length ? remain : page_length;
1233 if (node.allocated) {
1234 wmb();
82ad6443
CW
1235 ggtt->vm.insert_page(&ggtt->vm,
1236 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1237 node.start, I915_CACHE_NONE, 0);
b50a5371
AS
1238 wmb();
1239 } else {
1240 page_base += offset & PAGE_MASK;
1241 }
bb6dc8d9 1242
73ebd503 1243 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
bb6dc8d9 1244 user_data, page_length)) {
b50a5371
AS
1245 ret = -EFAULT;
1246 break;
1247 }
1248
1249 remain -= page_length;
1250 user_data += page_length;
1251 offset += page_length;
1252 }
1253
bb6dc8d9 1254 mutex_lock(&i915->drm.struct_mutex);
b50a5371
AS
1255out_unpin:
1256 if (node.allocated) {
1257 wmb();
82ad6443 1258 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
b50a5371
AS
1259 remove_mappable_node(&node);
1260 } else {
058d88c4 1261 i915_vma_unpin(vma);
b50a5371 1262 }
bb6dc8d9
CW
1263out_unlock:
1264 intel_runtime_pm_put(i915);
1265 mutex_unlock(&i915->drm.struct_mutex);
f60d7f0c 1266
eb01459f
EA
1267 return ret;
1268}
1269
673a394b
EA
1270/**
1271 * Reads data from the object referenced by handle.
14bb2c11
TU
1272 * @dev: drm device pointer
1273 * @data: ioctl data blob
1274 * @file: drm file pointer
673a394b
EA
1275 *
1276 * On error, the contents of *data are undefined.
1277 */
1278int
1279i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 1280 struct drm_file *file)
673a394b
EA
1281{
1282 struct drm_i915_gem_pread *args = data;
05394f39 1283 struct drm_i915_gem_object *obj;
bb6dc8d9 1284 int ret;
673a394b 1285
51311d0a
CW
1286 if (args->size == 0)
1287 return 0;
1288
1289 if (!access_ok(VERIFY_WRITE,
3ed605bc 1290 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1291 args->size))
1292 return -EFAULT;
1293
03ac0642 1294 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1295 if (!obj)
1296 return -ENOENT;
673a394b 1297
7dcd2499 1298 /* Bounds check source. */
966d5bf5 1299 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
ce9d419d 1300 ret = -EINVAL;
bb6dc8d9 1301 goto out;
ce9d419d
CW
1302 }
1303
db53a302
CW
1304 trace_i915_gem_object_pread(obj, args->offset, args->size);
1305
e95433c7
CW
1306 ret = i915_gem_object_wait(obj,
1307 I915_WAIT_INTERRUPTIBLE,
1308 MAX_SCHEDULE_TIMEOUT,
1309 to_rps_client(file));
258a5ede 1310 if (ret)
bb6dc8d9 1311 goto out;
258a5ede 1312
bb6dc8d9 1313 ret = i915_gem_object_pin_pages(obj);
258a5ede 1314 if (ret)
bb6dc8d9 1315 goto out;
673a394b 1316
bb6dc8d9 1317 ret = i915_gem_shmem_pread(obj, args);
9c870d03 1318 if (ret == -EFAULT || ret == -ENODEV)
bb6dc8d9 1319 ret = i915_gem_gtt_pread(obj, args);
b50a5371 1320
bb6dc8d9
CW
1321 i915_gem_object_unpin_pages(obj);
1322out:
f0cd5182 1323 i915_gem_object_put(obj);
eb01459f 1324 return ret;
673a394b
EA
1325}
1326
0839ccb8
KP
1327/* This is the fast write path which cannot handle
1328 * page faults in the source data
9b7530cc 1329 */
0839ccb8 1330
fe115628
CW
1331static inline bool
1332ggtt_write(struct io_mapping *mapping,
1333 loff_t base, int offset,
1334 char __user *user_data, int length)
9b7530cc 1335{
afe722be 1336 void __iomem *vaddr;
0839ccb8 1337 unsigned long unwritten;
9b7530cc 1338
4f0c7cfb 1339 /* We can use the cpu mem copy function because this is X86. */
afe722be
VS
1340 vaddr = io_mapping_map_atomic_wc(mapping, base);
1341 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
0839ccb8 1342 user_data, length);
fe115628
CW
1343 io_mapping_unmap_atomic(vaddr);
1344 if (unwritten) {
afe722be
VS
1345 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1346 unwritten = copy_from_user((void __force *)vaddr + offset,
1347 user_data, length);
fe115628
CW
1348 io_mapping_unmap(vaddr);
1349 }
bb6dc8d9 1350
bb6dc8d9
CW
1351 return unwritten;
1352}
1353
3de09aa3
EA
1354/**
1355 * This is the fast pwrite path, where we copy the data directly from the
1356 * user into the GTT, uncached.
fe115628 1357 * @obj: i915 GEM object
14bb2c11 1358 * @args: pwrite arguments structure
3de09aa3 1359 */
673a394b 1360static int
fe115628
CW
1361i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1362 const struct drm_i915_gem_pwrite *args)
673a394b 1363{
fe115628 1364 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4f1959ee
AS
1365 struct i915_ggtt *ggtt = &i915->ggtt;
1366 struct drm_mm_node node;
fe115628
CW
1367 struct i915_vma *vma;
1368 u64 remain, offset;
1369 void __user *user_data;
4f1959ee 1370 int ret;
b50a5371 1371
fe115628
CW
1372 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1373 if (ret)
1374 return ret;
935aaa69 1375
8bd81815
CW
1376 if (i915_gem_object_has_struct_page(obj)) {
1377 /*
1378 * Avoid waking the device up if we can fallback, as
1379 * waking/resuming is very slow (worst-case 10-100 ms
1380 * depending on PCI sleeps and our own resume time).
1381 * This easily dwarfs any performance advantage from
1382 * using the cache bypass of indirect GGTT access.
1383 */
1384 if (!intel_runtime_pm_get_if_in_use(i915)) {
1385 ret = -EFAULT;
1386 goto out_unlock;
1387 }
1388 } else {
1389 /* No backing pages, no fallback, we must force GGTT access */
1390 intel_runtime_pm_get(i915);
1391 }
1392
058d88c4 1393 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
a3259ca9
CW
1394 PIN_MAPPABLE |
1395 PIN_NONFAULT |
1396 PIN_NONBLOCK);
18034584
CW
1397 if (!IS_ERR(vma)) {
1398 node.start = i915_ggtt_offset(vma);
1399 node.allocated = false;
49ef5294 1400 ret = i915_vma_put_fence(vma);
18034584
CW
1401 if (ret) {
1402 i915_vma_unpin(vma);
1403 vma = ERR_PTR(ret);
1404 }
1405 }
058d88c4 1406 if (IS_ERR(vma)) {
bb6dc8d9 1407 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
4f1959ee 1408 if (ret)
8bd81815 1409 goto out_rpm;
fe115628 1410 GEM_BUG_ON(!node.allocated);
4f1959ee 1411 }
935aaa69
DV
1412
1413 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1414 if (ret)
1415 goto out_unpin;
1416
fe115628
CW
1417 mutex_unlock(&i915->drm.struct_mutex);
1418
b19482d7 1419 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 1420
4f1959ee
AS
1421 user_data = u64_to_user_ptr(args->data_ptr);
1422 offset = args->offset;
1423 remain = args->size;
1424 while (remain) {
673a394b
EA
1425 /* Operation in this page
1426 *
0839ccb8
KP
1427 * page_base = page offset within aperture
1428 * page_offset = offset within page
1429 * page_length = bytes to copy for this page
673a394b 1430 */
4f1959ee 1431 u32 page_base = node.start;
bb6dc8d9
CW
1432 unsigned int page_offset = offset_in_page(offset);
1433 unsigned int page_length = PAGE_SIZE - page_offset;
4f1959ee
AS
1434 page_length = remain < page_length ? remain : page_length;
1435 if (node.allocated) {
1436 wmb(); /* flush the write before we modify the GGTT */
82ad6443
CW
1437 ggtt->vm.insert_page(&ggtt->vm,
1438 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1439 node.start, I915_CACHE_NONE, 0);
4f1959ee
AS
1440 wmb(); /* flush modifications to the GGTT (insert_page) */
1441 } else {
1442 page_base += offset & PAGE_MASK;
1443 }
0839ccb8 1444 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
1445 * source page isn't available. Return the error and we'll
1446 * retry in the slow path.
b50a5371
AS
1447 * If the object is non-shmem backed, we retry again with the
1448 * path that handles page fault.
0839ccb8 1449 */
73ebd503 1450 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
fe115628
CW
1451 user_data, page_length)) {
1452 ret = -EFAULT;
1453 break;
935aaa69 1454 }
673a394b 1455
0839ccb8
KP
1456 remain -= page_length;
1457 user_data += page_length;
1458 offset += page_length;
673a394b 1459 }
d59b21ec 1460 intel_fb_obj_flush(obj, ORIGIN_CPU);
fe115628
CW
1461
1462 mutex_lock(&i915->drm.struct_mutex);
935aaa69 1463out_unpin:
4f1959ee
AS
1464 if (node.allocated) {
1465 wmb();
82ad6443 1466 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
4f1959ee
AS
1467 remove_mappable_node(&node);
1468 } else {
058d88c4 1469 i915_vma_unpin(vma);
4f1959ee 1470 }
8bd81815 1471out_rpm:
9c870d03 1472 intel_runtime_pm_put(i915);
8bd81815 1473out_unlock:
fe115628 1474 mutex_unlock(&i915->drm.struct_mutex);
3de09aa3 1475 return ret;
673a394b
EA
1476}
1477
3043c60c 1478static int
fe115628 1479shmem_pwrite_slow(struct page *page, int offset, int length,
d174bd64
DV
1480 char __user *user_data,
1481 bool page_do_bit17_swizzling,
1482 bool needs_clflush_before,
1483 bool needs_clflush_after)
673a394b 1484{
d174bd64
DV
1485 char *vaddr;
1486 int ret;
e5281ccd 1487
d174bd64 1488 vaddr = kmap(page);
e7e58eb5 1489 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
fe115628 1490 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1491 page_do_bit17_swizzling);
d174bd64 1492 if (page_do_bit17_swizzling)
fe115628
CW
1493 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1494 length);
d174bd64 1495 else
fe115628 1496 ret = __copy_from_user(vaddr + offset, user_data, length);
d174bd64 1497 if (needs_clflush_after)
fe115628 1498 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1499 page_do_bit17_swizzling);
d174bd64 1500 kunmap(page);
40123c1f 1501
755d2218 1502 return ret ? -EFAULT : 0;
40123c1f
EA
1503}
1504
fe115628
CW
1505/* Per-page copy function for the shmem pwrite fastpath.
1506 * Flushes invalid cachelines before writing to the target if
1507 * needs_clflush_before is set and flushes out any written cachelines after
1508 * writing if needs_clflush is set.
1509 */
40123c1f 1510static int
fe115628
CW
1511shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1512 bool page_do_bit17_swizzling,
1513 bool needs_clflush_before,
1514 bool needs_clflush_after)
40123c1f 1515{
fe115628
CW
1516 int ret;
1517
1518 ret = -ENODEV;
1519 if (!page_do_bit17_swizzling) {
1520 char *vaddr = kmap_atomic(page);
1521
1522 if (needs_clflush_before)
1523 drm_clflush_virt_range(vaddr + offset, len);
1524 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1525 if (needs_clflush_after)
1526 drm_clflush_virt_range(vaddr + offset, len);
1527
1528 kunmap_atomic(vaddr);
1529 }
1530 if (ret == 0)
1531 return ret;
1532
1533 return shmem_pwrite_slow(page, offset, len, user_data,
1534 page_do_bit17_swizzling,
1535 needs_clflush_before,
1536 needs_clflush_after);
1537}
1538
1539static int
1540i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1541 const struct drm_i915_gem_pwrite *args)
1542{
1543 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1544 void __user *user_data;
1545 u64 remain;
1546 unsigned int obj_do_bit17_swizzling;
1547 unsigned int partial_cacheline_write;
43394c7d 1548 unsigned int needs_clflush;
fe115628
CW
1549 unsigned int offset, idx;
1550 int ret;
40123c1f 1551
fe115628 1552 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
755d2218
CW
1553 if (ret)
1554 return ret;
1555
fe115628
CW
1556 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1557 mutex_unlock(&i915->drm.struct_mutex);
1558 if (ret)
1559 return ret;
673a394b 1560
fe115628
CW
1561 obj_do_bit17_swizzling = 0;
1562 if (i915_gem_object_needs_bit17_swizzle(obj))
1563 obj_do_bit17_swizzling = BIT(17);
e5281ccd 1564
fe115628
CW
1565 /* If we don't overwrite a cacheline completely we need to be
1566 * careful to have up-to-date data by first clflushing. Don't
1567 * overcomplicate things and flush the entire patch.
1568 */
1569 partial_cacheline_write = 0;
1570 if (needs_clflush & CLFLUSH_BEFORE)
1571 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
9da3da66 1572
fe115628
CW
1573 user_data = u64_to_user_ptr(args->data_ptr);
1574 remain = args->size;
1575 offset = offset_in_page(args->offset);
1576 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1577 struct page *page = i915_gem_object_get_page(obj, idx);
1578 int length;
40123c1f 1579
fe115628
CW
1580 length = remain;
1581 if (offset + length > PAGE_SIZE)
1582 length = PAGE_SIZE - offset;
755d2218 1583
fe115628
CW
1584 ret = shmem_pwrite(page, offset, length, user_data,
1585 page_to_phys(page) & obj_do_bit17_swizzling,
1586 (offset | length) & partial_cacheline_write,
1587 needs_clflush & CLFLUSH_AFTER);
755d2218 1588 if (ret)
fe115628 1589 break;
755d2218 1590
fe115628
CW
1591 remain -= length;
1592 user_data += length;
1593 offset = 0;
8c59967c 1594 }
673a394b 1595
d59b21ec 1596 intel_fb_obj_flush(obj, ORIGIN_CPU);
fe115628 1597 i915_gem_obj_finish_shmem_access(obj);
40123c1f 1598 return ret;
673a394b
EA
1599}
1600
1601/**
1602 * Writes data to the object referenced by handle.
14bb2c11
TU
1603 * @dev: drm device
1604 * @data: ioctl data blob
1605 * @file: drm file
673a394b
EA
1606 *
1607 * On error, the contents of the buffer that were to be modified are undefined.
1608 */
1609int
1610i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1611 struct drm_file *file)
673a394b
EA
1612{
1613 struct drm_i915_gem_pwrite *args = data;
05394f39 1614 struct drm_i915_gem_object *obj;
51311d0a
CW
1615 int ret;
1616
1617 if (args->size == 0)
1618 return 0;
1619
1620 if (!access_ok(VERIFY_READ,
3ed605bc 1621 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1622 args->size))
1623 return -EFAULT;
1624
03ac0642 1625 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1626 if (!obj)
1627 return -ENOENT;
673a394b 1628
7dcd2499 1629 /* Bounds check destination. */
966d5bf5 1630 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
ce9d419d 1631 ret = -EINVAL;
258a5ede 1632 goto err;
ce9d419d
CW
1633 }
1634
f8c1cce3
CW
1635 /* Writes not allowed into this read-only object */
1636 if (i915_gem_object_is_readonly(obj)) {
1637 ret = -EINVAL;
1638 goto err;
1639 }
1640
db53a302
CW
1641 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1642
7c55e2c5
CW
1643 ret = -ENODEV;
1644 if (obj->ops->pwrite)
1645 ret = obj->ops->pwrite(obj, args);
1646 if (ret != -ENODEV)
1647 goto err;
1648
e95433c7
CW
1649 ret = i915_gem_object_wait(obj,
1650 I915_WAIT_INTERRUPTIBLE |
1651 I915_WAIT_ALL,
1652 MAX_SCHEDULE_TIMEOUT,
1653 to_rps_client(file));
258a5ede
CW
1654 if (ret)
1655 goto err;
1656
fe115628 1657 ret = i915_gem_object_pin_pages(obj);
258a5ede 1658 if (ret)
fe115628 1659 goto err;
258a5ede 1660
935aaa69 1661 ret = -EFAULT;
673a394b
EA
1662 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1663 * it would end up going through the fenced access, and we'll get
1664 * different detiling behavior between reading and writing.
1665 * pread/pwrite currently are reading and writing from the CPU
1666 * perspective, requiring manual detiling by the client.
1667 */
6eae0059 1668 if (!i915_gem_object_has_struct_page(obj) ||
9c870d03 1669 cpu_write_needs_clflush(obj))
935aaa69
DV
1670 /* Note that the gtt paths might fail with non-page-backed user
1671 * pointers (e.g. gtt mappings when moving data between
9c870d03
CW
1672 * textures). Fallback to the shmem path in that case.
1673 */
fe115628 1674 ret = i915_gem_gtt_pwrite_fast(obj, args);
673a394b 1675
d1054ee4 1676 if (ret == -EFAULT || ret == -ENOSPC) {
6a2c4232
CW
1677 if (obj->phys_handle)
1678 ret = i915_gem_phys_pwrite(obj, args, file);
b50a5371 1679 else
fe115628 1680 ret = i915_gem_shmem_pwrite(obj, args);
6a2c4232 1681 }
5c0480f2 1682
fe115628 1683 i915_gem_object_unpin_pages(obj);
258a5ede 1684err:
f0cd5182 1685 i915_gem_object_put(obj);
258a5ede 1686 return ret;
673a394b
EA
1687}
1688
40e62d5d
CW
1689static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1690{
1691 struct drm_i915_private *i915;
1692 struct list_head *list;
1693 struct i915_vma *vma;
1694
f2123818
CW
1695 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1696
e2189dd0 1697 for_each_ggtt_vma(vma, obj) {
40e62d5d
CW
1698 if (i915_vma_is_active(vma))
1699 continue;
1700
1701 if (!drm_mm_node_allocated(&vma->node))
1702 continue;
1703
1704 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1705 }
1706
1707 i915 = to_i915(obj->base.dev);
f2123818 1708 spin_lock(&i915->mm.obj_lock);
40e62d5d 1709 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
f2123818
CW
1710 list_move_tail(&obj->mm.link, list);
1711 spin_unlock(&i915->mm.obj_lock);
40e62d5d
CW
1712}
1713
673a394b 1714/**
2ef7eeaa
EA
1715 * Called when user space prepares to use an object with the CPU, either
1716 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1717 * @dev: drm device
1718 * @data: ioctl data blob
1719 * @file: drm file
673a394b
EA
1720 */
1721int
1722i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1723 struct drm_file *file)
673a394b
EA
1724{
1725 struct drm_i915_gem_set_domain *args = data;
05394f39 1726 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1727 uint32_t read_domains = args->read_domains;
1728 uint32_t write_domain = args->write_domain;
40e62d5d 1729 int err;
673a394b 1730
2ef7eeaa 1731 /* Only handle setting domains to types used by the CPU. */
b8f9096d 1732 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1733 return -EINVAL;
1734
1735 /* Having something in the write domain implies it's in the read
1736 * domain, and only that read domain. Enforce that in the request.
1737 */
1738 if (write_domain != 0 && read_domains != write_domain)
1739 return -EINVAL;
1740
03ac0642 1741 obj = i915_gem_object_lookup(file, args->handle);
b8f9096d
CW
1742 if (!obj)
1743 return -ENOENT;
673a394b 1744
3236f57a
CW
1745 /* Try to flush the object off the GPU without holding the lock.
1746 * We will repeat the flush holding the lock in the normal manner
1747 * to catch cases where we are gazumped.
1748 */
40e62d5d 1749 err = i915_gem_object_wait(obj,
e95433c7
CW
1750 I915_WAIT_INTERRUPTIBLE |
1751 (write_domain ? I915_WAIT_ALL : 0),
1752 MAX_SCHEDULE_TIMEOUT,
1753 to_rps_client(file));
40e62d5d 1754 if (err)
f0cd5182 1755 goto out;
b8f9096d 1756
a03f395a
TZ
1757 /*
1758 * Proxy objects do not control access to the backing storage, ergo
1759 * they cannot be used as a means to manipulate the cache domain
1760 * tracking for that backing storage. The proxy object is always
1761 * considered to be outside of any cache domain.
1762 */
1763 if (i915_gem_object_is_proxy(obj)) {
1764 err = -ENXIO;
1765 goto out;
1766 }
1767
1768 /*
1769 * Flush and acquire obj->pages so that we are coherent through
40e62d5d
CW
1770 * direct access in memory with previous cached writes through
1771 * shmemfs and that our cache domain tracking remains valid.
1772 * For example, if the obj->filp was moved to swap without us
1773 * being notified and releasing the pages, we would mistakenly
1774 * continue to assume that the obj remained out of the CPU cached
1775 * domain.
1776 */
1777 err = i915_gem_object_pin_pages(obj);
1778 if (err)
f0cd5182 1779 goto out;
40e62d5d
CW
1780
1781 err = i915_mutex_lock_interruptible(dev);
1782 if (err)
f0cd5182 1783 goto out_unpin;
3236f57a 1784
e22d8e3c
CW
1785 if (read_domains & I915_GEM_DOMAIN_WC)
1786 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1787 else if (read_domains & I915_GEM_DOMAIN_GTT)
1788 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
43566ded 1789 else
e22d8e3c 1790 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
2ef7eeaa 1791
40e62d5d
CW
1792 /* And bump the LRU for this access */
1793 i915_gem_object_bump_inactive_ggtt(obj);
031b698a 1794
673a394b 1795 mutex_unlock(&dev->struct_mutex);
b8f9096d 1796
40e62d5d 1797 if (write_domain != 0)
ef74921b
CW
1798 intel_fb_obj_invalidate(obj,
1799 fb_write_origin(obj, write_domain));
40e62d5d 1800
f0cd5182 1801out_unpin:
40e62d5d 1802 i915_gem_object_unpin_pages(obj);
f0cd5182
CW
1803out:
1804 i915_gem_object_put(obj);
40e62d5d 1805 return err;
673a394b
EA
1806}
1807
1808/**
1809 * Called when user space has done writes to this buffer
14bb2c11
TU
1810 * @dev: drm device
1811 * @data: ioctl data blob
1812 * @file: drm file
673a394b
EA
1813 */
1814int
1815i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1816 struct drm_file *file)
673a394b
EA
1817{
1818 struct drm_i915_gem_sw_finish *args = data;
05394f39 1819 struct drm_i915_gem_object *obj;
1d7cfea1 1820
03ac0642 1821 obj = i915_gem_object_lookup(file, args->handle);
c21724cc
CW
1822 if (!obj)
1823 return -ENOENT;
673a394b 1824
a03f395a
TZ
1825 /*
1826 * Proxy objects are barred from CPU access, so there is no
1827 * need to ban sw_finish as it is a nop.
1828 */
1829
673a394b 1830 /* Pinned buffers may be scanout, so flush the cache */
5a97bcc6 1831 i915_gem_object_flush_if_display(obj);
f0cd5182 1832 i915_gem_object_put(obj);
5a97bcc6
CW
1833
1834 return 0;
673a394b
EA
1835}
1836
1837/**
14bb2c11
TU
1838 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1839 * it is mapped to.
1840 * @dev: drm device
1841 * @data: ioctl data blob
1842 * @file: drm file
673a394b
EA
1843 *
1844 * While the mapping holds a reference on the contents of the object, it doesn't
1845 * imply a ref on the object itself.
34367381
DV
1846 *
1847 * IMPORTANT:
1848 *
1849 * DRM driver writers who look a this function as an example for how to do GEM
1850 * mmap support, please don't implement mmap support like here. The modern way
1851 * to implement DRM mmap support is with an mmap offset ioctl (like
1852 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1853 * That way debug tooling like valgrind will understand what's going on, hiding
1854 * the mmap call in a driver private ioctl will break that. The i915 driver only
1855 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1856 */
1857int
1858i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1859 struct drm_file *file)
673a394b
EA
1860{
1861 struct drm_i915_gem_mmap *args = data;
03ac0642 1862 struct drm_i915_gem_object *obj;
673a394b
EA
1863 unsigned long addr;
1864
1816f923
AG
1865 if (args->flags & ~(I915_MMAP_WC))
1866 return -EINVAL;
1867
568a58e5 1868 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1869 return -ENODEV;
1870
03ac0642
CW
1871 obj = i915_gem_object_lookup(file, args->handle);
1872 if (!obj)
bf79cb91 1873 return -ENOENT;
673a394b 1874
1286ff73
DV
1875 /* prime objects have no backing filp to GEM mmap
1876 * pages from.
