]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - drivers/gpu/drm/i915/i915_gem_userptr.c
Merge tag 'pwm/for-5.2-rc1' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/kernel/stable.git] / drivers / gpu / drm / i915 / i915_gem_userptr.c
CommitLineData
5cc9ed4b
CW
1/*
2 * Copyright © 2012-2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
b588c92b 25#include <drm/i915_drm.h>
5cc9ed4b
CW
26#include "i915_drv.h"
27#include "i915_trace.h"
28#include "intel_drv.h"
29#include <linux/mmu_context.h>
30#include <linux/mmu_notifier.h>
31#include <linux/mempolicy.h>
32#include <linux/swap.h>
6e84f315 33#include <linux/sched/mm.h>
5cc9ed4b 34
ad46cb53
CW
35struct i915_mm_struct {
36 struct mm_struct *mm;
f470b190 37 struct drm_i915_private *i915;
ad46cb53
CW
38 struct i915_mmu_notifier *mn;
39 struct hlist_node node;
40 struct kref kref;
41 struct work_struct work;
42};
43
5cc9ed4b
CW
44#if defined(CONFIG_MMU_NOTIFIER)
45#include <linux/interval_tree.h>
46
47struct i915_mmu_notifier {
48 spinlock_t lock;
49 struct hlist_node node;
50 struct mmu_notifier mn;
f808c13f 51 struct rb_root_cached objects;
484d9a84 52 struct i915_mm_struct *mm;
5cc9ed4b
CW
53};
54
55struct i915_mmu_object {
ad46cb53 56 struct i915_mmu_notifier *mn;
768e159f 57 struct drm_i915_gem_object *obj;
5cc9ed4b 58 struct interval_tree_node it;
5cc9ed4b
CW
59};
60
484d9a84 61static void add_object(struct i915_mmu_object *mo)
ec8b0dd5 62{
484d9a84
CW
63 GEM_BUG_ON(!RB_EMPTY_NODE(&mo->it.rb));
64 interval_tree_insert(&mo->it, &mo->mn->objects);
ec8b0dd5
CW
65}
66
484d9a84 67static void del_object(struct i915_mmu_object *mo)
ec8b0dd5 68{
484d9a84 69 if (RB_EMPTY_NODE(&mo->it.rb))
768e159f 70 return;
ec8b0dd5 71
484d9a84
CW
72 interval_tree_remove(&mo->it, &mo->mn->objects);
73 RB_CLEAR_NODE(&mo->it.rb);
768e159f
CW
74}
75
484d9a84
CW
76static void
77__i915_gem_userptr_set_active(struct drm_i915_gem_object *obj, bool value)
768e159f 78{
484d9a84
CW
79 struct i915_mmu_object *mo = obj->userptr.mmu_object;
80
81 /*
82 * During mm_invalidate_range we need to cancel any userptr that
83 * overlaps the range being invalidated. Doing so requires the
84 * struct_mutex, and that risks recursion. In order to cause
85 * recursion, the user must alias the userptr address space with
86 * a GTT mmapping (possible with a MAP_FIXED) - then when we have
87 * to invalidate that mmaping, mm_invalidate_range is called with
88 * the userptr address *and* the struct_mutex held. To prevent that
89 * we set a flag under the i915_mmu_notifier spinlock to indicate
90 * whether this object is valid.
