]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: Split request submit/execute phase into two
[thirdparty/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9 158
70c2a24d
CW
159#define GEN8_CTX_STATUS_COMPLETED_MASK \
160 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161 GEN8_CTX_STATUS_PREEMPTED | \
162 GEN8_CTX_STATUS_ELEMENT_SWITCH)
163
8670d6f9
OM
164#define CTX_LRI_HEADER_0 0x01
165#define CTX_CONTEXT_CONTROL 0x02
166#define CTX_RING_HEAD 0x04
167#define CTX_RING_TAIL 0x06
168#define CTX_RING_BUFFER_START 0x08
169#define CTX_RING_BUFFER_CONTROL 0x0a
170#define CTX_BB_HEAD_U 0x0c
171#define CTX_BB_HEAD_L 0x0e
172#define CTX_BB_STATE 0x10
173#define CTX_SECOND_BB_HEAD_U 0x12
174#define CTX_SECOND_BB_HEAD_L 0x14
175#define CTX_SECOND_BB_STATE 0x16
176#define CTX_BB_PER_CTX_PTR 0x18
177#define CTX_RCS_INDIRECT_CTX 0x1a
178#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
179#define CTX_LRI_HEADER_1 0x21
180#define CTX_CTX_TIMESTAMP 0x22
181#define CTX_PDP3_UDW 0x24
182#define CTX_PDP3_LDW 0x26
183#define CTX_PDP2_UDW 0x28
184#define CTX_PDP2_LDW 0x2a
185#define CTX_PDP1_UDW 0x2c
186#define CTX_PDP1_LDW 0x2e
187#define CTX_PDP0_UDW 0x30
188#define CTX_PDP0_LDW 0x32
189#define CTX_LRI_HEADER_2 0x41
190#define CTX_R_PWR_CLK_STATE 0x42
191#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
192
84b790f8
BW
193#define GEN8_CTX_VALID (1<<0)
194#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
195#define GEN8_CTX_FORCE_RESTORE (1<<2)
196#define GEN8_CTX_L3LLC_COHERENT (1<<5)
197#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 198
0d925ea0 199#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 200 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
201 (reg_state)[(pos)+1] = (val); \
202} while (0)
203
204#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 205 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
206 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
207 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 208} while (0)
e5815a2e 209
9244a817 210#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
211 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
212 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 213} while (0)
2dba3239 214
84b790f8
BW
215enum {
216 FAULT_AND_HANG = 0,
217 FAULT_AND_HALT, /* Debug only */
218 FAULT_AND_STREAM,
219 FAULT_AND_CONTINUE /* Unsupported */
220};
221#define GEN8_CTX_ID_SHIFT 32
7069b144 222#define GEN8_CTX_ID_WIDTH 21
71562919
MT
223#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
224#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 225
0e93cdd4
CW
226/* Typical size of the average request (2 pipecontrols and a MI_BB) */
227#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
228
a3aabe86
CW
229#define WA_TAIL_DWORDS 2
230
e2efd130 231static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 232 struct intel_engine_cs *engine);
e2efd130 233static int intel_lr_context_pin(struct i915_gem_context *ctx,
e5292823 234 struct intel_engine_cs *engine);
a3aabe86
CW
235static void execlists_init_reg_state(u32 *reg_state,
236 struct i915_gem_context *ctx,
237 struct intel_engine_cs *engine,
238 struct intel_ring *ring);
7ba717cf 239
73e4d07f
OM
240/**
241 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
14bb2c11 242 * @dev_priv: i915 device private
73e4d07f
OM
243 * @enable_execlists: value of i915.enable_execlists module parameter.
244 *
245 * Only certain platforms support Execlists (the prerequisites being
27401d12 246 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
247 *
248 * Return: 1 if Execlists is supported and has to be enabled.
249 */
c033666a 250int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
127f1003 251{
a0bd6c31
ZL
252 /* On platforms with execlist available, vGPU will only
253 * support execlist mode, no ring buffer mode.
254 */
c033666a 255 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
a0bd6c31
ZL
256 return 1;
257
c033666a 258 if (INTEL_GEN(dev_priv) >= 9)
70ee45e1
DL
259 return 1;
260
127f1003
OM
261 if (enable_execlists == 0)
262 return 0;
263
5a21b665
DV
264 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
265 USES_PPGTT(dev_priv) &&
266 i915.use_mmio_flip >= 0)
127f1003
OM
267 return 1;
268
269 return 0;
270}
ede7d42b 271
ca82580c 272static void
0bc40be8 273logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
ca82580c 274{
c033666a 275 struct drm_i915_private *dev_priv = engine->i915;
ca82580c 276
70c2a24d 277 engine->disable_lite_restore_wa =
a117f378 278 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) &&
70c2a24d 279 (engine->id == VCS || engine->id == VCS2);
ca82580c 280
0bc40be8 281 engine->ctx_desc_template = GEN8_CTX_VALID;
c033666a 282 if (IS_GEN8(dev_priv))
0bc40be8
TU
283 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
284 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
ca82580c
TU
285
286 /* TODO: WaDisableLiteRestore when we start using semaphore
287 * signalling between Command Streamers */
288 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
289
290 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
291 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
0bc40be8
TU
292 if (engine->disable_lite_restore_wa)
293 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
ca82580c
TU
294}
295
73e4d07f 296/**
ca82580c
TU
297 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
298 * descriptor for a pinned context
ca82580c 299 * @ctx: Context to work on
9021ad03 300 * @engine: Engine the descriptor will be used with
73e4d07f 301 *
ca82580c
TU
302 * The context descriptor encodes various attributes of a context,
303 * including its GTT address and some flags. Because it's fairly
304 * expensive to calculate, we'll just do it once and cache the result,
305 * which remains valid until the context is unpinned.
306 *
6e5248b5
DV
307 * This is what a descriptor looks like, from LSB to MSB::
308 *
309 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
310 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
311 * bits 32-52: ctx ID, a globally unique tag
312 * bits 53-54: mbz, reserved for use by hardware
313 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 314 */
ca82580c 315static void
e2efd130 316intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
0bc40be8 317 struct intel_engine_cs *engine)
84b790f8 318{
9021ad03 319 struct intel_context *ce = &ctx->engine[engine->id];
7069b144 320 u64 desc;
84b790f8 321
7069b144 322 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 323
c01fc532
ZW
324 desc = ctx->desc_template; /* bits 3-4 */
325 desc |= engine->ctx_desc_template; /* bits 0-11 */
bde13ebd 326 desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
9021ad03 327 /* bits 12-31 */
7069b144 328 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 329
9021ad03 330 ce->lrc_desc = desc;
5af05fef
MT
331}
332
e2efd130 333uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
0bc40be8 334 struct intel_engine_cs *engine)
84b790f8 335{
0bc40be8 336 return ctx->engine[engine->id].lrc_desc;
ca82580c 337}
203a571b 338
bbd6c47e
CW
339static inline void
340execlists_context_status_change(struct drm_i915_gem_request *rq,
341 unsigned long status)
84b790f8 342{
bbd6c47e
CW
343 /*
344 * Only used when GVT-g is enabled now. When GVT-g is disabled,
345 * The compiler should eliminate this function as dead-code.
346 */
347 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
348 return;
6daccb0b 349
bbd6c47e 350 atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
84b790f8
BW
351}
352
c6a2ac71
TU
353static void
354execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
355{
356 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
357 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
358 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
359 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
360}
361
70c2a24d 362static u64 execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 363{
70c2a24d 364 struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
05d9824b 365 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
70c2a24d 366 u32 *reg_state = ce->lrc_reg_state;
ae1250b9 367
caddfe71 368 reg_state[CTX_RING_TAIL+1] = rq->tail;
ae1250b9 369
c6a2ac71
TU
370 /* True 32b PPGTT with dynamic page allocation: update PDP
371 * registers and point the unallocated PDPs to scratch page.
372 * PML4 is allocated during ppgtt init, so this is not needed
373 * in 48-bit mode.
