]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/gpu/drm/i915/intel_lrc.c
drm/i915/guc: Disable automatic GuC firmware loading
[thirdparty/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
158
159#define CTX_LRI_HEADER_0 0x01
160#define CTX_CONTEXT_CONTROL 0x02
161#define CTX_RING_HEAD 0x04
162#define CTX_RING_TAIL 0x06
163#define CTX_RING_BUFFER_START 0x08
164#define CTX_RING_BUFFER_CONTROL 0x0a
165#define CTX_BB_HEAD_U 0x0c
166#define CTX_BB_HEAD_L 0x0e
167#define CTX_BB_STATE 0x10
168#define CTX_SECOND_BB_HEAD_U 0x12
169#define CTX_SECOND_BB_HEAD_L 0x14
170#define CTX_SECOND_BB_STATE 0x16
171#define CTX_BB_PER_CTX_PTR 0x18
172#define CTX_RCS_INDIRECT_CTX 0x1a
173#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174#define CTX_LRI_HEADER_1 0x21
175#define CTX_CTX_TIMESTAMP 0x22
176#define CTX_PDP3_UDW 0x24
177#define CTX_PDP3_LDW 0x26
178#define CTX_PDP2_UDW 0x28
179#define CTX_PDP2_LDW 0x2a
180#define CTX_PDP1_UDW 0x2c
181#define CTX_PDP1_LDW 0x2e
182#define CTX_PDP0_UDW 0x30
183#define CTX_PDP0_LDW 0x32
184#define CTX_LRI_HEADER_2 0x41
185#define CTX_R_PWR_CLK_STATE 0x42
186#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
84b790f8
BW
188#define GEN8_CTX_VALID (1<<0)
189#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190#define GEN8_CTX_FORCE_RESTORE (1<<2)
191#define GEN8_CTX_L3LLC_COHERENT (1<<5)
192#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 193
0d925ea0 194#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
196 (reg_state)[(pos)+1] = (val); \
197} while (0)
198
199#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 203} while (0)
e5815a2e 204
9244a817 205#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 208} while (0)
2dba3239 209
84b790f8
BW
210enum {
211 ADVANCED_CONTEXT = 0,
2dba3239 212 LEGACY_32B_CONTEXT,
84b790f8
BW
213 ADVANCED_AD_CONTEXT,
214 LEGACY_64B_CONTEXT
215};
2dba3239
MT
216#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217#define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
218 LEGACY_64B_CONTEXT :\
219 LEGACY_32B_CONTEXT)
84b790f8
BW
220enum {
221 FAULT_AND_HANG = 0,
222 FAULT_AND_HALT, /* Debug only */
223 FAULT_AND_STREAM,
224 FAULT_AND_CONTINUE /* Unsupported */
225};
226#define GEN8_CTX_ID_SHIFT 32
7069b144 227#define GEN8_CTX_ID_WIDTH 21
71562919
MT
228#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
229#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 230
0e93cdd4
CW
231/* Typical size of the average request (2 pipecontrols and a MI_BB) */
232#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
233
978f1e09
CW
234static int execlists_context_deferred_alloc(struct intel_context *ctx,
235 struct intel_engine_cs *engine);
e5292823
TU
236static int intel_lr_context_pin(struct intel_context *ctx,
237 struct intel_engine_cs *engine);
7ba717cf 238
73e4d07f
OM
239/**
240 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
241 * @dev: DRM device.
242 * @enable_execlists: value of i915.enable_execlists module parameter.
243 *
244 * Only certain platforms support Execlists (the prerequisites being
27401d12 245 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
246 *
247 * Return: 1 if Execlists is supported and has to be enabled.
248 */
c033666a 249int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
127f1003 250{
a0bd6c31
ZL
251 /* On platforms with execlist available, vGPU will only
252 * support execlist mode, no ring buffer mode.
253 */
c033666a 254 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
a0bd6c31
ZL
255 return 1;
256
c033666a 257 if (INTEL_GEN(dev_priv) >= 9)
70ee45e1
DL
258 return 1;
259
127f1003
OM
260 if (enable_execlists == 0)
261 return 0;
262
b8d2afae 263 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && USES_PPGTT(dev_priv))
127f1003
OM
264 return 1;
265
266 return 0;
267}
ede7d42b 268
ca82580c 269static void
0bc40be8 270logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
ca82580c 271{
c033666a 272 struct drm_i915_private *dev_priv = engine->i915;
ca82580c 273
c033666a 274 if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
0bc40be8 275 engine->idle_lite_restore_wa = ~0;
c6a2ac71 276
c033666a
CW
277 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
278 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
0bc40be8 279 (engine->id == VCS || engine->id == VCS2);
ca82580c 280
0bc40be8 281 engine->ctx_desc_template = GEN8_CTX_VALID;
c033666a 282 engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev_priv) <<
ca82580c 283 GEN8_CTX_ADDRESSING_MODE_SHIFT;
c033666a 284 if (IS_GEN8(dev_priv))
0bc40be8
TU
285 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
286 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
ca82580c
TU
287
288 /* TODO: WaDisableLiteRestore when we start using semaphore
289 * signalling between Command Streamers */
290 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
291
292 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
293 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
0bc40be8
TU
294 if (engine->disable_lite_restore_wa)
295 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
ca82580c
TU
296}
297
73e4d07f 298/**
ca82580c
TU
299 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
300 * descriptor for a pinned context
73e4d07f 301 *
ca82580c
TU
302 * @ctx: Context to work on
303 * @ring: Engine the descriptor will be used with
73e4d07f 304 *
ca82580c
TU
305 * The context descriptor encodes various attributes of a context,
306 * including its GTT address and some flags. Because it's fairly
307 * expensive to calculate, we'll just do it once and cache the result,
308 * which remains valid until the context is unpinned.
309 *
310 * This is what a descriptor looks like, from LSB to MSB:
ef87bba8 311 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
ca82580c 312 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
7069b144 313 * bits 32-52: ctx ID, a globally unique tag
ef87bba8
CW
314 * bits 53-54: mbz, reserved for use by hardware
315 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 316 */
ca82580c
TU
317static void
318intel_lr_context_descriptor_update(struct intel_context *ctx,
0bc40be8 319 struct intel_engine_cs *engine)
84b790f8 320{
7069b144 321 u64 desc;
84b790f8 322
7069b144 323 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 324
7069b144
CW
325 desc = engine->ctx_desc_template; /* bits 0-11 */
326 desc |= ctx->engine[engine->id].lrc_vma->node.start + /* bits 12-31 */
327 LRC_PPHWSP_PN * PAGE_SIZE;
328 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 329
0bc40be8 330 ctx->engine[engine->id].lrc_desc = desc;
5af05fef
MT
331}
332
919f1f55 333uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
0bc40be8 334 struct intel_engine_cs *engine)
84b790f8 335{
0bc40be8 336 return ctx->engine[engine->id].lrc_desc;
ca82580c 337}
203a571b 338
cc3c4253
MK
339static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
340 struct drm_i915_gem_request *rq1)
84b790f8 341{
cc3c4253 342
4a570db5 343 struct intel_engine_cs *engine = rq0->engine;
c033666a 344 struct drm_i915_private *dev_priv = rq0->i915;
1cff8cc3 345 uint64_t desc[2];
84b790f8 346
1cff8cc3 347 if (rq1) {
4a570db5 348 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
1cff8cc3
MK
349 rq1->elsp_submitted++;
350 } else {
351 desc[1] = 0;
352 }
84b790f8 353
4a570db5 354 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
1cff8cc3 355 rq0->elsp_submitted++;
84b790f8 356
1cff8cc3 357 /* You must always write both descriptors in the order below. */
e2f80391
TU
358 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
359 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
6daccb0b 360
e2f80391 361 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
84b790f8 362 /* The context is automatically loaded after the following */
e2f80391 363 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
84b790f8 364
1cff8cc3 365 /* ELSP is a wo register, use another nearby reg for posting */
e2f80391 366 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
84b790f8
BW
367}
368
c6a2ac71
TU
369static void
370execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
371{
372 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
373 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
374 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
375 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
376}
377
378static void execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 379{
4a570db5 380 struct intel_engine_cs *engine = rq->engine;
05d9824b 381 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
e2f80391 382 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
ae1250b9 383
05d9824b 384 reg_state[CTX_RING_TAIL+1] = rq->tail;
ae1250b9 385
c6a2ac71
TU
386 /* True 32b PPGTT with dynamic page allocation: update PDP
387 * registers and point the unallocated PDPs to scratch page.
388 * PML4 is allocated during ppgtt init, so this is not needed
389 * in 48-bit mode.
390 */
391 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
392 execlists_update_context_pdps(ppgtt, reg_state);
ae1250b9
OM
393}
394
d8cb8875
MK
395static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
396 struct drm_i915_gem_request *rq1)
84b790f8 397{
26720ab9 398 struct drm_i915_private *dev_priv = rq0->i915;
3756685a 399 unsigned int fw_domains = rq0->engine->fw_domains;
26720ab9 400
05d9824b 401 execlists_update_context(rq0);
d8cb8875 402
cc3c4253 403 if (rq1)
05d9824b 404 execlists_update_context(rq1);
84b790f8 405
27af5eea 406 spin_lock_irq(&dev_priv->uncore.lock);
3756685a 407 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
26720ab9 408
cc3c4253 409 execlists_elsp_write(rq0, rq1);
26720ab9 410
3756685a 411 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
27af5eea 412 spin_unlock_irq(&dev_priv->uncore.lock);
84b790f8
BW
413}
414
26720ab9 415static void execlists_context_unqueue(struct intel_engine_cs *engine)
acdd884a 416{
6d3d8274 417 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
c6a2ac71 418 struct drm_i915_gem_request *cursor, *tmp;
e981e7b1 419
0bc40be8 420 assert_spin_locked(&engine->execlist_lock);
acdd884a 421
779949f4
PA
422 /*
423 * If irqs are not active generate a warning as batches that finish
424 * without the irqs may get lost and a GPU Hang may occur.
425 */
c033666a 426 WARN_ON(!intel_irqs_enabled(engine->i915));
779949f4 427
acdd884a 428 /* Try to read in pairs */
0bc40be8 429 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
acdd884a
MT
430 execlist_link) {
431 if (!req0) {
432 req0 = cursor;
6d3d8274 433 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
434 /* Same ctx: ignore first request, as second request
435 * will update tail past first request's workload */
e1fee72c 436 cursor->elsp_submitted = req0->elsp_submitted;
e39d42fa
TU
437 list_del(&req0->execlist_link);
438 i915_gem_request_unreference(req0);
acdd884a
MT
439 req0 = cursor;
440 } else {
441 req1 = cursor;
c6a2ac71 442 WARN_ON(req1->elsp_submitted);
acdd884a
MT
443 break;
444 }
445 }
446
c6a2ac71
TU
447 if (unlikely(!req0))
448 return;
449
0bc40be8 450 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
53292cdb 451 /*
c6a2ac71
TU
452 * WaIdleLiteRestore: make sure we never cause a lite restore
453 * with HEAD==TAIL.
