]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: Interrupt routing for GuC submission
[thirdparty/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1
OM
133 */
134
135#include <drm/drmP.h>
136#include <drm/i915_drm.h>
137#include "i915_drv.h"
3bbaba0c 138#include "intel_mocs.h"
127f1003 139
468c6816 140#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
141#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
e981e7b1
TD
144#define RING_EXECLIST_QFULL (1 << 0x2)
145#define RING_EXECLIST1_VALID (1 << 0x3)
146#define RING_EXECLIST0_VALID (1 << 0x4)
147#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
148#define RING_EXECLIST1_ACTIVE (1 << 0x11)
149#define RING_EXECLIST0_ACTIVE (1 << 0x12)
150
151#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
152#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
153#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
154#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
155#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
156#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
157
158#define CTX_LRI_HEADER_0 0x01
159#define CTX_CONTEXT_CONTROL 0x02
160#define CTX_RING_HEAD 0x04
161#define CTX_RING_TAIL 0x06
162#define CTX_RING_BUFFER_START 0x08
163#define CTX_RING_BUFFER_CONTROL 0x0a
164#define CTX_BB_HEAD_U 0x0c
165#define CTX_BB_HEAD_L 0x0e
166#define CTX_BB_STATE 0x10
167#define CTX_SECOND_BB_HEAD_U 0x12
168#define CTX_SECOND_BB_HEAD_L 0x14
169#define CTX_SECOND_BB_STATE 0x16
170#define CTX_BB_PER_CTX_PTR 0x18
171#define CTX_RCS_INDIRECT_CTX 0x1a
172#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
173#define CTX_LRI_HEADER_1 0x21
174#define CTX_CTX_TIMESTAMP 0x22
175#define CTX_PDP3_UDW 0x24
176#define CTX_PDP3_LDW 0x26
177#define CTX_PDP2_UDW 0x28
178#define CTX_PDP2_LDW 0x2a
179#define CTX_PDP1_UDW 0x2c
180#define CTX_PDP1_LDW 0x2e
181#define CTX_PDP0_UDW 0x30
182#define CTX_PDP0_LDW 0x32
183#define CTX_LRI_HEADER_2 0x41
184#define CTX_R_PWR_CLK_STATE 0x42
185#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
186
84b790f8
BW
187#define GEN8_CTX_VALID (1<<0)
188#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189#define GEN8_CTX_FORCE_RESTORE (1<<2)
190#define GEN8_CTX_L3LLC_COHERENT (1<<5)
191#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e
MT
192
193#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
d852c7bf 194 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
195 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
196 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
197}
198
2dba3239
MT
199#define ASSIGN_CTX_PML4(ppgtt, reg_state) { \
200 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
201 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
202}
203
84b790f8
BW
204enum {
205 ADVANCED_CONTEXT = 0,
2dba3239 206 LEGACY_32B_CONTEXT,
84b790f8
BW
207 ADVANCED_AD_CONTEXT,
208 LEGACY_64B_CONTEXT
209};
2dba3239
MT
210#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
211#define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
212 LEGACY_64B_CONTEXT :\
213 LEGACY_32B_CONTEXT)
84b790f8
BW
214enum {
215 FAULT_AND_HANG = 0,
216 FAULT_AND_HALT, /* Debug only */
217 FAULT_AND_STREAM,
218 FAULT_AND_CONTINUE /* Unsupported */
219};
220#define GEN8_CTX_ID_SHIFT 32
17ee950d 221#define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
84b790f8 222
8ba319da 223static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
7ba717cf 224
73e4d07f
OM
225/**
226 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
227 * @dev: DRM device.
228 * @enable_execlists: value of i915.enable_execlists module parameter.
229 *
230 * Only certain platforms support Execlists (the prerequisites being
27401d12 231 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
232 *
233 * Return: 1 if Execlists is supported and has to be enabled.
234 */
127f1003
OM
235int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
236{
bd84b1e9
DV
237 WARN_ON(i915.enable_ppgtt == -1);
238
70ee45e1
DL
239 if (INTEL_INFO(dev)->gen >= 9)
240 return 1;
241
127f1003
OM
242 if (enable_execlists == 0)
243 return 0;
244
14bf993e
OM
245 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
246 i915.use_mmio_flip >= 0)
127f1003
OM
247 return 1;
248
249 return 0;
250}
ede7d42b 251
73e4d07f
OM
252/**
253 * intel_execlists_ctx_id() - get the Execlists Context ID
254 * @ctx_obj: Logical Ring Context backing object.
255 *
256 * Do not confuse with ctx->id! Unfortunately we have a name overload
257 * here: the old context ID we pass to userspace as a handler so that
258 * they can refer to a context, and the new context ID we pass to the
259 * ELSP so that the GPU can inform us of the context status via
260 * interrupts.
261 *
262 * Return: 20-bits globally unique context ID.
263 */
84b790f8
BW
264u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
265{
266 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
267
268 /* LRCA is required to be 4K aligned so the more significant 20 bits
269 * are globally unique */
270 return lrca >> 12;
271}
272
919f1f55
DG
273uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
274 struct intel_engine_cs *ring)
84b790f8 275{
203a571b 276 struct drm_device *dev = ring->dev;
919f1f55 277 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
84b790f8
BW
278 uint64_t desc;
279 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
acdd884a
MT
280
281 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
84b790f8
BW
282
283 desc = GEN8_CTX_VALID;
2dba3239 284 desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
51847fb9
AS
285 if (IS_GEN8(ctx_obj->base.dev))
286 desc |= GEN8_CTX_L3LLC_COHERENT;
84b790f8
BW
287 desc |= GEN8_CTX_PRIVILEGE;
288 desc |= lrca;
289 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
290
291 /* TODO: WaDisableLiteRestore when we start using semaphore
292 * signalling between Command Streamers */
293 /* desc |= GEN8_CTX_FORCE_RESTORE; */
294
203a571b
NH
295 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
296 if (IS_GEN9(dev) &&
297 INTEL_REVID(dev) <= SKL_REVID_B0 &&
298 (ring->id == BCS || ring->id == VCS ||
299 ring->id == VECS || ring->id == VCS2))
300 desc |= GEN8_CTX_FORCE_RESTORE;
301
84b790f8
BW
302 return desc;
303}
304
cc3c4253
MK
305static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
306 struct drm_i915_gem_request *rq1)
84b790f8 307{
cc3c4253
MK
308
309 struct intel_engine_cs *ring = rq0->ring;
6e7cc470
TU
310 struct drm_device *dev = ring->dev;
311 struct drm_i915_private *dev_priv = dev->dev_private;
1cff8cc3 312 uint64_t desc[2];
84b790f8 313
1cff8cc3 314 if (rq1) {
919f1f55 315 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
1cff8cc3
MK
316 rq1->elsp_submitted++;
317 } else {
318 desc[1] = 0;
319 }
84b790f8 320
919f1f55 321 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
1cff8cc3 322 rq0->elsp_submitted++;
84b790f8 323
1cff8cc3 324 /* You must always write both descriptors in the order below. */
a6111f7b
CW
325 spin_lock(&dev_priv->uncore.lock);
326 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
1cff8cc3
MK
327 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
328 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
6daccb0b 329
1cff8cc3 330 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
84b790f8 331 /* The context is automatically loaded after the following */
1cff8cc3 332 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
84b790f8 333
1cff8cc3 334 /* ELSP is a wo register, use another nearby reg for posting */
a6111f7b
CW
335 POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
336 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
337 spin_unlock(&dev_priv->uncore.lock);
84b790f8
BW
338}
339
05d9824b 340static int execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 341{
05d9824b
MK
342 struct intel_engine_cs *ring = rq->ring;
343 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
344 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
345 struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
ae1250b9
OM
346 struct page *page;
347 uint32_t *reg_state;
348
05d9824b
MK
349 BUG_ON(!ctx_obj);
350 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
351 WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
352
ae1250b9
OM
353 page = i915_gem_object_get_page(ctx_obj, 1);
354 reg_state = kmap_atomic(page);
355
05d9824b
MK
356 reg_state[CTX_RING_TAIL+1] = rq->tail;
357 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
ae1250b9 358
2dba3239
MT
359 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
360 /* True 32b PPGTT with dynamic page allocation: update PDP
361 * registers and point the unallocated PDPs to scratch page.
362 * PML4 is allocated during ppgtt init, so this is not needed
363 * in 48-bit mode.
364 */
d7b2633d
MT
365 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
366 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
367 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
368 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
369 }
370
ae1250b9
OM
371 kunmap_atomic(reg_state);
372
373 return 0;
374}
375
d8cb8875
MK
376static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
377 struct drm_i915_gem_request *rq1)
84b790f8 378{
05d9824b 379 execlists_update_context(rq0);
d8cb8875 380
cc3c4253 381 if (rq1)
05d9824b 382 execlists_update_context(rq1);
84b790f8 383
cc3c4253 384 execlists_elsp_write(rq0, rq1);
84b790f8
BW
385}
386
acdd884a
MT
387static void execlists_context_unqueue(struct intel_engine_cs *ring)
388{
6d3d8274
NH
389 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
390 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
e981e7b1
TD
391
392 assert_spin_locked(&ring->execlist_lock);
acdd884a 393
779949f4
PA
394 /*
395 * If irqs are not active generate a warning as batches that finish
396 * without the irqs may get lost and a GPU Hang may occur.
