]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: Wrap context schedule notification
[thirdparty/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
7c2fa7fa 139#include "i915_gem_render_state.h"
3bbaba0c 140#include "intel_mocs.h"
127f1003 141
e981e7b1
TD
142#define RING_EXECLIST_QFULL (1 << 0x2)
143#define RING_EXECLIST1_VALID (1 << 0x3)
144#define RING_EXECLIST0_VALID (1 << 0x4)
145#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
146#define RING_EXECLIST1_ACTIVE (1 << 0x11)
147#define RING_EXECLIST0_ACTIVE (1 << 0x12)
148
149#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
150#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
151#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
152#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
153#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
154#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9 155
70c2a24d 156#define GEN8_CTX_STATUS_COMPLETED_MASK \
d8747afb 157 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
70c2a24d 158
8670d6f9
OM
159#define CTX_LRI_HEADER_0 0x01
160#define CTX_CONTEXT_CONTROL 0x02
161#define CTX_RING_HEAD 0x04
162#define CTX_RING_TAIL 0x06
163#define CTX_RING_BUFFER_START 0x08
164#define CTX_RING_BUFFER_CONTROL 0x0a
165#define CTX_BB_HEAD_U 0x0c
166#define CTX_BB_HEAD_L 0x0e
167#define CTX_BB_STATE 0x10
168#define CTX_SECOND_BB_HEAD_U 0x12
169#define CTX_SECOND_BB_HEAD_L 0x14
170#define CTX_SECOND_BB_STATE 0x16
171#define CTX_BB_PER_CTX_PTR 0x18
172#define CTX_RCS_INDIRECT_CTX 0x1a
173#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174#define CTX_LRI_HEADER_1 0x21
175#define CTX_CTX_TIMESTAMP 0x22
176#define CTX_PDP3_UDW 0x24
177#define CTX_PDP3_LDW 0x26
178#define CTX_PDP2_UDW 0x28
179#define CTX_PDP2_LDW 0x2a
180#define CTX_PDP1_UDW 0x2c
181#define CTX_PDP1_LDW 0x2e
182#define CTX_PDP0_UDW 0x30
183#define CTX_PDP0_LDW 0x32
184#define CTX_LRI_HEADER_2 0x41
185#define CTX_R_PWR_CLK_STATE 0x42
186#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
56e51bf0 188#define CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 189 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
190 (reg_state)[(pos)+1] = (val); \
191} while (0)
192
193#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 194 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
195 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
196 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 197} while (0)
e5815a2e 198
9244a817 199#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
200 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
201 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 202} while (0)
2dba3239 203
71562919
MT
204#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
205#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
7bd0a2c6 206#define GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x19
84b790f8 207
0e93cdd4
CW
208/* Typical size of the average request (2 pipecontrols and a MI_BB) */
209#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
a3aabe86 210#define WA_TAIL_DWORDS 2
7e4992ac 211#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
beecec90 212#define PREEMPT_ID 0x1
a3aabe86 213
e2efd130 214static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 215 struct intel_engine_cs *engine);
a3aabe86
CW
216static void execlists_init_reg_state(u32 *reg_state,
217 struct i915_gem_context *ctx,
218 struct intel_engine_cs *engine,
219 struct intel_ring *ring);
7ba717cf 220
73e4d07f 221/**
ca82580c
TU
222 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
223 * descriptor for a pinned context
ca82580c 224 * @ctx: Context to work on
9021ad03 225 * @engine: Engine the descriptor will be used with
73e4d07f 226 *
ca82580c
TU
227 * The context descriptor encodes various attributes of a context,
228 * including its GTT address and some flags. Because it's fairly
229 * expensive to calculate, we'll just do it once and cache the result,
230 * which remains valid until the context is unpinned.
231 *
6e5248b5
DV
232 * This is what a descriptor looks like, from LSB to MSB::
233 *
2355cf08 234 * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template)
6e5248b5
DV
235 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
236 * bits 32-52: ctx ID, a globally unique tag
237 * bits 53-54: mbz, reserved for use by hardware
238 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 239 */
ca82580c 240static void
e2efd130 241intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
0bc40be8 242 struct intel_engine_cs *engine)
84b790f8 243{
9021ad03 244 struct intel_context *ce = &ctx->engine[engine->id];
7069b144 245 u64 desc;
84b790f8 246
7069b144 247 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 248
2355cf08 249 desc = ctx->desc_template; /* bits 0-11 */
0b29c75a 250 desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
9021ad03 251 /* bits 12-31 */
7069b144 252 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 253
9021ad03 254 ce->lrc_desc = desc;
5af05fef
MT
255}
256
27606fd8
CW
257static struct i915_priolist *
258lookup_priolist(struct intel_engine_cs *engine,
259 struct i915_priotree *pt,
260 int prio)
08dd3e1a 261{
b620e870 262 struct intel_engine_execlists * const execlists = &engine->execlists;
08dd3e1a
CW
263 struct i915_priolist *p;
264 struct rb_node **parent, *rb;
265 bool first = true;
266
b620e870 267 if (unlikely(execlists->no_priolist))
08dd3e1a
CW
268 prio = I915_PRIORITY_NORMAL;
269
270find_priolist:
271 /* most positive priority is scheduled first, equal priorities fifo */
272 rb = NULL;
b620e870 273 parent = &execlists->queue.rb_node;
08dd3e1a
CW
274 while (*parent) {
275 rb = *parent;
276 p = rb_entry(rb, typeof(*p), node);
277 if (prio > p->priority) {
278 parent = &rb->rb_left;
279 } else if (prio < p->priority) {
280 parent = &rb->rb_right;
281 first = false;
282 } else {
27606fd8 283 return p;
08dd3e1a
CW
284 }
285 }
286
287 if (prio == I915_PRIORITY_NORMAL) {
b620e870 288 p = &execlists->default_priolist;
08dd3e1a
CW
289 } else {
290 p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
291 /* Convert an allocation failure to a priority bump */
292 if (unlikely(!p)) {
293 prio = I915_PRIORITY_NORMAL; /* recurses just once */
294
295 /* To maintain ordering with all rendering, after an
296 * allocation failure we have to disable all scheduling.
297 * Requests will then be executed in fifo, and schedule
298 * will ensure that dependencies are emitted in fifo.
299 * There will be still some reordering with existing
300 * requests, so if userspace lied about their
301 * dependencies that reordering may be visible.
302 */
b620e870 303 execlists->no_priolist = true;
08dd3e1a
CW
304 goto find_priolist;
305 }
306 }
307
308 p->priority = prio;
27606fd8 309 INIT_LIST_HEAD(&p->requests);
08dd3e1a 310 rb_link_node(&p->node, rb, parent);
b620e870 311 rb_insert_color(&p->node, &execlists->queue);
08dd3e1a 312
08dd3e1a 313 if (first)
b620e870 314 execlists->first = &p->node;
08dd3e1a 315
27606fd8 316 return ptr_pack_bits(p, first, 1);
08dd3e1a
CW
317}
318
7e4992ac
CW
319static void unwind_wa_tail(struct drm_i915_gem_request *rq)
320{
321 rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
322 assert_ring_tail_valid(rq->ring, rq->tail);
323}
324
a4598d17 325static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
7e4992ac
CW
326{
327 struct drm_i915_gem_request *rq, *rn;
097a9481
MW
328 struct i915_priolist *uninitialized_var(p);
329 int last_prio = I915_PRIORITY_INVALID;
7e4992ac
CW
330
331 lockdep_assert_held(&engine->timeline->lock);
332
333 list_for_each_entry_safe_reverse(rq, rn,
334 &engine->timeline->requests,
335 link) {
7e4992ac
CW
336 if (i915_gem_request_completed(rq))
337 return;
338
339 __i915_gem_request_unsubmit(rq);
340 unwind_wa_tail(rq);
341
097a9481
MW
342 GEM_BUG_ON(rq->priotree.priority == I915_PRIORITY_INVALID);
343 if (rq->priotree.priority != last_prio) {
344 p = lookup_priolist(engine,
345 &rq->priotree,
346 rq->priotree.priority);
347 p = ptr_mask_bits(p, 1);
348
349 last_prio = rq->priotree.priority;
350 }
351
352 list_add(&rq->priotree.link, &p->requests);
7e4992ac
CW
353 }
354}
355
c41937fd 356void
a4598d17
MW
357execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
358{
359 struct intel_engine_cs *engine =
360 container_of(execlists, typeof(*engine), execlists);
361
362 spin_lock_irq(&engine->timeline->lock);
363 __unwind_incomplete_requests(engine);
364 spin_unlock_irq(&engine->timeline->lock);
365}
366
bbd6c47e
CW
367static inline void
368execlists_context_status_change(struct drm_i915_gem_request *rq,
369 unsigned long status)
84b790f8 370{
bbd6c47e
CW
371 /*
372 * Only used when GVT-g is enabled now. When GVT-g is disabled,
373 * The compiler should eliminate this function as dead-code.
374 */
375 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
376 return;
6daccb0b 377
3fc03069
CD
378 atomic_notifier_call_chain(&rq->engine->context_status_notifier,
379 status, rq);
84b790f8
BW
380}
381
73fd9d38
TU
382static inline void
383execlists_context_schedule_in(struct drm_i915_gem_request *rq)
384{
385 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
386}
387
388static inline void
389execlists_context_schedule_out(struct drm_i915_gem_request *rq)
390{
391 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
392}
393
c6a2ac71
TU
394static void
395execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
396{
397 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
398 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
399 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
400 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
401}
402
70c2a24d 403static u64 execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 404{
70c2a24d 405 struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
04da811b
ZW
406 struct i915_hw_ppgtt *ppgtt =
407 rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
70c2a24d 408 u32 *reg_state = ce->lrc_reg_state;
ae1250b9 409
e6ba9992 410 reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
ae1250b9 411
c6a2ac71
TU
412 /* True 32b PPGTT with dynamic page allocation: update PDP
413 * registers and point the unallocated PDPs to scratch page.
414 * PML4 is allocated during ppgtt init, so this is not needed
415 * in 48-bit mode.