91 */
92 if (!mo)
768e159f
CW
93 return;
94
484d9a84
CW
95 spin_lock(&mo->mn->lock);
96 if (value)
97 add_object(mo);
98 else
99 del_object(mo);
100 spin_unlock(&mo->mn->lock);
ec8b0dd5
CW
101}
102
484d9a84
CW
103static int
104userptr_mn_invalidate_range_start(struct mmu_notifier *_mn,
105 const struct mmu_notifier_range *range)
5cc9ed4b 106{
380996aa
CW
107 struct i915_mmu_notifier *mn =
108 container_of(_mn, struct i915_mmu_notifier, mn);
768e159f 109 struct interval_tree_node *it;
484d9a84 110 struct mutex *unlock = NULL;
5d6527a7 111 unsigned long end;
484d9a84 112 int ret = 0;
768e159f 113
f808c13f 114 if (RB_EMPTY_ROOT(&mn->objects.rb_root))
93065ac7 115 return 0;
380996aa
CW
116
117 /* interval ranges are inclusive, but invalidate range is exclusive */
5d6527a7 118 end = range->end - 1;
380996aa
CW
119
120 spin_lock(&mn->lock);
5d6527a7 121 it = interval_tree_iter_first(&mn->objects, range->start, end);
768e159f 122 while (it) {
484d9a84
CW
123 struct drm_i915_gem_object *obj;
124
5d6527a7 125 if (!range->blockable) {
484d9a84
CW
126 ret = -EAGAIN;
127 break;
93065ac7 128 }
484d9a84
CW
129
130 /*
131 * The mmu_object is released late when destroying the
768e159f
CW
132 * GEM object so it is entirely possible to gain a
133 * reference on an object in the process of being freed
134 * since our serialisation is via the spinlock and not
135 * the struct_mutex - and consequently use it after it
136 * is freed and then double free it. To prevent that
137 * use-after-free we only acquire a reference on the
138 * object if it is not in the process of being destroyed.
139 */
484d9a84
CW
140 obj = container_of(it, struct i915_mmu_object, it)->obj;
141 if (!kref_get_unless_zero(&obj->base.refcount)) {
142 it = interval_tree_iter_next(it, range->start, end);
143 continue;
144 }
145 spin_unlock(&mn->lock);
146
147 if (!unlock) {
148 unlock = &mn->mm->i915->drm.struct_mutex;
149
150 switch (mutex_trylock_recursive(unlock)) {
151 default:
152 case MUTEX_TRYLOCK_FAILED:
9e267d28 153 if (mutex_lock_killable_nested(unlock, I915_MM_SHRINKER)) {
484d9a84
CW
154 i915_gem_object_put(obj);
155 return -EINTR;
156 }
157 /* fall through */
158 case MUTEX_TRYLOCK_SUCCESS:
159 break;
160
161 case MUTEX_TRYLOCK_RECURSIVE:
162 unlock = ERR_PTR(-EEXIST);
163 break;
164 }
165 }
166
167 ret = i915_gem_object_unbind(obj);
168 if (ret == 0)
169 ret = __i915_gem_object_put_pages(obj, I915_MM_SHRINKER);
170 i915_gem_object_put(obj);
171 if (ret)
172 goto unlock;
5cc9ed4b 173
484d9a84
CW
174 spin_lock(&mn->lock);
175
176 /*
177 * As we do not (yet) protect the mmu from concurrent insertion
178 * over this range, there is no guarantee that this search will
179 * terminate given a pathologic workload.
180 */
181 it = interval_tree_iter_first(&mn->objects, range->start, end);
5cc9ed4b 182 }
380996aa 183 spin_unlock(&mn->lock);
393afc2c 184
484d9a84
CW
185unlock:
186 if (!IS_ERR_OR_NULL(unlock))
187 mutex_unlock(unlock);
188
189 return ret;
93065ac7 190
5cc9ed4b
CW
191}
192
193static const struct mmu_notifier_ops i915_gem_userptr_notifier = {
484d9a84 194 .invalidate_range_start = userptr_mn_invalidate_range_start,
5cc9ed4b
CW
195};
196
197static struct i915_mmu_notifier *
484d9a84 198i915_mmu_notifier_create(struct i915_mm_struct *mm)
5cc9ed4b 199{
ad46cb53 200 struct i915_mmu_notifier *mn;
5cc9ed4b 201
ad46cb53
CW
202 mn = kmalloc(sizeof(*mn), GFP_KERNEL);
203 if (mn == NULL)
5cc9ed4b
CW
204 return ERR_PTR(-ENOMEM);
205
ad46cb53
CW
206 spin_lock_init(&mn->lock);
207 mn->mn.ops = &i915_gem_userptr_notifier;
f808c13f 208 mn->objects = RB_ROOT_CACHED;
484d9a84 209 mn->mm = mm;
ad46cb53 210
ad46cb53 211 return mn;
5cc9ed4b
CW
212}
213
5cc9ed4b
CW
214static void
215i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
216{
ad46cb53 217 struct i915_mmu_object *mo;
5cc9ed4b 218
484d9a84
CW
219 mo = fetch_and_zero(&obj->userptr.mmu_object);
220 if (!mo)
5cc9ed4b
CW
221 return;
222
768e159f
CW
223 spin_lock(&mo->mn->lock);
224 del_object(mo);
225 spin_unlock(&mo->mn->lock);