454 *
455 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
456 * resubmit the request. See gen8_emit_request() for where we
457 * prepare the padding after the end of the request.
53292cdb 458 */
c6a2ac71 459 struct intel_ringbuffer *ringbuf;
53292cdb 460
0bc40be8 461 ringbuf = req0->ctx->engine[engine->id].ringbuf;
c6a2ac71
TU
462 req0->tail += 8;
463 req0->tail &= ringbuf->size - 1;
53292cdb
MT
464 }
465
d8cb8875 466 execlists_submit_requests(req0, req1);
acdd884a
MT
467}
468
c6a2ac71 469static unsigned int
e39d42fa 470execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
e981e7b1 471{
6d3d8274 472 struct drm_i915_gem_request *head_req;
e981e7b1 473
0bc40be8 474 assert_spin_locked(&engine->execlist_lock);
e981e7b1 475
0bc40be8 476 head_req = list_first_entry_or_null(&engine->execlist_queue,
6d3d8274 477 struct drm_i915_gem_request,
e981e7b1
TD
478 execlist_link);
479
e39d42fa
TU
480 if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
481 return 0;
c6a2ac71
TU
482
483 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
484
485 if (--head_req->elsp_submitted > 0)
486 return 0;
487
e39d42fa
TU
488 list_del(&head_req->execlist_link);
489 i915_gem_request_unreference(head_req);
e981e7b1 490
c6a2ac71 491 return 1;
e981e7b1
TD
492}
493
c6a2ac71 494static u32
0bc40be8 495get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
c6a2ac71 496 u32 *context_id)
91a41032 497{
c033666a 498 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 499 u32 status;
91a41032 500
c6a2ac71
TU
501 read_pointer %= GEN8_CSB_ENTRIES;
502
0bc40be8 503 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
c6a2ac71
TU
504
505 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
506 return 0;
91a41032 507
0bc40be8 508 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
c6a2ac71
TU
509 read_pointer));
510
511 return status;
91a41032
BW
512}
513
73e4d07f 514/**
3f7531c3 515 * intel_lrc_irq_handler() - handle Context Switch interrupts
27af5eea 516 * @engine: Engine Command Streamer to handle.
73e4d07f
OM
517 *
518 * Check the unread Context Status Buffers and manage the submission of new
519 * contexts to the ELSP accordingly.
520 */
27af5eea 521static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 522{
27af5eea 523 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
c033666a 524 struct drm_i915_private *dev_priv = engine->i915;
e981e7b1 525 u32 status_pointer;
c6a2ac71 526 unsigned int read_pointer, write_pointer;
26720ab9
TU
527 u32 csb[GEN8_CSB_ENTRIES][2];
528 unsigned int csb_read = 0, i;
c6a2ac71
TU
529 unsigned int submit_contexts = 0;
530
3756685a 531 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 532
0bc40be8 533 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
e981e7b1 534
0bc40be8 535 read_pointer = engine->next_context_status_buffer;
5590a5f0 536 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
e981e7b1 537 if (read_pointer > write_pointer)
dfc53c5e 538 write_pointer += GEN8_CSB_ENTRIES;
e981e7b1 539
e981e7b1 540 while (read_pointer < write_pointer) {
26720ab9
TU
541 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
542 break;
543 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
544 &csb[csb_read][1]);
545 csb_read++;
546 }
91a41032 547
26720ab9
TU
548 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
549
550 /* Update the read pointer to the old write pointer. Manual ringbuffer
551 * management ftw </sarcasm> */
552 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
553 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
554 engine->next_context_status_buffer << 8));
555
3756685a 556 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
26720ab9
TU
557
558 spin_lock(&engine->execlist_lock);
559
560 for (i = 0; i < csb_read; i++) {
561 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
562 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
563 if (execlists_check_remove_request(engine, csb[i][1]))
e1fee72c
OM
564 WARN(1, "Lite Restored request removed from queue\n");
565 } else
566 WARN(1, "Preemption without Lite Restore\n");
567 }
568
26720ab9 569 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
c6a2ac71
TU
570 GEN8_CTX_STATUS_ELEMENT_SWITCH))
571 submit_contexts +=
26720ab9 572 execlists_check_remove_request(engine, csb[i][1]);
e981e7b1
TD
573 }
574
c6a2ac71 575 if (submit_contexts) {
0bc40be8 576 if (!engine->disable_lite_restore_wa ||
26720ab9
TU
577 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
578 execlists_context_unqueue(engine);
5af05fef 579 }
e981e7b1 580
0bc40be8 581 spin_unlock(&engine->execlist_lock);
c6a2ac71
TU
582
583 if (unlikely(submit_contexts > 2))
584 DRM_ERROR("More than two context complete events?\n");
e981e7b1
TD
585}
586
c6a2ac71 587static void execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 588{
4a570db5 589 struct intel_engine_cs *engine = request->engine;
6d3d8274 590 struct drm_i915_gem_request *cursor;
f1ad5a1f 591 int num_elements = 0;
acdd884a 592
27af5eea 593 spin_lock_bh(&engine->execlist_lock);
acdd884a 594
e2f80391 595 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
f1ad5a1f
OM
596 if (++num_elements > 2)
597 break;
598
599 if (num_elements > 2) {
6d3d8274 600 struct drm_i915_gem_request *tail_req;
f1ad5a1f 601
e2f80391 602 tail_req = list_last_entry(&engine->execlist_queue,
6d3d8274 603 struct drm_i915_gem_request,
f1ad5a1f
OM
604 execlist_link);
605
ae70797d 606 if (request->ctx == tail_req->ctx) {
f1ad5a1f 607 WARN(tail_req->elsp_submitted != 0,
7ba717cf 608 "More than 2 already-submitted reqs queued\n");
e39d42fa
TU
609 list_del(&tail_req->execlist_link);
610 i915_gem_request_unreference(tail_req);
f1ad5a1f
OM
611 }
612 }
613
e39d42fa 614 i915_gem_request_reference(request);
e2f80391 615 list_add_tail(&request->execlist_link, &engine->execlist_queue);
a3d12761 616 request->ctx_hw_id = request->ctx->hw_id;
f1ad5a1f 617 if (num_elements == 0)
e2f80391 618 execlists_context_unqueue(engine);
acdd884a 619
27af5eea 620 spin_unlock_bh(&engine->execlist_lock);
acdd884a
MT
621}
622
2f20055d 623static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
ba8b7ccb 624{
4a570db5 625 struct intel_engine_cs *engine = req->engine;
ba8b7ccb
OM
626 uint32_t flush_domains;
627 int ret;
628
629 flush_domains = 0;
e2f80391 630 if (engine->gpu_caches_dirty)
ba8b7ccb
OM
631 flush_domains = I915_GEM_GPU_DOMAINS;
632
e2f80391 633 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
634 if (ret)
635 return ret;
636
e2f80391 637 engine->gpu_caches_dirty = false;
ba8b7ccb
OM
638 return 0;
639}
640
535fbe82 641static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
642 struct list_head *vmas)
643{
666796da 644 const unsigned other_rings = ~intel_engine_flag(req->engine);
ba8b7ccb
OM
645 struct i915_vma *vma;
646 uint32_t flush_domains = 0;
647 bool flush_chipset = false;
648 int ret;
649
650 list_for_each_entry(vma, vmas, exec_list) {
651 struct drm_i915_gem_object *obj = vma->obj;
652
03ade511 653 if (obj->active & other_rings) {
4a570db5 654 ret = i915_gem_object_sync(obj, req->engine, &req);
03ade511
CW
655 if (ret)
656 return ret;
657 }
ba8b7ccb
OM
658
659 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
660 flush_chipset |= i915_gem_clflush_object(obj, false);
661
662 flush_domains |= obj->base.write_domain;
663 }
664
665 if (flush_domains & I915_GEM_DOMAIN_GTT)
666 wmb();
667
668 /* Unconditionally invalidate gpu caches and ensure that we do flush
669 * any residual writes from the previous batch.
670 */
2f20055d 671 return logical_ring_invalidate_all_caches(req);
ba8b7ccb
OM
672}
673
40e895ce 674int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 675{
24f1d3cc 676 struct intel_engine_cs *engine = request->engine;
bfa01200 677 int ret;
bc0dce3f 678
6310346e
CW
679 /* Flush enough space to reduce the likelihood of waiting after
680 * we start building the request - in which case we will just
681 * have to repeat work.
682 */
0e93cdd4 683 request->reserved_space += EXECLISTS_REQUEST_SIZE;
6310346e 684
978f1e09
CW
685 if (request->ctx->engine[engine->id].state == NULL) {
686 ret = execlists_context_deferred_alloc(request->ctx, engine);
687 if (ret)
688 return ret;
689 }
690
24f1d3cc 691 request->ringbuf = request->ctx->engine[engine->id].ringbuf;
f3cc01f0 692
a7e02199
AD
693 if (i915.enable_guc_submission) {
694 /*
695 * Check that the GuC has space for the request before
696 * going any further, as the i915_add_request() call
697 * later on mustn't fail ...
698 */
7c2c270d 699 ret = i915_guc_wq_check_space(request);
a7e02199
AD
700 if (ret)
701 return ret;
702 }
703
24f1d3cc
CW
704 ret = intel_lr_context_pin(request->ctx, engine);
705 if (ret)
706 return ret;
e28e404c 707
bfa01200
CW
708 ret = intel_ring_begin(request, 0);
709 if (ret)
710 goto err_unpin;
711
24f1d3cc
CW
712 if (!request->ctx->engine[engine->id].initialised) {
713 ret = engine->init_context(request);
714 if (ret)
715 goto err_unpin;
716
717 request->ctx->engine[engine->id].initialised = true;
718 }
719
720 /* Note that after this point, we have committed to using
721 * this request as it is being used to both track the
722 * state of engine initialisation and liveness of the
723 * golden renderstate above. Think twice before you try
724 * to cancel/unwind this request now.
725 */
726
0e93cdd4 727 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
bfa01200
CW
728 return 0;
729
730err_unpin:
24f1d3cc 731 intel_lr_context_unpin(request->ctx, engine);
e28e404c 732 return ret;
bc0dce3f
JH
733}
734
bc0dce3f
JH
735/*
736 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 737 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
738 *
739 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
740 * really happens during submission is that the context and current tail will be placed
741 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
742 * point, the tail *inside* the context is updated and the ELSP written to.