416 */
949e8ab3 417 if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
c6a2ac71 418 execlists_update_context_pdps(ppgtt, reg_state);
70c2a24d
CW
419
420 return ce->lrc_desc;
ae1250b9
OM
421}
422
beecec90
CW
423static inline void elsp_write(u64 desc, u32 __iomem *elsp)
424{
425 writel(upper_32_bits(desc), elsp);
426 writel(lower_32_bits(desc), elsp);
427}
428
70c2a24d 429static void execlists_submit_ports(struct intel_engine_cs *engine)
bbd6c47e 430{
b620e870 431 struct execlist_port *port = engine->execlists.port;
bbd6c47e 432 u32 __iomem *elsp =
77f0d0e9
CW
433 engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
434 unsigned int n;
bbd6c47e 435
76e70087 436 for (n = execlists_num_ports(&engine->execlists); n--; ) {
77f0d0e9
CW
437 struct drm_i915_gem_request *rq;
438 unsigned int count;
439 u64 desc;
440
441 rq = port_unpack(&port[n], &count);
442 if (rq) {
443 GEM_BUG_ON(count > !n);
444 if (!count++)
73fd9d38 445 execlists_context_schedule_in(rq);
77f0d0e9
CW
446 port_set(&port[n], port_pack(rq, count));
447 desc = execlists_update_context(rq);
448 GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
bccd3b83
CW
449
450 GEM_TRACE("%s in[%d]: ctx=%d.%d, seqno=%x\n",
451 engine->name, n,
452 rq->ctx->hw_id, count,
453 rq->global_seqno);
77f0d0e9
CW
454 } else {
455 GEM_BUG_ON(!n);
456 desc = 0;
457 }
bbd6c47e 458
beecec90 459 elsp_write(desc, elsp);
77f0d0e9 460 }
ba74cb10 461 execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
bbd6c47e
CW
462}
463
70c2a24d 464static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
84b790f8 465{
70c2a24d 466 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
6095868a 467 i915_gem_context_force_single_submission(ctx));
70c2a24d 468}
84b790f8 469
70c2a24d
CW
470static bool can_merge_ctx(const struct i915_gem_context *prev,
471 const struct i915_gem_context *next)
472{
473 if (prev != next)
474 return false;
26720ab9 475
70c2a24d
CW
476 if (ctx_single_port_submission(prev))
477 return false;
26720ab9 478
70c2a24d 479 return true;
84b790f8
BW
480}
481
77f0d0e9
CW
482static void port_assign(struct execlist_port *port,
483 struct drm_i915_gem_request *rq)
484{
485 GEM_BUG_ON(rq == port_request(port));
486
487 if (port_isset(port))
488 i915_gem_request_put(port_request(port));
489
490 port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
491}
492
beecec90
CW
493static void inject_preempt_context(struct intel_engine_cs *engine)
494{
495 struct intel_context *ce =
496 &engine->i915->preempt_context->engine[engine->id];
497 u32 __iomem *elsp =
498 engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
499 unsigned int n;
500
501 GEM_BUG_ON(engine->i915->preempt_context->hw_id != PREEMPT_ID);
502 GEM_BUG_ON(!IS_ALIGNED(ce->ring->size, WA_TAIL_BYTES));
503
504 memset(ce->ring->vaddr + ce->ring->tail, 0, WA_TAIL_BYTES);
505 ce->ring->tail += WA_TAIL_BYTES;
506 ce->ring->tail &= (ce->ring->size - 1);
507 ce->lrc_reg_state[CTX_RING_TAIL+1] = ce->ring->tail;
508
bccd3b83 509 GEM_TRACE("\n");
beecec90
CW
510 for (n = execlists_num_ports(&engine->execlists); --n; )
511 elsp_write(0, elsp);
512
513 elsp_write(ce->lrc_desc, elsp);
ba74cb10 514 execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
beecec90
CW
515}
516
70c2a24d 517static void execlists_dequeue(struct intel_engine_cs *engine)
acdd884a 518{
7a62cc61
MK
519 struct intel_engine_execlists * const execlists = &engine->execlists;
520 struct execlist_port *port = execlists->port;
76e70087
MK
521 const struct execlist_port * const last_port =
522 &execlists->port[execlists->port_mask];
beecec90 523 struct drm_i915_gem_request *last = port_request(port);
20311bd3 524 struct rb_node *rb;
70c2a24d
CW
525 bool submit = false;
526
70c2a24d
CW
527 /* Hardware submission is through 2 ports. Conceptually each port
528 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
529 * static for a context, and unique to each, so we only execute
530 * requests belonging to a single context from each ring. RING_HEAD
531 * is maintained by the CS in the context image, it marks the place
532 * where it got up to last time, and through RING_TAIL we tell the CS
533 * where we want to execute up to this time.
534 *
535 * In this list the requests are in order of execution. Consecutive
536 * requests from the same context are adjacent in the ringbuffer. We
537 * can combine these requests into a single RING_TAIL update:
538 *
539 * RING_HEAD...req1...req2
540 * ^- RING_TAIL
541 * since to execute req2 the CS must first execute req1.
542 *
543 * Our goal then is to point each port to the end of a consecutive
544 * sequence of requests as being the most optimal (fewest wake ups
545 * and context switches) submission.
779949f4 546 */
acdd884a 547
9f7886d0 548 spin_lock_irq(&engine->timeline->lock);
7a62cc61
MK
549 rb = execlists->first;
550 GEM_BUG_ON(rb_first(&execlists->queue) != rb);
beecec90
CW
551 if (!rb)
552 goto unlock;
553
554 if (last) {
555 /*
556 * Don't resubmit or switch until all outstanding
557 * preemptions (lite-restore) are seen. Then we
558 * know the next preemption status we see corresponds
559 * to this ELSP update.
560 */
ba74cb10 561 GEM_BUG_ON(!port_count(&port[0]));
beecec90
CW
562 if (port_count(&port[0]) > 1)
563 goto unlock;
564
ba74cb10
MT
565 /*
566 * If we write to ELSP a second time before the HW has had
567 * a chance to respond to the previous write, we can confuse
568 * the HW and hit "undefined behaviour". After writing to ELSP,
569 * we must then wait until we see a context-switch event from
570 * the HW to indicate that it has had a chance to respond.
571 */
572 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
573 goto unlock;
574
a4598d17 575 if (HAS_LOGICAL_RING_PREEMPTION(engine->i915) &&
beecec90
CW
576 rb_entry(rb, struct i915_priolist, node)->priority >
577 max(last->priotree.priority, 0)) {
578 /*
579 * Switch to our empty preempt context so
580 * the state of the GPU is known (idle).
581 */
582 inject_preempt_context(engine);
4a118ecb
CW
583 execlists_set_active(execlists,
584 EXECLISTS_ACTIVE_PREEMPT);
beecec90
CW
585 goto unlock;
586 } else {
587 /*
588 * In theory, we could coalesce more requests onto
589 * the second port (the first port is active, with
590 * no preemptions pending). However, that means we
591 * then have to deal with the possible lite-restore
592 * of the second port (as we submit the ELSP, there
593 * may be a context-switch) but also we may complete
594 * the resubmission before the context-switch. Ergo,
595 * coalescing onto the second port will cause a
596 * preemption event, but we cannot predict whether
597 * that will affect port[0] or port[1].
598 *
599 * If the second port is already active, we can wait
600 * until the next context-switch before contemplating
601 * new requests. The GPU will be busy and we should be
602 * able to resubmit the new ELSP before it idles,
603 * avoiding pipeline bubbles (momentary pauses where
604 * the driver is unable to keep up the supply of new
605 * work).
606 */
607 if (port_count(&port[1]))
608 goto unlock;
609
610 /* WaIdleLiteRestore:bdw,skl
611 * Apply the wa NOOPs to prevent
612 * ring:HEAD == req:TAIL as we resubmit the
613 * request. See gen8_emit_breadcrumb() for
614 * where we prepare the padding after the
615 * end of the request.
616 */
617 last->tail = last->wa_tail;
618 }
619 }
620
621 do {
6c067579
CW
622 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
623 struct drm_i915_gem_request *rq, *rn;
624
625 list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
626 /*
627 * Can we combine this request with the current port?
628 * It has to be the same context/ringbuffer and not
629 * have any exceptions (e.g. GVT saying never to
630 * combine contexts).
631 *
632 * If we can combine the requests, we can execute both
633 * by updating the RING_TAIL to point to the end of the
634 * second request, and so we never need to tell the
635 * hardware about the first.
70c2a24d 636 */
6c067579
CW
637 if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
638 /*
639 * If we are on the second port and cannot
640 * combine this request with the last, then we
641 * are done.
642 */
76e70087 643 if (port == last_port) {
6c067579
CW
644 __list_del_many(&p->requests,
645 &rq->priotree.link);
646 goto done;
647 }
648
649 /*
650 * If GVT overrides us we only ever submit
651 * port[0], leaving port[1] empty. Note that we
652 * also have to be careful that we don't queue
653 * the same context (even though a different
654 * request) to the second port.