ad46cb53 226 kfree(mo);
ad46cb53
CW
227}
228
229static struct i915_mmu_notifier *
230i915_mmu_notifier_find(struct i915_mm_struct *mm)
231{
7741b547
DV
232 struct i915_mmu_notifier *mn;
233 int err = 0;
e9681366
CW
234
235 mn = mm->mn;
236 if (mn)
237 return mn;
238
484d9a84 239 mn = i915_mmu_notifier_create(mm);
7741b547
DV
240 if (IS_ERR(mn))
241 err = PTR_ERR(mn);
242
e9681366 243 down_write(&mm->mm->mmap_sem);
f470b190 244 mutex_lock(&mm->i915->mm_lock);
7741b547
DV
245 if (mm->mn == NULL && !err) {
246 /* Protected by mmap_sem (write-lock) */
247 err = __mmu_notifier_register(&mn->mn, mm->mm);
248 if (!err) {
249 /* Protected by mm_lock */
250 mm->mn = fetch_and_zero(&mn);
251 }
cb8d50df
TU
252 } else if (mm->mn) {
253 /*
254 * Someone else raced and successfully installed the mmu
255 * notifier, we can cancel our own errors.
256 */
7741b547 257 err = 0;
ad46cb53 258 }
f470b190 259 mutex_unlock(&mm->i915->mm_lock);
e9681366
CW
260 up_write(&mm->mm->mmap_sem);
261
484d9a84 262 if (mn && !IS_ERR(mn))
7741b547 263 kfree(mn);
7741b547
DV
264
265 return err ? ERR_PTR(err) : mm->mn;
5cc9ed4b
CW
266}
267
268static int
269i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
270 unsigned flags)
271{
ad46cb53
CW
272 struct i915_mmu_notifier *mn;
273 struct i915_mmu_object *mo;
5cc9ed4b
CW
274
275 if (flags & I915_USERPTR_UNSYNCHRONIZED)
276 return capable(CAP_SYS_ADMIN) ? 0 : -EPERM;
277
ad46cb53
CW
278 if (WARN_ON(obj->userptr.mm == NULL))
279 return -EINVAL;
5cc9ed4b 280
ad46cb53
CW
281 mn = i915_mmu_notifier_find(obj->userptr.mm);
282 if (IS_ERR(mn))
283 return PTR_ERR(mn);
5cc9ed4b 284
ad46cb53 285 mo = kzalloc(sizeof(*mo), GFP_KERNEL);
484d9a84 286 if (!mo)
ad46cb53 287 return -ENOMEM;
5cc9ed4b 288
ad46cb53 289 mo->mn = mn;
ad46cb53 290 mo->obj = obj;
768e159f
CW
291 mo->it.start = obj->userptr.ptr;
292 mo->it.last = obj->userptr.ptr + obj->base.size - 1;
484d9a84 293 RB_CLEAR_NODE(&mo->it.rb);
ad46cb53
CW
294
295 obj->userptr.mmu_object = mo;
5cc9ed4b 296 return 0;
ad46cb53
CW
297}
298
299static void
300i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
301 struct mm_struct *mm)
302{
303 if (mn == NULL)
304 return;
5cc9ed4b 305
ad46cb53 306 mmu_notifier_unregister(&mn->mn, mm);
5cc9ed4b 307 kfree(mn);
5cc9ed4b
CW
308}
309
310#else
311
484d9a84
CW
312static void
313__i915_gem_userptr_set_active(struct drm_i915_gem_object *obj, bool value)
314{
315}
316
5cc9ed4b
CW
317static void
318i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
319{
320}
321
322static int
323i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
324 unsigned flags)
325{
326 if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0)
327 return -ENODEV;
328
329 if (!capable(CAP_SYS_ADMIN))
330 return -EPERM;
331
332 return 0;
333}
ad46cb53
CW
334
335static void
336i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
337 struct mm_struct *mm)
338{
339}
340
5cc9ed4b
CW
341#endif
342
ad46cb53
CW
343static struct i915_mm_struct *
344__i915_mm_struct_find(struct drm_i915_private *dev_priv, struct mm_struct *real)
345{
346 struct i915_mm_struct *mm;
347
348 /* Protected by dev_priv->mm_lock */
349 hash_for_each_possible(dev_priv->mm_structs, mm, node, (unsigned long)real)
350 if (mm->mm == real)
351 return mm;
352
353 return NULL;
354}
355
356static int
357i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object *obj)
358{
359 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
360 struct i915_mm_struct *mm;
361 int ret = 0;
362
363 /* During release of the GEM object we hold the struct_mutex. This
364 * precludes us from calling mmput() at that time as that may be
365 * the last reference and so call exit_mmap(). exit_mmap() will
366 * attempt to reap the vma, and if we were holding a GTT mmap
367 * would then call drm_gem_vm_close() and attempt to reacquire
368 * the struct mutex. So in order to avoid that recursion, we have
369 * to defer releasing the mm reference until after we drop the
370 * struct_mutex, i.e. we need to schedule a worker to do the clean
371 * up.
