]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: Redefine WARN_ON to include the condition
[thirdparty/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1
OM
133 */
134
135#include <drm/drmP.h>
136#include <drm/i915_drm.h>
137#include "i915_drv.h"
127f1003 138
8c857917
OM
139#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
140#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
141
142#define GEN8_LR_CONTEXT_ALIGN 4096
143
e981e7b1
TD
144#define RING_EXECLIST_QFULL (1 << 0x2)
145#define RING_EXECLIST1_VALID (1 << 0x3)
146#define RING_EXECLIST0_VALID (1 << 0x4)
147#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
148#define RING_EXECLIST1_ACTIVE (1 << 0x11)
149#define RING_EXECLIST0_ACTIVE (1 << 0x12)
150
151#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
152#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
153#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
154#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
155#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
156#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
157
158#define CTX_LRI_HEADER_0 0x01
159#define CTX_CONTEXT_CONTROL 0x02
160#define CTX_RING_HEAD 0x04
161#define CTX_RING_TAIL 0x06
162#define CTX_RING_BUFFER_START 0x08
163#define CTX_RING_BUFFER_CONTROL 0x0a
164#define CTX_BB_HEAD_U 0x0c
165#define CTX_BB_HEAD_L 0x0e
166#define CTX_BB_STATE 0x10
167#define CTX_SECOND_BB_HEAD_U 0x12
168#define CTX_SECOND_BB_HEAD_L 0x14
169#define CTX_SECOND_BB_STATE 0x16
170#define CTX_BB_PER_CTX_PTR 0x18
171#define CTX_RCS_INDIRECT_CTX 0x1a
172#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
173#define CTX_LRI_HEADER_1 0x21
174#define CTX_CTX_TIMESTAMP 0x22
175#define CTX_PDP3_UDW 0x24
176#define CTX_PDP3_LDW 0x26
177#define CTX_PDP2_UDW 0x28
178#define CTX_PDP2_LDW 0x2a
179#define CTX_PDP1_UDW 0x2c
180#define CTX_PDP1_LDW 0x2e
181#define CTX_PDP0_UDW 0x30
182#define CTX_PDP0_LDW 0x32
183#define CTX_LRI_HEADER_2 0x41
184#define CTX_R_PWR_CLK_STATE 0x42
185#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
186
84b790f8
BW
187#define GEN8_CTX_VALID (1<<0)
188#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189#define GEN8_CTX_FORCE_RESTORE (1<<2)
190#define GEN8_CTX_L3LLC_COHERENT (1<<5)
191#define GEN8_CTX_PRIVILEGE (1<<8)
192enum {
193 ADVANCED_CONTEXT = 0,
194 LEGACY_CONTEXT,
195 ADVANCED_AD_CONTEXT,
196 LEGACY_64B_CONTEXT
197};
198#define GEN8_CTX_MODE_SHIFT 3
199enum {
200 FAULT_AND_HANG = 0,
201 FAULT_AND_HALT, /* Debug only */
202 FAULT_AND_STREAM,
203 FAULT_AND_CONTINUE /* Unsupported */
204};
205#define GEN8_CTX_ID_SHIFT 32
206
73e4d07f
OM
207/**
208 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
209 * @dev: DRM device.
210 * @enable_execlists: value of i915.enable_execlists module parameter.
211 *
212 * Only certain platforms support Execlists (the prerequisites being
213 * support for Logical Ring Contexts and Aliasing PPGTT or better),
214 * and only when enabled via module parameter.
215 *
216 * Return: 1 if Execlists is supported and has to be enabled.
217 */
127f1003
OM
218int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
219{
bd84b1e9
DV
220 WARN_ON(i915.enable_ppgtt == -1);
221
127f1003
OM
222 if (enable_execlists == 0)
223 return 0;
224
14bf993e
OM
225 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
226 i915.use_mmio_flip >= 0)
127f1003
OM
227 return 1;
228
229 return 0;
230}
ede7d42b 231
73e4d07f
OM
232/**
233 * intel_execlists_ctx_id() - get the Execlists Context ID
234 * @ctx_obj: Logical Ring Context backing object.
235 *
236 * Do not confuse with ctx->id! Unfortunately we have a name overload
237 * here: the old context ID we pass to userspace as a handler so that
238 * they can refer to a context, and the new context ID we pass to the
239 * ELSP so that the GPU can inform us of the context status via
240 * interrupts.
241 *
242 * Return: 20-bits globally unique context ID.
243 */
84b790f8
BW
244u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
245{
246 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
247
248 /* LRCA is required to be 4K aligned so the more significant 20 bits
249 * are globally unique */
250 return lrca >> 12;
251}
252
253static uint64_t execlists_ctx_descriptor(struct drm_i915_gem_object *ctx_obj)
254{
255 uint64_t desc;
256 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
acdd884a
MT
257
258 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
84b790f8
BW
259
260 desc = GEN8_CTX_VALID;
261 desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
262 desc |= GEN8_CTX_L3LLC_COHERENT;
263 desc |= GEN8_CTX_PRIVILEGE;
264 desc |= lrca;
265 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
266
267 /* TODO: WaDisableLiteRestore when we start using semaphore
268 * signalling between Command Streamers */
269 /* desc |= GEN8_CTX_FORCE_RESTORE; */
270
271 return desc;
272}
273
274static void execlists_elsp_write(struct intel_engine_cs *ring,
275 struct drm_i915_gem_object *ctx_obj0,
276 struct drm_i915_gem_object *ctx_obj1)
277{
278 struct drm_i915_private *dev_priv = ring->dev->dev_private;
279 uint64_t temp = 0;
280 uint32_t desc[4];
e981e7b1 281 unsigned long flags;
84b790f8
BW
282
283 /* XXX: You must always write both descriptors in the order below. */
284 if (ctx_obj1)
285 temp = execlists_ctx_descriptor(ctx_obj1);
286 else
287 temp = 0;
288 desc[1] = (u32)(temp >> 32);
289 desc[0] = (u32)temp;
290
291 temp = execlists_ctx_descriptor(ctx_obj0);
292 desc[3] = (u32)(temp >> 32);
293 desc[2] = (u32)temp;
294
e981e7b1
TD
295 /* Set Force Wakeup bit to prevent GT from entering C6 while ELSP writes
296 * are in progress.
297 *
298 * The other problem is that we can't just call gen6_gt_force_wake_get()
299 * because that function calls intel_runtime_pm_get(), which might sleep.
300 * Instead, we do the runtime_pm_get/put when creating/destroying requests.