1877 */
03ac0642 1878 if (!obj->base.filp) {
f0cd5182 1879 i915_gem_object_put(obj);
274b2462 1880 return -ENXIO;
1286ff73
DV
1881 }
1882
03ac0642 1883 addr = vm_mmap(obj->base.filp, 0, args->size,
673a394b
EA
1884 PROT_READ | PROT_WRITE, MAP_SHARED,
1885 args->offset);
1816f923
AG
1886 if (args->flags & I915_MMAP_WC) {
1887 struct mm_struct *mm = current->mm;
1888 struct vm_area_struct *vma;
1889
80a89a5e 1890 if (down_write_killable(&mm->mmap_sem)) {
f0cd5182 1891 i915_gem_object_put(obj);
80a89a5e
MH
1892 return -EINTR;
1893 }
1816f923
AG
1894 vma = find_vma(mm, addr);
1895 if (vma)
1896 vma->vm_page_prot =
1897 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1898 else
1899 addr = -ENOMEM;
1900 up_write(&mm->mmap_sem);
aeecc969
CW
1901
1902 /* This may race, but that's ok, it only gets set */
50349247 1903 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1816f923 1904 }
f0cd5182 1905 i915_gem_object_put(obj);
673a394b
EA
1906 if (IS_ERR((void *)addr))
1907 return addr;
1908
1909 args->addr_ptr = (uint64_t) addr;
1910
1911 return 0;
1912}
1913
d899aceb 1914static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
03af84fe 1915{
6649a0b6 1916 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
03af84fe
CW
1917}
1918
4cc69075
CW
1919/**
1920 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1921 *
1922 * A history of the GTT mmap interface:
1923 *
1924 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1925 * aligned and suitable for fencing, and still fit into the available
1926 * mappable space left by the pinned display objects. A classic problem
1927 * we called the page-fault-of-doom where we would ping-pong between
1928 * two objects that could not fit inside the GTT and so the memcpy
1929 * would page one object in at the expense of the other between every
1930 * single byte.
1931 *
1932 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1933 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1934 * object is too large for the available space (or simply too large
1935 * for the mappable aperture!), a view is created instead and faulted
1936 * into userspace. (This view is aligned and sized appropriately for
1937 * fenced access.)
1938 *
e22d8e3c
CW
1939 * 2 - Recognise WC as a separate cache domain so that we can flush the
1940 * delayed writes via GTT before performing direct access via WC.
1941 *
4cc69075
CW
1942 * Restrictions:
1943 *
1944 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1945 * hangs on some architectures, corruption on others. An attempt to service
1946 * a GTT page fault from a snoopable object will generate a SIGBUS.
1947 *
1948 * * the object must be able to fit into RAM (physical memory, though no
1949 * limited to the mappable aperture).
1950 *
1951 *
1952 * Caveats:
1953 *
1954 * * a new GTT page fault will synchronize rendering from the GPU and flush
1955 * all data to system memory. Subsequent access will not be synchronized.
1956 *
1957 * * all mappings are revoked on runtime device suspend.
1958 *
1959 * * there are only 8, 16 or 32 fence registers to share between all users
1960 * (older machines require fence register for display and blitter access
1961 * as well). Contention of the fence registers will cause the previous users
1962 * to be unmapped and any new access will generate new page faults.
1963 *
1964 * * running out of memory while servicing a fault may generate a SIGBUS,
1965 * rather than the expected SIGSEGV.
1966 */
1967int i915_gem_mmap_gtt_version(void)
1968{
e22d8e3c 1969 return 2;
4cc69075
CW
1970}
1971
2d4281bb 1972static inline struct i915_ggtt_view
d899aceb 1973compute_partial_view(const struct drm_i915_gem_object *obj,
2d4281bb
CW
1974 pgoff_t page_offset,
1975 unsigned int chunk)
1976{
1977 struct i915_ggtt_view view;
1978
1979 if (i915_gem_object_is_tiled(obj))
1980 chunk = roundup(chunk, tile_row_pages(obj));
1981
2d4281bb 1982 view.type = I915_GGTT_VIEW_PARTIAL;
8bab1193
CW
1983 view.partial.offset = rounddown(page_offset, chunk);
1984 view.partial.size =
2d4281bb 1985 min_t(unsigned int, chunk,
8bab1193 1986 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
2d4281bb
CW
1987
1988 /* If the partial covers the entire object, just create a normal VMA. */
1989 if (chunk >= obj->base.size >> PAGE_SHIFT)
1990 view.type = I915_GGTT_VIEW_NORMAL;
1991
1992 return view;
1993}
1994
de151cf6
JB
1995/**
1996 * i915_gem_fault - fault a page into the GTT
d9072a3e 1997 * @vmf: fault info
de151cf6
JB
1998 *
1999 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
2000 * from userspace. The fault handler takes care of binding the object to
2001 * the GTT (if needed), allocating and programming a fence register (again,
2002 * only if needed based on whether the old reg is still valid or the object
2003 * is tiled) and inserting a new PTE into the faulting process.
2004 *
2005 * Note that the faulting process may involve evicting existing objects
2006 * from the GTT and/or fence registers to make room. So performance may
2007 * suffer if the GTT working set is large or there are few fence registers
2008 * left.
4cc69075
CW
2009 *
2010 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
2011 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
de151cf6 2012 */
52137010 2013vm_fault_t i915_gem_fault(struct vm_fault *vmf)
de151cf6 2014{
420980ca 2015#define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
11bac800 2016 struct vm_area_struct *area = vmf->vma;
058d88c4 2017 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
05394f39 2018 struct drm_device *dev = obj->base.dev;
72e96d64
JL
2019 struct drm_i915_private *dev_priv = to_i915(dev);
2020 struct i915_ggtt *ggtt = &dev_priv->ggtt;
aae7c06b 2021 bool write = area->vm_flags & VM_WRITE;
058d88c4 2022 struct i915_vma *vma;
de151cf6 2023 pgoff_t page_offset;
b8f9096d 2024 int ret;
f65c9168 2025
3e977ac6
CW
2026 /* Sanity check that we allow writing into this object */
2027 if (i915_gem_object_is_readonly(obj) && write)
2028 return VM_FAULT_SIGBUS;
2029
de151cf6 2030 /* We don't use vmf->pgoff since that has the fake offset */
1a29d85e 2031 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
de151cf6 2032
db53a302
CW
2033 trace_i915_gem_object_fault(obj, page_offset, true, write);
2034
6e4930f6 2035 /* Try to flush the object off the GPU first without holding the lock.
b8f9096d 2036 * Upon acquiring the lock, we will perform our sanity checks and then
6e4930f6
CW
2037 * repeat the flush holding the lock in the normal manner to catch cases
2038 * where we are gazumped.
2039 */
e95433c7
CW
2040 ret = i915_gem_object_wait(obj,
2041 I915_WAIT_INTERRUPTIBLE,
2042 MAX_SCHEDULE_TIMEOUT,
2043 NULL);
6e4930f6 2044 if (ret)
b8f9096d
CW
2045 goto err;
2046
40e62d5d
CW
2047 ret = i915_gem_object_pin_pages(obj);
2048 if (ret)
2049 goto err;
2050
b8f9096d
CW
2051 intel_runtime_pm_get(dev_priv);
2052
2053 ret = i915_mutex_lock_interruptible(dev);
2054 if (ret)
2055 goto err_rpm;
6e4930f6 2056
eb119bd6 2057 /* Access to snoopable pages through the GTT is incoherent. */
0031fb96 2058 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
ddeff6ee 2059 ret = -EFAULT;
b8f9096d 2060 goto err_unlock;
eb119bd6
CW
2061 }
2062
82118877 2063
a61007a8 2064 /* Now pin it into the GTT as needed */
7e7367d3
CW
2065 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
2066 PIN_MAPPABLE |
2067 PIN_NONBLOCK |
2068 PIN_NONFAULT);
a61007a8 2069 if (IS_ERR(vma)) {
a61007a8 2070 /* Use a partial view if it is bigger than available space */
2d4281bb 2071 struct i915_ggtt_view view =
8201c1fa 2072 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
7e7367d3 2073 unsigned int flags;
aa136d9d 2074
7e7367d3
CW
2075 flags = PIN_MAPPABLE;
2076 if (view.type == I915_GGTT_VIEW_NORMAL)
2077 flags |= PIN_NONBLOCK; /* avoid warnings for pinned */
2078
2079 /*
2080 * Userspace is now writing through an untracked VMA, abandon
50349247
CW
2081 * all hope that the hardware is able to track future writes.
2082 */
2083 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
2084
7e7367d3
CW
2085 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2086 if (IS_ERR(vma) && !view.type) {
2087 flags = PIN_MAPPABLE;
2088 view.type = I915_GGTT_VIEW_PARTIAL;
2089 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2090 }
a61007a8 2091 }
058d88c4
CW
2092 if (IS_ERR(vma)) {
2093 ret = PTR_ERR(vma);
b8f9096d 2094 goto err_unlock;
058d88c4 2095 }
4a684a41 2096
c9839303
CW
2097 ret = i915_gem_object_set_to_gtt_domain(obj, write);
2098 if (ret)
b8f9096d 2099 goto err_unpin;
74898d7e 2100
3bd40735 2101 ret = i915_vma_pin_fence(vma);
d9e86c0e 2102 if (ret)
b8f9096d 2103 goto err_unpin;
7d1c4804 2104
b90b91d8 2105 /* Finally, remap it using the new GTT offset */
c58305af 2106 ret = remap_io_mapping(area,
8bab1193 2107 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
73ebd503 2108 (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
c58305af 2109 min_t(u64, vma->size, area->vm_end - area->vm_start),
73ebd503 2110 &ggtt->iomap);
a65adaf8
CW
2111 if (ret)
2112 goto err_fence;
a61007a8 2113
a65adaf8
CW
2114 /* Mark as being mmapped into userspace for later revocation */
2115 assert_rpm_wakelock_held(dev_priv);
2116 if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
2117 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
2118 GEM_BUG_ON(!obj->userfault_count);
2119
7125397b
CW
2120 i915_vma_set_ggtt_write(vma);
2121
a65adaf8 2122err_fence:
3bd40735 2123 i915_vma_unpin_fence(vma);
b8f9096d 2124err_unpin:
058d88c4 2125 __i915_vma_unpin(vma);
b8f9096d 2126err_unlock:
de151cf6 2127 mutex_unlock(&dev->struct_mutex);
b8f9096d
CW
2128err_rpm:
2129 intel_runtime_pm_put(dev_priv);
40e62d5d 2130 i915_gem_object_unpin_pages(obj);
b8f9096d 2131err:
de151cf6 2132 switch (ret) {
d9bc7e9f 2133 case -EIO:
2232f031
DV
2134 /*
2135 * We eat errors when the gpu is terminally wedged to avoid
2136 * userspace unduly crashing (gl has no provisions for mmaps to
2137 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2138 * and so needs to be reported.
2139 */
52137010
CW
2140 if (!i915_terminally_wedged(&dev_priv->gpu_error))
2141 return VM_FAULT_SIGBUS;
f0d759f0 2142 /* else: fall through */
045e769a 2143 case -EAGAIN:
571c608d
DV
2144 /*
2145 * EAGAIN means the gpu is hung and we'll wait for the error
2146 * handler to reset everything when re-faulting in
2147 * i915_mutex_lock_interruptible.
d9bc7e9f 2148 */
c715089f
CW
2149 case 0:
2150 case -ERESTARTSYS:
bed636ab 2151 case -EINTR:
e79e0fe3
DR
2152 case -EBUSY:
2153 /*
2154 * EBUSY is ok: this just means that another thread
2155 * already did the job.
2156 */
52137010 2157 return VM_FAULT_NOPAGE;
de151cf6 2158 case -ENOMEM:
52137010 2159 return VM_FAULT_OOM;
a7c2e1aa 2160 case -ENOSPC:
45d67817 2161 case -EFAULT:
52137010 2162 return VM_FAULT_SIGBUS;
de151cf6 2163 default:
a7c2e1aa 2164 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
52137010 2165 return VM_FAULT_SIGBUS;
de151cf6
JB
2166 }
2167}
2168
a65adaf8
CW
2169static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2170{
2171 struct i915_vma *vma;
2172
2173 GEM_BUG_ON(!obj->userfault_count);
2174
2175 obj->userfault_count = 0;
2176 list_del(&obj->userfault_link);
2177 drm_vma_node_unmap(&obj->base.vma_node,
2178 obj->base.dev->anon_inode->i_mapping);
2179
e2189dd0 2180 for_each_ggtt_vma(vma, obj)
a65adaf8 2181 i915_vma_unset_userfault(vma);
a65adaf8
CW
2182}
2183
901782b2
CW
2184/**
2185 * i915_gem_release_mmap - remove physical page mappings
2186 * @obj: obj in question
2187 *
af901ca1 2188 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
2189 * relinquish ownership of the pages back to the system.
2190 *
2191 * It is vital that we remove the page mapping if we have mapped a tiled
2192 * object through the GTT and then lose the fence register due to
2193 * resource pressure. Similarly if the object has been moved out of the
2194 * aperture, than pages mapped into userspace must be revoked. Removing the
2195 * mapping will then trigger a page fault on the next user access, allowing
2196 * fixup by i915_gem_fault().
2197 */
d05ca301 2198void
05394f39 2199i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 2200{
275f039d 2201 struct drm_i915_private *i915 = to_i915(obj->base.dev);
275f039d 2202
349f2ccf
CW
2203 /* Serialisation between user GTT access and our code depends upon
2204 * revoking the CPU's PTE whilst the mutex is held. The next user
2205 * pagefault then has to wait until we release the mutex.
9c870d03
CW
2206 *
2207 * Note that RPM complicates somewhat by adding an additional
2208 * requirement that operations to the GGTT be made holding the RPM
2209 * wakeref.
349f2ccf 2210 */
275f039d 2211 lockdep_assert_held(&i915->drm.struct_mutex);
9c870d03 2212 intel_runtime_pm_get(i915);
349f2ccf 2213
a65adaf8 2214 if (!obj->userfault_count)
9c870d03 2215 goto out;
901782b2 2216
a65adaf8 2217 __i915_gem_object_release_mmap(obj);
349f2ccf
CW
2218
2219 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2220 * memory transactions from userspace before we return. The TLB
2221 * flushing implied above by changing the PTE above *should* be
2222 * sufficient, an extra barrier here just provides us with a bit
2223 * of paranoid documentation about our requirement to serialise
2224 * memory writes before touching registers / GSM.
2225 */
2226 wmb();
9c870d03
CW
2227
2228out:
2229 intel_runtime_pm_put(i915);
901782b2
CW
2230}
2231
7c108fd8 2232void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
eedd10f4 2233{
3594a3e2 2234 struct drm_i915_gem_object *obj, *on;
7c108fd8 2235 int i;
eedd10f4 2236
3594a3e2
CW
2237 /*
2238 * Only called during RPM suspend. All users of the userfault_list
2239 * must be holding an RPM wakeref to ensure that this can not
2240 * run concurrently with themselves (and use the struct_mutex for
2241 * protection between themselves).
2242 */
275f039d 2243
3594a3e2 2244 list_for_each_entry_safe(obj, on,
a65adaf8
CW
2245 &dev_priv->mm.userfault_list, userfault_link)
2246 __i915_gem_object_release_mmap(obj);
7c108fd8
CW
2247
2248 /* The fence will be lost when the device powers down. If any were
2249 * in use by hardware (i.e. they are pinned), we should not be powering
2250 * down! All other fences will be reacquired by the user upon waking.
2251 */
2252 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2253 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2254
e0ec3ec6
CW
2255 /* Ideally we want to assert that the fence register is not
2256 * live at this point (i.e. that no piece of code will be
2257 * trying to write through fence + GTT, as that both violates
2258 * our tracking of activity and associated locking/barriers,
2259 * but also is illegal given that the hw is powered down).
2260 *
2261 * Previously we used reg->pin_count as a "liveness" indicator.
2262 * That is not sufficient, and we need a more fine-grained
2263 * tool if we want to have a sanity check here.
2264 */
7c108fd8
CW
2265
2266 if (!reg->vma)
2267 continue;
2268
a65adaf8 2269 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
7c108fd8
CW
2270 reg->dirty = true;
2271 }
eedd10f4
CW
2272}
2273
d8cb5086
CW
2274static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2275{
fac5e23e 2276 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
f3f6184c 2277 int err;
da494d7c 2278
f3f6184c 2279 err = drm_gem_create_mmap_offset(&obj->base);
b42a13d9 2280 if (likely(!err))
f3f6184c 2281 return 0;
d8cb5086 2282
b42a13d9
CW
2283 /* Attempt to reap some mmap space from dead objects */
2284 do {
ec625fb9
CW
2285 err = i915_gem_wait_for_idle(dev_priv,
2286 I915_WAIT_INTERRUPTIBLE,
2287 MAX_SCHEDULE_TIMEOUT);
b42a13d9
CW
2288 if (err)
2289 break;
f3f6184c 2290
b42a13d9 2291 i915_gem_drain_freed_objects(dev_priv);
f3f6184c 2292 err = drm_gem_create_mmap_offset(&obj->base);
b42a13d9
CW
2293 if (!err)
2294 break;
2295
2296 } while (flush_delayed_work(&dev_priv->gt.retire_work));
da494d7c 2297
f3f6184c 2298 return err;
d8cb5086
CW
2299}
2300
2301static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2302{
d8cb5086
CW
2303 drm_gem_free_mmap_offset(&obj->base);
2304}
2305
da6b51d0 2306int
ff72145b
DA
2307i915_gem_mmap_gtt(struct drm_file *file,
2308 struct drm_device *dev,
da6b51d0 2309 uint32_t handle,
ff72145b 2310 uint64_t *offset)
de151cf6 2311{
05394f39 2312 struct drm_i915_gem_object *obj;
de151cf6
JB
2313 int ret;
2314
03ac0642 2315 obj = i915_gem_object_lookup(file, handle);
f3f6184c
CW
2316 if (!obj)
2317 return -ENOENT;
ab18282d 2318
d8cb5086 2319 ret = i915_gem_object_create_mmap_offset(obj);
f3f6184c
CW
2320 if (ret == 0)
2321 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2322
f0cd5182 2323 i915_gem_object_put(obj);
1d7cfea1 2324 return ret;
de151cf6
JB
2325}
2326
ff72145b
DA
2327/**
2328 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2329 * @dev: DRM device
2330 * @data: GTT mapping ioctl data
2331 * @file: GEM object info
2332 *
2333 * Simply returns the fake offset to userspace so it can mmap it.
2334 * The mmap call will end up in drm_gem_mmap(), which will set things
2335 * up so we can get faults in the handler above.
2336 *
2337 * The fault handler will take care of binding the object into the GTT
2338 * (since it may have been evicted to make room for something), allocating
2339 * a fence register, and mapping the appropriate aperture address into
2340 * userspace.
2341 */
2342int
2343i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2344 struct drm_file *file)
2345{
2346 struct drm_i915_gem_mmap_gtt *args = data;
2347
da6b51d0 2348 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2349}
2350
225067ee
DV
2351/* Immediately discard the backing storage */
2352static void
2353i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2354{
4d6294bf 2355 i915_gem_object_free_mmap_offset(obj);
1286ff73 2356
4d6294bf
CW
2357 if (obj->base.filp == NULL)
2358 return;
e5281ccd 2359
225067ee
DV
2360 /* Our goal here is to return as much of the memory as
2361 * is possible back to the system as we are called from OOM.
2362 * To do this we must instruct the shmfs to drop all of its
2363 * backing pages, *now*.
2364 */
5537252b 2365 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
a4f5ea64 2366 obj->mm.madv = __I915_MADV_PURGED;
4e5462ee 2367 obj->mm.pages = ERR_PTR(-EFAULT);
225067ee 2368}
e5281ccd 2369
5537252b 2370/* Try to discard unwanted pages */
03ac84f1 2371void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2372{
5537252b
CW
2373 struct address_space *mapping;
2374
1233e2db 2375 lockdep_assert_held(&obj->mm.lock);
f1fa4f44 2376 GEM_BUG_ON(i915_gem_object_has_pages(obj));
1233e2db 2377
a4f5ea64 2378 switch (obj->mm.madv) {
5537252b
CW
2379 case I915_MADV_DONTNEED:
2380 i915_gem_object_truncate(obj);
2381 case __I915_MADV_PURGED:
2382 return;
2383 }
2384
2385 if (obj->base.filp == NULL)
2386 return;
2387
93c76a3d 2388 mapping = obj->base.filp->f_mapping,
5537252b 2389 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2390}
2391
5cdf5881 2392static void
03ac84f1
CW
2393i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2394 struct sg_table *pages)
673a394b 2395{
85d1225e
DG
2396 struct sgt_iter sgt_iter;
2397 struct page *page;
1286ff73 2398
e5facdf9 2399 __i915_gem_object_release_shmem(obj, pages, true);
673a394b 2400
03ac84f1 2401 i915_gem_gtt_finish_pages(obj, pages);
e2273302 2402
6dacfd2f 2403 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2404 i915_gem_object_save_bit_17_swizzle(obj, pages);
280b713b 2405
03ac84f1 2406 for_each_sgt_page(page, sgt_iter, pages) {
a4f5ea64 2407 if (obj->mm.dirty)
9da3da66 2408 set_page_dirty(page);
3ef94daa 2409
a4f5ea64 2410 if (obj->mm.madv == I915_MADV_WILLNEED)
9da3da66 2411 mark_page_accessed(page);
3ef94daa 2412
09cbfeaf 2413 put_page(page);
3ef94daa 2414 }
a4f5ea64 2415 obj->mm.dirty = false;
673a394b 2416
03ac84f1
CW
2417 sg_free_table(pages);
2418 kfree(pages);
37e680a1 2419}
6c085a72 2420
96d77634
CW
2421static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2422{
2423 struct radix_tree_iter iter;
c23aa71b 2424 void __rcu **slot;
96d77634 2425
bea6e987 2426 rcu_read_lock();
a4f5ea64
CW
2427 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2428 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
bea6e987 2429 rcu_read_unlock();
96d77634
CW
2430}
2431
acd1c1e6
CW
2432static struct sg_table *
2433__i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
37e680a1 2434{
f2123818 2435 struct drm_i915_private *i915 = to_i915(obj->base.dev);
03ac84f1 2436 struct sg_table *pages;
37e680a1 2437
03ac84f1 2438 pages = fetch_and_zero(&obj->mm.pages);
acd1c1e6
CW
2439 if (!pages)
2440 return NULL;
a2165e31 2441
f2123818
CW
2442 spin_lock(&i915->mm.obj_lock);
2443 list_del(&obj->mm.link);
2444 spin_unlock(&i915->mm.obj_lock);
2445
a4f5ea64 2446 if (obj->mm.mapping) {
4b30cb23
CW
2447 void *ptr;
2448
0ce81788 2449 ptr = page_mask_bits(obj->mm.mapping);
4b30cb23
CW
2450 if (is_vmalloc_addr(ptr))
2451 vunmap(ptr);
fb8621d3 2452 else
4b30cb23
CW
2453 kunmap(kmap_to_page(ptr));
2454
a4f5ea64 2455 obj->mm.mapping = NULL;
0a798eb9
CW
2456 }
2457
96d77634 2458 __i915_gem_object_reset_page_iter(obj);
acd1c1e6
CW
2459 obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2460
2461 return pages;
2462}
96d77634 2463
acd1c1e6
CW
2464void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2465 enum i915_mm_subclass subclass)
2466{
2467 struct sg_table *pages;
2468
2469 if (i915_gem_object_has_pinned_pages(obj))
2470 return;
2471
2472 GEM_BUG_ON(obj->bind_count);
2473 if (!i915_gem_object_has_pages(obj))
2474 return;
2475
2476 /* May be called by shrinker from within get_pages() (on another bo) */
2477 mutex_lock_nested(&obj->mm.lock, subclass);
2478 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2479 goto unlock;
2480
2481 /*
2482 * ->put_pages might need to allocate memory for the bit17 swizzle
2483 * array, hence protect them from being reaped by removing them from gtt
2484 * lists early.
