]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/gpu/drm/i915/intel_lrc.c
drm/i915/scheduler: Record all dependencies upon request construction
[thirdparty/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9 158
70c2a24d
CW
159#define GEN8_CTX_STATUS_COMPLETED_MASK \
160 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161 GEN8_CTX_STATUS_PREEMPTED | \
162 GEN8_CTX_STATUS_ELEMENT_SWITCH)
163
8670d6f9
OM
164#define CTX_LRI_HEADER_0 0x01
165#define CTX_CONTEXT_CONTROL 0x02
166#define CTX_RING_HEAD 0x04
167#define CTX_RING_TAIL 0x06
168#define CTX_RING_BUFFER_START 0x08
169#define CTX_RING_BUFFER_CONTROL 0x0a
170#define CTX_BB_HEAD_U 0x0c
171#define CTX_BB_HEAD_L 0x0e
172#define CTX_BB_STATE 0x10
173#define CTX_SECOND_BB_HEAD_U 0x12
174#define CTX_SECOND_BB_HEAD_L 0x14
175#define CTX_SECOND_BB_STATE 0x16
176#define CTX_BB_PER_CTX_PTR 0x18
177#define CTX_RCS_INDIRECT_CTX 0x1a
178#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
179#define CTX_LRI_HEADER_1 0x21
180#define CTX_CTX_TIMESTAMP 0x22
181#define CTX_PDP3_UDW 0x24
182#define CTX_PDP3_LDW 0x26
183#define CTX_PDP2_UDW 0x28
184#define CTX_PDP2_LDW 0x2a
185#define CTX_PDP1_UDW 0x2c
186#define CTX_PDP1_LDW 0x2e
187#define CTX_PDP0_UDW 0x30
188#define CTX_PDP0_LDW 0x32
189#define CTX_LRI_HEADER_2 0x41
190#define CTX_R_PWR_CLK_STATE 0x42
191#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
192
84b790f8
BW
193#define GEN8_CTX_VALID (1<<0)
194#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
195#define GEN8_CTX_FORCE_RESTORE (1<<2)
196#define GEN8_CTX_L3LLC_COHERENT (1<<5)
197#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 198
0d925ea0 199#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 200 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
201 (reg_state)[(pos)+1] = (val); \
202} while (0)
203
204#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 205 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
206 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
207 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 208} while (0)
e5815a2e 209
9244a817 210#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
211 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
212 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 213} while (0)
2dba3239 214
84b790f8
BW
215enum {
216 FAULT_AND_HANG = 0,
217 FAULT_AND_HALT, /* Debug only */
218 FAULT_AND_STREAM,
219 FAULT_AND_CONTINUE /* Unsupported */
220};
221#define GEN8_CTX_ID_SHIFT 32
7069b144 222#define GEN8_CTX_ID_WIDTH 21
71562919
MT
223#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
224#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 225
0e93cdd4
CW
226/* Typical size of the average request (2 pipecontrols and a MI_BB) */
227#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
228
a3aabe86
CW
229#define WA_TAIL_DWORDS 2
230
e2efd130 231static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 232 struct intel_engine_cs *engine);
e2efd130 233static int intel_lr_context_pin(struct i915_gem_context *ctx,
e5292823 234 struct intel_engine_cs *engine);
a3aabe86
CW
235static void execlists_init_reg_state(u32 *reg_state,
236 struct i915_gem_context *ctx,
237 struct intel_engine_cs *engine,
238 struct intel_ring *ring);
7ba717cf 239
73e4d07f
OM
240/**
241 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
14bb2c11 242 * @dev_priv: i915 device private
73e4d07f
OM
243 * @enable_execlists: value of i915.enable_execlists module parameter.
244 *
245 * Only certain platforms support Execlists (the prerequisites being
27401d12 246 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
247 *
248 * Return: 1 if Execlists is supported and has to be enabled.
249 */
c033666a 250int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
127f1003 251{
a0bd6c31
ZL
252 /* On platforms with execlist available, vGPU will only
253 * support execlist mode, no ring buffer mode.
254 */
c033666a 255 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
a0bd6c31
ZL
256 return 1;
257
c033666a 258 if (INTEL_GEN(dev_priv) >= 9)
70ee45e1
DL
259 return 1;
260
127f1003
OM
261 if (enable_execlists == 0)
262 return 0;
263
5a21b665
DV
264 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
265 USES_PPGTT(dev_priv) &&
266 i915.use_mmio_flip >= 0)
127f1003
OM
267 return 1;
268
269 return 0;
270}
ede7d42b 271
ca82580c 272static void
0bc40be8 273logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
ca82580c 274{
c033666a 275 struct drm_i915_private *dev_priv = engine->i915;
ca82580c 276
70c2a24d 277 engine->disable_lite_restore_wa =
a117f378 278 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) &&
70c2a24d 279 (engine->id == VCS || engine->id == VCS2);
ca82580c 280
0bc40be8 281 engine->ctx_desc_template = GEN8_CTX_VALID;
c033666a 282 if (IS_GEN8(dev_priv))
0bc40be8
TU
283 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
284 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
ca82580c
TU
285
286 /* TODO: WaDisableLiteRestore when we start using semaphore
287 * signalling between Command Streamers */
288 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
289
290 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
291 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
0bc40be8
TU
292 if (engine->disable_lite_restore_wa)
293 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
ca82580c
TU
294}
295
73e4d07f 296/**
ca82580c
TU
297 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
298 * descriptor for a pinned context
ca82580c 299 * @ctx: Context to work on
9021ad03 300 * @engine: Engine the descriptor will be used with
73e4d07f 301 *
ca82580c
TU
302 * The context descriptor encodes various attributes of a context,
303 * including its GTT address and some flags. Because it's fairly
304 * expensive to calculate, we'll just do it once and cache the result,
305 * which remains valid until the context is unpinned.
306 *
6e5248b5
DV
307 * This is what a descriptor looks like, from LSB to MSB::
308 *
309 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
310 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
311 * bits 32-52: ctx ID, a globally unique tag
312 * bits 53-54: mbz, reserved for use by hardware
313 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 314 */
ca82580c 315static void
e2efd130 316intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
0bc40be8 317 struct intel_engine_cs *engine)
84b790f8 318{
9021ad03 319 struct intel_context *ce = &ctx->engine[engine->id];
7069b144 320 u64 desc;
84b790f8 321
7069b144 322 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 323
c01fc532
ZW
324 desc = ctx->desc_template; /* bits 3-4 */
325 desc |= engine->ctx_desc_template; /* bits 0-11 */
bde13ebd 326 desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
9021ad03 327 /* bits 12-31 */
7069b144 328 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 329
9021ad03 330 ce->lrc_desc = desc;
5af05fef
MT
331}
332
e2efd130 333uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
0bc40be8 334 struct intel_engine_cs *engine)
84b790f8 335{
0bc40be8 336 return ctx->engine[engine->id].lrc_desc;
ca82580c 337}
203a571b 338
bbd6c47e
CW
339static inline void
340execlists_context_status_change(struct drm_i915_gem_request *rq,
341 unsigned long status)
84b790f8 342{
bbd6c47e
CW
343 /*
344 * Only used when GVT-g is enabled now. When GVT-g is disabled,
345 * The compiler should eliminate this function as dead-code.
346 */
347 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
348 return;
6daccb0b 349
bbd6c47e 350 atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
84b790f8
BW
351}
352
c6a2ac71
TU
353static void
354execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
355{
356 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
357 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
358 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
359 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
360}
361
70c2a24d 362static u64 execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 363{
70c2a24d 364 struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
05d9824b 365 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
70c2a24d 366 u32 *reg_state = ce->lrc_reg_state;
ae1250b9 367
caddfe71 368 reg_state[CTX_RING_TAIL+1] = rq->tail;
ae1250b9 369
c6a2ac71
TU
370 /* True 32b PPGTT with dynamic page allocation: update PDP
371 * registers and point the unallocated PDPs to scratch page.
372 * PML4 is allocated during ppgtt init, so this is not needed
373 * in 48-bit mode.