301 */
302 spin_lock_irqsave(&dev_priv->uncore.lock, flags);
a01b0e94
D
303 if (IS_CHERRYVIEW(dev_priv->dev)) {
304 if (dev_priv->uncore.fw_rendercount++ == 0)
305 dev_priv->uncore.funcs.force_wake_get(dev_priv,
306 FORCEWAKE_RENDER);
307 if (dev_priv->uncore.fw_mediacount++ == 0)
308 dev_priv->uncore.funcs.force_wake_get(dev_priv,
309 FORCEWAKE_MEDIA);
310 } else {
311 if (dev_priv->uncore.forcewake_count++ == 0)
312 dev_priv->uncore.funcs.force_wake_get(dev_priv,
313 FORCEWAKE_ALL);
314 }
e981e7b1 315 spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
84b790f8
BW
316
317 I915_WRITE(RING_ELSP(ring), desc[1]);
318 I915_WRITE(RING_ELSP(ring), desc[0]);
319 I915_WRITE(RING_ELSP(ring), desc[3]);
320 /* The context is automatically loaded after the following */
321 I915_WRITE(RING_ELSP(ring), desc[2]);
322
323 /* ELSP is a wo register, so use another nearby reg for posting instead */
324 POSTING_READ(RING_EXECLIST_STATUS(ring));
325
e981e7b1
TD
326 /* Release Force Wakeup (see the big comment above). */
327 spin_lock_irqsave(&dev_priv->uncore.lock, flags);
a01b0e94
D
328 if (IS_CHERRYVIEW(dev_priv->dev)) {
329 if (--dev_priv->uncore.fw_rendercount == 0)
330 dev_priv->uncore.funcs.force_wake_put(dev_priv,
331 FORCEWAKE_RENDER);
332 if (--dev_priv->uncore.fw_mediacount == 0)
333 dev_priv->uncore.funcs.force_wake_put(dev_priv,
334 FORCEWAKE_MEDIA);
335 } else {
336 if (--dev_priv->uncore.forcewake_count == 0)
337 dev_priv->uncore.funcs.force_wake_put(dev_priv,
338 FORCEWAKE_ALL);
339 }
340
e981e7b1 341 spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
84b790f8
BW
342}
343
ae1250b9
OM
344static int execlists_ctx_write_tail(struct drm_i915_gem_object *ctx_obj, u32 tail)
345{
346 struct page *page;
347 uint32_t *reg_state;
348
349 page = i915_gem_object_get_page(ctx_obj, 1);
350 reg_state = kmap_atomic(page);
351
352 reg_state[CTX_RING_TAIL+1] = tail;
353
354 kunmap_atomic(reg_state);
355
356 return 0;
357}
358
84b790f8
BW
359static int execlists_submit_context(struct intel_engine_cs *ring,
360 struct intel_context *to0, u32 tail0,
361 struct intel_context *to1, u32 tail1)
362{
363 struct drm_i915_gem_object *ctx_obj0;
364 struct drm_i915_gem_object *ctx_obj1 = NULL;
365
366 ctx_obj0 = to0->engine[ring->id].state;
367 BUG_ON(!ctx_obj0);
acdd884a 368 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
84b790f8 369
ae1250b9
OM
370 execlists_ctx_write_tail(ctx_obj0, tail0);
371
84b790f8
BW
372 if (to1) {
373 ctx_obj1 = to1->engine[ring->id].state;
374 BUG_ON(!ctx_obj1);
acdd884a 375 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
ae1250b9
OM
376
377 execlists_ctx_write_tail(ctx_obj1, tail1);
84b790f8
BW
378 }
379
380 execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
381
382 return 0;
383}
384
acdd884a
MT
385static void execlists_context_unqueue(struct intel_engine_cs *ring)
386{
387 struct intel_ctx_submit_request *req0 = NULL, *req1 = NULL;
388 struct intel_ctx_submit_request *cursor = NULL, *tmp = NULL;
e981e7b1
TD
389 struct drm_i915_private *dev_priv = ring->dev->dev_private;
390
391 assert_spin_locked(&ring->execlist_lock);
acdd884a
MT
392
393 if (list_empty(&ring->execlist_queue))
394 return;
395
396 /* Try to read in pairs */
397 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
398 execlist_link) {
399 if (!req0) {
400 req0 = cursor;
401 } else if (req0->ctx == cursor->ctx) {
402 /* Same ctx: ignore first request, as second request
403 * will update tail past first request's workload */
e1fee72c 404 cursor->elsp_submitted = req0->elsp_submitted;
acdd884a 405 list_del(&req0->execlist_link);
e981e7b1 406 queue_work(dev_priv->wq, &req0->work);
acdd884a
MT
407 req0 = cursor;
408 } else {
409 req1 = cursor;
410 break;
411 }
412 }
413
e1fee72c
OM
414 WARN_ON(req1 && req1->elsp_submitted);
415
acdd884a
MT
416 WARN_ON(execlists_submit_context(ring, req0->ctx, req0->tail,
417 req1 ? req1->ctx : NULL,
418 req1 ? req1->tail : 0));
e1fee72c
OM
419
420 req0->elsp_submitted++;
421 if (req1)
422 req1->elsp_submitted++;
acdd884a
MT
423}
424
e981e7b1
TD
425static bool execlists_check_remove_request(struct intel_engine_cs *ring,
426 u32 request_id)
427{
428 struct drm_i915_private *dev_priv = ring->dev->dev_private;
429 struct intel_ctx_submit_request *head_req;
430
431 assert_spin_locked(&ring->execlist_lock);
432
433 head_req = list_first_entry_or_null(&ring->execlist_queue,
434 struct intel_ctx_submit_request,
435 execlist_link);
436
437 if (head_req != NULL) {
438 struct drm_i915_gem_object *ctx_obj =
439 head_req->ctx->engine[ring->id].state;
440 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
e1fee72c
OM
441 WARN(head_req->elsp_submitted == 0,
442 "Never submitted head request\n");
443
444 if (--head_req->elsp_submitted <= 0) {
445 list_del(&head_req->execlist_link);
446 queue_work(dev_priv->wq, &head_req->work);
447 return true;
448 }
e981e7b1
TD
449 }
450 }
451
452 return false;
453}
454
73e4d07f
OM
455/**
456 * intel_execlists_handle_ctx_events() - handle Context Switch interrupts
457 * @ring: Engine Command Streamer to handle.
458 *
459 * Check the unread Context Status Buffers and manage the submission of new
460 * contexts to the ELSP accordingly.
