]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/gpu/drm/i915/i915_request.c
Merge tag 'io_uring-5.7-2020-05-22' of git://git.kernel.dk/linux-block
[thirdparty/linux.git] / drivers / gpu / drm / i915 / i915_request.c
CommitLineData
05235c53
CW
1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
b52992c0 25#include <linux/dma-fence-array.h>
e8861964
CW
26#include <linux/irq_work.h>
27#include <linux/prefetch.h>
e6017571
IM
28#include <linux/sched.h>
29#include <linux/sched/clock.h>
f361bf4a 30#include <linux/sched/signal.h>
fa545cbf 31
10be98a7
CW
32#include "gem/i915_gem_context.h"
33#include "gt/intel_context.h"
2871ea85 34#include "gt/intel_ring.h"
3e7abf81 35#include "gt/intel_rps.h"
10be98a7 36
21950ee7 37#include "i915_active.h"
696173b0 38#include "i915_drv.h"
103b76ee 39#include "i915_globals.h"
a09d9a80 40#include "i915_trace.h"
696173b0 41#include "intel_pm.h"
05235c53 42
e8861964
CW
43struct execute_cb {
44 struct list_head link;
45 struct irq_work work;
46 struct i915_sw_fence *fence;
f71e01a7
CW
47 void (*hook)(struct i915_request *rq, struct dma_fence *signal);
48 struct i915_request *signal;
e8861964
CW
49};
50
32eb6bcf 51static struct i915_global_request {
103b76ee 52 struct i915_global base;
32eb6bcf 53 struct kmem_cache *slab_requests;
e8861964 54 struct kmem_cache *slab_execute_cbs;
32eb6bcf
CW
55} global;
56
f54d1867 57static const char *i915_fence_get_driver_name(struct dma_fence *fence)
04769652 58{
65c29dbb 59 return dev_name(to_request(fence)->i915->drm.dev);
04769652
CW
60}
61
f54d1867 62static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
04769652 63{
9f3ccd40
CW
64 const struct i915_gem_context *ctx;
65
e61e0f51
CW
66 /*
67 * The timeline struct (as part of the ppgtt underneath a context)
05506b5b
CW
68 * may be freed when the request is no longer in use by the GPU.
69 * We could extend the life of a context to beyond that of all
70 * fences, possibly keeping the hw resource around indefinitely,
71 * or we just give them a false name. Since
72 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
73 * lie seems justifiable.
74 */
75 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
76 return "signaled";
77
6a8679c0 78 ctx = i915_request_gem_context(to_request(fence));
9f3ccd40
CW
79 if (!ctx)
80 return "[" DRIVER_NAME "]";
81
82 return ctx->name;
04769652
CW
83}
84
f54d1867 85static bool i915_fence_signaled(struct dma_fence *fence)
04769652 86{
e61e0f51 87 return i915_request_completed(to_request(fence));
04769652
CW
88}
89
f54d1867 90static bool i915_fence_enable_signaling(struct dma_fence *fence)
04769652 91{
52c0fdb2 92 return i915_request_enable_breadcrumb(to_request(fence));
04769652
CW
93}
94
f54d1867 95static signed long i915_fence_wait(struct dma_fence *fence,
04769652 96 bool interruptible,
e95433c7 97 signed long timeout)
04769652 98{
62eb3c24
CW
99 return i915_request_wait(to_request(fence),
100 interruptible | I915_WAIT_PRIORITY,
101 timeout);
04769652
CW
102}
103
f54d1867 104static void i915_fence_release(struct dma_fence *fence)
04769652 105{
e61e0f51 106 struct i915_request *rq = to_request(fence);
04769652 107
e61e0f51
CW
108 /*
109 * The request is put onto a RCU freelist (i.e. the address
fc158405
CW
110 * is immediately reused), mark the fences as being freed now.
111 * Otherwise the debugobjects for the fences are only marked as
112 * freed when the slab cache itself is freed, and so we would get
113 * caught trying to reuse dead objects.
114 */
e61e0f51 115 i915_sw_fence_fini(&rq->submit);
0c441cb6 116 i915_sw_fence_fini(&rq->semaphore);
fc158405 117
32eb6bcf 118 kmem_cache_free(global.slab_requests, rq);
04769652
CW
119}
120
f54d1867 121const struct dma_fence_ops i915_fence_ops = {
04769652
CW
122 .get_driver_name = i915_fence_get_driver_name,
123 .get_timeline_name = i915_fence_get_timeline_name,
124 .enable_signaling = i915_fence_enable_signaling,
125 .signaled = i915_fence_signaled,
126 .wait = i915_fence_wait,
127 .release = i915_fence_release,
04769652
CW
128};
129
b87b6c0d
CW
130static void irq_execute_cb(struct irq_work *wrk)
131{
132 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
133
134 i915_sw_fence_complete(cb->fence);
135 kmem_cache_free(global.slab_execute_cbs, cb);
136}
137
138static void irq_execute_cb_hook(struct irq_work *wrk)
139{
140 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
141
142 cb->hook(container_of(cb->fence, struct i915_request, submit),
143 &cb->signal->fence);
144 i915_request_put(cb->signal);
145
146 irq_execute_cb(wrk);
147}
148
149static void __notify_execute_cb(struct i915_request *rq)
150{
151 struct execute_cb *cb;
152
153 lockdep_assert_held(&rq->lock);
154
155 if (list_empty(&rq->execute_cb))
156 return;
157
158 list_for_each_entry(cb, &rq->execute_cb, link)
159 irq_work_queue(&cb->work);
160
161 /*
162 * XXX Rollback on __i915_request_unsubmit()
163 *
164 * In the future, perhaps when we have an active time-slicing scheduler,
165 * it will be interesting to unsubmit parallel execution and remove
166 * busywaits from the GPU until their master is restarted. This is
167 * quite hairy, we have to carefully rollback the fence and do a
168 * preempt-to-idle cycle on the target engine, all the while the
169 * master execute_cb may refire.
170 */
171 INIT_LIST_HEAD(&rq->execute_cb);
172}
173
05235c53 174static inline void
44c22f3f 175remove_from_client(struct i915_request *request)
05235c53 176{
c8659efa 177 struct drm_i915_file_private *file_priv;
05235c53 178
77715906 179 if (!READ_ONCE(request->file_priv))
05235c53
CW
180 return;
181
77715906
CW
182 rcu_read_lock();
183 file_priv = xchg(&request->file_priv, NULL);
184 if (file_priv) {
185 spin_lock(&file_priv->mm.lock);
c8659efa 186 list_del(&request->client_link);
77715906 187 spin_unlock(&file_priv->mm.lock);
c8659efa 188 }
77715906 189 rcu_read_unlock();
05235c53
CW
190}
191
e61e0f51 192static void free_capture_list(struct i915_request *request)
b0fd47ad 193{
e61e0f51 194 struct i915_capture_list *capture;
b0fd47ad 195
67a3acaa 196 capture = fetch_and_zero(&request->capture_list);
b0fd47ad 197 while (capture) {
e61e0f51 198 struct i915_capture_list *next = capture->next;
b0fd47ad
CW
199
200 kfree(capture);
201 capture = next;
202 }
203}
204
89dd019a
CW
205static void __i915_request_fill(struct i915_request *rq, u8 val)
206{
207 void *vaddr = rq->ring->vaddr;
208 u32 head;
209
210 head = rq->infix;
211 if (rq->postfix < head) {
212 memset(vaddr + head, val, rq->ring->size - head);
213 head = 0;
214 }
215 memset(vaddr + head, val, rq->postfix - head);
216}
217
37fa0de3
CW
218static void remove_from_engine(struct i915_request *rq)
219{
220 struct intel_engine_cs *engine, *locked;
221
222 /*
223 * Virtual engines complicate acquiring the engine timeline lock,
224 * as their rq->engine pointer is not stable until under that
225 * engine lock. The simple ploy we use is to take the lock then
226 * check that the rq still belongs to the newly locked engine.