397 */
398 WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
399
acdd884a
MT
400 if (list_empty(&ring->execlist_queue))
401 return;
402
403 /* Try to read in pairs */
404 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
405 execlist_link) {
406 if (!req0) {
407 req0 = cursor;
6d3d8274 408 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
409 /* Same ctx: ignore first request, as second request
410 * will update tail past first request's workload */
e1fee72c 411 cursor->elsp_submitted = req0->elsp_submitted;
acdd884a 412 list_del(&req0->execlist_link);
c86ee3a9
TD
413 list_add_tail(&req0->execlist_link,
414 &ring->execlist_retired_req_list);
acdd884a
MT
415 req0 = cursor;
416 } else {
417 req1 = cursor;
418 break;
419 }
420 }
421
53292cdb
MT
422 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
423 /*
424 * WaIdleLiteRestore: make sure we never cause a lite
425 * restore with HEAD==TAIL
426 */
d63f820f 427 if (req0->elsp_submitted) {
53292cdb
MT
428 /*
429 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
430 * as we resubmit the request. See gen8_emit_request()
431 * for where we prepare the padding after the end of the
432 * request.
433 */
434 struct intel_ringbuffer *ringbuf;
435
436 ringbuf = req0->ctx->engine[ring->id].ringbuf;
437 req0->tail += 8;
438 req0->tail &= ringbuf->size - 1;
439 }
440 }
441
e1fee72c
OM
442 WARN_ON(req1 && req1->elsp_submitted);
443
d8cb8875 444 execlists_submit_requests(req0, req1);
acdd884a
MT
445}
446
e981e7b1
TD
447static bool execlists_check_remove_request(struct intel_engine_cs *ring,
448 u32 request_id)
449{
6d3d8274 450 struct drm_i915_gem_request *head_req;
e981e7b1
TD
451
452 assert_spin_locked(&ring->execlist_lock);
453
454 head_req = list_first_entry_or_null(&ring->execlist_queue,
6d3d8274 455 struct drm_i915_gem_request,
e981e7b1
TD
456 execlist_link);
457
458 if (head_req != NULL) {
459 struct drm_i915_gem_object *ctx_obj =
6d3d8274 460 head_req->ctx->engine[ring->id].state;
e981e7b1 461 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
e1fee72c
OM
462 WARN(head_req->elsp_submitted == 0,
463 "Never submitted head request\n");
464
465 if (--head_req->elsp_submitted <= 0) {
466 list_del(&head_req->execlist_link);
c86ee3a9
TD
467 list_add_tail(&head_req->execlist_link,
468 &ring->execlist_retired_req_list);
e1fee72c
OM
469 return true;
470 }
e981e7b1
TD
471 }
472 }
473
474 return false;
475}
476
73e4d07f 477/**
3f7531c3 478 * intel_lrc_irq_handler() - handle Context Switch interrupts
73e4d07f
OM
479 * @ring: Engine Command Streamer to handle.
480 *
481 * Check the unread Context Status Buffers and manage the submission of new
482 * contexts to the ELSP accordingly.
483 */
3f7531c3 484void intel_lrc_irq_handler(struct intel_engine_cs *ring)
e981e7b1
TD
485{
486 struct drm_i915_private *dev_priv = ring->dev->dev_private;
487 u32 status_pointer;
488 u8 read_pointer;
489 u8 write_pointer;
490 u32 status;
491 u32 status_id;
492 u32 submit_contexts = 0;
493
494 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
495
496 read_pointer = ring->next_context_status_buffer;
497 write_pointer = status_pointer & 0x07;
498 if (read_pointer > write_pointer)
499 write_pointer += 6;
500
501 spin_lock(&ring->execlist_lock);
502
503 while (read_pointer < write_pointer) {
504 read_pointer++;
505 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
506 (read_pointer % 6) * 8);
507 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
508 (read_pointer % 6) * 8 + 4);
509
031a8936
MK
510 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
511 continue;
512
e1fee72c
OM
513 if (status & GEN8_CTX_STATUS_PREEMPTED) {
514 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
515 if (execlists_check_remove_request(ring, status_id))
516 WARN(1, "Lite Restored request removed from queue\n");
517 } else
518 WARN(1, "Preemption without Lite Restore\n");
519 }
520
521 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
522 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
e981e7b1
TD
523 if (execlists_check_remove_request(ring, status_id))
524 submit_contexts++;
525 }
526 }
527
528 if (submit_contexts != 0)
529 execlists_context_unqueue(ring);
530
531 spin_unlock(&ring->execlist_lock);
532
533 WARN(submit_contexts > 2, "More than two context complete events?\n");
534 ring->next_context_status_buffer = write_pointer % 6;
535
536 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
cc53699b 537 _MASKED_FIELD(0x07 << 8, ((u32)ring->next_context_status_buffer & 0x07) << 8));
e981e7b1
TD
538}
539
ae70797d 540static int execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 541{
ae70797d 542 struct intel_engine_cs *ring = request->ring;
6d3d8274 543 struct drm_i915_gem_request *cursor;
f1ad5a1f 544 int num_elements = 0;
acdd884a 545
ae70797d 546 if (request->ctx != ring->default_context)
8ba319da 547 intel_lr_context_pin(request);
9bb1af44
JH
548
549 i915_gem_request_reference(request);
550
ae70797d 551 request->tail = request->ringbuf->tail;
2d12955a 552
b5eba372 553 spin_lock_irq(&ring->execlist_lock);
acdd884a 554
f1ad5a1f
OM
555 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
556 if (++num_elements > 2)
557 break;
558
559 if (num_elements > 2) {
6d3d8274 560 struct drm_i915_gem_request *tail_req;
f1ad5a1f
OM
561
562 tail_req = list_last_entry(&ring->execlist_queue,
6d3d8274 563 struct drm_i915_gem_request,
f1ad5a1f
OM
564 execlist_link);
565
ae70797d 566 if (request->ctx == tail_req->ctx) {
f1ad5a1f 567 WARN(tail_req->elsp_submitted != 0,
7ba717cf 568 "More than 2 already-submitted reqs queued\n");
f1ad5a1f 569 list_del(&tail_req->execlist_link);
c86ee3a9
TD
570 list_add_tail(&tail_req->execlist_link,
571 &ring->execlist_retired_req_list);
f1ad5a1f
OM
572 }
573 }
574
6d3d8274 575 list_add_tail(&request->execlist_link, &ring->execlist_queue);
f1ad5a1f 576 if (num_elements == 0)
acdd884a
MT
577 execlists_context_unqueue(ring);
578
b5eba372 579 spin_unlock_irq(&ring->execlist_lock);
acdd884a
MT
580
581 return 0;
582}
583
2f20055d 584static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
ba8b7ccb 585{
2f20055d 586 struct intel_engine_cs *ring = req->ring;
ba8b7ccb
OM
587 uint32_t flush_domains;
588 int ret;
589
590 flush_domains = 0;
591 if (ring->gpu_caches_dirty)
592 flush_domains = I915_GEM_GPU_DOMAINS;
593
7deb4d39 594 ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
595 if (ret)
596 return ret;
597
598 ring->gpu_caches_dirty = false;
599 return 0;
600}
601
535fbe82 602static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
603 struct list_head *vmas)
604{
535fbe82 605 const unsigned other_rings = ~intel_ring_flag(req->ring);
ba8b7ccb
OM
606 struct i915_vma *vma;
607 uint32_t flush_domains = 0;
608 bool flush_chipset = false;
609 int ret;
610
611 list_for_each_entry(vma, vmas, exec_list) {
612 struct drm_i915_gem_object *obj = vma->obj;
613
03ade511 614 if (obj->active & other_rings) {
91af127f 615 ret = i915_gem_object_sync(obj, req->ring, &req);
03ade511
CW
616 if (ret)
617 return ret;
618 }
ba8b7ccb
OM
619
620 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
621 flush_chipset |= i915_gem_clflush_object(obj, false);
622
623 flush_domains |= obj->base.write_domain;
624 }
625
626 if (flush_domains & I915_GEM_DOMAIN_GTT)
627 wmb();
628
629 /* Unconditionally invalidate gpu caches and ensure that we do flush
630 * any residual writes from the previous batch.
631 */
2f20055d 632 return logical_ring_invalidate_all_caches(req);
ba8b7ccb
OM
633}
634
40e895ce 635int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 636{
bc0dce3f
JH
637 int ret;
638
f3cc01f0
MK
639 request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
640
40e895ce 641 if (request->ctx != request->ring->default_context) {
8ba319da 642 ret = intel_lr_context_pin(request);
6689cb2b 643 if (ret)
bc0dce3f 644 return ret;
bc0dce3f
JH
645 }
646
bc0dce3f
JH
647 return 0;
648}
649
ae70797d 650static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
595e1eeb 651 int bytes)
bc0dce3f 652{
ae70797d
JH
653 struct intel_ringbuffer *ringbuf = req->ringbuf;
654 struct intel_engine_cs *ring = req->ring;
655 struct drm_i915_gem_request *target;
b4716185
CW
656 unsigned space;
657 int ret;
bc0dce3f
JH
658
659 if (intel_ring_space(ringbuf) >= bytes)
660 return 0;
661
79bbcc29
JH
662 /* The whole point of reserving space is to not wait! */
663 WARN_ON(ringbuf->reserved_in_use);
664
ae70797d 665 list_for_each_entry(target, &ring->request_list, list) {
bc0dce3f
JH
666 /*
667 * The request queue is per-engine, so can contain requests
668 * from multiple ringbuffers. Here, we must ignore any that
669 * aren't from the ringbuffer we're considering.
670 */
ae70797d 671 if (target->ringbuf != ringbuf)
bc0dce3f
JH
672 continue;
673
674 /* Would completion of this request free enough space? */
ae70797d 675 space = __intel_ring_space(target->postfix, ringbuf->tail,
b4716185
CW
676 ringbuf->size);
677 if (space >= bytes)
bc0dce3f 678 break;
bc0dce3f
JH
679 }
680
ae70797d 681 if (WARN_ON(&target->list == &ring->request_list))
bc0dce3f
JH
682 return -ENOSPC;
683
ae70797d 684 ret = i915_wait_request(target);
bc0dce3f
JH
685 if (ret)
686 return ret;
687
b4716185
CW
688 ringbuf->space = space;
689 return 0;
bc0dce3f
JH
690}
691
692/*
693 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 694 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
695 *
696 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
697 * really happens during submission is that the context and current tail will be placed
698 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
699 * point, the tail *inside* the context is updated and the ELSP written to.