374 */
375 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
376 execlists_update_context_pdps(ppgtt, reg_state);
70c2a24d
CW
377
378 return ce->lrc_desc;
ae1250b9
OM
379}
380
70c2a24d 381static void execlists_submit_ports(struct intel_engine_cs *engine)
bbd6c47e 382{
70c2a24d
CW
383 struct drm_i915_private *dev_priv = engine->i915;
384 struct execlist_port *port = engine->execlist_port;
bbd6c47e
CW
385 u32 __iomem *elsp =
386 dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
387 u64 desc[2];
388
70c2a24d
CW
389 if (!port[0].count)
390 execlists_context_status_change(port[0].request,
391 INTEL_CONTEXT_SCHEDULE_IN);
392 desc[0] = execlists_update_context(port[0].request);
393 engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */
394
395 if (port[1].request) {
396 GEM_BUG_ON(port[1].count);
397 execlists_context_status_change(port[1].request,
398 INTEL_CONTEXT_SCHEDULE_IN);
399 desc[1] = execlists_update_context(port[1].request);
400 port[1].count = 1;
bbd6c47e
CW
401 } else {
402 desc[1] = 0;
403 }
70c2a24d 404 GEM_BUG_ON(desc[0] == desc[1]);
bbd6c47e
CW
405
406 /* You must always write both descriptors in the order below. */
407 writel(upper_32_bits(desc[1]), elsp);
408 writel(lower_32_bits(desc[1]), elsp);
409
410 writel(upper_32_bits(desc[0]), elsp);
411 /* The context is automatically loaded after the following */
412 writel(lower_32_bits(desc[0]), elsp);
413}
414
70c2a24d 415static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
84b790f8 416{
70c2a24d
CW
417 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
418 ctx->execlists_force_single_submission);
419}
84b790f8 420
70c2a24d
CW
421static bool can_merge_ctx(const struct i915_gem_context *prev,
422 const struct i915_gem_context *next)
423{
424 if (prev != next)
425 return false;
26720ab9 426
70c2a24d
CW
427 if (ctx_single_port_submission(prev))
428 return false;
26720ab9 429
70c2a24d 430 return true;
84b790f8
BW
431}
432
70c2a24d 433static void execlists_dequeue(struct intel_engine_cs *engine)
acdd884a 434{
70c2a24d
CW
435 struct drm_i915_gem_request *cursor, *last;
436 struct execlist_port *port = engine->execlist_port;
437 bool submit = false;
438
439 last = port->request;
440 if (last)
441 /* WaIdleLiteRestore:bdw,skl
442 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
9b81d556 443 * as we resubmit the request. See gen8_emit_breadcrumb()
70c2a24d
CW
444 * for where we prepare the padding after the end of the
445 * request.
446 */
447 last->tail = last->wa_tail;
e981e7b1 448
70c2a24d 449 GEM_BUG_ON(port[1].request);
acdd884a 450
70c2a24d
CW
451 /* Hardware submission is through 2 ports. Conceptually each port
452 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
453 * static for a context, and unique to each, so we only execute
454 * requests belonging to a single context from each ring. RING_HEAD
455 * is maintained by the CS in the context image, it marks the place
456 * where it got up to last time, and through RING_TAIL we tell the CS
457 * where we want to execute up to this time.
458 *
459 * In this list the requests are in order of execution. Consecutive
460 * requests from the same context are adjacent in the ringbuffer. We
461 * can combine these requests into a single RING_TAIL update:
462 *
463 * RING_HEAD...req1...req2
464 * ^- RING_TAIL
465 * since to execute req2 the CS must first execute req1.
466 *
467 * Our goal then is to point each port to the end of a consecutive
468 * sequence of requests as being the most optimal (fewest wake ups
469 * and context switches) submission.
779949f4 470 */
acdd884a 471
70c2a24d
CW
472 spin_lock(&engine->execlist_lock);
473 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link) {
474 /* Can we combine this request with the current port? It has to
475 * be the same context/ringbuffer and not have any exceptions
476 * (e.g. GVT saying never to combine contexts).
c6a2ac71 477 *
70c2a24d
CW
478 * If we can combine the requests, we can execute both by
479 * updating the RING_TAIL to point to the end of the second
480 * request, and so we never need to tell the hardware about
481 * the first.
53292cdb 482 */
70c2a24d
CW
483 if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
484 /* If we are on the second port and cannot combine
485 * this request with the last, then we are done.
486 */
487 if (port != engine->execlist_port)
488 break;
489
490 /* If GVT overrides us we only ever submit port[0],
491 * leaving port[1] empty. Note that we also have
492 * to be careful that we don't queue the same
493 * context (even though a different request) to
494 * the second port.
495 */
496 if (ctx_single_port_submission(cursor->ctx))
497 break;
498
499 GEM_BUG_ON(last->ctx == cursor->ctx);
500
501 i915_gem_request_assign(&port->request, last);
502 port++;
503 }
504 last = cursor;
505 submit = true;
506 }
507 if (submit) {
508 /* Decouple all the requests submitted from the queue */
509 engine->execlist_queue.next = &cursor->execlist_link;
510 cursor->execlist_link.prev = &engine->execlist_queue;
511
512 i915_gem_request_assign(&port->request, last);
53292cdb 513 }
70c2a24d 514 spin_unlock(&engine->execlist_lock);
53292cdb 515
70c2a24d
CW
516 if (submit)
517 execlists_submit_ports(engine);
acdd884a
MT
518}
519
70c2a24d 520static bool execlists_elsp_idle(struct intel_engine_cs *engine)
e981e7b1 521{
70c2a24d 522 return !engine->execlist_port[0].request;
e981e7b1
TD
523}
524
0cb5670b
ID
525/**
526 * intel_execlists_idle() - Determine if all engine submission ports are idle
527 * @dev_priv: i915 device private
528 *
529 * Return true if there are no requests pending on any of the submission ports
530 * of any engines.
531 */
532bool intel_execlists_idle(struct drm_i915_private *dev_priv)
533{
534 struct intel_engine_cs *engine;
535 enum intel_engine_id id;
536
537 if (!i915.enable_execlists)
538 return true;
539
540 for_each_engine(engine, dev_priv, id)
541 if (!execlists_elsp_idle(engine))
542 return false;
543
544 return true;
545}
546
70c2a24d 547static bool execlists_elsp_ready(struct intel_engine_cs *engine)
91a41032 548{
70c2a24d 549 int port;
91a41032 550
70c2a24d
CW
551 port = 1; /* wait for a free slot */
552 if (engine->disable_lite_restore_wa || engine->preempt_wa)
553 port = 0; /* wait for GPU to be idle before continuing */
c6a2ac71 554
70c2a24d 555 return !engine->execlist_port[port].request;
91a41032
BW
556}
557
6e5248b5 558/*
73e4d07f
OM
559 * Check the unread Context Status Buffers and manage the submission of new
560 * contexts to the ELSP accordingly.
561 */
27af5eea 562static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 563{
27af5eea 564 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
70c2a24d 565 struct execlist_port *port = engine->execlist_port;
c033666a 566 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 567
3756685a 568 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 569
70c2a24d
CW
570 if (!execlists_elsp_idle(engine)) {
571 u32 __iomem *csb_mmio =
572 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
573 u32 __iomem *buf =
574 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
575 unsigned int csb, head, tail;
576
577 csb = readl(csb_mmio);
578 head = GEN8_CSB_READ_PTR(csb);
579 tail = GEN8_CSB_WRITE_PTR(csb);
580 if (tail < head)
581 tail += GEN8_CSB_ENTRIES;
582 while (head < tail) {
583 unsigned int idx = ++head % GEN8_CSB_ENTRIES;
584 unsigned int status = readl(buf + 2 * idx);
585
586 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
587 continue;
588
589 GEM_BUG_ON(port[0].count == 0);
590 if (--port[0].count == 0) {
591 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
592 execlists_context_status_change(port[0].request,
593 INTEL_CONTEXT_SCHEDULE_OUT);
594
595 i915_gem_request_put(port[0].request);
596 port[0] = port[1];
597 memset(&port[1], 0, sizeof(port[1]));
598
599 engine->preempt_wa = false;
600 }
26720ab9 601
70c2a24d
CW
602 GEM_BUG_ON(port[0].count == 0 &&
603 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
e1fee72c
OM
604 }
605
70c2a24d
CW
606 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
607 GEN8_CSB_WRITE_PTR(csb) << 8),
608 csb_mmio);
e981e7b1
TD
609 }
610
70c2a24d
CW
611 if (execlists_elsp_ready(engine))
612 execlists_dequeue(engine);
c6a2ac71 613
70c2a24d 614 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
e981e7b1
TD
615}
616
f4ea6bdd 617static void execlists_submit_request(struct drm_i915_gem_request *request)
acdd884a 618{
4a570db5 619 struct intel_engine_cs *engine = request->engine;
5590af3e 620 unsigned long flags;
acdd884a 621
5590af3e 622 spin_lock_irqsave(&engine->execlist_lock, flags);
acdd884a 623
caddfe71
CW
624 /* We keep the previous context alive until we retire the following
625 * request. This ensures that any the context object is still pinned
626 * for any residual writes the HW makes into it on the context switch
627 * into the next object following the breadcrumb. Otherwise, we may
628 * retire the context too early.
629 */
630 request->previous_context = engine->last_context;
631 engine->last_context = request->ctx;
632
ba49b2f8 633 list_add_tail(&request->execlist_link, &engine->execlist_queue);
70c2a24d
CW
634 if (execlists_elsp_idle(engine))
635 tasklet_hi_schedule(&engine->irq_tasklet);
acdd884a 636
5590af3e 637 spin_unlock_irqrestore(&engine->execlist_lock, flags);
acdd884a
MT
638}
639
40e895ce 640int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 641{
24f1d3cc 642 struct intel_engine_cs *engine = request->engine;
9021ad03 643 struct intel_context *ce = &request->ctx->engine[engine->id];
bfa01200 644 int ret;
bc0dce3f 645
6310346e
CW
646 /* Flush enough space to reduce the likelihood of waiting after
647 * we start building the request - in which case we will just
648 * have to repeat work.