227 */
228 locked = READ_ONCE(rq->engine);
1dfffa00 229 spin_lock_irq(&locked->active.lock);
37fa0de3
CW
230 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
231 spin_unlock(&locked->active.lock);
232 spin_lock(&engine->active.lock);
233 locked = engine;
234 }
67a3acaa 235 list_del_init(&rq->sched.link);
b4a9a149
CW
236 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
237 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
1dfffa00 238 spin_unlock_irq(&locked->active.lock);
37fa0de3
CW
239}
240
66101975 241bool i915_request_retire(struct i915_request *rq)
05235c53 242{
9db0c5ca
CW
243 if (!i915_request_completed(rq))
244 return false;
d9b13c4d 245
639f2f24 246 RQ_TRACE(rq, "\n");
4c7d62c6 247
9db0c5ca
CW
248 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
249 trace_i915_request_retire(rq);
80b204bc 250
e5dadff4
CW
251 /*
252 * We know the GPU must have read the request to have
253 * sent us the seqno + interrupt, so use the position
254 * of tail of the request to update the last known position
255 * of the GPU head.
256 *
257 * Note this requires that we are always called in request
258 * completion order.
259 */
d19d71fc
CW
260 GEM_BUG_ON(!list_is_first(&rq->link,
261 &i915_request_timeline(rq)->requests));
89dd019a
CW
262 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
263 /* Poison before we release our space in the ring */
264 __i915_request_fill(rq, POISON_FREE);
e5dadff4 265 rq->ring->head = rq->postfix;
b0fd47ad 266
22b7a426
CW
267 /*
268 * We only loosely track inflight requests across preemption,
269 * and so we may find ourselves attempting to retire a _completed_
270 * request that we have removed from the HW and put back on a run
271 * queue.
272 */
37fa0de3 273 remove_from_engine(rq);
52e54209 274
1dfffa00 275 spin_lock_irq(&rq->lock);
9db0c5ca
CW
276 i915_request_mark_complete(rq);
277 if (!i915_request_signaled(rq))
278 dma_fence_signal_locked(&rq->fence);
279 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
280 i915_request_cancel_breadcrumb(rq);
2a98f4e6 281 if (i915_request_has_waitboost(rq)) {
3e7abf81
AS
282 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
283 atomic_dec(&rq->engine->gt->rps.num_waiters);
9db0c5ca 284 }
b87b6c0d
CW
285 if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
286 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
287 __notify_execute_cb(rq);
288 }
289 GEM_BUG_ON(!list_empty(&rq->execute_cb));
1dfffa00 290 spin_unlock_irq(&rq->lock);
52d7f16e 291
44c22f3f 292 remove_from_client(rq);
dff2a11b 293 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
9db0c5ca 294
9f3ccd40
CW
295 intel_context_exit(rq->context);
296 intel_context_unpin(rq->context);
75d0a7f3 297
9db0c5ca
CW
298 free_capture_list(rq);
299 i915_sched_node_fini(&rq->sched);
300 i915_request_put(rq);
301
302 return true;
05235c53
CW
303}
304
e61e0f51 305void i915_request_retire_upto(struct i915_request *rq)
05235c53 306{
d19d71fc 307 struct intel_timeline * const tl = i915_request_timeline(rq);
e61e0f51 308 struct i915_request *tmp;
05235c53 309
639f2f24 310 RQ_TRACE(rq, "\n");
b887d615 311
e61e0f51 312 GEM_BUG_ON(!i915_request_completed(rq));
4ffd6e0c 313
05235c53 314 do {
e5dadff4 315 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
9db0c5ca 316 } while (i915_request_retire(tmp) && tmp != rq);
05235c53
CW
317}
318
e8861964 319static int
c81471f5
CW
320__await_execution(struct i915_request *rq,
321 struct i915_request *signal,
322 void (*hook)(struct i915_request *rq,
323 struct dma_fence *signal),
324 gfp_t gfp)
e8861964
CW
325{
326 struct execute_cb *cb;
327
f71e01a7
CW
328 if (i915_request_is_active(signal)) {
329 if (hook)
330 hook(rq, &signal->fence);
e8861964 331 return 0;
f71e01a7 332 }
e8861964
CW
333
334 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
335 if (!cb)
336 return -ENOMEM;
337
338 cb->fence = &rq->submit;
339 i915_sw_fence_await(cb->fence);
340 init_irq_work(&cb->work, irq_execute_cb);
341
f71e01a7
CW
342 if (hook) {
343 cb->hook = hook;
344 cb->signal = i915_request_get(signal);
345 cb->work.func = irq_execute_cb_hook;
346 }
347
e8861964
CW
348 spin_lock_irq(&signal->lock);
349 if (i915_request_is_active(signal)) {
f71e01a7
CW
350 if (hook) {
351 hook(rq, &signal->fence);
352 i915_request_put(signal);
353 }
e8861964
CW
354 i915_sw_fence_complete(cb->fence);
355 kmem_cache_free(global.slab_execute_cbs, cb);
356 } else {
357 list_add_tail(&cb->link, &signal->execute_cb);
358 }
359 spin_unlock_irq(&signal->lock);
360
c81471f5
CW
361 /* Copy across semaphore status as we need the same behaviour */
362 rq->sched.flags |= signal->sched.flags;
e8861964
CW
363 return 0;
364}
365
36e191f0
CW
366static bool fatal_error(int error)
367{
368 switch (error) {
369 case 0: /* not an error! */
370 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
371 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
372 return false;
373 default:
374 return true;
375 }
376}
377
378void __i915_request_skip(struct i915_request *rq)
379{
380 GEM_BUG_ON(!fatal_error(rq->fence.error));
381
382 if (rq->infix == rq->postfix)
383 return;
384
385 /*
386 * As this request likely depends on state from the lost
387 * context, clear out all the user operations leaving the
388 * breadcrumb at the end (so we get the fence notifications).
389 */
390 __i915_request_fill(rq, 0);
391 rq->infix = rq->postfix;
392}
393
394void i915_request_set_error_once(struct i915_request *rq, int error)
395{
396 int old;
397
398 GEM_BUG_ON(!IS_ERR_VALUE((long)error));
399
400 if (i915_request_signaled(rq))
401 return;
402
403 old = READ_ONCE(rq->fence.error);
404 do {
405 if (fatal_error(old))
406 return;
407 } while (!try_cmpxchg(&rq->fence.error, &old, error));
408}
409
c0bb487d 410bool __i915_request_submit(struct i915_request *request)
5590af3e 411{
73cb9701 412 struct intel_engine_cs *engine = request->engine;
c0bb487d 413 bool result = false;
5590af3e 414
639f2f24 415 RQ_TRACE(request, "\n");
d9b13c4d 416
e60a870d 417 GEM_BUG_ON(!irqs_disabled());
422d7df4 418 lockdep_assert_held(&engine->active.lock);
e60a870d 419
c0bb487d
CW
420 /*
421 * With the advent of preempt-to-busy, we frequently encounter
422 * requests that we have unsubmitted from HW, but left running
423 * until the next ack and so have completed in the meantime. On
424 * resubmission of that completed request, we can skip
425 * updating the payload, and execlists can even skip submitting
426 * the request.
427 *
428 * We must remove the request from the caller's priority queue,
429 * and the caller must only call us when the request is in their
430 * priority queue, under the active.lock. This ensures that the
431 * request has *not* yet been retired and we can safely move
432 * the request into the engine->active.list where it will be
433 * dropped upon retiring. (Otherwise if resubmit a *retired*
434 * request, this would be a horrible use-after-free.)
435 */
436 if (i915_request_completed(request))
437 goto xfer;
438
36e191f0
CW
439 if (unlikely(intel_context_is_banned(request->context)))
440 i915_request_set_error_once(request, -EIO);
441 if (unlikely(fatal_error(request->fence.error)))
442 __i915_request_skip(request);
d9e61b66 443
ca6e56f6
CW
444 /*
445 * Are we using semaphores when the gpu is already saturated?
446 *
447 * Using semaphores incurs a cost in having the GPU poll a
448 * memory location, busywaiting for it to change. The continual
449 * memory reads can have a noticeable impact on the rest of the
450 * system with the extra bus traffic, stalling the cpu as it too
451 * tries to access memory across the bus (perf stat -e bus-cycles).
452 *
453 * If we installed a semaphore on this request and we only submit
454 * the request after the signaler completed, that indicates the
455 * system is overloaded and using semaphores at this time only
456 * increases the amount of work we are doing. If so, we disable
457 * further use of semaphores until we are idle again, whence we
458 * optimistically try again.