374 */
375 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
376 execlists_update_context_pdps(ppgtt, reg_state);
70c2a24d
CW
377
378 return ce->lrc_desc;
ae1250b9
OM
379}
380
70c2a24d 381static void execlists_submit_ports(struct intel_engine_cs *engine)
bbd6c47e 382{
70c2a24d
CW
383 struct drm_i915_private *dev_priv = engine->i915;
384 struct execlist_port *port = engine->execlist_port;
bbd6c47e
CW
385 u32 __iomem *elsp =
386 dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
387 u64 desc[2];
388
70c2a24d
CW
389 if (!port[0].count)
390 execlists_context_status_change(port[0].request,
391 INTEL_CONTEXT_SCHEDULE_IN);
392 desc[0] = execlists_update_context(port[0].request);
393 engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */
394
395 if (port[1].request) {
396 GEM_BUG_ON(port[1].count);
397 execlists_context_status_change(port[1].request,
398 INTEL_CONTEXT_SCHEDULE_IN);
399 desc[1] = execlists_update_context(port[1].request);
400 port[1].count = 1;
bbd6c47e
CW
401 } else {
402 desc[1] = 0;
403 }
70c2a24d 404 GEM_BUG_ON(desc[0] == desc[1]);
bbd6c47e
CW
405
406 /* You must always write both descriptors in the order below. */
407 writel(upper_32_bits(desc[1]), elsp);
408 writel(lower_32_bits(desc[1]), elsp);
409
410 writel(upper_32_bits(desc[0]), elsp);
411 /* The context is automatically loaded after the following */
412 writel(lower_32_bits(desc[0]), elsp);
413}
414
70c2a24d 415static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
84b790f8 416{
70c2a24d
CW
417 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
418 ctx->execlists_force_single_submission);
419}
84b790f8 420
70c2a24d
CW
421static bool can_merge_ctx(const struct i915_gem_context *prev,
422 const struct i915_gem_context *next)
423{
424 if (prev != next)
425 return false;
26720ab9 426
70c2a24d
CW
427 if (ctx_single_port_submission(prev))
428 return false;
26720ab9 429
70c2a24d 430 return true;
84b790f8
BW
431}
432
70c2a24d 433static void execlists_dequeue(struct intel_engine_cs *engine)
acdd884a 434{
70c2a24d
CW
435 struct drm_i915_gem_request *cursor, *last;
436 struct execlist_port *port = engine->execlist_port;
d55ac5bf 437 unsigned long flags;
70c2a24d
CW
438 bool submit = false;
439
440 last = port->request;
441 if (last)
442 /* WaIdleLiteRestore:bdw,skl
443 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
9b81d556 444 * as we resubmit the request. See gen8_emit_breadcrumb()
70c2a24d
CW
445 * for where we prepare the padding after the end of the
446 * request.
447 */
448 last->tail = last->wa_tail;
e981e7b1 449
70c2a24d 450 GEM_BUG_ON(port[1].request);
acdd884a 451
70c2a24d
CW
452 /* Hardware submission is through 2 ports. Conceptually each port
453 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
454 * static for a context, and unique to each, so we only execute
455 * requests belonging to a single context from each ring. RING_HEAD
456 * is maintained by the CS in the context image, it marks the place
457 * where it got up to last time, and through RING_TAIL we tell the CS
458 * where we want to execute up to this time.
459 *
460 * In this list the requests are in order of execution. Consecutive
461 * requests from the same context are adjacent in the ringbuffer. We
462 * can combine these requests into a single RING_TAIL update:
463 *
464 * RING_HEAD...req1...req2
465 * ^- RING_TAIL
466 * since to execute req2 the CS must first execute req1.
467 *
468 * Our goal then is to point each port to the end of a consecutive
469 * sequence of requests as being the most optimal (fewest wake ups
470 * and context switches) submission.
779949f4 471 */
acdd884a 472
d55ac5bf 473 spin_lock_irqsave(&engine->timeline->lock, flags);
70c2a24d
CW
474 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link) {
475 /* Can we combine this request with the current port? It has to
476 * be the same context/ringbuffer and not have any exceptions
477 * (e.g. GVT saying never to combine contexts).
c6a2ac71 478 *
70c2a24d
CW
479 * If we can combine the requests, we can execute both by
480 * updating the RING_TAIL to point to the end of the second
481 * request, and so we never need to tell the hardware about
482 * the first.
53292cdb 483 */
70c2a24d
CW
484 if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
485 /* If we are on the second port and cannot combine
486 * this request with the last, then we are done.
487 */
488 if (port != engine->execlist_port)
489 break;
490
491 /* If GVT overrides us we only ever submit port[0],
492 * leaving port[1] empty. Note that we also have
493 * to be careful that we don't queue the same
494 * context (even though a different request) to
495 * the second port.
496 */
497 if (ctx_single_port_submission(cursor->ctx))
498 break;
499
500 GEM_BUG_ON(last->ctx == cursor->ctx);
501
502 i915_gem_request_assign(&port->request, last);
503 port++;
504 }
d55ac5bf
CW
505
506 /* We keep the previous context alive until we retire the
507 * following request. This ensures that any the context object
508 * is still pinned for any residual writes the HW makes into it
509 * on the context switch into the next object following the
510 * breadcrumb. Otherwise, we may retire the context too early.
511 */
512 cursor->previous_context = engine->last_context;
513 engine->last_context = cursor->ctx;
514
515 __i915_gem_request_submit(cursor);
70c2a24d
CW
516 last = cursor;
517 submit = true;
518 }
519 if (submit) {
520 /* Decouple all the requests submitted from the queue */
521 engine->execlist_queue.next = &cursor->execlist_link;
522 cursor->execlist_link.prev = &engine->execlist_queue;
523
524 i915_gem_request_assign(&port->request, last);
53292cdb 525 }
d55ac5bf 526 spin_unlock_irqrestore(&engine->timeline->lock, flags);
53292cdb 527
70c2a24d
CW
528 if (submit)
529 execlists_submit_ports(engine);
acdd884a
MT
530}
531
70c2a24d 532static bool execlists_elsp_idle(struct intel_engine_cs *engine)
e981e7b1 533{
70c2a24d 534 return !engine->execlist_port[0].request;
e981e7b1
TD
535}
536
0cb5670b
ID
537/**
538 * intel_execlists_idle() - Determine if all engine submission ports are idle
539 * @dev_priv: i915 device private
540 *
541 * Return true if there are no requests pending on any of the submission ports
542 * of any engines.
543 */
544bool intel_execlists_idle(struct drm_i915_private *dev_priv)
545{
546 struct intel_engine_cs *engine;
547 enum intel_engine_id id;
548
549 if (!i915.enable_execlists)
550 return true;
551
552 for_each_engine(engine, dev_priv, id)
553 if (!execlists_elsp_idle(engine))
554 return false;
555
556 return true;
557}
558
70c2a24d 559static bool execlists_elsp_ready(struct intel_engine_cs *engine)
91a41032 560{
70c2a24d 561 int port;
91a41032 562
70c2a24d
CW
563 port = 1; /* wait for a free slot */
564 if (engine->disable_lite_restore_wa || engine->preempt_wa)
565 port = 0; /* wait for GPU to be idle before continuing */
c6a2ac71 566
70c2a24d 567 return !engine->execlist_port[port].request;
91a41032
BW
568}
569
6e5248b5 570/*
73e4d07f
OM
571 * Check the unread Context Status Buffers and manage the submission of new
572 * contexts to the ELSP accordingly.
573 */
27af5eea 574static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 575{
27af5eea 576 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
70c2a24d 577 struct execlist_port *port = engine->execlist_port;
c033666a 578 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 579
3756685a 580 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 581
70c2a24d
CW
582 if (!execlists_elsp_idle(engine)) {
583 u32 __iomem *csb_mmio =
584 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
585 u32 __iomem *buf =
586 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
587 unsigned int csb, head, tail;
588
589 csb = readl(csb_mmio);
590 head = GEN8_CSB_READ_PTR(csb);
591 tail = GEN8_CSB_WRITE_PTR(csb);
592 if (tail < head)
593 tail += GEN8_CSB_ENTRIES;
594 while (head < tail) {
595 unsigned int idx = ++head % GEN8_CSB_ENTRIES;
596 unsigned int status = readl(buf + 2 * idx);
597
598 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
599 continue;
600
601 GEM_BUG_ON(port[0].count == 0);
602 if (--port[0].count == 0) {
603 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
604 execlists_context_status_change(port[0].request,
605 INTEL_CONTEXT_SCHEDULE_OUT);
606
607 i915_gem_request_put(port[0].request);
608 port[0] = port[1];
609 memset(&port[1], 0, sizeof(port[1]));
610
611 engine->preempt_wa = false;
612 }
26720ab9 613
70c2a24d
CW
614 GEM_BUG_ON(port[0].count == 0 &&
615 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
e1fee72c
OM
616 }
617
70c2a24d
CW
618 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
619 GEN8_CSB_WRITE_PTR(csb) << 8),
620 csb_mmio);
e981e7b1
TD
621 }
622
70c2a24d
CW
623 if (execlists_elsp_ready(engine))
624 execlists_dequeue(engine);
c6a2ac71 625
70c2a24d 626 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
e981e7b1
TD
627}
628
f4ea6bdd 629static void execlists_submit_request(struct drm_i915_gem_request *request)
acdd884a 630{
4a570db5 631 struct intel_engine_cs *engine = request->engine;
5590af3e 632 unsigned long flags;
acdd884a 633
663f71e7
CW
634 /* Will be called from irq-context when using foreign fences. */
635 spin_lock_irqsave(&engine->timeline->lock, flags);
acdd884a 636
ba49b2f8 637 list_add_tail(&request->execlist_link, &engine->execlist_queue);
70c2a24d
CW
638 if (execlists_elsp_idle(engine))
639 tasklet_hi_schedule(&engine->irq_tasklet);
acdd884a 640
663f71e7 641 spin_unlock_irqrestore(&engine->timeline->lock, flags);
acdd884a
MT
642}
643
40e895ce 644int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 645{
24f1d3cc 646 struct intel_engine_cs *engine = request->engine;
9021ad03 647 struct intel_context *ce = &request->ctx->engine[engine->id];
bfa01200 648 int ret;
bc0dce3f 649
6310346e
CW
650 /* Flush enough space to reduce the likelihood of waiting after
651 * we start building the request - in which case we will just
652 * have to repeat work.