700 */
701static void
ae70797d 702intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 703{
ae70797d 704 struct intel_engine_cs *ring = request->ring;
bc0dce3f 705
ae70797d 706 intel_logical_ring_advance(request->ringbuf);
bc0dce3f
JH
707
708 if (intel_ring_stopped(ring))
709 return;
710
ae70797d 711 execlists_context_queue(request);
bc0dce3f
JH
712}
713
79bbcc29 714static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
bc0dce3f
JH
715{
716 uint32_t __iomem *virt;
717 int rem = ringbuf->size - ringbuf->tail;
718
bc0dce3f
JH
719 virt = ringbuf->virtual_start + ringbuf->tail;
720 rem /= 4;
721 while (rem--)
722 iowrite32(MI_NOOP, virt++);
723
724 ringbuf->tail = 0;
725 intel_ring_update_space(ringbuf);
bc0dce3f
JH
726}
727
ae70797d 728static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
bc0dce3f 729{
ae70797d 730 struct intel_ringbuffer *ringbuf = req->ringbuf;
79bbcc29
JH
731 int remain_usable = ringbuf->effective_size - ringbuf->tail;
732 int remain_actual = ringbuf->size - ringbuf->tail;
733 int ret, total_bytes, wait_bytes = 0;
734 bool need_wrap = false;
29b1b415 735
79bbcc29
JH
736 if (ringbuf->reserved_in_use)
737 total_bytes = bytes;
738 else
739 total_bytes = bytes + ringbuf->reserved_size;
29b1b415 740
79bbcc29
JH
741 if (unlikely(bytes > remain_usable)) {
742 /*
743 * Not enough space for the basic request. So need to flush
744 * out the remainder and then wait for base + reserved.
745 */
746 wait_bytes = remain_actual + total_bytes;
747 need_wrap = true;
748 } else {
749 if (unlikely(total_bytes > remain_usable)) {
750 /*
751 * The base request will fit but the reserved space
752 * falls off the end. So only need to to wait for the
753 * reserved size after flushing out the remainder.
754 */
755 wait_bytes = remain_actual + ringbuf->reserved_size;
756 need_wrap = true;
757 } else if (total_bytes > ringbuf->space) {
758 /* No wrapping required, just waiting. */
759 wait_bytes = total_bytes;
29b1b415 760 }
bc0dce3f
JH
761 }
762
79bbcc29
JH
763 if (wait_bytes) {
764 ret = logical_ring_wait_for_space(req, wait_bytes);
bc0dce3f
JH
765 if (unlikely(ret))
766 return ret;
79bbcc29
JH
767
768 if (need_wrap)
769 __wrap_ring_buffer(ringbuf);
bc0dce3f
JH
770 }
771
772 return 0;
773}
774
775/**
776 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
777 *
4d616a29 778 * @request: The request to start some new work for
4d78c8dc 779 * @ctx: Logical ring context whose ringbuffer is being prepared.
bc0dce3f
JH
780 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
781 *
782 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
783 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
784 * and also preallocates a request (every workload submission is still mediated through
785 * requests, same as it did with legacy ringbuffer submission).
786 *
787 * Return: non-zero if the ringbuffer is not ready to be written to.
788 */
3bbaba0c 789int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
bc0dce3f 790{
4d616a29 791 struct drm_i915_private *dev_priv;
bc0dce3f
JH
792 int ret;
793
4d616a29
JH
794 WARN_ON(req == NULL);
795 dev_priv = req->ring->dev->dev_private;
796
bc0dce3f
JH
797 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
798 dev_priv->mm.interruptible);
799 if (ret)
800 return ret;
801
ae70797d 802 ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
bc0dce3f
JH
803 if (ret)
804 return ret;
805
4d616a29 806 req->ringbuf->space -= num_dwords * sizeof(uint32_t);
bc0dce3f
JH
807 return 0;
808}
809
ccd98fe4
JH
810int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
811{
812 /*
813 * The first call merely notes the reserve request and is common for
814 * all back ends. The subsequent localised _begin() call actually
815 * ensures that the reservation is available. Without the begin, if
816 * the request creator immediately submitted the request without
817 * adding any commands to it then there might not actually be
818 * sufficient room for the submission commands.
819 */
820 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
821
822 return intel_logical_ring_begin(request, 0);
823}
824
73e4d07f
OM
825/**
826 * execlists_submission() - submit a batchbuffer for execution, Execlists style
827 * @dev: DRM device.
828 * @file: DRM file.
829 * @ring: Engine Command Streamer to submit to.
830 * @ctx: Context to employ for this submission.
831 * @args: execbuffer call arguments.
832 * @vmas: list of vmas.
833 * @batch_obj: the batchbuffer to submit.
834 * @exec_start: batchbuffer start virtual address pointer.
8e004efc 835 * @dispatch_flags: translated execbuffer call flags.
73e4d07f
OM
836 *
837 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
838 * away the submission details of the execbuffer ioctl call.
839 *
840 * Return: non-zero if the submission fails.
841 */
5f19e2bf 842int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 843 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 844 struct list_head *vmas)
454afebd 845{
5f19e2bf
JH
846 struct drm_device *dev = params->dev;
847 struct intel_engine_cs *ring = params->ring;
ba8b7ccb 848 struct drm_i915_private *dev_priv = dev->dev_private;
5f19e2bf
JH
849 struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
850 u64 exec_start;
ba8b7ccb
OM
851 int instp_mode;
852 u32 instp_mask;
853 int ret;
854
855 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
856 instp_mask = I915_EXEC_CONSTANTS_MASK;
857 switch (instp_mode) {
858 case I915_EXEC_CONSTANTS_REL_GENERAL:
859 case I915_EXEC_CONSTANTS_ABSOLUTE:
860 case I915_EXEC_CONSTANTS_REL_SURFACE:
861 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
862 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
863 return -EINVAL;
864 }
865
866 if (instp_mode != dev_priv->relative_constants_mode) {
867 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
868 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
869 return -EINVAL;
870 }
871
872 /* The HW changed the meaning on this bit on gen6 */
873 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
874 }
875 break;
876 default:
877 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
878 return -EINVAL;
879 }
880
881 if (args->num_cliprects != 0) {
882 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
883 return -EINVAL;
884 } else {
885 if (args->DR4 == 0xffffffff) {
886 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
887 args->DR4 = 0;
888 }
889
890 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
891 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
892 return -EINVAL;
893 }
894 }
895
896 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
897 DRM_DEBUG("sol reset is gen7 only\n");
898 return -EINVAL;
899 }
900
535fbe82 901 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
902 if (ret)
903 return ret;
904
905 if (ring == &dev_priv->ring[RCS] &&
906 instp_mode != dev_priv->relative_constants_mode) {
4d616a29 907 ret = intel_logical_ring_begin(params->request, 4);
ba8b7ccb
OM
908 if (ret)
909 return ret;
910
911 intel_logical_ring_emit(ringbuf, MI_NOOP);
912 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
913 intel_logical_ring_emit(ringbuf, INSTPM);
914 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
915 intel_logical_ring_advance(ringbuf);
916
917 dev_priv->relative_constants_mode = instp_mode;
918 }
919
5f19e2bf
JH
920 exec_start = params->batch_obj_vm_offset +
921 args->batch_start_offset;
922
be795fc1 923 ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
ba8b7ccb
OM
924 if (ret)
925 return ret;
926
95c24161 927 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 928
8a8edb59 929 i915_gem_execbuffer_move_to_active(vmas, params->request);
adeca76d 930 i915_gem_execbuffer_retire_commands(params);
ba8b7ccb 931
454afebd
OM
932 return 0;
933}
934
c86ee3a9
TD
935void intel_execlists_retire_requests(struct intel_engine_cs *ring)
936{
6d3d8274 937 struct drm_i915_gem_request *req, *tmp;
c86ee3a9
TD
938 struct list_head retired_list;
939
940 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
941 if (list_empty(&ring->execlist_retired_req_list))
942 return;
943
944 INIT_LIST_HEAD(&retired_list);
b5eba372 945 spin_lock_irq(&ring->execlist_lock);
c86ee3a9 946 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
b5eba372 947 spin_unlock_irq(&ring->execlist_lock);
c86ee3a9
TD
948
949 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
6d3d8274 950 struct intel_context *ctx = req->ctx;
7ba717cf
TD
951 struct drm_i915_gem_object *ctx_obj =
952 ctx->engine[ring->id].state;
953
954 if (ctx_obj && (ctx != ring->default_context))
8ba319da 955 intel_lr_context_unpin(req);
c86ee3a9 956 list_del(&req->execlist_link);
f8210795 957 i915_gem_request_unreference(req);
c86ee3a9
TD
958 }
959}
960
454afebd
OM
961void intel_logical_ring_stop(struct intel_engine_cs *ring)
962{
9832b9da
OM
963 struct drm_i915_private *dev_priv = ring->dev->dev_private;
964 int ret;
965
966 if (!intel_ring_initialized(ring))
967 return;
968
969 ret = intel_ring_idle(ring);
970 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
971 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
972 ring->name, ret);
973
974 /* TODO: Is this correct with Execlists enabled? */
975 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
976 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
977 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
978 return;
979 }
980 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
981}
982
4866d729 983int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
48e29f55 984{
4866d729 985 struct intel_engine_cs *ring = req->ring;
48e29f55
OM
986 int ret;
987
988 if (!ring->gpu_caches_dirty)
989 return 0;
990
7deb4d39 991 ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
992 if (ret)
993 return ret;
994
995 ring->gpu_caches_dirty = false;
996 return 0;
997}