459 */
460 if (request->sched.semaphores &&
461 i915_sw_fence_signaled(&request->semaphore))
44d89409 462 engine->saturated |= request->sched.semaphores;
ca6e56f6 463
c0bb487d
CW
464 engine->emit_fini_breadcrumb(request,
465 request->ring->vaddr + request->postfix);
b5773a36 466
c0bb487d
CW
467 trace_i915_request_execute(request);
468 engine->serial++;
469 result = true;
422d7df4 470
c0bb487d
CW
471xfer: /* We may be recursing from the signal callback of another i915 fence */
472 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
473
672c368f 474 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
c0bb487d 475 list_move_tail(&request->sched.link, &engine->active.requests);
672c368f
CW
476 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
477 }
b5773a36 478
52c0fdb2 479 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
0152b3b3 480 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
52c0fdb2 481 !i915_request_enable_breadcrumb(request))
54400257 482 intel_engine_signal_breadcrumbs(engine);
b5773a36 483
e8861964
CW
484 __notify_execute_cb(request);
485
f2d13290
CW
486 spin_unlock(&request->lock);
487
c0bb487d 488 return result;
d55ac5bf
CW
489}
490
e61e0f51 491void i915_request_submit(struct i915_request *request)
d55ac5bf
CW
492{
493 struct intel_engine_cs *engine = request->engine;
494 unsigned long flags;
23902e49 495
d55ac5bf 496 /* Will be called from irq-context when using foreign fences. */
422d7df4 497 spin_lock_irqsave(&engine->active.lock, flags);
d55ac5bf 498
e61e0f51 499 __i915_request_submit(request);
d55ac5bf 500
422d7df4 501 spin_unlock_irqrestore(&engine->active.lock, flags);
d55ac5bf
CW
502}
503
e61e0f51 504void __i915_request_unsubmit(struct i915_request *request)
d55ac5bf 505{
d6a2289d 506 struct intel_engine_cs *engine = request->engine;
d55ac5bf 507
639f2f24 508 RQ_TRACE(request, "\n");
d9b13c4d 509
e60a870d 510 GEM_BUG_ON(!irqs_disabled());
422d7df4 511 lockdep_assert_held(&engine->active.lock);
48bc2a4a 512
e61e0f51
CW
513 /*
514 * Only unwind in reverse order, required so that the per-context list
d6a2289d
CW
515 * is kept in seqno/ring order.
516 */
80b204bc 517
d6a2289d
CW
518 /* We may be recursing from the signal callback of another i915 fence */
519 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
b5773a36 520
d6a2289d 521 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
52c0fdb2 522 i915_request_cancel_breadcrumb(request);
b5773a36 523
52c0fdb2
CW
524 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
525 clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
b5773a36 526
d6a2289d
CW
527 spin_unlock(&request->lock);
528
dba5a7f3
CW
529 /* We've already spun, don't charge on resubmitting. */
530 if (request->sched.semaphores && i915_request_started(request)) {
531 request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
532 request->sched.semaphores = 0;
533 }
534
e61e0f51
CW
535 /*
536 * We don't need to wake_up any waiters on request->execute, they
d6a2289d 537 * will get woken by any other event or us re-adding this request
e61e0f51 538 * to the engine timeline (__i915_request_submit()). The waiters
d6a2289d
CW
539 * should be quite adapt at finding that the request now has a new
540 * global_seqno to the one they went to sleep on.
541 */
542}
543
e61e0f51 544void i915_request_unsubmit(struct i915_request *request)
d6a2289d
CW
545{
546 struct intel_engine_cs *engine = request->engine;
547 unsigned long flags;
548
549 /* Will be called from irq-context when using foreign fences. */
422d7df4 550 spin_lock_irqsave(&engine->active.lock, flags);
d6a2289d 551
e61e0f51 552 __i915_request_unsubmit(request);
d6a2289d 553
422d7df4 554 spin_unlock_irqrestore(&engine->active.lock, flags);
5590af3e
CW
555}
556
23902e49 557static int __i915_sw_fence_call
d55ac5bf 558submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
23902e49 559{
e61e0f51 560 struct i915_request *request =
48bc2a4a 561 container_of(fence, typeof(*request), submit);
48bc2a4a
CW
562
563 switch (state) {
564 case FENCE_COMPLETE:
e61e0f51 565 trace_i915_request_submit(request);
ef468849
CW
566
567 if (unlikely(fence->error))
36e191f0 568 i915_request_set_error_once(request, fence->error);
ef468849 569
af7a8ffa 570 /*
e61e0f51
CW
571 * We need to serialize use of the submit_request() callback
572 * with its hotplugging performed during an emergency
573 * i915_gem_set_wedged(). We use the RCU mechanism to mark the
574 * critical section in order to force i915_gem_set_wedged() to
575 * wait until the submit_request() is completed before
576 * proceeding.
af7a8ffa
DV
577 */
578 rcu_read_lock();
d55ac5bf 579 request->engine->submit_request(request);
af7a8ffa 580 rcu_read_unlock();
48bc2a4a
CW
581 break;
582
583 case FENCE_FREE:
e61e0f51 584 i915_request_put(request);
48bc2a4a
CW
585 break;
586 }
587
23902e49
CW
588 return NOTIFY_DONE;
589}
590
209df10b
CW
591static void irq_semaphore_cb(struct irq_work *wrk)
592{
593 struct i915_request *rq =
594 container_of(wrk, typeof(*rq), semaphore_work);
595
596 i915_schedule_bump_priority(rq, I915_PRIORITY_NOSEMAPHORE);
597 i915_request_put(rq);
598}
599
b7404c7e
CW
600static int __i915_sw_fence_call
601semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
602{
209df10b 603 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
b7404c7e
CW
604
605 switch (state) {
606 case FENCE_COMPLETE:
209df10b
CW
607 if (!(READ_ONCE(rq->sched.attr.priority) & I915_PRIORITY_NOSEMAPHORE)) {
608 i915_request_get(rq);
609 init_irq_work(&rq->semaphore_work, irq_semaphore_cb);
610 irq_work_queue(&rq->semaphore_work);
611 }
b7404c7e
CW
612 break;
613
614 case FENCE_FREE:
209df10b 615 i915_request_put(rq);
b7404c7e
CW
616 break;
617 }
618
619 return NOTIFY_DONE;
620}
621
e5dadff4 622static void retire_requests(struct intel_timeline *tl)
d22ba0cb
CW
623{
624 struct i915_request *rq, *rn;
625
e5dadff4 626 list_for_each_entry_safe(rq, rn, &tl->requests, link)
9db0c5ca 627 if (!i915_request_retire(rq))
d22ba0cb 628 break;
d22ba0cb
CW
629}
630
631static noinline struct i915_request *
e5dadff4 632request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
d22ba0cb 633{
d22ba0cb
CW
634 struct i915_request *rq;
635
e5dadff4 636 if (list_empty(&tl->requests))
d22ba0cb
CW
637 goto out;
638
2ccdf6a1
CW
639 if (!gfpflags_allow_blocking(gfp))
640 goto out;
641
9db0c5ca 642 /* Move our oldest request to the slab-cache (if not in use!) */
e5dadff4 643 rq = list_first_entry(&tl->requests, typeof(*rq), link);
9db0c5ca
CW
644 i915_request_retire(rq);
645
646 rq = kmem_cache_alloc(global.slab_requests,
647 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
648 if (rq)
649 return rq;
650
d22ba0cb 651 /* Ratelimit ourselves to prevent oom from malicious clients */
e5dadff4 652 rq = list_last_entry(&tl->requests, typeof(*rq), link);
d22ba0cb
CW
653 cond_synchronize_rcu(rq->rcustate);
654
655 /* Retire our old requests in the hope that we free some */
e5dadff4 656 retire_requests(tl);
d22ba0cb
CW
657
658out:
2ccdf6a1 659 return kmem_cache_alloc(global.slab_requests, gfp);
d22ba0cb
CW
660}
661
67a3acaa
CW
662static void __i915_request_ctor(void *arg)
663{
664 struct i915_request *rq = arg;
665
666 spin_lock_init(&rq->lock);
667 i915_sched_node_init(&rq->sched);
668 i915_sw_fence_init(&rq->submit, submit_notify);
669 i915_sw_fence_init(&rq->semaphore, semaphore_notify);
670
855e39e6
CW
671 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
672
67a3acaa
CW
673 rq->file_priv = NULL;
674 rq->capture_list = NULL;
675
676 INIT_LIST_HEAD(&rq->execute_cb);
677}
678
e61e0f51 679struct i915_request *
2ccdf6a1 680__i915_request_create(struct intel_context *ce, gfp_t gfp)
05235c53 681{
75d0a7f3 682 struct intel_timeline *tl = ce->timeline;
ebece753
CW
683 struct i915_request *rq;
684 u32 seqno;
05235c53
CW
685 int ret;
686
2ccdf6a1 687 might_sleep_if(gfpflags_allow_blocking(gfp));
28176ef4 688
2ccdf6a1
CW
689 /* Check that the caller provided an already pinned context */
690 __intel_context_pin(ce);
9b5f4e5e 691
e61e0f51
CW
692 /*
693 * Beware: Dragons be flying overhead.