2485 */
2486 pages = __i915_gem_object_unset_pages(obj);
4e5462ee
CW
2487 if (!IS_ERR(pages))
2488 obj->ops->put_pages(obj, pages);
2489
1233e2db
CW
2490unlock:
2491 mutex_unlock(&obj->mm.lock);
6c085a72
CW
2492}
2493
935a2f77 2494static bool i915_sg_trim(struct sg_table *orig_st)
0c40ce13
TU
2495{
2496 struct sg_table new_st;
2497 struct scatterlist *sg, *new_sg;
2498 unsigned int i;
2499
2500 if (orig_st->nents == orig_st->orig_nents)
935a2f77 2501 return false;
0c40ce13 2502
8bfc478f 2503 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
935a2f77 2504 return false;
0c40ce13
TU
2505
2506 new_sg = new_st.sgl;
2507 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2508 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2509 /* called before being DMA mapped, no need to copy sg->dma_* */
2510 new_sg = sg_next(new_sg);
2511 }
c2dc6cc9 2512 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
0c40ce13
TU
2513
2514 sg_free_table(orig_st);
2515
2516 *orig_st = new_st;
935a2f77 2517 return true;
0c40ce13
TU
2518}
2519
b91b09ee 2520static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2521{
fac5e23e 2522 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
d766ef53
CW
2523 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2524 unsigned long i;
e5281ccd 2525 struct address_space *mapping;
9da3da66
CW
2526 struct sg_table *st;
2527 struct scatterlist *sg;
85d1225e 2528 struct sgt_iter sgt_iter;
e5281ccd 2529 struct page *page;
90797e6d 2530 unsigned long last_pfn = 0; /* suppress gcc warning */
5602452e 2531 unsigned int max_segment = i915_sg_segment_size();
84e8978e 2532 unsigned int sg_page_sizes;
4846bf0c 2533 gfp_t noreclaim;
e2273302 2534 int ret;
e5281ccd 2535
6c085a72
CW
2536 /* Assert that the object is not currently in any GPU domain. As it
2537 * wasn't in the GTT, there shouldn't be any way it could have been in
2538 * a GPU cache
2539 */
c0a51fd0
CK
2540 GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2541 GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
6c085a72 2542
9da3da66
CW
2543 st = kmalloc(sizeof(*st), GFP_KERNEL);
2544 if (st == NULL)
b91b09ee 2545 return -ENOMEM;
9da3da66 2546
d766ef53 2547rebuild_st:
9da3da66 2548 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2549 kfree(st);
b91b09ee 2550 return -ENOMEM;
9da3da66 2551 }
e5281ccd 2552
9da3da66
CW
2553 /* Get the list of pages out of our struct file. They'll be pinned
2554 * at this point until we release them.
2555 *
2556 * Fail silently without starting the shrinker
2557 */
93c76a3d 2558 mapping = obj->base.filp->f_mapping;
0f6ab55d 2559 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
4846bf0c
CW
2560 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2561
90797e6d
ID
2562 sg = st->sgl;
2563 st->nents = 0;
84e8978e 2564 sg_page_sizes = 0;
90797e6d 2565 for (i = 0; i < page_count; i++) {
4846bf0c
CW
2566 const unsigned int shrink[] = {
2567 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2568 0,
2569 }, *s = shrink;
2570 gfp_t gfp = noreclaim;
2571
2572 do {
6c085a72 2573 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
4846bf0c
CW
2574 if (likely(!IS_ERR(page)))
2575 break;
2576
2577 if (!*s) {
2578 ret = PTR_ERR(page);
2579 goto err_sg;
2580 }
2581
912d572d 2582 i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
4846bf0c 2583 cond_resched();
24f8e00a 2584
6c085a72
CW
2585 /* We've tried hard to allocate the memory by reaping
2586 * our own buffer, now let the real VM do its job and
2587 * go down in flames if truly OOM.
24f8e00a
CW
2588 *
2589 * However, since graphics tend to be disposable,
2590 * defer the oom here by reporting the ENOMEM back
2591 * to userspace.
6c085a72 2592 */
4846bf0c
CW
2593 if (!*s) {
2594 /* reclaim and warn, but no oom */
2595 gfp = mapping_gfp_mask(mapping);
eaf41801
CW
2596
2597 /* Our bo are always dirty and so we require
2598 * kswapd to reclaim our pages (direct reclaim
2599 * does not effectively begin pageout of our
2600 * buffers on its own). However, direct reclaim
2601 * only waits for kswapd when under allocation
2602 * congestion. So as a result __GFP_RECLAIM is
2603 * unreliable and fails to actually reclaim our
2604 * dirty pages -- unless you try over and over
2605 * again with !__GFP_NORETRY. However, we still
2606 * want to fail this allocation rather than
2607 * trigger the out-of-memory killer and for
dbb32956 2608 * this we want __GFP_RETRY_MAYFAIL.
eaf41801 2609 */
dbb32956 2610 gfp |= __GFP_RETRY_MAYFAIL;
e2273302 2611 }
4846bf0c
CW
2612 } while (1);
2613
871dfbd6
CW
2614 if (!i ||
2615 sg->length >= max_segment ||
2616 page_to_pfn(page) != last_pfn + 1) {
a5c08166 2617 if (i) {
84e8978e 2618 sg_page_sizes |= sg->length;
90797e6d 2619 sg = sg_next(sg);
a5c08166 2620 }
90797e6d
ID
2621 st->nents++;
2622 sg_set_page(sg, page, PAGE_SIZE, 0);
2623 } else {
2624 sg->length += PAGE_SIZE;
2625 }
2626 last_pfn = page_to_pfn(page);
3bbbe706
DV
2627
2628 /* Check that the i965g/gm workaround works. */
2629 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2630 }
a5c08166 2631 if (sg) { /* loop terminated early; short sg table */
84e8978e 2632 sg_page_sizes |= sg->length;
426729dc 2633 sg_mark_end(sg);
a5c08166 2634 }
74ce6b6c 2635
0c40ce13
TU
2636 /* Trim unused sg entries to avoid wasting memory. */
2637 i915_sg_trim(st);
2638
03ac84f1 2639 ret = i915_gem_gtt_prepare_pages(obj, st);
d766ef53
CW
2640 if (ret) {
2641 /* DMA remapping failed? One possible cause is that
2642 * it could not reserve enough large entries, asking
2643 * for PAGE_SIZE chunks instead may be helpful.
2644 */
2645 if (max_segment > PAGE_SIZE) {
2646 for_each_sgt_page(page, sgt_iter, st)
2647 put_page(page);
2648 sg_free_table(st);
2649
2650 max_segment = PAGE_SIZE;
2651 goto rebuild_st;
2652 } else {
2653 dev_warn(&dev_priv->drm.pdev->dev,
2654 "Failed to DMA remap %lu pages\n",
2655 page_count);
2656 goto err_pages;
2657 }
2658 }
e2273302 2659
6dacfd2f 2660 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2661 i915_gem_object_do_bit_17_swizzle(obj, st);
e5281ccd 2662
84e8978e 2663 __i915_gem_object_set_pages(obj, st, sg_page_sizes);
b91b09ee
MA
2664
2665 return 0;
e5281ccd 2666
b17993b7 2667err_sg:
90797e6d 2668 sg_mark_end(sg);
b17993b7 2669err_pages:
85d1225e
DG
2670 for_each_sgt_page(page, sgt_iter, st)
2671 put_page(page);
9da3da66
CW
2672 sg_free_table(st);
2673 kfree(st);
0820baf3
CW
2674
2675 /* shmemfs first checks if there is enough memory to allocate the page
2676 * and reports ENOSPC should there be insufficient, along with the usual
2677 * ENOMEM for a genuine allocation failure.
2678 *
2679 * We use ENOSPC in our driver to mean that we have run out of aperture
2680 * space and so want to translate the error from shmemfs back to our
2681 * usual understanding of ENOMEM.
2682 */
e2273302
ID
2683 if (ret == -ENOSPC)
2684 ret = -ENOMEM;
2685
b91b09ee 2686 return ret;
03ac84f1
CW
2687}
2688
2689void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
a5c08166 2690 struct sg_table *pages,
84e8978e 2691 unsigned int sg_page_sizes)
03ac84f1 2692{
a5c08166
MA
2693 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2694 unsigned long supported = INTEL_INFO(i915)->page_sizes;
2695 int i;
2696
1233e2db 2697 lockdep_assert_held(&obj->mm.lock);
03ac84f1
CW
2698
2699 obj->mm.get_page.sg_pos = pages->sgl;
2700 obj->mm.get_page.sg_idx = 0;
2701
2702 obj->mm.pages = pages;
2c3a3f44
CW
2703
2704 if (i915_gem_object_is_tiled(obj) &&
f2123818 2705 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2c3a3f44
CW
2706 GEM_BUG_ON(obj->mm.quirked);
2707 __i915_gem_object_pin_pages(obj);
2708 obj->mm.quirked = true;
2709 }
a5c08166 2710
84e8978e
MA
2711 GEM_BUG_ON(!sg_page_sizes);
2712 obj->mm.page_sizes.phys = sg_page_sizes;
a5c08166
MA
2713
2714 /*
84e8978e
MA
2715 * Calculate the supported page-sizes which fit into the given
2716 * sg_page_sizes. This will give us the page-sizes which we may be able
2717 * to use opportunistically when later inserting into the GTT. For
2718 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2719 * 64K or 4K pages, although in practice this will depend on a number of
2720 * other factors.
a5c08166
MA
2721 */
2722 obj->mm.page_sizes.sg = 0;
2723 for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2724 if (obj->mm.page_sizes.phys & ~0u << i)
2725 obj->mm.page_sizes.sg |= BIT(i);
2726 }
a5c08166 2727 GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
f2123818
CW
2728
2729 spin_lock(&i915->mm.obj_lock);
2730 list_add(&obj->mm.link, &i915->mm.unbound_list);
2731 spin_unlock(&i915->mm.obj_lock);
03ac84f1
CW
2732}
2733
2734static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2735{
b91b09ee 2736 int err;
03ac84f1
CW
2737
2738 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2739 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2740 return -EFAULT;
2741 }
2742
b91b09ee 2743 err = obj->ops->get_pages(obj);
b65a9b98 2744 GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
03ac84f1 2745
b91b09ee 2746 return err;
673a394b
EA
2747}
2748
37e680a1 2749/* Ensure that the associated pages are gathered from the backing storage
1233e2db 2750 * and pinned into our object. i915_gem_object_pin_pages() may be called
37e680a1 2751 * multiple times before they are released by a single call to
1233e2db 2752 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
37e680a1
CW
2753 * either as a result of memory pressure (reaping pages under the shrinker)
2754 * or as the object is itself released.
2755 */
a4f5ea64 2756int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
37e680a1 2757{
03ac84f1 2758 int err;
37e680a1 2759
1233e2db
CW
2760 err = mutex_lock_interruptible(&obj->mm.lock);
2761 if (err)
2762 return err;
4c7d62c6 2763
f1fa4f44 2764 if (unlikely(!i915_gem_object_has_pages(obj))) {
88c880bb
CW
2765 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2766
2c3a3f44
CW
2767 err = ____i915_gem_object_get_pages(obj);
2768 if (err)
2769 goto unlock;
37e680a1 2770
2c3a3f44
CW
2771 smp_mb__before_atomic();
2772 }
2773 atomic_inc(&obj->mm.pages_pin_count);
ee286370 2774
1233e2db
CW
2775unlock:
2776 mutex_unlock(&obj->mm.lock);
03ac84f1 2777 return err;
673a394b
EA
2778}
2779
dd6034c6 2780/* The 'mapping' part of i915_gem_object_pin_map() below */
d31d7cb1
CW
2781static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2782 enum i915_map_type type)
dd6034c6
DG
2783{
2784 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
a4f5ea64 2785 struct sg_table *sgt = obj->mm.pages;
85d1225e
DG
2786 struct sgt_iter sgt_iter;
2787 struct page *page;
b338fa47
DG
2788 struct page *stack_pages[32];
2789 struct page **pages = stack_pages;
dd6034c6 2790 unsigned long i = 0;
d31d7cb1 2791 pgprot_t pgprot;
dd6034c6
DG
2792 void *addr;
2793
2794 /* A single page can always be kmapped */
d31d7cb1 2795 if (n_pages == 1 && type == I915_MAP_WB)
dd6034c6
DG
2796 return kmap(sg_page(sgt->sgl));
2797
b338fa47
DG
2798 if (n_pages > ARRAY_SIZE(stack_pages)) {
2799 /* Too big for stack -- allocate temporary array instead */
0ee931c4 2800 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
b338fa47
DG
2801 if (!pages)
2802 return NULL;
2803 }
dd6034c6 2804
85d1225e
DG
2805 for_each_sgt_page(page, sgt_iter, sgt)
2806 pages[i++] = page;
dd6034c6
DG
2807
2808 /* Check that we have the expected number of pages */
2809 GEM_BUG_ON(i != n_pages);
2810
d31d7cb1 2811 switch (type) {
a575c676
CW
2812 default:
2813 MISSING_CASE(type);
2814 /* fallthrough to use PAGE_KERNEL anyway */
d31d7cb1
CW
2815 case I915_MAP_WB:
2816 pgprot = PAGE_KERNEL;
2817 break;
2818 case I915_MAP_WC:
2819 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2820 break;
2821 }
2822 addr = vmap(pages, n_pages, 0, pgprot);
dd6034c6 2823
b338fa47 2824 if (pages != stack_pages)
2098105e 2825 kvfree(pages);
dd6034c6
DG
2826
2827 return addr;
2828}
2829
2830/* get, pin, and map the pages of the object into kernel space */
d31d7cb1
CW
2831void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2832 enum i915_map_type type)
0a798eb9 2833{
d31d7cb1
CW
2834 enum i915_map_type has_type;
2835 bool pinned;
2836 void *ptr;
0a798eb9
CW
2837 int ret;
2838
a03f395a
TZ
2839 if (unlikely(!i915_gem_object_has_struct_page(obj)))
2840 return ERR_PTR(-ENXIO);
0a798eb9 2841
1233e2db 2842 ret = mutex_lock_interruptible(&obj->mm.lock);
0a798eb9
CW
2843 if (ret)
2844 return ERR_PTR(ret);
2845
a575c676
CW
2846 pinned = !(type & I915_MAP_OVERRIDE);
2847 type &= ~I915_MAP_OVERRIDE;
2848
1233e2db 2849 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
f1fa4f44 2850 if (unlikely(!i915_gem_object_has_pages(obj))) {
88c880bb
CW
2851 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2852
2c3a3f44
CW
2853 ret = ____i915_gem_object_get_pages(obj);
2854 if (ret)
2855 goto err_unlock;
1233e2db 2856
2c3a3f44
CW
2857 smp_mb__before_atomic();
2858 }
2859 atomic_inc(&obj->mm.pages_pin_count);
1233e2db
CW
2860 pinned = false;
2861 }
f1fa4f44 2862 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
0a798eb9 2863
0ce81788 2864 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
d31d7cb1
CW
2865 if (ptr && has_type != type) {
2866 if (pinned) {
2867 ret = -EBUSY;
1233e2db 2868 goto err_unpin;
0a798eb9 2869 }
d31d7cb1
CW
2870
2871 if (is_vmalloc_addr(ptr))
2872 vunmap(ptr);
2873 else
2874 kunmap(kmap_to_page(ptr));
2875
a4f5ea64 2876 ptr = obj->mm.mapping = NULL;
0a798eb9
CW
2877 }
2878
d31d7cb1
CW
2879 if (!ptr) {
2880 ptr = i915_gem_object_map(obj, type);
2881 if (!ptr) {
2882 ret = -ENOMEM;
1233e2db 2883 goto err_unpin;
d31d7cb1
CW
2884 }
2885
0ce81788 2886 obj->mm.mapping = page_pack_bits(ptr, type);
d31d7cb1
CW
2887 }
2888
1233e2db
CW
2889out_unlock:
2890 mutex_unlock(&obj->mm.lock);
d31d7cb1
CW
2891 return ptr;
2892
1233e2db
CW
2893err_unpin:
2894 atomic_dec(&obj->mm.pages_pin_count);
2895err_unlock:
2896 ptr = ERR_PTR(ret);
2897 goto out_unlock;
0a798eb9
CW
2898}
2899
7c55e2c5
CW
2900static int
2901i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2902 const struct drm_i915_gem_pwrite *arg)
2903{
2904 struct address_space *mapping = obj->base.filp->f_mapping;
2905 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2906 u64 remain, offset;
2907 unsigned int pg;
2908
2909 /* Before we instantiate/pin the backing store for our use, we
2910 * can prepopulate the shmemfs filp efficiently using a write into
2911 * the pagecache. We avoid the penalty of instantiating all the
2912 * pages, important if the user is just writing to a few and never
2913 * uses the object on the GPU, and using a direct write into shmemfs
2914 * allows it to avoid the cost of retrieving a page (either swapin
2915 * or clearing-before-use) before it is overwritten.
2916 */
f1fa4f44 2917 if (i915_gem_object_has_pages(obj))
7c55e2c5
CW
2918 return -ENODEV;
2919
a6d65e45
CW
2920 if (obj->mm.madv != I915_MADV_WILLNEED)
2921 return -EFAULT;
2922
7c55e2c5
CW
2923 /* Before the pages are instantiated the object is treated as being
2924 * in the CPU domain. The pages will be clflushed as required before
2925 * use, and we can freely write into the pages directly. If userspace
2926 * races pwrite with any other operation; corruption will ensue -
2927 * that is userspace's prerogative!
2928 */
2929
2930 remain = arg->size;
2931 offset = arg->offset;
2932 pg = offset_in_page(offset);
2933
2934 do {
2935 unsigned int len, unwritten;
2936 struct page *page;
2937 void *data, *vaddr;
2938 int err;
2939
2940 len = PAGE_SIZE - pg;
2941 if (len > remain)
2942 len = remain;
2943
2944 err = pagecache_write_begin(obj->base.filp, mapping,
2945 offset, len, 0,
2946 &page, &data);
2947 if (err < 0)
2948 return err;
2949
2950 vaddr = kmap(page);
2951 unwritten = copy_from_user(vaddr + pg, user_data, len);
2952 kunmap(page);
2953
2954 err = pagecache_write_end(obj->base.filp, mapping,
2955 offset, len, len - unwritten,
2956 page, data);
2957 if (err < 0)
2958 return err;
2959
2960 if (unwritten)
2961 return -EFAULT;
2962
2963 remain -= len;
2964 user_data += len;
2965 offset += len;
2966 pg = 0;
2967 } while (remain);
2968
2969 return 0;
2970}
2971
14921f3c
MK
2972static void i915_gem_client_mark_guilty(struct drm_i915_file_private *file_priv,
2973 const struct i915_gem_context *ctx)
2974{
2975 unsigned int score;
2976 unsigned long prev_hang;
2977
2978 if (i915_gem_context_is_banned(ctx))
2979 score = I915_CLIENT_SCORE_CONTEXT_BAN;
2980 else
2981 score = 0;
2982
2983 prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
2984 if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
2985 score += I915_CLIENT_SCORE_HANG_FAST;
2986
2987 if (score) {
2988 atomic_add(score, &file_priv->ban_score);
2989
2990 DRM_DEBUG_DRIVER("client %s: gained %u ban score, now %u\n",
2991 ctx->name, score,
2992 atomic_read(&file_priv->ban_score));
2993 }
2994}
2995
e5e1fc47 2996static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
aa60c664 2997{
14921f3c
MK
2998 unsigned int score;
2999 bool banned, bannable;
b083a087 3000
77b25a97 3001 atomic_inc(&ctx->guilty_count);
b083a087 3002
14921f3c
MK
3003 bannable = i915_gem_context_is_bannable(ctx);
3004 score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
3005 banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
24eae08d 3006
14921f3c
MK
3007 /* Cool contexts don't accumulate client ban score */
3008 if (!bannable)
b083a087
MK
3009 return;
3010
bcc2661e
CW
3011 if (banned) {
3012 DRM_DEBUG_DRIVER("context %s: guilty %d, score %u, banned\n",
3013 ctx->name, atomic_read(&ctx->guilty_count),
3014 score);
14921f3c 3015 i915_gem_context_set_banned(ctx);
bcc2661e 3016 }
14921f3c
MK
3017
3018 if (!IS_ERR_OR_NULL(ctx->file_priv))
3019 i915_gem_client_mark_guilty(ctx->file_priv, ctx);
e5e1fc47
MK
3020}
3021
3022static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
3023{
77b25a97 3024 atomic_inc(&ctx->active_count);
aa60c664
MK
3025}
3026
e61e0f51 3027struct i915_request *
0bc40be8 3028i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 3029{
e61e0f51 3030 struct i915_request *request, *active = NULL;
754c9fd5 3031 unsigned long flags;
4db080f9 3032
cc7cc534
CW
3033 /*
3034 * We are called by the error capture, reset and to dump engine
3035 * state at random points in time. In particular, note that neither is
3036 * crucially ordered with an interrupt. After a hang, the GPU is dead
3037 * and we assume that no more writes can happen (we waited long enough
3038 * for all writes that were in transaction to be flushed) - adding an
f69a02c9
CW
3039 * extra delay for a recent interrupt is pointless. Hence, we do
3040 * not need an engine->irq_seqno_barrier() before the seqno reads.
cc7cc534
CW
3041 * At all other times, we must assume the GPU is still running, but
3042 * we only care about the snapshot of this moment.
f69a02c9 3043 */
a89d1f92
CW
3044 spin_lock_irqsave(&engine->timeline.lock, flags);
3045 list_for_each_entry(request, &engine->timeline.requests, link) {
e61e0f51 3046 if (__i915_request_completed(request, request->global_seqno))
4db080f9 3047 continue;
aa60c664 3048
754c9fd5
CW
3049 active = request;
3050 break;
4db080f9 3051 }
a89d1f92 3052 spin_unlock_irqrestore(&engine->timeline.lock, flags);
b6b0fac0 3053
754c9fd5 3054 return active;
b6b0fac0
MK
3055}
3056
a1ef70e1
MT
3057/*
3058 * Ensure irq handler finishes, and not run again.
3059 * Also return the active request so that we only search for it once.
3060 */
e61e0f51 3061struct i915_request *
a1ef70e1
MT
3062i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
3063{
5adfb772 3064 struct i915_request *request;
a1ef70e1 3065
1749d90f
CW
3066 /*
3067 * During the reset sequence, we must prevent the engine from
3068 * entering RC6. As the context state is undefined until we restart
3069 * the engine, if it does enter RC6 during the reset, the state
3070 * written to the powercontext is undefined and so we may lose
3071 * GPU state upon resume, i.e. fail to restart after a reset.
3072 */
3073 intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
3074
5adfb772 3075 request = engine->reset.prepare(engine);
d1d1ebf4
CW
3076 if (request && request->fence.error == -EIO)
3077 request = ERR_PTR(-EIO); /* Previous reset failed! */
a1ef70e1
MT
3078
3079 return request;
3080}
3081
0e178aef 3082int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
4c965543
CW
3083{
3084 struct intel_engine_cs *engine;
e61e0f51 3085 struct i915_request *request;
4c965543 3086 enum intel_engine_id id;
0e178aef 3087 int err = 0;
4c965543 3088
0e178aef 3089 for_each_engine(engine, dev_priv, id) {
a1ef70e1
MT
3090 request = i915_gem_reset_prepare_engine(engine);
3091 if (IS_ERR(request)) {
3092 err = PTR_ERR(request);
3093 continue;
0e178aef 3094 }
c64992e0
MT
3095
3096 engine->hangcheck.active_request = request;
0e178aef
CW
3097 }
3098
4c965543 3099 i915_gem_revoke_fences(dev_priv);
c37d5728 3100 intel_uc_sanitize(dev_priv);
0e178aef
CW
3101
3102 return err;
4c965543
CW
3103}
3104
e61e0f51 3105static void engine_skip_context(struct i915_request *request)
36193acd
MK
3106{
3107 struct intel_engine_cs *engine = request->engine;
4e0d64db 3108 struct i915_gem_context *hung_ctx = request->gem_context;
a89d1f92 3109 struct i915_timeline *timeline = request->timeline;
36193acd
MK
3110 unsigned long flags;
3111
a89d1f92 3112 GEM_BUG_ON(timeline == &engine->timeline);
36193acd 3113
a89d1f92 3114 spin_lock_irqsave(&engine->timeline.lock, flags);
890fd185 3115 spin_lock(&timeline->lock);
36193acd 3116
a89d1f92 3117 list_for_each_entry_continue(request, &engine->timeline.requests, link)
4e0d64db 3118 if (request->gem_context == hung_ctx)
6dd7526f 3119 i915_request_skip(request, -EIO);
36193acd
MK
3120
3121 list_for_each_entry(request, &timeline->requests, link)
6dd7526f 3122 i915_request_skip(request, -EIO);
36193acd
MK
3123
3124 spin_unlock(&timeline->lock);
a89d1f92 3125 spin_unlock_irqrestore(&engine->timeline.lock, flags);
36193acd
MK
3126}
3127
d1d1ebf4 3128/* Returns the request if it was guilty of the hang */
e61e0f51 3129static struct i915_request *
d1d1ebf4 3130i915_gem_reset_request(struct intel_engine_cs *engine,
bba0869b
CW
3131 struct i915_request *request,
3132 bool stalled)
61da5362 3133{
71895a08
MK
3134 /* The guilty request will get skipped on a hung engine.