998
8ba319da 999static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
dcb4c12a 1000{
8ba319da
MK
1001 struct intel_engine_cs *ring = rq->ring;
1002 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1003 struct intel_ringbuffer *ringbuf = rq->ringbuf;
dcb4c12a
OM
1004 int ret = 0;
1005
1006 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
8ba319da 1007 if (rq->ctx->engine[ring->id].pin_count++ == 0) {
dcb4c12a
OM
1008 ret = i915_gem_obj_ggtt_pin(ctx_obj,
1009 GEN8_LR_CONTEXT_ALIGN, 0);
1010 if (ret)
a7cbedec 1011 goto reset_pin_count;
7ba717cf
TD
1012
1013 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1014 if (ret)
1015 goto unpin_ctx_obj;
dcb4c12a
OM
1016 }
1017
7ba717cf
TD
1018 return ret;
1019
1020unpin_ctx_obj:
1021 i915_gem_object_ggtt_unpin(ctx_obj);
a7cbedec 1022reset_pin_count:
8ba319da 1023 rq->ctx->engine[ring->id].pin_count = 0;
7ba717cf 1024
dcb4c12a
OM
1025 return ret;
1026}
1027
8ba319da 1028void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
dcb4c12a 1029{
8ba319da
MK
1030 struct intel_engine_cs *ring = rq->ring;
1031 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1032 struct intel_ringbuffer *ringbuf = rq->ringbuf;
dcb4c12a
OM
1033
1034 if (ctx_obj) {
1035 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
8ba319da 1036 if (--rq->ctx->engine[ring->id].pin_count == 0) {
7ba717cf 1037 intel_unpin_ringbuffer_obj(ringbuf);
dcb4c12a 1038 i915_gem_object_ggtt_unpin(ctx_obj);
7ba717cf 1039 }
dcb4c12a
OM
1040 }
1041}
1042
e2be4faf 1043static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
1044{
1045 int ret, i;
e2be4faf
JH
1046 struct intel_engine_cs *ring = req->ring;
1047 struct intel_ringbuffer *ringbuf = req->ringbuf;
771b9a53
MT
1048 struct drm_device *dev = ring->dev;
1049 struct drm_i915_private *dev_priv = dev->dev_private;
1050 struct i915_workarounds *w = &dev_priv->workarounds;
1051
e6c1abb7 1052 if (WARN_ON_ONCE(w->count == 0))
771b9a53
MT
1053 return 0;
1054
1055 ring->gpu_caches_dirty = true;
4866d729 1056 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1057 if (ret)
1058 return ret;
1059
4d616a29 1060 ret = intel_logical_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1061 if (ret)
1062 return ret;
1063
1064 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1065 for (i = 0; i < w->count; i++) {
1066 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1067 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1068 }
1069 intel_logical_ring_emit(ringbuf, MI_NOOP);
1070
1071 intel_logical_ring_advance(ringbuf);
1072
1073 ring->gpu_caches_dirty = true;
4866d729 1074 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1075 if (ret)
1076 return ret;
1077
1078 return 0;
1079}
1080
83b8a982 1081#define wa_ctx_emit(batch, index, cmd) \
17ee950d 1082 do { \
83b8a982
AS
1083 int __index = (index)++; \
1084 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
1085 return -ENOSPC; \
1086 } \
83b8a982 1087 batch[__index] = (cmd); \
17ee950d
AS
1088 } while (0)
1089
9e000847
AS
1090
1091/*
1092 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1093 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1094 * but there is a slight complication as this is applied in WA batch where the
1095 * values are only initialized once so we cannot take register value at the
1096 * beginning and reuse it further; hence we save its value to memory, upload a
1097 * constant value with bit21 set and then we restore it back with the saved value.
1098 * To simplify the WA, a constant value is formed by using the default value
1099 * of this register. This shouldn't be a problem because we are only modifying
1100 * it for a short period and this batch in non-premptible. We can ofcourse
1101 * use additional instructions that read the actual value of the register
1102 * at that time and set our bit of interest but it makes the WA complicated.
1103 *
1104 * This WA is also required for Gen9 so extracting as a function avoids
1105 * code duplication.
1106 */
1107static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1108 uint32_t *const batch,
1109 uint32_t index)
1110{
1111 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1112
a4106a78
AS
1113 /*
1114 * WaDisableLSQCROPERFforOCL:skl
1115 * This WA is implemented in skl_init_clock_gating() but since
1116 * this batch updates GEN8_L3SQCREG4 with default value we need to
1117 * set this bit here to retain the WA during flush.
1118 */
1119 if (IS_SKYLAKE(ring->dev) && INTEL_REVID(ring->dev) <= SKL_REVID_E0)
1120 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1121
83b8a982
AS
1122 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8(1) |
1123 MI_SRM_LRM_GLOBAL_GTT));
1124 wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1125 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1126 wa_ctx_emit(batch, index, 0);
1127
1128 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1129 wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1130 wa_ctx_emit(batch, index, l3sqc4_flush);
1131
1132 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1133 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1134 PIPE_CONTROL_DC_FLUSH_ENABLE));
1135 wa_ctx_emit(batch, index, 0);
1136 wa_ctx_emit(batch, index, 0);
1137 wa_ctx_emit(batch, index, 0);
1138 wa_ctx_emit(batch, index, 0);
1139
1140 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8(1) |
1141 MI_SRM_LRM_GLOBAL_GTT));
1142 wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1143 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1144 wa_ctx_emit(batch, index, 0);
9e000847
AS
1145
1146 return index;
1147}
1148
17ee950d
AS
1149static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1150 uint32_t offset,
1151 uint32_t start_alignment)
1152{
1153 return wa_ctx->offset = ALIGN(offset, start_alignment);
1154}
1155
1156static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1157 uint32_t offset,
1158 uint32_t size_alignment)
1159{
1160 wa_ctx->size = offset - wa_ctx->offset;
1161
1162 WARN(wa_ctx->size % size_alignment,
1163 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1164 wa_ctx->size, size_alignment);
1165 return 0;
1166}
1167
1168/**
1169 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1170 *
1171 * @ring: only applicable for RCS
1172 * @wa_ctx: structure representing wa_ctx
1173 * offset: specifies start of the batch, should be cache-aligned. This is updated
1174 * with the offset value received as input.
1175 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1176 * @batch: page in which WA are loaded
1177 * @offset: This field specifies the start of the batch, it should be
1178 * cache-aligned otherwise it is adjusted accordingly.
1179 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1180 * initialized at the beginning and shared across all contexts but this field
1181 * helps us to have multiple batches at different offsets and select them based
1182 * on a criteria. At the moment this batch always start at the beginning of the page
1183 * and at this point we don't have multiple wa_ctx batch buffers.
1184 *
1185 * The number of WA applied are not known at the beginning; we use this field
1186 * to return the no of DWORDS written.
4d78c8dc 1187 *
17ee950d
AS
1188 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1189 * so it adds NOOPs as padding to make it cacheline aligned.
1190 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1191 * makes a complete batch buffer.
1192 *
1193 * Return: non-zero if we exceed the PAGE_SIZE limit.
1194 */
1195
1196static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1197 struct i915_wa_ctx_bb *wa_ctx,
1198 uint32_t *const batch,
1199 uint32_t *offset)
1200{
0160f055 1201 uint32_t scratch_addr;
17ee950d
AS
1202 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1203
7ad00d1a 1204 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1205 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1206
c82435bb
AS
1207 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1208 if (IS_BROADWELL(ring->dev)) {
9e000847
AS
1209 index = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1210 if (index < 0)
1211 return index;
c82435bb
AS
1212 }
1213
0160f055
AS
1214 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1215 /* Actual scratch location is at 128 bytes offset */
1216 scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1217
83b8a982
AS
1218 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1219 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1220 PIPE_CONTROL_GLOBAL_GTT_IVB |
1221 PIPE_CONTROL_CS_STALL |
1222 PIPE_CONTROL_QW_WRITE));
1223 wa_ctx_emit(batch, index, scratch_addr);
1224 wa_ctx_emit(batch, index, 0);
1225 wa_ctx_emit(batch, index, 0);
1226 wa_ctx_emit(batch, index, 0);
0160f055 1227
17ee950d
AS
1228 /* Pad to end of cacheline */
1229 while (index % CACHELINE_DWORDS)
83b8a982 1230 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1231
1232 /*
1233 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1234 * execution depends on the length specified in terms of cache lines
1235 * in the register CTX_RCS_INDIRECT_CTX
1236 */
1237
1238 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1239}
1240
1241/**
1242 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1243 *
1244 * @ring: only applicable for RCS
1245 * @wa_ctx: structure representing wa_ctx
1246 * offset: specifies start of the batch, should be cache-aligned.
1247 * size: size of the batch in DWORDS but HW expects in terms of cachelines
4d78c8dc 1248 * @batch: page in which WA are loaded
17ee950d
AS
1249 * @offset: This field specifies the start of this batch.
1250 * This batch is started immediately after indirect_ctx batch. Since we ensure
1251 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1252 *
1253 * The number of DWORDS written are returned using this field.