372 */
373 mutex_lock(&dev_priv->mm_lock);
374 mm = __i915_mm_struct_find(dev_priv, current->mm);
375 if (mm == NULL) {
376 mm = kmalloc(sizeof(*mm), GFP_KERNEL);
377 if (mm == NULL) {
378 ret = -ENOMEM;
379 goto out;
380 }
381
382 kref_init(&mm->kref);
f470b190 383 mm->i915 = to_i915(obj->base.dev);
ad46cb53
CW
384
385 mm->mm = current->mm;
f1f10076 386 mmgrab(current->mm);
ad46cb53
CW
387
388 mm->mn = NULL;
389
390 /* Protected by dev_priv->mm_lock */
391 hash_add(dev_priv->mm_structs,
392 &mm->node, (unsigned long)mm->mm);
393 } else
394 kref_get(&mm->kref);
395
396 obj->userptr.mm = mm;
397out:
398 mutex_unlock(&dev_priv->mm_lock);
399 return ret;
400}
401
402static void
403__i915_mm_struct_free__worker(struct work_struct *work)
404{
405 struct i915_mm_struct *mm = container_of(work, typeof(*mm), work);
406 i915_mmu_notifier_free(mm->mn, mm->mm);
407 mmdrop(mm->mm);
408 kfree(mm);
409}
410
411static void
412__i915_mm_struct_free(struct kref *kref)
413{
414 struct i915_mm_struct *mm = container_of(kref, typeof(*mm), kref);
415
416 /* Protected by dev_priv->mm_lock */
417 hash_del(&mm->node);
f470b190 418 mutex_unlock(&mm->i915->mm_lock);
ad46cb53
CW
419
420 INIT_WORK(&mm->work, __i915_mm_struct_free__worker);
8a2421bd 421 queue_work(mm->i915->mm.userptr_wq, &mm->work);
ad46cb53
CW
422}
423
424static void
425i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object *obj)
426{
427 if (obj->userptr.mm == NULL)
428 return;
429
430 kref_put_mutex(&obj->userptr.mm->kref,
431 __i915_mm_struct_free,
432 &to_i915(obj->base.dev)->mm_lock);
433 obj->userptr.mm = NULL;
434}
435
5cc9ed4b
CW
436struct get_pages_work {
437 struct work_struct work;
438 struct drm_i915_gem_object *obj;
439 struct task_struct *task;
440};
441
03ac84f1 442static struct sg_table *
5602452e
TU
443__i915_gem_userptr_alloc_pages(struct drm_i915_gem_object *obj,
444 struct page **pvec, int num_pages)
e2273302 445{
5602452e
TU
446 unsigned int max_segment = i915_sg_segment_size();
447 struct sg_table *st;
84e8978e 448 unsigned int sg_page_sizes;
e2273302
ID
449 int ret;
450
5602452e
TU
451 st = kmalloc(sizeof(*st), GFP_KERNEL);
452 if (!st)
453 return ERR_PTR(-ENOMEM);
454
455alloc_table:
456 ret = __sg_alloc_table_from_pages(st, pvec, num_pages,
457 0, num_pages << PAGE_SHIFT,
458 max_segment,
459 GFP_KERNEL);
460 if (ret) {
461 kfree(st);
03ac84f1 462 return ERR_PTR(ret);
5602452e 463 }
e2273302 464
5602452e 465 ret = i915_gem_gtt_prepare_pages(obj, st);
e2273302 466 if (ret) {
5602452e
TU
467 sg_free_table(st);
468
469 if (max_segment > PAGE_SIZE) {
470 max_segment = PAGE_SIZE;
471 goto alloc_table;
472 }
473
474 kfree(st);
03ac84f1 475 return ERR_PTR(ret);