743 */
7c17d377 744static int
ae70797d 745intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 746{
7c17d377 747 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 748 struct intel_engine_cs *engine = request->engine;
bc0dce3f 749
7c17d377
CW
750 intel_logical_ring_advance(ringbuf);
751 request->tail = ringbuf->tail;
bc0dce3f 752
7c17d377
CW
753 /*
754 * Here we add two extra NOOPs as padding to avoid
755 * lite restore of a context with HEAD==TAIL.
756 *
757 * Caller must reserve WA_TAIL_DWORDS for us!
758 */
759 intel_logical_ring_emit(ringbuf, MI_NOOP);
760 intel_logical_ring_emit(ringbuf, MI_NOOP);
761 intel_logical_ring_advance(ringbuf);
d1675198 762
117897f4 763 if (intel_engine_stopped(engine))
7c17d377 764 return 0;
bc0dce3f 765
a16a4052
CW
766 /* We keep the previous context alive until we retire the following
767 * request. This ensures that any the context object is still pinned
768 * for any residual writes the HW makes into it on the context switch
769 * into the next object following the breadcrumb. Otherwise, we may
770 * retire the context too early.
771 */
772 request->previous_context = engine->last_context;
773 engine->last_context = request->ctx;
f4e2dece 774
7c2c270d
DG
775 if (i915.enable_guc_submission)
776 i915_guc_submit(request);
d1675198
AD
777 else
778 execlists_context_queue(request);
7c17d377
CW
779
780 return 0;
bc0dce3f
JH
781}
782
73e4d07f
OM
783/**
784 * execlists_submission() - submit a batchbuffer for execution, Execlists style
785 * @dev: DRM device.
786 * @file: DRM file.
787 * @ring: Engine Command Streamer to submit to.
788 * @ctx: Context to employ for this submission.
789 * @args: execbuffer call arguments.
790 * @vmas: list of vmas.
791 * @batch_obj: the batchbuffer to submit.
792 * @exec_start: batchbuffer start virtual address pointer.
8e004efc 793 * @dispatch_flags: translated execbuffer call flags.
73e4d07f
OM
794 *
795 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
796 * away the submission details of the execbuffer ioctl call.
797 *
798 * Return: non-zero if the submission fails.
799 */
5f19e2bf 800int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 801 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 802 struct list_head *vmas)
454afebd 803{
5f19e2bf 804 struct drm_device *dev = params->dev;
4a570db5 805 struct intel_engine_cs *engine = params->engine;
ba8b7ccb 806 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 807 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
5f19e2bf 808 u64 exec_start;
ba8b7ccb
OM
809 int instp_mode;
810 u32 instp_mask;
811 int ret;
812
813 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
814 instp_mask = I915_EXEC_CONSTANTS_MASK;
815 switch (instp_mode) {
816 case I915_EXEC_CONSTANTS_REL_GENERAL:
817 case I915_EXEC_CONSTANTS_ABSOLUTE:
818 case I915_EXEC_CONSTANTS_REL_SURFACE:
4a570db5 819 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
ba8b7ccb
OM
820 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
821 return -EINVAL;
822 }
823
824 if (instp_mode != dev_priv->relative_constants_mode) {
825 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
826 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
827 return -EINVAL;
828 }
829
830 /* The HW changed the meaning on this bit on gen6 */
831 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
832 }
833 break;
834 default:
835 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
836 return -EINVAL;
837 }
838
ba8b7ccb
OM
839 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
840 DRM_DEBUG("sol reset is gen7 only\n");
841 return -EINVAL;
842 }
843
535fbe82 844 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
845 if (ret)
846 return ret;
847
4a570db5 848 if (engine == &dev_priv->engine[RCS] &&
ba8b7ccb 849 instp_mode != dev_priv->relative_constants_mode) {
987046ad 850 ret = intel_ring_begin(params->request, 4);
ba8b7ccb
OM
851 if (ret)
852 return ret;
853
854 intel_logical_ring_emit(ringbuf, MI_NOOP);
855 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
f92a9162 856 intel_logical_ring_emit_reg(ringbuf, INSTPM);
ba8b7ccb
OM
857 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
858 intel_logical_ring_advance(ringbuf);
859
860 dev_priv->relative_constants_mode = instp_mode;
861 }
862
5f19e2bf
JH
863 exec_start = params->batch_obj_vm_offset +
864 args->batch_start_offset;
865
e2f80391 866 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
ba8b7ccb
OM
867 if (ret)
868 return ret;
869
95c24161 870 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 871
8a8edb59 872 i915_gem_execbuffer_move_to_active(vmas, params->request);
ba8b7ccb 873
454afebd
OM
874 return 0;
875}
876
e39d42fa 877void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
c86ee3a9 878{
6d3d8274 879 struct drm_i915_gem_request *req, *tmp;
e39d42fa 880 LIST_HEAD(cancel_list);
c86ee3a9 881
c033666a 882 WARN_ON(!mutex_is_locked(&engine->i915->dev->struct_mutex));
c86ee3a9 883
27af5eea 884 spin_lock_bh(&engine->execlist_lock);
e39d42fa 885 list_replace_init(&engine->execlist_queue, &cancel_list);
27af5eea 886 spin_unlock_bh(&engine->execlist_lock);
c86ee3a9 887
e39d42fa 888 list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
c86ee3a9 889 list_del(&req->execlist_link);
f8210795 890 i915_gem_request_unreference(req);
c86ee3a9
TD
891 }
892}
893
0bc40be8 894void intel_logical_ring_stop(struct intel_engine_cs *engine)
454afebd 895{
c033666a 896 struct drm_i915_private *dev_priv = engine->i915;
9832b9da
OM
897 int ret;
898
117897f4 899 if (!intel_engine_initialized(engine))
9832b9da
OM
900 return;
901
666796da 902 ret = intel_engine_idle(engine);
f4457ae7 903 if (ret)
9832b9da 904 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
0bc40be8 905 engine->name, ret);
9832b9da
OM
906
907 /* TODO: Is this correct with Execlists enabled? */
0bc40be8
TU
908 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
909 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
910 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
9832b9da
OM
911 return;
912 }
0bc40be8 913 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
914}
915
4866d729 916int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
48e29f55 917{
4a570db5 918 struct intel_engine_cs *engine = req->engine;
48e29f55
OM
919 int ret;
920
e2f80391 921 if (!engine->gpu_caches_dirty)
48e29f55
OM
922 return 0;
923
e2f80391 924 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
925 if (ret)
926 return ret;
927
e2f80391 928 engine->gpu_caches_dirty = false;
48e29f55
OM
929 return 0;
930}
931
24f1d3cc
CW
932static int intel_lr_context_pin(struct intel_context *ctx,
933 struct intel_engine_cs *engine)
dcb4c12a 934{
24f1d3cc
CW
935 struct drm_i915_private *dev_priv = ctx->i915;
936 struct drm_i915_gem_object *ctx_obj;
937 struct intel_ringbuffer *ringbuf;
7d774cac
TU
938 void *vaddr;
939 u32 *lrc_reg_state;
ca82580c 940 int ret;
dcb4c12a 941
24f1d3cc 942 lockdep_assert_held(&ctx->i915->dev->struct_mutex);
ca82580c 943
24f1d3cc
CW
944 if (ctx->engine[engine->id].pin_count++)
945 return 0;
946
947 ctx_obj = ctx->engine[engine->id].state;
e84fe803
NH
948 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
949 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
950 if (ret)
24f1d3cc 951 goto err;
7ba717cf 952
7d774cac
TU
953 vaddr = i915_gem_object_pin_map(ctx_obj);
954 if (IS_ERR(vaddr)) {
955 ret = PTR_ERR(vaddr);
82352e90
TU
956 goto unpin_ctx_obj;
957 }
958
7d774cac
TU
959 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
960
24f1d3cc 961 ringbuf = ctx->engine[engine->id].ringbuf;
c033666a 962 ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ringbuf);
e84fe803 963 if (ret)
7d774cac 964 goto unpin_map;
d1675198 965
24f1d3cc 966 i915_gem_context_reference(ctx);
0bc40be8
TU
967 ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
968 intel_lr_context_descriptor_update(ctx, engine);
77b04a04 969 lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
0bc40be8 970 ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
e84fe803 971 ctx_obj->dirty = true;
e93c28f3 972
e84fe803
NH
973 /* Invalidate GuC TLB. */
974 if (i915.enable_guc_submission)
975 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
dcb4c12a 976
24f1d3cc 977 return 0;
7ba717cf 978
7d774cac
TU
979unpin_map:
980 i915_gem_object_unpin_map(ctx_obj);
7ba717cf
TD
981unpin_ctx_obj:
982 i915_gem_object_ggtt_unpin(ctx_obj);
24f1d3cc
CW
983err:
984 ctx->engine[engine->id].pin_count = 0;
e84fe803
NH
985 return ret;
986}
987
24f1d3cc
CW
988void intel_lr_context_unpin(struct intel_context *ctx,
989 struct intel_engine_cs *engine)
e84fe803 990{
24f1d3cc 991 struct drm_i915_gem_object *ctx_obj;
e84fe803 992
24f1d3cc
CW
993 lockdep_assert_held(&ctx->i915->dev->struct_mutex);
994 GEM_BUG_ON(ctx->engine[engine->id].pin_count == 0);
321fe304 995
24f1d3cc
CW
996 if (--ctx->engine[engine->id].pin_count)
997 return;
e84fe803 998
24f1d3cc 999 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
dcb4c12a 1000
24f1d3cc
CW
1001 ctx_obj = ctx->engine[engine->id].state;
1002 i915_gem_object_unpin_map(ctx_obj);
1003 i915_gem_object_ggtt_unpin(ctx_obj);
af3302b9 1004
24f1d3cc
CW
1005 ctx->engine[engine->id].lrc_vma = NULL;
1006 ctx->engine[engine->id].lrc_desc = 0;
1007 ctx->engine[engine->id].lrc_reg_state = NULL;
321fe304 1008
24f1d3cc 1009 i915_gem_context_unreference(ctx);
dcb4c12a
OM
1010}
1011
e2be4faf 1012static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
1013{
1014 int ret, i;
4a570db5 1015 struct intel_engine_cs *engine = req->engine;
e2be4faf 1016 struct intel_ringbuffer *ringbuf = req->ringbuf;
c033666a 1017 struct i915_workarounds *w = &req->i915->workarounds;
771b9a53 1018
cd7feaaa 1019 if (w->count == 0)
771b9a53
MT
1020 return 0;
1021
e2f80391 1022 engine->gpu_caches_dirty = true;
4866d729 1023 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1024 if (ret)
1025 return ret;
1026
987046ad 1027 ret = intel_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1028 if (ret)
1029 return ret;
1030
1031 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1032 for (i = 0; i < w->count; i++) {
f92a9162 1033 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
771b9a53
MT
1034 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1035 }
1036 intel_logical_ring_emit(ringbuf, MI_NOOP);
1037
1038 intel_logical_ring_advance(ringbuf);
1039
e2f80391 1040 engine->gpu_caches_dirty = true;
4866d729 1041 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1042 if (ret)
1043 return ret;
1044
1045 return 0;
1046}
1047
83b8a982 1048#define wa_ctx_emit(batch, index, cmd) \
17ee950d 1049 do { \
83b8a982
AS
1050 int __index = (index)++; \
1051 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
1052 return -ENOSPC; \
1053 } \
83b8a982 1054 batch[__index] = (cmd); \
17ee950d
AS
1055 } while (0)
1056
8f40db77 1057#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 1058 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
1059
1060/*
1061 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1062 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1063 * but there is a slight complication as this is applied in WA batch where the
1064 * values are only initialized once so we cannot take register value at the
1065 * beginning and reuse it further; hence we save its value to memory, upload a
1066 * constant value with bit21 set and then we restore it back with the saved value.