655 */
656 if (ctx_single_port_submission(last->ctx) ||
657 ctx_single_port_submission(rq->ctx)) {
658 __list_del_many(&p->requests,
659 &rq->priotree.link);
660 goto done;
661 }
662
663 GEM_BUG_ON(last->ctx == rq->ctx);
664
665 if (submit)
666 port_assign(port, last);
667 port++;
7a62cc61
MK
668
669 GEM_BUG_ON(port_isset(port));
6c067579 670 }
70c2a24d 671
6c067579 672 INIT_LIST_HEAD(&rq->priotree.link);
6c067579 673 __i915_gem_request_submit(rq);
7a62cc61 674 trace_i915_gem_request_in(rq, port_index(port, execlists));
6c067579
CW
675 last = rq;
676 submit = true;
70c2a24d 677 }
d55ac5bf 678
20311bd3 679 rb = rb_next(rb);
7a62cc61 680 rb_erase(&p->node, &execlists->queue);
6c067579
CW
681 INIT_LIST_HEAD(&p->requests);
682 if (p->priority != I915_PRIORITY_NORMAL)
c5cf9a91 683 kmem_cache_free(engine->i915->priorities, p);
beecec90 684 } while (rb);
6c067579 685done:
7a62cc61 686 execlists->first = rb;
6c067579 687 if (submit)
77f0d0e9 688 port_assign(port, last);
beecec90 689unlock:
9f7886d0 690 spin_unlock_irq(&engine->timeline->lock);
53292cdb 691
4a118ecb
CW
692 if (submit) {
693 execlists_set_active(execlists, EXECLISTS_ACTIVE_USER);
70c2a24d 694 execlists_submit_ports(engine);
4a118ecb 695 }
acdd884a
MT
696}
697
c41937fd 698void
a4598d17 699execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
cf4591d1 700{
3f9e6cd8 701 struct execlist_port *port = execlists->port;
dc2279e1 702 unsigned int num_ports = execlists_num_ports(execlists);
cf4591d1 703
3f9e6cd8 704 while (num_ports-- && port_isset(port)) {
7e44fc28
CW
705 struct drm_i915_gem_request *rq = port_request(port);
706
4a118ecb 707 GEM_BUG_ON(!execlists->active);
d6c05113 708 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_PREEMPTED);
7e44fc28
CW
709 i915_gem_request_put(rq);
710
3f9e6cd8
CW
711 memset(port, 0, sizeof(*port));
712 port++;
713 }
cf4591d1
MK
714}
715
27a5f61b
CW
716static void execlists_cancel_requests(struct intel_engine_cs *engine)
717{
b620e870 718 struct intel_engine_execlists * const execlists = &engine->execlists;
27a5f61b
CW
719 struct drm_i915_gem_request *rq, *rn;
720 struct rb_node *rb;
721 unsigned long flags;
27a5f61b
CW
722
723 spin_lock_irqsave(&engine->timeline->lock, flags);
724
725 /* Cancel the requests on the HW and clear the ELSP tracker. */
a4598d17 726 execlists_cancel_port_requests(execlists);
27a5f61b
CW
727
728 /* Mark all executing requests as skipped. */
729 list_for_each_entry(rq, &engine->timeline->requests, link) {
730 GEM_BUG_ON(!rq->global_seqno);
731 if (!i915_gem_request_completed(rq))
732 dma_fence_set_error(&rq->fence, -EIO);
733 }
734
735 /* Flush the queued requests to the timeline list (for retiring). */
b620e870 736 rb = execlists->first;
27a5f61b
CW
737 while (rb) {
738 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
739
740 list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
741 INIT_LIST_HEAD(&rq->priotree.link);
27a5f61b
CW
742
743 dma_fence_set_error(&rq->fence, -EIO);
744 __i915_gem_request_submit(rq);
745 }
746
747 rb = rb_next(rb);
b620e870 748 rb_erase(&p->node, &execlists->queue);
27a5f61b
CW
749 INIT_LIST_HEAD(&p->requests);
750 if (p->priority != I915_PRIORITY_NORMAL)
751 kmem_cache_free(engine->i915->priorities, p);
752 }
753
754 /* Remaining _unready_ requests will be nop'ed when submitted */
755
cf4591d1 756
b620e870
MK
757 execlists->queue = RB_ROOT;
758 execlists->first = NULL;
3f9e6cd8 759 GEM_BUG_ON(port_isset(execlists->port));
27a5f61b
CW
760
761 /*
762 * The port is checked prior to scheduling a tasklet, but
763 * just in case we have suspended the tasklet to do the
764 * wedging make sure that when it wakes, it decides there
765 * is no work to do by clearing the irq_posted bit.
766 */
767 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
768
769 spin_unlock_irqrestore(&engine->timeline->lock, flags);
770}
771
6e5248b5 772/*
73e4d07f
OM
773 * Check the unread Context Status Buffers and manage the submission of new
774 * contexts to the ELSP accordingly.
775 */
c6dce8f1 776static void execlists_submission_tasklet(unsigned long data)
e981e7b1 777{
b620e870
MK
778 struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
779 struct intel_engine_execlists * const execlists = &engine->execlists;
beecec90 780 struct execlist_port * const port = execlists->port;
c033666a 781 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 782
48921260
CW
783 /* We can skip acquiring intel_runtime_pm_get() here as it was taken
784 * on our behalf by the request (see i915_gem_mark_busy()) and it will
785 * not be relinquished until the device is idle (see
786 * i915_gem_idle_work_handler()). As a precaution, we make sure
787 * that all ELSP are drained i.e. we have processed the CSB,
788 * before allowing ourselves to idle and calling intel_runtime_pm_put().
789 */
790 GEM_BUG_ON(!dev_priv->gt.awake);
791
b620e870 792 intel_uncore_forcewake_get(dev_priv, execlists->fw_domains);
c6a2ac71 793
899f6204
CW
794 /* Prefer doing test_and_clear_bit() as a two stage operation to avoid
795 * imposing the cost of a locked atomic transaction when submitting a
796 * new request (outside of the context-switch interrupt).
797 */
798 while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
6d2cb5aa
CW
799 /* The HWSP contains a (cacheable) mirror of the CSB */
800 const u32 *buf =
801 &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
4af0d727 802 unsigned int head, tail;
70c2a24d 803
b620e870 804 if (unlikely(execlists->csb_use_mmio)) {
6d2cb5aa
CW
805 buf = (u32 * __force)
806 (dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
b620e870 807 execlists->csb_head = -1; /* force mmio read of CSB ptrs */
6d2cb5aa
CW
808 }
809
2e70b8c6
CW
810 /* The write will be ordered by the uncached read (itself
811 * a memory barrier), so we do not need another in the form
812 * of a locked instruction. The race between the interrupt
813 * handler and the split test/clear is harmless as we order
814 * our clear before the CSB read. If the interrupt arrived
815 * first between the test and the clear, we read the updated
816 * CSB and clear the bit. If the interrupt arrives as we read
817 * the CSB or later (i.e. after we had cleared the bit) the bit
818 * is set and we do a new loop.
819 */
820 __clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
b620e870 821 if (unlikely(execlists->csb_head == -1)) { /* following a reset */
767a983a
CW
822 head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
823 tail = GEN8_CSB_WRITE_PTR(head);
824 head = GEN8_CSB_READ_PTR(head);
b620e870 825 execlists->csb_head = head;
767a983a
CW
826 } else {
827 const int write_idx =
828 intel_hws_csb_write_index(dev_priv) -
829 I915_HWS_CSB_BUF0_INDEX;
830
b620e870 831 head = execlists->csb_head;
767a983a
CW
832 tail = READ_ONCE(buf[write_idx]);
833 }
bccd3b83
CW
834 GEM_TRACE("%s cs-irq head=%d [%d], tail=%d [%d]\n",
835 engine->name,
836 head, GEN8_CSB_READ_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))),
837 tail, GEN8_CSB_WRITE_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))));
b620e870 838
4af0d727 839 while (head != tail) {
77f0d0e9 840 struct drm_i915_gem_request *rq;
4af0d727 841 unsigned int status;
77f0d0e9 842 unsigned int count;
4af0d727
CW
843
844 if (++head == GEN8_CSB_ENTRIES)
845 head = 0;
70c2a24d 846
2ffe80aa
CW
847 /* We are flying near dragons again.
848 *
849 * We hold a reference to the request in execlist_port[]
850 * but no more than that. We are operating in softirq
851 * context and so cannot hold any mutex or sleep. That
852 * prevents us stopping the requests we are processing
853 * in port[] from being retired simultaneously (the
854 * breadcrumb will be complete before we see the
855 * context-switch). As we only hold the reference to the
856 * request, any pointer chasing underneath the request
857 * is subject to a potential use-after-free. Thus we
858 * store all of the bookkeeping within port[] as
859 * required, and avoid using unguarded pointers beneath
860 * request itself. The same applies to the atomic
861 * status notifier.
862 */
863
6d2cb5aa 864 status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
bccd3b83
CW
865 GEM_TRACE("%s csb[%dd]: status=0x%08x:0x%08x\n",
866 engine->name, head,
867 status, buf[2*head + 1]);
ba74cb10
MT
868
869 if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
870 GEN8_CTX_STATUS_PREEMPTED))
871 execlists_set_active(execlists,
872 EXECLISTS_ACTIVE_HWACK);
873 if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
874 execlists_clear_active(execlists,
875 EXECLISTS_ACTIVE_HWACK);
876
70c2a24d
CW
877 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
878 continue;
879
1f5f9edb
CW
880 /* We should never get a COMPLETED | IDLE_ACTIVE! */
881 GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
882
e40dd226 883 if (status & GEN8_CTX_STATUS_COMPLETE &&
beecec90 884 buf[2*head + 1] == PREEMPT_ID) {
a4598d17
MW
885 execlists_cancel_port_requests(execlists);
886 execlists_unwind_incomplete_requests(execlists);
beecec90 887
4a118ecb
CW
888 GEM_BUG_ON(!execlists_is_active(execlists,
889 EXECLISTS_ACTIVE_PREEMPT));
890 execlists_clear_active(execlists,
891 EXECLISTS_ACTIVE_PREEMPT);
beecec90
CW
892 continue;
893 }
894
895 if (status & GEN8_CTX_STATUS_PREEMPTED &&
4a118ecb
CW
896 execlists_is_active(execlists,
897 EXECLISTS_ACTIVE_PREEMPT))
beecec90
CW
898 continue;
899
4a118ecb
CW
900 GEM_BUG_ON(!execlists_is_active(execlists,
901 EXECLISTS_ACTIVE_USER));
902
86aa7e76 903 /* Check the context/desc id for this event matches */
6d2cb5aa 904 GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
86aa7e76 905
77f0d0e9 906 rq = port_unpack(port, &count);
bccd3b83
CW
907 GEM_TRACE("%s out[0]: ctx=%d.%d, seqno=%x\n",
908 engine->name,
909 rq->ctx->hw_id, count,
910 rq->global_seqno);
77f0d0e9
CW
911 GEM_BUG_ON(count == 0);
912 if (--count == 0) {
70c2a24d 913 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
d8747afb
CW
914 GEM_BUG_ON(port_isset(&port[1]) &&
915 !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
77f0d0e9 916 GEM_BUG_ON(!i915_gem_request_completed(rq));
73fd9d38 917 execlists_context_schedule_out(rq);
77f0d0e9
CW
918 trace_i915_gem_request_out(rq);
919 i915_gem_request_put(rq);
70c2a24d 920
7a62cc61 921 execlists_port_complete(execlists, port);
77f0d0e9
CW
922 } else {
923 port_set(port, port_pack(rq, count));
70c2a24d 924 }
26720ab9 925
77f0d0e9
CW
926 /* After the final element, the hw should be idle */
927 GEM_BUG_ON(port_count(port) == 0 &&
70c2a24d 928 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
4a118ecb
CW
929 if (port_count(port) == 0)
930 execlists_clear_active(execlists,
931 EXECLISTS_ACTIVE_USER);
4af0d727 932 }
e1fee72c 933
b620e870
MK
934 if (head != execlists->csb_head) {
935 execlists->csb_head = head;
767a983a
CW
936 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
937 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
938 }
e981e7b1
TD
939 }
940
4a118ecb 941 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
70c2a24d 942 execlists_dequeue(engine);
c6a2ac71 943
b620e870 944 intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
e981e7b1
TD
945}
946
27606fd8
CW
947static void insert_request(struct intel_engine_cs *engine,
948 struct i915_priotree *pt,
949 int prio)
950{
951 struct i915_priolist *p = lookup_priolist(engine, pt, prio);
952
953 list_add_tail(&pt->link, &ptr_mask_bits(p, 1)->requests);
beecec90 954 if (ptr_unmask_bits(p, 1))
c6dce8f1 955 tasklet_hi_schedule(&engine->execlists.tasklet);
27606fd8
CW
956}
957
f4ea6bdd 958static void execlists_submit_request(struct drm_i915_gem_request *request)
acdd884a 959{
4a570db5 960 struct intel_engine_cs *engine = request->engine;
5590af3e 961 unsigned long flags;
acdd884a 962
663f71e7
CW
963 /* Will be called from irq-context when using foreign fences. */
964 spin_lock_irqsave(&engine->timeline->lock, flags);
acdd884a 965
27606fd8 966 insert_request(engine, &request->priotree, request->priotree.priority);
acdd884a 967
b620e870 968 GEM_BUG_ON(!engine->execlists.first);
6c067579
CW
969 GEM_BUG_ON(list_empty(&request->priotree.link));
970
663f71e7 971 spin_unlock_irqrestore(&engine->timeline->lock, flags);
acdd884a
MT
972}
973
1f181225
CW
974static struct drm_i915_gem_request *pt_to_request(struct i915_priotree *pt)
975{
976 return container_of(pt, struct drm_i915_gem_request, priotree);
977}
978
20311bd3
CW
979static struct intel_engine_cs *
980pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
981{
1f181225 982 struct intel_engine_cs *engine = pt_to_request(pt)->engine;
a79a524e
CW
983
984 GEM_BUG_ON(!locked);
20311bd3 985
20311bd3 986 if (engine != locked) {
a79a524e
CW
987 spin_unlock(&locked->timeline->lock);
988 spin_lock(&engine->timeline->lock);
20311bd3
CW
989 }
990
991 return engine;
992}
993
994static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
995{
a79a524e 996 struct intel_engine_cs *engine;
20311bd3
CW
997 struct i915_dependency *dep, *p;
998 struct i915_dependency stack;
999 LIST_HEAD(dfs);
1000
7d1ea609
CW
1001 GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
1002
20311bd3
CW
1003 if (prio <= READ_ONCE(request->priotree.priority))
1004 return;
1005
70cd1476
CW
1006 /* Need BKL in order to use the temporary link inside i915_dependency */
1007 lockdep_assert_held(&request->i915->drm.struct_mutex);
20311bd3
CW
1008
1009 stack.signaler = &request->priotree;
1010 list_add(&stack.dfs_link, &dfs);
1011
1012 /* Recursively bump all dependent priorities to match the new request.