653 */
0e93cdd4 654 request->reserved_space += EXECLISTS_REQUEST_SIZE;
6310346e 655
9021ad03 656 if (!ce->state) {
978f1e09
CW
657 ret = execlists_context_deferred_alloc(request->ctx, engine);
658 if (ret)
659 return ret;
660 }
661
dca33ecc 662 request->ring = ce->ring;
f3cc01f0 663
5ba89908
CW
664 ret = intel_lr_context_pin(request->ctx, engine);
665 if (ret)
666 return ret;
667
a7e02199
AD
668 if (i915.enable_guc_submission) {
669 /*
670 * Check that the GuC has space for the request before
671 * going any further, as the i915_add_request() call
672 * later on mustn't fail ...
673 */
7a9347f9 674 ret = i915_guc_wq_reserve(request);
a7e02199 675 if (ret)
5ba89908 676 goto err_unpin;
a7e02199
AD
677 }
678
bfa01200
CW
679 ret = intel_ring_begin(request, 0);
680 if (ret)
5ba89908 681 goto err_unreserve;
bfa01200 682
9021ad03 683 if (!ce->initialised) {
24f1d3cc
CW
684 ret = engine->init_context(request);
685 if (ret)
5ba89908 686 goto err_unreserve;
24f1d3cc 687
9021ad03 688 ce->initialised = true;
24f1d3cc
CW
689 }
690
691 /* Note that after this point, we have committed to using
692 * this request as it is being used to both track the
693 * state of engine initialisation and liveness of the
694 * golden renderstate above. Think twice before you try
695 * to cancel/unwind this request now.
696 */
697
0e93cdd4 698 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
bfa01200
CW
699 return 0;
700
5ba89908
CW
701err_unreserve:
702 if (i915.enable_guc_submission)
703 i915_guc_wq_unreserve(request);
bfa01200 704err_unpin:
24f1d3cc 705 intel_lr_context_unpin(request->ctx, engine);
e28e404c 706 return ret;
bc0dce3f
JH
707}
708
e2efd130 709static int intel_lr_context_pin(struct i915_gem_context *ctx,
24f1d3cc 710 struct intel_engine_cs *engine)
dcb4c12a 711{
9021ad03 712 struct intel_context *ce = &ctx->engine[engine->id];
7d774cac 713 void *vaddr;
ca82580c 714 int ret;
dcb4c12a 715
91c8a326 716 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
ca82580c 717
9021ad03 718 if (ce->pin_count++)
24f1d3cc
CW
719 return 0;
720
bf3783e5
CW
721 ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
722 PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
e84fe803 723 if (ret)
24f1d3cc 724 goto err;
7ba717cf 725
bf3783e5 726 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
7d774cac
TU
727 if (IS_ERR(vaddr)) {
728 ret = PTR_ERR(vaddr);
bf3783e5 729 goto unpin_vma;
82352e90
TU
730 }
731
aad29fbb 732 ret = intel_ring_pin(ce->ring);
e84fe803 733 if (ret)
7d774cac 734 goto unpin_map;
d1675198 735
0bc40be8 736 intel_lr_context_descriptor_update(ctx, engine);
9021ad03 737
a3aabe86
CW
738 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
739 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
bde13ebd 740 i915_ggtt_offset(ce->ring->vma);
a3aabe86 741
a4f5ea64 742 ce->state->obj->mm.dirty = true;
e93c28f3 743
e84fe803 744 /* Invalidate GuC TLB. */
bf3783e5
CW
745 if (i915.enable_guc_submission) {
746 struct drm_i915_private *dev_priv = ctx->i915;
e84fe803 747 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
bf3783e5 748 }
dcb4c12a 749
9a6feaf0 750 i915_gem_context_get(ctx);
24f1d3cc 751 return 0;
7ba717cf 752
7d774cac 753unpin_map:
bf3783e5
CW
754 i915_gem_object_unpin_map(ce->state->obj);
755unpin_vma:
756 __i915_vma_unpin(ce->state);
24f1d3cc 757err:
9021ad03 758 ce->pin_count = 0;
e84fe803
NH
759 return ret;
760}
761
e2efd130 762void intel_lr_context_unpin(struct i915_gem_context *ctx,
24f1d3cc 763 struct intel_engine_cs *engine)
e84fe803 764{
9021ad03 765 struct intel_context *ce = &ctx->engine[engine->id];
e84fe803 766
91c8a326 767 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
9021ad03 768 GEM_BUG_ON(ce->pin_count == 0);
321fe304 769
9021ad03 770 if (--ce->pin_count)
24f1d3cc 771 return;
e84fe803 772
aad29fbb 773 intel_ring_unpin(ce->ring);
dcb4c12a 774
bf3783e5
CW
775 i915_gem_object_unpin_map(ce->state->obj);
776 i915_vma_unpin(ce->state);
321fe304 777
9a6feaf0 778 i915_gem_context_put(ctx);
dcb4c12a
OM
779}
780
e2be4faf 781static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
782{
783 int ret, i;
7e37f889 784 struct intel_ring *ring = req->ring;
c033666a 785 struct i915_workarounds *w = &req->i915->workarounds;
771b9a53 786
cd7feaaa 787 if (w->count == 0)
771b9a53
MT
788 return 0;
789
7c9cf4e3 790 ret = req->engine->emit_flush(req, EMIT_BARRIER);
771b9a53
MT
791 if (ret)
792 return ret;
793
987046ad 794 ret = intel_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
795 if (ret)
796 return ret;
797
1dae2dfb 798 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
771b9a53 799 for (i = 0; i < w->count; i++) {
1dae2dfb
CW
800 intel_ring_emit_reg(ring, w->reg[i].addr);
801 intel_ring_emit(ring, w->reg[i].value);
771b9a53 802 }
1dae2dfb 803 intel_ring_emit(ring, MI_NOOP);
771b9a53 804
1dae2dfb 805 intel_ring_advance(ring);
771b9a53 806
7c9cf4e3 807 ret = req->engine->emit_flush(req, EMIT_BARRIER);
771b9a53
MT
808 if (ret)
809 return ret;
810
811 return 0;
812}
813
83b8a982 814#define wa_ctx_emit(batch, index, cmd) \
17ee950d 815 do { \
83b8a982
AS
816 int __index = (index)++; \
817 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
818 return -ENOSPC; \
819 } \
83b8a982 820 batch[__index] = (cmd); \
17ee950d
AS
821 } while (0)
822
8f40db77 823#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 824 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
825
826/*
827 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
828 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
829 * but there is a slight complication as this is applied in WA batch where the
830 * values are only initialized once so we cannot take register value at the
831 * beginning and reuse it further; hence we save its value to memory, upload a
832 * constant value with bit21 set and then we restore it back with the saved value.
833 * To simplify the WA, a constant value is formed by using the default value
834 * of this register. This shouldn't be a problem because we are only modifying
835 * it for a short period and this batch in non-premptible. We can ofcourse
836 * use additional instructions that read the actual value of the register
837 * at that time and set our bit of interest but it makes the WA complicated.
838 *
839 * This WA is also required for Gen9 so extracting as a function avoids
840 * code duplication.
841 */
0bc40be8 842static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
6e5248b5 843 uint32_t *batch,
9e000847
AS
844 uint32_t index)
845{
5e580523 846 struct drm_i915_private *dev_priv = engine->i915;
9e000847
AS
847 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
848
a4106a78 849 /*
3be192e9 850 * WaDisableLSQCROPERFforOCL:kbl
a4106a78
AS
851 * This WA is implemented in skl_init_clock_gating() but since
852 * this batch updates GEN8_L3SQCREG4 with default value we need to
853 * set this bit here to retain the WA during flush.
854 */
3be192e9 855 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
a4106a78
AS
856 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
857
f1afe24f 858 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 859 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 860 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
bde13ebd 861 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
83b8a982
AS
862 wa_ctx_emit(batch, index, 0);
863
864 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 865 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
866 wa_ctx_emit(batch, index, l3sqc4_flush);
867
868 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
869 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
870 PIPE_CONTROL_DC_FLUSH_ENABLE));
871 wa_ctx_emit(batch, index, 0);
872 wa_ctx_emit(batch, index, 0);
873 wa_ctx_emit(batch, index, 0);
874 wa_ctx_emit(batch, index, 0);
875
f1afe24f 876 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 877 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 878 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
bde13ebd 879 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
83b8a982 880 wa_ctx_emit(batch, index, 0);
9e000847
AS
881
882 return index;
883}
884
17ee950d
AS
885static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
886 uint32_t offset,
887 uint32_t start_alignment)
888{
889 return wa_ctx->offset = ALIGN(offset, start_alignment);
890}
891
892static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
893 uint32_t offset,
894 uint32_t size_alignment)
895{
896 wa_ctx->size = offset - wa_ctx->offset;
897
898 WARN(wa_ctx->size % size_alignment,
899 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
900 wa_ctx->size, size_alignment);
901 return 0;
902}
903
6e5248b5
DV
904/*
905 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
906 * initialized at the beginning and shared across all contexts but this field
907 * helps us to have multiple batches at different offsets and select them based
908 * on a criteria. At the moment this batch always start at the beginning of the page
909 * and at this point we don't have multiple wa_ctx batch buffers.