1067 * To simplify the WA, a constant value is formed by using the default value
1068 * of this register. This shouldn't be a problem because we are only modifying
1069 * it for a short period and this batch in non-premptible. We can ofcourse
1070 * use additional instructions that read the actual value of the register
1071 * at that time and set our bit of interest but it makes the WA complicated.
1072 *
1073 * This WA is also required for Gen9 so extracting as a function avoids
1074 * code duplication.
1075 */
0bc40be8 1076static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
9e000847
AS
1077 uint32_t *const batch,
1078 uint32_t index)
1079{
1080 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1081
a4106a78
AS
1082 /*
1083 * WaDisableLSQCROPERFforOCL:skl
1084 * This WA is implemented in skl_init_clock_gating() but since
1085 * this batch updates GEN8_L3SQCREG4 with default value we need to
1086 * set this bit here to retain the WA during flush.
1087 */
c033666a 1088 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_E0))
a4106a78
AS
1089 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1090
f1afe24f 1091 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 1092 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1093 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1094 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982
AS
1095 wa_ctx_emit(batch, index, 0);
1096
1097 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1098 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1099 wa_ctx_emit(batch, index, l3sqc4_flush);
1100
1101 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1102 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1103 PIPE_CONTROL_DC_FLUSH_ENABLE));
1104 wa_ctx_emit(batch, index, 0);
1105 wa_ctx_emit(batch, index, 0);
1106 wa_ctx_emit(batch, index, 0);
1107 wa_ctx_emit(batch, index, 0);
1108
f1afe24f 1109 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 1110 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1111 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1112 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982 1113 wa_ctx_emit(batch, index, 0);
9e000847
AS
1114
1115 return index;
1116}
1117
17ee950d
AS
1118static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1119 uint32_t offset,
1120 uint32_t start_alignment)
1121{
1122 return wa_ctx->offset = ALIGN(offset, start_alignment);
1123}
1124
1125static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1126 uint32_t offset,
1127 uint32_t size_alignment)
1128{
1129 wa_ctx->size = offset - wa_ctx->offset;
1130
1131 WARN(wa_ctx->size % size_alignment,
1132 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1133 wa_ctx->size, size_alignment);
1134 return 0;
1135}
1136
1137/**
1138 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1139 *
1140 * @ring: only applicable for RCS
1141 * @wa_ctx: structure representing wa_ctx
1142 * offset: specifies start of the batch, should be cache-aligned. This is updated
1143 * with the offset value received as input.
1144 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1145 * @batch: page in which WA are loaded
1146 * @offset: This field specifies the start of the batch, it should be
1147 * cache-aligned otherwise it is adjusted accordingly.
1148 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1149 * initialized at the beginning and shared across all contexts but this field
1150 * helps us to have multiple batches at different offsets and select them based
1151 * on a criteria. At the moment this batch always start at the beginning of the page
1152 * and at this point we don't have multiple wa_ctx batch buffers.
1153 *
1154 * The number of WA applied are not known at the beginning; we use this field
1155 * to return the no of DWORDS written.
4d78c8dc 1156 *
17ee950d
AS
1157 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1158 * so it adds NOOPs as padding to make it cacheline aligned.
1159 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1160 * makes a complete batch buffer.
1161 *
1162 * Return: non-zero if we exceed the PAGE_SIZE limit.
1163 */
1164
0bc40be8 1165static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1166 struct i915_wa_ctx_bb *wa_ctx,
1167 uint32_t *const batch,
1168 uint32_t *offset)
1169{
0160f055 1170 uint32_t scratch_addr;
17ee950d
AS
1171 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1172
7ad00d1a 1173 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1174 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1175
c82435bb 1176 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
c033666a 1177 if (IS_BROADWELL(engine->i915)) {
0bc40be8 1178 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
604ef734
AH
1179 if (rc < 0)
1180 return rc;
1181 index = rc;
c82435bb
AS
1182 }
1183
0160f055
AS
1184 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1185 /* Actual scratch location is at 128 bytes offset */
0bc40be8 1186 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
0160f055 1187
83b8a982
AS
1188 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1189 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1190 PIPE_CONTROL_GLOBAL_GTT_IVB |
1191 PIPE_CONTROL_CS_STALL |
1192 PIPE_CONTROL_QW_WRITE));
1193 wa_ctx_emit(batch, index, scratch_addr);
1194 wa_ctx_emit(batch, index, 0);
1195 wa_ctx_emit(batch, index, 0);
1196 wa_ctx_emit(batch, index, 0);
0160f055 1197
17ee950d
AS
1198 /* Pad to end of cacheline */
1199 while (index % CACHELINE_DWORDS)
83b8a982 1200 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1201
1202 /*
1203 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1204 * execution depends on the length specified in terms of cache lines
1205 * in the register CTX_RCS_INDIRECT_CTX
1206 */
1207
1208 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1209}
1210
1211/**
1212 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1213 *
1214 * @ring: only applicable for RCS
1215 * @wa_ctx: structure representing wa_ctx
1216 * offset: specifies start of the batch, should be cache-aligned.
1217 * size: size of the batch in DWORDS but HW expects in terms of cachelines
4d78c8dc 1218 * @batch: page in which WA are loaded
17ee950d
AS
1219 * @offset: This field specifies the start of this batch.
1220 * This batch is started immediately after indirect_ctx batch. Since we ensure
1221 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1222 *
1223 * The number of DWORDS written are returned using this field.
1224 *
1225 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1226 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1227 */
0bc40be8 1228static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1229 struct i915_wa_ctx_bb *wa_ctx,
1230 uint32_t *const batch,
1231 uint32_t *offset)
1232{
1233 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1234
7ad00d1a 1235 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1236 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1237
83b8a982 1238 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1239
1240 return wa_ctx_end(wa_ctx, *offset = index, 1);
1241}
1242
0bc40be8 1243static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1244 struct i915_wa_ctx_bb *wa_ctx,
1245 uint32_t *const batch,
1246 uint32_t *offset)
1247{
a4106a78 1248 int ret;
0504cffc
AS
1249 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1250
0907c8f7 1251 /* WaDisableCtxRestoreArbitration:skl,bxt */
c033666a
CW
1252 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1253 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
0907c8f7 1254 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1255
a4106a78 1256 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
0bc40be8 1257 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
a4106a78
AS
1258 if (ret < 0)
1259 return ret;
1260 index = ret;
1261
0504cffc
AS
1262 /* Pad to end of cacheline */
1263 while (index % CACHELINE_DWORDS)
1264 wa_ctx_emit(batch, index, MI_NOOP);
1265
1266 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1267}
1268
0bc40be8 1269static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1270 struct i915_wa_ctx_bb *wa_ctx,
1271 uint32_t *const batch,
1272 uint32_t *offset)
1273{
1274 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1275
9b01435d 1276 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
c033666a
CW
1277 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
1278 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
9b01435d 1279 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1280 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1281 wa_ctx_emit(batch, index,
1282 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1283 wa_ctx_emit(batch, index, MI_NOOP);
1284 }
1285
b1e429fe 1286 /* WaClearTdlStateAckDirtyBits:bxt */
c033666a 1287 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
b1e429fe
TG
1288 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1289
1290 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1291 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1292
1293 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1294 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1295
1296 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1297 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1298
1299 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1300 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1301 wa_ctx_emit(batch, index, 0x0);
1302 wa_ctx_emit(batch, index, MI_NOOP);
1303 }
1304
0907c8f7 1305 /* WaDisableCtxRestoreArbitration:skl,bxt */
c033666a
CW
1306 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1307 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
0907c8f7
AS
1308 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1309
0504cffc
AS
1310 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1311
1312 return wa_ctx_end(wa_ctx, *offset = index, 1);
1313}
1314
0bc40be8 1315static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
17ee950d
AS
1316{
1317 int ret;
1318
c033666a 1319 engine->wa_ctx.obj = i915_gem_object_create(engine->i915->dev,
0bc40be8 1320 PAGE_ALIGN(size));
fe3db79b 1321 if (IS_ERR(engine->wa_ctx.obj)) {
17ee950d 1322 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
fe3db79b
CW
1323 ret = PTR_ERR(engine->wa_ctx.obj);
1324 engine->wa_ctx.obj = NULL;
1325 return ret;
17ee950d
AS
1326 }
1327
0bc40be8 1328 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
17ee950d
AS
1329 if (ret) {
1330 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1331 ret);
0bc40be8 1332 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
17ee950d
AS
1333 return ret;
1334 }
1335
1336 return 0;
1337}
1338
0bc40be8 1339static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
17ee950d 1340{
0bc40be8
TU
1341 if (engine->wa_ctx.obj) {
1342 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1343 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1344 engine->wa_ctx.obj = NULL;
17ee950d
AS
1345 }
1346}
1347
0bc40be8 1348static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d
AS
1349{
1350 int ret;
1351 uint32_t *batch;
1352 uint32_t offset;
1353 struct page *page;
0bc40be8 1354 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d 1355
0bc40be8 1356 WARN_ON(engine->id != RCS);
17ee950d 1357
5e60d790 1358 /* update this when WA for higher Gen are added */
c033666a 1359 if (INTEL_GEN(engine->i915) > 9) {
0504cffc 1360 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
c033666a 1361 INTEL_GEN(engine->i915));
5e60d790 1362 return 0;
0504cffc 1363 }
5e60d790 1364
c4db7599 1365 /* some WA perform writes to scratch page, ensure it is valid */
0bc40be8
TU
1366 if (engine->scratch.obj == NULL) {
1367 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
c4db7599
AS
1368 return -EINVAL;
1369 }
1370
0bc40be8 1371 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
17ee950d
AS
1372 if (ret) {
1373 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1374 return ret;
1375 }
1376
033908ae 1377 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
17ee950d
AS
1378 batch = kmap_atomic(page);
1379 offset = 0;
1380
c033666a 1381 if (IS_GEN8(engine->i915)) {
0bc40be8 1382 ret = gen8_init_indirectctx_bb(engine,
17ee950d
AS
1383 &wa_ctx->indirect_ctx,
1384 batch,
1385 &offset);
1386 if (ret)
1387 goto out;
1388
0bc40be8 1389 ret = gen8_init_perctx_bb(engine,
17ee950d
AS
1390 &wa_ctx->per_ctx,
1391 batch,
1392 &offset);
1393 if (ret)
1394 goto out;
c033666a 1395 } else if (IS_GEN9(engine->i915)) {
0bc40be8 1396 ret = gen9_init_indirectctx_bb(engine,
0504cffc
AS
1397 &wa_ctx->indirect_ctx,
1398 batch,
1399 &offset);
1400 if (ret)
1401 goto out;
1402
0bc40be8 1403 ret = gen9_init_perctx_bb(engine,
0504cffc
AS
1404 &wa_ctx->per_ctx,
1405 batch,
1406 &offset);
1407 if (ret)
1408 goto out;
17ee950d
AS
1409 }
1410
1411out:
1412 kunmap_atomic(batch);
1413 if (ret)
0bc40be8 1414 lrc_destroy_wa_ctx_obj(engine);
17ee950d
AS
1415
1416 return ret;
1417}
1418
04794adb
TU
1419static void lrc_init_hws(struct intel_engine_cs *engine)
1420{
c033666a 1421 struct drm_i915_private *dev_priv = engine->i915;
04794adb
TU
1422
1423 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1424 (u32)engine->status_page.gfx_addr);
1425 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1426}
1427
0bc40be8 1428static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1429{
c033666a 1430 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 1431 unsigned int next_context_status_buffer_hw;
9b1136d5 1432
04794adb 1433 lrc_init_hws(engine);
e84fe803 1434
0bc40be8
TU
1435 I915_WRITE_IMR(engine,
1436 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1437 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
73d477f6 1438
0bc40be8 1439 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5
OM
1440 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1441 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
0bc40be8 1442 POSTING_READ(RING_MODE_GEN7(engine));
dfc53c5e
MT
1443
1444 /*
1445 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1446 * zero, we need to read the write pointer from hardware and use its
1447 * value because "this register is power context save restored".