1254 *
1255 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1256 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1257 */
1258static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1259 struct i915_wa_ctx_bb *wa_ctx,
1260 uint32_t *const batch,
1261 uint32_t *offset)
1262{
1263 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1264
7ad00d1a 1265 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1266 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1267
83b8a982 1268 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1269
1270 return wa_ctx_end(wa_ctx, *offset = index, 1);
1271}
1272
0504cffc
AS
1273static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1274 struct i915_wa_ctx_bb *wa_ctx,
1275 uint32_t *const batch,
1276 uint32_t *offset)
1277{
a4106a78 1278 int ret;
0907c8f7 1279 struct drm_device *dev = ring->dev;
0504cffc
AS
1280 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1281
0907c8f7
AS
1282 /* WaDisableCtxRestoreArbitration:skl,bxt */
1283 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1284 (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1285 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1286
a4106a78
AS
1287 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1288 ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1289 if (ret < 0)
1290 return ret;
1291 index = ret;
1292
0504cffc
AS
1293 /* Pad to end of cacheline */
1294 while (index % CACHELINE_DWORDS)
1295 wa_ctx_emit(batch, index, MI_NOOP);
1296
1297 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1298}
1299
1300static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1301 struct i915_wa_ctx_bb *wa_ctx,
1302 uint32_t *const batch,
1303 uint32_t *offset)
1304{
0907c8f7 1305 struct drm_device *dev = ring->dev;
0504cffc
AS
1306 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1307
9b01435d
AS
1308 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1309 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_B0)) ||
1310 (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0))) {
1311 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1312 wa_ctx_emit(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1313 wa_ctx_emit(batch, index,
1314 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1315 wa_ctx_emit(batch, index, MI_NOOP);
1316 }
1317
0907c8f7
AS
1318 /* WaDisableCtxRestoreArbitration:skl,bxt */
1319 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1320 (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1321 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1322
0504cffc
AS
1323 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1324
1325 return wa_ctx_end(wa_ctx, *offset = index, 1);
1326}
1327
17ee950d
AS
1328static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1329{
1330 int ret;
1331
1332 ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1333 if (!ring->wa_ctx.obj) {
1334 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1335 return -ENOMEM;
1336 }
1337
1338 ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1339 if (ret) {
1340 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1341 ret);
1342 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1343 return ret;
1344 }
1345
1346 return 0;
1347}
1348
1349static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1350{
1351 if (ring->wa_ctx.obj) {
1352 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1353 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1354 ring->wa_ctx.obj = NULL;
1355 }
1356}
1357
1358static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1359{
1360 int ret;
1361 uint32_t *batch;
1362 uint32_t offset;
1363 struct page *page;
1364 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1365
1366 WARN_ON(ring->id != RCS);
1367
5e60d790 1368 /* update this when WA for higher Gen are added */
0504cffc
AS
1369 if (INTEL_INFO(ring->dev)->gen > 9) {
1370 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1371 INTEL_INFO(ring->dev)->gen);
5e60d790 1372 return 0;
0504cffc 1373 }
5e60d790 1374
c4db7599
AS
1375 /* some WA perform writes to scratch page, ensure it is valid */
1376 if (ring->scratch.obj == NULL) {
1377 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1378 return -EINVAL;
1379 }
1380
17ee950d
AS
1381 ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1382 if (ret) {
1383 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1384 return ret;
1385 }
1386
1387 page = i915_gem_object_get_page(wa_ctx->obj, 0);
1388 batch = kmap_atomic(page);
1389 offset = 0;
1390
1391 if (INTEL_INFO(ring->dev)->gen == 8) {
1392 ret = gen8_init_indirectctx_bb(ring,
1393 &wa_ctx->indirect_ctx,
1394 batch,
1395 &offset);
1396 if (ret)
1397 goto out;
1398
1399 ret = gen8_init_perctx_bb(ring,
1400 &wa_ctx->per_ctx,
1401 batch,
1402 &offset);
1403 if (ret)
1404 goto out;
0504cffc
AS
1405 } else if (INTEL_INFO(ring->dev)->gen == 9) {
1406 ret = gen9_init_indirectctx_bb(ring,
1407 &wa_ctx->indirect_ctx,
1408 batch,
1409 &offset);
1410 if (ret)
1411 goto out;
1412
1413 ret = gen9_init_perctx_bb(ring,
1414 &wa_ctx->per_ctx,
1415 batch,
1416 &offset);
1417 if (ret)
1418 goto out;
17ee950d
AS
1419 }
1420
1421out:
1422 kunmap_atomic(batch);
1423 if (ret)
1424 lrc_destroy_wa_ctx_obj(ring);
1425
1426 return ret;
1427}
1428
9b1136d5
OM
1429static int gen8_init_common_ring(struct intel_engine_cs *ring)
1430{
1431 struct drm_device *dev = ring->dev;
1432 struct drm_i915_private *dev_priv = dev->dev_private;
1433
73d477f6
OM
1434 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1435 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1436
2e5356da
AS
1437 if (ring->status_page.obj) {
1438 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1439 (u32)ring->status_page.gfx_addr);
1440 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1441 }
1442
9b1136d5
OM
1443 I915_WRITE(RING_MODE_GEN7(ring),
1444 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1445 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1446 POSTING_READ(RING_MODE_GEN7(ring));
c0a03a2e 1447 ring->next_context_status_buffer = 0;
9b1136d5
OM
1448 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1449
1450 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1451
1452 return 0;
1453}
1454
1455static int gen8_init_render_ring(struct intel_engine_cs *ring)
1456{
1457 struct drm_device *dev = ring->dev;
1458 struct drm_i915_private *dev_priv = dev->dev_private;
1459 int ret;
1460
1461 ret = gen8_init_common_ring(ring);
1462 if (ret)
1463 return ret;
1464
1465 /* We need to disable the AsyncFlip performance optimisations in order
1466 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1467 * programmed to '1' on all products.
1468 *
1469 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1470 */
1471 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1472
9b1136d5
OM
1473 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1474
771b9a53 1475 return init_workarounds_ring(ring);
9b1136d5
OM
1476}
1477
82ef822e
DL
1478static int gen9_init_render_ring(struct intel_engine_cs *ring)
1479{
1480 int ret;
1481
1482 ret = gen8_init_common_ring(ring);
1483 if (ret)
1484 return ret;
1485
1486 return init_workarounds_ring(ring);
1487}
1488
7a01a0a2
MT
1489static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1490{
1491 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1492 struct intel_engine_cs *ring = req->ring;
1493 struct intel_ringbuffer *ringbuf = req->ringbuf;
1494 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1495 int i, ret;
1496
1497 ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1498 if (ret)
1499 return ret;
1500
1501 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1502 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1503 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1504
1505 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1506 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1507 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1508 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1509 }
1510
1511 intel_logical_ring_emit(ringbuf, MI_NOOP);
1512 intel_logical_ring_advance(ringbuf);
1513
1514 return 0;
1515}
1516
be795fc1 1517static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
8e004efc 1518 u64 offset, unsigned dispatch_flags)
15648585 1519{
be795fc1 1520 struct intel_ringbuffer *ringbuf = req->ringbuf;
8e004efc 1521 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1522 int ret;
1523
7a01a0a2
MT
1524 /* Don't rely in hw updating PDPs, specially in lite-restore.
1525 * Ideally, we should set Force PD Restore in ctx descriptor,
1526 * but we can't. Force Restore would be a second option, but
1527 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1528 * not idle). PML4 is allocated during ppgtt init so this is
1529 * not needed in 48-bit.*/
7a01a0a2
MT
1530 if (req->ctx->ppgtt &&
1531 (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
2dba3239
MT
1532 if (!USES_FULL_48BIT_PPGTT(req->i915)) {
1533 ret = intel_logical_ring_emit_pdps(req);
1534 if (ret)
1535 return ret;
1536 }
7a01a0a2
MT
1537
1538 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1539 }
1540
4d616a29 1541 ret = intel_logical_ring_begin(req, 4);
15648585
OM
1542 if (ret)
1543 return ret;
1544
1545 /* FIXME(BDW): Address space and security selectors. */
6922528a
AJ
1546 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1547 (ppgtt<<8) |
1548 (dispatch_flags & I915_DISPATCH_RS ?
1549 MI_BATCH_RESOURCE_STREAMER : 0));
15648585
OM
1550 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1551 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1552 intel_logical_ring_emit(ringbuf, MI_NOOP);
1553 intel_logical_ring_advance(ringbuf);
1554
1555 return 0;
1556}
1557
73d477f6
OM
1558static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1559{
1560 struct drm_device *dev = ring->dev;
1561 struct drm_i915_private *dev_priv = dev->dev_private;
1562 unsigned long flags;
1563
7cd512f1 1564 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1565 return false;
1566
1567 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1568 if (ring->irq_refcount++ == 0) {
1569 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1570 POSTING_READ(RING_IMR(ring->mmio_base));
1571 }
1572 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1573
1574 return true;
1575}
1576
1577static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1578{
1579 struct drm_device *dev = ring->dev;
1580 struct drm_i915_private *dev_priv = dev->dev_private;
1581 unsigned long flags;
1582
1583 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1584 if (--ring->irq_refcount == 0) {
1585 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1586 POSTING_READ(RING_IMR(ring->mmio_base));
1587 }
1588 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1589}
1590
7deb4d39 1591static int gen8_emit_flush(struct drm_i915_gem_request *request,
4712274c
OM
1592 u32 invalidate_domains,
1593 u32 unused)
1594{
7deb4d39 1595 struct intel_ringbuffer *ringbuf = request->ringbuf;
4712274c
OM
1596 struct intel_engine_cs *ring = ringbuf->ring;
1597 struct drm_device *dev = ring->dev;
1598 struct drm_i915_private *dev_priv = dev->dev_private;
1599 uint32_t cmd;
1600 int ret;
1601
4d616a29 1602 ret = intel_logical_ring_begin(request, 4);
4712274c
OM
1603 if (ret)
1604 return ret;
1605
1606 cmd = MI_FLUSH_DW + 1;
1607
f0a1fb10
CW
1608 /* We always require a command barrier so that subsequent
1609 * commands, such as breadcrumb interrupts, are strictly ordered
1610 * wrt the contents of the write cache being flushed to memory
1611 * (and thus being coherent from the CPU).