e2273302
ID
476 }
477
84e8978e 478 sg_page_sizes = i915_sg_page_sizes(st->sgl);
a5c08166 479
84e8978e 480 __i915_gem_object_set_pages(obj, st, sg_page_sizes);
b91b09ee 481
5602452e 482 return st;
e2273302
ID
483}
484
5cc9ed4b
CW
485static void
486__i915_gem_userptr_get_pages_worker(struct work_struct *_work)
487{
488 struct get_pages_work *work = container_of(_work, typeof(*work), work);
489 struct drm_i915_gem_object *obj = work->obj;
68d6c840 490 const int npages = obj->base.size >> PAGE_SHIFT;
5cc9ed4b
CW
491 struct page **pvec;
492 int pinned, ret;
493
494 ret = -ENOMEM;
495 pinned = 0;
496
0ee931c4 497 pvec = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL);
5cc9ed4b 498 if (pvec != NULL) {
ad46cb53 499 struct mm_struct *mm = obj->userptr.mm->mm;
9beae1ea
LS
500 unsigned int flags = 0;
501
0b100760 502 if (!i915_gem_object_is_readonly(obj))
9beae1ea 503 flags |= FOLL_WRITE;
5cc9ed4b 504
40313f0c 505 ret = -EFAULT;
388f7934 506 if (mmget_not_zero(mm)) {
40313f0c
CW
507 down_read(&mm->mmap_sem);
508 while (pinned < npages) {
509 ret = get_user_pages_remote
510 (work->task, mm,
511 obj->userptr.ptr + pinned * PAGE_SIZE,
512 npages - pinned,
9beae1ea 513 flags,
5b56d49f 514 pvec + pinned, NULL, NULL);
40313f0c
CW
515 if (ret < 0)
516 break;
517
518 pinned += ret;
519 }
520 up_read(&mm->mmap_sem);
521 mmput(mm);
5cc9ed4b 522 }
5cc9ed4b
CW
523 }
524
1233e2db 525 mutex_lock(&obj->mm.lock);
68d6c840 526 if (obj->userptr.work == &work->work) {
03ac84f1
CW
527 struct sg_table *pages = ERR_PTR(ret);
528
68d6c840 529 if (pinned == npages) {
5602452e
TU
530 pages = __i915_gem_userptr_alloc_pages(obj, pvec,
531 npages);
03ac84f1 532 if (!IS_ERR(pages)) {
68d6c840 533 pinned = 0;
03ac84f1 534 pages = NULL;
68d6c840 535 }
5cc9ed4b 536 }
03ac84f1
CW
537
538 obj->userptr.work = ERR_CAST(pages);
42953b3c
CW
539 if (IS_ERR(pages))
540 __i915_gem_userptr_set_active(obj, false);
5cc9ed4b 541 }
1233e2db 542 mutex_unlock(&obj->mm.lock);
5cc9ed4b 543
c6f92f9f 544 release_pages(pvec, pinned);
2098105e 545 kvfree(pvec);
5cc9ed4b 546
f0cd5182 547 i915_gem_object_put(obj);
5cc9ed4b
CW
548 put_task_struct(work->task);
549 kfree(work);
550}
551
03ac84f1 552static struct sg_table *
1c8782dd 553__i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object *obj)
e4b946bf
CW
554{
555 struct get_pages_work *work;
556
557 /* Spawn a worker so that we can acquire the
558 * user pages without holding our mutex. Access
559 * to the user pages requires mmap_sem, and we have
560 * a strict lock ordering of mmap_sem, struct_mutex -
561 * we already hold struct_mutex here and so cannot
562 * call gup without encountering a lock inversion.