5a198b8c
CW
694 *
695 * We use RCU to look up requests in flight. The lookups may
696 * race with the request being allocated from the slab freelist.
697 * That is the request we are writing to here, may be in the process
21950ee7 698 * of being read by __i915_active_request_get_rcu(). As such,
5a198b8c
CW
699 * we have to be very careful when overwriting the contents. During
700 * the RCU lookup, we change chase the request->engine pointer,
65e4760e 701 * read the request->global_seqno and increment the reference count.
5a198b8c
CW
702 *
703 * The reference count is incremented atomically. If it is zero,
704 * the lookup knows the request is unallocated and complete. Otherwise,
705 * it is either still in use, or has been reallocated and reset
f54d1867
CW
706 * with dma_fence_init(). This increment is safe for release as we
707 * check that the request we have a reference to and matches the active
5a198b8c
CW
708 * request.
709 *
710 * Before we increment the refcount, we chase the request->engine
711 * pointer. We must not call kmem_cache_zalloc() or else we set
712 * that pointer to NULL and cause a crash during the lookup. If
713 * we see the request is completed (based on the value of the
714 * old engine and seqno), the lookup is complete and reports NULL.
715 * If we decide the request is not completed (new engine or seqno),
716 * then we grab a reference and double check that it is still the
717 * active request - which it won't be and restart the lookup.
718 *
719 * Do not use kmem_cache_zalloc() here!
720 */
32eb6bcf 721 rq = kmem_cache_alloc(global.slab_requests,
2ccdf6a1 722 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
e61e0f51 723 if (unlikely(!rq)) {
e5dadff4 724 rq = request_alloc_slow(tl, gfp);
e61e0f51 725 if (!rq) {
31c70f97
CW
726 ret = -ENOMEM;
727 goto err_unreserve;
728 }
28176ef4 729 }
05235c53 730
2ccdf6a1 731 rq->i915 = ce->engine->i915;
9f3ccd40 732 rq->context = ce;
2ccdf6a1 733 rq->engine = ce->engine;
1fc44d9b 734 rq->ring = ce->ring;
89b6d183 735 rq->execution_mask = ce->engine->mask;
d19d71fc 736
855e39e6
CW
737 kref_init(&rq->fence.refcount);
738 rq->fence.flags = 0;
739 rq->fence.error = 0;
740 INIT_LIST_HEAD(&rq->fence.cb_list);
741
742 ret = intel_timeline_get_seqno(tl, rq, &seqno);
743 if (ret)
744 goto err_free;
745
746 rq->fence.context = tl->fence_context;
747 rq->fence.seqno = seqno;
748
85bedbf1
CW
749 RCU_INIT_POINTER(rq->timeline, tl);
750 RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
ebece753 751 rq->hwsp_seqno = tl->hwsp_seqno;
1eaa251b 752 GEM_BUG_ON(i915_request_completed(rq));
d19d71fc 753
ebece753 754 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
73cb9701 755
48bc2a4a 756 /* We bump the ref for the fence chain */
67a3acaa
CW
757 i915_sw_fence_reinit(&i915_request_get(rq)->submit);
758 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
5590af3e 759
67a3acaa 760 i915_sched_node_reinit(&rq->sched);
52e54209 761
67a3acaa 762 /* No zalloc, everything must be cleared after use */
e61e0f51 763 rq->batch = NULL;
67a3acaa
CW
764 GEM_BUG_ON(rq->file_priv);
765 GEM_BUG_ON(rq->capture_list);
766 GEM_BUG_ON(!list_empty(&rq->execute_cb));
2ccdf6a1 767
05235c53
CW
768 /*
769 * Reserve space in the ring buffer for all the commands required to
770 * eventually emit this request. This is to guarantee that the
e61e0f51 771 * i915_request_add() call can't fail. Note that the reserve may need
05235c53
CW
772 * to be redone if the request is not actually submitted straight
773 * away, e.g. because a GPU scheduler has deferred it.
ed2922c0
CW
774 *
775 * Note that due to how we add reserved_space to intel_ring_begin()
776 * we need to double our request to ensure that if we need to wrap
777 * around inside i915_request_add() there is sufficient space at
778 * the beginning of the ring as well.
05235c53 779 */
2ccdf6a1
CW
780 rq->reserved_space =
781 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
05235c53 782
2113184c
CW
783 /*
784 * Record the position of the start of the request so that
d045446d
CW
785 * should we detect the updated seqno part-way through the
786 * GPU processing the request, we never over-estimate the
787 * position of the head.
788 */
e61e0f51 789 rq->head = rq->ring->emit;
d045446d 790
2ccdf6a1 791 ret = rq->engine->request_alloc(rq);
b1c24a61
CW
792 if (ret)
793 goto err_unwind;
2113184c 794
b3ee09a4
CW
795 rq->infix = rq->ring->emit; /* end of header; start of user payload */
796
2ccdf6a1 797 intel_context_mark_active(ce);
d22d2d07
CW
798 list_add_tail_rcu(&rq->link, &tl->requests);
799
e61e0f51 800 return rq;
05235c53 801
b1c24a61 802err_unwind:
1fc44d9b 803 ce->ring->emit = rq->head;
b1c24a61 804
1618bdb8 805 /* Make sure we didn't add ourselves to external state before freeing */
0c7112a0
CW
806 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
807 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
1618bdb8 808
ebece753 809err_free:
32eb6bcf 810 kmem_cache_free(global.slab_requests, rq);
28176ef4 811err_unreserve:
1fc44d9b 812 intel_context_unpin(ce);
8e637178 813 return ERR_PTR(ret);
05235c53
CW
814}
815
2ccdf6a1
CW
816struct i915_request *
817i915_request_create(struct intel_context *ce)
818{
819 struct i915_request *rq;
e5dadff4 820 struct intel_timeline *tl;
2ccdf6a1 821
e5dadff4
CW
822 tl = intel_context_timeline_lock(ce);
823 if (IS_ERR(tl))
824 return ERR_CAST(tl);
2ccdf6a1
CW
825
826 /* Move our oldest request to the slab-cache (if not in use!) */
e5dadff4
CW
827 rq = list_first_entry(&tl->requests, typeof(*rq), link);
828 if (!list_is_last(&rq->link, &tl->requests))
2ccdf6a1
CW
829 i915_request_retire(rq);
830
831 intel_context_enter(ce);
832 rq = __i915_request_create(ce, GFP_KERNEL);
833 intel_context_exit(ce); /* active reference transferred to request */
834 if (IS_ERR(rq))
835 goto err_unlock;
836
837 /* Check that we do not interrupt ourselves with a new request */
e5dadff4 838 rq->cookie = lockdep_pin_lock(&tl->mutex);
2ccdf6a1
CW
839
840 return rq;
841
842err_unlock:
e5dadff4 843 intel_context_timeline_unlock(tl);
2ccdf6a1
CW
844 return rq;
845}
846
0d90ccb7
CW
847static int
848i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
849{
6a79d848
CW
850 struct dma_fence *fence;
851 int err;
0d90ccb7 852
ab7a6902
CW
853 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
854 return 0;
6a79d848 855
d22d2d07
CW
856 if (i915_request_started(signal))
857 return 0;
858
9ddc8ec0 859 fence = NULL;
6a79d848 860 rcu_read_lock();
9ddc8ec0 861 spin_lock_irq(&signal->lock);
d22d2d07
CW
862 do {
863 struct list_head *pos = READ_ONCE(signal->link.prev);
864 struct i915_request *prev;
865
866 /* Confirm signal has not been retired, the link is valid */
867 if (unlikely(i915_request_started(signal)))
868 break;
869
870 /* Is signal the earliest request on its timeline? */
871 if (pos == &rcu_dereference(signal->timeline)->requests)
872 break;
0d90ccb7 873
9ddc8ec0
CW
874 /*
875 * Peek at the request before us in the timeline. That
876 * request will only be valid before it is retired, so
877 * after acquiring a reference to it, confirm that it is
878 * still part of the signaler's timeline.