649 */
0e93cdd4 650 request->reserved_space += EXECLISTS_REQUEST_SIZE;
6310346e 651
9021ad03 652 if (!ce->state) {
978f1e09
CW
653 ret = execlists_context_deferred_alloc(request->ctx, engine);
654 if (ret)
655 return ret;
656 }
657
dca33ecc 658 request->ring = ce->ring;
f3cc01f0 659
5ba89908
CW
660 ret = intel_lr_context_pin(request->ctx, engine);
661 if (ret)
662 return ret;
663
a7e02199
AD
664 if (i915.enable_guc_submission) {
665 /*
666 * Check that the GuC has space for the request before
667 * going any further, as the i915_add_request() call
668 * later on mustn't fail ...
669 */
7a9347f9 670 ret = i915_guc_wq_reserve(request);
a7e02199 671 if (ret)
5ba89908 672 goto err_unpin;
a7e02199
AD
673 }
674
bfa01200
CW
675 ret = intel_ring_begin(request, 0);
676 if (ret)
5ba89908 677 goto err_unreserve;
bfa01200 678
9021ad03 679 if (!ce->initialised) {
24f1d3cc
CW
680 ret = engine->init_context(request);
681 if (ret)
5ba89908 682 goto err_unreserve;
24f1d3cc 683
9021ad03 684 ce->initialised = true;
24f1d3cc
CW
685 }
686
687 /* Note that after this point, we have committed to using
688 * this request as it is being used to both track the
689 * state of engine initialisation and liveness of the
690 * golden renderstate above. Think twice before you try
691 * to cancel/unwind this request now.
692 */
693
0e93cdd4 694 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
bfa01200
CW
695 return 0;
696
5ba89908
CW
697err_unreserve:
698 if (i915.enable_guc_submission)
699 i915_guc_wq_unreserve(request);
bfa01200 700err_unpin:
24f1d3cc 701 intel_lr_context_unpin(request->ctx, engine);
e28e404c 702 return ret;
bc0dce3f
JH
703}
704
e2efd130 705static int intel_lr_context_pin(struct i915_gem_context *ctx,
24f1d3cc 706 struct intel_engine_cs *engine)
dcb4c12a 707{
9021ad03 708 struct intel_context *ce = &ctx->engine[engine->id];
7d774cac 709 void *vaddr;
ca82580c 710 int ret;
dcb4c12a 711
91c8a326 712 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
ca82580c 713
9021ad03 714 if (ce->pin_count++)
24f1d3cc
CW
715 return 0;
716
bf3783e5
CW
717 ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
718 PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
e84fe803 719 if (ret)
24f1d3cc 720 goto err;
7ba717cf 721
bf3783e5 722 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
7d774cac
TU
723 if (IS_ERR(vaddr)) {
724 ret = PTR_ERR(vaddr);
bf3783e5 725 goto unpin_vma;
82352e90
TU
726 }
727
aad29fbb 728 ret = intel_ring_pin(ce->ring);
e84fe803 729 if (ret)
7d774cac 730 goto unpin_map;
d1675198 731
0bc40be8 732 intel_lr_context_descriptor_update(ctx, engine);
9021ad03 733
a3aabe86
CW
734 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
735 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
bde13ebd 736 i915_ggtt_offset(ce->ring->vma);
a3aabe86 737
a4f5ea64 738 ce->state->obj->mm.dirty = true;
e93c28f3 739
e84fe803 740 /* Invalidate GuC TLB. */
bf3783e5
CW
741 if (i915.enable_guc_submission) {
742 struct drm_i915_private *dev_priv = ctx->i915;
e84fe803 743 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
bf3783e5 744 }
dcb4c12a 745
9a6feaf0 746 i915_gem_context_get(ctx);
24f1d3cc 747 return 0;
7ba717cf 748
7d774cac 749unpin_map:
bf3783e5
CW
750 i915_gem_object_unpin_map(ce->state->obj);
751unpin_vma:
752 __i915_vma_unpin(ce->state);
24f1d3cc 753err:
9021ad03 754 ce->pin_count = 0;
e84fe803
NH
755 return ret;
756}
757
e2efd130 758void intel_lr_context_unpin(struct i915_gem_context *ctx,
24f1d3cc 759 struct intel_engine_cs *engine)
e84fe803 760{
9021ad03 761 struct intel_context *ce = &ctx->engine[engine->id];
e84fe803 762
91c8a326 763 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
9021ad03 764 GEM_BUG_ON(ce->pin_count == 0);
321fe304 765
9021ad03 766 if (--ce->pin_count)
24f1d3cc 767 return;
e84fe803 768
aad29fbb 769 intel_ring_unpin(ce->ring);
dcb4c12a 770
bf3783e5
CW
771 i915_gem_object_unpin_map(ce->state->obj);
772 i915_vma_unpin(ce->state);
321fe304 773
9a6feaf0 774 i915_gem_context_put(ctx);
dcb4c12a
OM
775}
776
e2be4faf 777static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
778{
779 int ret, i;
7e37f889 780 struct intel_ring *ring = req->ring;
c033666a 781 struct i915_workarounds *w = &req->i915->workarounds;
771b9a53 782
cd7feaaa 783 if (w->count == 0)
771b9a53
MT
784 return 0;
785
7c9cf4e3 786 ret = req->engine->emit_flush(req, EMIT_BARRIER);
771b9a53
MT
787 if (ret)
788 return ret;
789
987046ad 790 ret = intel_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
791 if (ret)
792 return ret;
793
1dae2dfb 794 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
771b9a53 795 for (i = 0; i < w->count; i++) {
1dae2dfb
CW
796 intel_ring_emit_reg(ring, w->reg[i].addr);
797 intel_ring_emit(ring, w->reg[i].value);
771b9a53 798 }
1dae2dfb 799 intel_ring_emit(ring, MI_NOOP);
771b9a53 800
1dae2dfb 801 intel_ring_advance(ring);
771b9a53 802
7c9cf4e3 803 ret = req->engine->emit_flush(req, EMIT_BARRIER);
771b9a53
MT
804 if (ret)
805 return ret;
806
807 return 0;
808}
809
83b8a982 810#define wa_ctx_emit(batch, index, cmd) \
17ee950d 811 do { \
83b8a982
AS
812 int __index = (index)++; \
813 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
814 return -ENOSPC; \
815 } \
83b8a982 816 batch[__index] = (cmd); \
17ee950d
AS
817 } while (0)
818
8f40db77 819#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 820 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
821
822/*
823 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
824 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
825 * but there is a slight complication as this is applied in WA batch where the
826 * values are only initialized once so we cannot take register value at the
827 * beginning and reuse it further; hence we save its value to memory, upload a
828 * constant value with bit21 set and then we restore it back with the saved value.
829 * To simplify the WA, a constant value is formed by using the default value
830 * of this register. This shouldn't be a problem because we are only modifying
831 * it for a short period and this batch in non-premptible. We can ofcourse
832 * use additional instructions that read the actual value of the register
833 * at that time and set our bit of interest but it makes the WA complicated.
834 *
835 * This WA is also required for Gen9 so extracting as a function avoids
836 * code duplication.
837 */
0bc40be8 838static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
6e5248b5 839 uint32_t *batch,
9e000847
AS
840 uint32_t index)
841{
5e580523 842 struct drm_i915_private *dev_priv = engine->i915;
9e000847
AS
843 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
844
a4106a78 845 /*
3be192e9 846 * WaDisableLSQCROPERFforOCL:kbl
a4106a78
AS
847 * This WA is implemented in skl_init_clock_gating() but since
848 * this batch updates GEN8_L3SQCREG4 with default value we need to
849 * set this bit here to retain the WA during flush.
850 */
3be192e9 851 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
a4106a78
AS
852 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
853
f1afe24f 854 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 855 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 856 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
bde13ebd 857 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
83b8a982
AS
858 wa_ctx_emit(batch, index, 0);
859
860 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 861 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
862 wa_ctx_emit(batch, index, l3sqc4_flush);
863
864 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
865 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
866 PIPE_CONTROL_DC_FLUSH_ENABLE));
867 wa_ctx_emit(batch, index, 0);
868 wa_ctx_emit(batch, index, 0);
869 wa_ctx_emit(batch, index, 0);
870 wa_ctx_emit(batch, index, 0);
871
f1afe24f 872 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 873 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 874 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
bde13ebd 875 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
83b8a982 876 wa_ctx_emit(batch, index, 0);
9e000847
AS
877
878 return index;
879}
880
17ee950d
AS
881static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
882 uint32_t offset,
883 uint32_t start_alignment)
884{
885 return wa_ctx->offset = ALIGN(offset, start_alignment);
886}
887
888static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
889 uint32_t offset,
890 uint32_t size_alignment)
891{
892 wa_ctx->size = offset - wa_ctx->offset;
893
894 WARN(wa_ctx->size % size_alignment,
895 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
896 wa_ctx->size, size_alignment);
897 return 0;
898}
899
6e5248b5
DV
900/*
901 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
902 * initialized at the beginning and shared across all contexts but this field
903 * helps us to have multiple batches at different offsets and select them based
904 * on a criteria. At the moment this batch always start at the beginning of the page
905 * and at this point we don't have multiple wa_ctx batch buffers.