1013 *
1014 * A naive approach would be to use recursion:
1015 * static void update_priorities(struct i915_priotree *pt, prio) {
1016 * list_for_each_entry(dep, &pt->signalers_list, signal_link)
1017 * update_priorities(dep->signal, prio)
1018 * insert_request(pt);
1019 * }
1020 * but that may have unlimited recursion depth and so runs a very
1021 * real risk of overunning the kernel stack. Instead, we build
1022 * a flat list of all dependencies starting with the current request.
1023 * As we walk the list of dependencies, we add all of its dependencies
1024 * to the end of the list (this may include an already visited
1025 * request) and continue to walk onwards onto the new dependencies. The
1026 * end result is a topological list of requests in reverse order, the
1027 * last element in the list is the request we must execute first.
1028 */
1029 list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
1030 struct i915_priotree *pt = dep->signaler;
1031
a79a524e
CW
1032 /* Within an engine, there can be no cycle, but we may
1033 * refer to the same dependency chain multiple times
1034 * (redundant dependencies are not eliminated) and across
1035 * engines.
1036 */
1037 list_for_each_entry(p, &pt->signalers_list, signal_link) {
1f181225
CW
1038 if (i915_gem_request_completed(pt_to_request(p->signaler)))
1039 continue;
1040
a79a524e 1041 GEM_BUG_ON(p->signaler->priority < pt->priority);
20311bd3
CW
1042 if (prio > READ_ONCE(p->signaler->priority))
1043 list_move_tail(&p->dfs_link, &dfs);
a79a524e 1044 }
20311bd3 1045
0798cff4 1046 list_safe_reset_next(dep, p, dfs_link);
20311bd3
CW
1047 }
1048
349bdb68
CW
1049 /* If we didn't need to bump any existing priorities, and we haven't
1050 * yet submitted this request (i.e. there is no potential race with
1051 * execlists_submit_request()), we can set our own priority and skip
1052 * acquiring the engine locks.
1053 */
7d1ea609 1054 if (request->priotree.priority == I915_PRIORITY_INVALID) {
349bdb68
CW
1055 GEM_BUG_ON(!list_empty(&request->priotree.link));
1056 request->priotree.priority = prio;
1057 if (stack.dfs_link.next == stack.dfs_link.prev)
1058 return;
1059 __list_del_entry(&stack.dfs_link);
1060 }
1061
a79a524e
CW
1062 engine = request->engine;
1063 spin_lock_irq(&engine->timeline->lock);
1064
20311bd3
CW
1065 /* Fifo and depth-first replacement ensure our deps execute before us */
1066 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1067 struct i915_priotree *pt = dep->signaler;
1068
1069 INIT_LIST_HEAD(&dep->dfs_link);
1070
1071 engine = pt_lock_engine(pt, engine);
1072
1073 if (prio <= pt->priority)
1074 continue;
1075
20311bd3 1076 pt->priority = prio;
6c067579
CW
1077 if (!list_empty(&pt->link)) {
1078 __list_del_entry(&pt->link);
1079 insert_request(engine, pt, prio);
a79a524e 1080 }
20311bd3
CW
1081 }
1082
a79a524e 1083 spin_unlock_irq(&engine->timeline->lock);
20311bd3
CW
1084}
1085
f4e15af7
CW
1086static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
1087{
1088 unsigned int flags;
1089 int err;
1090
1091 /*
1092 * Clear this page out of any CPU caches for coherent swap-in/out.
1093 * We only want to do this on the first bind so that we do not stall
1094 * on an active context (which by nature is already on the GPU).
1095 */
1096 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1097 err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1098 if (err)
1099 return err;
1100 }
1101
1102 flags = PIN_GLOBAL | PIN_HIGH;
1103 if (ctx->ggtt_offset_bias)
1104 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
1105
1106 return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
1107}
1108
266a240b
CW
1109static struct intel_ring *
1110execlists_context_pin(struct intel_engine_cs *engine,
1111 struct i915_gem_context *ctx)
dcb4c12a 1112{
9021ad03 1113 struct intel_context *ce = &ctx->engine[engine->id];
7d774cac 1114 void *vaddr;
ca82580c 1115 int ret;
dcb4c12a 1116
91c8a326 1117 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
ca82580c 1118
266a240b
CW
1119 if (likely(ce->pin_count++))
1120 goto out;
a533b4ba 1121 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
24f1d3cc 1122
e8a9c58f
CW
1123 if (!ce->state) {
1124 ret = execlists_context_deferred_alloc(ctx, engine);
1125 if (ret)
1126 goto err;
1127 }
56f6e0a7 1128 GEM_BUG_ON(!ce->state);
e8a9c58f 1129
f4e15af7 1130 ret = __context_pin(ctx, ce->state);
e84fe803 1131 if (ret)
24f1d3cc 1132 goto err;
7ba717cf 1133
bf3783e5 1134 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
7d774cac
TU
1135 if (IS_ERR(vaddr)) {
1136 ret = PTR_ERR(vaddr);
bf3783e5 1137 goto unpin_vma;
82352e90
TU
1138 }
1139
d822bb18 1140 ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
e84fe803 1141 if (ret)
7d774cac 1142 goto unpin_map;
d1675198 1143
0bc40be8 1144 intel_lr_context_descriptor_update(ctx, engine);
9021ad03 1145
a3aabe86
CW
1146 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1147 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
bde13ebd 1148 i915_ggtt_offset(ce->ring->vma);
a3aabe86 1149
3d574a6b 1150 ce->state->obj->pin_global++;
9a6feaf0 1151 i915_gem_context_get(ctx);
266a240b
CW
1152out:
1153 return ce->ring;
7ba717cf 1154
7d774cac 1155unpin_map:
bf3783e5
CW
1156 i915_gem_object_unpin_map(ce->state->obj);
1157unpin_vma:
1158 __i915_vma_unpin(ce->state);
24f1d3cc 1159err:
9021ad03 1160 ce->pin_count = 0;
266a240b 1161 return ERR_PTR(ret);
e84fe803
NH
1162}
1163
e8a9c58f
CW
1164static void execlists_context_unpin(struct intel_engine_cs *engine,
1165 struct i915_gem_context *ctx)
e84fe803 1166{
9021ad03 1167 struct intel_context *ce = &ctx->engine[engine->id];
e84fe803 1168
91c8a326 1169 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
9021ad03 1170 GEM_BUG_ON(ce->pin_count == 0);
321fe304 1171
9021ad03 1172 if (--ce->pin_count)
24f1d3cc 1173 return;
e84fe803 1174
aad29fbb 1175 intel_ring_unpin(ce->ring);
dcb4c12a 1176
3d574a6b 1177 ce->state->obj->pin_global--;
bf3783e5
CW
1178 i915_gem_object_unpin_map(ce->state->obj);
1179 i915_vma_unpin(ce->state);
321fe304 1180
9a6feaf0 1181 i915_gem_context_put(ctx);
dcb4c12a
OM
1182}
1183
f73e7399 1184static int execlists_request_alloc(struct drm_i915_gem_request *request)
ef11c01d
CW
1185{
1186 struct intel_engine_cs *engine = request->engine;
1187 struct intel_context *ce = &request->ctx->engine[engine->id];
fd138212 1188 int ret;
ef11c01d 1189
e8a9c58f
CW
1190 GEM_BUG_ON(!ce->pin_count);
1191
ef11c01d
CW
1192 /* Flush enough space to reduce the likelihood of waiting after
1193 * we start building the request - in which case we will just
1194 * have to repeat work.
1195 */
1196 request->reserved_space += EXECLISTS_REQUEST_SIZE;
1197
fd138212
CW
1198 ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1199 if (ret)
1200 return ret;
ef11c01d 1201
ef11c01d
CW
1202 /* Note that after this point, we have committed to using
1203 * this request as it is being used to both track the
1204 * state of engine initialisation and liveness of the
1205 * golden renderstate above. Think twice before you try
1206 * to cancel/unwind this request now.