879 */
d22d2d07
CW
880 prev = list_entry(pos, typeof(*prev), link);
881 if (!i915_request_get_rcu(prev))
882 break;
883
884 /* After the strong barrier, confirm prev is still attached */
885 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
886 i915_request_put(prev);
887 break;
6a79d848 888 }
d22d2d07
CW
889
890 fence = &prev->fence;
891 } while (0);
9ddc8ec0
CW
892 spin_unlock_irq(&signal->lock);
893 rcu_read_unlock();
894 if (!fence)
895 return 0;
6a79d848
CW
896
897 err = 0;
07e9c59d 898 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
6a79d848
CW
899 err = i915_sw_fence_await_dma_fence(&rq->submit,
900 fence, 0,
901 I915_FENCE_GFP);
902 dma_fence_put(fence);
903
904 return err;
0d90ccb7
CW
905}
906
ca6e56f6
CW
907static intel_engine_mask_t
908already_busywaiting(struct i915_request *rq)
909{
910 /*
911 * Polling a semaphore causes bus traffic, delaying other users of
912 * both the GPU and CPU. We want to limit the impact on others,
913 * while taking advantage of early submission to reduce GPU
914 * latency. Therefore we restrict ourselves to not using more
915 * than one semaphore from each source, and not using a semaphore
916 * if we have detected the engine is saturated (i.e. would not be
917 * submitted early and cause bus traffic reading an already passed
918 * semaphore).
919 *
920 * See the are-we-too-late? check in __i915_request_submit().
921 */
60900add 922 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
ca6e56f6
CW
923}
924
e8861964 925static int
c81471f5
CW
926__emit_semaphore_wait(struct i915_request *to,
927 struct i915_request *from,
928 u32 seqno)
e8861964 929{
c210e85b 930 const int has_token = INTEL_GEN(to->i915) >= 12;
e8861964 931 u32 hwsp_offset;
c81471f5 932 int len, err;
e8861964 933 u32 *cs;
e8861964 934
e8861964
CW
935 GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
936
c8a0e2ae 937 /* We need to pin the signaler's HWSP until we are finished reading. */
c81471f5
CW
938 err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
939 if (err)
940 return err;
e8861964 941
c210e85b
CW
942 len = 4;
943 if (has_token)
944 len += 2;
945
946 cs = intel_ring_begin(to, len);
e8861964
CW
947 if (IS_ERR(cs))
948 return PTR_ERR(cs);
949
950 /*
951 * Using greater-than-or-equal here means we have to worry
952 * about seqno wraparound. To side step that issue, we swap
953 * the timeline HWSP upon wrapping, so that everyone listening
954 * for the old (pre-wrap) values do not see the much smaller
955 * (post-wrap) values than they were expecting (and so wait
956 * forever).
957 */
c210e85b
CW
958 *cs++ = (MI_SEMAPHORE_WAIT |
959 MI_SEMAPHORE_GLOBAL_GTT |
960 MI_SEMAPHORE_POLL |
961 MI_SEMAPHORE_SAD_GTE_SDD) +
962 has_token;
c81471f5 963 *cs++ = seqno;
e8861964
CW
964 *cs++ = hwsp_offset;
965 *cs++ = 0;
c210e85b
CW
966 if (has_token) {
967 *cs++ = 0;
968 *cs++ = MI_NOOP;
969 }
e8861964
CW
970
971 intel_ring_advance(to, cs);
c81471f5
CW
972 return 0;
973}
974
975static int
976emit_semaphore_wait(struct i915_request *to,
977 struct i915_request *from,
978 gfp_t gfp)
979{
326611dd
CW
980 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
981
f16ccb64
CW
982 if (!intel_context_use_semaphores(to->context))
983 goto await_fence;
984
985 if (!rcu_access_pointer(from->hwsp_cacheline))
986 goto await_fence;
987
c81471f5 988 /* Just emit the first semaphore we see as request space is limited. */
326611dd 989 if (already_busywaiting(to) & mask)
c81471f5
CW
990 goto await_fence;
991
992 if (i915_request_await_start(to, from) < 0)
993 goto await_fence;
994
995 /* Only submit our spinner after the signaler is running! */
996 if (__await_execution(to, from, NULL, gfp))
997 goto await_fence;
998
999 if (__emit_semaphore_wait(to, from, from->fence.seqno))
1000 goto await_fence;
1001
326611dd 1002 to->sched.semaphores |= mask;
7881e605 1003 to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
e8861964 1004 return 0;
6a79d848
CW
1005
1006await_fence:
1007 return i915_sw_fence_await_dma_fence(&to->submit,
1008 &from->fence, 0,
1009 I915_FENCE_GFP);
e8861964
CW
1010}
1011
a2bc4695 1012static int
e61e0f51 1013i915_request_await_request(struct i915_request *to, struct i915_request *from)
a2bc4695 1014{
85e17f59 1015 int ret;
a2bc4695
CW
1016
1017 GEM_BUG_ON(to == from);
ceae14bd 1018 GEM_BUG_ON(to->timeline == from->timeline);
a2bc4695 1019
bc850943
CW
1020 if (i915_request_completed(from)) {
1021 i915_sw_fence_set_error_once(&to->submit, from->fence.error);
ade0b0c9 1022 return 0;
bc850943 1023 }
ade0b0c9 1024
52e54209 1025 if (to->engine->schedule) {
a9d094dc
CW
1026 ret = i915_sched_node_add_dependency(&to->sched,
1027 &from->sched,
1028 I915_DEPENDENCY_EXTERNAL);
52e54209
CW
1029 if (ret < 0)
1030 return ret;
1031 }
1032
0f100b70 1033 if (to->engine == from->engine)
73cb9701
CW
1034 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
1035 &from->submit,
2abe2f84 1036 I915_FENCE_GFP);
0f100b70 1037 else
f16ccb64 1038 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
17db337f
CW
1039 if (ret < 0)
1040 return ret;
1041
1042 if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
1043 ret = i915_sw_fence_await_dma_fence(&to->semaphore,
1044 &from->fence, 0,
1045 I915_FENCE_GFP);
1046 if (ret < 0)
1047 return ret;
1048 }
a2bc4695 1049
17db337f 1050 return 0;
a2bc4695
CW
1051}
1052
b52992c0 1053int
e61e0f51 1054i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
b52992c0 1055{
29ef3fa9
CW
1056 struct dma_fence **child = &fence;
1057 unsigned int nchild = 1;
b52992c0 1058 int ret;
b52992c0 1059
e61e0f51
CW
1060 /*
1061 * Note that if the fence-array was created in signal-on-any mode,
b52992c0
CW
1062 * we should *not* decompose it into its individual fences. However,
1063 * we don't currently store which mode the fence-array is operating
1064 * in. Fortunately, the only user of signal-on-any is private to
1065 * amdgpu and we should not see any incoming fence-array from
1066 * sync-file being in signal-on-any mode.
1067 */
29ef3fa9
CW
1068 if (dma_fence_is_array(fence)) {
1069 struct dma_fence_array *array = to_dma_fence_array(fence);
1070
1071 child = array->fences;
1072 nchild = array->num_fences;
1073 GEM_BUG_ON(!nchild);
1074 }
b52992c0 1075
29ef3fa9
CW
1076 do {
1077 fence = *child++;
9e31c1fe
CW
1078 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1079 i915_sw_fence_set_error_once(&rq->submit, fence->error);
29ef3fa9 1080 continue;
9e31c1fe 1081 }
b52992c0 1082
ceae14bd
CW
1083 /*
1084 * Requests on the same timeline are explicitly ordered, along
e61e0f51 1085 * with their dependencies, by i915_request_add() which ensures
ceae14bd
CW
1086 * that requests are submitted in-order through each ring.
