]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: Rename local struct intel_engine_cs variables
[thirdparty/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1
OM
133 */
134
135#include <drm/drmP.h>
136#include <drm/i915_drm.h>
137#include "i915_drv.h"
3bbaba0c 138#include "intel_mocs.h"
127f1003 139
468c6816 140#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
141#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
e981e7b1
TD
144#define RING_EXECLIST_QFULL (1 << 0x2)
145#define RING_EXECLIST1_VALID (1 << 0x3)
146#define RING_EXECLIST0_VALID (1 << 0x4)
147#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
148#define RING_EXECLIST1_ACTIVE (1 << 0x11)
149#define RING_EXECLIST0_ACTIVE (1 << 0x12)
150
151#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
152#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
153#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
154#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
155#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
156#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
157
158#define CTX_LRI_HEADER_0 0x01
159#define CTX_CONTEXT_CONTROL 0x02
160#define CTX_RING_HEAD 0x04
161#define CTX_RING_TAIL 0x06
162#define CTX_RING_BUFFER_START 0x08
163#define CTX_RING_BUFFER_CONTROL 0x0a
164#define CTX_BB_HEAD_U 0x0c
165#define CTX_BB_HEAD_L 0x0e
166#define CTX_BB_STATE 0x10
167#define CTX_SECOND_BB_HEAD_U 0x12
168#define CTX_SECOND_BB_HEAD_L 0x14
169#define CTX_SECOND_BB_STATE 0x16
170#define CTX_BB_PER_CTX_PTR 0x18
171#define CTX_RCS_INDIRECT_CTX 0x1a
172#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
173#define CTX_LRI_HEADER_1 0x21
174#define CTX_CTX_TIMESTAMP 0x22
175#define CTX_PDP3_UDW 0x24
176#define CTX_PDP3_LDW 0x26
177#define CTX_PDP2_UDW 0x28
178#define CTX_PDP2_LDW 0x2a
179#define CTX_PDP1_UDW 0x2c
180#define CTX_PDP1_LDW 0x2e
181#define CTX_PDP0_UDW 0x30
182#define CTX_PDP0_LDW 0x32
183#define CTX_LRI_HEADER_2 0x41
184#define CTX_R_PWR_CLK_STATE 0x42
185#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
186
84b790f8
BW
187#define GEN8_CTX_VALID (1<<0)
188#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189#define GEN8_CTX_FORCE_RESTORE (1<<2)
190#define GEN8_CTX_L3LLC_COHERENT (1<<5)
191#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 192
0d925ea0 193#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 194 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
195 (reg_state)[(pos)+1] = (val); \
196} while (0)
197
198#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 199 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
200 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 202} while (0)
e5815a2e 203
9244a817 204#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
205 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 207} while (0)
2dba3239 208
84b790f8
BW
209enum {
210 ADVANCED_CONTEXT = 0,
2dba3239 211 LEGACY_32B_CONTEXT,
84b790f8
BW
212 ADVANCED_AD_CONTEXT,
213 LEGACY_64B_CONTEXT
214};
2dba3239
MT
215#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
216#define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
217 LEGACY_64B_CONTEXT :\
218 LEGACY_32B_CONTEXT)
84b790f8
BW
219enum {
220 FAULT_AND_HANG = 0,
221 FAULT_AND_HALT, /* Debug only */
222 FAULT_AND_STREAM,
223 FAULT_AND_CONTINUE /* Unsupported */
224};
225#define GEN8_CTX_ID_SHIFT 32
71562919
MT
226#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
227#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 228
e5292823
TU
229static int intel_lr_context_pin(struct intel_context *ctx,
230 struct intel_engine_cs *engine);
e84fe803
NH
231static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
232 struct drm_i915_gem_object *default_ctx_obj);
233
7ba717cf 234
73e4d07f
OM
235/**
236 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
237 * @dev: DRM device.
238 * @enable_execlists: value of i915.enable_execlists module parameter.
239 *
240 * Only certain platforms support Execlists (the prerequisites being
27401d12 241 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
242 *
243 * Return: 1 if Execlists is supported and has to be enabled.
244 */
127f1003
OM
245int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
246{
bd84b1e9
DV
247 WARN_ON(i915.enable_ppgtt == -1);
248
a0bd6c31
ZL
249 /* On platforms with execlist available, vGPU will only
250 * support execlist mode, no ring buffer mode.