1207 */
1208
1209 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1210 return 0;
ef11c01d
CW
1211}
1212
9e000847
AS
1213/*
1214 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1215 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1216 * but there is a slight complication as this is applied in WA batch where the
1217 * values are only initialized once so we cannot take register value at the
1218 * beginning and reuse it further; hence we save its value to memory, upload a
1219 * constant value with bit21 set and then we restore it back with the saved value.
1220 * To simplify the WA, a constant value is formed by using the default value
1221 * of this register. This shouldn't be a problem because we are only modifying
1222 * it for a short period and this batch in non-premptible. We can ofcourse
1223 * use additional instructions that read the actual value of the register
1224 * at that time and set our bit of interest but it makes the WA complicated.
1225 *
1226 * This WA is also required for Gen9 so extracting as a function avoids
1227 * code duplication.
1228 */
097d4f1c
TU
1229static u32 *
1230gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
17ee950d 1231{
097d4f1c
TU
1232 *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1233 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1234 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1235 *batch++ = 0;
1236
1237 *batch++ = MI_LOAD_REGISTER_IMM(1);
1238 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1239 *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1240
9f235dfa
TU
1241 batch = gen8_emit_pipe_control(batch,
1242 PIPE_CONTROL_CS_STALL |
1243 PIPE_CONTROL_DC_FLUSH_ENABLE,
1244 0);
097d4f1c
TU
1245
1246 *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1247 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1248 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1249 *batch++ = 0;
1250
1251 return batch;
17ee950d
AS
1252}
1253
6e5248b5
DV
1254/*
1255 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1256 * initialized at the beginning and shared across all contexts but this field
1257 * helps us to have multiple batches at different offsets and select them based
1258 * on a criteria. At the moment this batch always start at the beginning of the page
1259 * and at this point we don't have multiple wa_ctx batch buffers.
4d78c8dc 1260 *
6e5248b5
DV
1261 * The number of WA applied are not known at the beginning; we use this field
1262 * to return the no of DWORDS written.
17ee950d 1263 *
6e5248b5
DV
1264 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1265 * so it adds NOOPs as padding to make it cacheline aligned.
1266 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1267 * makes a complete batch buffer.
17ee950d 1268 */
097d4f1c 1269static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
17ee950d 1270{
7ad00d1a 1271 /* WaDisableCtxRestoreArbitration:bdw,chv */
097d4f1c 1272 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
17ee950d 1273
c82435bb 1274 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
097d4f1c
TU
1275 if (IS_BROADWELL(engine->i915))
1276 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
c82435bb 1277
0160f055
AS
1278 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1279 /* Actual scratch location is at 128 bytes offset */
9f235dfa
TU
1280 batch = gen8_emit_pipe_control(batch,
1281 PIPE_CONTROL_FLUSH_L3 |
1282 PIPE_CONTROL_GLOBAL_GTT_IVB |
1283 PIPE_CONTROL_CS_STALL |
1284 PIPE_CONTROL_QW_WRITE,
1285 i915_ggtt_offset(engine->scratch) +
1286 2 * CACHELINE_BYTES);
0160f055 1287
beecec90
CW
1288 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1289
17ee950d 1290 /* Pad to end of cacheline */
097d4f1c
TU
1291 while ((unsigned long)batch % CACHELINE_BYTES)
1292 *batch++ = MI_NOOP;
17ee950d
AS
1293
1294 /*
1295 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1296 * execution depends on the length specified in terms of cache lines
1297 * in the register CTX_RCS_INDIRECT_CTX
1298 */
1299
097d4f1c 1300 return batch;
17ee950d
AS
1301}
1302
097d4f1c 1303static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
0504cffc 1304{
beecec90
CW
1305 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1306
9fb5026f 1307 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
097d4f1c 1308 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
a4106a78 1309
9fb5026f 1310 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
097d4f1c
TU
1311 *batch++ = MI_LOAD_REGISTER_IMM(1);
1312 *batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
1313 *batch++ = _MASKED_BIT_DISABLE(
1314 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
1315 *batch++ = MI_NOOP;
873e8171 1316
066d4628
MK
1317 /* WaClearSlmSpaceAtContextSwitch:kbl */
1318 /* Actual scratch location is at 128 bytes offset */
097d4f1c 1319 if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
9f235dfa
TU
1320 batch = gen8_emit_pipe_control(batch,
1321 PIPE_CONTROL_FLUSH_L3 |
1322 PIPE_CONTROL_GLOBAL_GTT_IVB |
1323 PIPE_CONTROL_CS_STALL |
1324 PIPE_CONTROL_QW_WRITE,
1325 i915_ggtt_offset(engine->scratch)
1326 + 2 * CACHELINE_BYTES);
066d4628 1327 }
3485d99e 1328
9fb5026f 1329 /* WaMediaPoolStateCmdInWABB:bxt,glk */
3485d99e
TG
1330 if (HAS_POOLED_EU(engine->i915)) {
1331 /*
1332 * EU pool configuration is setup along with golden context
1333 * during context initialization. This value depends on
1334 * device type (2x6 or 3x6) and needs to be updated based
1335 * on which subslice is disabled especially for 2x6
1336 * devices, however it is safe to load default
1337 * configuration of 3x6 device instead of masking off
1338 * corresponding bits because HW ignores bits of a disabled
1339 * subslice and drops down to appropriate config. Please
1340 * see render_state_setup() in i915_gem_render_state.c for
1341 * possible configurations, to avoid duplication they are
1342 * not shown here again.
1343 */
097d4f1c
TU
1344 *batch++ = GEN9_MEDIA_POOL_STATE;
1345 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1346 *batch++ = 0x00777000;
1347 *batch++ = 0;
1348 *batch++ = 0;
1349 *batch++ = 0;
3485d99e
TG
1350 }
1351
beecec90
CW
1352 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1353
0504cffc 1354 /* Pad to end of cacheline */
097d4f1c
TU
1355 while ((unsigned long)batch % CACHELINE_BYTES)
1356 *batch++ = MI_NOOP;
0504cffc 1357
097d4f1c 1358 return batch;
0504cffc
AS
1359}
1360
097d4f1c
TU
1361#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1362
1363static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
17ee950d 1364{
48bb74e4
CW
1365 struct drm_i915_gem_object *obj;
1366 struct i915_vma *vma;
1367 int err;
17ee950d 1368
097d4f1c 1369 obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
48bb74e4
CW
1370 if (IS_ERR(obj))
1371 return PTR_ERR(obj);
17ee950d 1372
a01cb37a 1373 vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
48bb74e4
CW
1374 if (IS_ERR(vma)) {
1375 err = PTR_ERR(vma);
1376 goto err;
17ee950d
AS
1377 }
1378
48bb74e4
CW
1379 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1380 if (err)
1381 goto err;
1382
1383 engine->wa_ctx.vma = vma;
17ee950d 1384 return 0;
48bb74e4
CW
1385
1386err:
1387 i915_gem_object_put(obj);
1388 return err;
17ee950d
AS
1389}
1390
097d4f1c 1391static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
17ee950d 1392{
19880c4a 1393 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
17ee950d
AS
1394}
1395
097d4f1c
TU
1396typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1397
0bc40be8 1398static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d 1399{
48bb74e4 1400 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
097d4f1c
TU
1401 struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1402 &wa_ctx->per_ctx };
1403 wa_bb_func_t wa_bb_fn[2];
17ee950d 1404 struct page *page;
097d4f1c
TU
1405 void *batch, *batch_ptr;
1406 unsigned int i;
48bb74e4 1407 int ret;
17ee950d 1408
097d4f1c
TU
1409 if (WARN_ON(engine->id != RCS || !engine->scratch))
1410 return -EINVAL;
17ee950d 1411
097d4f1c 1412 switch (INTEL_GEN(engine->i915)) {
90007bca
RV
1413 case 10:
1414 return 0;
097d4f1c
TU
1415 case 9:
1416 wa_bb_fn[0] = gen9_init_indirectctx_bb;
b8aa2233 1417 wa_bb_fn[1] = NULL;
097d4f1c
TU
1418 break;
1419 case 8:
1420 wa_bb_fn[0] = gen8_init_indirectctx_bb;
3ad7b52d 1421 wa_bb_fn[1] = NULL;
097d4f1c
TU
1422 break;
1423 default:
1424 MISSING_CASE(INTEL_GEN(engine->i915));
5e60d790 1425 return 0;
0504cffc 1426 }
5e60d790 1427
097d4f1c 1428 ret = lrc_setup_wa_ctx(engine);
17ee950d
AS
1429 if (ret) {
1430 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1431 return ret;
1432 }
1433
48bb74e4 1434 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
097d4f1c 1435 batch = batch_ptr = kmap_atomic(page);
17ee950d 1436
097d4f1c
TU
1437 /*
1438 * Emit the two workaround batch buffers, recording the offset from the
1439 * start of the workaround batch buffer object for each and their
1440 * respective sizes.
1441 */
1442 for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1443 wa_bb[i]->offset = batch_ptr - batch;
1444 if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
1445 ret = -EINVAL;
1446 break;
1447 }
604a8f6f
CW
1448 if (wa_bb_fn[i])
1449 batch_ptr = wa_bb_fn[i](engine, batch_ptr);
097d4f1c 1450 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
17ee950d
AS
1451 }
1452
097d4f1c
TU
1453 BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1454
17ee950d
AS
1455 kunmap_atomic(batch);
1456 if (ret)
097d4f1c 1457 lrc_destroy_wa_ctx(engine);
17ee950d
AS
1458
1459 return ret;
1460}
1461
64f09f00
CW
1462static u8 gtiir[] = {
1463 [RCS] = 0,
1464 [BCS] = 0,
1465 [VCS] = 1,
1466 [VCS2] = 1,
1467 [VECS] = 3,
1468};
1469
0bc40be8 1470static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1471{
c033666a 1472 struct drm_i915_private *dev_priv = engine->i915;
b620e870 1473 struct intel_engine_execlists * const execlists = &engine->execlists;
821ed7df
CW
1474 int ret;
1475
1476 ret = intel_mocs_init_engine(engine);
1477 if (ret)
1478 return ret;
9b1136d5 1479
ad07dfcd 1480 intel_engine_reset_breadcrumbs(engine);
f3b8f912 1481 intel_engine_init_hangcheck(engine);
821ed7df 1482
0bc40be8 1483 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
0bc40be8 1484 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5 1485 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
f3b8f912
CW
1486 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1487 engine->status_page.ggtt_offset);
1488 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
dfc53c5e 1489
0bc40be8 1490 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1491
64f09f00
CW
1492 GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));
1493
1494 /*
1495 * Clear any pending interrupt state.