461 */
e981e7b1
TD
462void intel_execlists_handle_ctx_events(struct intel_engine_cs *ring)
463{
464 struct drm_i915_private *dev_priv = ring->dev->dev_private;
465 u32 status_pointer;
466 u8 read_pointer;
467 u8 write_pointer;
468 u32 status;
469 u32 status_id;
470 u32 submit_contexts = 0;
471
472 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
473
474 read_pointer = ring->next_context_status_buffer;
475 write_pointer = status_pointer & 0x07;
476 if (read_pointer > write_pointer)
477 write_pointer += 6;
478
479 spin_lock(&ring->execlist_lock);
480
481 while (read_pointer < write_pointer) {
482 read_pointer++;
483 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
484 (read_pointer % 6) * 8);
485 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
486 (read_pointer % 6) * 8 + 4);
487
e1fee72c
OM
488 if (status & GEN8_CTX_STATUS_PREEMPTED) {
489 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
490 if (execlists_check_remove_request(ring, status_id))
491 WARN(1, "Lite Restored request removed from queue\n");
492 } else
493 WARN(1, "Preemption without Lite Restore\n");
494 }
495
496 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
497 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
e981e7b1
TD
498 if (execlists_check_remove_request(ring, status_id))
499 submit_contexts++;
500 }
501 }
502
503 if (submit_contexts != 0)
504 execlists_context_unqueue(ring);
505
506 spin_unlock(&ring->execlist_lock);
507
508 WARN(submit_contexts > 2, "More than two context complete events?\n");
509 ring->next_context_status_buffer = write_pointer % 6;
510
511 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
512 ((u32)ring->next_context_status_buffer & 0x07) << 8);
513}
514
515static void execlists_free_request_task(struct work_struct *work)
516{
517 struct intel_ctx_submit_request *req =
518 container_of(work, struct intel_ctx_submit_request, work);
519 struct drm_device *dev = req->ring->dev;
520 struct drm_i915_private *dev_priv = dev->dev_private;
521
522 intel_runtime_pm_put(dev_priv);
523
524 mutex_lock(&dev->struct_mutex);
525 i915_gem_context_unreference(req->ctx);
526 mutex_unlock(&dev->struct_mutex);
527
528 kfree(req);
529}
530
acdd884a
MT
531static int execlists_context_queue(struct intel_engine_cs *ring,
532 struct intel_context *to,
533 u32 tail)
534{
f1ad5a1f 535 struct intel_ctx_submit_request *req = NULL, *cursor;
e981e7b1 536 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acdd884a 537 unsigned long flags;
f1ad5a1f 538 int num_elements = 0;
acdd884a
MT
539
540 req = kzalloc(sizeof(*req), GFP_KERNEL);
541 if (req == NULL)
542 return -ENOMEM;
543 req->ctx = to;
544 i915_gem_context_reference(req->ctx);
545 req->ring = ring;
546 req->tail = tail;
e981e7b1
TD
547 INIT_WORK(&req->work, execlists_free_request_task);
548
549 intel_runtime_pm_get(dev_priv);
acdd884a
MT
550
551 spin_lock_irqsave(&ring->execlist_lock, flags);
552
f1ad5a1f
OM
553 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
554 if (++num_elements > 2)
555 break;
556
557 if (num_elements > 2) {
558 struct intel_ctx_submit_request *tail_req;
559
560 tail_req = list_last_entry(&ring->execlist_queue,
561 struct intel_ctx_submit_request,
562 execlist_link);
563
564 if (to == tail_req->ctx) {
565 WARN(tail_req->elsp_submitted != 0,
566 "More than 2 already-submitted reqs queued\n");
567 list_del(&tail_req->execlist_link);
568 queue_work(dev_priv->wq, &tail_req->work);
569 }
570 }
571
acdd884a 572 list_add_tail(&req->execlist_link, &ring->execlist_queue);
f1ad5a1f 573 if (num_elements == 0)
acdd884a
MT
574 execlists_context_unqueue(ring);
575
576 spin_unlock_irqrestore(&ring->execlist_lock, flags);
577
578 return 0;
579}
580
ba8b7ccb
OM
581static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf)
582{
583 struct intel_engine_cs *ring = ringbuf->ring;
584 uint32_t flush_domains;
585 int ret;
586
587 flush_domains = 0;
588 if (ring->gpu_caches_dirty)
589 flush_domains = I915_GEM_GPU_DOMAINS;
590
591 ret = ring->emit_flush(ringbuf, I915_GEM_GPU_DOMAINS, flush_domains);
592 if (ret)
593 return ret;
594
595 ring->gpu_caches_dirty = false;
596 return 0;
597}
598
599static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
600 struct list_head *vmas)
601{
602 struct intel_engine_cs *ring = ringbuf->ring;
603 struct i915_vma *vma;
604 uint32_t flush_domains = 0;
605 bool flush_chipset = false;
606 int ret;
607
608 list_for_each_entry(vma, vmas, exec_list) {
609 struct drm_i915_gem_object *obj = vma->obj;
610
611 ret = i915_gem_object_sync(obj, ring);
612 if (ret)
613 return ret;
614
615 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
616 flush_chipset |= i915_gem_clflush_object(obj, false);
617
618 flush_domains |= obj->base.write_domain;
619 }
620
621 if (flush_domains & I915_GEM_DOMAIN_GTT)
622 wmb();
623
624 /* Unconditionally invalidate gpu caches and ensure that we do flush
625 * any residual writes from the previous batch.
626 */
627 return logical_ring_invalidate_all_caches(ringbuf);
628}
629
73e4d07f
OM
630/**
631 * execlists_submission() - submit a batchbuffer for execution, Execlists style
632 * @dev: DRM device.
633 * @file: DRM file.
634 * @ring: Engine Command Streamer to submit to.
635 * @ctx: Context to employ for this submission.
636 * @args: execbuffer call arguments.
637 * @vmas: list of vmas.
638 * @batch_obj: the batchbuffer to submit.
639 * @exec_start: batchbuffer start virtual address pointer.
640 * @flags: translated execbuffer call flags.
641 *
642 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
643 * away the submission details of the execbuffer ioctl call.
644 *
645 * Return: non-zero if the submission fails.