4d78c8dc 906 *
6e5248b5
DV
907 * The number of WA applied are not known at the beginning; we use this field
908 * to return the no of DWORDS written.
17ee950d 909 *
6e5248b5
DV
910 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
911 * so it adds NOOPs as padding to make it cacheline aligned.
912 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
913 * makes a complete batch buffer.
17ee950d 914 */
0bc40be8 915static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
17ee950d 916 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 917 uint32_t *batch,
17ee950d
AS
918 uint32_t *offset)
919{
0160f055 920 uint32_t scratch_addr;
17ee950d
AS
921 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
922
7ad00d1a 923 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 924 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 925
c82435bb 926 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
c033666a 927 if (IS_BROADWELL(engine->i915)) {
0bc40be8 928 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
604ef734
AH
929 if (rc < 0)
930 return rc;
931 index = rc;
c82435bb
AS
932 }
933
0160f055
AS
934 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
935 /* Actual scratch location is at 128 bytes offset */
bde13ebd 936 scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0160f055 937
83b8a982
AS
938 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
939 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
940 PIPE_CONTROL_GLOBAL_GTT_IVB |
941 PIPE_CONTROL_CS_STALL |
942 PIPE_CONTROL_QW_WRITE));
943 wa_ctx_emit(batch, index, scratch_addr);
944 wa_ctx_emit(batch, index, 0);
945 wa_ctx_emit(batch, index, 0);
946 wa_ctx_emit(batch, index, 0);
0160f055 947
17ee950d
AS
948 /* Pad to end of cacheline */
949 while (index % CACHELINE_DWORDS)
83b8a982 950 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
951
952 /*
953 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
954 * execution depends on the length specified in terms of cache lines
955 * in the register CTX_RCS_INDIRECT_CTX
956 */
957
958 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
959}
960
6e5248b5
DV
961/*
962 * This batch is started immediately after indirect_ctx batch. Since we ensure
963 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
17ee950d 964 *
6e5248b5 965 * The number of DWORDS written are returned using this field.
17ee950d
AS
966 *
967 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
968 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
969 */
0bc40be8 970static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
17ee950d 971 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 972 uint32_t *batch,
17ee950d
AS
973 uint32_t *offset)
974{
975 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
976
7ad00d1a 977 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 978 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 979
83b8a982 980 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
981
982 return wa_ctx_end(wa_ctx, *offset = index, 1);
983}
984
0bc40be8 985static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
0504cffc 986 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 987 uint32_t *batch,
0504cffc
AS
988 uint32_t *offset)
989{
a4106a78 990 int ret;
5e580523 991 struct drm_i915_private *dev_priv = engine->i915;
0504cffc
AS
992 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
993
9fc736e8
JN
994 /* WaDisableCtxRestoreArbitration:bxt */
995 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
0907c8f7 996 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 997
a4106a78 998 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
0bc40be8 999 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
a4106a78
AS
1000 if (ret < 0)
1001 return ret;
1002 index = ret;
1003
873e8171
MK
1004 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
1005 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1006 wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
1007 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
1008 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
1009 wa_ctx_emit(batch, index, MI_NOOP);
1010
066d4628
MK
1011 /* WaClearSlmSpaceAtContextSwitch:kbl */
1012 /* Actual scratch location is at 128 bytes offset */
703d1282 1013 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
56c0f1a7 1014 u32 scratch_addr =
bde13ebd 1015 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
066d4628
MK
1016
1017 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1018 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1019 PIPE_CONTROL_GLOBAL_GTT_IVB |
1020 PIPE_CONTROL_CS_STALL |
1021 PIPE_CONTROL_QW_WRITE));
1022 wa_ctx_emit(batch, index, scratch_addr);
1023 wa_ctx_emit(batch, index, 0);
1024 wa_ctx_emit(batch, index, 0);
1025 wa_ctx_emit(batch, index, 0);
1026 }
3485d99e
TG
1027
1028 /* WaMediaPoolStateCmdInWABB:bxt */
1029 if (HAS_POOLED_EU(engine->i915)) {
1030 /*
1031 * EU pool configuration is setup along with golden context
1032 * during context initialization. This value depends on
1033 * device type (2x6 or 3x6) and needs to be updated based
1034 * on which subslice is disabled especially for 2x6
1035 * devices, however it is safe to load default
1036 * configuration of 3x6 device instead of masking off
1037 * corresponding bits because HW ignores bits of a disabled
1038 * subslice and drops down to appropriate config. Please
1039 * see render_state_setup() in i915_gem_render_state.c for
1040 * possible configurations, to avoid duplication they are
1041 * not shown here again.
1042 */
1043 u32 eu_pool_config = 0x00777000;
1044 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1045 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1046 wa_ctx_emit(batch, index, eu_pool_config);
1047 wa_ctx_emit(batch, index, 0);
1048 wa_ctx_emit(batch, index, 0);
1049 wa_ctx_emit(batch, index, 0);
1050 }
1051
0504cffc
AS
1052 /* Pad to end of cacheline */
1053 while (index % CACHELINE_DWORDS)
1054 wa_ctx_emit(batch, index, MI_NOOP);
1055
1056 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1057}
1058
0bc40be8 1059static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
0504cffc 1060 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 1061 uint32_t *batch,
0504cffc
AS
1062 uint32_t *offset)
1063{
1064 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1065
a117f378
JN
1066 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
1067 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
9b01435d 1068 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1069 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1070 wa_ctx_emit(batch, index,
1071 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1072 wa_ctx_emit(batch, index, MI_NOOP);
1073 }
1074
b1e429fe 1075 /* WaClearTdlStateAckDirtyBits:bxt */
c033666a 1076 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
b1e429fe
TG
1077 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1078
1079 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1080 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1081
1082 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1083 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1084
1085 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1086 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1087
1088 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1089 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1090 wa_ctx_emit(batch, index, 0x0);
1091 wa_ctx_emit(batch, index, MI_NOOP);
1092 }
1093
9fc736e8
JN
1094 /* WaDisableCtxRestoreArbitration:bxt */
1095 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
0907c8f7
AS
1096 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1097
0504cffc
AS
1098 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1099
1100 return wa_ctx_end(wa_ctx, *offset = index, 1);
1101}
1102
0bc40be8 1103static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
17ee950d 1104{
48bb74e4
CW
1105 struct drm_i915_gem_object *obj;
1106 struct i915_vma *vma;
1107 int err;
17ee950d 1108
48bb74e4
CW
1109 obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
1110 if (IS_ERR(obj))
1111 return PTR_ERR(obj);
17ee950d 1112
48bb74e4
CW
1113 vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1114 if (IS_ERR(vma)) {
1115 err = PTR_ERR(vma);
1116 goto err;
17ee950d
AS
1117 }
1118
48bb74e4
CW
1119 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1120 if (err)
1121 goto err;
1122
1123 engine->wa_ctx.vma = vma;
17ee950d 1124 return 0;
48bb74e4
CW
1125
1126err:
1127 i915_gem_object_put(obj);
1128 return err;
17ee950d
AS
1129}
1130
0bc40be8 1131static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
17ee950d 1132{
19880c4a 1133 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
17ee950d
AS
1134}
1135
0bc40be8 1136static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d 1137{
48bb74e4 1138 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d
AS
1139 uint32_t *batch;
1140 uint32_t offset;
1141 struct page *page;
48bb74e4 1142 int ret;
17ee950d 1143
0bc40be8 1144 WARN_ON(engine->id != RCS);
17ee950d 1145
5e60d790 1146 /* update this when WA for higher Gen are added */
c033666a 1147 if (INTEL_GEN(engine->i915) > 9) {
0504cffc 1148 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
c033666a 1149 INTEL_GEN(engine->i915));
5e60d790 1150 return 0;
0504cffc 1151 }
5e60d790 1152
c4db7599 1153 /* some WA perform writes to scratch page, ensure it is valid */