1448 * Effectively, these states have been observed:
1449 *
1450 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1451 * BDW | CSB regs not reset | CSB regs reset |
1452 * CHT | CSB regs not reset | CSB regs not reset |
5590a5f0
BW
1453 * SKL | ? | ? |
1454 * BXT | ? | ? |
dfc53c5e 1455 */
5590a5f0 1456 next_context_status_buffer_hw =
0bc40be8 1457 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
dfc53c5e
MT
1458
1459 /*
1460 * When the CSB registers are reset (also after power-up / gpu reset),
1461 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1462 * this special case, so the first element read is CSB[0].
1463 */
1464 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1465 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1466
0bc40be8
TU
1467 engine->next_context_status_buffer = next_context_status_buffer_hw;
1468 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1469
fc0768ce 1470 intel_engine_init_hangcheck(engine);
9b1136d5 1471
0ccdacf6 1472 return intel_mocs_init_engine(engine);
9b1136d5
OM
1473}
1474
0bc40be8 1475static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1476{
c033666a 1477 struct drm_i915_private *dev_priv = engine->i915;
9b1136d5
OM
1478 int ret;
1479
0bc40be8 1480 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1481 if (ret)
1482 return ret;
1483
1484 /* We need to disable the AsyncFlip performance optimisations in order
1485 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1486 * programmed to '1' on all products.
1487 *
1488 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1489 */
1490 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1491
9b1136d5
OM
1492 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1493
0bc40be8 1494 return init_workarounds_ring(engine);
9b1136d5
OM
1495}
1496
0bc40be8 1497static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1498{
1499 int ret;
1500
0bc40be8 1501 ret = gen8_init_common_ring(engine);
82ef822e
DL
1502 if (ret)
1503 return ret;
1504
0bc40be8 1505 return init_workarounds_ring(engine);
82ef822e
DL
1506}
1507
7a01a0a2
MT
1508static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1509{
1510 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
4a570db5 1511 struct intel_engine_cs *engine = req->engine;
7a01a0a2
MT
1512 struct intel_ringbuffer *ringbuf = req->ringbuf;
1513 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1514 int i, ret;
1515
987046ad 1516 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
7a01a0a2
MT
1517 if (ret)
1518 return ret;
1519
1520 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1521 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1522 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1523
e2f80391
TU
1524 intel_logical_ring_emit_reg(ringbuf,
1525 GEN8_RING_PDP_UDW(engine, i));
7a01a0a2 1526 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
e2f80391
TU
1527 intel_logical_ring_emit_reg(ringbuf,
1528 GEN8_RING_PDP_LDW(engine, i));
7a01a0a2
MT
1529 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1530 }
1531
1532 intel_logical_ring_emit(ringbuf, MI_NOOP);
1533 intel_logical_ring_advance(ringbuf);
1534
1535 return 0;
1536}
1537
be795fc1 1538static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
8e004efc 1539 u64 offset, unsigned dispatch_flags)
15648585 1540{
be795fc1 1541 struct intel_ringbuffer *ringbuf = req->ringbuf;
8e004efc 1542 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1543 int ret;
1544
7a01a0a2
MT
1545 /* Don't rely in hw updating PDPs, specially in lite-restore.
1546 * Ideally, we should set Force PD Restore in ctx descriptor,
1547 * but we can't. Force Restore would be a second option, but
1548 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1549 * not idle). PML4 is allocated during ppgtt init so this is
1550 * not needed in 48-bit.*/
7a01a0a2 1551 if (req->ctx->ppgtt &&
666796da 1552 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7 1553 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
c033666a 1554 !intel_vgpu_active(req->i915)) {
2dba3239
MT
1555 ret = intel_logical_ring_emit_pdps(req);
1556 if (ret)
1557 return ret;
1558 }
7a01a0a2 1559
666796da 1560 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1561 }
1562
987046ad 1563 ret = intel_ring_begin(req, 4);
15648585
OM
1564 if (ret)
1565 return ret;
1566
1567 /* FIXME(BDW): Address space and security selectors. */
6922528a
AJ
1568 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1569 (ppgtt<<8) |
1570 (dispatch_flags & I915_DISPATCH_RS ?
1571 MI_BATCH_RESOURCE_STREAMER : 0));
15648585
OM
1572 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1573 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1574 intel_logical_ring_emit(ringbuf, MI_NOOP);
1575 intel_logical_ring_advance(ringbuf);
1576
1577 return 0;
1578}
1579
0bc40be8 1580static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
73d477f6 1581{
c033666a 1582 struct drm_i915_private *dev_priv = engine->i915;
73d477f6
OM
1583 unsigned long flags;
1584
7cd512f1 1585 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1586 return false;
1587
1588 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1589 if (engine->irq_refcount++ == 0) {
1590 I915_WRITE_IMR(engine,
1591 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1592 POSTING_READ(RING_IMR(engine->mmio_base));
73d477f6
OM
1593 }
1594 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1595
1596 return true;
1597}
1598
0bc40be8 1599static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
73d477f6 1600{
c033666a 1601 struct drm_i915_private *dev_priv = engine->i915;
73d477f6
OM
1602 unsigned long flags;
1603
1604 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1605 if (--engine->irq_refcount == 0) {
1606 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1607 POSTING_READ(RING_IMR(engine->mmio_base));
73d477f6
OM
1608 }
1609 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1610}
1611
7deb4d39 1612static int gen8_emit_flush(struct drm_i915_gem_request *request,
4712274c
OM
1613 u32 invalidate_domains,
1614 u32 unused)
1615{
7deb4d39 1616 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1617 struct intel_engine_cs *engine = ringbuf->engine;
c033666a 1618 struct drm_i915_private *dev_priv = request->i915;
4712274c
OM
1619 uint32_t cmd;
1620 int ret;
1621
987046ad 1622 ret = intel_ring_begin(request, 4);
4712274c
OM
1623 if (ret)
1624 return ret;
1625
1626 cmd = MI_FLUSH_DW + 1;
1627
f0a1fb10
CW
1628 /* We always require a command barrier so that subsequent
1629 * commands, such as breadcrumb interrupts, are strictly ordered
1630 * wrt the contents of the write cache being flushed to memory
1631 * (and thus being coherent from the CPU).
1632 */
1633 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1634
1635 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1636 cmd |= MI_INVALIDATE_TLB;
4a570db5 1637 if (engine == &dev_priv->engine[VCS])
f0a1fb10 1638 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1639 }
1640
1641 intel_logical_ring_emit(ringbuf, cmd);
1642 intel_logical_ring_emit(ringbuf,
1643 I915_GEM_HWS_SCRATCH_ADDR |
1644 MI_FLUSH_DW_USE_GTT);
1645 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1646 intel_logical_ring_emit(ringbuf, 0); /* value */
1647 intel_logical_ring_advance(ringbuf);
1648
1649 return 0;
1650}
1651
7deb4d39 1652static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
4712274c
OM
1653 u32 invalidate_domains,
1654 u32 flush_domains)
1655{
7deb4d39 1656 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1657 struct intel_engine_cs *engine = ringbuf->engine;
e2f80391 1658 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1a5a9ce7 1659 bool vf_flush_wa = false;
4712274c
OM
1660 u32 flags = 0;
1661 int ret;
1662
1663 flags |= PIPE_CONTROL_CS_STALL;
1664
1665 if (flush_domains) {
1666 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1667 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1668 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1669 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1670 }
1671
1672 if (invalidate_domains) {
1673 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1674 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1675 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1676 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1677 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1678 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1679 flags |= PIPE_CONTROL_QW_WRITE;
1680 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1681
1a5a9ce7
BW
1682 /*
1683 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1684 * pipe control.