3135 *
3136 * Users of client default contexts do not rely on logical
3137 * state preserved between batches so it is safe to execute
3138 * queued requests following the hang. Non default contexts
3139 * rely on preserved state, so skipping a batch loses the
3140 * evolution of the state and it needs to be considered corrupted.
3141 * Executing more queued batches on top of corrupted state is
3142 * risky. But we take the risk by trying to advance through
3143 * the queued requests in order to make the client behaviour
3144 * more predictable around resets, by not throwing away random
3145 * amount of batches it has prepared for execution. Sophisticated
3146 * clients can use gem_reset_stats_ioctl and dma fence status
3147 * (exported via sync_file info ioctl on explicit fences) to observe
3148 * when it loses the context state and should rebuild accordingly.
3149 *
3150 * The context ban, and ultimately the client ban, mechanism are safety
3151 * valves if client submission ends up resulting in nothing more than
3152 * subsequent hangs.
3153 */
3154
bba0869b
CW
3155 if (i915_request_completed(request)) {
3156 GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
3157 engine->name, request->global_seqno,
3158 request->fence.context, request->fence.seqno,
3159 intel_engine_get_seqno(engine));
3160 stalled = false;
3161 }
3162
3163 if (stalled) {
4e0d64db 3164 i915_gem_context_mark_guilty(request->gem_context);
6dd7526f 3165 i915_request_skip(request, -EIO);
d1d1ebf4
CW
3166
3167 /* If this context is now banned, skip all pending requests. */
4e0d64db 3168 if (i915_gem_context_is_banned(request->gem_context))
d1d1ebf4 3169 engine_skip_context(request);
61da5362 3170 } else {
d1d1ebf4
CW
3171 /*
3172 * Since this is not the hung engine, it may have advanced
3173 * since the hang declaration. Double check by refinding
3174 * the active request at the time of the reset.
3175 */
3176 request = i915_gem_find_active_request(engine);
3177 if (request) {
042ed2db
CW
3178 unsigned long flags;
3179
4e0d64db 3180 i915_gem_context_mark_innocent(request->gem_context);
d1d1ebf4
CW
3181 dma_fence_set_error(&request->fence, -EAGAIN);
3182
3183 /* Rewind the engine to replay the incomplete rq */
042ed2db 3184 spin_lock_irqsave(&engine->timeline.lock, flags);
d1d1ebf4 3185 request = list_prev_entry(request, link);
a89d1f92 3186 if (&request->link == &engine->timeline.requests)
d1d1ebf4 3187 request = NULL;
042ed2db 3188 spin_unlock_irqrestore(&engine->timeline.lock, flags);
d1d1ebf4 3189 }
61da5362
MK
3190 }
3191
d1d1ebf4 3192 return request;
61da5362
MK
3193}
3194
a1ef70e1 3195void i915_gem_reset_engine(struct intel_engine_cs *engine,
bba0869b
CW
3196 struct i915_request *request,
3197 bool stalled)
b6b0fac0 3198{
fcb1de54
CW
3199 /*
3200 * Make sure this write is visible before we re-enable the interrupt
3201 * handlers on another CPU, as tasklet_enable() resolves to just
3202 * a compiler barrier which is insufficient for our purpose here.
3203 */
3204 smp_store_mb(engine->irq_posted, 0);
ed454f2c 3205
d1d1ebf4 3206 if (request)
bba0869b 3207 request = i915_gem_reset_request(engine, request, stalled);
d1d1ebf4 3208
821ed7df 3209 /* Setup the CS to resume from the breadcrumb of the hung request */
5adfb772 3210 engine->reset.reset(engine, request);
4db080f9 3211}
aa60c664 3212
d0667e9c
CW
3213void i915_gem_reset(struct drm_i915_private *dev_priv,
3214 unsigned int stalled_mask)
4db080f9 3215{
821ed7df 3216 struct intel_engine_cs *engine;
3b3f1650 3217 enum intel_engine_id id;
608c1a52 3218
4c7d62c6
CW
3219 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3220
e61e0f51 3221 i915_retire_requests(dev_priv);
821ed7df 3222
2ae55738 3223 for_each_engine(engine, dev_priv, id) {
1fc44d9b 3224 struct intel_context *ce;
2ae55738 3225
bba0869b
CW
3226 i915_gem_reset_engine(engine,
3227 engine->hangcheck.active_request,
d0667e9c 3228 stalled_mask & ENGINE_MASK(id));
1fc44d9b
CW
3229 ce = fetch_and_zero(&engine->last_retired_context);
3230 if (ce)
3231 intel_context_unpin(ce);
7b6da818
CW
3232
3233 /*
3234 * Ostensibily, we always want a context loaded for powersaving,
3235 * so if the engine is idle after the reset, send a request
3236 * to load our scratch kernel_context.
3237 *
3238 * More mysteriously, if we leave the engine idle after a reset,
3239 * the next userspace batch may hang, with what appears to be
3240 * an incoherent read by the CS (presumably stale TLB). An
3241 * empty request appears sufficient to paper over the glitch.
3242 */
01b8fdc5 3243 if (intel_engine_is_idle(engine)) {
e61e0f51 3244 struct i915_request *rq;
7b6da818 3245
e61e0f51
CW
3246 rq = i915_request_alloc(engine,
3247 dev_priv->kernel_context);
7b6da818 3248 if (!IS_ERR(rq))
697b9a87 3249 i915_request_add(rq);
7b6da818 3250 }
2ae55738 3251 }
821ed7df 3252
4362f4f6 3253 i915_gem_restore_fences(dev_priv);
821ed7df
CW
3254}
3255
a1ef70e1
MT
3256void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3257{
5adfb772
CW
3258 engine->reset.finish(engine);
3259
1749d90f 3260 intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
a1ef70e1
MT
3261}
3262
d8027093
CW
3263void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3264{
1f7b847d
CW
3265 struct intel_engine_cs *engine;
3266 enum intel_engine_id id;
3267
d8027093 3268 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1f7b847d 3269
fe3288b5 3270 for_each_engine(engine, dev_priv, id) {
c64992e0 3271 engine->hangcheck.active_request = NULL;
a1ef70e1 3272 i915_gem_reset_finish_engine(engine);
fe3288b5 3273 }
d8027093
CW
3274}
3275
e61e0f51 3276static void nop_submit_request(struct i915_request *request)
af7a8ffa 3277{
d9b13c4d
CW
3278 GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3279 request->engine->name,
3280 request->fence.context, request->fence.seqno);
af7a8ffa
DV
3281 dma_fence_set_error(&request->fence, -EIO);
3282
e61e0f51 3283 i915_request_submit(request);
af7a8ffa
DV
3284}
3285
e61e0f51 3286static void nop_complete_submit_request(struct i915_request *request)
821ed7df 3287{
8d550824
CW
3288 unsigned long flags;
3289
d9b13c4d
CW
3290 GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3291 request->engine->name,
3292 request->fence.context, request->fence.seqno);
3cd9442f 3293 dma_fence_set_error(&request->fence, -EIO);
8d550824 3294
a89d1f92 3295 spin_lock_irqsave(&request->engine->timeline.lock, flags);
e61e0f51 3296 __i915_request_submit(request);
3dcf93f7 3297 intel_engine_init_global_seqno(request->engine, request->global_seqno);
a89d1f92 3298 spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
821ed7df
CW
3299}
3300
af7a8ffa 3301void i915_gem_set_wedged(struct drm_i915_private *i915)
821ed7df 3302{
af7a8ffa
DV
3303 struct intel_engine_cs *engine;
3304 enum intel_engine_id id;
3305
d9b13c4d
CW
3306 GEM_TRACE("start\n");
3307
7f961d79 3308 if (GEM_SHOW_DEBUG()) {
559e040f
CW
3309 struct drm_printer p = drm_debug_printer(__func__);
3310
3311 for_each_engine(engine, i915, id)
3312 intel_engine_dump(engine, &p, "%s\n", engine->name);
3313 }
3314
3970c65c
CW
3315 if (test_and_set_bit(I915_WEDGED, &i915->gpu_error.flags))
3316 goto out;
0d73e7a0 3317
af7a8ffa
DV
3318 /*
3319 * First, stop submission to hw, but do not yet complete requests by
3320 * rolling the global seqno forward (since this would complete requests
3321 * for which we haven't set the fence error to EIO yet).
3322 */
963ddd63
CW
3323 for_each_engine(engine, i915, id) {
3324 i915_gem_reset_prepare_engine(engine);
47650db0 3325
af7a8ffa 3326 engine->submit_request = nop_submit_request;
47650db0 3327 engine->schedule = NULL;
963ddd63 3328 }
47650db0 3329 i915->caps.scheduler = 0;
af7a8ffa 3330
ac697ae8 3331 /* Even if the GPU reset fails, it should still stop the engines */
ec5b65a9
CW
3332 if (INTEL_GEN(i915) >= 5)
3333 intel_gpu_reset(i915, ALL_ENGINES);
ac697ae8 3334
af7a8ffa
DV
3335 /*
3336 * Make sure no one is running the old callback before we proceed with
3337 * cancelling requests and resetting the completion tracking. Otherwise
3338 * we might submit a request to the hardware which never completes.
20e4933c 3339 */
af7a8ffa 3340 synchronize_rcu();
70c2a24d 3341
af7a8ffa
DV
3342 for_each_engine(engine, i915, id) {
3343 /* Mark all executing requests as skipped */
3344 engine->cancel_requests(engine);
5e32d748 3345
af7a8ffa
DV
3346 /*
3347 * Only once we've force-cancelled all in-flight requests can we
3348 * start to complete all requests.
3349 */
3350 engine->submit_request = nop_complete_submit_request;
3351 }
3352
3353 /*
3354 * Make sure no request can slip through without getting completed by
3355 * either this call here to intel_engine_init_global_seqno, or the one
3356 * in nop_complete_submit_request.
5e32d748 3357 */
af7a8ffa 3358 synchronize_rcu();
673a394b 3359
af7a8ffa
DV
3360 for_each_engine(engine, i915, id) {
3361 unsigned long flags;
673a394b 3362
0d73e7a0
CW
3363 /*
3364 * Mark all pending requests as complete so that any concurrent
af7a8ffa
DV
3365 * (lockless) lookup doesn't try and wait upon the request as we
3366 * reset it.
3367 */
a89d1f92 3368 spin_lock_irqsave(&engine->timeline.lock, flags);
af7a8ffa
DV
3369 intel_engine_init_global_seqno(engine,
3370 intel_engine_last_submit(engine));
a89d1f92 3371 spin_unlock_irqrestore(&engine->timeline.lock, flags);
963ddd63
CW
3372
3373 i915_gem_reset_finish_engine(engine);
af7a8ffa 3374 }
20e4933c 3375
3970c65c 3376out:
d9b13c4d
CW
3377 GEM_TRACE("end\n");
3378
3d7adbbf 3379 wake_up_all(&i915->gpu_error.reset_queue);
673a394b
EA
3380}
3381
2e8f9d32
CW
3382bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3383{
a89d1f92 3384 struct i915_timeline *tl;
2e8f9d32
CW
3385
3386 lockdep_assert_held(&i915->drm.struct_mutex);
3387 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3388 return true;
3389
d9b13c4d
CW
3390 GEM_TRACE("start\n");
3391
2d4ecace
CW
3392 /*
3393 * Before unwedging, make sure that all pending operations
2e8f9d32
CW
3394 * are flushed and errored out - we may have requests waiting upon
3395 * third party fences. We marked all inflight requests as EIO, and
3396 * every execbuf since returned EIO, for consistency we want all
3397 * the currently pending requests to also be marked as EIO, which
3398 * is done inside our nop_submit_request - and so we must wait.
3399 *
3400 * No more can be submitted until we reset the wedged bit.
3401 */
3402 list_for_each_entry(tl, &i915->gt.timelines, link) {
a89d1f92 3403 struct i915_request *rq;
2e8f9d32 3404
a89d1f92
CW
3405 rq = i915_gem_active_peek(&tl->last_request,
3406 &i915->drm.struct_mutex);
3407 if (!rq)
3408 continue;
2e8f9d32 3409
a89d1f92
CW
3410 /*
3411 * We can't use our normal waiter as we want to
3412 * avoid recursively trying to handle the current
3413 * reset. The basic dma_fence_default_wait() installs
3414 * a callback for dma_fence_signal(), which is
3415 * triggered by our nop handler (indirectly, the
3416 * callback enables the signaler thread which is
3417 * woken by the nop_submit_request() advancing the seqno
3418 * and when the seqno passes the fence, the signaler
3419 * then signals the fence waking us up).
3420 */
3421 if (dma_fence_default_wait(&rq->fence, true,
3422 MAX_SCHEDULE_TIMEOUT) < 0)
3423 return false;
2e8f9d32 3424 }
2d4ecace
CW
3425 i915_retire_requests(i915);
3426 GEM_BUG_ON(i915->gt.active_requests);
2e8f9d32 3427
2d4ecace
CW
3428 /*
3429 * Undo nop_submit_request. We prevent all new i915 requests from
2e8f9d32
CW
3430 * being queued (by disallowing execbuf whilst wedged) so having
3431 * waited for all active requests above, we know the system is idle
3432 * and do not have to worry about a thread being inside
3433 * engine->submit_request() as we swap over. So unlike installing
3434 * the nop_submit_request on reset, we can do this from normal
3435 * context and do not require stop_machine().
3436 */
3437 intel_engines_reset_default_submission(i915);
36703e79 3438 i915_gem_contexts_lost(i915);
2e8f9d32 3439
d9b13c4d
CW
3440 GEM_TRACE("end\n");
3441
2e8f9d32
CW
3442 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3443 clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3444
3445 return true;
3446}
3447
75ef9da2 3448static void
673a394b
EA
3449i915_gem_retire_work_handler(struct work_struct *work)
3450{
b29c19b6 3451 struct drm_i915_private *dev_priv =
67d97da3 3452 container_of(work, typeof(*dev_priv), gt.retire_work.work);
91c8a326 3453 struct drm_device *dev = &dev_priv->drm;
673a394b 3454
891b48cf 3455 /* Come back later if the device is busy... */
b29c19b6 3456 if (mutex_trylock(&dev->struct_mutex)) {
e61e0f51 3457 i915_retire_requests(dev_priv);
b29c19b6 3458 mutex_unlock(&dev->struct_mutex);
673a394b 3459 }
67d97da3 3460
88923048
CW
3461 /*
3462 * Keep the retire handler running until we are finally idle.
67d97da3
CW
3463 * We do not need to do this test under locking as in the worst-case
3464 * we queue the retire worker once too often.
3465 */
88923048 3466 if (READ_ONCE(dev_priv->gt.awake))
67d97da3
CW
3467 queue_delayed_work(dev_priv->wq,
3468 &dev_priv->gt.retire_work,
bcb45086 3469 round_jiffies_up_relative(HZ));
b29c19b6 3470}
0a58705b 3471
84a10749
CW
3472static void shrink_caches(struct drm_i915_private *i915)
3473{
3474 /*
3475 * kmem_cache_shrink() discards empty slabs and reorders partially
3476 * filled slabs to prioritise allocating from the mostly full slabs,
3477 * with the aim of reducing fragmentation.
3478 */
3479 kmem_cache_shrink(i915->priorities);
3480 kmem_cache_shrink(i915->dependencies);
3481 kmem_cache_shrink(i915->requests);
3482 kmem_cache_shrink(i915->luts);
3483 kmem_cache_shrink(i915->vmas);
3484 kmem_cache_shrink(i915->objects);
3485}
3486
3487struct sleep_rcu_work {
3488 union {
3489 struct rcu_head rcu;
3490 struct work_struct work;
3491 };
3492 struct drm_i915_private *i915;
3493 unsigned int epoch;
3494};
3495
3496static inline bool
3497same_epoch(struct drm_i915_private *i915, unsigned int epoch)
3498{
3499 /*
3500 * There is a small chance that the epoch wrapped since we started
3501 * sleeping. If we assume that epoch is at least a u32, then it will
3502 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
3503 */
3504 return epoch == READ_ONCE(i915->gt.epoch);
3505}
3506
3507static void __sleep_work(struct work_struct *work)
3508{
3509 struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
3510 struct drm_i915_private *i915 = s->i915;
3511 unsigned int epoch = s->epoch;
3512
3513 kfree(s);
3514 if (same_epoch(i915, epoch))
3515 shrink_caches(i915);
3516}
3517
3518static void __sleep_rcu(struct rcu_head *rcu)
3519{
3520 struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
3521 struct drm_i915_private *i915 = s->i915;
3522
3523 if (same_epoch(i915, s->epoch)) {
3524 INIT_WORK(&s->work, __sleep_work);
3525 queue_work(i915->wq, &s->work);
3526 } else {
3527 kfree(s);
3528 }
3529}
3530
5427f207
CW
3531static inline bool
3532new_requests_since_last_retire(const struct drm_i915_private *i915)
3533{
3534 return (READ_ONCE(i915->gt.active_requests) ||
3535 work_pending(&i915->gt.idle_work.work));
3536}
3537
1934f5de
CW
3538static void assert_kernel_context_is_current(struct drm_i915_private *i915)
3539{
3540 struct intel_engine_cs *engine;
3541 enum intel_engine_id id;
3542
3543 if (i915_terminally_wedged(&i915->gpu_error))
3544 return;
3545
3546 GEM_BUG_ON(i915->gt.active_requests);
3547 for_each_engine(engine, i915, id) {
3548 GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
3549 GEM_BUG_ON(engine->last_retired_context !=
3550 to_intel_context(i915->kernel_context, engine));
3551 }
3552}
3553
b29c19b6
CW
3554static void
3555i915_gem_idle_work_handler(struct work_struct *work)
3556{
3557 struct drm_i915_private *dev_priv =
67d97da3 3558 container_of(work, typeof(*dev_priv), gt.idle_work.work);
84a10749 3559 unsigned int epoch = I915_EPOCH_INVALID;
67d97da3
CW
3560 bool rearm_hangcheck;
3561
3562 if (!READ_ONCE(dev_priv->gt.awake))
3563 return;
3564
4dfacb0b
CW
3565 if (READ_ONCE(dev_priv->gt.active_requests))
3566 return;
3567
3568 /*
3569 * Flush out the last user context, leaving only the pinned
3570 * kernel context resident. When we are idling on the kernel_context,
3571 * no more new requests (with a context switch) are emitted and we
3572 * can finally rest. A consequence is that the idle work handler is
3573 * always called at least twice before idling (and if the system is
3574 * idle that implies a round trip through the retire worker).
3575 */
3576 mutex_lock(&dev_priv->drm.struct_mutex);
3577 i915_gem_switch_to_kernel_context(dev_priv);
3578 mutex_unlock(&dev_priv->drm.struct_mutex);
3579
3580 GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
3581 READ_ONCE(dev_priv->gt.active_requests));
3582
0cb5670b
ID
3583 /*
3584 * Wait for last execlists context complete, but bail out in case a
ffed7bd2
CW
3585 * new request is submitted. As we don't trust the hardware, we
3586 * continue on if the wait times out. This is necessary to allow
3587 * the machine to suspend even if the hardware dies, and we will
3588 * try to recover in resume (after depriving the hardware of power,
3589 * it may be in a better mmod).
0cb5670b 3590 */
ffed7bd2
CW
3591 __wait_for(if (new_requests_since_last_retire(dev_priv)) return,
3592 intel_engines_are_idle(dev_priv),
3593 I915_IDLE_ENGINES_TIMEOUT * 1000,
3594 10, 500);
67d97da3
CW
3595
3596 rearm_hangcheck =
3597 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3598
5427f207 3599 if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
67d97da3
CW
3600 /* Currently busy, come back later */
3601 mod_delayed_work(dev_priv->wq,
3602 &dev_priv->gt.idle_work,
3603 msecs_to_jiffies(50));
3604 goto out_rearm;
3605 }
3606
93c97dc1
ID
3607 /*
3608 * New request retired after this work handler started, extend active
3609 * period until next instance of the work.
3610 */
5427f207 3611 if (new_requests_since_last_retire(dev_priv))
67d97da3 3612 goto out_unlock;
b29c19b6 3613
e4d2006f 3614 epoch = __i915_gem_park(dev_priv);
35c94185 3615
1934f5de
CW
3616 assert_kernel_context_is_current(dev_priv);
3617
67d97da3 3618 rearm_hangcheck = false;
67d97da3 3619out_unlock:
5427f207 3620 mutex_unlock(&dev_priv->drm.struct_mutex);
b29c19b6 3621
67d97da3
CW
3622out_rearm:
3623 if (rearm_hangcheck) {
3624 GEM_BUG_ON(!dev_priv->gt.awake);
3625 i915_queue_hangcheck(dev_priv);
35c94185 3626 }
84a10749
CW
3627
3628 /*
3629 * When we are idle, it is an opportune time to reap our caches.
3630 * However, we have many objects that utilise RCU and the ordered
3631 * i915->wq that this work is executing on. To try and flush any
3632 * pending frees now we are idle, we first wait for an RCU grace
3633 * period, and then queue a task (that will run last on the wq) to
3634 * shrink and re-optimize the caches.
3635 */
3636 if (same_epoch(dev_priv, epoch)) {
3637 struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
3638 if (s) {
3639 s->i915 = dev_priv;
3640 s->epoch = epoch;
3641 call_rcu(&s->rcu, __sleep_rcu);
3642 }
3643 }
673a394b
EA
3644}
3645
b1f788c6
CW
3646void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3647{
d1b48c1e 3648 struct drm_i915_private *i915 = to_i915(gem->dev);
b1f788c6
CW
3649 struct drm_i915_gem_object *obj = to_intel_bo(gem);
3650 struct drm_i915_file_private *fpriv = file->driver_priv;
d1b48c1e 3651 struct i915_lut_handle *lut, *ln;
b1f788c6 3652
d1b48c1e
CW
3653 mutex_lock(&i915->drm.struct_mutex);
3654
3655 list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3656 struct i915_gem_context *ctx = lut->ctx;
3657 struct i915_vma *vma;
3658
432295d7 3659 GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
d1b48c1e
CW
3660 if (ctx->file_priv != fpriv)
3661 continue;
3662
3663 vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3ffff017
CW
3664 GEM_BUG_ON(vma->obj != obj);
3665
3666 /* We allow the process to have multiple handles to the same
3667 * vma, in the same fd namespace, by virtue of flink/open.
3668 */
3669 GEM_BUG_ON(!vma->open_count);
3670 if (!--vma->open_count && !i915_vma_is_ggtt(vma))
b1f788c6 3671 i915_vma_close(vma);
f8a7fde4 3672
d1b48c1e
CW
3673 list_del(&lut->obj_link);
3674 list_del(&lut->ctx_link);
4ff4b44c 3675
d1b48c1e
CW
3676 kmem_cache_free(i915->luts, lut);
3677 __i915_gem_object_release_unless_active(obj);
f8a7fde4 3678 }
d1b48c1e
CW
3679
3680 mutex_unlock(&i915->drm.struct_mutex);
b1f788c6
CW
3681}
3682
e95433c7
CW
3683static unsigned long to_wait_timeout(s64 timeout_ns)
3684{
3685 if (timeout_ns < 0)
3686 return MAX_SCHEDULE_TIMEOUT;
3687
3688 if (timeout_ns == 0)
3689 return 0;
3690
3691 return nsecs_to_jiffies_timeout(timeout_ns);
3692}
3693
23ba4fd0
BW
3694/**
3695 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
3696 * @dev: drm device pointer
3697 * @data: ioctl data blob
3698 * @file: drm file pointer
23ba4fd0
BW
3699 *
3700 * Returns 0 if successful, else an error is returned with the remaining time in
3701 * the timeout parameter.