56c0f1a7 1154 if (!engine->scratch) {
0bc40be8 1155 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
c4db7599
AS
1156 return -EINVAL;
1157 }
1158
0bc40be8 1159 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
17ee950d
AS
1160 if (ret) {
1161 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1162 return ret;
1163 }
1164
48bb74e4 1165 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
17ee950d
AS
1166 batch = kmap_atomic(page);
1167 offset = 0;
1168
c033666a 1169 if (IS_GEN8(engine->i915)) {
0bc40be8 1170 ret = gen8_init_indirectctx_bb(engine,
17ee950d
AS
1171 &wa_ctx->indirect_ctx,
1172 batch,
1173 &offset);
1174 if (ret)
1175 goto out;
1176
0bc40be8 1177 ret = gen8_init_perctx_bb(engine,
17ee950d
AS
1178 &wa_ctx->per_ctx,
1179 batch,
1180 &offset);
1181 if (ret)
1182 goto out;
c033666a 1183 } else if (IS_GEN9(engine->i915)) {
0bc40be8 1184 ret = gen9_init_indirectctx_bb(engine,
0504cffc
AS
1185 &wa_ctx->indirect_ctx,
1186 batch,
1187 &offset);
1188 if (ret)
1189 goto out;
1190
0bc40be8 1191 ret = gen9_init_perctx_bb(engine,
0504cffc
AS
1192 &wa_ctx->per_ctx,
1193 batch,
1194 &offset);
1195 if (ret)
1196 goto out;
17ee950d
AS
1197 }
1198
1199out:
1200 kunmap_atomic(batch);
1201 if (ret)
0bc40be8 1202 lrc_destroy_wa_ctx_obj(engine);
17ee950d
AS
1203
1204 return ret;
1205}
1206
04794adb
TU
1207static void lrc_init_hws(struct intel_engine_cs *engine)
1208{
c033666a 1209 struct drm_i915_private *dev_priv = engine->i915;
04794adb
TU
1210
1211 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
57e88531 1212 engine->status_page.ggtt_offset);
04794adb
TU
1213 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1214}
1215
0bc40be8 1216static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1217{
c033666a 1218 struct drm_i915_private *dev_priv = engine->i915;
821ed7df
CW
1219 int ret;
1220
1221 ret = intel_mocs_init_engine(engine);
1222 if (ret)
1223 return ret;
9b1136d5 1224
04794adb 1225 lrc_init_hws(engine);
e84fe803 1226
ad07dfcd 1227 intel_engine_reset_breadcrumbs(engine);
821ed7df 1228
0bc40be8 1229 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
73d477f6 1230
0bc40be8 1231 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5
OM
1232 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1233 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
dfc53c5e 1234
0bc40be8 1235 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1236
fc0768ce 1237 intel_engine_init_hangcheck(engine);
9b1136d5 1238
c87d50cc
CW
1239 /* After a GPU reset, we may have requests to replay */
1240 if (!execlists_elsp_idle(engine)) {
1241 engine->execlist_port[0].count = 0;
1242 engine->execlist_port[1].count = 0;
821ed7df 1243 execlists_submit_ports(engine);
c87d50cc 1244 }
821ed7df
CW
1245
1246 return 0;
9b1136d5
OM
1247}
1248
0bc40be8 1249static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1250{
c033666a 1251 struct drm_i915_private *dev_priv = engine->i915;
9b1136d5
OM
1252 int ret;
1253
0bc40be8 1254 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1255 if (ret)
1256 return ret;
1257
1258 /* We need to disable the AsyncFlip performance optimisations in order
1259 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1260 * programmed to '1' on all products.
1261 *
1262 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1263 */
1264 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1265
9b1136d5
OM
1266 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1267
0bc40be8 1268 return init_workarounds_ring(engine);
9b1136d5
OM
1269}
1270
0bc40be8 1271static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1272{
1273 int ret;
1274
0bc40be8 1275 ret = gen8_init_common_ring(engine);
82ef822e
DL
1276 if (ret)
1277 return ret;
1278
0bc40be8 1279 return init_workarounds_ring(engine);
82ef822e
DL
1280}
1281
821ed7df
CW
1282static void reset_common_ring(struct intel_engine_cs *engine,
1283 struct drm_i915_gem_request *request)
1284{
1285 struct drm_i915_private *dev_priv = engine->i915;
1286 struct execlist_port *port = engine->execlist_port;
1287 struct intel_context *ce = &request->ctx->engine[engine->id];
1288
a3aabe86
CW
1289 /* We want a simple context + ring to execute the breadcrumb update.
1290 * We cannot rely on the context being intact across the GPU hang,
1291 * so clear it and rebuild just what we need for the breadcrumb.
1292 * All pending requests for this context will be zapped, and any
1293 * future request will be after userspace has had the opportunity
1294 * to recreate its own state.
1295 */
1296 execlists_init_reg_state(ce->lrc_reg_state,
1297 request->ctx, engine, ce->ring);
1298
821ed7df 1299 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
a3aabe86
CW
1300 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1301 i915_ggtt_offset(ce->ring->vma);
821ed7df 1302 ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
a3aabe86 1303
821ed7df
CW
1304 request->ring->head = request->postfix;
1305 request->ring->last_retired_head = -1;
1306 intel_ring_update_space(request->ring);
1307
1308 if (i915.enable_guc_submission)
1309 return;
1310
1311 /* Catch up with any missed context-switch interrupts */
1312 I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
1313 if (request->ctx != port[0].request->ctx) {
1314 i915_gem_request_put(port[0].request);
1315 port[0] = port[1];
1316 memset(&port[1], 0, sizeof(port[1]));
1317 }
1318
821ed7df 1319 GEM_BUG_ON(request->ctx != port[0].request->ctx);
a3aabe86
CW
1320
1321 /* Reset WaIdleLiteRestore:bdw,skl as well */
1322 request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
821ed7df
CW
1323}
1324
7a01a0a2
MT
1325static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1326{
1327 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
7e37f889 1328 struct intel_ring *ring = req->ring;
4a570db5 1329 struct intel_engine_cs *engine = req->engine;
7a01a0a2
MT
1330 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1331 int i, ret;
1332
987046ad 1333 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
7a01a0a2
MT
1334 if (ret)
1335 return ret;
1336
b5321f30 1337 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
7a01a0a2
MT
1338 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1339 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1340
b5321f30
CW
1341 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
1342 intel_ring_emit(ring, upper_32_bits(pd_daddr));
1343 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
1344 intel_ring_emit(ring, lower_32_bits(pd_daddr));
7a01a0a2
MT
1345 }
1346
b5321f30
CW
1347 intel_ring_emit(ring, MI_NOOP);
1348 intel_ring_advance(ring);
7a01a0a2
MT
1349
1350 return 0;
1351}
1352
be795fc1 1353static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
803688ba
CW
1354 u64 offset, u32 len,
1355 unsigned int dispatch_flags)
15648585 1356{
7e37f889 1357 struct intel_ring *ring = req->ring;
8e004efc 1358 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1359 int ret;
1360
7a01a0a2
MT
1361 /* Don't rely in hw updating PDPs, specially in lite-restore.
1362 * Ideally, we should set Force PD Restore in ctx descriptor,
1363 * but we can't. Force Restore would be a second option, but
1364 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1365 * not idle). PML4 is allocated during ppgtt init so this is
1366 * not needed in 48-bit.*/
7a01a0a2 1367 if (req->ctx->ppgtt &&
666796da 1368 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7 1369 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
c033666a 1370 !intel_vgpu_active(req->i915)) {
2dba3239
MT
1371 ret = intel_logical_ring_emit_pdps(req);
1372 if (ret)
1373 return ret;
1374 }
7a01a0a2 1375
666796da 1376 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1377 }
1378
987046ad 1379 ret = intel_ring_begin(req, 4);
15648585
OM
1380 if (ret)
1381 return ret;
1382
1383 /* FIXME(BDW): Address space and security selectors. */
b5321f30
CW
1384 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
1385 (ppgtt<<8) |
1386 (dispatch_flags & I915_DISPATCH_RS ?
1387 MI_BATCH_RESOURCE_STREAMER : 0));
1388 intel_ring_emit(ring, lower_32_bits(offset));
1389 intel_ring_emit(ring, upper_32_bits(offset));
1390 intel_ring_emit(ring, MI_NOOP);
1391 intel_ring_advance(ring);
15648585
OM
1392
1393 return 0;
1394}
1395
31bb59cc 1396static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
73d477f6 1397{
c033666a 1398 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc
CW
1399 I915_WRITE_IMR(engine,
1400 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1401 POSTING_READ_FW(RING_IMR(engine->mmio_base));
73d477f6
OM
1402}
1403
31bb59cc 1404static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
73d477f6 1405{
c033666a 1406 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc 1407 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
73d477f6
OM
1408}
1409
7c9cf4e3 1410static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
4712274c 1411{
7e37f889
CW
1412 struct intel_ring *ring = request->ring;
1413 u32 cmd;
4712274c
OM
1414 int ret;
1415
987046ad 1416 ret = intel_ring_begin(request, 4);
4712274c
OM
1417 if (ret)
1418 return ret;
1419
1420 cmd = MI_FLUSH_DW + 1;
1421
f0a1fb10
CW
1422 /* We always require a command barrier so that subsequent
1423 * commands, such as breadcrumb interrupts, are strictly ordered
1424 * wrt the contents of the write cache being flushed to memory
1425 * (and thus being coherent from the CPU).