1685 */
c033666a 1686 if (IS_GEN9(request->i915))
1a5a9ce7
BW
1687 vf_flush_wa = true;
1688 }
9647ff36 1689
987046ad 1690 ret = intel_ring_begin(request, vf_flush_wa ? 12 : 6);
4712274c
OM
1691 if (ret)
1692 return ret;
1693
9647ff36
ID
1694 if (vf_flush_wa) {
1695 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1696 intel_logical_ring_emit(ringbuf, 0);
1697 intel_logical_ring_emit(ringbuf, 0);
1698 intel_logical_ring_emit(ringbuf, 0);
1699 intel_logical_ring_emit(ringbuf, 0);
1700 intel_logical_ring_emit(ringbuf, 0);
1701 }
1702
4712274c
OM
1703 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1704 intel_logical_ring_emit(ringbuf, flags);
1705 intel_logical_ring_emit(ringbuf, scratch_addr);
1706 intel_logical_ring_emit(ringbuf, 0);
1707 intel_logical_ring_emit(ringbuf, 0);
1708 intel_logical_ring_emit(ringbuf, 0);
1709 intel_logical_ring_advance(ringbuf);
1710
1711 return 0;
1712}
1713
c04e0f3b 1714static u32 gen8_get_seqno(struct intel_engine_cs *engine)
e94e37ad 1715{
0bc40be8 1716 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
e94e37ad
OM
1717}
1718
0bc40be8 1719static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
e94e37ad 1720{
0bc40be8 1721 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
e94e37ad
OM
1722}
1723
c04e0f3b 1724static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
319404df 1725{
319404df
ID
1726 /*
1727 * On BXT A steppings there is a HW coherency issue whereby the
1728 * MI_STORE_DATA_IMM storing the completed request's seqno
1729 * occasionally doesn't invalidate the CPU cache. Work around this by
1730 * clflushing the corresponding cacheline whenever the caller wants
1731 * the coherency to be guaranteed. Note that this cacheline is known
1732 * to be clean at this point, since we only write it in
1733 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1734 * this clflush in practice becomes an invalidate operation.
1735 */
c04e0f3b 1736 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1737}
1738
0bc40be8 1739static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
319404df 1740{
0bc40be8 1741 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
319404df
ID
1742
1743 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
0bc40be8 1744 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1745}
1746
7c17d377
CW
1747/*
1748 * Reserve space for 2 NOOPs at the end of each request to be
1749 * used as a workaround for not being allowed to do lite
1750 * restore with HEAD==TAIL (WaIdleLiteRestore).
1751 */
1752#define WA_TAIL_DWORDS 2
1753
c4e76638 1754static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1755{
c4e76638 1756 struct intel_ringbuffer *ringbuf = request->ringbuf;
4da46e1e
OM
1757 int ret;
1758
987046ad 1759 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
4da46e1e
OM
1760 if (ret)
1761 return ret;
1762
7c17d377
CW
1763 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1764 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1765
4da46e1e 1766 intel_logical_ring_emit(ringbuf,
7c17d377
CW
1767 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1768 intel_logical_ring_emit(ringbuf,
a58c01aa 1769 intel_hws_seqno_address(request->engine) |
7c17d377 1770 MI_FLUSH_DW_USE_GTT);
4da46e1e 1771 intel_logical_ring_emit(ringbuf, 0);
c4e76638 1772 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
4da46e1e
OM
1773 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1774 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377
CW
1775 return intel_logical_ring_advance_and_submit(request);
1776}
4da46e1e 1777
7c17d377
CW
1778static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1779{
1780 struct intel_ringbuffer *ringbuf = request->ringbuf;
1781 int ret;
53292cdb 1782
987046ad 1783 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
7c17d377
CW
1784 if (ret)
1785 return ret;
1786
ce81a65c
MW
1787 /* We're using qword write, seqno should be aligned to 8 bytes. */
1788 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1789
7c17d377
CW
1790 /* w/a for post sync ops following a GPGPU operation we
1791 * need a prior CS_STALL, which is emitted by the flush
1792 * following the batch.
1793 */
ce81a65c 1794 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
7c17d377
CW
1795 intel_logical_ring_emit(ringbuf,
1796 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1797 PIPE_CONTROL_CS_STALL |
1798 PIPE_CONTROL_QW_WRITE));
a58c01aa
CW
1799 intel_logical_ring_emit(ringbuf,
1800 intel_hws_seqno_address(request->engine));
7c17d377
CW
1801 intel_logical_ring_emit(ringbuf, 0);
1802 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
ce81a65c
MW
1803 /* We're thrashing one dword of HWS. */
1804 intel_logical_ring_emit(ringbuf, 0);
7c17d377 1805 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
ce81a65c 1806 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377 1807 return intel_logical_ring_advance_and_submit(request);
4da46e1e
OM
1808}
1809
be01363f 1810static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1811{
cef437ad 1812 struct render_state so;
cef437ad
DL
1813 int ret;
1814
4a570db5 1815 ret = i915_gem_render_state_prepare(req->engine, &so);
cef437ad
DL
1816 if (ret)
1817 return ret;
1818
1819 if (so.rodata == NULL)
1820 return 0;
1821
4a570db5 1822 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
be01363f 1823 I915_DISPATCH_SECURE);
cef437ad
DL
1824 if (ret)
1825 goto out;
1826
4a570db5 1827 ret = req->engine->emit_bb_start(req,
84e81020
AS
1828 (so.ggtt_offset + so.aux_batch_offset),
1829 I915_DISPATCH_SECURE);
1830 if (ret)
1831 goto out;
1832
b2af0376 1833 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1834
cef437ad
DL
1835out:
1836 i915_gem_render_state_fini(&so);
1837 return ret;
1838}
1839
8753181e 1840static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1841{
1842 int ret;
1843
e2be4faf 1844 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1845 if (ret)
1846 return ret;
1847
3bbaba0c
PA
1848 ret = intel_rcs_context_init_mocs(req);
1849 /*
1850 * Failing to program the MOCS is non-fatal.The system will not
1851 * run at peak performance. So generate an error and carry on.
1852 */
1853 if (ret)
1854 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1855
be01363f 1856 return intel_lr_context_render_state_init(req);
e7778be1
TD
1857}
1858
73e4d07f
OM
1859/**
1860 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1861 *
1862 * @ring: Engine Command Streamer.
1863 *
1864 */
0bc40be8 1865void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1866{
6402c330 1867 struct drm_i915_private *dev_priv;
9832b9da 1868
117897f4 1869 if (!intel_engine_initialized(engine))
48d82387
OM
1870 return;
1871
27af5eea
TU
1872 /*
1873 * Tasklet cannot be active at this point due intel_mark_active/idle
1874 * so this is just for documentation.
1875 */
1876 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1877 tasklet_kill(&engine->irq_tasklet);
1878
c033666a 1879 dev_priv = engine->i915;
6402c330 1880
0bc40be8
TU
1881 if (engine->buffer) {
1882 intel_logical_ring_stop(engine);
1883 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1884 }
48d82387 1885
0bc40be8
TU
1886 if (engine->cleanup)
1887 engine->cleanup(engine);
48d82387 1888
0bc40be8
TU
1889 i915_cmd_parser_fini_ring(engine);
1890 i915_gem_batch_pool_fini(&engine->batch_pool);
48d82387 1891
0bc40be8 1892 if (engine->status_page.obj) {
7d774cac 1893 i915_gem_object_unpin_map(engine->status_page.obj);
0bc40be8 1894 engine->status_page.obj = NULL;
48d82387 1895 }
24f1d3cc 1896 intel_lr_context_unpin(dev_priv->kernel_context, engine);
17ee950d 1897
0bc40be8
TU
1898 engine->idle_lite_restore_wa = 0;
1899 engine->disable_lite_restore_wa = false;
1900 engine->ctx_desc_template = 0;
ca82580c 1901
0bc40be8 1902 lrc_destroy_wa_ctx_obj(engine);
c033666a 1903 engine->i915 = NULL;
454afebd
OM
1904}
1905
c9cacf93 1906static void
e1382efb 1907logical_ring_default_vfuncs(struct intel_engine_cs *engine)
c9cacf93
TU
1908{
1909 /* Default vfuncs which can be overriden by each engine. */
0bc40be8
TU
1910 engine->init_hw = gen8_init_common_ring;
1911 engine->emit_request = gen8_emit_request;
1912 engine->emit_flush = gen8_emit_flush;
1913 engine->irq_get = gen8_logical_ring_get_irq;
1914 engine->irq_put = gen8_logical_ring_put_irq;
1915 engine->emit_bb_start = gen8_emit_bb_start;
c04e0f3b
CW
1916 engine->get_seqno = gen8_get_seqno;
1917 engine->set_seqno = gen8_set_seqno;
c033666a 1918 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
c04e0f3b 1919 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
0bc40be8 1920 engine->set_seqno = bxt_a_set_seqno;
c9cacf93
TU
1921 }
1922}
1923
d9f3af96 1924static inline void
0bc40be8 1925logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
d9f3af96 1926{
0bc40be8
TU
1927 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1928 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
e1382efb 1929 init_waitqueue_head(&engine->irq_queue);
d9f3af96
TU
1930}
1931
7d774cac 1932static int
04794adb
TU
1933lrc_setup_hws(struct intel_engine_cs *engine,
1934 struct drm_i915_gem_object *dctx_obj)
1935{
7d774cac 1936 void *hws;
04794adb
TU
1937
1938 /* The HWSP is part of the default context object in LRC mode. */
1939 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
1940 LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac
TU
1941 hws = i915_gem_object_pin_map(dctx_obj);
1942 if (IS_ERR(hws))
1943 return PTR_ERR(hws);
1944 engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
04794adb 1945 engine->status_page.obj = dctx_obj;
7d774cac
TU
1946
1947 return 0;
04794adb
TU
1948}
1949
e1382efb
CW
1950static const struct logical_ring_info {
1951 const char *name;
1952 unsigned exec_id;
1953 unsigned guc_id;
1954 u32 mmio_base;
1955 unsigned irq_shift;
1956} logical_rings[] = {
1957 [RCS] = {
1958 .name = "render ring",
1959 .exec_id = I915_EXEC_RENDER,
1960 .guc_id = GUC_RENDER_ENGINE,
1961 .mmio_base = RENDER_RING_BASE,
1962 .irq_shift = GEN8_RCS_IRQ_SHIFT,
1963 },
1964 [BCS] = {
1965 .name = "blitter ring",
1966 .exec_id = I915_EXEC_BLT,
1967 .guc_id = GUC_BLITTER_ENGINE,
1968 .mmio_base = BLT_RING_BASE,
1969 .irq_shift = GEN8_BCS_IRQ_SHIFT,
1970 },
1971 [VCS] = {
1972 .name = "bsd ring",
1973 .exec_id = I915_EXEC_BSD,
1974 .guc_id = GUC_VIDEO_ENGINE,
1975 .mmio_base = GEN6_BSD_RING_BASE,
1976 .irq_shift = GEN8_VCS1_IRQ_SHIFT,
1977 },
1978 [VCS2] = {
1979 .name = "bsd2 ring",
1980 .exec_id = I915_EXEC_BSD,
1981 .guc_id = GUC_VIDEO_ENGINE2,
1982 .mmio_base = GEN8_BSD2_RING_BASE,
1983 .irq_shift = GEN8_VCS2_IRQ_SHIFT,
1984 },
1985 [VECS] = {
1986 .name = "video enhancement ring",
1987 .exec_id = I915_EXEC_VEBOX,
1988 .guc_id = GUC_VIDEOENHANCE_ENGINE,
1989 .mmio_base = VEBOX_RING_BASE,