3702 * -ETIME: object is still busy after timeout
3703 * -ERESTARTSYS: signal interrupted the wait
3704 * -ENONENT: object doesn't exist
3705 * Also possible, but rare:
b8050148 3706 * -EAGAIN: incomplete, restart syscall
23ba4fd0
BW
3707 * -ENOMEM: damn
3708 * -ENODEV: Internal IRQ fail
3709 * -E?: The add request failed
3710 *
3711 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3712 * non-zero timeout parameter the wait ioctl will wait for the given number of
3713 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3714 * without holding struct_mutex the object may become re-busied before this
3715 * function completes. A similar but shorter * race condition exists in the busy
3716 * ioctl
3717 */
3718int
3719i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3720{
3721 struct drm_i915_gem_wait *args = data;
3722 struct drm_i915_gem_object *obj;
e95433c7
CW
3723 ktime_t start;
3724 long ret;
23ba4fd0 3725
11b5d511
DV
3726 if (args->flags != 0)
3727 return -EINVAL;
3728
03ac0642 3729 obj = i915_gem_object_lookup(file, args->bo_handle);
033d549b 3730 if (!obj)
23ba4fd0 3731 return -ENOENT;
23ba4fd0 3732
e95433c7
CW
3733 start = ktime_get();
3734
3735 ret = i915_gem_object_wait(obj,
3736 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3737 to_wait_timeout(args->timeout_ns),
3738 to_rps_client(file));
3739
3740 if (args->timeout_ns > 0) {
3741 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3742 if (args->timeout_ns < 0)
3743 args->timeout_ns = 0;
c1d2061b
CW
3744
3745 /*
3746 * Apparently ktime isn't accurate enough and occasionally has a
3747 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3748 * things up to make the test happy. We allow up to 1 jiffy.
3749 *
3750 * This is a regression from the timespec->ktime conversion.
3751 */
3752 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3753 args->timeout_ns = 0;
b8050148
CW
3754
3755 /* Asked to wait beyond the jiffie/scheduler precision? */
3756 if (ret == -ETIME && args->timeout_ns)
3757 ret = -EAGAIN;
b4716185
CW
3758 }
3759
f0cd5182 3760 i915_gem_object_put(obj);
ff865885 3761 return ret;
23ba4fd0
BW
3762}
3763
ec625fb9
CW
3764static long wait_for_timeline(struct i915_timeline *tl,
3765 unsigned int flags, long timeout)
4df2faf4 3766{
0606035f 3767 struct i915_request *rq;
0606035f
CW
3768
3769 rq = i915_gem_active_get_unlocked(&tl->last_request);
3770 if (!rq)
ec625fb9 3771 return timeout;
0606035f
CW
3772
3773 /*
3774 * "Race-to-idle".
3775 *
3776 * Switching to the kernel context is often used a synchronous
3777 * step prior to idling, e.g. in suspend for flushing all
3778 * current operations to memory before sleeping. These we
3779 * want to complete as quickly as possible to avoid prolonged
3780 * stalls, so allow the gpu to boost to maximum clocks.
3781 */
3782 if (flags & I915_WAIT_FOR_IDLE_BOOST)
3783 gen6_rps_boost(rq, NULL);
3784
ec625fb9 3785 timeout = i915_request_wait(rq, flags, timeout);
0606035f
CW
3786 i915_request_put(rq);
3787
ec625fb9 3788 return timeout;
73cb9701
CW
3789}
3790
25112b64
CW
3791static int wait_for_engines(struct drm_i915_private *i915)
3792{
ee42c00e 3793 if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
59e4b19d
CW
3794 dev_err(i915->drm.dev,
3795 "Failed to idle engines, declaring wedged!\n");
629820fc 3796 GEM_TRACE_DUMP();
cad9946c
CW
3797 i915_gem_set_wedged(i915);
3798 return -EIO;
25112b64
CW
3799 }
3800
3801 return 0;
3802}
3803
ec625fb9
CW
3804int i915_gem_wait_for_idle(struct drm_i915_private *i915,
3805 unsigned int flags, long timeout)
73cb9701 3806{
ec625fb9
CW
3807 GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
3808 flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
3809 timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
09a4c02e 3810
863e9fde
CW
3811 /* If the device is asleep, we have no requests outstanding */
3812 if (!READ_ONCE(i915->gt.awake))
3813 return 0;
3814
9caa34aa 3815 if (flags & I915_WAIT_LOCKED) {
a89d1f92
CW
3816 struct i915_timeline *tl;
3817 int err;
9caa34aa
CW
3818
3819 lockdep_assert_held(&i915->drm.struct_mutex);
3820
3821 list_for_each_entry(tl, &i915->gt.timelines, link) {
ec625fb9
CW
3822 timeout = wait_for_timeline(tl, flags, timeout);
3823 if (timeout < 0)
3824 return timeout;
9caa34aa 3825 }
c1e63f6d
CW
3826 if (GEM_SHOW_DEBUG() && !timeout) {
3827 /* Presume that timeout was non-zero to begin with! */
3828 dev_warn(&i915->drm.pdev->dev,
3829 "Missed idle-completion interrupt!\n");
3830 GEM_TRACE_DUMP();
3831 }
a61b47f6
CW
3832
3833 err = wait_for_engines(i915);
3834 if (err)
3835 return err;
3836
e61e0f51 3837 i915_retire_requests(i915);
09a4c02e 3838 GEM_BUG_ON(i915->gt.active_requests);
9caa34aa 3839 } else {
a89d1f92
CW
3840 struct intel_engine_cs *engine;
3841 enum intel_engine_id id;
4df2faf4 3842
a89d1f92 3843 for_each_engine(engine, i915, id) {
ec625fb9
CW
3844 struct i915_timeline *tl = &engine->timeline;
3845
3846 timeout = wait_for_timeline(tl, flags, timeout);
3847 if (timeout < 0)
3848 return timeout;
a89d1f92 3849 }
a89d1f92 3850 }
a61b47f6
CW
3851
3852 return 0;
4df2faf4
DV
3853}
3854
5a97bcc6
CW
3855static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3856{
e27ab73d
CW
3857 /*
3858 * We manually flush the CPU domain so that we can override and
3859 * force the flush for the display, and perform it asyncrhonously.
3860 */
3861 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3862 if (obj->cache_dirty)
3863 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
c0a51fd0 3864 obj->write_domain = 0;
5a97bcc6
CW
3865}
3866
3867void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3868{
bd3d2252 3869 if (!READ_ONCE(obj->pin_global))
5a97bcc6
CW
3870 return;
3871
3872 mutex_lock(&obj->base.dev->struct_mutex);
3873 __i915_gem_object_flush_for_display(obj);
3874 mutex_unlock(&obj->base.dev->struct_mutex);
3875}
3876
e22d8e3c
CW
3877/**
3878 * Moves a single object to the WC read, and possibly write domain.
3879 * @obj: object to act on
3880 * @write: ask for write access or read only
3881 *
3882 * This function returns when the move is complete, including waiting on
3883 * flushes to occur.
3884 */
3885int
3886i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3887{
3888 int ret;
3889
3890 lockdep_assert_held(&obj->base.dev->struct_mutex);
3891
3892 ret = i915_gem_object_wait(obj,
3893 I915_WAIT_INTERRUPTIBLE |
3894 I915_WAIT_LOCKED |
3895 (write ? I915_WAIT_ALL : 0),
3896 MAX_SCHEDULE_TIMEOUT,
3897 NULL);
3898 if (ret)
3899 return ret;
3900
c0a51fd0 3901 if (obj->write_domain == I915_GEM_DOMAIN_WC)
e22d8e3c
CW
3902 return 0;
3903
3904 /* Flush and acquire obj->pages so that we are coherent through
3905 * direct access in memory with previous cached writes through
3906 * shmemfs and that our cache domain tracking remains valid.
3907 * For example, if the obj->filp was moved to swap without us
3908 * being notified and releasing the pages, we would mistakenly
3909 * continue to assume that the obj remained out of the CPU cached
3910 * domain.
3911 */
3912 ret = i915_gem_object_pin_pages(obj);
3913 if (ret)
3914 return ret;
3915
3916 flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3917
3918 /* Serialise direct access to this object with the barriers for
3919 * coherent writes from the GPU, by effectively invalidating the
3920 * WC domain upon first access.
3921 */
c0a51fd0 3922 if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
e22d8e3c
CW
3923 mb();
3924
3925 /* It should now be out of any other write domains, and we can update
3926 * the domain values for our changes.
3927 */
c0a51fd0
CK
3928 GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3929 obj->read_domains |= I915_GEM_DOMAIN_WC;
e22d8e3c 3930 if (write) {
c0a51fd0
CK
3931 obj->read_domains = I915_GEM_DOMAIN_WC;
3932 obj->write_domain = I915_GEM_DOMAIN_WC;
e22d8e3c
CW
3933 obj->mm.dirty = true;
3934 }
3935
3936 i915_gem_object_unpin_pages(obj);
3937 return 0;
3938}
3939
2ef7eeaa
EA
3940/**
3941 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3942 * @obj: object to act on
3943 * @write: ask for write access or read only
2ef7eeaa
EA
3944 *
3945 * This function returns when the move is complete, including waiting on
3946 * flushes to occur.
3947 */
79e53945 3948int
2021746e 3949i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3950{
e47c68e9 3951 int ret;
2ef7eeaa 3952
e95433c7 3953 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3954
e95433c7
CW
3955 ret = i915_gem_object_wait(obj,
3956 I915_WAIT_INTERRUPTIBLE |
3957 I915_WAIT_LOCKED |
3958 (write ? I915_WAIT_ALL : 0),
3959 MAX_SCHEDULE_TIMEOUT,
3960 NULL);
88241785
CW
3961 if (ret)
3962 return ret;
3963
c0a51fd0 3964 if (obj->write_domain == I915_GEM_DOMAIN_GTT)
c13d87ea
CW
3965 return 0;
3966
43566ded
CW
3967 /* Flush and acquire obj->pages so that we are coherent through
3968 * direct access in memory with previous cached writes through
3969 * shmemfs and that our cache domain tracking remains valid.
3970 * For example, if the obj->filp was moved to swap without us
3971 * being notified and releasing the pages, we would mistakenly
3972 * continue to assume that the obj remained out of the CPU cached
3973 * domain.
3974 */
a4f5ea64 3975 ret = i915_gem_object_pin_pages(obj);
43566ded
CW
3976 if (ret)
3977 return ret;
3978
ef74921b 3979 flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
1c5d22f7 3980
d0a57789
CW
3981 /* Serialise direct access to this object with the barriers for
3982 * coherent writes from the GPU, by effectively invalidating the
3983 * GTT domain upon first access.
3984 */
c0a51fd0 3985 if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
d0a57789
CW
3986 mb();
3987
e47c68e9
EA
3988 /* It should now be out of any other write domains, and we can update
3989 * the domain values for our changes.
3990 */
c0a51fd0
CK
3991 GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3992 obj->read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3993 if (write) {
c0a51fd0
CK
3994 obj->read_domains = I915_GEM_DOMAIN_GTT;
3995 obj->write_domain = I915_GEM_DOMAIN_GTT;
a4f5ea64 3996 obj->mm.dirty = true;
2ef7eeaa
EA
3997 }
3998
a4f5ea64 3999 i915_gem_object_unpin_pages(obj);
e47c68e9
EA
4000 return 0;
4001}
4002
ef55f92a
CW
4003/**
4004 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
4005 * @obj: object to act on
4006 * @cache_level: new cache level to set for the object
ef55f92a
CW
4007 *
4008 * After this function returns, the object will be in the new cache-level
4009 * across all GTT and the contents of the backing storage will be coherent,
4010 * with respect to the new cache-level. In order to keep the backing storage
4011 * coherent for all users, we only allow a single cache level to be set
4012 * globally on the object and prevent it from being changed whilst the
4013 * hardware is reading from the object. That is if the object is currently
4014 * on the scanout it will be set to uncached (or equivalent display
4015 * cache coherency) and all non-MOCS GPU access will also be uncached so
4016 * that all direct access to the scanout remains coherent.
4017 */
e4ffd173
CW
4018int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4019 enum i915_cache_level cache_level)
4020{
aa653a68 4021 struct i915_vma *vma;
a6a7cc4b 4022 int ret;
e4ffd173 4023
4c7d62c6
CW
4024 lockdep_assert_held(&obj->base.dev->struct_mutex);
4025
e4ffd173 4026 if (obj->cache_level == cache_level)
a6a7cc4b 4027 return 0;
e4ffd173 4028
ef55f92a
CW
4029 /* Inspect the list of currently bound VMA and unbind any that would
4030 * be invalid given the new cache-level. This is principally to
4031 * catch the issue of the CS prefetch crossing page boundaries and
4032 * reading an invalid PTE on older architectures.
4033 */
aa653a68
CW
4034restart:
4035 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
4036 if (!drm_mm_node_allocated(&vma->node))
4037 continue;
4038
20dfbde4 4039 if (i915_vma_is_pinned(vma)) {
ef55f92a
CW
4040 DRM_DEBUG("can not change the cache level of pinned objects\n");
4041 return -EBUSY;
4042 }
4043
010e3e68
CW
4044 if (!i915_vma_is_closed(vma) &&
4045 i915_gem_valid_gtt_space(vma, cache_level))
aa653a68
CW
4046 continue;
4047
4048 ret = i915_vma_unbind(vma);
4049 if (ret)
4050 return ret;
4051
4052 /* As unbinding may affect other elements in the
4053 * obj->vma_list (due to side-effects from retiring
4054 * an active vma), play safe and restart the iterator.
4055 */
4056 goto restart;
42d6ab48
CW
4057 }
4058
ef55f92a
CW
4059 /* We can reuse the existing drm_mm nodes but need to change the
4060 * cache-level on the PTE. We could simply unbind them all and
4061 * rebind with the correct cache-level on next use. However since
4062 * we already have a valid slot, dma mapping, pages etc, we may as
4063 * rewrite the PTE in the belief that doing so tramples upon less
4064 * state and so involves less work.
4065 */
15717de2 4066 if (obj->bind_count) {
ef55f92a
CW
4067 /* Before we change the PTE, the GPU must not be accessing it.
4068 * If we wait upon the object, we know that all the bound
4069 * VMA are no longer active.
4070 */
e95433c7
CW
4071 ret = i915_gem_object_wait(obj,
4072 I915_WAIT_INTERRUPTIBLE |
4073 I915_WAIT_LOCKED |
4074 I915_WAIT_ALL,
4075 MAX_SCHEDULE_TIMEOUT,
4076 NULL);
e4ffd173
CW
4077 if (ret)
4078 return ret;
4079
0031fb96
TU
4080 if (!HAS_LLC(to_i915(obj->base.dev)) &&
4081 cache_level != I915_CACHE_NONE) {
ef55f92a
CW
4082 /* Access to snoopable pages through the GTT is
4083 * incoherent and on some machines causes a hard
4084 * lockup. Relinquish the CPU mmaping to force
4085 * userspace to refault in the pages and we can
4086 * then double check if the GTT mapping is still
4087 * valid for that pointer access.
4088 */
4089 i915_gem_release_mmap(obj);
4090
4091 /* As we no longer need a fence for GTT access,
4092 * we can relinquish it now (and so prevent having
4093 * to steal a fence from someone else on the next
4094 * fence request). Note GPU activity would have
4095 * dropped the fence as all snoopable access is
4096 * supposed to be linear.
4097 */
e2189dd0 4098 for_each_ggtt_vma(vma, obj) {
49ef5294
CW
4099 ret = i915_vma_put_fence(vma);
4100 if (ret)
4101 return ret;
4102 }
ef55f92a
CW
4103 } else {
4104 /* We either have incoherent backing store and
4105 * so no GTT access or the architecture is fully
4106 * coherent. In such cases, existing GTT mmaps
4107 * ignore the cache bit in the PTE and we can
4108 * rewrite it without confusing the GPU or having
4109 * to force userspace to fault back in its mmaps.
4110 */
e4ffd173
CW
4111 }
4112
1c7f4bca 4113 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
4114 if (!drm_mm_node_allocated(&vma->node))
4115 continue;
4116
4117 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4118 if (ret)
4119 return ret;
4120 }
e4ffd173
CW
4121 }
4122
1c7f4bca 4123 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b 4124 vma->node.color = cache_level;
b8f55be6 4125 i915_gem_object_set_cache_coherency(obj, cache_level);
e27ab73d 4126 obj->cache_dirty = true; /* Always invalidate stale cachelines */
2c22569b 4127
e4ffd173
CW
4128 return 0;
4129}
4130
199adf40
BW
4131int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4132 struct drm_file *file)
e6994aee 4133{
199adf40 4134 struct drm_i915_gem_caching *args = data;
e6994aee 4135 struct drm_i915_gem_object *obj;
fbbd37b3 4136 int err = 0;
e6994aee 4137
fbbd37b3
CW
4138 rcu_read_lock();
4139 obj = i915_gem_object_lookup_rcu(file, args->handle);
4140 if (!obj) {
4141 err = -ENOENT;
4142 goto out;
4143 }
e6994aee 4144
651d794f
CW
4145 switch (obj->cache_level) {
4146 case I915_CACHE_LLC:
4147 case I915_CACHE_L3_LLC:
4148 args->caching = I915_CACHING_CACHED;
4149 break;
4150
4257d3ba
CW
4151 case I915_CACHE_WT:
4152 args->caching = I915_CACHING_DISPLAY;
4153 break;
4154
651d794f
CW
4155 default:
4156 args->caching = I915_CACHING_NONE;
4157 break;
4158 }
fbbd37b3
CW
4159out:
4160 rcu_read_unlock();
4161 return err;
e6994aee
CW
4162}
4163
199adf40
BW
4164int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4165 struct drm_file *file)
e6994aee 4166{
9c870d03 4167 struct drm_i915_private *i915 = to_i915(dev);
199adf40 4168 struct drm_i915_gem_caching *args = data;
e6994aee
CW
4169 struct drm_i915_gem_object *obj;
4170 enum i915_cache_level level;
d65415df 4171 int ret = 0;
e6994aee 4172
199adf40
BW
4173 switch (args->caching) {
4174 case I915_CACHING_NONE:
e6994aee
CW
4175 level = I915_CACHE_NONE;
4176 break;
199adf40 4177 case I915_CACHING_CACHED:
e5756c10
ID
4178 /*
4179 * Due to a HW issue on BXT A stepping, GPU stores via a
4180 * snooped mapping may leave stale data in a corresponding CPU
4181 * cacheline, whereas normally such cachelines would get
4182 * invalidated.
4183 */
9c870d03 4184 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
e5756c10
ID
4185 return -ENODEV;
4186
e6994aee
CW
4187 level = I915_CACHE_LLC;
4188 break;
4257d3ba 4189 case I915_CACHING_DISPLAY:
9c870d03 4190 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4257d3ba 4191 break;
e6994aee
CW
4192 default:
4193 return -EINVAL;
4194 }
4195
d65415df
CW
4196 obj = i915_gem_object_lookup(file, args->handle);
4197 if (!obj)
4198 return -ENOENT;
4199
a03f395a
TZ
4200 /*
4201 * The caching mode of proxy object is handled by its generator, and
4202 * not allowed to be changed by userspace.
4203 */
4204 if (i915_gem_object_is_proxy(obj)) {
4205 ret = -ENXIO;
4206 goto out;
4207 }
4208
d65415df
CW
4209 if (obj->cache_level == level)
4210 goto out;
4211
4212 ret = i915_gem_object_wait(obj,
4213 I915_WAIT_INTERRUPTIBLE,
4214 MAX_SCHEDULE_TIMEOUT,
4215 to_rps_client(file));
3bc2913e 4216 if (ret)
d65415df 4217 goto out;
3bc2913e 4218
d65415df
CW
4219 ret = i915_mutex_lock_interruptible(dev);
4220 if (ret)
4221 goto out;
e6994aee
CW
4222
4223 ret = i915_gem_object_set_cache_level(obj, level);
e6994aee 4224 mutex_unlock(&dev->struct_mutex);
d65415df
CW
4225
4226out:
4227 i915_gem_object_put(obj);
e6994aee
CW
4228 return ret;
4229}
4230
b9241ea3 4231/*
07bcd99b
DP
4232 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
4233 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
4234 * (for pageflips). We only flush the caches while preparing the buffer for
4235 * display, the callers are responsible for frontbuffer flush.
b9241ea3 4236 */
058d88c4 4237struct i915_vma *
2da3b9b9
CW
4238i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4239 u32 alignment,
5935485f
CW
4240 const struct i915_ggtt_view *view,
4241 unsigned int flags)
b9241ea3 4242{
058d88c4 4243 struct i915_vma *vma;
b9241ea3
ZW
4244 int ret;
4245
4c7d62c6
CW
4246 lockdep_assert_held(&obj->base.dev->struct_mutex);
4247
bd3d2252 4248 /* Mark the global pin early so that we account for the
cc98b413
CW
4249 * display coherency whilst setting up the cache domains.
4250 */
bd3d2252 4251 obj->pin_global++;
cc98b413 4252
a7ef0640
EA
4253 /* The display engine is not coherent with the LLC cache on gen6. As
4254 * a result, we make sure that the pinning that is about to occur is
4255 * done with uncached PTEs. This is lowest common denominator for all
4256 * chipsets.
4257 *
4258 * However for gen6+, we could do better by using the GFDT bit instead
4259 * of uncaching, which would allow us to flush all the LLC-cached data
4260 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4261 */
651d794f 4262 ret = i915_gem_object_set_cache_level(obj,
8652744b
TU
4263 HAS_WT(to_i915(obj->base.dev)) ?
4264 I915_CACHE_WT : I915_CACHE_NONE);
058d88c4
CW
4265 if (ret) {
4266 vma = ERR_PTR(ret);
bd3d2252 4267 goto err_unpin_global;
058d88c4 4268 }
a7ef0640 4269
2da3b9b9
CW
4270 /* As the user may map the buffer once pinned in the display plane
4271 * (e.g. libkms for the bootup splash), we have to ensure that we
2efb813d
CW
4272 * always use map_and_fenceable for all scanout buffers. However,
4273 * it may simply be too big to fit into mappable, in which case
4274 * put it anyway and hope that userspace can cope (but always first
4275 * try to preserve the existing ABI).
2da3b9b9 4276 */
2efb813d 4277 vma = ERR_PTR(-ENOSPC);
5935485f
CW
4278 if ((flags & PIN_MAPPABLE) == 0 &&
4279 (!view || view->type == I915_GGTT_VIEW_NORMAL))
2efb813d 4280 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
5935485f
CW
4281 flags |
4282 PIN_MAPPABLE |
4283 PIN_NONBLOCK);
4284 if (IS_ERR(vma))
767a222e 4285 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
058d88c4 4286 if (IS_ERR(vma))
bd3d2252 4287 goto err_unpin_global;
2da3b9b9 4288
d8923dcf
CW
4289 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
4290
5a97bcc6 4291 __i915_gem_object_flush_for_display(obj);
b118c1e3 4292
2da3b9b9
CW
4293 /* It should now be out of any other write domains, and we can update
4294 * the domain values for our changes.
4295 */
c0a51fd0 4296 obj->read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3 4297
058d88c4 4298 return vma;
cc98b413 4299
bd3d2252
CW
4300err_unpin_global:
4301 obj->pin_global--;
058d88c4 4302 return vma;
cc98b413
CW
4303}
4304
4305void
058d88c4 4306i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
cc98b413 4307{
49d73912 4308 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4c7d62c6 4309
bd3d2252 4310 if (WARN_ON(vma->obj->pin_global == 0))
8a0c39b1
TU
4311 return;
4312
bd3d2252 4313 if (--vma->obj->pin_global == 0)
f51455d4 4314 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
e6617330 4315
383d5823 4316 /* Bump the LRU to try and avoid premature eviction whilst flipping */
befedbb7 4317 i915_gem_object_bump_inactive_ggtt(vma->obj);
383d5823 4318
058d88c4 4319 i915_vma_unpin(vma);
b9241ea3
ZW
4320}
4321
e47c68e9
EA
4322/**
4323 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
4324 * @obj: object to act on
4325 * @write: requesting write or read-only access
e47c68e9
EA
4326 *
4327 * This function returns when the move is complete, including waiting on
4328 * flushes to occur.