563 *
564 * Userspace will keep on repeating the operation
565 * (thanks to EAGAIN) until either we hit the fast
566 * path or the worker completes. If the worker is
567 * cancelled or superseded, the task is still run
568 * but the results ignored. (This leads to
569 * complications that we may have a stray object
570 * refcount that we need to be wary of when
571 * checking for existing objects during creation.)
572 * If the worker encounters an error, it reports
573 * that error back to this function through
574 * obj->userptr.work = ERR_PTR.
575 */
e4b946bf
CW
576 work = kmalloc(sizeof(*work), GFP_KERNEL);
577 if (work == NULL)
03ac84f1 578 return ERR_PTR(-ENOMEM);
e4b946bf
CW
579
580 obj->userptr.work = &work->work;
e4b946bf 581
25dc556a 582 work->obj = i915_gem_object_get(obj);
e4b946bf
CW
583
584 work->task = current;
585 get_task_struct(work->task);
586
587 INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker);
8a2421bd 588 queue_work(to_i915(obj->base.dev)->mm.userptr_wq, &work->work);
e4b946bf 589
03ac84f1 590 return ERR_PTR(-EAGAIN);
e4b946bf
CW
591}
592
b91b09ee 593static int i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj)
5cc9ed4b
CW
594{
595 const int num_pages = obj->base.size >> PAGE_SHIFT;
1c8782dd 596 struct mm_struct *mm = obj->userptr.mm->mm;
5cc9ed4b 597 struct page **pvec;
03ac84f1 598 struct sg_table *pages;
e4b946bf 599 bool active;
1c8782dd 600 int pinned;
5cc9ed4b
CW
601
602 /* If userspace should engineer that these pages are replaced in
603 * the vma between us binding this page into the GTT and completion
604 * of rendering... Their loss. If they change the mapping of their
605 * pages they need to create a new bo to point to the new vma.
606 *
607 * However, that still leaves open the possibility of the vma
608 * being copied upon fork. Which falls under the same userspace
609 * synchronisation issue as a regular bo, except that this time
610 * the process may not be expecting that a particular piece of
611 * memory is tied to the GPU.
612 *
613 * Fortunately, we can hook into the mmu_notifier in order to
614 * discard the page references prior to anything nasty happening
615 * to the vma (discard or cloning) which should prevent the more
616 * egregious cases from causing harm.
617 */
364c8172
CW
618
619 if (obj->userptr.work) {
e4b946bf 620 /* active flag should still be held for the pending work */
364c8172 621 if (IS_ERR(obj->userptr.work))
b91b09ee 622 return PTR_ERR(obj->userptr.work);
364c8172 623 else
b91b09ee 624 return -EAGAIN;
364c8172 625 }
e4b946bf 626
5cc9ed4b
CW
627 pvec = NULL;
628 pinned = 0;
5cc9ed4b 629
15c344f4 630 if (mm == current->mm) {
2098105e 631 pvec = kvmalloc_array(num_pages, sizeof(struct page *),
0ee931c4 632 GFP_KERNEL |
1c8782dd
CW
633 __GFP_NORETRY |
634 __GFP_NOWARN);
635 if (pvec) /* defer to worker if malloc fails */
636 pinned = __get_user_pages_fast(obj->userptr.ptr,
637 num_pages,
0b100760 638 !i915_gem_object_is_readonly(obj),
1c8782dd 639 pvec);
5cc9ed4b 640 }
e4b946bf
CW
641
642 active = false;
1c8782dd
CW
643 if (pinned < 0) {
644 pages = ERR_PTR(pinned);
645 pinned = 0;
646 } else if (pinned < num_pages) {
647 pages = __i915_gem_userptr_get_pages_schedule(obj);
648 active = pages == ERR_PTR(-EAGAIN);
649 } else {
5602452e 650 pages = __i915_gem_userptr_alloc_pages(obj, pvec, num_pages);
1c8782dd 651 active = !IS_ERR(pages);
5cc9ed4b 652 }
1c8782dd
CW
653 if (active)
654 __i915_gem_userptr_set_active(obj, true);
1c8782dd
CW
655
656 if (IS_ERR(pages))
c6f92f9f 657 release_pages(pvec, pinned);
2098105e 658 kvfree(pvec);
1c8782dd 659
b91b09ee 660 return PTR_ERR_OR_ZERO(pages);