1496 *
1497 * We do it twice out of paranoia that some of the IIR are double
1498 * buffered, and if we only reset it once there may still be
1499 * an interrupt pending.
1500 */
1501 I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
1502 GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1503 I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
1504 GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
f747026c 1505 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
b620e870 1506 execlists->csb_head = -1;
4a118ecb 1507 execlists->active = 0;
6b764a59 1508
64f09f00 1509 /* After a GPU reset, we may have requests to replay */
9bdc3573 1510 if (execlists->first)
c6dce8f1 1511 tasklet_schedule(&execlists->tasklet);
6b764a59 1512
821ed7df 1513 return 0;
9b1136d5
OM
1514}
1515
0bc40be8 1516static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1517{
c033666a 1518 struct drm_i915_private *dev_priv = engine->i915;
9b1136d5
OM
1519 int ret;
1520
0bc40be8 1521 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1522 if (ret)
1523 return ret;
1524
1525 /* We need to disable the AsyncFlip performance optimisations in order
1526 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1527 * programmed to '1' on all products.
1528 *
1529 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1530 */
1531 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1532
9b1136d5
OM
1533 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1534
0bc40be8 1535 return init_workarounds_ring(engine);
9b1136d5
OM
1536}
1537
0bc40be8 1538static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1539{
1540 int ret;
1541
0bc40be8 1542 ret = gen8_init_common_ring(engine);
82ef822e
DL
1543 if (ret)
1544 return ret;
1545
0bc40be8 1546 return init_workarounds_ring(engine);
82ef822e
DL
1547}
1548
821ed7df
CW
1549static void reset_common_ring(struct intel_engine_cs *engine,
1550 struct drm_i915_gem_request *request)
1551{
b620e870 1552 struct intel_engine_execlists * const execlists = &engine->execlists;
c0dcb203 1553 struct intel_context *ce;
221ab971 1554 unsigned long flags;
cdb6ded4 1555
221ab971
CW
1556 spin_lock_irqsave(&engine->timeline->lock, flags);
1557
cdb6ded4
CW
1558 /*
1559 * Catch up with any missed context-switch interrupts.
1560 *
1561 * Ideally we would just read the remaining CSB entries now that we
1562 * know the gpu is idle. However, the CSB registers are sometimes^W
1563 * often trashed across a GPU reset! Instead we have to rely on
1564 * guessing the missed context-switch events by looking at what
1565 * requests were completed.
1566 */
a4598d17 1567 execlists_cancel_port_requests(execlists);
cdb6ded4 1568
221ab971 1569 /* Push back any incomplete requests for replay after the reset. */
a4598d17 1570 __unwind_incomplete_requests(engine);
cdb6ded4 1571
221ab971 1572 spin_unlock_irqrestore(&engine->timeline->lock, flags);
c0dcb203
CW
1573
1574 /* If the request was innocent, we leave the request in the ELSP
1575 * and will try to replay it on restarting. The context image may
1576 * have been corrupted by the reset, in which case we may have
1577 * to service a new GPU hang, but more likely we can continue on
1578 * without impact.
1579 *
1580 * If the request was guilty, we presume the context is corrupt
1581 * and have to at least restore the RING register in the context
1582 * image back to the expected values to skip over the guilty request.
1583 */
221ab971 1584 if (!request || request->fence.error != -EIO)
c0dcb203 1585 return;
821ed7df 1586
a3aabe86
CW
1587 /* We want a simple context + ring to execute the breadcrumb update.
1588 * We cannot rely on the context being intact across the GPU hang,
1589 * so clear it and rebuild just what we need for the breadcrumb.
1590 * All pending requests for this context will be zapped, and any
1591 * future request will be after userspace has had the opportunity
1592 * to recreate its own state.
1593 */
c0dcb203 1594 ce = &request->ctx->engine[engine->id];
a3aabe86
CW
1595 execlists_init_reg_state(ce->lrc_reg_state,
1596 request->ctx, engine, ce->ring);
1597
821ed7df 1598 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
a3aabe86
CW
1599 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1600 i915_ggtt_offset(ce->ring->vma);
821ed7df 1601 ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
a3aabe86 1602
821ed7df 1603 request->ring->head = request->postfix;
821ed7df
CW
1604 intel_ring_update_space(request->ring);
1605
a3aabe86 1606 /* Reset WaIdleLiteRestore:bdw,skl as well */
7e4992ac 1607 unwind_wa_tail(request);
821ed7df
CW
1608}
1609
7a01a0a2
MT
1610static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1611{
1612 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
4a570db5 1613 struct intel_engine_cs *engine = req->engine;
e7167769 1614 const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
73dec95e
TU
1615 u32 *cs;
1616 int i;
7a01a0a2 1617
73dec95e
TU
1618 cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1619 if (IS_ERR(cs))
1620 return PTR_ERR(cs);
7a01a0a2 1621
73dec95e 1622 *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
e7167769 1623 for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
7a01a0a2
MT
1624 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1625
73dec95e
TU
1626 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1627 *cs++ = upper_32_bits(pd_daddr);
1628 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1629 *cs++ = lower_32_bits(pd_daddr);
7a01a0a2
MT
1630 }
1631
73dec95e
TU
1632 *cs++ = MI_NOOP;
1633 intel_ring_advance(req, cs);
7a01a0a2
MT
1634
1635 return 0;
1636}
1637
be795fc1 1638static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
803688ba 1639 u64 offset, u32 len,
54af56db 1640 const unsigned int flags)
15648585 1641{
73dec95e 1642 u32 *cs;
15648585
OM
1643 int ret;
1644
7a01a0a2
MT
1645 /* Don't rely in hw updating PDPs, specially in lite-restore.
1646 * Ideally, we should set Force PD Restore in ctx descriptor,
1647 * but we can't. Force Restore would be a second option, but
1648 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1649 * not idle). PML4 is allocated during ppgtt init so this is
1650 * not needed in 48-bit.*/
7a01a0a2 1651 if (req->ctx->ppgtt &&
54af56db
MK
1652 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
1653 !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
1654 !intel_vgpu_active(req->i915)) {
1655 ret = intel_logical_ring_emit_pdps(req);
1656 if (ret)
1657 return ret;
7a01a0a2 1658
666796da 1659 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1660 }
1661
73dec95e
TU
1662 cs = intel_ring_begin(req, 4);
1663 if (IS_ERR(cs))
1664 return PTR_ERR(cs);
15648585 1665
279f5a00
CW
1666 /*
1667 * WaDisableCtxRestoreArbitration:bdw,chv
1668 *
1669 * We don't need to perform MI_ARB_ENABLE as often as we do (in
1670 * particular all the gen that do not need the w/a at all!), if we
1671 * took care to make sure that on every switch into this context
1672 * (both ordinary and for preemption) that arbitrartion was enabled
1673 * we would be fine. However, there doesn't seem to be a downside to
1674 * being paranoid and making sure it is set before each batch and
1675 * every context-switch.
1676 *
1677 * Note that if we fail to enable arbitration before the request
1678 * is complete, then we do not see the context-switch interrupt and
1679 * the engine hangs (with RING_HEAD == RING_TAIL).
1680 *
1681 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
1682 */
3ad7b52d
CW
1683 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1684
15648585 1685 /* FIXME(BDW): Address space and security selectors. */
54af56db
MK
1686 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
1687 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1688 (flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
73dec95e
TU
1689 *cs++ = lower_32_bits(offset);
1690 *cs++ = upper_32_bits(offset);
73dec95e 1691 intel_ring_advance(req, cs);
15648585
OM
1692
1693 return 0;
1694}
1695
31bb59cc 1696static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
73d477f6 1697{
c033666a 1698 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc
CW
1699 I915_WRITE_IMR(engine,
1700 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1701 POSTING_READ_FW(RING_IMR(engine->mmio_base));
73d477f6
OM
1702}
1703
31bb59cc 1704static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
73d477f6 1705{
c033666a 1706 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc 1707 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
73d477f6
OM
1708}
1709
7c9cf4e3 1710static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
4712274c 1711{
73dec95e 1712 u32 cmd, *cs;
4712274c 1713
73dec95e
TU
1714 cs = intel_ring_begin(request, 4);
1715 if (IS_ERR(cs))
1716 return PTR_ERR(cs);
4712274c
OM
1717
1718 cmd = MI_FLUSH_DW + 1;
1719
f0a1fb10
CW
1720 /* We always require a command barrier so that subsequent
1721 * commands, such as breadcrumb interrupts, are strictly ordered
1722 * wrt the contents of the write cache being flushed to memory
1723 * (and thus being coherent from the CPU).
1724 */
1725 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1726
7c9cf4e3 1727 if (mode & EMIT_INVALIDATE) {
f0a1fb10 1728 cmd |= MI_INVALIDATE_TLB;
1dae2dfb 1729 if (request->engine->id == VCS)
f0a1fb10 1730 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1731 }
1732
73dec95e
TU
1733 *cs++ = cmd;
1734 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1735 *cs++ = 0; /* upper addr */
1736 *cs++ = 0; /* value */
1737 intel_ring_advance(request, cs);
4712274c
OM
1738
1739 return 0;
1740}
1741
7deb4d39 1742static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
7c9cf4e3 1743 u32 mode)
4712274c 1744{
b5321f30 1745 struct intel_engine_cs *engine = request->engine;
bde13ebd
CW
1746 u32 scratch_addr =
1747 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0b2d0934 1748 bool vf_flush_wa = false, dc_flush_wa = false;
73dec95e 1749 u32 *cs, flags = 0;
0b2d0934 1750 int len;
4712274c
OM
1751
1752 flags |= PIPE_CONTROL_CS_STALL;
1753
7c9cf4e3 1754 if (mode & EMIT_FLUSH) {
4712274c
OM
1755 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1756 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1757 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1758 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1759 }
1760
7c9cf4e3 1761 if (mode & EMIT_INVALIDATE) {
4712274c
OM
1762 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1763 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1764 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1765 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1766 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1767 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1768 flags |= PIPE_CONTROL_QW_WRITE;
1769 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1770
1a5a9ce7
BW
1771 /*
1772 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1773 * pipe control.