4329 */
dabdfe02 4330int
919926ae 4331i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4332{
e47c68e9
EA
4333 int ret;
4334
e95433c7 4335 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 4336
e95433c7
CW
4337 ret = i915_gem_object_wait(obj,
4338 I915_WAIT_INTERRUPTIBLE |
4339 I915_WAIT_LOCKED |
4340 (write ? I915_WAIT_ALL : 0),
4341 MAX_SCHEDULE_TIMEOUT,
4342 NULL);
88241785
CW
4343 if (ret)
4344 return ret;
4345
ef74921b 4346 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
2ef7eeaa 4347
e47c68e9 4348 /* Flush the CPU cache if it's still invalid. */
c0a51fd0 4349 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
57822dc6 4350 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
c0a51fd0 4351 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4352 }
4353
4354 /* It should now be out of any other write domains, and we can update
4355 * the domain values for our changes.
4356 */
c0a51fd0 4357 GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
e47c68e9
EA
4358
4359 /* If we're writing through the CPU, then the GPU read domains will
4360 * need to be invalidated at next use.
4361 */
e27ab73d
CW
4362 if (write)
4363 __start_cpu_write(obj);
2ef7eeaa
EA
4364
4365 return 0;
4366}
4367
673a394b
EA
4368/* Throttle our rendering by waiting until the ring has completed our requests
4369 * emitted over 20 msec ago.
4370 *
b962442e
EA
4371 * Note that if we were to use the current jiffies each time around the loop,
4372 * we wouldn't escape the function with any frames outstanding if the time to
4373 * render a frame was over 20ms.
4374 *
673a394b
EA
4375 * This should get us reasonable parallelism between CPU and GPU but also
4376 * relatively low latency when blocking on a particular request to finish.
4377 */
40a5f0de 4378static int
f787a5f5 4379i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4380{
fac5e23e 4381 struct drm_i915_private *dev_priv = to_i915(dev);
f787a5f5 4382 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4383 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
e61e0f51 4384 struct i915_request *request, *target = NULL;
e95433c7 4385 long ret;
93533c29 4386
f4457ae7
CW
4387 /* ABI: return -EIO if already wedged */
4388 if (i915_terminally_wedged(&dev_priv->gpu_error))
4389 return -EIO;
e110e8d6 4390
1c25595f 4391 spin_lock(&file_priv->mm.lock);
c8659efa 4392 list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
b962442e
EA
4393 if (time_after_eq(request->emitted_jiffies, recent_enough))
4394 break;
40a5f0de 4395
c8659efa
CW
4396 if (target) {
4397 list_del(&target->client_link);
4398 target->file_priv = NULL;
4399 }
fcfa423c 4400
54fb2411 4401 target = request;
b962442e 4402 }
ff865885 4403 if (target)
e61e0f51 4404 i915_request_get(target);
1c25595f 4405 spin_unlock(&file_priv->mm.lock);
40a5f0de 4406
54fb2411 4407 if (target == NULL)
f787a5f5 4408 return 0;
2bc43b5c 4409
e61e0f51 4410 ret = i915_request_wait(target,
e95433c7
CW
4411 I915_WAIT_INTERRUPTIBLE,
4412 MAX_SCHEDULE_TIMEOUT);
e61e0f51 4413 i915_request_put(target);
ff865885 4414
e95433c7 4415 return ret < 0 ? ret : 0;
40a5f0de
EA
4416}
4417
058d88c4 4418struct i915_vma *
ec7adb6e
JL
4419i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4420 const struct i915_ggtt_view *view,
91b2db6f 4421 u64 size,
2ffffd0f
CW
4422 u64 alignment,
4423 u64 flags)
ec7adb6e 4424{
ad16d2ed 4425 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
82ad6443 4426 struct i915_address_space *vm = &dev_priv->ggtt.vm;
59bfa124
CW
4427 struct i915_vma *vma;
4428 int ret;
72e96d64 4429
4c7d62c6
CW
4430 lockdep_assert_held(&obj->base.dev->struct_mutex);
4431
ac87a6fd
CW
4432 if (flags & PIN_MAPPABLE &&
4433 (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
43ae70d9
CW
4434 /* If the required space is larger than the available
4435 * aperture, we will not able to find a slot for the
4436 * object and unbinding the object now will be in
4437 * vain. Worse, doing so may cause us to ping-pong
4438 * the object in and out of the Global GTT and
4439 * waste a lot of cycles under the mutex.
4440 */
4441 if (obj->base.size > dev_priv->ggtt.mappable_end)
4442 return ERR_PTR(-E2BIG);
4443
4444 /* If NONBLOCK is set the caller is optimistically
4445 * trying to cache the full object within the mappable
4446 * aperture, and *must* have a fallback in place for
4447 * situations where we cannot bind the object. We
4448 * can be a little more lax here and use the fallback
4449 * more often to avoid costly migrations of ourselves
4450 * and other objects within the aperture.
4451 *
4452 * Half-the-aperture is used as a simple heuristic.
4453 * More interesting would to do search for a free
4454 * block prior to making the commitment to unbind.
4455 * That caters for the self-harm case, and with a
4456 * little more heuristics (e.g. NOFAULT, NOEVICT)
4457 * we could try to minimise harm to others.
4458 */
4459 if (flags & PIN_NONBLOCK &&
4460 obj->base.size > dev_priv->ggtt.mappable_end / 2)
4461 return ERR_PTR(-ENOSPC);
4462 }
4463
718659a6 4464 vma = i915_vma_instance(obj, vm, view);
e0216b76 4465 if (unlikely(IS_ERR(vma)))
058d88c4 4466 return vma;
59bfa124
CW
4467
4468 if (i915_vma_misplaced(vma, size, alignment, flags)) {
43ae70d9
CW
4469 if (flags & PIN_NONBLOCK) {
4470 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4471 return ERR_PTR(-ENOSPC);
59bfa124 4472
43ae70d9 4473 if (flags & PIN_MAPPABLE &&
944397f0 4474 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
ad16d2ed
CW
4475 return ERR_PTR(-ENOSPC);
4476 }
4477
59bfa124
CW
4478 WARN(i915_vma_is_pinned(vma),
4479 "bo is already pinned in ggtt with incorrect alignment:"
05a20d09
CW
4480 " offset=%08x, req.alignment=%llx,"
4481 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4482 i915_ggtt_offset(vma), alignment,
59bfa124 4483 !!(flags & PIN_MAPPABLE),
05a20d09 4484 i915_vma_is_map_and_fenceable(vma));
59bfa124
CW
4485 ret = i915_vma_unbind(vma);
4486 if (ret)
058d88c4 4487 return ERR_PTR(ret);
59bfa124
CW
4488 }
4489
058d88c4
CW
4490 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4491 if (ret)
4492 return ERR_PTR(ret);
ec7adb6e 4493
058d88c4 4494 return vma;
673a394b
EA
4495}
4496
edf6b76f 4497static __always_inline unsigned int __busy_read_flag(unsigned int id)
3fdc13c7
CW
4498{
4499 /* Note that we could alias engines in the execbuf API, but
4500 * that would be very unwise as it prevents userspace from
4501 * fine control over engine selection. Ahem.
4502 *
4503 * This should be something like EXEC_MAX_ENGINE instead of
4504 * I915_NUM_ENGINES.
4505 */
4506 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4507 return 0x10000 << id;
4508}
4509
4510static __always_inline unsigned int __busy_write_id(unsigned int id)
4511{
70cb472c
CW
4512 /* The uABI guarantees an active writer is also amongst the read
4513 * engines. This would be true if we accessed the activity tracking
4514 * under the lock, but as we perform the lookup of the object and
4515 * its activity locklessly we can not guarantee that the last_write
4516 * being active implies that we have set the same engine flag from
4517 * last_read - hence we always set both read and write busy for
4518 * last_write.
4519 */
4520 return id | __busy_read_flag(id);
3fdc13c7
CW
4521}
4522
edf6b76f 4523static __always_inline unsigned int
d07f0e59 4524__busy_set_if_active(const struct dma_fence *fence,
3fdc13c7
CW
4525 unsigned int (*flag)(unsigned int id))
4526{
e61e0f51 4527 struct i915_request *rq;
3fdc13c7 4528
d07f0e59
CW
4529 /* We have to check the current hw status of the fence as the uABI
4530 * guarantees forward progress. We could rely on the idle worker
4531 * to eventually flush us, but to minimise latency just ask the
4532 * hardware.
1255501d 4533 *
d07f0e59 4534 * Note we only report on the status of native fences.
1255501d 4535 */
d07f0e59
CW
4536 if (!dma_fence_is_i915(fence))
4537 return 0;
4538
4539 /* opencode to_request() in order to avoid const warnings */
e61e0f51
CW
4540 rq = container_of(fence, struct i915_request, fence);
4541 if (i915_request_completed(rq))
d07f0e59
CW
4542 return 0;
4543
1d39f281 4544 return flag(rq->engine->uabi_id);
3fdc13c7
CW
4545}
4546
edf6b76f 4547static __always_inline unsigned int
d07f0e59 4548busy_check_reader(const struct dma_fence *fence)
3fdc13c7 4549{
d07f0e59 4550 return __busy_set_if_active(fence, __busy_read_flag);
3fdc13c7
CW
4551}
4552
edf6b76f 4553static __always_inline unsigned int
d07f0e59 4554busy_check_writer(const struct dma_fence *fence)
3fdc13c7 4555{
d07f0e59
CW
4556 if (!fence)
4557 return 0;
4558
4559 return __busy_set_if_active(fence, __busy_write_id);
3fdc13c7
CW
4560}
4561
673a394b
EA
4562int
4563i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4564 struct drm_file *file)
673a394b
EA
4565{
4566 struct drm_i915_gem_busy *args = data;
05394f39 4567 struct drm_i915_gem_object *obj;
d07f0e59
CW
4568 struct reservation_object_list *list;
4569 unsigned int seq;
fbbd37b3 4570 int err;
673a394b 4571
d07f0e59 4572 err = -ENOENT;
fbbd37b3
CW
4573 rcu_read_lock();
4574 obj = i915_gem_object_lookup_rcu(file, args->handle);
d07f0e59 4575 if (!obj)
fbbd37b3 4576 goto out;
d1b851fc 4577
d07f0e59
CW
4578 /* A discrepancy here is that we do not report the status of
4579 * non-i915 fences, i.e. even though we may report the object as idle,
4580 * a call to set-domain may still stall waiting for foreign rendering.
4581 * This also means that wait-ioctl may report an object as busy,
4582 * where busy-ioctl considers it idle.
4583 *
4584 * We trade the ability to warn of foreign fences to report on which
4585 * i915 engines are active for the object.
4586 *
4587 * Alternatively, we can trade that extra information on read/write
4588 * activity with
4589 * args->busy =
4590 * !reservation_object_test_signaled_rcu(obj->resv, true);
4591 * to report the overall busyness. This is what the wait-ioctl does.
4592 *
4593 */
4594retry:
4595 seq = raw_read_seqcount(&obj->resv->seq);
426960be 4596
d07f0e59
CW
4597 /* Translate the exclusive fence to the READ *and* WRITE engine */
4598 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3fdc13c7 4599
d07f0e59
CW
4600 /* Translate shared fences to READ set of engines */
4601 list = rcu_dereference(obj->resv->fence);
4602 if (list) {
4603 unsigned int shared_count = list->shared_count, i;
3fdc13c7 4604
d07f0e59
CW
4605 for (i = 0; i < shared_count; ++i) {
4606 struct dma_fence *fence =
4607 rcu_dereference(list->shared[i]);
4608
4609 args->busy |= busy_check_reader(fence);
4610 }
426960be 4611 }
673a394b 4612
d07f0e59
CW
4613 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4614 goto retry;
4615
4616 err = 0;
fbbd37b3
CW
4617out:
4618 rcu_read_unlock();
4619 return err;
673a394b
EA
4620}
4621
4622int
4623i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4624 struct drm_file *file_priv)
4625{
0206e353 4626 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4627}
4628
3ef94daa
CW
4629int
4630i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4631 struct drm_file *file_priv)
4632{
fac5e23e 4633 struct drm_i915_private *dev_priv = to_i915(dev);
3ef94daa 4634 struct drm_i915_gem_madvise *args = data;
05394f39 4635 struct drm_i915_gem_object *obj;
1233e2db 4636 int err;
3ef94daa
CW
4637
4638 switch (args->madv) {
4639 case I915_MADV_DONTNEED:
4640 case I915_MADV_WILLNEED:
4641 break;
4642 default:
4643 return -EINVAL;
4644 }
4645
03ac0642 4646 obj = i915_gem_object_lookup(file_priv, args->handle);
1233e2db
CW
4647 if (!obj)
4648 return -ENOENT;
4649
4650 err = mutex_lock_interruptible(&obj->mm.lock);
4651 if (err)
4652 goto out;
3ef94daa 4653
f1fa4f44 4654 if (i915_gem_object_has_pages(obj) &&
3e510a8e 4655 i915_gem_object_is_tiled(obj) &&
656bfa3a 4656 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
bc0629a7
CW
4657 if (obj->mm.madv == I915_MADV_WILLNEED) {
4658 GEM_BUG_ON(!obj->mm.quirked);
a4f5ea64 4659 __i915_gem_object_unpin_pages(obj);
bc0629a7
CW
4660 obj->mm.quirked = false;
4661 }
4662 if (args->madv == I915_MADV_WILLNEED) {
2c3a3f44 4663 GEM_BUG_ON(obj->mm.quirked);
a4f5ea64 4664 __i915_gem_object_pin_pages(obj);
bc0629a7
CW
4665 obj->mm.quirked = true;
4666 }
656bfa3a
DV
4667 }
4668
a4f5ea64
CW
4669 if (obj->mm.madv != __I915_MADV_PURGED)
4670 obj->mm.madv = args->madv;
3ef94daa 4671
6c085a72 4672 /* if the object is no longer attached, discard its backing storage */
f1fa4f44
CW
4673 if (obj->mm.madv == I915_MADV_DONTNEED &&
4674 !i915_gem_object_has_pages(obj))
2d7ef395
CW
4675 i915_gem_object_truncate(obj);
4676
a4f5ea64 4677 args->retained = obj->mm.madv != __I915_MADV_PURGED;
1233e2db 4678 mutex_unlock(&obj->mm.lock);
bb6baf76 4679
1233e2db 4680out:
f8c417cd 4681 i915_gem_object_put(obj);
1233e2db 4682 return err;
3ef94daa
CW
4683}
4684
5b8c8aec 4685static void
e61e0f51 4686frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
5b8c8aec
CW
4687{
4688 struct drm_i915_gem_object *obj =
4689 container_of(active, typeof(*obj), frontbuffer_write);
4690
d59b21ec 4691 intel_fb_obj_flush(obj, ORIGIN_CS);
5b8c8aec
CW
4692}
4693
37e680a1
CW
4694void i915_gem_object_init(struct drm_i915_gem_object *obj,
4695 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4696{
1233e2db
CW
4697 mutex_init(&obj->mm.lock);
4698
2f633156 4699 INIT_LIST_HEAD(&obj->vma_list);
d1b48c1e 4700 INIT_LIST_HEAD(&obj->lut_list);
8d9d5744 4701 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4702
37e680a1
CW
4703 obj->ops = ops;
4704
d07f0e59
CW
4705 reservation_object_init(&obj->__builtin_resv);
4706 obj->resv = &obj->__builtin_resv;
4707
50349247 4708 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
5b8c8aec 4709 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
a4f5ea64
CW
4710
4711 obj->mm.madv = I915_MADV_WILLNEED;
4712 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4713 mutex_init(&obj->mm.get_page.lock);
0327d6ba 4714
f19ec8cb 4715 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
0327d6ba
CW
4716}
4717
37e680a1 4718static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3599a91c
TU
4719 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4720 I915_GEM_OBJECT_IS_SHRINKABLE,
7c55e2c5 4721
37e680a1
CW
4722 .get_pages = i915_gem_object_get_pages_gtt,
4723 .put_pages = i915_gem_object_put_pages_gtt,
7c55e2c5
CW
4724
4725 .pwrite = i915_gem_object_pwrite_gtt,
37e680a1
CW
4726};
4727
465c403c
MA
4728static int i915_gem_object_create_shmem(struct drm_device *dev,
4729 struct drm_gem_object *obj,
4730 size_t size)
4731{
4732 struct drm_i915_private *i915 = to_i915(dev);
4733 unsigned long flags = VM_NORESERVE;
4734 struct file *filp;
4735
4736 drm_gem_private_object_init(dev, obj, size);
4737
4738 if (i915->mm.gemfs)
4739 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4740 flags);
4741 else
4742 filp = shmem_file_setup("i915", size, flags);
4743
4744 if (IS_ERR(filp))
4745 return PTR_ERR(filp);
4746
4747 obj->filp = filp;
4748
4749 return 0;
4750}
4751
b4bcbe2a 4752struct drm_i915_gem_object *
12d79d78 4753i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
ac52bc56 4754{
c397b908 4755 struct drm_i915_gem_object *obj;
5949eac4 4756 struct address_space *mapping;
b8f55be6 4757 unsigned int cache_level;
1a240d4d 4758 gfp_t mask;
fe3db79b 4759 int ret;
ac52bc56 4760
b4bcbe2a
CW
4761 /* There is a prevalence of the assumption that we fit the object's
4762 * page count inside a 32bit _signed_ variable. Let's document this and
4763 * catch if we ever need to fix it. In the meantime, if you do spot
4764 * such a local variable, please consider fixing!
4765 */
7a3ee5de 4766 if (size >> PAGE_SHIFT > INT_MAX)
b4bcbe2a
CW
4767 return ERR_PTR(-E2BIG);
4768
4769 if (overflows_type(size, obj->base.size))
4770 return ERR_PTR(-E2BIG);
4771
187685cb 4772 obj = i915_gem_object_alloc(dev_priv);
c397b908 4773 if (obj == NULL)
fe3db79b 4774 return ERR_PTR(-ENOMEM);
673a394b 4775
465c403c 4776 ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
fe3db79b
CW
4777 if (ret)
4778 goto fail;
673a394b 4779
bed1ea95 4780 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
c0f86832 4781 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
bed1ea95
CW
4782 /* 965gm cannot relocate objects above 4GiB. */
4783 mask &= ~__GFP_HIGHMEM;
4784 mask |= __GFP_DMA32;
4785 }
4786
93c76a3d 4787 mapping = obj->base.filp->f_mapping;
bed1ea95 4788 mapping_set_gfp_mask(mapping, mask);
4846bf0c 4789 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
5949eac4 4790
37e680a1 4791 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4792
c0a51fd0
CK
4793 obj->write_domain = I915_GEM_DOMAIN_CPU;
4794 obj->read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4795
b8f55be6 4796 if (HAS_LLC(dev_priv))
3d29b842 4797 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4798 * cache) for about a 10% performance improvement
4799 * compared to uncached. Graphics requests other than
4800 * display scanout are coherent with the CPU in
4801 * accessing this cache. This means in this mode we
4802 * don't need to clflush on the CPU side, and on the
4803 * GPU side we only need to flush internal caches to
4804 * get data visible to the CPU.
4805 *
4806 * However, we maintain the display planes as UC, and so
4807 * need to rebind when first used as such.
4808 */
b8f55be6
CW
4809 cache_level = I915_CACHE_LLC;
4810 else
4811 cache_level = I915_CACHE_NONE;
a1871112 4812
b8f55be6 4813 i915_gem_object_set_cache_coherency(obj, cache_level);
e27ab73d 4814
d861e338
DV
4815 trace_i915_gem_object_create(obj);
4816
05394f39 4817 return obj;
fe3db79b
CW
4818
4819fail:
4820 i915_gem_object_free(obj);
fe3db79b 4821 return ERR_PTR(ret);
c397b908
DV
4822}
4823
340fbd8c
CW
4824static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4825{
4826 /* If we are the last user of the backing storage (be it shmemfs
4827 * pages or stolen etc), we know that the pages are going to be
4828 * immediately released. In this case, we can then skip copying
4829 * back the contents from the GPU.
4830 */
4831
a4f5ea64 4832 if (obj->mm.madv != I915_MADV_WILLNEED)
340fbd8c
CW
4833 return false;
4834
4835 if (obj->base.filp == NULL)
4836 return true;
4837
4838 /* At first glance, this looks racy, but then again so would be
4839 * userspace racing mmap against close. However, the first external
4840 * reference to the filp can only be obtained through the
4841 * i915_gem_mmap_ioctl() which safeguards us against the user
4842 * acquiring such a reference whilst we are in the middle of
4843 * freeing the object.
4844 */
4845 return atomic_long_read(&obj->base.filp->f_count) == 1;
4846}
4847
fbbd37b3
CW
4848static void __i915_gem_free_objects(struct drm_i915_private *i915,
4849 struct llist_node *freed)
673a394b 4850{
fbbd37b3 4851 struct drm_i915_gem_object *obj, *on;
673a394b 4852
fbbd37b3 4853 intel_runtime_pm_get(i915);
cc731f5a 4854 llist_for_each_entry_safe(obj, on, freed, freed) {
fbbd37b3
CW
4855 struct i915_vma *vma, *vn;
4856
4857 trace_i915_gem_object_destroy(obj);
4858
cc731f5a
CW
4859 mutex_lock(&i915->drm.struct_mutex);
4860
fbbd37b3
CW
4861 GEM_BUG_ON(i915_gem_object_is_active(obj));
4862 list_for_each_entry_safe(vma, vn,
4863 &obj->vma_list, obj_link) {
fbbd37b3
CW
4864 GEM_BUG_ON(i915_vma_is_active(vma));
4865 vma->flags &= ~I915_VMA_PIN_MASK;
3365e226 4866 i915_vma_destroy(vma);
fbbd37b3 4867 }
db6c2b41
CW
4868 GEM_BUG_ON(!list_empty(&obj->vma_list));
4869 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
fbbd37b3 4870
f2123818
CW
4871 /* This serializes freeing with the shrinker. Since the free
4872 * is delayed, first by RCU then by the workqueue, we want the
4873 * shrinker to be able to free pages of unreferenced objects,
4874 * or else we may oom whilst there are plenty of deferred
4875 * freed objects.
4876 */
4877 if (i915_gem_object_has_pages(obj)) {
4878 spin_lock(&i915->mm.obj_lock);
4879 list_del_init(&obj->mm.link);
4880 spin_unlock(&i915->mm.obj_lock);
4881 }
4882
cc731f5a 4883 mutex_unlock(&i915->drm.struct_mutex);
fbbd37b3 4884
fbbd37b3 4885 GEM_BUG_ON(obj->bind_count);
a65adaf8 4886 GEM_BUG_ON(obj->userfault_count);
fbbd37b3 4887 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
67b48040 4888 GEM_BUG_ON(!list_empty(&obj->lut_list));
fbbd37b3
CW
4889
4890 if (obj->ops->release)
4891 obj->ops->release(obj);
f65c9168 4892
fbbd37b3
CW
4893 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4894 atomic_set(&obj->mm.pages_pin_count, 0);
548625ee 4895 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
f1fa4f44 4896 GEM_BUG_ON(i915_gem_object_has_pages(obj));
fbbd37b3
CW
4897
4898 if (obj->base.import_attach)
4899 drm_prime_gem_destroy(&obj->base, NULL);
4900
d07f0e59 4901 reservation_object_fini(&obj->__builtin_resv);
fbbd37b3
CW
4902 drm_gem_object_release(&obj->base);
4903 i915_gem_info_remove_obj(i915, obj->base.size);
4904
4905 kfree(obj->bit_17);
4906 i915_gem_object_free(obj);
cc731f5a 4907
c9c70471
CW
4908 GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
4909 atomic_dec(&i915->mm.free_count);
4910
cc731f5a
CW
4911 if (on)
4912 cond_resched();
fbbd37b3 4913 }
cc731f5a 4914 intel_runtime_pm_put(i915);
fbbd37b3
CW
4915}
4916
4917static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4918{
4919 struct llist_node *freed;
4920
87701b4b
CW
4921 /* Free the oldest, most stale object to keep the free_list short */
4922 freed = NULL;
4923 if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4924 /* Only one consumer of llist_del_first() allowed */
4925 spin_lock(&i915->mm.free_lock);
4926 freed = llist_del_first(&i915->mm.free_list);
4927 spin_unlock(&i915->mm.free_lock);
4928 }
4929 if (unlikely(freed)) {
4930 freed->next = NULL;
fbbd37b3 4931 __i915_gem_free_objects(i915, freed);
87701b4b 4932 }
fbbd37b3
CW
4933}
4934
4935static void __i915_gem_free_work(struct work_struct *work)
4936{
4937 struct drm_i915_private *i915 =
4938 container_of(work, struct drm_i915_private, mm.free_work);
4939 struct llist_node *freed;
26e12f89 4940
2ef1e729
CW
4941 /*
4942 * All file-owned VMA should have been released by this point through
b1f788c6
CW
4943 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4944 * However, the object may also be bound into the global GTT (e.g.