251 */
252 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
253 return 1;
254
70ee45e1
DL
255 if (INTEL_INFO(dev)->gen >= 9)
256 return 1;
257
127f1003
OM
258 if (enable_execlists == 0)
259 return 0;
260
14bf993e
OM
261 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
262 i915.use_mmio_flip >= 0)
127f1003
OM
263 return 1;
264
265 return 0;
266}
ede7d42b 267
ca82580c
TU
268static void
269logical_ring_init_platform_invariants(struct intel_engine_cs *ring)
270{
271 struct drm_device *dev = ring->dev;
272
c6a2ac71
TU
273 if (IS_GEN8(dev) || IS_GEN9(dev))
274 ring->idle_lite_restore_wa = ~0;
275
ca82580c
TU
276 ring->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
277 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
278 (ring->id == VCS || ring->id == VCS2);
279
280 ring->ctx_desc_template = GEN8_CTX_VALID;
281 ring->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
282 GEN8_CTX_ADDRESSING_MODE_SHIFT;
283 if (IS_GEN8(dev))
284 ring->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
285 ring->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
286
287 /* TODO: WaDisableLiteRestore when we start using semaphore
288 * signalling between Command Streamers */
289 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
290
291 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
292 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
293 if (ring->disable_lite_restore_wa)
294 ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
295}
296
73e4d07f 297/**
ca82580c
TU
298 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
299 * descriptor for a pinned context
73e4d07f 300 *
ca82580c
TU
301 * @ctx: Context to work on
302 * @ring: Engine the descriptor will be used with
73e4d07f 303 *
ca82580c
TU
304 * The context descriptor encodes various attributes of a context,
305 * including its GTT address and some flags. Because it's fairly
306 * expensive to calculate, we'll just do it once and cache the result,
307 * which remains valid until the context is unpinned.
308 *
309 * This is what a descriptor looks like, from LSB to MSB:
310 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
311 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
312 * bits 32-51: ctx ID, a globally unique tag (the LRCA again!)
313 * bits 52-63: reserved, may encode the engine ID (for GuC)
73e4d07f 314 */
ca82580c
TU
315static void
316intel_lr_context_descriptor_update(struct intel_context *ctx,
317 struct intel_engine_cs *ring)
84b790f8 318{
ca82580c 319 uint64_t lrca, desc;
84b790f8 320
ca82580c
TU
321 lrca = ctx->engine[ring->id].lrc_vma->node.start +
322 LRC_PPHWSP_PN * PAGE_SIZE;
84b790f8 323
ca82580c
TU
324 desc = ring->ctx_desc_template; /* bits 0-11 */
325 desc |= lrca; /* bits 12-31 */
326 desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
5af05fef 327
ca82580c 328 ctx->engine[ring->id].lrc_desc = desc;
5af05fef
MT
329}
330
919f1f55
DG
331uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
332 struct intel_engine_cs *ring)
84b790f8 333{
ca82580c
TU
334 return ctx->engine[ring->id].lrc_desc;
335}
203a571b 336
ca82580c
TU
337/**
338 * intel_execlists_ctx_id() - get the Execlists Context ID
339 * @ctx: Context to get the ID for
340 * @ring: Engine to get the ID for
341 *
342 * Do not confuse with ctx->id! Unfortunately we have a name overload
343 * here: the old context ID we pass to userspace as a handler so that
344 * they can refer to a context, and the new context ID we pass to the
345 * ELSP so that the GPU can inform us of the context status via
346 * interrupts.
347 *
348 * The context ID is a portion of the context descriptor, so we can
349 * just extract the required part from the cached descriptor.
350 *
351 * Return: 20-bits globally unique context ID.
352 */
353u32 intel_execlists_ctx_id(struct intel_context *ctx,
354 struct intel_engine_cs *ring)
355{
356 return intel_lr_context_descriptor(ctx, ring) >> GEN8_CTX_ID_SHIFT;
84b790f8
BW
357}
358
cc3c4253
MK
359static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
360 struct drm_i915_gem_request *rq1)
84b790f8 361{
cc3c4253 362
e2f80391
TU
363 struct intel_engine_cs *engine = rq0->ring;
364 struct drm_device *dev = engine->dev;
6e7cc470 365 struct drm_i915_private *dev_priv = dev->dev_private;
1cff8cc3 366 uint64_t desc[2];
84b790f8 367
1cff8cc3 368 if (rq1) {
919f1f55 369 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
1cff8cc3
MK
370 rq1->elsp_submitted++;
371 } else {
372 desc[1] = 0;
373 }
84b790f8 374
919f1f55 375 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
1cff8cc3 376 rq0->elsp_submitted++;
84b790f8 377
1cff8cc3 378 /* You must always write both descriptors in the order below. */
e2f80391
TU
379 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
380 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
6daccb0b 381
e2f80391 382 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
84b790f8 383 /* The context is automatically loaded after the following */
e2f80391 384 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
84b790f8 385
1cff8cc3 386 /* ELSP is a wo register, use another nearby reg for posting */
e2f80391 387 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
84b790f8
BW
388}
389
c6a2ac71
TU
390static void
391execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
392{
393 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
394 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
395 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
396 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
397}
398
399static void execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 400{
e2f80391 401 struct intel_engine_cs *engine = rq->ring;
05d9824b 402 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
e2f80391 403 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
ae1250b9 404
05d9824b 405 reg_state[CTX_RING_TAIL+1] = rq->tail;
ae1250b9 406
c6a2ac71
TU
407 /* True 32b PPGTT with dynamic page allocation: update PDP
408 * registers and point the unallocated PDPs to scratch page.