646 */
454afebd
OM
647int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
648 struct intel_engine_cs *ring,
649 struct intel_context *ctx,
650 struct drm_i915_gem_execbuffer2 *args,
651 struct list_head *vmas,
652 struct drm_i915_gem_object *batch_obj,
653 u64 exec_start, u32 flags)
654{
ba8b7ccb
OM
655 struct drm_i915_private *dev_priv = dev->dev_private;
656 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
657 int instp_mode;
658 u32 instp_mask;
659 int ret;
660
661 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
662 instp_mask = I915_EXEC_CONSTANTS_MASK;
663 switch (instp_mode) {
664 case I915_EXEC_CONSTANTS_REL_GENERAL:
665 case I915_EXEC_CONSTANTS_ABSOLUTE:
666 case I915_EXEC_CONSTANTS_REL_SURFACE:
667 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
668 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
669 return -EINVAL;
670 }
671
672 if (instp_mode != dev_priv->relative_constants_mode) {
673 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
674 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
675 return -EINVAL;
676 }
677
678 /* The HW changed the meaning on this bit on gen6 */
679 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
680 }
681 break;
682 default:
683 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
684 return -EINVAL;
685 }
686
687 if (args->num_cliprects != 0) {
688 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
689 return -EINVAL;
690 } else {
691 if (args->DR4 == 0xffffffff) {
692 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
693 args->DR4 = 0;
694 }
695
696 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
697 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
698 return -EINVAL;
699 }
700 }
701
702 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
703 DRM_DEBUG("sol reset is gen7 only\n");
704 return -EINVAL;
705 }
706
707 ret = execlists_move_to_gpu(ringbuf, vmas);
708 if (ret)
709 return ret;
710
711 if (ring == &dev_priv->ring[RCS] &&
712 instp_mode != dev_priv->relative_constants_mode) {
713 ret = intel_logical_ring_begin(ringbuf, 4);
714 if (ret)
715 return ret;
716
717 intel_logical_ring_emit(ringbuf, MI_NOOP);
718 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
719 intel_logical_ring_emit(ringbuf, INSTPM);
720 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
721 intel_logical_ring_advance(ringbuf);
722
723 dev_priv->relative_constants_mode = instp_mode;
724 }
725
726 ret = ring->emit_bb_start(ringbuf, exec_start, flags);
727 if (ret)
728 return ret;
729
730 i915_gem_execbuffer_move_to_active(vmas, ring);
731 i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
732
454afebd
OM
733 return 0;
734}
735
736void intel_logical_ring_stop(struct intel_engine_cs *ring)
737{
9832b9da
OM
738 struct drm_i915_private *dev_priv = ring->dev->dev_private;
739 int ret;
740
741 if (!intel_ring_initialized(ring))
742 return;
743
744 ret = intel_ring_idle(ring);
745 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
746 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
747 ring->name, ret);
748
749 /* TODO: Is this correct with Execlists enabled? */
750 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
751 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
752 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
753 return;
754 }
755 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
756}
757
48e29f55
OM
758int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf)
759{
760 struct intel_engine_cs *ring = ringbuf->ring;
761 int ret;
762
763 if (!ring->gpu_caches_dirty)
764 return 0;
765
766 ret = ring->emit_flush(ringbuf, 0, I915_GEM_GPU_DOMAINS);
767 if (ret)
768 return ret;
769
770 ring->gpu_caches_dirty = false;
771 return 0;
772}
773
73e4d07f
OM
774/**
775 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
776 * @ringbuf: Logical Ringbuffer to advance.
777 *
778 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
779 * really happens during submission is that the context and current tail will be placed
780 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
781 * point, the tail *inside* the context is updated and the ELSP written to.
782 */
82e104cc
OM
783void intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf)
784{
84b790f8
BW
785 struct intel_engine_cs *ring = ringbuf->ring;
786 struct intel_context *ctx = ringbuf->FIXME_lrc_ctx;
787
82e104cc
OM
788 intel_logical_ring_advance(ringbuf);
789
84b790f8 790 if (intel_ring_stopped(ring))
82e104cc
OM
791 return;
792
acdd884a 793 execlists_context_queue(ring, ctx, ringbuf->tail);
82e104cc
OM
794}
795
48e29f55
OM
796static int logical_ring_alloc_seqno(struct intel_engine_cs *ring,
797 struct intel_context *ctx)
82e104cc
OM
798{
799 if (ring->outstanding_lazy_seqno)
800 return 0;
801
802 if (ring->preallocated_lazy_request == NULL) {
803 struct drm_i915_gem_request *request;
804
805 request = kmalloc(sizeof(*request), GFP_KERNEL);
806 if (request == NULL)
807 return -ENOMEM;
808
48e29f55
OM
809 /* Hold a reference to the context this request belongs to
810 * (we will need it when the time comes to emit/retire the
811 * request).
812 */
813 request->ctx = ctx;
814 i915_gem_context_reference(request->ctx);
815
82e104cc
OM
816 ring->preallocated_lazy_request = request;
817 }
818
819 return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
820}
821
822static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
823 int bytes)
824{
825 struct intel_engine_cs *ring = ringbuf->ring;
826 struct drm_i915_gem_request *request;
827 u32 seqno = 0;
828 int ret;
829
830 if (ringbuf->last_retired_head != -1) {
831 ringbuf->head = ringbuf->last_retired_head;
832 ringbuf->last_retired_head = -1;
833
834 ringbuf->space = intel_ring_space(ringbuf);
835 if (ringbuf->space >= bytes)
836 return 0;
837 }
838
839 list_for_each_entry(request, &ring->request_list, list) {
840 if (__intel_ring_space(request->tail, ringbuf->tail,
841 ringbuf->size) >= bytes) {
842 seqno = request->seqno;
843 break;
844 }
845 }
846
847 if (seqno == 0)
848 return -ENOSPC;
849
850 ret = i915_wait_seqno(ring, seqno);
851 if (ret)
852 return ret;
853
82e104cc
OM
854 i915_gem_retire_requests_ring(ring);
855 ringbuf->head = ringbuf->last_retired_head;
856 ringbuf->last_retired_head = -1;
857
858 ringbuf->space = intel_ring_space(ringbuf);
859 return 0;
860}
861
862static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
863 int bytes)
864{
865 struct intel_engine_cs *ring = ringbuf->ring;
866 struct drm_device *dev = ring->dev;
867 struct drm_i915_private *dev_priv = dev->dev_private;
868 unsigned long end;
869 int ret;
870
871 ret = logical_ring_wait_request(ringbuf, bytes);
872 if (ret != -ENOSPC)
873 return ret;
874
875 /* Force the context submission in case we have been skipping it */
876 intel_logical_ring_advance_and_submit(ringbuf);
877
878 /* With GEM the hangcheck timer should kick us out of the loop,
879 * leaving it early runs the risk of corrupting GEM state (due
880 * to running on almost untested codepaths). But on resume
881 * timers don't work yet, so prevent a complete hang in that
882 * case by choosing an insanely large timeout. */
883 end = jiffies + 60 * HZ;
884
885 do {
886 ringbuf->head = I915_READ_HEAD(ring);
887 ringbuf->space = intel_ring_space(ringbuf);
888 if (ringbuf->space >= bytes) {
889 ret = 0;
890 break;
891 }
892
893 msleep(1);
894
895 if (dev_priv->mm.interruptible && signal_pending(current)) {
896 ret = -ERESTARTSYS;
897 break;
898 }
899
900 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
901 dev_priv->mm.interruptible);
902 if (ret)
903 break;
904
905 if (time_after(jiffies, end)) {
906 ret = -EBUSY;
907 break;
908 }
909 } while (1);
910
911 return ret;
912}
913
914static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf)
915{
916 uint32_t __iomem *virt;
917 int rem = ringbuf->size - ringbuf->tail;
918
919 if (ringbuf->space < rem) {
920 int ret = logical_ring_wait_for_space(ringbuf, rem);
921
922 if (ret)
923 return ret;
924 }
925
926 virt = ringbuf->virtual_start + ringbuf->tail;
927 rem /= 4;
928 while (rem--)
929 iowrite32(MI_NOOP, virt++);
930
931 ringbuf->tail = 0;
932 ringbuf->space = intel_ring_space(ringbuf);
933
934 return 0;
935}
936
937static int logical_ring_prepare(struct intel_ringbuffer *ringbuf, int bytes)
938{
939 int ret;
940
941 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
942 ret = logical_ring_wrap_buffer(ringbuf);
943 if (unlikely(ret))
944 return ret;
945 }
946
947 if (unlikely(ringbuf->space < bytes)) {
948 ret = logical_ring_wait_for_space(ringbuf, bytes);
949 if (unlikely(ret))
950 return ret;
951 }
952
953 return 0;
954}
955
73e4d07f
OM
956/**
957 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
958 *
959 * @ringbuf: Logical ringbuffer.