1087 */
e61e0f51 1088 if (fence->context == rq->fence.context)
ceae14bd
CW
1089 continue;
1090
47979480 1091 /* Squash repeated waits to the same timelines */
cc337560 1092 if (fence->context &&
d19d71fc
CW
1093 intel_timeline_sync_is_later(i915_request_timeline(rq),
1094 fence))
47979480
CW
1095 continue;
1096
29ef3fa9 1097 if (dma_fence_is_i915(fence))
e61e0f51 1098 ret = i915_request_await_request(rq, to_request(fence));
b52992c0 1099 else
e61e0f51 1100 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
0f7dc620 1101 fence->context ? I915_FENCE_TIMEOUT : 0,
2abe2f84 1102 I915_FENCE_GFP);
b52992c0
CW
1103 if (ret < 0)
1104 return ret;
47979480
CW
1105
1106 /* Record the latest fence used against each timeline */
cc337560 1107 if (fence->context)
d19d71fc
CW
1108 intel_timeline_sync_set(i915_request_timeline(rq),
1109 fence);
29ef3fa9 1110 } while (--nchild);
b52992c0
CW
1111
1112 return 0;
1113}
1114
c81471f5
CW
1115static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1116 struct dma_fence *fence)
1117{
1118 return __intel_timeline_sync_is_later(tl,
1119 fence->context,
1120 fence->seqno - 1);
1121}
1122
1123static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1124 const struct dma_fence *fence)
1125{
1126 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1127}
1128
1129static int
1130__i915_request_await_execution(struct i915_request *to,
1131 struct i915_request *from,
1132 void (*hook)(struct i915_request *rq,
1133 struct dma_fence *signal))
1134{
1135 int err;
1136
f16ccb64
CW
1137 GEM_BUG_ON(intel_context_is_barrier(from->context));
1138
c81471f5
CW
1139 /* Submit both requests at the same time */
1140 err = __await_execution(to, from, hook, I915_FENCE_GFP);
1141 if (err)
1142 return err;
1143
1144 /* Squash repeated depenendices to the same timelines */
1145 if (intel_timeline_sync_has_start(i915_request_timeline(to),
1146 &from->fence))
1147 return 0;
1148
798fa870
CW
1149 /*
1150 * Wait until the start of this request.
1151 *
1152 * The execution cb fires when we submit the request to HW. But in
1153 * many cases this may be long before the request itself is ready to
1154 * run (consider that we submit 2 requests for the same context, where
1155 * the request of interest is behind an indefinite spinner). So we hook
1156 * up to both to reduce our queues and keep the execution lag minimised
1157 * in the worst case, though we hope that the await_start is elided.
1158 */
1159 err = i915_request_await_start(to, from);
c81471f5
CW
1160 if (err < 0)
1161 return err;
1162
798fa870
CW
1163 /*
1164 * Ensure both start together [after all semaphores in signal]
1165 *
1166 * Now that we are queued to the HW at roughly the same time (thanks
1167 * to the execute cb) and are ready to run at roughly the same time
1168 * (thanks to the await start), our signaler may still be indefinitely
1169 * delayed by waiting on a semaphore from a remote engine. If our
1170 * signaler depends on a semaphore, so indirectly do we, and we do not
1171 * want to start our payload until our signaler also starts theirs.
1172 * So we wait.
1173 *
1174 * However, there is also a second condition for which we need to wait
1175 * for the precise start of the signaler. Consider that the signaler
1176 * was submitted in a chain of requests following another context
1177 * (with just an ordinary intra-engine fence dependency between the
1178 * two). In this case the signaler is queued to HW, but not for
1179 * immediate execution, and so we must wait until it reaches the
1180 * active slot.
1181 */
1182 if (intel_engine_has_semaphores(to->engine)) {
1183 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1184 if (err < 0)
1185 return err;
1186 }
1187
c81471f5
CW
1188 /* Couple the dependency tree for PI on this exposed to->fence */
1189 if (to->engine->schedule) {
a9d094dc
CW
1190 err = i915_sched_node_add_dependency(&to->sched,
1191 &from->sched,
1192 I915_DEPENDENCY_WEAK);
c81471f5
CW
1193 if (err < 0)
1194 return err;
1195 }
1196
1197 return intel_timeline_sync_set_start(i915_request_timeline(to),
1198 &from->fence);
1199}
1200
f71e01a7
CW
1201int
1202i915_request_await_execution(struct i915_request *rq,
1203 struct dma_fence *fence,
1204 void (*hook)(struct i915_request *rq,
1205 struct dma_fence *signal))
1206{
1207 struct dma_fence **child = &fence;
1208 unsigned int nchild = 1;
1209 int ret;
1210
1211 if (dma_fence_is_array(fence)) {
1212 struct dma_fence_array *array = to_dma_fence_array(fence);
1213
1214 /* XXX Error for signal-on-any fence arrays */
1215
1216 child = array->fences;
1217 nchild = array->num_fences;
1218 GEM_BUG_ON(!nchild);
1219 }
1220
1221 do {
1222 fence = *child++;
9e31c1fe
CW
1223 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1224 i915_sw_fence_set_error_once(&rq->submit, fence->error);
f71e01a7 1225 continue;
9e31c1fe 1226 }
f71e01a7
CW
1227
1228 /*
1229 * We don't squash repeated fence dependencies here as we
1230 * want to run our callback in all cases.
1231 */
1232
1233 if (dma_fence_is_i915(fence))
1234 ret = __i915_request_await_execution(rq,
1235 to_request(fence),
c81471f5 1236 hook);
f71e01a7
CW
1237 else
1238 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1239 I915_FENCE_TIMEOUT,
1240 GFP_KERNEL);
1241 if (ret < 0)
1242 return ret;
1243 } while (--nchild);
1244
1245 return 0;
1246}
1247
a2bc4695 1248/**
e61e0f51 1249 * i915_request_await_object - set this request to (async) wait upon a bo
a2bc4695
CW
1250 * @to: request we are wishing to use
1251 * @obj: object which may be in use on another ring.
d8802126 1252 * @write: whether the wait is on behalf of a writer
a2bc4695
CW
1253 *
1254 * This code is meant to abstract object synchronization with the GPU.
1255 * Conceptually we serialise writes between engines inside the GPU.
1256 * We only allow one engine to write into a buffer at any time, but
1257 * multiple readers. To ensure each has a coherent view of memory, we must:
1258 *
1259 * - If there is an outstanding write request to the object, the new
1260 * request must wait for it to complete (either CPU or in hw, requests
1261 * on the same ring will be naturally ordered).
1262 *
1263 * - If we are a write request (pending_write_domain is set), the new
1264 * request must wait for outstanding read requests to complete.
1265 *
1266 * Returns 0 if successful, else propagates up the lower layer error.
1267 */
1268int
e61e0f51
CW
1269i915_request_await_object(struct i915_request *to,
1270 struct drm_i915_gem_object *obj,
1271 bool write)
a2bc4695 1272{
d07f0e59
CW
1273 struct dma_fence *excl;
1274 int ret = 0;
a2bc4695
CW
1275
1276 if (write) {
d07f0e59
CW
1277 struct dma_fence **shared;
1278 unsigned int count, i;
1279
52791eee 1280 ret = dma_resv_get_fences_rcu(obj->base.resv,
d07f0e59
CW
1281 &excl, &count, &shared);
1282 if (ret)
1283 return ret;
1284
1285 for (i = 0; i < count; i++) {
e61e0f51 1286 ret = i915_request_await_dma_fence(to, shared[i]);
d07f0e59
CW
1287 if (ret)
1288 break;
1289
1290 dma_fence_put(shared[i]);
1291 }
1292
1293 for (; i < count; i++)
1294 dma_fence_put(shared[i]);
1295 kfree(shared);
a2bc4695 1296 } else {
52791eee 1297 excl = dma_resv_get_excl_rcu(obj->base.resv);
a2bc4695
CW
1298 }
1299
d07f0e59
CW
1300 if (excl) {
1301 if (ret == 0)
e61e0f51 1302 ret = i915_request_await_dma_fence(to, excl);
a2bc4695 1303
d07f0e59 1304 dma_fence_put(excl);
a2bc4695
CW
1305 }
1306
d07f0e59 1307 return ret;
a2bc4695
CW
1308}
1309
ea593dbb
CW
1310static struct i915_request *
1311__i915_request_add_to_timeline(struct i915_request *rq)
1312{
d19d71fc 1313 struct intel_timeline *timeline = i915_request_timeline(rq);
ea593dbb
CW
1314 struct i915_request *prev;
1315
1316 /*
1317 * Dependency tracking and request ordering along the timeline
1318 * is special cased so that we can eliminate redundant ordering
1319 * operations while building the request (we know that the timeline
1320 * itself is ordered, and here we guarantee it).