4945 * older GPUs without per-process support, or for direct access through
4946 * the GTT either for the user or for scanout). Those VMA still need to
4947 * unbound now.
4948 */
1488fc08 4949
f991c492 4950 spin_lock(&i915->mm.free_lock);
5ad08be7 4951 while ((freed = llist_del_all(&i915->mm.free_list))) {
f991c492
CW
4952 spin_unlock(&i915->mm.free_lock);
4953
fbbd37b3 4954 __i915_gem_free_objects(i915, freed);
5ad08be7 4955 if (need_resched())
f991c492
CW
4956 return;
4957
4958 spin_lock(&i915->mm.free_lock);
5ad08be7 4959 }
f991c492 4960 spin_unlock(&i915->mm.free_lock);
fbbd37b3 4961}
a071fa00 4962
fbbd37b3
CW
4963static void __i915_gem_free_object_rcu(struct rcu_head *head)
4964{
4965 struct drm_i915_gem_object *obj =
4966 container_of(head, typeof(*obj), rcu);
4967 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4968
2ef1e729
CW
4969 /*
4970 * Since we require blocking on struct_mutex to unbind the freed
4971 * object from the GPU before releasing resources back to the
4972 * system, we can not do that directly from the RCU callback (which may
4973 * be a softirq context), but must instead then defer that work onto a
4974 * kthread. We use the RCU callback rather than move the freed object
4975 * directly onto the work queue so that we can mix between using the
4976 * worker and performing frees directly from subsequent allocations for
4977 * crude but effective memory throttling.
fbbd37b3
CW
4978 */
4979 if (llist_add(&obj->freed, &i915->mm.free_list))
beacbd16 4980 queue_work(i915->wq, &i915->mm.free_work);
fbbd37b3 4981}
656bfa3a 4982
fbbd37b3
CW
4983void i915_gem_free_object(struct drm_gem_object *gem_obj)
4984{
4985 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
a4f5ea64 4986
bc0629a7
CW
4987 if (obj->mm.quirked)
4988 __i915_gem_object_unpin_pages(obj);
4989
340fbd8c 4990 if (discard_backing_storage(obj))
a4f5ea64 4991 obj->mm.madv = I915_MADV_DONTNEED;
de151cf6 4992
2ef1e729
CW
4993 /*
4994 * Before we free the object, make sure any pure RCU-only
fbbd37b3
CW
4995 * read-side critical sections are complete, e.g.
4996 * i915_gem_busy_ioctl(). For the corresponding synchronized
4997 * lookup see i915_gem_object_lookup_rcu().
4998 */
c9c70471 4999 atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
fbbd37b3 5000 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
673a394b
EA
5001}
5002
f8a7fde4
CW
5003void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
5004{
5005 lockdep_assert_held(&obj->base.dev->struct_mutex);
5006
d1b48c1e
CW
5007 if (!i915_gem_object_has_active_reference(obj) &&
5008 i915_gem_object_is_active(obj))
f8a7fde4
CW
5009 i915_gem_object_set_active_reference(obj);
5010 else
5011 i915_gem_object_put(obj);
5012}
5013
24145517
CW
5014void i915_gem_sanitize(struct drm_i915_private *i915)
5015{
4fdd5b4e 5016 int err;
c3160da9
CW
5017
5018 GEM_TRACE("\n");
5019
4dfacb0b 5020 mutex_lock(&i915->drm.struct_mutex);
c3160da9
CW
5021
5022 intel_runtime_pm_get(i915);
5023 intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5024
5025 /*
5026 * As we have just resumed the machine and woken the device up from
5027 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
5028 * back to defaults, recovering from whatever wedged state we left it
5029 * in and so worth trying to use the device once more.
5030 */
4dfacb0b 5031 if (i915_terminally_wedged(&i915->gpu_error))
f36325f3 5032 i915_gem_unset_wedged(i915);
f36325f3 5033
24145517
CW
5034 /*
5035 * If we inherit context state from the BIOS or earlier occupants
5036 * of the GPU, the GPU may be in an inconsistent state when we
5037 * try to take over. The only way to remove the earlier state
5038 * is by resetting. However, resetting on earlier gen is tricky as
5039 * it may impact the display and we are uncertain about the stability
ea117b8d 5040 * of the reset, so this could be applied to even earlier gen.
24145517 5041 */
4fdd5b4e 5042 err = -ENODEV;
ce1599a4 5043 if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
4fdd5b4e
CW
5044 err = WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
5045 if (!err)
5046 intel_engines_sanitize(i915);
c3160da9
CW
5047
5048 intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5049 intel_runtime_pm_put(i915);
5050
4dfacb0b
CW
5051 i915_gem_contexts_lost(i915);
5052 mutex_unlock(&i915->drm.struct_mutex);
24145517
CW
5053}
5054
bf06112f 5055int i915_gem_suspend(struct drm_i915_private *i915)
29105ccc 5056{
dcff85c8 5057 int ret;
28dfe52a 5058
09a4c02e
CW
5059 GEM_TRACE("\n");
5060
bf06112f
CW
5061 intel_runtime_pm_get(i915);
5062 intel_suspend_gt_powersave(i915);
54b4f68f 5063
bf06112f 5064 mutex_lock(&i915->drm.struct_mutex);
5ab57c70 5065
bf06112f
CW
5066 /*
5067 * We have to flush all the executing contexts to main memory so
5ab57c70
CW
5068 * that they can saved in the hibernation image. To ensure the last
5069 * context image is coherent, we have to switch away from it. That
bf06112f 5070 * leaves the i915->kernel_context still active when
5ab57c70
CW
5071 * we actually suspend, and its image in memory may not match the GPU
5072 * state. Fortunately, the kernel_context is disposable and we do
5073 * not rely on its state.
5074 */
bf06112f
CW
5075 if (!i915_terminally_wedged(&i915->gpu_error)) {
5076 ret = i915_gem_switch_to_kernel_context(i915);
ecf73eb2
CW
5077 if (ret)
5078 goto err_unlock;
5ab57c70 5079
bf06112f 5080 ret = i915_gem_wait_for_idle(i915,
ecf73eb2 5081 I915_WAIT_INTERRUPTIBLE |
0606035f 5082 I915_WAIT_LOCKED |
ec625fb9
CW
5083 I915_WAIT_FOR_IDLE_BOOST,
5084 MAX_SCHEDULE_TIMEOUT);
ecf73eb2
CW
5085 if (ret && ret != -EIO)
5086 goto err_unlock;
f7403347 5087
bf06112f 5088 assert_kernel_context_is_current(i915);
ecf73eb2 5089 }
01f8f33e
CW
5090 i915_retire_requests(i915); /* ensure we flush after wedging */
5091
bf06112f 5092 mutex_unlock(&i915->drm.struct_mutex);
45c5f202 5093
bf06112f 5094 intel_uc_suspend(i915);
63987bfe 5095
bf06112f
CW
5096 cancel_delayed_work_sync(&i915->gpu_error.hangcheck_work);
5097 cancel_delayed_work_sync(&i915->gt.retire_work);
bdeb9785 5098
bf06112f
CW
5099 /*
5100 * As the idle_work is rearming if it detects a race, play safe and
bdeb9785
CW
5101 * repeat the flush until it is definitely idle.
5102 */
bf06112f 5103 drain_delayed_work(&i915->gt.idle_work);
bdeb9785 5104
bf06112f
CW
5105 /*
5106 * Assert that we successfully flushed all the work and
bdcf120b
CW
5107 * reset the GPU back to its idle, low power state.
5108 */
bf06112f
CW
5109 WARN_ON(i915->gt.awake);
5110 if (WARN_ON(!intel_engines_are_idle(i915)))
5111 i915_gem_set_wedged(i915); /* no hope, discard everything */
bdcf120b 5112
bf06112f 5113 intel_runtime_pm_put(i915);
ec92ad00
CW
5114 return 0;
5115
5116err_unlock:
bf06112f
CW
5117 mutex_unlock(&i915->drm.struct_mutex);
5118 intel_runtime_pm_put(i915);
ec92ad00
CW
5119 return ret;
5120}
5121
5122void i915_gem_suspend_late(struct drm_i915_private *i915)
5123{
9776f472
CW
5124 struct drm_i915_gem_object *obj;
5125 struct list_head *phases[] = {
5126 &i915->mm.unbound_list,
5127 &i915->mm.bound_list,
5128 NULL
5129 }, **phase;
5130
1c777c5d
ID
5131 /*
5132 * Neither the BIOS, ourselves or any other kernel
5133 * expects the system to be in execlists mode on startup,
5134 * so we need to reset the GPU back to legacy mode. And the only
5135 * known way to disable logical contexts is through a GPU reset.
5136 *
5137 * So in order to leave the system in a known default configuration,
5138 * always reset the GPU upon unload and suspend. Afterwards we then
5139 * clean up the GEM state tracking, flushing off the requests and
5140 * leaving the system in a known idle state.
5141 *
5142 * Note that is of the upmost importance that the GPU is idle and
5143 * all stray writes are flushed *before* we dismantle the backing
5144 * storage for the pinned objects.
5145 *
5146 * However, since we are uncertain that resetting the GPU on older
5147 * machines is a good idea, we don't - just in case it leaves the
5148 * machine in an unusable condition.
5149 */
1c777c5d 5150
9776f472
CW
5151 mutex_lock(&i915->drm.struct_mutex);
5152 for (phase = phases; *phase; phase++) {
5153 list_for_each_entry(obj, *phase, mm.link)
5154 WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
5155 }
5156 mutex_unlock(&i915->drm.struct_mutex);
5157
ec92ad00
CW
5158 intel_uc_sanitize(i915);
5159 i915_gem_sanitize(i915);
673a394b
EA
5160}
5161
37cd3300 5162void i915_gem_resume(struct drm_i915_private *i915)
5ab57c70 5163{
4dfacb0b
CW
5164 GEM_TRACE("\n");
5165
37cd3300 5166 WARN_ON(i915->gt.awake);
5ab57c70 5167
37cd3300
CW
5168 mutex_lock(&i915->drm.struct_mutex);
5169 intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
31ab49ab 5170
37cd3300
CW
5171 i915_gem_restore_gtt_mappings(i915);
5172 i915_gem_restore_fences(i915);
5ab57c70 5173
6ca9a2be
CW
5174 /*
5175 * As we didn't flush the kernel context before suspend, we cannot
5ab57c70
CW
5176 * guarantee that the context image is complete. So let's just reset
5177 * it and start again.
5178 */
37cd3300 5179 i915->gt.resume(i915);
5ab57c70 5180
37cd3300
CW
5181 if (i915_gem_init_hw(i915))
5182 goto err_wedged;
5183
7cfca4af 5184 intel_uc_resume(i915);
7469c62c 5185
37cd3300
CW
5186 /* Always reload a context for powersaving. */
5187 if (i915_gem_switch_to_kernel_context(i915))
5188 goto err_wedged;
5189
5190out_unlock:
5191 intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5192 mutex_unlock(&i915->drm.struct_mutex);
5193 return;
5194
5195err_wedged:
6ca9a2be
CW
5196 if (!i915_terminally_wedged(&i915->gpu_error)) {
5197 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
5198 i915_gem_set_wedged(i915);
5199 }
37cd3300 5200 goto out_unlock;
5ab57c70
CW
5201}
5202
c6be607a 5203void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
f691e2f4 5204{
c6be607a 5205 if (INTEL_GEN(dev_priv) < 5 ||
f691e2f4
DV
5206 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5207 return;
5208
5209 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5210 DISP_TILE_SURFACE_SWIZZLING);
5211
5db94019 5212 if (IS_GEN5(dev_priv))
11782b02
DV
5213 return;
5214
f691e2f4 5215 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5db94019 5216 if (IS_GEN6(dev_priv))
6b26c86d 5217 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5db94019 5218 else if (IS_GEN7(dev_priv))
6b26c86d 5219 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5db94019 5220 else if (IS_GEN8(dev_priv))
31a5336e 5221 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
5222 else
5223 BUG();
f691e2f4 5224}
e21af88d 5225
50a0bc90 5226static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
81e7f200 5227{
81e7f200
VS
5228 I915_WRITE(RING_CTL(base), 0);
5229 I915_WRITE(RING_HEAD(base), 0);
5230 I915_WRITE(RING_TAIL(base), 0);
5231 I915_WRITE(RING_START(base), 0);
5232}
5233
50a0bc90 5234static void init_unused_rings(struct drm_i915_private *dev_priv)
81e7f200 5235{
50a0bc90
TU
5236 if (IS_I830(dev_priv)) {
5237 init_unused_ring(dev_priv, PRB1_BASE);
5238 init_unused_ring(dev_priv, SRB0_BASE);
5239 init_unused_ring(dev_priv, SRB1_BASE);
5240 init_unused_ring(dev_priv, SRB2_BASE);
5241 init_unused_ring(dev_priv, SRB3_BASE);
5242 } else if (IS_GEN2(dev_priv)) {
5243 init_unused_ring(dev_priv, SRB0_BASE);
5244 init_unused_ring(dev_priv, SRB1_BASE);
5245 } else if (IS_GEN3(dev_priv)) {
5246 init_unused_ring(dev_priv, PRB1_BASE);
5247 init_unused_ring(dev_priv, PRB2_BASE);
81e7f200
VS
5248 }
5249}
5250
20a8a74a 5251static int __i915_gem_restart_engines(void *data)
4fc7c971 5252{
20a8a74a 5253 struct drm_i915_private *i915 = data;
e2f80391 5254 struct intel_engine_cs *engine;
3b3f1650 5255 enum intel_engine_id id;
20a8a74a
CW
5256 int err;
5257
5258 for_each_engine(engine, i915, id) {
5259 err = engine->init_hw(engine);
8177e112
CW
5260 if (err) {
5261 DRM_ERROR("Failed to restart %s (%d)\n",
5262 engine->name, err);
20a8a74a 5263 return err;
8177e112 5264 }
20a8a74a
CW
5265 }
5266
5267 return 0;
5268}
5269
5270int i915_gem_init_hw(struct drm_i915_private *dev_priv)
5271{
d200cda6 5272 int ret;
4fc7c971 5273
de867c20
CW
5274 dev_priv->gt.last_init_time = ktime_get();
5275
5e4f5189
CW
5276 /* Double layer security blanket, see i915_gem_init() */
5277 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5278
0031fb96 5279 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
05e21cc4 5280 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 5281
772c2a51 5282 if (IS_HASWELL(dev_priv))
50a0bc90 5283 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
0bf21347 5284 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 5285
6e266956 5286 if (HAS_PCH_NOP(dev_priv)) {
fd6b8f43 5287 if (IS_IVYBRIDGE(dev_priv)) {
6ba844b0
DV
5288 u32 temp = I915_READ(GEN7_MSG_CTL);
5289 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5290 I915_WRITE(GEN7_MSG_CTL, temp);
c6be607a 5291 } else if (INTEL_GEN(dev_priv) >= 7) {
6ba844b0
DV
5292 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5293 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5294 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5295 }
88a2b2a3
BW
5296 }
5297
59b449d5
OM
5298 intel_gt_workarounds_apply(dev_priv);
5299
c6be607a 5300 i915_gem_init_swizzling(dev_priv);
4fc7c971 5301
d5abdfda
DV
5302 /*
5303 * At least 830 can leave some of the unused rings
5304 * "active" (ie. head != tail) after resume which
5305 * will prevent c3 entry. Makes sure all unused rings
5306 * are totally idle.
5307 */
50a0bc90 5308 init_unused_rings(dev_priv);
d5abdfda 5309
ed54c1a1 5310 BUG_ON(!dev_priv->kernel_context);
6f74b36b
CW
5311 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
5312 ret = -EIO;
5313 goto out;
5314 }
90638cc1 5315
c6be607a 5316 ret = i915_ppgtt_init_hw(dev_priv);
4ad2fd88 5317 if (ret) {
8177e112 5318 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
4ad2fd88
JH
5319 goto out;
5320 }
5321
f08e2035
JL
5322 ret = intel_wopcm_init_hw(&dev_priv->wopcm);
5323 if (ret) {
5324 DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
5325 goto out;
5326 }
5327
9bdc3573
MW
5328 /* We can't enable contexts until all firmware is loaded */
5329 ret = intel_uc_init_hw(dev_priv);
8177e112
CW
5330 if (ret) {
5331 DRM_ERROR("Enabling uc failed (%d)\n", ret);
9bdc3573 5332 goto out;
8177e112 5333 }
9bdc3573 5334
bf9e8429 5335 intel_mocs_init_l3cc_table(dev_priv);
0ccdacf6 5336
136109c6
CW
5337 /* Only when the HW is re-initialised, can we replay the requests */
5338 ret = __i915_gem_restart_engines(dev_priv);
b96f6ebf
MW
5339 if (ret)
5340 goto cleanup_uc;
60c0a66e 5341
5e4f5189 5342 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60c0a66e
MW
5343
5344 return 0;
b96f6ebf
MW
5345
5346cleanup_uc:
5347 intel_uc_fini_hw(dev_priv);
60c0a66e
MW
5348out:
5349 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5350
5351 return ret;
8187a2b7
ZN
5352}
5353
d2b4b979
CW
5354static int __intel_engines_record_defaults(struct drm_i915_private *i915)
5355{
5356 struct i915_gem_context *ctx;
5357 struct intel_engine_cs *engine;
5358 enum intel_engine_id id;
5359 int err;
5360
5361 /*
5362 * As we reset the gpu during very early sanitisation, the current
5363 * register state on the GPU should reflect its defaults values.
5364 * We load a context onto the hw (with restore-inhibit), then switch
5365 * over to a second context to save that default register state. We
5366 * can then prime every new context with that state so they all start
5367 * from the same default HW values.
5368 */
5369
5370 ctx = i915_gem_context_create_kernel(i915, 0);
5371 if (IS_ERR(ctx))
5372 return PTR_ERR(ctx);
5373
5374 for_each_engine(engine, i915, id) {
e61e0f51 5375 struct i915_request *rq;
d2b4b979 5376
e61e0f51 5377 rq = i915_request_alloc(engine, ctx);
d2b4b979
CW
5378 if (IS_ERR(rq)) {
5379 err = PTR_ERR(rq);
5380 goto out_ctx;
5381 }
5382
3fef5cda 5383 err = 0;
d2b4b979
CW
5384 if (engine->init_context)
5385 err = engine->init_context(rq);
5386
697b9a87 5387 i915_request_add(rq);
d2b4b979
CW
5388 if (err)
5389 goto err_active;
5390 }
5391
5392 err = i915_gem_switch_to_kernel_context(i915);
5393 if (err)
5394 goto err_active;
5395
2621cefa
CW
5396 if (i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED, HZ / 5)) {
5397 i915_gem_set_wedged(i915);
5398 err = -EIO; /* Caller will declare us wedged */
d2b4b979 5399 goto err_active;
2621cefa 5400 }
d2b4b979
CW
5401
5402 assert_kernel_context_is_current(i915);
5403
5404 for_each_engine(engine, i915, id) {
5405 struct i915_vma *state;
5406
ab82a063 5407 state = to_intel_context(ctx, engine)->state;
d2b4b979
CW
5408 if (!state)
5409 continue;
5410
5411 /*
5412 * As we will hold a reference to the logical state, it will
5413 * not be torn down with the context, and importantly the
5414 * object will hold onto its vma (making it possible for a
5415 * stray GTT write to corrupt our defaults). Unmap the vma
5416 * from the GTT to prevent such accidents and reclaim the
5417 * space.
5418 */
5419 err = i915_vma_unbind(state);
5420 if (err)
5421 goto err_active;
5422
5423 err = i915_gem_object_set_to_cpu_domain(state->obj, false);
5424 if (err)
5425 goto err_active;
5426
5427 engine->default_state = i915_gem_object_get(state->obj);
5428 }
5429
5430 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
5431 unsigned int found = intel_engines_has_context_isolation(i915);
5432
5433 /*
5434 * Make sure that classes with multiple engine instances all
5435 * share the same basic configuration.
5436 */
5437 for_each_engine(engine, i915, id) {
5438 unsigned int bit = BIT(engine->uabi_class);
5439 unsigned int expected = engine->default_state ? bit : 0;
5440
5441 if ((found & bit) != expected) {
5442 DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5443 engine->uabi_class, engine->name);
5444 }
5445 }
5446 }
5447
5448out_ctx:
5449 i915_gem_context_set_closed(ctx);
5450 i915_gem_context_put(ctx);
5451 return err;
5452
5453err_active:
5454 /*
5455 * If we have to abandon now, we expect the engines to be idle
5456 * and ready to be torn-down. First try to flush any remaining
5457 * request, ensure we are pointing at the kernel context and
5458 * then remove it.
5459 */
5460 if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
5461 goto out_ctx;
5462
ec625fb9
CW
5463 if (WARN_ON(i915_gem_wait_for_idle(i915,
5464 I915_WAIT_LOCKED,
5465 MAX_SCHEDULE_TIMEOUT)))
d2b4b979
CW
5466 goto out_ctx;
5467
5468 i915_gem_contexts_lost(i915);
5469 goto out_ctx;
5470}
5471
bf9e8429 5472int i915_gem_init(struct drm_i915_private *dev_priv)
1070a42b 5473{
1070a42b
CW
5474 int ret;
5475
52b2416c
CD
5476 /* We need to fallback to 4K pages if host doesn't support huge gtt. */
5477 if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
da9fe3f3
MA
5478 mkwrite_device_info(dev_priv)->page_sizes =
5479 I915_GTT_PAGE_SIZE_4K;
5480
94312828 5481 dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
57822dc6 5482
fb5c551a 5483 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
821ed7df 5484 dev_priv->gt.resume = intel_lr_context_resume;
117897f4 5485 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
fb5c551a
CW
5486 } else {
5487 dev_priv->gt.resume = intel_legacy_submission_resume;
5488 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
a83014d3
OM
5489 }
5490
ee48700d
CW
5491 ret = i915_gem_init_userptr(dev_priv);
5492 if (ret)
5493 return ret;
5494
f7dc0157 5495 ret = intel_uc_init_misc(dev_priv);
6b0478fb
JL
5496 if (ret)
5497 return ret;
5498
f7dc0157 5499 ret = intel_wopcm_init(&dev_priv->wopcm);
3176ff49 5500 if (ret)
f7dc0157 5501 goto err_uc_misc;
3176ff49 5502
5e4f5189
CW
5503 /* This is just a security blanket to placate dragons.
5504 * On some systems, we very sporadically observe that the first TLBs
5505 * used by the CS may be stale, despite us poking the TLB reset. If
5506 * we hold the forcewake during initialisation these problems
5507 * just magically go away.
5508 */
ee48700d 5509 mutex_lock(&dev_priv->drm.struct_mutex);
5e4f5189
CW
5510 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5511
f6b9d5ca 5512 ret = i915_gem_init_ggtt(dev_priv);
6ca9a2be
CW
5513 if (ret) {
5514 GEM_BUG_ON(ret == -EIO);
5515 goto err_unlock;
5516 }
d62b4892 5517
829a0af2 5518 ret = i915_gem_contexts_init(dev_priv);
6ca9a2be
CW
5519 if (ret) {
5520 GEM_BUG_ON(ret == -EIO);
5521 goto err_ggtt;
5522 }
2fa48d8d 5523
bf9e8429 5524 ret = intel_engines_init(dev_priv);
6ca9a2be
CW
5525 if (ret) {
5526 GEM_BUG_ON(ret == -EIO);
5527 goto err_context;
5528 }
2fa48d8d 5529
f58d13d5
CW
5530 intel_init_gt_powersave(dev_priv);
5531
61b5c158 5532 ret = intel_uc_init(dev_priv);
cc6a818a 5533 if (ret)
6ca9a2be 5534 goto err_pm;
cc6a818a 5535
61b5c158
MW
5536 ret = i915_gem_init_hw(dev_priv);
5537 if (ret)
5538 goto err_uc_init;
5539
cc6a818a
CW
5540 /*
5541 * Despite its name intel_init_clock_gating applies both display
5542 * clock gating workarounds; GT mmio workarounds and the occasional
5543 * GT power context workaround. Worse, sometimes it includes a context
5544 * register workaround which we need to apply before we record the
5545 * default HW state for all contexts.