960 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
961 *
962 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
963 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
964 * and also preallocates a request (every workload submission is still mediated through
965 * requests, same as it did with legacy ringbuffer submission).
966 *
967 * Return: non-zero if the ringbuffer is not ready to be written to.
968 */
82e104cc
OM
969int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf, int num_dwords)
970{
971 struct intel_engine_cs *ring = ringbuf->ring;
972 struct drm_device *dev = ring->dev;
973 struct drm_i915_private *dev_priv = dev->dev_private;
974 int ret;
975
976 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
977 dev_priv->mm.interruptible);
978 if (ret)
979 return ret;
980
981 ret = logical_ring_prepare(ringbuf, num_dwords * sizeof(uint32_t));
982 if (ret)
983 return ret;
984
985 /* Preallocate the olr before touching the ring */
48e29f55 986 ret = logical_ring_alloc_seqno(ring, ringbuf->FIXME_lrc_ctx);
82e104cc
OM
987 if (ret)
988 return ret;
989
990 ringbuf->space -= num_dwords * sizeof(uint32_t);
991 return 0;
992}
993
9b1136d5
OM
994static int gen8_init_common_ring(struct intel_engine_cs *ring)
995{
996 struct drm_device *dev = ring->dev;
997 struct drm_i915_private *dev_priv = dev->dev_private;
998
73d477f6
OM
999 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1000 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1001
9b1136d5
OM
1002 I915_WRITE(RING_MODE_GEN7(ring),
1003 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1004 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1005 POSTING_READ(RING_MODE_GEN7(ring));
1006 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1007
1008 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1009
1010 return 0;
1011}
1012
1013static int gen8_init_render_ring(struct intel_engine_cs *ring)
1014{
1015 struct drm_device *dev = ring->dev;
1016 struct drm_i915_private *dev_priv = dev->dev_private;
1017 int ret;
1018
1019 ret = gen8_init_common_ring(ring);
1020 if (ret)
1021 return ret;
1022
1023 /* We need to disable the AsyncFlip performance optimisations in order
1024 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1025 * programmed to '1' on all products.
1026 *
1027 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1028 */
1029 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1030
1031 ret = intel_init_pipe_control(ring);
1032 if (ret)
1033 return ret;
1034
1035 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1036
1037 return ret;
1038}
1039
15648585
OM
1040static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1041 u64 offset, unsigned flags)
1042{
15648585
OM
1043 bool ppgtt = !(flags & I915_DISPATCH_SECURE);
1044 int ret;
1045
1046 ret = intel_logical_ring_begin(ringbuf, 4);
1047 if (ret)
1048 return ret;
1049
1050 /* FIXME(BDW): Address space and security selectors. */
1051 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1052 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1053 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1054 intel_logical_ring_emit(ringbuf, MI_NOOP);
1055 intel_logical_ring_advance(ringbuf);
1056
1057 return 0;
1058}
1059
73d477f6
OM
1060static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1061{
1062 struct drm_device *dev = ring->dev;
1063 struct drm_i915_private *dev_priv = dev->dev_private;
1064 unsigned long flags;
1065
7cd512f1 1066 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1067 return false;
1068
1069 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1070 if (ring->irq_refcount++ == 0) {
1071 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1072 POSTING_READ(RING_IMR(ring->mmio_base));
1073 }
1074 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1075
1076 return true;
1077}
1078
1079static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1080{
1081 struct drm_device *dev = ring->dev;
1082 struct drm_i915_private *dev_priv = dev->dev_private;
1083 unsigned long flags;
1084
1085 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1086 if (--ring->irq_refcount == 0) {
1087 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1088 POSTING_READ(RING_IMR(ring->mmio_base));
1089 }
1090 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1091}
1092
4712274c
OM
1093static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1094 u32 invalidate_domains,
1095 u32 unused)
1096{
1097 struct intel_engine_cs *ring = ringbuf->ring;
1098 struct drm_device *dev = ring->dev;
1099 struct drm_i915_private *dev_priv = dev->dev_private;
1100 uint32_t cmd;
1101 int ret;
1102
1103 ret = intel_logical_ring_begin(ringbuf, 4);
1104 if (ret)
1105 return ret;
1106
1107 cmd = MI_FLUSH_DW + 1;
1108
1109 if (ring == &dev_priv->ring[VCS]) {
1110 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
1111 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1112 MI_FLUSH_DW_STORE_INDEX |
1113 MI_FLUSH_DW_OP_STOREDW;
1114 } else {
1115 if (invalidate_domains & I915_GEM_DOMAIN_RENDER)
1116 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1117 MI_FLUSH_DW_OP_STOREDW;
1118 }
1119
1120 intel_logical_ring_emit(ringbuf, cmd);
1121 intel_logical_ring_emit(ringbuf,
1122 I915_GEM_HWS_SCRATCH_ADDR |
1123 MI_FLUSH_DW_USE_GTT);
1124 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1125 intel_logical_ring_emit(ringbuf, 0); /* value */
1126 intel_logical_ring_advance(ringbuf);
1127
1128 return 0;
1129}
1130
1131static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1132 u32 invalidate_domains,
1133 u32 flush_domains)
1134{
1135 struct intel_engine_cs *ring = ringbuf->ring;
1136 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1137 u32 flags = 0;
1138 int ret;
1139
1140 flags |= PIPE_CONTROL_CS_STALL;
1141
1142 if (flush_domains) {
1143 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1144 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1145 }
1146
1147 if (invalidate_domains) {
1148 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1149 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1150 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1151 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1152 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1153 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1154 flags |= PIPE_CONTROL_QW_WRITE;
1155 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1156 }
1157
1158 ret = intel_logical_ring_begin(ringbuf, 6);
1159 if (ret)
1160 return ret;
1161
1162 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1163 intel_logical_ring_emit(ringbuf, flags);
1164 intel_logical_ring_emit(ringbuf, scratch_addr);
1165 intel_logical_ring_emit(ringbuf, 0);
1166 intel_logical_ring_emit(ringbuf, 0);
1167 intel_logical_ring_emit(ringbuf, 0);
1168 intel_logical_ring_advance(ringbuf);
1169
1170 return 0;
1171}
1172
e94e37ad
OM
1173static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1174{
1175 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1176}
1177
1178static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1179{
1180 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1181}
1182
4da46e1e
OM
1183static int gen8_emit_request(struct intel_ringbuffer *ringbuf)
1184{
1185 struct intel_engine_cs *ring = ringbuf->ring;
1186 u32 cmd;
1187 int ret;
1188
1189 ret = intel_logical_ring_begin(ringbuf, 6);
1190 if (ret)
1191 return ret;
1192
1193 cmd = MI_STORE_DWORD_IMM_GEN8;
1194 cmd |= MI_GLOBAL_GTT;
1195
1196 intel_logical_ring_emit(ringbuf, cmd);
1197 intel_logical_ring_emit(ringbuf,
1198 (ring->status_page.gfx_addr +
1199 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1200 intel_logical_ring_emit(ringbuf, 0);
1201 intel_logical_ring_emit(ringbuf, ring->outstanding_lazy_seqno);
1202 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1203 intel_logical_ring_emit(ringbuf, MI_NOOP);
1204 intel_logical_ring_advance_and_submit(ringbuf);
1205
1206 return 0;
1207}
1208
73e4d07f
OM
1209/**
1210 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1211 *
1212 * @ring: Engine Command Streamer.