1426 */
1427 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1428
7c9cf4e3 1429 if (mode & EMIT_INVALIDATE) {
f0a1fb10 1430 cmd |= MI_INVALIDATE_TLB;
1dae2dfb 1431 if (request->engine->id == VCS)
f0a1fb10 1432 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1433 }
1434
b5321f30
CW
1435 intel_ring_emit(ring, cmd);
1436 intel_ring_emit(ring,
1437 I915_GEM_HWS_SCRATCH_ADDR |
1438 MI_FLUSH_DW_USE_GTT);
1439 intel_ring_emit(ring, 0); /* upper addr */
1440 intel_ring_emit(ring, 0); /* value */
1441 intel_ring_advance(ring);
4712274c
OM
1442
1443 return 0;
1444}
1445
7deb4d39 1446static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
7c9cf4e3 1447 u32 mode)
4712274c 1448{
7e37f889 1449 struct intel_ring *ring = request->ring;
b5321f30 1450 struct intel_engine_cs *engine = request->engine;
bde13ebd
CW
1451 u32 scratch_addr =
1452 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0b2d0934 1453 bool vf_flush_wa = false, dc_flush_wa = false;
4712274c
OM
1454 u32 flags = 0;
1455 int ret;
0b2d0934 1456 int len;
4712274c
OM
1457
1458 flags |= PIPE_CONTROL_CS_STALL;
1459
7c9cf4e3 1460 if (mode & EMIT_FLUSH) {
4712274c
OM
1461 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1462 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1463 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1464 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1465 }
1466
7c9cf4e3 1467 if (mode & EMIT_INVALIDATE) {
4712274c
OM
1468 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1469 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1470 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1471 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1472 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1473 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1474 flags |= PIPE_CONTROL_QW_WRITE;
1475 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1476
1a5a9ce7
BW
1477 /*
1478 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1479 * pipe control.
1480 */
c033666a 1481 if (IS_GEN9(request->i915))
1a5a9ce7 1482 vf_flush_wa = true;
0b2d0934
MK
1483
1484 /* WaForGAMHang:kbl */
1485 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1486 dc_flush_wa = true;
1a5a9ce7 1487 }
9647ff36 1488
0b2d0934
MK
1489 len = 6;
1490
1491 if (vf_flush_wa)
1492 len += 6;
1493
1494 if (dc_flush_wa)
1495 len += 12;
1496
1497 ret = intel_ring_begin(request, len);
4712274c
OM
1498 if (ret)
1499 return ret;
1500
9647ff36 1501 if (vf_flush_wa) {
b5321f30
CW
1502 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1503 intel_ring_emit(ring, 0);
1504 intel_ring_emit(ring, 0);
1505 intel_ring_emit(ring, 0);
1506 intel_ring_emit(ring, 0);
1507 intel_ring_emit(ring, 0);
9647ff36
ID
1508 }
1509
0b2d0934 1510 if (dc_flush_wa) {
b5321f30
CW
1511 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1512 intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
1513 intel_ring_emit(ring, 0);
1514 intel_ring_emit(ring, 0);
1515 intel_ring_emit(ring, 0);
1516 intel_ring_emit(ring, 0);
0b2d0934
MK
1517 }
1518
b5321f30
CW
1519 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1520 intel_ring_emit(ring, flags);
1521 intel_ring_emit(ring, scratch_addr);
1522 intel_ring_emit(ring, 0);
1523 intel_ring_emit(ring, 0);
1524 intel_ring_emit(ring, 0);
0b2d0934
MK
1525
1526 if (dc_flush_wa) {
b5321f30
CW
1527 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1528 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
1529 intel_ring_emit(ring, 0);
1530 intel_ring_emit(ring, 0);
1531 intel_ring_emit(ring, 0);
1532 intel_ring_emit(ring, 0);
0b2d0934
MK
1533 }
1534
b5321f30 1535 intel_ring_advance(ring);
4712274c
OM
1536
1537 return 0;
1538}
1539
c04e0f3b 1540static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
319404df 1541{
319404df
ID
1542 /*
1543 * On BXT A steppings there is a HW coherency issue whereby the
1544 * MI_STORE_DATA_IMM storing the completed request's seqno
1545 * occasionally doesn't invalidate the CPU cache. Work around this by
1546 * clflushing the corresponding cacheline whenever the caller wants
1547 * the coherency to be guaranteed. Note that this cacheline is known
1548 * to be clean at this point, since we only write it in
1549 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1550 * this clflush in practice becomes an invalidate operation.
1551 */
c04e0f3b 1552 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1553}
1554
7c17d377
CW
1555/*
1556 * Reserve space for 2 NOOPs at the end of each request to be
1557 * used as a workaround for not being allowed to do lite
1558 * restore with HEAD==TAIL (WaIdleLiteRestore).
1559 */
caddfe71 1560static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *out)
4da46e1e 1561{
caddfe71
CW
1562 *out++ = MI_NOOP;
1563 *out++ = MI_NOOP;
1564 request->wa_tail = intel_ring_offset(request->ring, out);
1565}
4da46e1e 1566
caddfe71
CW
1567static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request,
1568 u32 *out)
1569{
7c17d377
CW
1570 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1571 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1572
caddfe71
CW
1573 *out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1574 *out++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1575 *out++ = 0;
1576 *out++ = request->global_seqno;
1577 *out++ = MI_USER_INTERRUPT;
1578 *out++ = MI_NOOP;
1579 request->tail = intel_ring_offset(request->ring, out);
1580
1581 gen8_emit_wa_tail(request, out);
7c17d377 1582}
4da46e1e 1583
98f29e8d
CW
1584static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1585
caddfe71
CW
1586static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1587 u32 *out)
7c17d377 1588{
ce81a65c
MW
1589 /* We're using qword write, seqno should be aligned to 8 bytes. */
1590 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1591
7c17d377
CW
1592 /* w/a for post sync ops following a GPGPU operation we
1593 * need a prior CS_STALL, which is emitted by the flush
1594 * following the batch.
1595 */
caddfe71
CW
1596 *out++ = GFX_OP_PIPE_CONTROL(6);
1597 *out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
1598 PIPE_CONTROL_CS_STALL |
1599 PIPE_CONTROL_QW_WRITE);
1600 *out++ = intel_hws_seqno_address(request->engine);
1601 *out++ = 0;
1602 *out++ = request->global_seqno;
ce81a65c 1603 /* We're thrashing one dword of HWS. */
caddfe71
CW
1604 *out++ = 0;
1605 *out++ = MI_USER_INTERRUPT;
1606 *out++ = MI_NOOP;
1607 request->tail = intel_ring_offset(request->ring, out);
1608
1609 gen8_emit_wa_tail(request, out);
4da46e1e
OM
1610}
1611
98f29e8d
CW
1612static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1613
8753181e 1614static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1615{
1616 int ret;
1617
e2be4faf 1618 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1619 if (ret)
1620 return ret;
1621
3bbaba0c
PA
1622 ret = intel_rcs_context_init_mocs(req);
1623 /*
1624 * Failing to program the MOCS is non-fatal.The system will not
1625 * run at peak performance. So generate an error and carry on.
1626 */
1627 if (ret)
1628 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1629
4e50f082 1630 return i915_gem_render_state_emit(req);
e7778be1
TD
1631}
1632
73e4d07f
OM
1633/**
1634 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
14bb2c11 1635 * @engine: Engine Command Streamer.
73e4d07f 1636 */
0bc40be8 1637void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1638{
6402c330 1639 struct drm_i915_private *dev_priv;
9832b9da 1640
27af5eea
TU
1641 /*
1642 * Tasklet cannot be active at this point due intel_mark_active/idle
1643 * so this is just for documentation.