1321 *
1322 * As we know we will need to emit tracking along the timeline,
1323 * we embed the hooks into our request struct -- at the cost of
1324 * having to have specialised no-allocation interfaces (which will
1325 * be beneficial elsewhere).
1326 *
1327 * A second benefit to open-coding i915_request_await_request is
1328 * that we can apply a slight variant of the rules specialised
1329 * for timelines that jump between engines (such as virtual engines).
1330 * If we consider the case of virtual engine, we must emit a dma-fence
1331 * to prevent scheduling of the second request until the first is
1332 * complete (to maximise our greedy late load balancing) and this
1333 * precludes optimising to use semaphores serialisation of a single
1334 * timeline across engines.
1335 */
b1e3177b
CW
1336 prev = to_request(__i915_active_fence_set(&timeline->last_request,
1337 &rq->fence));
ea593dbb 1338 if (prev && !i915_request_completed(prev)) {
1eaa251b
CW
1339 /*
1340 * The requests are supposed to be kept in order. However,
1341 * we need to be wary in case the timeline->last_request
1342 * is used as a barrier for external modification to this
1343 * context.
1344 */
1345 GEM_BUG_ON(prev->context == rq->context &&
1346 i915_seqno_passed(prev->fence.seqno,
1347 rq->fence.seqno));
1348
326611dd 1349 if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
ea593dbb
CW
1350 i915_sw_fence_await_sw_fence(&rq->submit,
1351 &prev->submit,
1352 &rq->submitq);
1353 else
1354 __i915_sw_fence_await_dma_fence(&rq->submit,
1355 &prev->fence,
1356 &rq->dmaq);
1357 if (rq->engine->schedule)
1358 __i915_sched_node_add_dependency(&rq->sched,
1359 &prev->sched,
1360 &rq->dep,
1361 0);
1362 }
1363
2ccdf6a1
CW
1364 /*
1365 * Make sure that no request gazumped us - if it was allocated after
1366 * our i915_request_alloc() and called __i915_request_add() before
1367 * us, the timeline will hold its seqno which is later than ours.
1368 */
ea593dbb 1369 GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
ea593dbb
CW
1370
1371 return prev;
1372}
1373
05235c53
CW
1374/*
1375 * NB: This function is not allowed to fail. Doing so would mean the the
1376 * request is not being tracked for completion but the work itself is
1377 * going to happen on the hardware. This would be a Bad Thing(tm).
1378 */
2ccdf6a1 1379struct i915_request *__i915_request_commit(struct i915_request *rq)
05235c53 1380{
2ccdf6a1
CW
1381 struct intel_engine_cs *engine = rq->engine;
1382 struct intel_ring *ring = rq->ring;
73dec95e 1383 u32 *cs;
05235c53 1384
639f2f24 1385 RQ_TRACE(rq, "\n");
c781c978 1386
05235c53
CW
1387 /*
1388 * To ensure that this call will not fail, space for its emissions
1389 * should already have been reserved in the ring buffer. Let the ring
1390 * know that it is time to use that space up.
1391 */
2ccdf6a1
CW
1392 GEM_BUG_ON(rq->reserved_space > ring->space);
1393 rq->reserved_space = 0;
e5dadff4 1394 rq->emitted_jiffies = jiffies;
05235c53 1395
8ac71d1d
CW
1396 /*
1397 * Record the position of the start of the breadcrumb so that
05235c53
CW
1398 * should we detect the updated seqno part-way through the
1399 * GPU processing the request, we never over-estimate the
d045446d 1400 * position of the ring's HEAD.
05235c53 1401 */
2ccdf6a1 1402 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
73dec95e 1403 GEM_BUG_ON(IS_ERR(cs));
2ccdf6a1 1404 rq->postfix = intel_ring_offset(rq, cs);
05235c53 1405
e5dadff4 1406 return __i915_request_add_to_timeline(rq);
a79ca656
CW
1407}
1408
1409void __i915_request_queue(struct i915_request *rq,
1410 const struct i915_sched_attr *attr)
1411{
8ac71d1d
CW
1412 /*
1413 * Let the backend know a new request has arrived that may need
0de9136d
CW
1414 * to adjust the existing execution schedule due to a high priority
1415 * request - i.e. we may want to preempt the current request in order
1416 * to run a high priority dependency chain *before* we can execute this
1417 * request.
1418 *
1419 * This is called before the request is ready to run so that we can
1420 * decide whether to preempt the entire chain so that it is ready to
1421 * run at the earliest possible convenience.
1422 */
a79ca656
CW
1423 if (attr && rq->engine->schedule)
1424 rq->engine->schedule(rq, attr);
209df10b 1425 i915_sw_fence_commit(&rq->semaphore);
2ccdf6a1 1426 i915_sw_fence_commit(&rq->submit);
2ccdf6a1
CW
1427}
1428
1429void i915_request_add(struct i915_request *rq)
1430{
d19d71fc 1431 struct intel_timeline * const tl = i915_request_timeline(rq);
e6ba7648 1432 struct i915_sched_attr attr = {};
61231f6b 1433 struct i915_gem_context *ctx;
2ccdf6a1 1434
e5dadff4
CW
1435 lockdep_assert_held(&tl->mutex);
1436 lockdep_unpin_lock(&tl->mutex, rq->cookie);
2ccdf6a1
CW
1437
1438 trace_i915_request_add(rq);
61231f6b 1439 __i915_request_commit(rq);
2ccdf6a1 1440
61231f6b
CW
1441 /* XXX placeholder for selftests */
1442 rcu_read_lock();
1443 ctx = rcu_dereference(rq->context->gem_context);
1444 if (ctx)
1445 attr = ctx->sched;
1446 rcu_read_unlock();
e6ba7648 1447
a79ca656
CW
1448 if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1449 attr.priority |= I915_PRIORITY_NOSEMAPHORE;
a79ca656
CW
1450 if (list_empty(&rq->sched.signalers_list))
1451 attr.priority |= I915_PRIORITY_WAIT;
1452
62520e33 1453 local_bh_disable();
a79ca656 1454 __i915_request_queue(rq, &attr);
62520e33 1455 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
a79ca656 1456
e5dadff4 1457 mutex_unlock(&tl->mutex);
05235c53
CW
1458}
1459
062444bb 1460static unsigned long local_clock_ns(unsigned int *cpu)
05235c53
CW
1461{
1462 unsigned long t;
1463
e61e0f51
CW
1464 /*
1465 * Cheaply and approximately convert from nanoseconds to microseconds.
05235c53
CW
1466 * The result and subsequent calculations are also defined in the same
1467 * approximate microseconds units. The principal source of timing
1468 * error here is from the simple truncation.
1469 *
1470 * Note that local_clock() is only defined wrt to the current CPU;
1471 * the comparisons are no longer valid if we switch CPUs. Instead of
1472 * blocking preemption for the entire busywait, we can detect the CPU
1473 * switch and use that as indicator of system load and a reason to
1474 * stop busywaiting, see busywait_stop().
1475 */
1476 *cpu = get_cpu();
062444bb 1477 t = local_clock();
05235c53
CW
1478 put_cpu();
1479
1480 return t;
1481}
1482
1483static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1484{
1485 unsigned int this_cpu;
1486
062444bb 1487 if (time_after(local_clock_ns(&this_cpu), timeout))
05235c53
CW
1488 return true;
1489
1490 return this_cpu != cpu;
1491}
1492
062444bb 1493static bool __i915_spin_request(const struct i915_request * const rq, int state)
05235c53 1494{
062444bb 1495 unsigned long timeout_ns;
52c0fdb2 1496 unsigned int cpu;
b2f2f0fc
CW
1497
1498 /*
1499 * Only wait for the request if we know it is likely to complete.
1500 *
1501 * We don't track the timestamps around requests, nor the average
1502 * request length, so we do not have a good indicator that this
1503 * request will complete within the timeout. What we do know is the
52c0fdb2
CW
1504 * order in which requests are executed by the context and so we can
1505 * tell if the request has been started. If the request is not even
1506 * running yet, it is a fair assumption that it will not complete
1507 * within our relatively short timeout.
b2f2f0fc 1508 */
52c0fdb2 1509 if (!i915_request_is_running(rq))
b2f2f0fc
CW
1510 return false;
1511
e61e0f51
CW
1512 /*
1513 * When waiting for high frequency requests, e.g. during synchronous
05235c53
CW
1514 * rendering split between the CPU and GPU, the finite amount of time
1515 * required to set up the irq and wait upon it limits the response
1516 * rate. By busywaiting on the request completion for a short while we
1517 * can service the high frequency waits as quick as possible. However,
1518 * if it is a slow request, we want to sleep as quickly as possible.