1213 *
1214 */
454afebd
OM
1215void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1216{
9832b9da
OM
1217 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1218
48d82387
OM
1219 if (!intel_ring_initialized(ring))
1220 return;
1221
9832b9da
OM
1222 intel_logical_ring_stop(ring);
1223 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
48d82387
OM
1224 ring->preallocated_lazy_request = NULL;
1225 ring->outstanding_lazy_seqno = 0;
1226
1227 if (ring->cleanup)
1228 ring->cleanup(ring);
1229
1230 i915_cmd_parser_fini_ring(ring);
1231
1232 if (ring->status_page.obj) {
1233 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1234 ring->status_page.obj = NULL;
1235 }
454afebd
OM
1236}
1237
1238static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1239{
48d82387 1240 int ret;
48d82387
OM
1241
1242 /* Intentionally left blank. */
1243 ring->buffer = NULL;
1244
1245 ring->dev = dev;
1246 INIT_LIST_HEAD(&ring->active_list);
1247 INIT_LIST_HEAD(&ring->request_list);
1248 init_waitqueue_head(&ring->irq_queue);
1249
acdd884a
MT
1250 INIT_LIST_HEAD(&ring->execlist_queue);
1251 spin_lock_init(&ring->execlist_lock);
e981e7b1 1252 ring->next_context_status_buffer = 0;
acdd884a 1253
48d82387
OM
1254 ret = i915_cmd_parser_init_ring(ring);
1255 if (ret)
1256 return ret;
1257
1258 if (ring->init) {
1259 ret = ring->init(ring);
1260 if (ret)
1261 return ret;
1262 }
1263
564ddb2f
OM
1264 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1265
1266 return ret;
454afebd
OM
1267}
1268
1269static int logical_render_ring_init(struct drm_device *dev)
1270{
1271 struct drm_i915_private *dev_priv = dev->dev_private;
1272 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1273
1274 ring->name = "render ring";
1275 ring->id = RCS;
1276 ring->mmio_base = RENDER_RING_BASE;
1277 ring->irq_enable_mask =
1278 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
73d477f6
OM
1279 ring->irq_keep_mask =
1280 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1281 if (HAS_L3_DPF(dev))
1282 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 1283
9b1136d5
OM
1284 ring->init = gen8_init_render_ring;
1285 ring->cleanup = intel_fini_pipe_control;
e94e37ad
OM
1286 ring->get_seqno = gen8_get_seqno;
1287 ring->set_seqno = gen8_set_seqno;
4da46e1e 1288 ring->emit_request = gen8_emit_request;
4712274c 1289 ring->emit_flush = gen8_emit_flush_render;
73d477f6
OM
1290 ring->irq_get = gen8_logical_ring_get_irq;
1291 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1292 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1293
454afebd
OM
1294 return logical_ring_init(dev, ring);
1295}
1296
1297static int logical_bsd_ring_init(struct drm_device *dev)
1298{
1299 struct drm_i915_private *dev_priv = dev->dev_private;
1300 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1301
1302 ring->name = "bsd ring";
1303 ring->id = VCS;
1304 ring->mmio_base = GEN6_BSD_RING_BASE;
1305 ring->irq_enable_mask =
1306 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
73d477f6
OM
1307 ring->irq_keep_mask =
1308 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
454afebd 1309
9b1136d5 1310 ring->init = gen8_init_common_ring;
e94e37ad
OM
1311 ring->get_seqno = gen8_get_seqno;
1312 ring->set_seqno = gen8_set_seqno;
4da46e1e 1313 ring->emit_request = gen8_emit_request;
4712274c 1314 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1315 ring->irq_get = gen8_logical_ring_get_irq;
1316 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1317 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1318
454afebd
OM
1319 return logical_ring_init(dev, ring);
1320}
1321
1322static int logical_bsd2_ring_init(struct drm_device *dev)
1323{
1324 struct drm_i915_private *dev_priv = dev->dev_private;
1325 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1326
1327 ring->name = "bds2 ring";
1328 ring->id = VCS2;
1329 ring->mmio_base = GEN8_BSD2_RING_BASE;
1330 ring->irq_enable_mask =
1331 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
73d477f6
OM
1332 ring->irq_keep_mask =
1333 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
454afebd 1334
9b1136d5 1335 ring->init = gen8_init_common_ring;
e94e37ad
OM
1336 ring->get_seqno = gen8_get_seqno;
1337 ring->set_seqno = gen8_set_seqno;
4da46e1e 1338 ring->emit_request = gen8_emit_request;
4712274c 1339 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1340 ring->irq_get = gen8_logical_ring_get_irq;
1341 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1342 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1343
454afebd
OM
1344 return logical_ring_init(dev, ring);
1345}
1346
1347static int logical_blt_ring_init(struct drm_device *dev)
1348{
1349 struct drm_i915_private *dev_priv = dev->dev_private;
1350 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1351
1352 ring->name = "blitter ring";
1353 ring->id = BCS;
1354 ring->mmio_base = BLT_RING_BASE;
1355 ring->irq_enable_mask =
1356 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
73d477f6
OM
1357 ring->irq_keep_mask =
1358 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
454afebd 1359
9b1136d5 1360 ring->init = gen8_init_common_ring;
e94e37ad
OM
1361 ring->get_seqno = gen8_get_seqno;
1362 ring->set_seqno = gen8_set_seqno;
4da46e1e 1363 ring->emit_request = gen8_emit_request;
4712274c 1364 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1365 ring->irq_get = gen8_logical_ring_get_irq;
1366 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1367 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1368
454afebd
OM
1369 return logical_ring_init(dev, ring);
1370}
1371
1372static int logical_vebox_ring_init(struct drm_device *dev)
1373{
1374 struct drm_i915_private *dev_priv = dev->dev_private;
1375 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1376
1377 ring->name = "video enhancement ring";
1378 ring->id = VECS;
1379 ring->mmio_base = VEBOX_RING_BASE;
1380 ring->irq_enable_mask =
1381 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
73d477f6
OM
1382 ring->irq_keep_mask =
1383 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
454afebd 1384
9b1136d5 1385 ring->init = gen8_init_common_ring;
e94e37ad
OM
1386 ring->get_seqno = gen8_get_seqno;
1387 ring->set_seqno = gen8_set_seqno;
4da46e1e 1388 ring->emit_request = gen8_emit_request;
4712274c 1389 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1390 ring->irq_get = gen8_logical_ring_get_irq;
1391 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1392 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1393
454afebd
OM
1394 return logical_ring_init(dev, ring);
1395}
1396
73e4d07f
OM
1397/**
1398 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1399 * @dev: DRM device.