1644 */
1645 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1646 tasklet_kill(&engine->irq_tasklet);
1647
c033666a 1648 dev_priv = engine->i915;
6402c330 1649
0bc40be8 1650 if (engine->buffer) {
0bc40be8 1651 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1652 }
48d82387 1653
0bc40be8
TU
1654 if (engine->cleanup)
1655 engine->cleanup(engine);
48d82387 1656
96a945aa 1657 intel_engine_cleanup_common(engine);
688e6c72 1658
57e88531
CW
1659 if (engine->status_page.vma) {
1660 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1661 engine->status_page.vma = NULL;
48d82387 1662 }
24f1d3cc 1663 intel_lr_context_unpin(dev_priv->kernel_context, engine);
17ee950d 1664
0bc40be8 1665 lrc_destroy_wa_ctx_obj(engine);
c033666a 1666 engine->i915 = NULL;
3b3f1650
AG
1667 dev_priv->engine[engine->id] = NULL;
1668 kfree(engine);
454afebd
OM
1669}
1670
ddd66c51
CW
1671void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
1672{
1673 struct intel_engine_cs *engine;
3b3f1650 1674 enum intel_engine_id id;
ddd66c51 1675
3b3f1650 1676 for_each_engine(engine, dev_priv, id)
f4ea6bdd 1677 engine->submit_request = execlists_submit_request;
ddd66c51
CW
1678}
1679
c9cacf93 1680static void
e1382efb 1681logical_ring_default_vfuncs(struct intel_engine_cs *engine)
c9cacf93
TU
1682{
1683 /* Default vfuncs which can be overriden by each engine. */
0bc40be8 1684 engine->init_hw = gen8_init_common_ring;
821ed7df 1685 engine->reset_hw = reset_common_ring;
0bc40be8 1686 engine->emit_flush = gen8_emit_flush;
9b81d556 1687 engine->emit_breadcrumb = gen8_emit_breadcrumb;
98f29e8d 1688 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
f4ea6bdd 1689 engine->submit_request = execlists_submit_request;
ddd66c51 1690
31bb59cc
CW
1691 engine->irq_enable = gen8_logical_ring_enable_irq;
1692 engine->irq_disable = gen8_logical_ring_disable_irq;
0bc40be8 1693 engine->emit_bb_start = gen8_emit_bb_start;
1b7744e7 1694 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
c04e0f3b 1695 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
c9cacf93
TU
1696}
1697
d9f3af96 1698static inline void
c2c7f240 1699logical_ring_default_irqs(struct intel_engine_cs *engine)
d9f3af96 1700{
c2c7f240 1701 unsigned shift = engine->irq_shift;
0bc40be8
TU
1702 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1703 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1704}
1705
7d774cac 1706static int
bf3783e5 1707lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
04794adb 1708{
57e88531 1709 const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac 1710 void *hws;
04794adb
TU
1711
1712 /* The HWSP is part of the default context object in LRC mode. */
bf3783e5 1713 hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
7d774cac
TU
1714 if (IS_ERR(hws))
1715 return PTR_ERR(hws);
57e88531
CW
1716
1717 engine->status_page.page_addr = hws + hws_offset;
bde13ebd 1718 engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
57e88531 1719 engine->status_page.vma = vma;
7d774cac
TU
1720
1721 return 0;
04794adb
TU
1722}
1723
bb45438f
TU
1724static void
1725logical_ring_setup(struct intel_engine_cs *engine)
1726{
1727 struct drm_i915_private *dev_priv = engine->i915;
1728 enum forcewake_domains fw_domains;
1729
019bf277
TU
1730 intel_engine_setup_common(engine);
1731
bb45438f
TU
1732 /* Intentionally left blank. */
1733 engine->buffer = NULL;
1734
1735 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1736 RING_ELSP(engine),
1737 FW_REG_WRITE);
1738
1739 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1740 RING_CONTEXT_STATUS_PTR(engine),
1741 FW_REG_READ | FW_REG_WRITE);
1742
1743 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1744 RING_CONTEXT_STATUS_BUF_BASE(engine),
1745 FW_REG_READ);
1746
1747 engine->fw_domains = fw_domains;
1748
bb45438f
TU
1749 tasklet_init(&engine->irq_tasklet,
1750 intel_lrc_irq_handler, (unsigned long)engine);
1751
1752 logical_ring_init_platform_invariants(engine);
1753 logical_ring_default_vfuncs(engine);
1754 logical_ring_default_irqs(engine);
bb45438f
TU
1755}
1756
a19d6ff2
TU
1757static int
1758logical_ring_init(struct intel_engine_cs *engine)
1759{
1760 struct i915_gem_context *dctx = engine->i915->kernel_context;
1761 int ret;
1762
019bf277 1763 ret = intel_engine_init_common(engine);
a19d6ff2
TU
1764 if (ret)
1765 goto error;
1766
1767 ret = execlists_context_deferred_alloc(dctx, engine);
1768 if (ret)
1769 goto error;
1770
1771 /* As this is the default context, always pin it */
1772 ret = intel_lr_context_pin(dctx, engine);
1773 if (ret) {
1774 DRM_ERROR("Failed to pin context for %s: %d\n",
1775 engine->name, ret);
1776 goto error;
1777 }
1778
1779 /* And setup the hardware status page. */
1780 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1781 if (ret) {
1782 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1783 goto error;
1784 }
1785
1786 return 0;
1787
1788error:
1789 intel_logical_ring_cleanup(engine);
1790 return ret;
1791}
1792
88d2ba2e 1793int logical_render_ring_init(struct intel_engine_cs *engine)
a19d6ff2
TU
1794{
1795 struct drm_i915_private *dev_priv = engine->i915;
1796 int ret;
1797
bb45438f
TU
1798 logical_ring_setup(engine);
1799
a19d6ff2
TU
1800 if (HAS_L3_DPF(dev_priv))
1801 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1802
1803 /* Override some for render ring. */
1804 if (INTEL_GEN(dev_priv) >= 9)
1805 engine->init_hw = gen9_init_render_ring;
1806 else
1807 engine->init_hw = gen8_init_render_ring;
1808 engine->init_context = gen8_init_rcs_context;
a19d6ff2 1809 engine->emit_flush = gen8_emit_flush_render;
9b81d556 1810 engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
98f29e8d 1811 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
a19d6ff2 1812
56c0f1a7 1813 ret = intel_engine_create_scratch(engine, 4096);
a19d6ff2
TU
1814 if (ret)
1815 return ret;
1816
1817 ret = intel_init_workaround_bb(engine);
1818 if (ret) {
1819 /*
1820 * We continue even if we fail to initialize WA batch
1821 * because we only expect rare glitches but nothing
1822 * critical to prevent us from using GPU
1823 */
1824 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1825 ret);
1826 }
1827
1828 ret = logical_ring_init(engine);
1829 if (ret) {
1830 lrc_destroy_wa_ctx_obj(engine);
1831 }
1832
1833 return ret;
1834}
1835
88d2ba2e 1836int logical_xcs_ring_init(struct intel_engine_cs *engine)
bb45438f
TU
1837{
1838 logical_ring_setup(engine);
1839
1840 return logical_ring_init(engine);
454afebd
OM
1841}
1842
0cea6502 1843static u32
c033666a 1844make_rpcs(struct drm_i915_private *dev_priv)
0cea6502
JM
1845{
1846 u32 rpcs = 0;
1847
1848 /*
1849 * No explicit RPCS request is needed to ensure full
1850 * slice/subslice/EU enablement prior to Gen9.
1851 */
c033666a 1852 if (INTEL_GEN(dev_priv) < 9)
0cea6502
JM
1853 return 0;
1854
1855 /*
1856 * Starting in Gen9, render power gating can leave
1857 * slice/subslice/EU in a partially enabled state. We
1858 * must make an explicit request through RPCS for full
1859 * enablement.
1860 */
43b67998 1861 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
0cea6502 1862 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
f08a0c92 1863 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
0cea6502
JM
1864 GEN8_RPCS_S_CNT_SHIFT;
1865 rpcs |= GEN8_RPCS_ENABLE;
1866 }
1867
43b67998 1868 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
0cea6502 1869 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
57ec171e 1870 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
0cea6502
JM
1871 GEN8_RPCS_SS_CNT_SHIFT;
1872 rpcs |= GEN8_RPCS_ENABLE;
1873 }
1874
43b67998
ID
1875 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1876 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502 1877 GEN8_RPCS_EU_MIN_SHIFT;
43b67998 1878 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502
JM
1879 GEN8_RPCS_EU_MAX_SHIFT;
1880 rpcs |= GEN8_RPCS_ENABLE;
1881 }
1882
1883 return rpcs;
1884}
1885
0bc40be8 1886static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
1887{
1888 u32 indirect_ctx_offset;
1889
c033666a 1890 switch (INTEL_GEN(engine->i915)) {
71562919 1891 default:
c033666a 1892 MISSING_CASE(INTEL_GEN(engine->i915));
71562919
MT
1893 /* fall through */
1894 case 9:
1895 indirect_ctx_offset =
1896 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1897 break;
1898 case 8:
1899 indirect_ctx_offset =
1900 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1901 break;
1902 }
1903
1904 return indirect_ctx_offset;
1905}
1906
a3aabe86
CW
1907static void execlists_init_reg_state(u32 *reg_state,
1908 struct i915_gem_context *ctx,
1909 struct intel_engine_cs *engine,
1910 struct intel_ring *ring)
8670d6f9 1911{
a3aabe86
CW
1912 struct drm_i915_private *dev_priv = engine->i915;
1913 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
8670d6f9
OM
1914
1915 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1916 * commands followed by (reg, value) pairs. The values we are setting here are
1917 * only for the first context restore: on a subsequent save, the GPU will
1918 * recreate this batchbuffer with new values (including all the missing
1919 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0 1920 reg_state[CTX_LRI_HEADER_0] =
0bc40be8
TU
1921 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
1922 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
1923 RING_CONTEXT_CONTROL(engine),
0d925ea0
VS
1924 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1925 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
c033666a 1926 (HAS_RESOURCE_STREAMER(dev_priv) ?