4d78c8dc 910 *
6e5248b5
DV
911 * The number of WA applied are not known at the beginning; we use this field
912 * to return the no of DWORDS written.
17ee950d 913 *
6e5248b5
DV
914 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
915 * so it adds NOOPs as padding to make it cacheline aligned.
916 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
917 * makes a complete batch buffer.
17ee950d 918 */
0bc40be8 919static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
17ee950d 920 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 921 uint32_t *batch,
17ee950d
AS
922 uint32_t *offset)
923{
0160f055 924 uint32_t scratch_addr;
17ee950d
AS
925 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
926
7ad00d1a 927 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 928 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 929
c82435bb 930 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
c033666a 931 if (IS_BROADWELL(engine->i915)) {
0bc40be8 932 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
604ef734
AH
933 if (rc < 0)
934 return rc;
935 index = rc;
c82435bb
AS
936 }
937
0160f055
AS
938 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
939 /* Actual scratch location is at 128 bytes offset */
bde13ebd 940 scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0160f055 941
83b8a982
AS
942 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
943 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
944 PIPE_CONTROL_GLOBAL_GTT_IVB |
945 PIPE_CONTROL_CS_STALL |
946 PIPE_CONTROL_QW_WRITE));
947 wa_ctx_emit(batch, index, scratch_addr);
948 wa_ctx_emit(batch, index, 0);
949 wa_ctx_emit(batch, index, 0);
950 wa_ctx_emit(batch, index, 0);
0160f055 951
17ee950d
AS
952 /* Pad to end of cacheline */
953 while (index % CACHELINE_DWORDS)
83b8a982 954 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
955
956 /*
957 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
958 * execution depends on the length specified in terms of cache lines
959 * in the register CTX_RCS_INDIRECT_CTX
960 */
961
962 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
963}
964
6e5248b5
DV
965/*
966 * This batch is started immediately after indirect_ctx batch. Since we ensure
967 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
17ee950d 968 *
6e5248b5 969 * The number of DWORDS written are returned using this field.
17ee950d
AS
970 *
971 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
972 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
973 */
0bc40be8 974static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
17ee950d 975 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 976 uint32_t *batch,
17ee950d
AS
977 uint32_t *offset)
978{
979 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
980
7ad00d1a 981 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 982 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 983
83b8a982 984 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
985
986 return wa_ctx_end(wa_ctx, *offset = index, 1);
987}
988
0bc40be8 989static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
0504cffc 990 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 991 uint32_t *batch,
0504cffc
AS
992 uint32_t *offset)
993{
a4106a78 994 int ret;
5e580523 995 struct drm_i915_private *dev_priv = engine->i915;
0504cffc
AS
996 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
997
9fc736e8
JN
998 /* WaDisableCtxRestoreArbitration:bxt */
999 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
0907c8f7 1000 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1001
a4106a78 1002 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
0bc40be8 1003 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
a4106a78
AS
1004 if (ret < 0)
1005 return ret;
1006 index = ret;
1007
873e8171
MK
1008 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
1009 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1010 wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
1011 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
1012 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
1013 wa_ctx_emit(batch, index, MI_NOOP);
1014
066d4628
MK
1015 /* WaClearSlmSpaceAtContextSwitch:kbl */
1016 /* Actual scratch location is at 128 bytes offset */
703d1282 1017 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
56c0f1a7 1018 u32 scratch_addr =
bde13ebd 1019 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
066d4628
MK
1020
1021 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1022 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1023 PIPE_CONTROL_GLOBAL_GTT_IVB |
1024 PIPE_CONTROL_CS_STALL |
1025 PIPE_CONTROL_QW_WRITE));
1026 wa_ctx_emit(batch, index, scratch_addr);
1027 wa_ctx_emit(batch, index, 0);
1028 wa_ctx_emit(batch, index, 0);
1029 wa_ctx_emit(batch, index, 0);
1030 }
3485d99e
TG
1031
1032 /* WaMediaPoolStateCmdInWABB:bxt */
1033 if (HAS_POOLED_EU(engine->i915)) {
1034 /*
1035 * EU pool configuration is setup along with golden context
1036 * during context initialization. This value depends on
1037 * device type (2x6 or 3x6) and needs to be updated based
1038 * on which subslice is disabled especially for 2x6
1039 * devices, however it is safe to load default
1040 * configuration of 3x6 device instead of masking off
1041 * corresponding bits because HW ignores bits of a disabled
1042 * subslice and drops down to appropriate config. Please
1043 * see render_state_setup() in i915_gem_render_state.c for
1044 * possible configurations, to avoid duplication they are
1045 * not shown here again.
1046 */
1047 u32 eu_pool_config = 0x00777000;
1048 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1049 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1050 wa_ctx_emit(batch, index, eu_pool_config);
1051 wa_ctx_emit(batch, index, 0);
1052 wa_ctx_emit(batch, index, 0);
1053 wa_ctx_emit(batch, index, 0);
1054 }
1055
0504cffc
AS
1056 /* Pad to end of cacheline */
1057 while (index % CACHELINE_DWORDS)
1058 wa_ctx_emit(batch, index, MI_NOOP);
1059
1060 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1061}
1062
0bc40be8 1063static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
0504cffc 1064 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 1065 uint32_t *batch,
0504cffc
AS
1066 uint32_t *offset)
1067{
1068 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1069
a117f378
JN
1070 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
1071 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
9b01435d 1072 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1073 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1074 wa_ctx_emit(batch, index,
1075 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1076 wa_ctx_emit(batch, index, MI_NOOP);
1077 }
1078
b1e429fe 1079 /* WaClearTdlStateAckDirtyBits:bxt */
c033666a 1080 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
b1e429fe
TG
1081 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1082
1083 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1084 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1085
1086 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1087 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1088
1089 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1090 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1091
1092 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1093 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1094 wa_ctx_emit(batch, index, 0x0);
1095 wa_ctx_emit(batch, index, MI_NOOP);
1096 }
1097
9fc736e8
JN
1098 /* WaDisableCtxRestoreArbitration:bxt */
1099 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
0907c8f7
AS
1100 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1101
0504cffc
AS
1102 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1103
1104 return wa_ctx_end(wa_ctx, *offset = index, 1);
1105}
1106
0bc40be8 1107static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
17ee950d 1108{
48bb74e4
CW
1109 struct drm_i915_gem_object *obj;
1110 struct i915_vma *vma;
1111 int err;
17ee950d 1112
48bb74e4
CW
1113 obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
1114 if (IS_ERR(obj))
1115 return PTR_ERR(obj);
17ee950d 1116
48bb74e4
CW
1117 vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1118 if (IS_ERR(vma)) {
1119 err = PTR_ERR(vma);
1120 goto err;
17ee950d
AS
1121 }
1122
48bb74e4
CW
1123 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1124 if (err)
1125 goto err;
1126
1127 engine->wa_ctx.vma = vma;
17ee950d 1128 return 0;
48bb74e4
CW
1129
1130err:
1131 i915_gem_object_put(obj);
1132 return err;
17ee950d
AS
1133}
1134
0bc40be8 1135static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
17ee950d 1136{
19880c4a 1137 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
17ee950d
AS
1138}
1139
0bc40be8 1140static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d 1141{
48bb74e4 1142 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d
AS
1143 uint32_t *batch;
1144 uint32_t offset;
1145 struct page *page;
48bb74e4 1146 int ret;
17ee950d 1147
0bc40be8 1148 WARN_ON(engine->id != RCS);
17ee950d 1149
5e60d790 1150 /* update this when WA for higher Gen are added */
c033666a 1151 if (INTEL_GEN(engine->i915) > 9) {
0504cffc 1152 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
c033666a 1153 INTEL_GEN(engine->i915));
5e60d790 1154 return 0;
0504cffc 1155 }
5e60d790 1156
c4db7599 1157 /* some WA perform writes to scratch page, ensure it is valid */