1400 *
1401 * This function inits the engines for an Execlists submission style (the equivalent in the
1402 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1403 * those engines that are present in the hardware.
1404 *
1405 * Return: non-zero if the initialization failed.
1406 */
454afebd
OM
1407int intel_logical_rings_init(struct drm_device *dev)
1408{
1409 struct drm_i915_private *dev_priv = dev->dev_private;
1410 int ret;
1411
1412 ret = logical_render_ring_init(dev);
1413 if (ret)
1414 return ret;
1415
1416 if (HAS_BSD(dev)) {
1417 ret = logical_bsd_ring_init(dev);
1418 if (ret)
1419 goto cleanup_render_ring;
1420 }
1421
1422 if (HAS_BLT(dev)) {
1423 ret = logical_blt_ring_init(dev);
1424 if (ret)
1425 goto cleanup_bsd_ring;
1426 }
1427
1428 if (HAS_VEBOX(dev)) {
1429 ret = logical_vebox_ring_init(dev);
1430 if (ret)
1431 goto cleanup_blt_ring;
1432 }
1433
1434 if (HAS_BSD2(dev)) {
1435 ret = logical_bsd2_ring_init(dev);
1436 if (ret)
1437 goto cleanup_vebox_ring;
1438 }
1439
1440 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1441 if (ret)
1442 goto cleanup_bsd2_ring;
1443
1444 return 0;
1445
1446cleanup_bsd2_ring:
1447 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1448cleanup_vebox_ring:
1449 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1450cleanup_blt_ring:
1451 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1452cleanup_bsd_ring:
1453 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1454cleanup_render_ring:
1455 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1456
1457 return ret;
1458}
1459
564ddb2f
OM
1460int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1461 struct intel_context *ctx)
1462{
1463 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1464 struct render_state so;
1465 struct drm_i915_file_private *file_priv = ctx->file_priv;
1466 struct drm_file *file = file_priv ? file_priv->file : NULL;
1467 int ret;
1468
1469 ret = i915_gem_render_state_prepare(ring, &so);
1470 if (ret)
1471 return ret;
1472
1473 if (so.rodata == NULL)
1474 return 0;
1475
1476 ret = ring->emit_bb_start(ringbuf,
1477 so.ggtt_offset,
1478 I915_DISPATCH_SECURE);
1479 if (ret)
1480 goto out;
1481
1482 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1483
1484 ret = __i915_add_request(ring, file, so.obj, NULL);
1485 /* intel_logical_ring_add_request moves object to inactive if it
1486 * fails */
1487out:
1488 i915_gem_render_state_fini(&so);
1489 return ret;
1490}
1491
8670d6f9
OM
1492static int
1493populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1494 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1495{
2d965536
TD
1496 struct drm_device *dev = ring->dev;
1497 struct drm_i915_private *dev_priv = dev->dev_private;
8670d6f9 1498 struct drm_i915_gem_object *ring_obj = ringbuf->obj;
ae6c4806 1499 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
8670d6f9
OM
1500 struct page *page;
1501 uint32_t *reg_state;
1502 int ret;
1503
2d965536
TD
1504 if (!ppgtt)
1505 ppgtt = dev_priv->mm.aliasing_ppgtt;
1506
8670d6f9
OM
1507 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1508 if (ret) {
1509 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1510 return ret;
1511 }
1512
1513 ret = i915_gem_object_get_pages(ctx_obj);
1514 if (ret) {
1515 DRM_DEBUG_DRIVER("Could not get object pages\n");
1516 return ret;
1517 }
1518
1519 i915_gem_object_pin_pages(ctx_obj);
1520
1521 /* The second page of the context object contains some fields which must
1522 * be set up prior to the first execution. */
1523 page = i915_gem_object_get_page(ctx_obj, 1);
1524 reg_state = kmap_atomic(page);
1525
1526 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1527 * commands followed by (reg, value) pairs. The values we are setting here are
1528 * only for the first context restore: on a subsequent save, the GPU will
1529 * recreate this batchbuffer with new values (including all the missing
1530 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1531 if (ring->id == RCS)
1532 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1533 else
1534 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1535 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1536 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1537 reg_state[CTX_CONTEXT_CONTROL+1] =
1538 _MASKED_BIT_ENABLE((1<<3) | MI_RESTORE_INHIBIT);
1539 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1540 reg_state[CTX_RING_HEAD+1] = 0;
1541 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1542 reg_state[CTX_RING_TAIL+1] = 0;
1543 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1544 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
1545 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1546 reg_state[CTX_RING_BUFFER_CONTROL+1] =
1547 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1548 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1549 reg_state[CTX_BB_HEAD_U+1] = 0;
1550 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1551 reg_state[CTX_BB_HEAD_L+1] = 0;
1552 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1553 reg_state[CTX_BB_STATE+1] = (1<<5);
1554 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1555 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1556 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1557 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1558 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1559 reg_state[CTX_SECOND_BB_STATE+1] = 0;
1560 if (ring->id == RCS) {
1561 /* TODO: according to BSpec, the register state context
1562 * for CHV does not have these. OTOH, these registers do
1563 * exist in CHV. I'm waiting for a clarification */
1564 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1565 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1566 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1567 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1568 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1569 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1570 }
1571 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1572 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1573 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1574 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1575 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1576 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1577 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1578 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1579 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1580 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1581 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1582 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1583 reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[3]);
1584 reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[3]);
1585 reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[2]);
1586 reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[2]);
1587 reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[1]);
1588 reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[1]);
1589 reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[0]);
1590 reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[0]);
1591 if (ring->id == RCS) {
1592 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1593 reg_state[CTX_R_PWR_CLK_STATE] = 0x20c8;
1594 reg_state[CTX_R_PWR_CLK_STATE+1] = 0;
1595 }
1596
1597 kunmap_atomic(reg_state);
1598
1599 ctx_obj->dirty = 1;
1600 set_page_dirty(page);
1601 i915_gem_object_unpin_pages(ctx_obj);
1602
1603 return 0;
1604}
1605
73e4d07f
OM
1606/**
1607 * intel_lr_context_free() - free the LRC specific bits of a context
1608 * @ctx: the LR context to free.