a3aabe86 1927 CTX_CTRL_RS_CTX_ENABLE : 0)));
0bc40be8
TU
1928 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
1929 0);
1930 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
1931 0);
0bc40be8
TU
1932 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
1933 RING_START(engine->mmio_base), 0);
1934 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
1935 RING_CTL(engine->mmio_base),
62ae14b1 1936 RING_CTL_SIZE(ring->size) | RING_VALID);
0bc40be8
TU
1937 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
1938 RING_BBADDR_UDW(engine->mmio_base), 0);
1939 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
1940 RING_BBADDR(engine->mmio_base), 0);
1941 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
1942 RING_BBSTATE(engine->mmio_base),
0d925ea0 1943 RING_BB_PPGTT);
0bc40be8
TU
1944 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
1945 RING_SBBADDR_UDW(engine->mmio_base), 0);
1946 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
1947 RING_SBBADDR(engine->mmio_base), 0);
1948 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
1949 RING_SBBSTATE(engine->mmio_base), 0);
1950 if (engine->id == RCS) {
1951 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
1952 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
1953 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
1954 RING_INDIRECT_CTX(engine->mmio_base), 0);
1955 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
1956 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
48bb74e4 1957 if (engine->wa_ctx.vma) {
0bc40be8 1958 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
bde13ebd 1959 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
17ee950d
AS
1960
1961 reg_state[CTX_RCS_INDIRECT_CTX+1] =
1962 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
1963 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
1964
1965 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
0bc40be8 1966 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d
AS
1967
1968 reg_state[CTX_BB_PER_CTX_PTR+1] =
1969 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
1970 0x01;
1971 }
8670d6f9 1972 }
0d925ea0 1973 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
0bc40be8
TU
1974 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
1975 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
0d925ea0 1976 /* PDP values well be assigned later if needed */
0bc40be8
TU
1977 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
1978 0);
1979 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
1980 0);
1981 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
1982 0);
1983 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
1984 0);
1985 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
1986 0);
1987 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
1988 0);
1989 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
1990 0);
1991 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
1992 0);
d7b2633d 1993
2dba3239
MT
1994 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1995 /* 64b PPGTT (48bit canonical)
1996 * PDP0_DESCRIPTOR contains the base address to PML4 and
1997 * other PDP Descriptors are ignored.
1998 */
1999 ASSIGN_CTX_PML4(ppgtt, reg_state);
2000 } else {
2001 /* 32b PPGTT
2002 * PDP*_DESCRIPTOR contains the base address of space supported.
2003 * With dynamic page allocation, PDPs may not be allocated at
2004 * this point. Point the unallocated PDPs to the scratch page
2005 */
c6a2ac71 2006 execlists_update_context_pdps(ppgtt, reg_state);
2dba3239
MT
2007 }
2008
0bc40be8 2009 if (engine->id == RCS) {
8670d6f9 2010 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0 2011 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
c033666a 2012 make_rpcs(dev_priv));
8670d6f9 2013 }
a3aabe86
CW
2014}
2015
2016static int
2017populate_lr_context(struct i915_gem_context *ctx,
2018 struct drm_i915_gem_object *ctx_obj,
2019 struct intel_engine_cs *engine,
2020 struct intel_ring *ring)
2021{
2022 void *vaddr;
2023 int ret;
2024
2025 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2026 if (ret) {
2027 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2028 return ret;
2029 }
2030
2031 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2032 if (IS_ERR(vaddr)) {
2033 ret = PTR_ERR(vaddr);
2034 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2035 return ret;
2036 }
a4f5ea64 2037 ctx_obj->mm.dirty = true;
a3aabe86
CW
2038
2039 /* The second page of the context object contains some fields which must
2040 * be set up prior to the first execution. */
2041
2042 execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
2043 ctx, engine, ring);
8670d6f9 2044
7d774cac 2045 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
2046
2047 return 0;
2048}
2049
c5d46ee2
DG
2050/**
2051 * intel_lr_context_size() - return the size of the context for an engine
14bb2c11 2052 * @engine: which engine to find the context size for
c5d46ee2
DG
2053 *
2054 * Each engine may require a different amount of space for a context image,
2055 * so when allocating (or copying) an image, this function can be used to
2056 * find the right size for the specific engine.
2057 *
2058 * Return: size (in bytes) of an engine-specific context image
2059 *
2060 * Note: this size includes the HWSP, which is part of the context image
2061 * in LRC mode, but does not include the "shared data page" used with
2062 * GuC submission. The caller should account for this if using the GuC.
2063 */
0bc40be8 2064uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
2065{
2066 int ret = 0;
2067
c033666a 2068 WARN_ON(INTEL_GEN(engine->i915) < 8);
8c857917 2069
0bc40be8 2070 switch (engine->id) {
8c857917 2071 case RCS:
c033666a 2072 if (INTEL_GEN(engine->i915) >= 9)
468c6816
MN
2073 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2074 else
2075 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2076 break;
2077 case VCS:
2078 case BCS:
2079 case VECS:
2080 case VCS2:
2081 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2082 break;
2083 }
2084
2085 return ret;
ede7d42b
OM
2086}
2087
e2efd130 2088static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 2089 struct intel_engine_cs *engine)
ede7d42b 2090{
8c857917 2091 struct drm_i915_gem_object *ctx_obj;
9021ad03 2092 struct intel_context *ce = &ctx->engine[engine->id];
bf3783e5 2093 struct i915_vma *vma;
8c857917 2094 uint32_t context_size;
7e37f889 2095 struct intel_ring *ring;
8c857917
OM
2096 int ret;
2097
9021ad03 2098 WARN_ON(ce->state);
ede7d42b 2099
0bc40be8 2100 context_size = round_up(intel_lr_context_size(engine), 4096);
8c857917 2101
d1675198
AD
2102 /* One extra page as the sharing data between driver and GuC */
2103 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2104
91c8a326 2105 ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
fe3db79b 2106 if (IS_ERR(ctx_obj)) {
3126a660 2107 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 2108 return PTR_ERR(ctx_obj);
8c857917
OM
2109 }
2110
bf3783e5
CW
2111 vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
2112 if (IS_ERR(vma)) {
2113 ret = PTR_ERR(vma);
2114 goto error_deref_obj;
2115 }
2116
7e37f889 2117 ring = intel_engine_create_ring(engine, ctx->ring_size);
dca33ecc
CW
2118 if (IS_ERR(ring)) {
2119 ret = PTR_ERR(ring);
e84fe803 2120 goto error_deref_obj;
8670d6f9
OM
2121 }
2122
dca33ecc 2123 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
8670d6f9
OM
2124 if (ret) {
2125 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
dca33ecc 2126 goto error_ring_free;
84c2377f
OM
2127 }
2128
dca33ecc 2129 ce->ring = ring;
bf3783e5 2130 ce->state = vma;
9021ad03 2131 ce->initialised = engine->init_context == NULL;
ede7d42b
OM
2132
2133 return 0;
8670d6f9 2134
dca33ecc 2135error_ring_free:
7e37f889 2136 intel_ring_free(ring);
e84fe803 2137error_deref_obj:
f8c417cd 2138 i915_gem_object_put(ctx_obj);
8670d6f9 2139 return ret;
ede7d42b 2140}
3e5b6f05 2141
821ed7df 2142void intel_lr_context_resume(struct drm_i915_private *dev_priv)
3e5b6f05 2143{
e2f80391 2144 struct intel_engine_cs *engine;
bafb2f7d 2145 struct i915_gem_context *ctx;
3b3f1650 2146 enum intel_engine_id id;
bafb2f7d
CW
2147
2148 /* Because we emit WA_TAIL_DWORDS there may be a disparity
2149 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2150 * that stored in context. As we only write new commands from
2151 * ce->ring->tail onwards, everything before that is junk. If the GPU
2152 * starts reading from its RING_HEAD from the context, it may try to
2153 * execute that junk and die.
2154 *
2155 * So to avoid that we reset the context images upon resume. For
2156 * simplicity, we just zero everything out.
2157 */
2158 list_for_each_entry(ctx, &dev_priv->context_list, link) {
3b3f1650 2159 for_each_engine(engine, dev_priv, id) {
bafb2f7d
CW
2160 struct intel_context *ce = &ctx->engine[engine->id];
2161 u32 *reg;
3e5b6f05 2162
bafb2f7d
CW
2163 if (!ce->state)
2164 continue;
7d774cac 2165
bafb2f7d
CW
2166 reg = i915_gem_object_pin_map(ce->state->obj,
2167 I915_MAP_WB);
2168 if (WARN_ON(IS_ERR(reg)))
2169 continue;
3e5b6f05 2170
bafb2f7d
CW
2171 reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2172 reg[CTX_RING_HEAD+1] = 0;
2173 reg[CTX_RING_TAIL+1] = 0;
3e5b6f05 2174
a4f5ea64 2175 ce->state->obj->mm.dirty = true;
bafb2f7d 2176 i915_gem_object_unpin_map(ce->state->obj);
3e5b6f05 2177
bafb2f7d
CW
2178 ce->ring->head = ce->ring->tail = 0;
2179 ce->ring->last_retired_head = -1;
2180 intel_ring_update_space(ce->ring);
2181 }
3e5b6f05
TD
2182 }
2183}