1990 .irq_shift = GEN8_VECS_IRQ_SHIFT,
1991 },
1992};
1993
1994static struct intel_engine_cs *
1995logical_ring_setup(struct drm_device *dev, enum intel_engine_id id)
454afebd 1996{
e1382efb 1997 const struct logical_ring_info *info = &logical_rings[id];
3756685a 1998 struct drm_i915_private *dev_priv = to_i915(dev);
e1382efb 1999 struct intel_engine_cs *engine = &dev_priv->engine[id];
3756685a 2000 enum forcewake_domains fw_domains;
48d82387 2001
e1382efb
CW
2002 engine->id = id;
2003 engine->name = info->name;
2004 engine->exec_id = info->exec_id;
2005 engine->guc_id = info->guc_id;
2006 engine->mmio_base = info->mmio_base;
48d82387 2007
c033666a 2008 engine->i915 = dev_priv;
acdd884a 2009
e1382efb
CW
2010 /* Intentionally left blank. */
2011 engine->buffer = NULL;
ca82580c 2012
3756685a
TU
2013 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2014 RING_ELSP(engine),
2015 FW_REG_WRITE);
2016
2017 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2018 RING_CONTEXT_STATUS_PTR(engine),
2019 FW_REG_READ | FW_REG_WRITE);
2020
2021 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2022 RING_CONTEXT_STATUS_BUF_BASE(engine),
2023 FW_REG_READ);
2024
2025 engine->fw_domains = fw_domains;
2026
e1382efb
CW
2027 INIT_LIST_HEAD(&engine->active_list);
2028 INIT_LIST_HEAD(&engine->request_list);
2029 INIT_LIST_HEAD(&engine->buffers);
2030 INIT_LIST_HEAD(&engine->execlist_queue);
2031 spin_lock_init(&engine->execlist_lock);
2032
2033 tasklet_init(&engine->irq_tasklet,
2034 intel_lrc_irq_handler, (unsigned long)engine);
2035
2036 logical_ring_init_platform_invariants(engine);
2037 logical_ring_default_vfuncs(engine);
2038 logical_ring_default_irqs(engine, info->irq_shift);
2039
2040 intel_engine_init_hangcheck(engine);
c033666a 2041 i915_gem_batch_pool_init(dev, &engine->batch_pool);
e1382efb
CW
2042
2043 return engine;
2044}
2045
2046static int
2047logical_ring_init(struct intel_engine_cs *engine)
2048{
c033666a 2049 struct intel_context *dctx = engine->i915->kernel_context;
e1382efb
CW
2050 int ret;
2051
0bc40be8 2052 ret = i915_cmd_parser_init_ring(engine);
48d82387 2053 if (ret)
b0366a54 2054 goto error;
48d82387 2055
978f1e09 2056 ret = execlists_context_deferred_alloc(dctx, engine);
e84fe803 2057 if (ret)
b0366a54 2058 goto error;
e84fe803
NH
2059
2060 /* As this is the default context, always pin it */
24f1d3cc 2061 ret = intel_lr_context_pin(dctx, engine);
e84fe803 2062 if (ret) {
24f1d3cc
CW
2063 DRM_ERROR("Failed to pin context for %s: %d\n",
2064 engine->name, ret);
b0366a54 2065 goto error;
e84fe803 2066 }
564ddb2f 2067
04794adb 2068 /* And setup the hardware status page. */
7d774cac
TU
2069 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2070 if (ret) {
2071 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2072 goto error;
2073 }
04794adb 2074
b0366a54
DG
2075 return 0;
2076
2077error:
0bc40be8 2078 intel_logical_ring_cleanup(engine);
564ddb2f 2079 return ret;
454afebd
OM
2080}
2081
2082static int logical_render_ring_init(struct drm_device *dev)
2083{
e1382efb 2084 struct intel_engine_cs *engine = logical_ring_setup(dev, RCS);
99be1dfe 2085 int ret;
454afebd 2086
73d477f6 2087 if (HAS_L3_DPF(dev))
e2f80391 2088 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 2089
c9cacf93 2090 /* Override some for render ring. */
82ef822e 2091 if (INTEL_INFO(dev)->gen >= 9)
e2f80391 2092 engine->init_hw = gen9_init_render_ring;
82ef822e 2093 else
e2f80391
TU
2094 engine->init_hw = gen8_init_render_ring;
2095 engine->init_context = gen8_init_rcs_context;
2096 engine->cleanup = intel_fini_pipe_control;
2097 engine->emit_flush = gen8_emit_flush_render;
2098 engine->emit_request = gen8_emit_request_render;
9b1136d5 2099
e2f80391 2100 ret = intel_init_pipe_control(engine);
99be1dfe
DV
2101 if (ret)
2102 return ret;
2103
e2f80391 2104 ret = intel_init_workaround_bb(engine);
17ee950d
AS
2105 if (ret) {
2106 /*
2107 * We continue even if we fail to initialize WA batch
2108 * because we only expect rare glitches but nothing
2109 * critical to prevent us from using GPU
2110 */
2111 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2112 ret);
2113 }
2114
e1382efb 2115 ret = logical_ring_init(engine);
c4db7599 2116 if (ret) {
e2f80391 2117 lrc_destroy_wa_ctx_obj(engine);
c4db7599 2118 }
17ee950d
AS
2119
2120 return ret;
454afebd
OM
2121}
2122
2123static int logical_bsd_ring_init(struct drm_device *dev)
2124{
e1382efb 2125 struct intel_engine_cs *engine = logical_ring_setup(dev, VCS);
454afebd 2126
e1382efb 2127 return logical_ring_init(engine);
454afebd
OM
2128}
2129
2130static int logical_bsd2_ring_init(struct drm_device *dev)
2131{
e1382efb 2132 struct intel_engine_cs *engine = logical_ring_setup(dev, VCS2);
454afebd 2133
e1382efb 2134 return logical_ring_init(engine);
454afebd
OM
2135}
2136
2137static int logical_blt_ring_init(struct drm_device *dev)
2138{
e1382efb 2139 struct intel_engine_cs *engine = logical_ring_setup(dev, BCS);
9b1136d5 2140
e1382efb 2141 return logical_ring_init(engine);
454afebd
OM
2142}
2143
2144static int logical_vebox_ring_init(struct drm_device *dev)
2145{
e1382efb 2146 struct intel_engine_cs *engine = logical_ring_setup(dev, VECS);
9b1136d5 2147
e1382efb 2148 return logical_ring_init(engine);
454afebd
OM
2149}
2150
73e4d07f
OM
2151/**
2152 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2153 * @dev: DRM device.
2154 *
2155 * This function inits the engines for an Execlists submission style (the equivalent in the
117897f4 2156 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
73e4d07f
OM
2157 * those engines that are present in the hardware.
2158 *
2159 * Return: non-zero if the initialization failed.
2160 */
454afebd
OM
2161int intel_logical_rings_init(struct drm_device *dev)
2162{
2163 struct drm_i915_private *dev_priv = dev->dev_private;
2164 int ret;
2165
2166 ret = logical_render_ring_init(dev);
2167 if (ret)
2168 return ret;
2169
2170 if (HAS_BSD(dev)) {
2171 ret = logical_bsd_ring_init(dev);
2172 if (ret)
2173 goto cleanup_render_ring;
2174 }
2175
2176 if (HAS_BLT(dev)) {
2177 ret = logical_blt_ring_init(dev);
2178 if (ret)
2179 goto cleanup_bsd_ring;
2180 }
2181
2182 if (HAS_VEBOX(dev)) {
2183 ret = logical_vebox_ring_init(dev);
2184 if (ret)
2185 goto cleanup_blt_ring;
2186 }
2187
2188 if (HAS_BSD2(dev)) {
2189 ret = logical_bsd2_ring_init(dev);
2190 if (ret)
2191 goto cleanup_vebox_ring;
2192 }
2193
454afebd
OM
2194 return 0;
2195
454afebd 2196cleanup_vebox_ring:
4a570db5 2197 intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
454afebd 2198cleanup_blt_ring:
4a570db5 2199 intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
454afebd 2200cleanup_bsd_ring:
4a570db5 2201 intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
454afebd 2202cleanup_render_ring:
4a570db5 2203 intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
454afebd
OM
2204
2205 return ret;
2206}
2207
0cea6502 2208static u32
c033666a 2209make_rpcs(struct drm_i915_private *dev_priv)
0cea6502
JM
2210{
2211 u32 rpcs = 0;
2212
2213 /*
2214 * No explicit RPCS request is needed to ensure full
2215 * slice/subslice/EU enablement prior to Gen9.
2216 */
c033666a 2217 if (INTEL_GEN(dev_priv) < 9)
0cea6502
JM
2218 return 0;
2219
2220 /*
2221 * Starting in Gen9, render power gating can leave
2222 * slice/subslice/EU in a partially enabled state. We
2223 * must make an explicit request through RPCS for full
2224 * enablement.
2225 */
c033666a 2226 if (INTEL_INFO(dev_priv)->has_slice_pg) {
0cea6502 2227 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
c033666a 2228 rpcs |= INTEL_INFO(dev_priv)->slice_total <<
0cea6502
JM
2229 GEN8_RPCS_S_CNT_SHIFT;
2230 rpcs |= GEN8_RPCS_ENABLE;
2231 }
2232
c033666a 2233 if (INTEL_INFO(dev_priv)->has_subslice_pg) {
0cea6502 2234 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
c033666a 2235 rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
0cea6502
JM
2236 GEN8_RPCS_SS_CNT_SHIFT;
2237 rpcs |= GEN8_RPCS_ENABLE;
2238 }
2239
c033666a
CW
2240 if (INTEL_INFO(dev_priv)->has_eu_pg) {
2241 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
0cea6502 2242 GEN8_RPCS_EU_MIN_SHIFT;
c033666a 2243 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
0cea6502
JM
2244 GEN8_RPCS_EU_MAX_SHIFT;
2245 rpcs |= GEN8_RPCS_ENABLE;
2246 }
2247
2248 return rpcs;
2249}
2250
0bc40be8 2251static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
2252{
2253 u32 indirect_ctx_offset;
2254
c033666a 2255 switch (INTEL_GEN(engine->i915)) {
71562919 2256 default:
c033666a 2257 MISSING_CASE(INTEL_GEN(engine->i915));
71562919
MT
2258 /* fall through */
2259 case 9:
2260 indirect_ctx_offset =
2261 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2262 break;
2263 case 8:
2264 indirect_ctx_offset =
2265 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2266 break;
2267 }
2268
2269 return indirect_ctx_offset;
2270}
2271
8670d6f9 2272static int
7d774cac
TU
2273populate_lr_context(struct intel_context *ctx,
2274 struct drm_i915_gem_object *ctx_obj,
0bc40be8
TU
2275 struct intel_engine_cs *engine,
2276 struct intel_ringbuffer *ringbuf)
8670d6f9 2277{
c033666a 2278 struct drm_i915_private *dev_priv = ctx->i915;
ae6c4806 2279 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
7d774cac
TU
2280 void *vaddr;
2281 u32 *reg_state;
8670d6f9
OM
2282 int ret;
2283
2d965536
TD
2284 if (!ppgtt)
2285 ppgtt = dev_priv->mm.aliasing_ppgtt;
2286
8670d6f9
OM
2287 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2288 if (ret) {
2289 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2290 return ret;
2291 }
2292
7d774cac
TU
2293 vaddr = i915_gem_object_pin_map(ctx_obj);
2294 if (IS_ERR(vaddr)) {
2295 ret = PTR_ERR(vaddr);
2296 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
8670d6f9
OM
2297 return ret;
2298 }
7d774cac 2299 ctx_obj->dirty = true;
8670d6f9
OM
2300
2301 /* The second page of the context object contains some fields which must
2302 * be set up prior to the first execution. */
7d774cac 2303 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
8670d6f9
OM
2304
2305 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2306 * commands followed by (reg, value) pairs. The values we are setting here are
2307 * only for the first context restore: on a subsequent save, the GPU will
2308 * recreate this batchbuffer with new values (including all the missing
2309 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0 2310 reg_state[CTX_LRI_HEADER_0] =
0bc40be8
TU
2311 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2312 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2313 RING_CONTEXT_CONTROL(engine),
0d925ea0
VS
2314 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2315 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
c033666a 2316 (HAS_RESOURCE_STREAMER(dev_priv) ?