1609 *
1610 * The real context freeing is done in i915_gem_context_free: this only
1611 * takes care of the bits that are LRC related: the per-engine backing
1612 * objects and the logical ringbuffer.
1613 */
ede7d42b
OM
1614void intel_lr_context_free(struct intel_context *ctx)
1615{
8c857917
OM
1616 int i;
1617
1618 for (i = 0; i < I915_NUM_RINGS; i++) {
1619 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f
OM
1620 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
1621
8c857917 1622 if (ctx_obj) {
84c2377f
OM
1623 intel_destroy_ringbuffer_obj(ringbuf);
1624 kfree(ringbuf);
8c857917
OM
1625 i915_gem_object_ggtt_unpin(ctx_obj);
1626 drm_gem_object_unreference(&ctx_obj->base);
1627 }
1628 }
1629}
1630
1631static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1632{
1633 int ret = 0;
1634
1635 WARN_ON(INTEL_INFO(ring->dev)->gen != 8);
1636
1637 switch (ring->id) {
1638 case RCS:
1639 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1640 break;
1641 case VCS:
1642 case BCS:
1643 case VECS:
1644 case VCS2:
1645 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1646 break;
1647 }
1648
1649 return ret;
ede7d42b
OM
1650}
1651
73e4d07f
OM
1652/**
1653 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1654 * @ctx: LR context to create.
1655 * @ring: engine to be used with the context.
1656 *
1657 * This function can be called more than once, with different engines, if we plan
1658 * to use the context with them. The context backing objects and the ringbuffers
1659 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1660 * the creation is a deferred call: it's better to make sure first that we need to use
1661 * a given ring with the context.
1662 *
1663 * Return: non-zero on eror.
1664 */
ede7d42b
OM
1665int intel_lr_context_deferred_create(struct intel_context *ctx,
1666 struct intel_engine_cs *ring)
1667{
8c857917
OM
1668 struct drm_device *dev = ring->dev;
1669 struct drm_i915_gem_object *ctx_obj;
1670 uint32_t context_size;
84c2377f 1671 struct intel_ringbuffer *ringbuf;
8c857917
OM
1672 int ret;
1673
ede7d42b 1674 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
48d82387
OM
1675 if (ctx->engine[ring->id].state)
1676 return 0;
ede7d42b 1677
8c857917
OM
1678 context_size = round_up(get_lr_context_size(ring), 4096);
1679
1680 ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
1681 if (IS_ERR(ctx_obj)) {
1682 ret = PTR_ERR(ctx_obj);
1683 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1684 return ret;
1685 }
1686
1687 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1688 if (ret) {
1689 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n", ret);
1690 drm_gem_object_unreference(&ctx_obj->base);
1691 return ret;
1692 }
1693
84c2377f
OM
1694 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1695 if (!ringbuf) {
1696 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1697 ring->name);
1698 i915_gem_object_ggtt_unpin(ctx_obj);
1699 drm_gem_object_unreference(&ctx_obj->base);
1700 ret = -ENOMEM;
1701 return ret;
1702 }
1703
0c7dd53b 1704 ringbuf->ring = ring;
582d67f0
OM
1705 ringbuf->FIXME_lrc_ctx = ctx;
1706
84c2377f
OM
1707 ringbuf->size = 32 * PAGE_SIZE;
1708 ringbuf->effective_size = ringbuf->size;
1709 ringbuf->head = 0;
1710 ringbuf->tail = 0;
1711 ringbuf->space = ringbuf->size;
1712 ringbuf->last_retired_head = -1;
1713
1714 /* TODO: For now we put this in the mappable region so that we can reuse
1715 * the existing ringbuffer code which ioremaps it. When we start
1716 * creating many contexts, this will no longer work and we must switch
1717 * to a kmapish interface.
1718 */
1719 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1720 if (ret) {
1721 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer obj %s: %d\n",
1722 ring->name, ret);
8670d6f9
OM
1723 goto error;
1724 }
1725
1726 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1727 if (ret) {
1728 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1729 intel_destroy_ringbuffer_obj(ringbuf);
1730 goto error;
84c2377f
OM
1731 }
1732
1733 ctx->engine[ring->id].ringbuf = ringbuf;
8c857917 1734 ctx->engine[ring->id].state = ctx_obj;
ede7d42b 1735
564ddb2f
OM
1736 if (ctx == ring->default_context) {
1737 /* The status page is offset 0 from the default context object
1738 * in LRC mode. */
1739 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(ctx_obj);
1740 ring->status_page.page_addr =
1741 kmap(sg_page(ctx_obj->pages->sgl));
1742 if (ring->status_page.page_addr == NULL)
1743 return -ENOMEM;
1744 ring->status_page.obj = ctx_obj;
1745 }
1746
1747 if (ring->id == RCS && !ctx->rcs_initialized) {
1748 ret = intel_lr_context_render_state_init(ring, ctx);
1749 if (ret) {
1750 DRM_ERROR("Init render state failed: %d\n", ret);
1751 ctx->engine[ring->id].ringbuf = NULL;
1752 ctx->engine[ring->id].state = NULL;
1753 intel_destroy_ringbuffer_obj(ringbuf);
1754 goto error;
1755 }
1756 ctx->rcs_initialized = true;
1757 }
1758
ede7d42b 1759 return 0;
8670d6f9
OM
1760
1761error:
1762 kfree(ringbuf);
1763 i915_gem_object_ggtt_unpin(ctx_obj);
1764 drm_gem_object_unreference(&ctx_obj->base);
1765 return ret;
ede7d42b 1766}