1612 */
1613 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1614
1615 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1616 cmd |= MI_INVALIDATE_TLB;
1617 if (ring == &dev_priv->ring[VCS])
1618 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1619 }
1620
1621 intel_logical_ring_emit(ringbuf, cmd);
1622 intel_logical_ring_emit(ringbuf,
1623 I915_GEM_HWS_SCRATCH_ADDR |
1624 MI_FLUSH_DW_USE_GTT);
1625 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1626 intel_logical_ring_emit(ringbuf, 0); /* value */
1627 intel_logical_ring_advance(ringbuf);
1628
1629 return 0;
1630}
1631
7deb4d39 1632static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
4712274c
OM
1633 u32 invalidate_domains,
1634 u32 flush_domains)
1635{
7deb4d39 1636 struct intel_ringbuffer *ringbuf = request->ringbuf;
4712274c
OM
1637 struct intel_engine_cs *ring = ringbuf->ring;
1638 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
9647ff36 1639 bool vf_flush_wa;
4712274c
OM
1640 u32 flags = 0;
1641 int ret;
1642
1643 flags |= PIPE_CONTROL_CS_STALL;
1644
1645 if (flush_domains) {
1646 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1647 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1648 }
1649
1650 if (invalidate_domains) {
1651 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1652 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1653 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1654 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1655 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1656 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1657 flags |= PIPE_CONTROL_QW_WRITE;
1658 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1659 }
1660
9647ff36
ID
1661 /*
1662 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1663 * control.
1664 */
1665 vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1666 flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1667
4d616a29 1668 ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
4712274c
OM
1669 if (ret)
1670 return ret;
1671
9647ff36
ID
1672 if (vf_flush_wa) {
1673 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1674 intel_logical_ring_emit(ringbuf, 0);
1675 intel_logical_ring_emit(ringbuf, 0);
1676 intel_logical_ring_emit(ringbuf, 0);
1677 intel_logical_ring_emit(ringbuf, 0);
1678 intel_logical_ring_emit(ringbuf, 0);
1679 }
1680
4712274c
OM
1681 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1682 intel_logical_ring_emit(ringbuf, flags);
1683 intel_logical_ring_emit(ringbuf, scratch_addr);
1684 intel_logical_ring_emit(ringbuf, 0);
1685 intel_logical_ring_emit(ringbuf, 0);
1686 intel_logical_ring_emit(ringbuf, 0);
1687 intel_logical_ring_advance(ringbuf);
1688
1689 return 0;
1690}
1691
e94e37ad
OM
1692static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1693{
1694 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1695}
1696
1697static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1698{
1699 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1700}
1701
c4e76638 1702static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1703{
c4e76638 1704 struct intel_ringbuffer *ringbuf = request->ringbuf;
4da46e1e
OM
1705 struct intel_engine_cs *ring = ringbuf->ring;
1706 u32 cmd;
1707 int ret;
1708
53292cdb
MT
1709 /*
1710 * Reserve space for 2 NOOPs at the end of each request to be
1711 * used as a workaround for not being allowed to do lite
1712 * restore with HEAD==TAIL (WaIdleLiteRestore).
1713 */
4d616a29 1714 ret = intel_logical_ring_begin(request, 8);
4da46e1e
OM
1715 if (ret)
1716 return ret;
1717
8edfbb8b 1718 cmd = MI_STORE_DWORD_IMM_GEN4;
4da46e1e
OM
1719 cmd |= MI_GLOBAL_GTT;
1720
1721 intel_logical_ring_emit(ringbuf, cmd);
1722 intel_logical_ring_emit(ringbuf,
1723 (ring->status_page.gfx_addr +
1724 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1725 intel_logical_ring_emit(ringbuf, 0);
c4e76638 1726 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
4da46e1e
OM
1727 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1728 intel_logical_ring_emit(ringbuf, MI_NOOP);
ae70797d 1729 intel_logical_ring_advance_and_submit(request);
4da46e1e 1730
53292cdb
MT
1731 /*
1732 * Here we add two extra NOOPs as padding to avoid
1733 * lite restore of a context with HEAD==TAIL.
1734 */
1735 intel_logical_ring_emit(ringbuf, MI_NOOP);
1736 intel_logical_ring_emit(ringbuf, MI_NOOP);
1737 intel_logical_ring_advance(ringbuf);
1738
4da46e1e
OM
1739 return 0;
1740}
1741
be01363f 1742static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1743{
cef437ad 1744 struct render_state so;
cef437ad
DL
1745 int ret;
1746
be01363f 1747 ret = i915_gem_render_state_prepare(req->ring, &so);
cef437ad
DL
1748 if (ret)
1749 return ret;
1750
1751 if (so.rodata == NULL)
1752 return 0;
1753
be795fc1 1754 ret = req->ring->emit_bb_start(req, so.ggtt_offset,
be01363f 1755 I915_DISPATCH_SECURE);
cef437ad
DL
1756 if (ret)
1757 goto out;
1758
84e81020
AS
1759 ret = req->ring->emit_bb_start(req,
1760 (so.ggtt_offset + so.aux_batch_offset),
1761 I915_DISPATCH_SECURE);
1762 if (ret)
1763 goto out;
1764
b2af0376 1765 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1766
cef437ad
DL
1767out:
1768 i915_gem_render_state_fini(&so);
1769 return ret;
1770}
1771
8753181e 1772static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1773{
1774 int ret;
1775
e2be4faf 1776 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1777 if (ret)
1778 return ret;
1779
3bbaba0c
PA
1780 ret = intel_rcs_context_init_mocs(req);
1781 /*
1782 * Failing to program the MOCS is non-fatal.The system will not
1783 * run at peak performance. So generate an error and carry on.
1784 */
1785 if (ret)
1786 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1787
be01363f 1788 return intel_lr_context_render_state_init(req);
e7778be1
TD
1789}
1790
73e4d07f
OM
1791/**
1792 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1793 *
1794 * @ring: Engine Command Streamer.
1795 *
1796 */
454afebd
OM
1797void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1798{
6402c330 1799 struct drm_i915_private *dev_priv;
9832b9da 1800
48d82387
OM
1801 if (!intel_ring_initialized(ring))
1802 return;
1803
6402c330
JH
1804 dev_priv = ring->dev->dev_private;
1805
9832b9da
OM
1806 intel_logical_ring_stop(ring);
1807 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
48d82387
OM
1808
1809 if (ring->cleanup)
1810 ring->cleanup(ring);
1811
1812 i915_cmd_parser_fini_ring(ring);
06fbca71 1813 i915_gem_batch_pool_fini(&ring->batch_pool);
48d82387
OM
1814
1815 if (ring->status_page.obj) {
1816 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1817 ring->status_page.obj = NULL;
1818 }
17ee950d
AS
1819
1820 lrc_destroy_wa_ctx_obj(ring);
454afebd
OM
1821}
1822
1823static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1824{
48d82387 1825 int ret;
48d82387
OM
1826
1827 /* Intentionally left blank. */
1828 ring->buffer = NULL;
1829
1830 ring->dev = dev;
1831 INIT_LIST_HEAD(&ring->active_list);
1832 INIT_LIST_HEAD(&ring->request_list);
06fbca71 1833 i915_gem_batch_pool_init(dev, &ring->batch_pool);
48d82387
OM
1834 init_waitqueue_head(&ring->irq_queue);
1835
acdd884a 1836 INIT_LIST_HEAD(&ring->execlist_queue);
c86ee3a9 1837 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
acdd884a
MT
1838 spin_lock_init(&ring->execlist_lock);
1839
48d82387
OM
1840 ret = i915_cmd_parser_init_ring(ring);
1841 if (ret)
1842 return ret;
1843
564ddb2f
OM
1844 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1845
1846 return ret;
454afebd
OM
1847}
1848
1849static int logical_render_ring_init(struct drm_device *dev)
1850{
1851 struct drm_i915_private *dev_priv = dev->dev_private;
1852 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
99be1dfe 1853 int ret;
454afebd
OM
1854
1855 ring->name = "render ring";
1856 ring->id = RCS;
1857 ring->mmio_base = RENDER_RING_BASE;
1858 ring->irq_enable_mask =
1859 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
73d477f6
OM
1860 ring->irq_keep_mask =
1861 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1862 if (HAS_L3_DPF(dev))
1863 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 1864
82ef822e
DL
1865 if (INTEL_INFO(dev)->gen >= 9)
1866 ring->init_hw = gen9_init_render_ring;
1867 else
1868 ring->init_hw = gen8_init_render_ring;
e7778be1 1869 ring->init_context = gen8_init_rcs_context;
9b1136d5 1870 ring->cleanup = intel_fini_pipe_control;
e94e37ad
OM
1871 ring->get_seqno = gen8_get_seqno;
1872 ring->set_seqno = gen8_set_seqno;
4da46e1e 1873 ring->emit_request = gen8_emit_request;
4712274c 1874 ring->emit_flush = gen8_emit_flush_render;
73d477f6
OM
1875 ring->irq_get = gen8_logical_ring_get_irq;
1876 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1877 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1878
99be1dfe 1879 ring->dev = dev;
c4db7599
AS
1880
1881 ret = intel_init_pipe_control(ring);
99be1dfe
DV
1882 if (ret)
1883 return ret;
1884
17ee950d
AS
1885 ret = intel_init_workaround_bb(ring);
1886 if (ret) {
1887 /*
1888 * We continue even if we fail to initialize WA batch
1889 * because we only expect rare glitches but nothing
1890 * critical to prevent us from using GPU
1891 */
1892 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1893 ret);
1894 }
1895
c4db7599
AS
1896 ret = logical_ring_init(dev, ring);
1897 if (ret) {
17ee950d 1898 lrc_destroy_wa_ctx_obj(ring);
c4db7599 1899 }
17ee950d
AS
1900
1901 return ret;
454afebd
OM
1902}
1903
1904static int logical_bsd_ring_init(struct drm_device *dev)
1905{
1906 struct drm_i915_private *dev_priv = dev->dev_private;
1907 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1908
1909 ring->name = "bsd ring";
1910 ring->id = VCS;
1911 ring->mmio_base = GEN6_BSD_RING_BASE;
1912 ring->irq_enable_mask =
1913 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
73d477f6
OM
1914 ring->irq_keep_mask =
1915 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
454afebd 1916
ecfe00d8 1917 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
1918 ring->get_seqno = gen8_get_seqno;
1919 ring->set_seqno = gen8_set_seqno;
4da46e1e 1920 ring->emit_request = gen8_emit_request;
4712274c 1921 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1922 ring->irq_get = gen8_logical_ring_get_irq;
1923 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1924 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1925
454afebd
OM
1926 return logical_ring_init(dev, ring);
1927}
1928
1929static int logical_bsd2_ring_init(struct drm_device *dev)
1930{
1931 struct drm_i915_private *dev_priv = dev->dev_private;
1932 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1933
1934 ring->name = "bds2 ring";
1935 ring->id = VCS2;
1936 ring->mmio_base = GEN8_BSD2_RING_BASE;