56c0f1a7 1158 if (!engine->scratch) {
0bc40be8 1159 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
c4db7599
AS
1160 return -EINVAL;
1161 }
1162
0bc40be8 1163 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
17ee950d
AS
1164 if (ret) {
1165 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1166 return ret;
1167 }
1168
48bb74e4 1169 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
17ee950d
AS
1170 batch = kmap_atomic(page);
1171 offset = 0;
1172
c033666a 1173 if (IS_GEN8(engine->i915)) {
0bc40be8 1174 ret = gen8_init_indirectctx_bb(engine,
17ee950d
AS
1175 &wa_ctx->indirect_ctx,
1176 batch,
1177 &offset);
1178 if (ret)
1179 goto out;
1180
0bc40be8 1181 ret = gen8_init_perctx_bb(engine,
17ee950d
AS
1182 &wa_ctx->per_ctx,
1183 batch,
1184 &offset);
1185 if (ret)
1186 goto out;
c033666a 1187 } else if (IS_GEN9(engine->i915)) {
0bc40be8 1188 ret = gen9_init_indirectctx_bb(engine,
0504cffc
AS
1189 &wa_ctx->indirect_ctx,
1190 batch,
1191 &offset);
1192 if (ret)
1193 goto out;
1194
0bc40be8 1195 ret = gen9_init_perctx_bb(engine,
0504cffc
AS
1196 &wa_ctx->per_ctx,
1197 batch,
1198 &offset);
1199 if (ret)
1200 goto out;
17ee950d
AS
1201 }
1202
1203out:
1204 kunmap_atomic(batch);
1205 if (ret)
0bc40be8 1206 lrc_destroy_wa_ctx_obj(engine);
17ee950d
AS
1207
1208 return ret;
1209}
1210
04794adb
TU
1211static void lrc_init_hws(struct intel_engine_cs *engine)
1212{
c033666a 1213 struct drm_i915_private *dev_priv = engine->i915;
04794adb
TU
1214
1215 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
57e88531 1216 engine->status_page.ggtt_offset);
04794adb
TU
1217 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1218}
1219
0bc40be8 1220static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1221{
c033666a 1222 struct drm_i915_private *dev_priv = engine->i915;
821ed7df
CW
1223 int ret;
1224
1225 ret = intel_mocs_init_engine(engine);
1226 if (ret)
1227 return ret;
9b1136d5 1228
04794adb 1229 lrc_init_hws(engine);
e84fe803 1230
ad07dfcd 1231 intel_engine_reset_breadcrumbs(engine);
821ed7df 1232
0bc40be8 1233 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
73d477f6 1234
0bc40be8 1235 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5
OM
1236 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1237 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
dfc53c5e 1238
0bc40be8 1239 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1240
fc0768ce 1241 intel_engine_init_hangcheck(engine);
9b1136d5 1242
c87d50cc
CW
1243 /* After a GPU reset, we may have requests to replay */
1244 if (!execlists_elsp_idle(engine)) {
1245 engine->execlist_port[0].count = 0;
1246 engine->execlist_port[1].count = 0;
821ed7df 1247 execlists_submit_ports(engine);
c87d50cc 1248 }
821ed7df
CW
1249
1250 return 0;
9b1136d5
OM
1251}
1252
0bc40be8 1253static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1254{
c033666a 1255 struct drm_i915_private *dev_priv = engine->i915;
9b1136d5
OM
1256 int ret;
1257
0bc40be8 1258 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1259 if (ret)
1260 return ret;
1261
1262 /* We need to disable the AsyncFlip performance optimisations in order
1263 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1264 * programmed to '1' on all products.
1265 *
1266 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1267 */
1268 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1269
9b1136d5
OM
1270 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1271
0bc40be8 1272 return init_workarounds_ring(engine);
9b1136d5
OM
1273}
1274
0bc40be8 1275static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1276{
1277 int ret;
1278
0bc40be8 1279 ret = gen8_init_common_ring(engine);
82ef822e
DL
1280 if (ret)
1281 return ret;
1282
0bc40be8 1283 return init_workarounds_ring(engine);
82ef822e
DL
1284}
1285
821ed7df
CW
1286static void reset_common_ring(struct intel_engine_cs *engine,
1287 struct drm_i915_gem_request *request)
1288{
1289 struct drm_i915_private *dev_priv = engine->i915;
1290 struct execlist_port *port = engine->execlist_port;
1291 struct intel_context *ce = &request->ctx->engine[engine->id];
1292
a3aabe86
CW
1293 /* We want a simple context + ring to execute the breadcrumb update.
1294 * We cannot rely on the context being intact across the GPU hang,
1295 * so clear it and rebuild just what we need for the breadcrumb.
1296 * All pending requests for this context will be zapped, and any
1297 * future request will be after userspace has had the opportunity
1298 * to recreate its own state.
1299 */
1300 execlists_init_reg_state(ce->lrc_reg_state,
1301 request->ctx, engine, ce->ring);
1302
821ed7df 1303 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
a3aabe86
CW
1304 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1305 i915_ggtt_offset(ce->ring->vma);
821ed7df 1306 ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
a3aabe86 1307
821ed7df
CW
1308 request->ring->head = request->postfix;
1309 request->ring->last_retired_head = -1;
1310 intel_ring_update_space(request->ring);
1311
1312 if (i915.enable_guc_submission)
1313 return;
1314
1315 /* Catch up with any missed context-switch interrupts */
1316 I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
1317 if (request->ctx != port[0].request->ctx) {
1318 i915_gem_request_put(port[0].request);
1319 port[0] = port[1];
1320 memset(&port[1], 0, sizeof(port[1]));
1321 }
1322
821ed7df 1323 GEM_BUG_ON(request->ctx != port[0].request->ctx);
a3aabe86
CW
1324
1325 /* Reset WaIdleLiteRestore:bdw,skl as well */
1326 request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
821ed7df
CW
1327}
1328
7a01a0a2
MT
1329static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1330{
1331 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
7e37f889 1332 struct intel_ring *ring = req->ring;
4a570db5 1333 struct intel_engine_cs *engine = req->engine;
7a01a0a2
MT
1334 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1335 int i, ret;
1336
987046ad 1337 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
7a01a0a2
MT
1338 if (ret)
1339 return ret;
1340
b5321f30 1341 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
7a01a0a2
MT
1342 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1343 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1344
b5321f30
CW
1345 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
1346 intel_ring_emit(ring, upper_32_bits(pd_daddr));
1347 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
1348 intel_ring_emit(ring, lower_32_bits(pd_daddr));
7a01a0a2
MT
1349 }
1350
b5321f30
CW
1351 intel_ring_emit(ring, MI_NOOP);
1352 intel_ring_advance(ring);
7a01a0a2
MT
1353
1354 return 0;
1355}
1356
be795fc1 1357static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
803688ba
CW
1358 u64 offset, u32 len,
1359 unsigned int dispatch_flags)
15648585 1360{
7e37f889 1361 struct intel_ring *ring = req->ring;
8e004efc 1362 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1363 int ret;
1364
7a01a0a2
MT
1365 /* Don't rely in hw updating PDPs, specially in lite-restore.
1366 * Ideally, we should set Force PD Restore in ctx descriptor,
1367 * but we can't. Force Restore would be a second option, but
1368 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1369 * not idle). PML4 is allocated during ppgtt init so this is
1370 * not needed in 48-bit.*/
7a01a0a2 1371 if (req->ctx->ppgtt &&
666796da 1372 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7 1373 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
c033666a 1374 !intel_vgpu_active(req->i915)) {
2dba3239
MT
1375 ret = intel_logical_ring_emit_pdps(req);
1376 if (ret)
1377 return ret;
1378 }
7a01a0a2 1379
666796da 1380 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1381 }
1382
987046ad 1383 ret = intel_ring_begin(req, 4);
15648585
OM
1384 if (ret)
1385 return ret;
1386
1387 /* FIXME(BDW): Address space and security selectors. */
b5321f30
CW
1388 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
1389 (ppgtt<<8) |
1390 (dispatch_flags & I915_DISPATCH_RS ?
1391 MI_BATCH_RESOURCE_STREAMER : 0));
1392 intel_ring_emit(ring, lower_32_bits(offset));
1393 intel_ring_emit(ring, upper_32_bits(offset));
1394 intel_ring_emit(ring, MI_NOOP);
1395 intel_ring_advance(ring);
15648585
OM
1396
1397 return 0;
1398}
1399
31bb59cc 1400static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
73d477f6 1401{
c033666a 1402 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc
CW
1403 I915_WRITE_IMR(engine,
1404 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1405 POSTING_READ_FW(RING_IMR(engine->mmio_base));
73d477f6
OM
1406}
1407
31bb59cc 1408static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
73d477f6 1409{
c033666a 1410 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc 1411 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
73d477f6
OM
1412}
1413
7c9cf4e3 1414static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
4712274c 1415{
7e37f889
CW
1416 struct intel_ring *ring = request->ring;
1417 u32 cmd;
4712274c
OM
1418 int ret;
1419
987046ad 1420 ret = intel_ring_begin(request, 4);
4712274c
OM
1421 if (ret)
1422 return ret;
1423
1424 cmd = MI_FLUSH_DW + 1;
1425
f0a1fb10
CW
1426 /* We always require a command barrier so that subsequent
1427 * commands, such as breadcrumb interrupts, are strictly ordered
1428 * wrt the contents of the write cache being flushed to memory
1429 * (and thus being coherent from the CPU).