5cc9ed4b
CW
661}
662
663static void
03ac84f1
CW
664i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj,
665 struct sg_table *pages)
5cc9ed4b 666{
85d1225e
DG
667 struct sgt_iter sgt_iter;
668 struct page *page;
5cc9ed4b 669
484d9a84
CW
670 /* Cancel any inflight work and force them to restart their gup */
671 obj->userptr.work = NULL;
e4b946bf 672 __i915_gem_userptr_set_active(obj, false);
484d9a84
CW
673 if (!pages)
674 return;
5cc9ed4b 675
ee8efa80 676 __i915_gem_object_release_shmem(obj, pages, true);
03ac84f1 677 i915_gem_gtt_finish_pages(obj, pages);
e2273302 678
03ac84f1 679 for_each_sgt_page(page, sgt_iter, pages) {
a4f5ea64 680 if (obj->mm.dirty)
5cc9ed4b
CW
681 set_page_dirty(page);
682
683 mark_page_accessed(page);
09cbfeaf 684 put_page(page);
5cc9ed4b 685 }
a4f5ea64 686 obj->mm.dirty = false;
5cc9ed4b 687
03ac84f1
CW
688 sg_free_table(pages);
689 kfree(pages);
5cc9ed4b
CW
690}
691
692static void
693i915_gem_userptr_release(struct drm_i915_gem_object *obj)
694{
695 i915_gem_userptr_release__mmu_notifier(obj);
ad46cb53 696 i915_gem_userptr_release__mm_struct(obj);
5cc9ed4b
CW
697}
698
699static int
700i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj)
701{
ad46cb53 702 if (obj->userptr.mmu_object)
5cc9ed4b
CW
703 return 0;
704
705 return i915_gem_userptr_init__mmu_notifier(obj, 0);
706}
707
708static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = {
3599a91c 709 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
484d9a84
CW
710 I915_GEM_OBJECT_IS_SHRINKABLE |
711 I915_GEM_OBJECT_ASYNC_CANCEL,
5cc9ed4b
CW
712 .get_pages = i915_gem_userptr_get_pages,
713 .put_pages = i915_gem_userptr_put_pages,
de472664 714 .dmabuf_export = i915_gem_userptr_dmabuf_export,
5cc9ed4b
CW
715 .release = i915_gem_userptr_release,
716};
717
a5a5ae2a 718/*
5cc9ed4b
CW
719 * Creates a new mm object that wraps some normal memory from the process
720 * context - user memory.
721 *
722 * We impose several restrictions upon the memory being mapped
723 * into the GPU.
724 * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
ec8b0dd5 725 * 2. It must be normal system memory, not a pointer into another map of IO
5cc9ed4b 726 * space (e.g. it must not be a GTT mmapping of another object).
ec8b0dd5 727 * 3. We only allow a bo as large as we could in theory map into the GTT,
5cc9ed4b 728 * that is we limit the size to the total size of the GTT.
ec8b0dd5 729 * 4. The bo is marked as being snoopable. The backing pages are left
5cc9ed4b
CW
730 * accessible directly by the CPU, but reads and writes by the GPU may
731 * incur the cost of a snoop (unless you have an LLC architecture).
732 *
733 * Synchronisation between multiple users and the GPU is left to userspace
734 * through the normal set-domain-ioctl. The kernel will enforce that the
735 * GPU relinquishes the VMA before it is returned back to the system
736 * i.e. upon free(), munmap() or process termination. However, the userspace
737 * malloc() library may not immediately relinquish the VMA after free() and
738 * instead reuse it whilst the GPU is still reading and writing to the VMA.
739 * Caveat emptor.
740 *
741 * Also note, that the object created here is not currently a "first class"
742 * object, in that several ioctls are banned. These are the CPU access
743 * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
cc917ab4
CW
744 * direct access via your pointer rather than use those ioctls. Another
745 * restriction is that we do not allow userptr surfaces to be pinned to the
746 * hardware and so we reject any attempt to create a framebuffer out of a
747 * userptr.