1519 * The tradeoff between waiting and sleeping is roughly the time it
1520 * takes to sleep on a request, on the order of a microsecond.
1521 */
1522
062444bb
CW
1523 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1524 timeout_ns += local_clock_ns(&cpu);
05235c53 1525 do {
52c0fdb2
CW
1526 if (i915_request_completed(rq))
1527 return true;
c33ed067 1528
05235c53
CW
1529 if (signal_pending_state(state, current))
1530 break;
1531
062444bb 1532 if (busywait_stop(timeout_ns, cpu))
05235c53
CW
1533 break;
1534
f2f09a4c 1535 cpu_relax();
05235c53
CW
1536 } while (!need_resched());
1537
1538 return false;
1539}
1540
52c0fdb2
CW
1541struct request_wait {
1542 struct dma_fence_cb cb;
1543 struct task_struct *tsk;
1544};
1545
1546static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1547{
1548 struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1549
1550 wake_up_process(wait->tsk);
1551}
1552
05235c53 1553/**
e532be89 1554 * i915_request_wait - wait until execution of request has finished
e61e0f51 1555 * @rq: the request to wait upon
ea746f36 1556 * @flags: how to wait
e95433c7
CW
1557 * @timeout: how long to wait in jiffies
1558 *
e532be89 1559 * i915_request_wait() waits for the request to be completed, for a
e95433c7
CW
1560 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1561 * unbounded wait).
05235c53 1562 *
e95433c7
CW
1563 * Returns the remaining time (in jiffies) if the request completed, which may
1564 * be zero or -ETIME if the request is unfinished after the timeout expires.
1565 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1566 * pending before the request completes.
05235c53 1567 */
e61e0f51 1568long i915_request_wait(struct i915_request *rq,
e95433c7
CW
1569 unsigned int flags,
1570 long timeout)
05235c53 1571{
ea746f36
CW
1572 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1573 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
52c0fdb2 1574 struct request_wait wait;
05235c53
CW
1575
1576 might_sleep();
e95433c7 1577 GEM_BUG_ON(timeout < 0);
05235c53 1578
6e4e9708 1579 if (dma_fence_is_signaled(&rq->fence))
e95433c7 1580 return timeout;
05235c53 1581
e95433c7
CW
1582 if (!timeout)
1583 return -ETIME;
05235c53 1584
e61e0f51 1585 trace_i915_request_wait_begin(rq, flags);
84383d2e
CW
1586
1587 /*
1588 * We must never wait on the GPU while holding a lock as we
1589 * may need to perform a GPU reset. So while we don't need to
1590 * serialise wait/reset with an explicit lock, we do want
1591 * lockdep to detect potential dependency cycles.
1592 */
cb823ed9 1593 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
4680816b 1594
7ce99d24
CW
1595 /*
1596 * Optimistic spin before touching IRQs.
1597 *
1598 * We may use a rather large value here to offset the penalty of
1599 * switching away from the active task. Frequently, the client will
1600 * wait upon an old swapbuffer to throttle itself to remain within a
1601 * frame of the gpu. If the client is running in lockstep with the gpu,
1602 * then it should not be waiting long at all, and a sleep now will incur
1603 * extra scheduler latency in producing the next frame. To try to
1604 * avoid adding the cost of enabling/disabling the interrupt to the
1605 * short wait, we first spin to see if the request would have completed
1606 * in the time taken to setup the interrupt.
1607 *
1608 * We need upto 5us to enable the irq, and upto 20us to hide the
1609 * scheduler latency of a context switch, ignoring the secondary
1610 * impacts from a context switch such as cache eviction.
1611 *
1612 * The scheme used for low-latency IO is called "hybrid interrupt
1613 * polling". The suggestion there is to sleep until just before you
1614 * expect to be woken by the device interrupt and then poll for its
1615 * completion. That requires having a good predictor for the request
1616 * duration, which we currently lack.
1617 */
062444bb
CW
1618 if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
1619 __i915_spin_request(rq, state)) {
6e4e9708 1620 dma_fence_signal(&rq->fence);
52c0fdb2 1621 goto out;
6e4e9708 1622 }
541ca6ed 1623
62eb3c24
CW
1624 /*
1625 * This client is about to stall waiting for the GPU. In many cases
1626 * this is undesirable and limits the throughput of the system, as
1627 * many clients cannot continue processing user input/output whilst
1628 * blocked. RPS autotuning may take tens of milliseconds to respond
1629 * to the GPU load and thus incurs additional latency for the client.
1630 * We can circumvent that by promoting the GPU frequency to maximum
1631 * before we sleep. This makes the GPU throttle up much more quickly
1632 * (good for benchmarks and user experience, e.g. window animations),
1633 * but at a cost of spending more power processing the workload
1634 * (bad for battery).
1635 */
1636 if (flags & I915_WAIT_PRIORITY) {
1637 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
3e7abf81 1638 intel_rps_boost(rq);
52c0fdb2 1639 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
62eb3c24 1640 }
4680816b 1641
52c0fdb2
CW
1642 wait.tsk = current;
1643 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1644 goto out;
4680816b 1645
52c0fdb2
CW
1646 for (;;) {
1647 set_current_state(state);
05235c53 1648
ce94bef9
CW
1649 if (i915_request_completed(rq)) {
1650 dma_fence_signal(&rq->fence);
52c0fdb2 1651 break;
ce94bef9 1652 }
05235c53 1653
602ddb41
CW
1654 intel_engine_flush_submission(rq->engine);
1655
05235c53 1656 if (signal_pending_state(state, current)) {
e95433c7 1657 timeout = -ERESTARTSYS;
05235c53
CW
1658 break;
1659 }
1660
e95433c7
CW
1661 if (!timeout) {
1662 timeout = -ETIME;
05235c53
CW
1663 break;
1664 }
1665
e95433c7 1666 timeout = io_schedule_timeout(timeout);
05235c53 1667 }
a49625f9 1668 __set_current_state(TASK_RUNNING);
05235c53 1669
52c0fdb2
CW
1670 dma_fence_remove_callback(&rq->fence, &wait.cb);
1671
1672out:
5facae4f 1673 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
52c0fdb2 1674 trace_i915_request_wait_end(rq);
e95433c7 1675 return timeout;
05235c53 1676}
4b8de8e6 1677
c835c550
CW
1678#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1679#include "selftests/mock_request.c"
e61e0f51 1680#include "selftests/i915_request.c"
c835c550 1681#endif
32eb6bcf 1682
103b76ee
CW
1683static void i915_global_request_shrink(void)
1684{
103b76ee
CW
1685 kmem_cache_shrink(global.slab_execute_cbs);
1686 kmem_cache_shrink(global.slab_requests);
1687}
1688
1689static void i915_global_request_exit(void)
1690{
103b76ee
CW
1691 kmem_cache_destroy(global.slab_execute_cbs);
1692 kmem_cache_destroy(global.slab_requests);
1693}
1694
1695static struct i915_global_request global = { {
1696 .shrink = i915_global_request_shrink,
1697 .exit = i915_global_request_exit,
1698} };
1699
32eb6bcf
CW
1700int __init i915_global_request_init(void)
1701{
67a3acaa
CW
1702 global.slab_requests =
1703 kmem_cache_create("i915_request",
1704 sizeof(struct i915_request),
1705 __alignof__(struct i915_request),
1706 SLAB_HWCACHE_ALIGN |
1707 SLAB_RECLAIM_ACCOUNT |
1708 SLAB_TYPESAFE_BY_RCU,
1709 __i915_request_ctor);
32eb6bcf
CW
1710 if (!global.slab_requests)
1711 return -ENOMEM;
1712
e8861964
CW
1713 global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1714 SLAB_HWCACHE_ALIGN |
1715 SLAB_RECLAIM_ACCOUNT |
1716 SLAB_TYPESAFE_BY_RCU);
1717 if (!global.slab_execute_cbs)
1718 goto err_requests;
1719
103b76ee 1720 i915_global_register(&global.base);
32eb6bcf
CW
1721 return 0;
1722
1723err_requests:
1724 kmem_cache_destroy(global.slab_requests);
1725 return -ENOMEM;
1726}