1430 */
1431 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1432
7c9cf4e3 1433 if (mode & EMIT_INVALIDATE) {
f0a1fb10 1434 cmd |= MI_INVALIDATE_TLB;
1dae2dfb 1435 if (request->engine->id == VCS)
f0a1fb10 1436 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1437 }
1438
b5321f30
CW
1439 intel_ring_emit(ring, cmd);
1440 intel_ring_emit(ring,
1441 I915_GEM_HWS_SCRATCH_ADDR |
1442 MI_FLUSH_DW_USE_GTT);
1443 intel_ring_emit(ring, 0); /* upper addr */
1444 intel_ring_emit(ring, 0); /* value */
1445 intel_ring_advance(ring);
4712274c
OM
1446
1447 return 0;
1448}
1449
7deb4d39 1450static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
7c9cf4e3 1451 u32 mode)
4712274c 1452{
7e37f889 1453 struct intel_ring *ring = request->ring;
b5321f30 1454 struct intel_engine_cs *engine = request->engine;
bde13ebd
CW
1455 u32 scratch_addr =
1456 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0b2d0934 1457 bool vf_flush_wa = false, dc_flush_wa = false;
4712274c
OM
1458 u32 flags = 0;
1459 int ret;
0b2d0934 1460 int len;
4712274c
OM
1461
1462 flags |= PIPE_CONTROL_CS_STALL;
1463
7c9cf4e3 1464 if (mode & EMIT_FLUSH) {
4712274c
OM
1465 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1466 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1467 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1468 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1469 }
1470
7c9cf4e3 1471 if (mode & EMIT_INVALIDATE) {
4712274c
OM
1472 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1473 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1474 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1475 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1476 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1477 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1478 flags |= PIPE_CONTROL_QW_WRITE;
1479 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1480
1a5a9ce7
BW
1481 /*
1482 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1483 * pipe control.
1484 */
c033666a 1485 if (IS_GEN9(request->i915))
1a5a9ce7 1486 vf_flush_wa = true;
0b2d0934
MK
1487
1488 /* WaForGAMHang:kbl */
1489 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1490 dc_flush_wa = true;
1a5a9ce7 1491 }
9647ff36 1492
0b2d0934
MK
1493 len = 6;
1494
1495 if (vf_flush_wa)
1496 len += 6;
1497
1498 if (dc_flush_wa)
1499 len += 12;
1500
1501 ret = intel_ring_begin(request, len);
4712274c
OM
1502 if (ret)
1503 return ret;
1504
9647ff36 1505 if (vf_flush_wa) {
b5321f30
CW
1506 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1507 intel_ring_emit(ring, 0);
1508 intel_ring_emit(ring, 0);
1509 intel_ring_emit(ring, 0);
1510 intel_ring_emit(ring, 0);
1511 intel_ring_emit(ring, 0);
9647ff36
ID
1512 }
1513
0b2d0934 1514 if (dc_flush_wa) {
b5321f30
CW
1515 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1516 intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
1517 intel_ring_emit(ring, 0);
1518 intel_ring_emit(ring, 0);
1519 intel_ring_emit(ring, 0);
1520 intel_ring_emit(ring, 0);
0b2d0934
MK
1521 }
1522
b5321f30
CW
1523 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1524 intel_ring_emit(ring, flags);
1525 intel_ring_emit(ring, scratch_addr);
1526 intel_ring_emit(ring, 0);
1527 intel_ring_emit(ring, 0);
1528 intel_ring_emit(ring, 0);
0b2d0934
MK
1529
1530 if (dc_flush_wa) {
b5321f30
CW
1531 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1532 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
1533 intel_ring_emit(ring, 0);
1534 intel_ring_emit(ring, 0);
1535 intel_ring_emit(ring, 0);
1536 intel_ring_emit(ring, 0);
0b2d0934
MK
1537 }
1538
b5321f30 1539 intel_ring_advance(ring);
4712274c
OM
1540
1541 return 0;
1542}
1543
c04e0f3b 1544static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
319404df 1545{
319404df
ID
1546 /*
1547 * On BXT A steppings there is a HW coherency issue whereby the
1548 * MI_STORE_DATA_IMM storing the completed request's seqno
1549 * occasionally doesn't invalidate the CPU cache. Work around this by
1550 * clflushing the corresponding cacheline whenever the caller wants
1551 * the coherency to be guaranteed. Note that this cacheline is known
1552 * to be clean at this point, since we only write it in
1553 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1554 * this clflush in practice becomes an invalidate operation.
1555 */
c04e0f3b 1556 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1557}
1558
7c17d377
CW
1559/*
1560 * Reserve space for 2 NOOPs at the end of each request to be
1561 * used as a workaround for not being allowed to do lite
1562 * restore with HEAD==TAIL (WaIdleLiteRestore).
1563 */
caddfe71 1564static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *out)
4da46e1e 1565{
caddfe71
CW
1566 *out++ = MI_NOOP;
1567 *out++ = MI_NOOP;
1568 request->wa_tail = intel_ring_offset(request->ring, out);
1569}
4da46e1e 1570
caddfe71
CW
1571static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request,
1572 u32 *out)
1573{
7c17d377
CW
1574 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1575 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1576
caddfe71
CW
1577 *out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1578 *out++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1579 *out++ = 0;
1580 *out++ = request->global_seqno;
1581 *out++ = MI_USER_INTERRUPT;
1582 *out++ = MI_NOOP;
1583 request->tail = intel_ring_offset(request->ring, out);
1584
1585 gen8_emit_wa_tail(request, out);
7c17d377 1586}
4da46e1e 1587
98f29e8d
CW
1588static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1589
caddfe71
CW
1590static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1591 u32 *out)
7c17d377 1592{
ce81a65c
MW
1593 /* We're using qword write, seqno should be aligned to 8 bytes. */
1594 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1595
7c17d377
CW
1596 /* w/a for post sync ops following a GPGPU operation we
1597 * need a prior CS_STALL, which is emitted by the flush
1598 * following the batch.
1599 */
caddfe71
CW
1600 *out++ = GFX_OP_PIPE_CONTROL(6);
1601 *out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
1602 PIPE_CONTROL_CS_STALL |
1603 PIPE_CONTROL_QW_WRITE);
1604 *out++ = intel_hws_seqno_address(request->engine);
1605 *out++ = 0;
1606 *out++ = request->global_seqno;
ce81a65c 1607 /* We're thrashing one dword of HWS. */
caddfe71
CW
1608 *out++ = 0;
1609 *out++ = MI_USER_INTERRUPT;
1610 *out++ = MI_NOOP;
1611 request->tail = intel_ring_offset(request->ring, out);
1612
1613 gen8_emit_wa_tail(request, out);
4da46e1e
OM
1614}
1615
98f29e8d
CW
1616static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1617
8753181e 1618static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1619{
1620 int ret;
1621
e2be4faf 1622 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1623 if (ret)
1624 return ret;
1625
3bbaba0c
PA
1626 ret = intel_rcs_context_init_mocs(req);
1627 /*
1628 * Failing to program the MOCS is non-fatal.The system will not
1629 * run at peak performance. So generate an error and carry on.
1630 */
1631 if (ret)
1632 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1633
4e50f082 1634 return i915_gem_render_state_emit(req);
e7778be1
TD
1635}
1636
73e4d07f
OM
1637/**
1638 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
14bb2c11 1639 * @engine: Engine Command Streamer.
73e4d07f 1640 */
0bc40be8 1641void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1642{
6402c330 1643 struct drm_i915_private *dev_priv;
9832b9da 1644
27af5eea
TU
1645 /*
1646 * Tasklet cannot be active at this point due intel_mark_active/idle
1647 * so this is just for documentation.