1937 ring->irq_enable_mask =
1938 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
73d477f6
OM
1939 ring->irq_keep_mask =
1940 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
454afebd 1941
ecfe00d8 1942 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
1943 ring->get_seqno = gen8_get_seqno;
1944 ring->set_seqno = gen8_set_seqno;
4da46e1e 1945 ring->emit_request = gen8_emit_request;
4712274c 1946 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1947 ring->irq_get = gen8_logical_ring_get_irq;
1948 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1949 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1950
454afebd
OM
1951 return logical_ring_init(dev, ring);
1952}
1953
1954static int logical_blt_ring_init(struct drm_device *dev)
1955{
1956 struct drm_i915_private *dev_priv = dev->dev_private;
1957 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1958
1959 ring->name = "blitter ring";
1960 ring->id = BCS;
1961 ring->mmio_base = BLT_RING_BASE;
1962 ring->irq_enable_mask =
1963 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
73d477f6
OM
1964 ring->irq_keep_mask =
1965 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
454afebd 1966
ecfe00d8 1967 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
1968 ring->get_seqno = gen8_get_seqno;
1969 ring->set_seqno = gen8_set_seqno;
4da46e1e 1970 ring->emit_request = gen8_emit_request;
4712274c 1971 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1972 ring->irq_get = gen8_logical_ring_get_irq;
1973 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1974 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1975
454afebd
OM
1976 return logical_ring_init(dev, ring);
1977}
1978
1979static int logical_vebox_ring_init(struct drm_device *dev)
1980{
1981 struct drm_i915_private *dev_priv = dev->dev_private;
1982 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1983
1984 ring->name = "video enhancement ring";
1985 ring->id = VECS;
1986 ring->mmio_base = VEBOX_RING_BASE;
1987 ring->irq_enable_mask =
1988 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
73d477f6
OM
1989 ring->irq_keep_mask =
1990 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
454afebd 1991
ecfe00d8 1992 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
1993 ring->get_seqno = gen8_get_seqno;
1994 ring->set_seqno = gen8_set_seqno;
4da46e1e 1995 ring->emit_request = gen8_emit_request;
4712274c 1996 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1997 ring->irq_get = gen8_logical_ring_get_irq;
1998 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1999 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 2000
454afebd
OM
2001 return logical_ring_init(dev, ring);
2002}
2003
73e4d07f
OM
2004/**
2005 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2006 * @dev: DRM device.
2007 *
2008 * This function inits the engines for an Execlists submission style (the equivalent in the
2009 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2010 * those engines that are present in the hardware.
2011 *
2012 * Return: non-zero if the initialization failed.
2013 */
454afebd
OM
2014int intel_logical_rings_init(struct drm_device *dev)
2015{
2016 struct drm_i915_private *dev_priv = dev->dev_private;
2017 int ret;
2018
2019 ret = logical_render_ring_init(dev);
2020 if (ret)
2021 return ret;
2022
2023 if (HAS_BSD(dev)) {
2024 ret = logical_bsd_ring_init(dev);
2025 if (ret)
2026 goto cleanup_render_ring;
2027 }
2028
2029 if (HAS_BLT(dev)) {
2030 ret = logical_blt_ring_init(dev);
2031 if (ret)
2032 goto cleanup_bsd_ring;
2033 }
2034
2035 if (HAS_VEBOX(dev)) {
2036 ret = logical_vebox_ring_init(dev);
2037 if (ret)
2038 goto cleanup_blt_ring;
2039 }
2040
2041 if (HAS_BSD2(dev)) {
2042 ret = logical_bsd2_ring_init(dev);
2043 if (ret)
2044 goto cleanup_vebox_ring;
2045 }
2046
2047 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
2048 if (ret)
2049 goto cleanup_bsd2_ring;
2050
2051 return 0;
2052
2053cleanup_bsd2_ring:
2054 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
2055cleanup_vebox_ring:
2056 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2057cleanup_blt_ring:
2058 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2059cleanup_bsd_ring:
2060 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2061cleanup_render_ring:
2062 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2063
2064 return ret;
2065}
2066
0cea6502
JM
2067static u32
2068make_rpcs(struct drm_device *dev)
2069{
2070 u32 rpcs = 0;
2071
2072 /*
2073 * No explicit RPCS request is needed to ensure full
2074 * slice/subslice/EU enablement prior to Gen9.
2075 */
2076 if (INTEL_INFO(dev)->gen < 9)
2077 return 0;
2078
2079 /*
2080 * Starting in Gen9, render power gating can leave
2081 * slice/subslice/EU in a partially enabled state. We
2082 * must make an explicit request through RPCS for full
2083 * enablement.
2084 */
2085 if (INTEL_INFO(dev)->has_slice_pg) {
2086 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2087 rpcs |= INTEL_INFO(dev)->slice_total <<
2088 GEN8_RPCS_S_CNT_SHIFT;
2089 rpcs |= GEN8_RPCS_ENABLE;
2090 }
2091
2092 if (INTEL_INFO(dev)->has_subslice_pg) {
2093 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2094 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2095 GEN8_RPCS_SS_CNT_SHIFT;
2096 rpcs |= GEN8_RPCS_ENABLE;
2097 }
2098
2099 if (INTEL_INFO(dev)->has_eu_pg) {
2100 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2101 GEN8_RPCS_EU_MIN_SHIFT;
2102 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2103 GEN8_RPCS_EU_MAX_SHIFT;
2104 rpcs |= GEN8_RPCS_ENABLE;
2105 }
2106
2107 return rpcs;
2108}
2109
8670d6f9
OM
2110static int
2111populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2112 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2113{
2d965536
TD
2114 struct drm_device *dev = ring->dev;
2115 struct drm_i915_private *dev_priv = dev->dev_private;
ae6c4806 2116 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
8670d6f9
OM
2117 struct page *page;
2118 uint32_t *reg_state;
2119 int ret;
2120
2d965536
TD
2121 if (!ppgtt)
2122 ppgtt = dev_priv->mm.aliasing_ppgtt;
2123
8670d6f9
OM
2124 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2125 if (ret) {
2126 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2127 return ret;
2128 }
2129
2130 ret = i915_gem_object_get_pages(ctx_obj);
2131 if (ret) {
2132 DRM_DEBUG_DRIVER("Could not get object pages\n");
2133 return ret;
2134 }
2135
2136 i915_gem_object_pin_pages(ctx_obj);
2137
2138 /* The second page of the context object contains some fields which must
2139 * be set up prior to the first execution. */
2140 page = i915_gem_object_get_page(ctx_obj, 1);
2141 reg_state = kmap_atomic(page);
2142
2143 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2144 * commands followed by (reg, value) pairs. The values we are setting here are
2145 * only for the first context restore: on a subsequent save, the GPU will
2146 * recreate this batchbuffer with new values (including all the missing
2147 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2148 if (ring->id == RCS)
2149 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
2150 else
2151 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
2152 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
2153 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
2154 reg_state[CTX_CONTEXT_CONTROL+1] =
5baa22c5 2155 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
6922528a
AJ
2156 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2157 CTX_CTRL_RS_CTX_ENABLE);
8670d6f9
OM
2158 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
2159 reg_state[CTX_RING_HEAD+1] = 0;
2160 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
2161 reg_state[CTX_RING_TAIL+1] = 0;
2162 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
7ba717cf
TD
2163 /* Ring buffer start address is not known until the buffer is pinned.
2164 * It is written to the context image in execlists_update_context()
2165 */
8670d6f9
OM
2166 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
2167 reg_state[CTX_RING_BUFFER_CONTROL+1] =
2168 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
2169 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
2170 reg_state[CTX_BB_HEAD_U+1] = 0;
2171 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
2172 reg_state[CTX_BB_HEAD_L+1] = 0;
2173 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
2174 reg_state[CTX_BB_STATE+1] = (1<<5);
2175 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
2176 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
2177 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
2178 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
2179 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
2180 reg_state[CTX_SECOND_BB_STATE+1] = 0;
2181 if (ring->id == RCS) {
8670d6f9
OM
2182 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
2183 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
2184 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
2185 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
2186 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
2187 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
17ee950d
AS
2188 if (ring->wa_ctx.obj) {
2189 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2190 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2191
2192 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2193 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2194 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2195
2196 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2197 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2198
2199 reg_state[CTX_BB_PER_CTX_PTR+1] =
2200 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2201 0x01;
2202 }
8670d6f9
OM
2203 }
2204 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2205 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2206 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2207 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2208 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2209 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2210 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2211 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2212 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2213 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2214 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2215 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
d7b2633d 2216
2dba3239
MT
2217 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2218 /* 64b PPGTT (48bit canonical)
2219 * PDP0_DESCRIPTOR contains the base address to PML4 and
2220 * other PDP Descriptors are ignored.