1774 */
c033666a 1775 if (IS_GEN9(request->i915))
1a5a9ce7 1776 vf_flush_wa = true;
0b2d0934
MK
1777
1778 /* WaForGAMHang:kbl */
1779 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1780 dc_flush_wa = true;
1a5a9ce7 1781 }
9647ff36 1782
0b2d0934
MK
1783 len = 6;
1784
1785 if (vf_flush_wa)
1786 len += 6;
1787
1788 if (dc_flush_wa)
1789 len += 12;
1790
73dec95e
TU
1791 cs = intel_ring_begin(request, len);
1792 if (IS_ERR(cs))
1793 return PTR_ERR(cs);
4712274c 1794
9f235dfa
TU
1795 if (vf_flush_wa)
1796 cs = gen8_emit_pipe_control(cs, 0, 0);
9647ff36 1797
9f235dfa
TU
1798 if (dc_flush_wa)
1799 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
1800 0);
0b2d0934 1801
9f235dfa 1802 cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
0b2d0934 1803
9f235dfa
TU
1804 if (dc_flush_wa)
1805 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
0b2d0934 1806
73dec95e 1807 intel_ring_advance(request, cs);
4712274c
OM
1808
1809 return 0;
1810}
1811
7c17d377
CW
1812/*
1813 * Reserve space for 2 NOOPs at the end of each request to be
1814 * used as a workaround for not being allowed to do lite
1815 * restore with HEAD==TAIL (WaIdleLiteRestore).
1816 */
73dec95e 1817static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
4da46e1e 1818{
beecec90
CW
1819 /* Ensure there's always at least one preemption point per-request. */
1820 *cs++ = MI_ARB_CHECK;
73dec95e
TU
1821 *cs++ = MI_NOOP;
1822 request->wa_tail = intel_ring_offset(request, cs);
caddfe71 1823}
4da46e1e 1824
73dec95e 1825static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
caddfe71 1826{
7c17d377
CW
1827 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1828 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1829
df77cd83
MW
1830 cs = gen8_emit_ggtt_write(cs, request->global_seqno,
1831 intel_hws_seqno_address(request->engine));
73dec95e
TU
1832 *cs++ = MI_USER_INTERRUPT;
1833 *cs++ = MI_NOOP;
1834 request->tail = intel_ring_offset(request, cs);
ed1501d4 1835 assert_ring_tail_valid(request->ring, request->tail);
caddfe71 1836
73dec95e 1837 gen8_emit_wa_tail(request, cs);
7c17d377 1838}
98f29e8d
CW
1839static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1840
df77cd83 1841static void gen8_emit_breadcrumb_rcs(struct drm_i915_gem_request *request,
73dec95e 1842 u32 *cs)
7c17d377 1843{
ce81a65c
MW
1844 /* We're using qword write, seqno should be aligned to 8 bytes. */
1845 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1846
df77cd83
MW
1847 cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
1848 intel_hws_seqno_address(request->engine));
73dec95e
TU
1849 *cs++ = MI_USER_INTERRUPT;
1850 *cs++ = MI_NOOP;
1851 request->tail = intel_ring_offset(request, cs);
ed1501d4 1852 assert_ring_tail_valid(request->ring, request->tail);
caddfe71 1853
73dec95e 1854 gen8_emit_wa_tail(request, cs);
4da46e1e 1855}
df77cd83 1856static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
98f29e8d 1857
8753181e 1858static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1859{
1860 int ret;
1861
4ac9659e 1862 ret = intel_ring_workarounds_emit(req);
e7778be1
TD
1863 if (ret)
1864 return ret;
1865
3bbaba0c
PA
1866 ret = intel_rcs_context_init_mocs(req);
1867 /*
1868 * Failing to program the MOCS is non-fatal.The system will not
1869 * run at peak performance. So generate an error and carry on.
1870 */
1871 if (ret)
1872 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1873
4e50f082 1874 return i915_gem_render_state_emit(req);
e7778be1
TD
1875}
1876
73e4d07f
OM
1877/**
1878 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
14bb2c11 1879 * @engine: Engine Command Streamer.
73e4d07f 1880 */
0bc40be8 1881void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1882{
6402c330 1883 struct drm_i915_private *dev_priv;
9832b9da 1884
27af5eea
TU
1885 /*
1886 * Tasklet cannot be active at this point due intel_mark_active/idle
1887 * so this is just for documentation.
1888 */
c6dce8f1
SAK
1889 if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
1890 &engine->execlists.tasklet.state)))
1891 tasklet_kill(&engine->execlists.tasklet);
27af5eea 1892
c033666a 1893 dev_priv = engine->i915;
6402c330 1894
0bc40be8 1895 if (engine->buffer) {
0bc40be8 1896 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1897 }
48d82387 1898
0bc40be8
TU
1899 if (engine->cleanup)
1900 engine->cleanup(engine);
48d82387 1901
e8a9c58f 1902 intel_engine_cleanup_common(engine);
17ee950d 1903
097d4f1c 1904 lrc_destroy_wa_ctx(engine);
c033666a 1905 engine->i915 = NULL;
3b3f1650
AG
1906 dev_priv->engine[engine->id] = NULL;
1907 kfree(engine);
454afebd
OM
1908}
1909
ff44ad51 1910static void execlists_set_default_submission(struct intel_engine_cs *engine)
ddd66c51 1911{
ff44ad51 1912 engine->submit_request = execlists_submit_request;
27a5f61b 1913 engine->cancel_requests = execlists_cancel_requests;
ff44ad51 1914 engine->schedule = execlists_schedule;
c6dce8f1 1915 engine->execlists.tasklet.func = execlists_submission_tasklet;
aba5e278
CW
1916
1917 engine->park = NULL;
1918 engine->unpark = NULL;
ddd66c51
CW
1919}
1920
c9cacf93 1921static void
e1382efb 1922logical_ring_default_vfuncs(struct intel_engine_cs *engine)
c9cacf93
TU
1923{
1924 /* Default vfuncs which can be overriden by each engine. */
0bc40be8 1925 engine->init_hw = gen8_init_common_ring;
821ed7df 1926 engine->reset_hw = reset_common_ring;
e8a9c58f
CW
1927
1928 engine->context_pin = execlists_context_pin;
1929 engine->context_unpin = execlists_context_unpin;
1930
f73e7399
CW
1931 engine->request_alloc = execlists_request_alloc;
1932
0bc40be8 1933 engine->emit_flush = gen8_emit_flush;
9b81d556 1934 engine->emit_breadcrumb = gen8_emit_breadcrumb;
98f29e8d 1935 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
ff44ad51
CW
1936
1937 engine->set_default_submission = execlists_set_default_submission;
ddd66c51 1938
31bb59cc
CW
1939 engine->irq_enable = gen8_logical_ring_enable_irq;
1940 engine->irq_disable = gen8_logical_ring_disable_irq;
0bc40be8 1941 engine->emit_bb_start = gen8_emit_bb_start;
c9cacf93
TU
1942}
1943
d9f3af96 1944static inline void
c2c7f240 1945logical_ring_default_irqs(struct intel_engine_cs *engine)
d9f3af96 1946{
c2c7f240 1947 unsigned shift = engine->irq_shift;
0bc40be8
TU
1948 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1949 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1950}
1951
bb45438f
TU
1952static void
1953logical_ring_setup(struct intel_engine_cs *engine)
1954{
1955 struct drm_i915_private *dev_priv = engine->i915;
1956 enum forcewake_domains fw_domains;
1957
019bf277
TU
1958 intel_engine_setup_common(engine);
1959
bb45438f
TU
1960 /* Intentionally left blank. */
1961 engine->buffer = NULL;
1962
1963 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1964 RING_ELSP(engine),
1965 FW_REG_WRITE);
1966
1967 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1968 RING_CONTEXT_STATUS_PTR(engine),
1969 FW_REG_READ | FW_REG_WRITE);
1970
1971 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1972 RING_CONTEXT_STATUS_BUF_BASE(engine),
1973 FW_REG_READ);
1974
b620e870 1975 engine->execlists.fw_domains = fw_domains;
bb45438f 1976
c6dce8f1
SAK
1977 tasklet_init(&engine->execlists.tasklet,
1978 execlists_submission_tasklet, (unsigned long)engine);
bb45438f 1979
bb45438f
TU
1980 logical_ring_default_vfuncs(engine);
1981 logical_ring_default_irqs(engine);
bb45438f
TU
1982}
1983
486e93f7 1984static int logical_ring_init(struct intel_engine_cs *engine)
a19d6ff2 1985{
a19d6ff2
TU
1986 int ret;
1987
019bf277 1988 ret = intel_engine_init_common(engine);
a19d6ff2
TU
1989 if (ret)
1990 goto error;
1991
a19d6ff2
TU
1992 return 0;
1993
1994error:
1995 intel_logical_ring_cleanup(engine);
1996 return ret;
1997}
1998
88d2ba2e 1999int logical_render_ring_init(struct intel_engine_cs *engine)
a19d6ff2
TU
2000{
2001 struct drm_i915_private *dev_priv = engine->i915;
2002 int ret;
2003
bb45438f
TU
2004 logical_ring_setup(engine);
2005
a19d6ff2
TU
2006 if (HAS_L3_DPF(dev_priv))
2007 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2008
2009 /* Override some for render ring. */
2010 if (INTEL_GEN(dev_priv) >= 9)
2011 engine->init_hw = gen9_init_render_ring;
2012 else
2013 engine->init_hw = gen8_init_render_ring;
2014 engine->init_context = gen8_init_rcs_context;
a19d6ff2 2015 engine->emit_flush = gen8_emit_flush_render;
df77cd83
MW
2016 engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
2017 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
a19d6ff2 2018
f51455d4 2019 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
a19d6ff2
TU
2020 if (ret)
2021 return ret;
2022
2023 ret = intel_init_workaround_bb(engine);
2024 if (ret) {
2025 /*
2026 * We continue even if we fail to initialize WA batch
2027 * because we only expect rare glitches but nothing
2028 * critical to prevent us from using GPU
2029 */
2030 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2031 ret);
2032 }
2033
d038fc7e 2034 return logical_ring_init(engine);
a19d6ff2
TU
2035}
2036
88d2ba2e 2037int logical_xcs_ring_init(struct intel_engine_cs *engine)
bb45438f
TU
2038{
2039 logical_ring_setup(engine);
2040
2041 return logical_ring_init(engine);
454afebd
OM
2042}
2043
0cea6502 2044static u32
c033666a 2045make_rpcs(struct drm_i915_private *dev_priv)
0cea6502
JM
2046{
2047 u32 rpcs = 0;
2048
2049 /*
2050 * No explicit RPCS request is needed to ensure full
2051 * slice/subslice/EU enablement prior to Gen9.
2052 */
c033666a 2053 if (INTEL_GEN(dev_priv) < 9)
0cea6502
JM
2054 return 0;
2055
2056 /*
2057 * Starting in Gen9, render power gating can leave
2058 * slice/subslice/EU in a partially enabled state. We
2059 * must make an explicit request through RPCS for full
2060 * enablement.