1648 */
1649 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1650 tasklet_kill(&engine->irq_tasklet);
1651
c033666a 1652 dev_priv = engine->i915;
6402c330 1653
0bc40be8 1654 if (engine->buffer) {
0bc40be8 1655 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1656 }
48d82387 1657
0bc40be8
TU
1658 if (engine->cleanup)
1659 engine->cleanup(engine);
48d82387 1660
96a945aa 1661 intel_engine_cleanup_common(engine);
688e6c72 1662
57e88531
CW
1663 if (engine->status_page.vma) {
1664 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1665 engine->status_page.vma = NULL;
48d82387 1666 }
24f1d3cc 1667 intel_lr_context_unpin(dev_priv->kernel_context, engine);
17ee950d 1668
0bc40be8 1669 lrc_destroy_wa_ctx_obj(engine);
c033666a 1670 engine->i915 = NULL;
3b3f1650
AG
1671 dev_priv->engine[engine->id] = NULL;
1672 kfree(engine);
454afebd
OM
1673}
1674
ddd66c51
CW
1675void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
1676{
1677 struct intel_engine_cs *engine;
3b3f1650 1678 enum intel_engine_id id;
ddd66c51 1679
3b3f1650 1680 for_each_engine(engine, dev_priv, id)
f4ea6bdd 1681 engine->submit_request = execlists_submit_request;
ddd66c51
CW
1682}
1683
c9cacf93 1684static void
e1382efb 1685logical_ring_default_vfuncs(struct intel_engine_cs *engine)
c9cacf93
TU
1686{
1687 /* Default vfuncs which can be overriden by each engine. */
0bc40be8 1688 engine->init_hw = gen8_init_common_ring;
821ed7df 1689 engine->reset_hw = reset_common_ring;
0bc40be8 1690 engine->emit_flush = gen8_emit_flush;
9b81d556 1691 engine->emit_breadcrumb = gen8_emit_breadcrumb;
98f29e8d 1692 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
f4ea6bdd 1693 engine->submit_request = execlists_submit_request;
ddd66c51 1694
31bb59cc
CW
1695 engine->irq_enable = gen8_logical_ring_enable_irq;
1696 engine->irq_disable = gen8_logical_ring_disable_irq;
0bc40be8 1697 engine->emit_bb_start = gen8_emit_bb_start;
1b7744e7 1698 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
c04e0f3b 1699 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
c9cacf93
TU
1700}
1701
d9f3af96 1702static inline void
c2c7f240 1703logical_ring_default_irqs(struct intel_engine_cs *engine)
d9f3af96 1704{
c2c7f240 1705 unsigned shift = engine->irq_shift;
0bc40be8
TU
1706 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1707 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1708}
1709
7d774cac 1710static int
bf3783e5 1711lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
04794adb 1712{
57e88531 1713 const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac 1714 void *hws;
04794adb
TU
1715
1716 /* The HWSP is part of the default context object in LRC mode. */
bf3783e5 1717 hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
7d774cac
TU
1718 if (IS_ERR(hws))
1719 return PTR_ERR(hws);
57e88531
CW
1720
1721 engine->status_page.page_addr = hws + hws_offset;
bde13ebd 1722 engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
57e88531 1723 engine->status_page.vma = vma;
7d774cac
TU
1724
1725 return 0;
04794adb
TU
1726}
1727
bb45438f
TU
1728static void
1729logical_ring_setup(struct intel_engine_cs *engine)
1730{
1731 struct drm_i915_private *dev_priv = engine->i915;
1732 enum forcewake_domains fw_domains;
1733
019bf277
TU
1734 intel_engine_setup_common(engine);
1735
bb45438f
TU
1736 /* Intentionally left blank. */
1737 engine->buffer = NULL;
1738
1739 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1740 RING_ELSP(engine),
1741 FW_REG_WRITE);
1742
1743 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1744 RING_CONTEXT_STATUS_PTR(engine),
1745 FW_REG_READ | FW_REG_WRITE);
1746
1747 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1748 RING_CONTEXT_STATUS_BUF_BASE(engine),
1749 FW_REG_READ);
1750
1751 engine->fw_domains = fw_domains;
1752
bb45438f
TU
1753 tasklet_init(&engine->irq_tasklet,
1754 intel_lrc_irq_handler, (unsigned long)engine);
1755
1756 logical_ring_init_platform_invariants(engine);
1757 logical_ring_default_vfuncs(engine);
1758 logical_ring_default_irqs(engine);
bb45438f
TU
1759}
1760
a19d6ff2
TU
1761static int
1762logical_ring_init(struct intel_engine_cs *engine)
1763{
1764 struct i915_gem_context *dctx = engine->i915->kernel_context;
1765 int ret;
1766
019bf277 1767 ret = intel_engine_init_common(engine);
a19d6ff2
TU
1768 if (ret)
1769 goto error;
1770
1771 ret = execlists_context_deferred_alloc(dctx, engine);
1772 if (ret)
1773 goto error;
1774
1775 /* As this is the default context, always pin it */
1776 ret = intel_lr_context_pin(dctx, engine);
1777 if (ret) {
1778 DRM_ERROR("Failed to pin context for %s: %d\n",
1779 engine->name, ret);
1780 goto error;
1781 }
1782
1783 /* And setup the hardware status page. */
1784 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1785 if (ret) {
1786 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1787 goto error;
1788 }
1789
1790 return 0;
1791
1792error:
1793 intel_logical_ring_cleanup(engine);
1794 return ret;
1795}
1796
88d2ba2e 1797int logical_render_ring_init(struct intel_engine_cs *engine)
a19d6ff2
TU
1798{
1799 struct drm_i915_private *dev_priv = engine->i915;
1800 int ret;
1801
bb45438f
TU
1802 logical_ring_setup(engine);
1803
a19d6ff2
TU
1804 if (HAS_L3_DPF(dev_priv))
1805 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1806
1807 /* Override some for render ring. */
1808 if (INTEL_GEN(dev_priv) >= 9)
1809 engine->init_hw = gen9_init_render_ring;
1810 else
1811 engine->init_hw = gen8_init_render_ring;
1812 engine->init_context = gen8_init_rcs_context;
a19d6ff2 1813 engine->emit_flush = gen8_emit_flush_render;
9b81d556 1814 engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
98f29e8d 1815 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
a19d6ff2 1816
56c0f1a7 1817 ret = intel_engine_create_scratch(engine, 4096);
a19d6ff2
TU
1818 if (ret)
1819 return ret;
1820
1821 ret = intel_init_workaround_bb(engine);
1822 if (ret) {
1823 /*
1824 * We continue even if we fail to initialize WA batch
1825 * because we only expect rare glitches but nothing
1826 * critical to prevent us from using GPU
1827 */
1828 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1829 ret);
1830 }
1831
1832 ret = logical_ring_init(engine);
1833 if (ret) {
1834 lrc_destroy_wa_ctx_obj(engine);
1835 }
1836
1837 return ret;
1838}
1839
88d2ba2e 1840int logical_xcs_ring_init(struct intel_engine_cs *engine)
bb45438f
TU
1841{
1842 logical_ring_setup(engine);
1843
1844 return logical_ring_init(engine);
454afebd
OM
1845}
1846
0cea6502 1847static u32
c033666a 1848make_rpcs(struct drm_i915_private *dev_priv)
0cea6502
JM
1849{
1850 u32 rpcs = 0;
1851
1852 /*
1853 * No explicit RPCS request is needed to ensure full
1854 * slice/subslice/EU enablement prior to Gen9.
1855 */
c033666a 1856 if (INTEL_GEN(dev_priv) < 9)
0cea6502
JM
1857 return 0;
1858
1859 /*
1860 * Starting in Gen9, render power gating can leave
1861 * slice/subslice/EU in a partially enabled state. We
1862 * must make an explicit request through RPCS for full
1863 * enablement.
1864 */
43b67998 1865 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
0cea6502 1866 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
f08a0c92 1867 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
0cea6502
JM
1868 GEN8_RPCS_S_CNT_SHIFT;
1869 rpcs |= GEN8_RPCS_ENABLE;
1870 }
1871
43b67998 1872 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
0cea6502 1873 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
57ec171e 1874 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
0cea6502
JM
1875 GEN8_RPCS_SS_CNT_SHIFT;
1876 rpcs |= GEN8_RPCS_ENABLE;
1877 }
1878
43b67998
ID
1879 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1880 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502 1881 GEN8_RPCS_EU_MIN_SHIFT;
43b67998 1882 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502
JM
1883 GEN8_RPCS_EU_MAX_SHIFT;
1884 rpcs |= GEN8_RPCS_ENABLE;
1885 }
1886
1887 return rpcs;
1888}
1889
0bc40be8 1890static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
1891{
1892 u32 indirect_ctx_offset;
1893
c033666a 1894 switch (INTEL_GEN(engine->i915)) {
71562919 1895 default:
c033666a 1896 MISSING_CASE(INTEL_GEN(engine->i915));
71562919
MT
1897 /* fall through */
1898 case 9:
1899 indirect_ctx_offset =
1900 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1901 break;
1902 case 8:
1903 indirect_ctx_offset =
1904 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1905 break;
1906 }
1907
1908 return indirect_ctx_offset;
1909}
1910
a3aabe86
CW
1911static void execlists_init_reg_state(u32 *reg_state,
1912 struct i915_gem_context *ctx,
1913 struct intel_engine_cs *engine,
1914 struct intel_ring *ring)
8670d6f9 1915{
a3aabe86
CW
1916 struct drm_i915_private *dev_priv = engine->i915;
1917 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
8670d6f9
OM
1918
1919 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1920 * commands followed by (reg, value) pairs. The values we are setting here are
1921 * only for the first context restore: on a subsequent save, the GPU will
1922 * recreate this batchbuffer with new values (including all the missing
1923 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0 1924 reg_state[CTX_LRI_HEADER_0] =
0bc40be8
TU
1925 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
1926 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
1927 RING_CONTEXT_CONTROL(engine),
0d925ea0
VS
1928 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1929 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
c033666a 1930 (HAS_RESOURCE_STREAMER(dev_priv) ?