5546 *
5547 * FIXME: break up the workarounds and apply them at the right time!
5548 */
5549 intel_init_clock_gating(dev_priv);
5550
d2b4b979 5551 ret = __intel_engines_record_defaults(dev_priv);
6ca9a2be
CW
5552 if (ret)
5553 goto err_init_hw;
5554
5555 if (i915_inject_load_failure()) {
5556 ret = -ENODEV;
5557 goto err_init_hw;
5558 }
5559
5560 if (i915_inject_load_failure()) {
5561 ret = -EIO;
5562 goto err_init_hw;
5563 }
5564
5565 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5566 mutex_unlock(&dev_priv->drm.struct_mutex);
5567
5568 return 0;
5569
5570 /*
5571 * Unwinding is complicated by that we want to handle -EIO to mean
5572 * disable GPU submission but keep KMS alive. We want to mark the
5573 * HW as irrevisibly wedged, but keep enough state around that the
5574 * driver doesn't explode during runtime.
5575 */
5576err_init_hw:
8571a05a
CW
5577 mutex_unlock(&dev_priv->drm.struct_mutex);
5578
5579 WARN_ON(i915_gem_suspend(dev_priv));
5580 i915_gem_suspend_late(dev_priv);
5581
8bcf9f70
CW
5582 i915_gem_drain_workqueue(dev_priv);
5583
8571a05a 5584 mutex_lock(&dev_priv->drm.struct_mutex);
6ca9a2be 5585 intel_uc_fini_hw(dev_priv);
61b5c158
MW
5586err_uc_init:
5587 intel_uc_fini(dev_priv);
6ca9a2be
CW
5588err_pm:
5589 if (ret != -EIO) {
5590 intel_cleanup_gt_powersave(dev_priv);
5591 i915_gem_cleanup_engines(dev_priv);
5592 }
5593err_context:
5594 if (ret != -EIO)
5595 i915_gem_contexts_fini(dev_priv);
5596err_ggtt:
5597err_unlock:
5598 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5599 mutex_unlock(&dev_priv->drm.struct_mutex);
5600
f7dc0157 5601err_uc_misc:
70deeadd 5602 intel_uc_fini_misc(dev_priv);
da943b5a 5603
6ca9a2be
CW
5604 if (ret != -EIO)
5605 i915_gem_cleanup_userptr(dev_priv);
5606
60990320 5607 if (ret == -EIO) {
7ed43df7
CW
5608 mutex_lock(&dev_priv->drm.struct_mutex);
5609
6ca9a2be
CW
5610 /*
5611 * Allow engine initialisation to fail by marking the GPU as
60990320
CW
5612 * wedged. But we only want to do this where the GPU is angry,
5613 * for all other failure, such as an allocation failure, bail.
5614 */
6f74b36b 5615 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
51c18bf7
CW
5616 i915_load_error(dev_priv,
5617 "Failed to initialize GPU, declaring it wedged!\n");
6f74b36b
CW
5618 i915_gem_set_wedged(dev_priv);
5619 }
7ed43df7
CW
5620
5621 /* Minimal basic recovery for KMS */
5622 ret = i915_ggtt_enable_hw(dev_priv);
5623 i915_gem_restore_gtt_mappings(dev_priv);
5624 i915_gem_restore_fences(dev_priv);
5625 intel_init_clock_gating(dev_priv);
5626
5627 mutex_unlock(&dev_priv->drm.struct_mutex);
1070a42b
CW
5628 }
5629
6ca9a2be 5630 i915_gem_drain_freed_objects(dev_priv);
60990320 5631 return ret;
1070a42b
CW
5632}
5633
8979187a
MW
5634void i915_gem_fini(struct drm_i915_private *dev_priv)
5635{
5636 i915_gem_suspend_late(dev_priv);
30b71084 5637 intel_disable_gt_powersave(dev_priv);
8979187a
MW
5638
5639 /* Flush any outstanding unpin_work. */
5640 i915_gem_drain_workqueue(dev_priv);
5641
5642 mutex_lock(&dev_priv->drm.struct_mutex);
5643 intel_uc_fini_hw(dev_priv);
5644 intel_uc_fini(dev_priv);
5645 i915_gem_cleanup_engines(dev_priv);
5646 i915_gem_contexts_fini(dev_priv);
5647 mutex_unlock(&dev_priv->drm.struct_mutex);
5648
30b71084
CW
5649 intel_cleanup_gt_powersave(dev_priv);
5650
8979187a
MW
5651 intel_uc_fini_misc(dev_priv);
5652 i915_gem_cleanup_userptr(dev_priv);
5653
5654 i915_gem_drain_freed_objects(dev_priv);
5655
5656 WARN_ON(!list_empty(&dev_priv->contexts.list));
5657}
5658
24145517
CW
5659void i915_gem_init_mmio(struct drm_i915_private *i915)
5660{
5661 i915_gem_sanitize(i915);
5662}
5663
8187a2b7 5664void
cb15d9f8 5665i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
8187a2b7 5666{
e2f80391 5667 struct intel_engine_cs *engine;
3b3f1650 5668 enum intel_engine_id id;
8187a2b7 5669
3b3f1650 5670 for_each_engine(engine, dev_priv, id)
117897f4 5671 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
5672}
5673
40ae4e16
ID
5674void
5675i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5676{
49ef5294 5677 int i;
40ae4e16 5678
c56b89f1 5679 if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
40ae4e16
ID
5680 !IS_CHERRYVIEW(dev_priv))
5681 dev_priv->num_fence_regs = 32;
c56b89f1 5682 else if (INTEL_GEN(dev_priv) >= 4 ||
73f67aa8
JN
5683 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5684 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
40ae4e16
ID
5685 dev_priv->num_fence_regs = 16;
5686 else
5687 dev_priv->num_fence_regs = 8;
5688
c033666a 5689 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
5690 dev_priv->num_fence_regs =
5691 I915_READ(vgtif_reg(avail_rs.fence_num));
5692
5693 /* Initialize fence registers to zero */
49ef5294
CW
5694 for (i = 0; i < dev_priv->num_fence_regs; i++) {
5695 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5696
5697 fence->i915 = dev_priv;
5698 fence->id = i;
5699 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5700 }
4362f4f6 5701 i915_gem_restore_fences(dev_priv);
40ae4e16 5702
4362f4f6 5703 i915_gem_detect_bit_6_swizzle(dev_priv);
40ae4e16
ID
5704}
5705
9c52d1c8
CW
5706static void i915_gem_init__mm(struct drm_i915_private *i915)
5707{
5708 spin_lock_init(&i915->mm.object_stat_lock);
5709 spin_lock_init(&i915->mm.obj_lock);
5710 spin_lock_init(&i915->mm.free_lock);
5711
5712 init_llist_head(&i915->mm.free_list);
5713
5714 INIT_LIST_HEAD(&i915->mm.unbound_list);
5715 INIT_LIST_HEAD(&i915->mm.bound_list);
5716 INIT_LIST_HEAD(&i915->mm.fence_list);
5717 INIT_LIST_HEAD(&i915->mm.userfault_list);
5718
5719 INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
5720}
5721
a0de908d 5722int i915_gem_init_early(struct drm_i915_private *dev_priv)
673a394b 5723{
a933568e 5724 int err = -ENOMEM;
42dcedd4 5725
a933568e
TU
5726 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5727 if (!dev_priv->objects)
73cb9701 5728 goto err_out;
73cb9701 5729
a933568e
TU
5730 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5731 if (!dev_priv->vmas)
73cb9701 5732 goto err_objects;
73cb9701 5733
d1b48c1e
CW
5734 dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5735 if (!dev_priv->luts)
5736 goto err_vmas;
5737
e61e0f51 5738 dev_priv->requests = KMEM_CACHE(i915_request,
a933568e
TU
5739 SLAB_HWCACHE_ALIGN |
5740 SLAB_RECLAIM_ACCOUNT |
5f0d5a3a 5741 SLAB_TYPESAFE_BY_RCU);
a933568e 5742 if (!dev_priv->requests)
d1b48c1e 5743 goto err_luts;
73cb9701 5744
52e54209
CW
5745 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5746 SLAB_HWCACHE_ALIGN |
5747 SLAB_RECLAIM_ACCOUNT);
5748 if (!dev_priv->dependencies)
5749 goto err_requests;
5750
c5cf9a91
CW
5751 dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5752 if (!dev_priv->priorities)
5753 goto err_dependencies;
5754
73cb9701 5755 INIT_LIST_HEAD(&dev_priv->gt.timelines);
643b450a 5756 INIT_LIST_HEAD(&dev_priv->gt.active_rings);
3365e226 5757 INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
643b450a 5758
9c52d1c8 5759 i915_gem_init__mm(dev_priv);
f2123818 5760
67d97da3 5761 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
673a394b 5762 i915_gem_retire_work_handler);
67d97da3 5763 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
b29c19b6 5764 i915_gem_idle_work_handler);
1f15b76f 5765 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1f83fee0 5766 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5767
6f633402
JL
5768 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5769
b5add959 5770 spin_lock_init(&dev_priv->fb_tracking.lock);
73cb9701 5771
465c403c
MA
5772 err = i915_gemfs_init(dev_priv);
5773 if (err)
5774 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5775
73cb9701
CW
5776 return 0;
5777
52e54209
CW
5778err_dependencies:
5779 kmem_cache_destroy(dev_priv->dependencies);
73cb9701
CW
5780err_requests:
5781 kmem_cache_destroy(dev_priv->requests);
d1b48c1e
CW
5782err_luts:
5783 kmem_cache_destroy(dev_priv->luts);
73cb9701
CW
5784err_vmas:
5785 kmem_cache_destroy(dev_priv->vmas);
5786err_objects:
5787 kmem_cache_destroy(dev_priv->objects);
5788err_out:
5789 return err;
673a394b 5790}
71acb5eb 5791
a0de908d 5792void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
d64aa096 5793{
c4d4c1c6 5794 i915_gem_drain_freed_objects(dev_priv);
c9c70471
CW
5795 GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
5796 GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
c4d4c1c6 5797 WARN_ON(dev_priv->mm.object_count);
ea84aa77 5798 WARN_ON(!list_empty(&dev_priv->gt.timelines));
ea84aa77 5799
c5cf9a91 5800 kmem_cache_destroy(dev_priv->priorities);
52e54209 5801 kmem_cache_destroy(dev_priv->dependencies);
d64aa096 5802 kmem_cache_destroy(dev_priv->requests);
d1b48c1e 5803 kmem_cache_destroy(dev_priv->luts);
d64aa096
ID
5804 kmem_cache_destroy(dev_priv->vmas);
5805 kmem_cache_destroy(dev_priv->objects);
0eafec6d
CW
5806
5807 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5808 rcu_barrier();
465c403c
MA
5809
5810 i915_gemfs_fini(dev_priv);
d64aa096
ID
5811}
5812
6a800eab
CW
5813int i915_gem_freeze(struct drm_i915_private *dev_priv)
5814{
d0aa301a
CW
5815 /* Discard all purgeable objects, let userspace recover those as
5816 * required after resuming.
5817 */
6a800eab 5818 i915_gem_shrink_all(dev_priv);
6a800eab 5819
6a800eab
CW
5820 return 0;
5821}
5822
95c778da 5823int i915_gem_freeze_late(struct drm_i915_private *i915)
461fb99c
CW
5824{
5825 struct drm_i915_gem_object *obj;
7aab2d53 5826 struct list_head *phases[] = {
95c778da
CW
5827 &i915->mm.unbound_list,
5828 &i915->mm.bound_list,
7aab2d53 5829 NULL
95c778da 5830 }, **phase;
461fb99c 5831
95c778da
CW
5832 /*
5833 * Called just before we write the hibernation image.
461fb99c
CW
5834 *
5835 * We need to update the domain tracking to reflect that the CPU
5836 * will be accessing all the pages to create and restore from the
5837 * hibernation, and so upon restoration those pages will be in the
5838 * CPU domain.
5839 *
5840 * To make sure the hibernation image contains the latest state,
5841 * we update that state just before writing out the image.
7aab2d53
CW
5842 *
5843 * To try and reduce the hibernation image, we manually shrink
d0aa301a 5844 * the objects as well, see i915_gem_freeze()
461fb99c
CW
5845 */
5846
95c778da
CW
5847 i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
5848 i915_gem_drain_freed_objects(i915);
461fb99c 5849
95c778da
CW
5850 mutex_lock(&i915->drm.struct_mutex);
5851 for (phase = phases; *phase; phase++) {
5852 list_for_each_entry(obj, *phase, mm.link)
5853 WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
461fb99c 5854 }
95c778da 5855 mutex_unlock(&i915->drm.struct_mutex);
461fb99c
CW
5856
5857 return 0;
5858}
5859
f787a5f5 5860void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5861{
f787a5f5 5862 struct drm_i915_file_private *file_priv = file->driver_priv;
e61e0f51 5863 struct i915_request *request;
b962442e
EA
5864
5865 /* Clean up our request list when the client is going away, so that
5866 * later retire_requests won't dereference our soon-to-be-gone
5867 * file_priv.
5868 */
1c25595f 5869 spin_lock(&file_priv->mm.lock);
c8659efa 5870 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
f787a5f5 5871 request->file_priv = NULL;
1c25595f 5872 spin_unlock(&file_priv->mm.lock);
b29c19b6
CW
5873}
5874
829a0af2 5875int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
b29c19b6
CW
5876{
5877 struct drm_i915_file_private *file_priv;
e422b888 5878 int ret;
b29c19b6 5879
c4c29d7b 5880 DRM_DEBUG("\n");
b29c19b6
CW
5881
5882 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5883 if (!file_priv)
5884 return -ENOMEM;
5885
5886 file->driver_priv = file_priv;
829a0af2 5887 file_priv->dev_priv = i915;
ab0e7ff9 5888 file_priv->file = file;
b29c19b6
CW
5889
5890 spin_lock_init(&file_priv->mm.lock);
5891 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5892
c80ff16e 5893 file_priv->bsd_engine = -1;
14921f3c 5894 file_priv->hang_timestamp = jiffies;
de1add36 5895
829a0af2 5896 ret = i915_gem_context_open(i915, file);
e422b888
BW
5897 if (ret)
5898 kfree(file_priv);
b29c19b6 5899
e422b888 5900 return ret;
b29c19b6
CW
5901}
5902
b680c37a
DV
5903/**
5904 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
5905 * @old: current GEM buffer for the frontbuffer slots
5906 * @new: new GEM buffer for the frontbuffer slots
5907 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
5908 *
5909 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5910 * from @old and setting them in @new. Both @old and @new can be NULL.
5911 */
a071fa00
DV
5912void i915_gem_track_fb(struct drm_i915_gem_object *old,
5913 struct drm_i915_gem_object *new,
5914 unsigned frontbuffer_bits)
5915{
faf5bf0a
CW
5916 /* Control of individual bits within the mask are guarded by
5917 * the owning plane->mutex, i.e. we can never see concurrent
5918 * manipulation of individual bits. But since the bitfield as a whole
5919 * is updated using RMW, we need to use atomics in order to update
5920 * the bits.
5921 */
5922 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5923 sizeof(atomic_t) * BITS_PER_BYTE);
5924
a071fa00 5925 if (old) {
faf5bf0a
CW
5926 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5927 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
a071fa00
DV
5928 }
5929
5930 if (new) {
faf5bf0a
CW
5931 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5932 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
a071fa00
DV
5933 }
5934}
5935
ea70299d
DG
5936/* Allocate a new GEM object and fill it with the supplied data */
5937struct drm_i915_gem_object *
12d79d78 5938i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
ea70299d
DG
5939 const void *data, size_t size)
5940{
5941 struct drm_i915_gem_object *obj;
be062fa4
CW
5942 struct file *file;
5943 size_t offset;
5944 int err;
ea70299d 5945
12d79d78 5946 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
fe3db79b 5947 if (IS_ERR(obj))
ea70299d
DG
5948 return obj;
5949
c0a51fd0 5950 GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
ea70299d 5951
be062fa4
CW
5952 file = obj->base.filp;
5953 offset = 0;
5954 do {
5955 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5956 struct page *page;
5957 void *pgdata, *vaddr;
ea70299d 5958
be062fa4
CW
5959 err = pagecache_write_begin(file, file->f_mapping,
5960 offset, len, 0,
5961 &page, &pgdata);
5962 if (err < 0)
5963 goto fail;
ea70299d 5964
be062fa4
CW
5965 vaddr = kmap(page);
5966 memcpy(vaddr, data, len);
5967 kunmap(page);
5968
5969 err = pagecache_write_end(file, file->f_mapping,
5970 offset, len, len,
5971 page, pgdata);
5972 if (err < 0)
5973 goto fail;
5974
5975 size -= len;
5976 data += len;
5977 offset += len;
5978 } while (size);
ea70299d
DG
5979
5980 return obj;
5981
5982fail:
f8c417cd 5983 i915_gem_object_put(obj);
be062fa4 5984 return ERR_PTR(err);
ea70299d 5985}
96d77634
CW
5986
5987struct scatterlist *
5988i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5989 unsigned int n,
5990 unsigned int *offset)
5991{
a4f5ea64 5992 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
96d77634
CW
5993 struct scatterlist *sg;
5994 unsigned int idx, count;
5995
5996 might_sleep();
5997 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
a4f5ea64 5998 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
96d77634
CW
5999
6000 /* As we iterate forward through the sg, we record each entry in a
6001 * radixtree for quick repeated (backwards) lookups. If we have seen
6002 * this index previously, we will have an entry for it.
6003 *
6004 * Initial lookup is O(N), but this is amortized to O(1) for
6005 * sequential page access (where each new request is consecutive
6006 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
6007 * i.e. O(1) with a large constant!
6008 */
6009 if (n < READ_ONCE(iter->sg_idx))
6010 goto lookup;
6011
6012 mutex_lock(&iter->lock);
6013
6014 /* We prefer to reuse the last sg so that repeated lookup of this
6015 * (or the subsequent) sg are fast - comparing against the last
6016 * sg is faster than going through the radixtree.
6017 */
6018
6019 sg = iter->sg_pos;
6020 idx = iter->sg_idx;
6021 count = __sg_page_count(sg);
6022
6023 while (idx + count <= n) {
6024 unsigned long exception, i;
6025 int ret;
6026
6027 /* If we cannot allocate and insert this entry, or the
6028 * individual pages from this range, cancel updating the
6029 * sg_idx so that on this lookup we are forced to linearly
6030 * scan onwards, but on future lookups we will try the
6031 * insertion again (in which case we need to be careful of
6032 * the error return reporting that we have already inserted
6033 * this index).
6034 */
6035 ret = radix_tree_insert(&iter->radix, idx, sg);
6036 if (ret && ret != -EEXIST)
6037 goto scan;
6038
6039 exception =
6040 RADIX_TREE_EXCEPTIONAL_ENTRY |
6041 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
6042 for (i = 1; i < count; i++) {
6043 ret = radix_tree_insert(&iter->radix, idx + i,
6044 (void *)exception);
6045 if (ret && ret != -EEXIST)
6046 goto scan;
6047 }
6048
6049 idx += count;
6050 sg = ____sg_next(sg);
6051 count = __sg_page_count(sg);
6052 }
6053
6054scan:
6055 iter->sg_pos = sg;
6056 iter->sg_idx = idx;
6057
6058 mutex_unlock(&iter->lock);
6059
6060 if (unlikely(n < idx)) /* insertion completed by another thread */
6061 goto lookup;
6062
6063 /* In case we failed to insert the entry into the radixtree, we need
6064 * to look beyond the current sg.
6065 */
6066 while (idx + count <= n) {
6067 idx += count;
6068 sg = ____sg_next(sg);
6069 count = __sg_page_count(sg);
6070 }
6071
6072 *offset = n - idx;
6073 return sg;
6074
6075lookup:
6076 rcu_read_lock();
6077
6078 sg = radix_tree_lookup(&iter->radix, n);
6079 GEM_BUG_ON(!sg);
6080
6081 /* If this index is in the middle of multi-page sg entry,
6082 * the radixtree will contain an exceptional entry that points
6083 * to the start of that range. We will return the pointer to
6084 * the base page and the offset of this page within the
6085 * sg entry's range.
6086 */
6087 *offset = 0;
6088 if (unlikely(radix_tree_exception(sg))) {
6089 unsigned long base =
6090 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
6091
6092 sg = radix_tree_lookup(&iter->radix, base);
6093 GEM_BUG_ON(!sg);
6094
6095 *offset = n - base;
6096 }
6097
6098 rcu_read_unlock();
6099
6100 return sg;
6101}
6102
6103struct page *
6104i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
6105{
6106 struct scatterlist *sg;
6107 unsigned int offset;
6108
6109 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
6110
6111 sg = i915_gem_object_get_sg(obj, n, &offset);
6112 return nth_page(sg_page(sg), offset);
6113}
6114
6115/* Like i915_gem_object_get_page(), but mark the returned page dirty */
6116struct page *
6117i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
6118 unsigned int n)
6119{
6120 struct page *page;
6121
6122 page = i915_gem_object_get_page(obj, n);
a4f5ea64 6123 if (!obj->mm.dirty)
96d77634
CW
6124 set_page_dirty(page);
6125
6126 return page;
6127}
6128
6129dma_addr_t
6130i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
6131 unsigned long n)
6132{
6133 struct scatterlist *sg;
6134 unsigned int offset;
6135
6136 sg = i915_gem_object_get_sg(obj, n, &offset);
6137 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
6138}
935a2f77 6139
8eeb7906
CW
6140int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
6141{
6142 struct sg_table *pages;
6143 int err;
6144
6145 if (align > obj->base.size)
6146 return -EINVAL;
6147
6148 if (obj->ops == &i915_gem_phys_ops)
6149 return 0;
6150
6151 if (obj->ops != &i915_gem_object_ops)
6152 return -EINVAL;
6153
6154 err = i915_gem_object_unbind(obj);
6155 if (err)
6156 return err;
6157
6158 mutex_lock(&obj->mm.lock);
6159
6160 if (obj->mm.madv != I915_MADV_WILLNEED) {
6161 err = -EFAULT;
6162 goto err_unlock;
6163 }
6164
6165 if (obj->mm.quirked) {
6166 err = -EFAULT;
6167 goto err_unlock;
6168 }
6169
6170 if (obj->mm.mapping) {
6171 err = -EBUSY;
6172 goto err_unlock;
6173 }
6174
acd1c1e6 6175 pages = __i915_gem_object_unset_pages(obj);
f2123818 6176
8eeb7906
CW
6177 obj->ops = &i915_gem_phys_ops;
6178
8fb6a5df 6179 err = ____i915_gem_object_get_pages(obj);
8eeb7906
CW
6180 if (err)
6181 goto err_xfer;
6182
6183 /* Perma-pin (until release) the physical set of pages */
6184 __i915_gem_object_pin_pages(obj);
6185
6186 if (!IS_ERR_OR_NULL(pages))
6187 i915_gem_object_ops.put_pages(obj, pages);
6188 mutex_unlock(&obj->mm.lock);
6189 return 0;
6190
6191err_xfer:
6192 obj->ops = &i915_gem_object_ops;
acd1c1e6
CW
6193 if (!IS_ERR_OR_NULL(pages)) {
6194 unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);
6195
6196 __i915_gem_object_set_pages(obj, pages, sg_page_sizes);
6197 }
8eeb7906
CW
6198err_unlock:
6199 mutex_unlock(&obj->mm.lock);
6200 return err;
6201}
6202
935a2f77
CW
6203#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
6204#include "selftests/scatterlist.c"
66d9cb5d 6205#include "selftests/mock_gem_device.c"
44653988 6206#include "selftests/huge_gem_object.c"
4049866f 6207#include "selftests/huge_pages.c"
8335fd65 6208#include "selftests/i915_gem_object.c"
17059450 6209#include "selftests/i915_gem_coherency.c"
3f51b7e1 6210#include "selftests/i915_gem.c"
935a2f77 6211#endif