2221 */
2222 ASSIGN_CTX_PML4(ppgtt, reg_state);
2223 } else {
2224 /* 32b PPGTT
2225 * PDP*_DESCRIPTOR contains the base address of space supported.
2226 * With dynamic page allocation, PDPs may not be allocated at
2227 * this point. Point the unallocated PDPs to the scratch page
2228 */
2229 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2230 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2231 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2232 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2233 }
2234
8670d6f9
OM
2235 if (ring->id == RCS) {
2236 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0cea6502
JM
2237 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2238 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
8670d6f9
OM
2239 }
2240
2241 kunmap_atomic(reg_state);
2242
2243 ctx_obj->dirty = 1;
2244 set_page_dirty(page);
2245 i915_gem_object_unpin_pages(ctx_obj);
2246
2247 return 0;
2248}
2249
73e4d07f
OM
2250/**
2251 * intel_lr_context_free() - free the LRC specific bits of a context
2252 * @ctx: the LR context to free.
2253 *
2254 * The real context freeing is done in i915_gem_context_free: this only
2255 * takes care of the bits that are LRC related: the per-engine backing
2256 * objects and the logical ringbuffer.
2257 */
ede7d42b
OM
2258void intel_lr_context_free(struct intel_context *ctx)
2259{
8c857917
OM
2260 int i;
2261
2262 for (i = 0; i < I915_NUM_RINGS; i++) {
2263 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f 2264
8c857917 2265 if (ctx_obj) {
dcb4c12a
OM
2266 struct intel_ringbuffer *ringbuf =
2267 ctx->engine[i].ringbuf;
2268 struct intel_engine_cs *ring = ringbuf->ring;
2269
7ba717cf
TD
2270 if (ctx == ring->default_context) {
2271 intel_unpin_ringbuffer_obj(ringbuf);
2272 i915_gem_object_ggtt_unpin(ctx_obj);
2273 }
a7cbedec 2274 WARN_ON(ctx->engine[ring->id].pin_count);
84c2377f
OM
2275 intel_destroy_ringbuffer_obj(ringbuf);
2276 kfree(ringbuf);
8c857917
OM
2277 drm_gem_object_unreference(&ctx_obj->base);
2278 }
2279 }
2280}
2281
2282static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2283{
2284 int ret = 0;
2285
468c6816 2286 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
8c857917
OM
2287
2288 switch (ring->id) {
2289 case RCS:
468c6816
MN
2290 if (INTEL_INFO(ring->dev)->gen >= 9)
2291 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2292 else
2293 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2294 break;
2295 case VCS:
2296 case BCS:
2297 case VECS:
2298 case VCS2:
2299 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2300 break;
2301 }
2302
2303 return ret;
ede7d42b
OM
2304}
2305
70b0ea86 2306static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1df06b75
TD
2307 struct drm_i915_gem_object *default_ctx_obj)
2308{
2309 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2310
2311 /* The status page is offset 0 from the default context object
2312 * in LRC mode. */
2313 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
2314 ring->status_page.page_addr =
2315 kmap(sg_page(default_ctx_obj->pages->sgl));
1df06b75
TD
2316 ring->status_page.obj = default_ctx_obj;
2317
2318 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2319 (u32)ring->status_page.gfx_addr);
2320 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1df06b75
TD
2321}
2322
73e4d07f
OM
2323/**
2324 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
2325 * @ctx: LR context to create.
2326 * @ring: engine to be used with the context.
2327 *
2328 * This function can be called more than once, with different engines, if we plan
2329 * to use the context with them. The context backing objects and the ringbuffers
2330 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2331 * the creation is a deferred call: it's better to make sure first that we need to use
2332 * a given ring with the context.
2333 *
32197aab 2334 * Return: non-zero on error.
73e4d07f 2335 */
ede7d42b
OM
2336int intel_lr_context_deferred_create(struct intel_context *ctx,
2337 struct intel_engine_cs *ring)
2338{
dcb4c12a 2339 const bool is_global_default_ctx = (ctx == ring->default_context);
8c857917
OM
2340 struct drm_device *dev = ring->dev;
2341 struct drm_i915_gem_object *ctx_obj;
2342 uint32_t context_size;
84c2377f 2343 struct intel_ringbuffer *ringbuf;
8c857917
OM
2344 int ret;
2345
ede7d42b 2346 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
bfc882b4 2347 WARN_ON(ctx->engine[ring->id].state);
ede7d42b 2348
8c857917
OM
2349 context_size = round_up(get_lr_context_size(ring), 4096);
2350
149c86e7 2351 ctx_obj = i915_gem_alloc_object(dev, context_size);
3126a660
DC
2352 if (!ctx_obj) {
2353 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2354 return -ENOMEM;
8c857917
OM
2355 }
2356
dcb4c12a
OM
2357 if (is_global_default_ctx) {
2358 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
2359 if (ret) {
2360 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
2361 ret);
2362 drm_gem_object_unreference(&ctx_obj->base);
2363 return ret;
2364 }
8c857917
OM
2365 }
2366
84c2377f
OM
2367 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2368 if (!ringbuf) {
2369 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2370 ring->name);
84c2377f 2371 ret = -ENOMEM;
7ba717cf 2372 goto error_unpin_ctx;
84c2377f
OM
2373 }
2374
0c7dd53b 2375 ringbuf->ring = ring;
582d67f0 2376
84c2377f
OM
2377 ringbuf->size = 32 * PAGE_SIZE;
2378 ringbuf->effective_size = ringbuf->size;
2379 ringbuf->head = 0;
2380 ringbuf->tail = 0;
84c2377f 2381 ringbuf->last_retired_head = -1;
ebd0fd4b 2382 intel_ring_update_space(ringbuf);
84c2377f 2383
7ba717cf
TD
2384 if (ringbuf->obj == NULL) {
2385 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2386 if (ret) {
2387 DRM_DEBUG_DRIVER(
2388 "Failed to allocate ringbuffer obj %s: %d\n",
84c2377f 2389 ring->name, ret);
7ba717cf
TD
2390 goto error_free_rbuf;
2391 }
2392
2393 if (is_global_default_ctx) {
2394 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2395 if (ret) {
2396 DRM_ERROR(
2397 "Failed to pin and map ringbuffer %s: %d\n",
2398 ring->name, ret);
2399 goto error_destroy_rbuf;
2400 }
2401 }
2402
8670d6f9
OM
2403 }
2404
2405 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2406 if (ret) {
2407 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
8670d6f9 2408 goto error;
84c2377f
OM
2409 }
2410
2411 ctx->engine[ring->id].ringbuf = ringbuf;
8c857917 2412 ctx->engine[ring->id].state = ctx_obj;
ede7d42b 2413
70b0ea86
DV
2414 if (ctx == ring->default_context)
2415 lrc_setup_hardware_status_page(ring, ctx_obj);
e7778be1 2416 else if (ring->id == RCS && !ctx->rcs_initialized) {
771b9a53 2417 if (ring->init_context) {
76c39168
JH
2418 struct drm_i915_gem_request *req;
2419
2420 ret = i915_gem_request_alloc(ring, ctx, &req);
2421 if (ret)
2422 return ret;
2423
8753181e 2424 ret = ring->init_context(req);
e7778be1 2425 if (ret) {
771b9a53 2426 DRM_ERROR("ring init context: %d\n", ret);
76c39168 2427 i915_gem_request_cancel(req);
e7778be1
TD
2428 ctx->engine[ring->id].ringbuf = NULL;
2429 ctx->engine[ring->id].state = NULL;
2430 goto error;
2431 }
76c39168 2432
75289874 2433 i915_add_request_no_flush(req);
771b9a53
MT
2434 }
2435
564ddb2f
OM
2436 ctx->rcs_initialized = true;
2437 }
2438
ede7d42b 2439 return 0;
8670d6f9
OM
2440
2441error:
7ba717cf
TD
2442 if (is_global_default_ctx)
2443 intel_unpin_ringbuffer_obj(ringbuf);
2444error_destroy_rbuf:
2445 intel_destroy_ringbuffer_obj(ringbuf);
2446error_free_rbuf:
8670d6f9 2447 kfree(ringbuf);
7ba717cf 2448error_unpin_ctx:
dcb4c12a
OM
2449 if (is_global_default_ctx)
2450 i915_gem_object_ggtt_unpin(ctx_obj);
8670d6f9
OM
2451 drm_gem_object_unreference(&ctx_obj->base);
2452 return ret;
ede7d42b 2453}
3e5b6f05
TD
2454
2455void intel_lr_context_reset(struct drm_device *dev,
2456 struct intel_context *ctx)
2457{
2458 struct drm_i915_private *dev_priv = dev->dev_private;
2459 struct intel_engine_cs *ring;
2460 int i;
2461
2462 for_each_ring(ring, dev_priv, i) {
2463 struct drm_i915_gem_object *ctx_obj =
2464 ctx->engine[ring->id].state;
2465 struct intel_ringbuffer *ringbuf =
2466 ctx->engine[ring->id].ringbuf;
2467 uint32_t *reg_state;
2468 struct page *page;
2469
2470 if (!ctx_obj)
2471 continue;
2472
2473 if (i915_gem_object_get_pages(ctx_obj)) {
2474 WARN(1, "Failed get_pages for context obj\n");
2475 continue;
2476 }
2477 page = i915_gem_object_get_page(ctx_obj, 1);
2478 reg_state = kmap_atomic(page);
2479
2480 reg_state[CTX_RING_HEAD+1] = 0;
2481 reg_state[CTX_RING_TAIL+1] = 0;
2482
2483 kunmap_atomic(reg_state);
2484
2485 ringbuf->head = 0;
2486 ringbuf->tail = 0;
2487 }
2488}