a3aabe86 1931 CTX_CTRL_RS_CTX_ENABLE : 0)));
0bc40be8
TU
1932 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
1933 0);
1934 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
1935 0);
0bc40be8
TU
1936 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
1937 RING_START(engine->mmio_base), 0);
1938 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
1939 RING_CTL(engine->mmio_base),
62ae14b1 1940 RING_CTL_SIZE(ring->size) | RING_VALID);
0bc40be8
TU
1941 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
1942 RING_BBADDR_UDW(engine->mmio_base), 0);
1943 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
1944 RING_BBADDR(engine->mmio_base), 0);
1945 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
1946 RING_BBSTATE(engine->mmio_base),
0d925ea0 1947 RING_BB_PPGTT);
0bc40be8
TU
1948 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
1949 RING_SBBADDR_UDW(engine->mmio_base), 0);
1950 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
1951 RING_SBBADDR(engine->mmio_base), 0);
1952 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
1953 RING_SBBSTATE(engine->mmio_base), 0);
1954 if (engine->id == RCS) {
1955 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
1956 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
1957 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
1958 RING_INDIRECT_CTX(engine->mmio_base), 0);
1959 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
1960 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
48bb74e4 1961 if (engine->wa_ctx.vma) {
0bc40be8 1962 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
bde13ebd 1963 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
17ee950d
AS
1964
1965 reg_state[CTX_RCS_INDIRECT_CTX+1] =
1966 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
1967 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
1968
1969 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
0bc40be8 1970 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d
AS
1971
1972 reg_state[CTX_BB_PER_CTX_PTR+1] =
1973 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
1974 0x01;
1975 }
8670d6f9 1976 }
0d925ea0 1977 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
0bc40be8
TU
1978 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
1979 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
0d925ea0 1980 /* PDP values well be assigned later if needed */
0bc40be8
TU
1981 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
1982 0);
1983 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
1984 0);
1985 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
1986 0);
1987 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
1988 0);
1989 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
1990 0);
1991 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
1992 0);
1993 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
1994 0);
1995 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
1996 0);
d7b2633d 1997
2dba3239
MT
1998 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1999 /* 64b PPGTT (48bit canonical)
2000 * PDP0_DESCRIPTOR contains the base address to PML4 and
2001 * other PDP Descriptors are ignored.
2002 */
2003 ASSIGN_CTX_PML4(ppgtt, reg_state);
2004 } else {
2005 /* 32b PPGTT
2006 * PDP*_DESCRIPTOR contains the base address of space supported.
2007 * With dynamic page allocation, PDPs may not be allocated at
2008 * this point. Point the unallocated PDPs to the scratch page
2009 */
c6a2ac71 2010 execlists_update_context_pdps(ppgtt, reg_state);
2dba3239
MT
2011 }
2012
0bc40be8 2013 if (engine->id == RCS) {
8670d6f9 2014 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0 2015 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
c033666a 2016 make_rpcs(dev_priv));
8670d6f9 2017 }
a3aabe86
CW
2018}
2019
2020static int
2021populate_lr_context(struct i915_gem_context *ctx,
2022 struct drm_i915_gem_object *ctx_obj,
2023 struct intel_engine_cs *engine,
2024 struct intel_ring *ring)
2025{
2026 void *vaddr;
2027 int ret;
2028
2029 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2030 if (ret) {
2031 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2032 return ret;
2033 }
2034
2035 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2036 if (IS_ERR(vaddr)) {
2037 ret = PTR_ERR(vaddr);
2038 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2039 return ret;
2040 }
a4f5ea64 2041 ctx_obj->mm.dirty = true;
a3aabe86
CW
2042
2043 /* The second page of the context object contains some fields which must
2044 * be set up prior to the first execution. */
2045
2046 execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
2047 ctx, engine, ring);
8670d6f9 2048
7d774cac 2049 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
2050
2051 return 0;
2052}
2053
c5d46ee2
DG
2054/**
2055 * intel_lr_context_size() - return the size of the context for an engine
14bb2c11 2056 * @engine: which engine to find the context size for
c5d46ee2
DG
2057 *
2058 * Each engine may require a different amount of space for a context image,
2059 * so when allocating (or copying) an image, this function can be used to
2060 * find the right size for the specific engine.
2061 *
2062 * Return: size (in bytes) of an engine-specific context image
2063 *
2064 * Note: this size includes the HWSP, which is part of the context image
2065 * in LRC mode, but does not include the "shared data page" used with
2066 * GuC submission. The caller should account for this if using the GuC.
2067 */
0bc40be8 2068uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
2069{
2070 int ret = 0;
2071
c033666a 2072 WARN_ON(INTEL_GEN(engine->i915) < 8);
8c857917 2073
0bc40be8 2074 switch (engine->id) {
8c857917 2075 case RCS:
c033666a 2076 if (INTEL_GEN(engine->i915) >= 9)
468c6816
MN
2077 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2078 else
2079 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2080 break;
2081 case VCS:
2082 case BCS:
2083 case VECS:
2084 case VCS2:
2085 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2086 break;
2087 }
2088
2089 return ret;
ede7d42b
OM
2090}
2091
e2efd130 2092static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 2093 struct intel_engine_cs *engine)
ede7d42b 2094{
8c857917 2095 struct drm_i915_gem_object *ctx_obj;
9021ad03 2096 struct intel_context *ce = &ctx->engine[engine->id];
bf3783e5 2097 struct i915_vma *vma;
8c857917 2098 uint32_t context_size;
7e37f889 2099 struct intel_ring *ring;
8c857917
OM
2100 int ret;
2101
9021ad03 2102 WARN_ON(ce->state);
ede7d42b 2103
0bc40be8 2104 context_size = round_up(intel_lr_context_size(engine), 4096);
8c857917 2105
d1675198
AD
2106 /* One extra page as the sharing data between driver and GuC */
2107 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2108
91c8a326 2109 ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
fe3db79b 2110 if (IS_ERR(ctx_obj)) {
3126a660 2111 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 2112 return PTR_ERR(ctx_obj);
8c857917
OM
2113 }
2114
bf3783e5
CW
2115 vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
2116 if (IS_ERR(vma)) {
2117 ret = PTR_ERR(vma);
2118 goto error_deref_obj;
2119 }
2120
7e37f889 2121 ring = intel_engine_create_ring(engine, ctx->ring_size);
dca33ecc
CW
2122 if (IS_ERR(ring)) {
2123 ret = PTR_ERR(ring);
e84fe803 2124 goto error_deref_obj;
8670d6f9
OM
2125 }
2126
dca33ecc 2127 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
8670d6f9
OM
2128 if (ret) {
2129 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
dca33ecc 2130 goto error_ring_free;
84c2377f
OM
2131 }
2132
dca33ecc 2133 ce->ring = ring;
bf3783e5 2134 ce->state = vma;
9021ad03 2135 ce->initialised = engine->init_context == NULL;
ede7d42b
OM
2136
2137 return 0;
8670d6f9 2138
dca33ecc 2139error_ring_free:
7e37f889 2140 intel_ring_free(ring);
e84fe803 2141error_deref_obj:
f8c417cd 2142 i915_gem_object_put(ctx_obj);
8670d6f9 2143 return ret;
ede7d42b 2144}
3e5b6f05 2145
821ed7df 2146void intel_lr_context_resume(struct drm_i915_private *dev_priv)
3e5b6f05 2147{
e2f80391 2148 struct intel_engine_cs *engine;
bafb2f7d 2149 struct i915_gem_context *ctx;
3b3f1650 2150 enum intel_engine_id id;
bafb2f7d
CW
2151
2152 /* Because we emit WA_TAIL_DWORDS there may be a disparity
2153 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2154 * that stored in context. As we only write new commands from
2155 * ce->ring->tail onwards, everything before that is junk. If the GPU
2156 * starts reading from its RING_HEAD from the context, it may try to
2157 * execute that junk and die.
2158 *
2159 * So to avoid that we reset the context images upon resume. For
2160 * simplicity, we just zero everything out.
2161 */
2162 list_for_each_entry(ctx, &dev_priv->context_list, link) {
3b3f1650 2163 for_each_engine(engine, dev_priv, id) {
bafb2f7d
CW
2164 struct intel_context *ce = &ctx->engine[engine->id];
2165 u32 *reg;
3e5b6f05 2166
bafb2f7d
CW
2167 if (!ce->state)
2168 continue;
7d774cac 2169
bafb2f7d
CW
2170 reg = i915_gem_object_pin_map(ce->state->obj,
2171 I915_MAP_WB);
2172 if (WARN_ON(IS_ERR(reg)))
2173 continue;
3e5b6f05 2174
bafb2f7d
CW
2175 reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2176 reg[CTX_RING_HEAD+1] = 0;
2177 reg[CTX_RING_TAIL+1] = 0;
3e5b6f05 2178
a4f5ea64 2179 ce->state->obj->mm.dirty = true;
bafb2f7d 2180 i915_gem_object_unpin_map(ce->state->obj);
3e5b6f05 2181
bafb2f7d
CW
2182 ce->ring->head = ce->ring->tail = 0;
2183 ce->ring->last_retired_head = -1;
2184 intel_ring_update_space(ce->ring);
2185 }
3e5b6f05
TD
2186 }
2187}