99cf8ea1 2317 CTX_CTRL_RS_CTX_ENABLE : 0)));
0bc40be8
TU
2318 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2319 0);
2320 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2321 0);
7ba717cf
TD
2322 /* Ring buffer start address is not known until the buffer is pinned.
2323 * It is written to the context image in execlists_update_context()
2324 */
0bc40be8
TU
2325 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2326 RING_START(engine->mmio_base), 0);
2327 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2328 RING_CTL(engine->mmio_base),
0d925ea0 2329 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
0bc40be8
TU
2330 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2331 RING_BBADDR_UDW(engine->mmio_base), 0);
2332 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2333 RING_BBADDR(engine->mmio_base), 0);
2334 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2335 RING_BBSTATE(engine->mmio_base),
0d925ea0 2336 RING_BB_PPGTT);
0bc40be8
TU
2337 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2338 RING_SBBADDR_UDW(engine->mmio_base), 0);
2339 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2340 RING_SBBADDR(engine->mmio_base), 0);
2341 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2342 RING_SBBSTATE(engine->mmio_base), 0);
2343 if (engine->id == RCS) {
2344 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2345 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2346 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2347 RING_INDIRECT_CTX(engine->mmio_base), 0);
2348 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2349 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2350 if (engine->wa_ctx.obj) {
2351 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d
AS
2352 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2353
2354 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2355 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2356 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2357
2358 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
0bc40be8 2359 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d
AS
2360
2361 reg_state[CTX_BB_PER_CTX_PTR+1] =
2362 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2363 0x01;
2364 }
8670d6f9 2365 }
0d925ea0 2366 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
0bc40be8
TU
2367 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2368 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
0d925ea0 2369 /* PDP values well be assigned later if needed */
0bc40be8
TU
2370 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2371 0);
2372 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2373 0);
2374 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2375 0);
2376 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2377 0);
2378 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2379 0);
2380 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2381 0);
2382 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2383 0);
2384 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2385 0);
d7b2633d 2386
2dba3239
MT
2387 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2388 /* 64b PPGTT (48bit canonical)
2389 * PDP0_DESCRIPTOR contains the base address to PML4 and
2390 * other PDP Descriptors are ignored.
2391 */
2392 ASSIGN_CTX_PML4(ppgtt, reg_state);
2393 } else {
2394 /* 32b PPGTT
2395 * PDP*_DESCRIPTOR contains the base address of space supported.
2396 * With dynamic page allocation, PDPs may not be allocated at
2397 * this point. Point the unallocated PDPs to the scratch page
2398 */
c6a2ac71 2399 execlists_update_context_pdps(ppgtt, reg_state);
2dba3239
MT
2400 }
2401
0bc40be8 2402 if (engine->id == RCS) {
8670d6f9 2403 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0 2404 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
c033666a 2405 make_rpcs(dev_priv));
8670d6f9
OM
2406 }
2407
7d774cac 2408 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
2409
2410 return 0;
2411}
2412
73e4d07f
OM
2413/**
2414 * intel_lr_context_free() - free the LRC specific bits of a context
2415 * @ctx: the LR context to free.
2416 *
2417 * The real context freeing is done in i915_gem_context_free: this only
2418 * takes care of the bits that are LRC related: the per-engine backing
2419 * objects and the logical ringbuffer.
2420 */
ede7d42b
OM
2421void intel_lr_context_free(struct intel_context *ctx)
2422{
8c857917
OM
2423 int i;
2424
666796da 2425 for (i = I915_NUM_ENGINES; --i >= 0; ) {
e28e404c 2426 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
8c857917 2427 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f 2428
e28e404c
DG
2429 if (!ctx_obj)
2430 continue;
dcb4c12a 2431
e28e404c
DG
2432 WARN_ON(ctx->engine[i].pin_count);
2433 intel_ringbuffer_free(ringbuf);
2434 drm_gem_object_unreference(&ctx_obj->base);
8c857917
OM
2435 }
2436}
2437
c5d46ee2
DG
2438/**
2439 * intel_lr_context_size() - return the size of the context for an engine
2440 * @ring: which engine to find the context size for
2441 *
2442 * Each engine may require a different amount of space for a context image,
2443 * so when allocating (or copying) an image, this function can be used to
2444 * find the right size for the specific engine.
2445 *
2446 * Return: size (in bytes) of an engine-specific context image
2447 *
2448 * Note: this size includes the HWSP, which is part of the context image
2449 * in LRC mode, but does not include the "shared data page" used with
2450 * GuC submission. The caller should account for this if using the GuC.
2451 */
0bc40be8 2452uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
2453{
2454 int ret = 0;
2455
c033666a 2456 WARN_ON(INTEL_GEN(engine->i915) < 8);
8c857917 2457
0bc40be8 2458 switch (engine->id) {
8c857917 2459 case RCS:
c033666a 2460 if (INTEL_GEN(engine->i915) >= 9)
468c6816
MN
2461 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2462 else
2463 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2464 break;
2465 case VCS:
2466 case BCS:
2467 case VECS:
2468 case VCS2:
2469 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2470 break;
2471 }
2472
2473 return ret;
ede7d42b
OM
2474}
2475
73e4d07f 2476/**
978f1e09 2477 * execlists_context_deferred_alloc() - create the LRC specific bits of a context
73e4d07f 2478 * @ctx: LR context to create.
978f1e09 2479 * @engine: engine to be used with the context.
73e4d07f
OM
2480 *
2481 * This function can be called more than once, with different engines, if we plan
2482 * to use the context with them. The context backing objects and the ringbuffers
2483 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2484 * the creation is a deferred call: it's better to make sure first that we need to use
2485 * a given ring with the context.
2486 *
32197aab 2487 * Return: non-zero on error.
73e4d07f 2488 */
978f1e09
CW
2489static int execlists_context_deferred_alloc(struct intel_context *ctx,
2490 struct intel_engine_cs *engine)
ede7d42b 2491{
8c857917
OM
2492 struct drm_i915_gem_object *ctx_obj;
2493 uint32_t context_size;
84c2377f 2494 struct intel_ringbuffer *ringbuf;
8c857917
OM
2495 int ret;
2496
ede7d42b 2497 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
0bc40be8 2498 WARN_ON(ctx->engine[engine->id].state);
ede7d42b 2499
0bc40be8 2500 context_size = round_up(intel_lr_context_size(engine), 4096);
8c857917 2501
d1675198
AD
2502 /* One extra page as the sharing data between driver and GuC */
2503 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2504
c033666a 2505 ctx_obj = i915_gem_object_create(ctx->i915->dev, context_size);
fe3db79b 2506 if (IS_ERR(ctx_obj)) {
3126a660 2507 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 2508 return PTR_ERR(ctx_obj);
8c857917
OM
2509 }
2510
0bc40be8 2511 ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
01101fa7
CW
2512 if (IS_ERR(ringbuf)) {
2513 ret = PTR_ERR(ringbuf);
e84fe803 2514 goto error_deref_obj;
8670d6f9
OM
2515 }
2516
0bc40be8 2517 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
8670d6f9
OM
2518 if (ret) {
2519 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
e84fe803 2520 goto error_ringbuf;
84c2377f
OM
2521 }
2522
0bc40be8
TU
2523 ctx->engine[engine->id].ringbuf = ringbuf;
2524 ctx->engine[engine->id].state = ctx_obj;
24f1d3cc 2525 ctx->engine[engine->id].initialised = engine->init_context == NULL;
ede7d42b
OM
2526
2527 return 0;
8670d6f9 2528
01101fa7
CW
2529error_ringbuf:
2530 intel_ringbuffer_free(ringbuf);
e84fe803 2531error_deref_obj:
8670d6f9 2532 drm_gem_object_unreference(&ctx_obj->base);
0bc40be8
TU
2533 ctx->engine[engine->id].ringbuf = NULL;
2534 ctx->engine[engine->id].state = NULL;
8670d6f9 2535 return ret;
ede7d42b 2536}
3e5b6f05 2537
7d774cac
TU
2538void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2539 struct intel_context *ctx)
3e5b6f05 2540{
e2f80391 2541 struct intel_engine_cs *engine;
3e5b6f05 2542
b4ac5afc 2543 for_each_engine(engine, dev_priv) {
3e5b6f05 2544 struct drm_i915_gem_object *ctx_obj =
e2f80391 2545 ctx->engine[engine->id].state;
3e5b6f05 2546 struct intel_ringbuffer *ringbuf =
e2f80391 2547 ctx->engine[engine->id].ringbuf;
7d774cac 2548 void *vaddr;
3e5b6f05 2549 uint32_t *reg_state;
3e5b6f05
TD
2550
2551 if (!ctx_obj)
2552 continue;
2553
7d774cac
TU
2554 vaddr = i915_gem_object_pin_map(ctx_obj);
2555 if (WARN_ON(IS_ERR(vaddr)))
3e5b6f05 2556 continue;
7d774cac
TU
2557
2558 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2559 ctx_obj->dirty = true;
3e5b6f05
TD
2560
2561 reg_state[CTX_RING_HEAD+1] = 0;
2562 reg_state[CTX_RING_TAIL+1] = 0;
2563
7d774cac 2564 i915_gem_object_unpin_map(ctx_obj);
3e5b6f05
TD
2565
2566 ringbuf->head = 0;
2567 ringbuf->tail = 0;
2568 }
2569}