5cc9ed4b
CW
748 *
749 * If you think this is a good interface to use to pass GPU memory between
750 * drivers, please use dma-buf instead. In fact, wherever possible use
751 * dma-buf instead.
752 */
753int
a5a5ae2a
CW
754i915_gem_userptr_ioctl(struct drm_device *dev,
755 void *data,
756 struct drm_file *file)
5cc9ed4b 757{
0031fb96 758 struct drm_i915_private *dev_priv = to_i915(dev);
5cc9ed4b
CW
759 struct drm_i915_gem_userptr *args = data;
760 struct drm_i915_gem_object *obj;
761 int ret;
762 u32 handle;
763
0031fb96 764 if (!HAS_LLC(dev_priv) && !HAS_SNOOP(dev_priv)) {
ca377809
TU
765 /* We cannot support coherent userptr objects on hw without
766 * LLC and broken snooping.
767 */
768 return -ENODEV;
769 }
770
5cc9ed4b
CW
771 if (args->flags & ~(I915_USERPTR_READ_ONLY |
772 I915_USERPTR_UNSYNCHRONIZED))
773 return -EINVAL;
774
c11c7bfd
MA
775 if (!args->user_size)
776 return -EINVAL;
777
5cc9ed4b
CW
778 if (offset_in_page(args->user_ptr | args->user_size))
779 return -EINVAL;
780
96d4f267 781 if (!access_ok((char __user *)(unsigned long)args->user_ptr, args->user_size))
5cc9ed4b
CW
782 return -EFAULT;
783
784 if (args->flags & I915_USERPTR_READ_ONLY) {
0b100760
CW
785 struct i915_hw_ppgtt *ppgtt;
786
787 /*
788 * On almost all of the older hw, we cannot tell the GPU that
789 * a page is readonly.
5cc9ed4b 790 */
0b100760
CW
791 ppgtt = dev_priv->kernel_context->ppgtt;
792 if (!ppgtt || !ppgtt->vm.has_read_only)
793 return -ENODEV;
5cc9ed4b
CW
794 }
795
13f1bfd3 796 obj = i915_gem_object_alloc();
5cc9ed4b
CW
797 if (obj == NULL)
798 return -ENOMEM;
799
800 drm_gem_private_object_init(dev, &obj->base, args->user_size);
801 i915_gem_object_init(obj, &i915_gem_userptr_ops);
c0a51fd0
CK
802 obj->read_domains = I915_GEM_DOMAIN_CPU;
803 obj->write_domain = I915_GEM_DOMAIN_CPU;
b8f55be6 804 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
5cc9ed4b
CW
805
806 obj->userptr.ptr = args->user_ptr;
0b100760
CW
807 if (args->flags & I915_USERPTR_READ_ONLY)
808 i915_gem_object_set_readonly(obj);
5cc9ed4b
CW
809
810 /* And keep a pointer to the current->mm for resolving the user pages
811 * at binding. This means that we need to hook into the mmu_notifier
812 * in order to detect if the mmu is destroyed.
813 */
ad46cb53
CW
814 ret = i915_gem_userptr_init__mm_struct(obj);
815 if (ret == 0)
5cc9ed4b
CW
816 ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags);
817 if (ret == 0)
818 ret = drm_gem_handle_create(file, &obj->base, &handle);
819
820 /* drop reference from allocate - handle holds it now */
f0cd5182 821 i915_gem_object_put(obj);
5cc9ed4b
CW
822 if (ret)
823 return ret;
824
825 args->handle = handle;
826 return 0;
827}
828
8a2421bd 829int i915_gem_init_userptr(struct drm_i915_private *dev_priv)
5cc9ed4b 830{
ad46cb53
CW
831 mutex_init(&dev_priv->mm_lock);
832 hash_init(dev_priv->mm_structs);
8a2421bd
CW
833
834 dev_priv->mm.userptr_wq =
21cc6431 835 alloc_workqueue("i915-userptr-acquire",
457db89b 836 WQ_HIGHPRI | WQ_UNBOUND,
21cc6431 837 0);
8a2421bd
CW
838 if (!dev_priv->mm.userptr_wq)
839 return -ENOMEM;
840
841 return 0;
842}
843
844void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv)
845{
846 destroy_workqueue(dev_priv->mm.userptr_wq);
5cc9ed4b 847}