2061 */
43b67998 2062 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
0cea6502 2063 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
f08a0c92 2064 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
0cea6502
JM
2065 GEN8_RPCS_S_CNT_SHIFT;
2066 rpcs |= GEN8_RPCS_ENABLE;
2067 }
2068
43b67998 2069 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
0cea6502 2070 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
57ec171e 2071 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
0cea6502
JM
2072 GEN8_RPCS_SS_CNT_SHIFT;
2073 rpcs |= GEN8_RPCS_ENABLE;
2074 }
2075
43b67998
ID
2076 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2077 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502 2078 GEN8_RPCS_EU_MIN_SHIFT;
43b67998 2079 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502
JM
2080 GEN8_RPCS_EU_MAX_SHIFT;
2081 rpcs |= GEN8_RPCS_ENABLE;
2082 }
2083
2084 return rpcs;
2085}
2086
0bc40be8 2087static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
2088{
2089 u32 indirect_ctx_offset;
2090
c033666a 2091 switch (INTEL_GEN(engine->i915)) {
71562919 2092 default:
c033666a 2093 MISSING_CASE(INTEL_GEN(engine->i915));
71562919 2094 /* fall through */
7bd0a2c6
MT
2095 case 10:
2096 indirect_ctx_offset =
2097 GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2098 break;
71562919
MT
2099 case 9:
2100 indirect_ctx_offset =
2101 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2102 break;
2103 case 8:
2104 indirect_ctx_offset =
2105 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2106 break;
2107 }
2108
2109 return indirect_ctx_offset;
2110}
2111
56e51bf0 2112static void execlists_init_reg_state(u32 *regs,
a3aabe86
CW
2113 struct i915_gem_context *ctx,
2114 struct intel_engine_cs *engine,
2115 struct intel_ring *ring)
8670d6f9 2116{
a3aabe86
CW
2117 struct drm_i915_private *dev_priv = engine->i915;
2118 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
56e51bf0
TU
2119 u32 base = engine->mmio_base;
2120 bool rcs = engine->id == RCS;
2121
2122 /* A context is actually a big batch buffer with several
2123 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2124 * values we are setting here are only for the first context restore:
2125 * on a subsequent save, the GPU will recreate this batchbuffer with new
2126 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2127 * we are not initializing here).
2128 */
2129 regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2130 MI_LRI_FORCE_POSTED;
2131
2132 CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2133 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
56e51bf0
TU
2134 (HAS_RESOURCE_STREAMER(dev_priv) ?
2135 CTX_CTRL_RS_CTX_ENABLE : 0)));
2136 CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2137 CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2138 CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2139 CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2140 RING_CTL_SIZE(ring->size) | RING_VALID);
2141 CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2142 CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2143 CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2144 CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2145 CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2146 CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2147 if (rcs) {
604a8f6f
CW
2148 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2149
56e51bf0
TU
2150 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2151 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2152 RING_INDIRECT_CTX_OFFSET(base), 0);
604a8f6f 2153 if (wa_ctx->indirect_ctx.size) {
bde13ebd 2154 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
17ee950d 2155
56e51bf0 2156 regs[CTX_RCS_INDIRECT_CTX + 1] =
097d4f1c
TU
2157 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
2158 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
17ee950d 2159
56e51bf0 2160 regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
0bc40be8 2161 intel_lr_indirect_ctx_offset(engine) << 6;
604a8f6f
CW
2162 }
2163
2164 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2165 if (wa_ctx->per_ctx.size) {
2166 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
17ee950d 2167
56e51bf0 2168 regs[CTX_BB_PER_CTX_PTR + 1] =
097d4f1c 2169 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
17ee950d 2170 }
8670d6f9 2171 }
56e51bf0
TU
2172
2173 regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2174
2175 CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
0d925ea0 2176 /* PDP values well be assigned later if needed */
56e51bf0
TU
2177 CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
2178 CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
2179 CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
2180 CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
2181 CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
2182 CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
2183 CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
2184 CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
d7b2633d 2185
949e8ab3 2186 if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2dba3239
MT
2187 /* 64b PPGTT (48bit canonical)
2188 * PDP0_DESCRIPTOR contains the base address to PML4 and
2189 * other PDP Descriptors are ignored.
2190 */
56e51bf0 2191 ASSIGN_CTX_PML4(ppgtt, regs);
2dba3239
MT
2192 }
2193
56e51bf0
TU
2194 if (rcs) {
2195 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2196 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2197 make_rpcs(dev_priv));
19f81df2
RB
2198
2199 i915_oa_init_reg_state(engine, ctx, regs);
8670d6f9 2200 }
a3aabe86
CW
2201}
2202
2203static int
2204populate_lr_context(struct i915_gem_context *ctx,
2205 struct drm_i915_gem_object *ctx_obj,
2206 struct intel_engine_cs *engine,
2207 struct intel_ring *ring)
2208{
2209 void *vaddr;
d2b4b979 2210 u32 *regs;
a3aabe86
CW
2211 int ret;
2212
2213 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2214 if (ret) {
2215 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2216 return ret;
2217 }
2218
2219 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2220 if (IS_ERR(vaddr)) {
2221 ret = PTR_ERR(vaddr);
2222 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2223 return ret;
2224 }
a4f5ea64 2225 ctx_obj->mm.dirty = true;
a3aabe86 2226
d2b4b979
CW
2227 if (engine->default_state) {
2228 /*
2229 * We only want to copy over the template context state;
2230 * skipping over the headers reserved for GuC communication,
2231 * leaving those as zero.
2232 */
2233 const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2234 void *defaults;
2235
2236 defaults = i915_gem_object_pin_map(engine->default_state,
2237 I915_MAP_WB);
2238 if (IS_ERR(defaults))
2239 return PTR_ERR(defaults);
2240
2241 memcpy(vaddr + start, defaults + start, engine->context_size);
2242 i915_gem_object_unpin_map(engine->default_state);
2243 }
2244
a3aabe86
CW
2245 /* The second page of the context object contains some fields which must
2246 * be set up prior to the first execution. */
d2b4b979
CW
2247 regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2248 execlists_init_reg_state(regs, ctx, engine, ring);
2249 if (!engine->default_state)
2250 regs[CTX_CONTEXT_CONTROL + 1] |=
2251 _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
8670d6f9 2252
7d774cac 2253 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
2254
2255 return 0;
2256}
2257
e2efd130 2258static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 2259 struct intel_engine_cs *engine)
ede7d42b 2260{
8c857917 2261 struct drm_i915_gem_object *ctx_obj;
9021ad03 2262 struct intel_context *ce = &ctx->engine[engine->id];
bf3783e5 2263 struct i915_vma *vma;
8c857917 2264 uint32_t context_size;
7e37f889 2265 struct intel_ring *ring;
8c857917
OM
2266 int ret;
2267
9021ad03 2268 WARN_ON(ce->state);
ede7d42b 2269
63ffbcda 2270 context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
8c857917 2271
0b29c75a
MT
2272 /*
2273 * Before the actual start of the context image, we insert a few pages
2274 * for our own use and for sharing with the GuC.
2275 */
2276 context_size += LRC_HEADER_PAGES * PAGE_SIZE;
d1675198 2277
12d79d78 2278 ctx_obj = i915_gem_object_create(ctx->i915, context_size);
fe3db79b 2279 if (IS_ERR(ctx_obj)) {
3126a660 2280 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 2281 return PTR_ERR(ctx_obj);
8c857917
OM
2282 }
2283
a01cb37a 2284 vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
bf3783e5
CW
2285 if (IS_ERR(vma)) {
2286 ret = PTR_ERR(vma);
2287 goto error_deref_obj;
2288 }
2289
7e37f889 2290 ring = intel_engine_create_ring(engine, ctx->ring_size);
dca33ecc
CW
2291 if (IS_ERR(ring)) {
2292 ret = PTR_ERR(ring);
e84fe803 2293 goto error_deref_obj;
8670d6f9
OM
2294 }
2295
dca33ecc 2296 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
8670d6f9
OM
2297 if (ret) {
2298 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
dca33ecc 2299 goto error_ring_free;
84c2377f
OM
2300 }
2301
dca33ecc 2302 ce->ring = ring;
bf3783e5 2303 ce->state = vma;
ede7d42b
OM
2304
2305 return 0;
8670d6f9 2306
dca33ecc 2307error_ring_free:
7e37f889 2308 intel_ring_free(ring);
e84fe803 2309error_deref_obj:
f8c417cd 2310 i915_gem_object_put(ctx_obj);
8670d6f9 2311 return ret;
ede7d42b 2312}
3e5b6f05 2313
821ed7df 2314void intel_lr_context_resume(struct drm_i915_private *dev_priv)
3e5b6f05 2315{
e2f80391 2316 struct intel_engine_cs *engine;
bafb2f7d 2317 struct i915_gem_context *ctx;
3b3f1650 2318 enum intel_engine_id id;
bafb2f7d
CW
2319
2320 /* Because we emit WA_TAIL_DWORDS there may be a disparity
2321 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2322 * that stored in context. As we only write new commands from
2323 * ce->ring->tail onwards, everything before that is junk. If the GPU
2324 * starts reading from its RING_HEAD from the context, it may try to
2325 * execute that junk and die.
2326 *
2327 * So to avoid that we reset the context images upon resume. For
2328 * simplicity, we just zero everything out.
2329 */
829a0af2 2330 list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
3b3f1650 2331 for_each_engine(engine, dev_priv, id) {
bafb2f7d
CW
2332 struct intel_context *ce = &ctx->engine[engine->id];
2333 u32 *reg;
3e5b6f05 2334
bafb2f7d
CW
2335 if (!ce->state)
2336 continue;
7d774cac 2337
bafb2f7d
CW
2338 reg = i915_gem_object_pin_map(ce->state->obj,
2339 I915_MAP_WB);
2340 if (WARN_ON(IS_ERR(reg)))
2341 continue;
3e5b6f05 2342
bafb2f7d
CW
2343 reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2344 reg[CTX_RING_HEAD+1] = 0;
2345 reg[CTX_RING_TAIL+1] = 0;
3e5b6f05 2346
a4f5ea64 2347 ce->state->obj->mm.dirty = true;
bafb2f7d 2348 i915_gem_object_unpin_map(ce->state->obj);
3e5b6f05 2349
e6ba9992 2350 intel_ring_reset(ce->ring, 0);
bafb2f7d 2351 }
3e5b6f05
TD
2352 }
2353}