409 * PML4 is allocated during ppgtt init, so this is not needed
410 * in 48-bit mode.
411 */
412 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
413 execlists_update_context_pdps(ppgtt, reg_state);
ae1250b9
OM
414}
415
d8cb8875
MK
416static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
417 struct drm_i915_gem_request *rq1)
84b790f8 418{
05d9824b 419 execlists_update_context(rq0);
d8cb8875 420
cc3c4253 421 if (rq1)
05d9824b 422 execlists_update_context(rq1);
84b790f8 423
cc3c4253 424 execlists_elsp_write(rq0, rq1);
84b790f8
BW
425}
426
c6a2ac71 427static void execlists_context_unqueue__locked(struct intel_engine_cs *ring)
acdd884a 428{
6d3d8274 429 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
c6a2ac71 430 struct drm_i915_gem_request *cursor, *tmp;
e981e7b1
TD
431
432 assert_spin_locked(&ring->execlist_lock);
acdd884a 433
779949f4
PA
434 /*
435 * If irqs are not active generate a warning as batches that finish
436 * without the irqs may get lost and a GPU Hang may occur.
437 */
438 WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
439
acdd884a
MT
440 /* Try to read in pairs */
441 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
442 execlist_link) {
443 if (!req0) {
444 req0 = cursor;
6d3d8274 445 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
446 /* Same ctx: ignore first request, as second request
447 * will update tail past first request's workload */
e1fee72c 448 cursor->elsp_submitted = req0->elsp_submitted;
7eb08a25
TU
449 list_move_tail(&req0->execlist_link,
450 &ring->execlist_retired_req_list);
acdd884a
MT
451 req0 = cursor;
452 } else {
453 req1 = cursor;
c6a2ac71 454 WARN_ON(req1->elsp_submitted);
acdd884a
MT
455 break;
456 }
457 }
458
c6a2ac71
TU
459 if (unlikely(!req0))
460 return;
461
462 if (req0->elsp_submitted & ring->idle_lite_restore_wa) {
53292cdb 463 /*
c6a2ac71
TU
464 * WaIdleLiteRestore: make sure we never cause a lite restore
465 * with HEAD==TAIL.
466 *
467 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
468 * resubmit the request. See gen8_emit_request() for where we
469 * prepare the padding after the end of the request.
53292cdb 470 */
c6a2ac71 471 struct intel_ringbuffer *ringbuf;
53292cdb 472
c6a2ac71
TU
473 ringbuf = req0->ctx->engine[ring->id].ringbuf;
474 req0->tail += 8;
475 req0->tail &= ringbuf->size - 1;
53292cdb
MT
476 }
477
d8cb8875 478 execlists_submit_requests(req0, req1);
acdd884a
MT
479}
480
c6a2ac71
TU
481static void execlists_context_unqueue(struct intel_engine_cs *ring)
482{
483 struct drm_i915_private *dev_priv = ring->dev->dev_private;
484
485 spin_lock(&dev_priv->uncore.lock);
486 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
487
488 execlists_context_unqueue__locked(ring);
489
490 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
491 spin_unlock(&dev_priv->uncore.lock);
492}
493
494static unsigned int
495execlists_check_remove_request(struct intel_engine_cs *ring, u32 request_id)
e981e7b1 496{
6d3d8274 497 struct drm_i915_gem_request *head_req;
e981e7b1
TD
498
499 assert_spin_locked(&ring->execlist_lock);
500
501 head_req = list_first_entry_or_null(&ring->execlist_queue,
6d3d8274 502 struct drm_i915_gem_request,
e981e7b1
TD
503 execlist_link);
504
c6a2ac71
TU
505 if (!head_req)
506 return 0;
e1fee72c 507
c6a2ac71
TU
508 if (unlikely(intel_execlists_ctx_id(head_req->ctx, ring) != request_id))
509 return 0;
510
511 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
512
513 if (--head_req->elsp_submitted > 0)
514 return 0;
515
516 list_move_tail(&head_req->execlist_link,
517 &ring->execlist_retired_req_list);
e981e7b1 518
c6a2ac71 519 return 1;
e981e7b1
TD
520}
521
c6a2ac71
TU
522static u32
523get_context_status(struct intel_engine_cs *ring, unsigned int read_pointer,
524 u32 *context_id)
91a41032
BW
525{
526 struct drm_i915_private *dev_priv = ring->dev->dev_private;
c6a2ac71 527 u32 status;
91a41032 528
c6a2ac71
TU
529 read_pointer %= GEN8_CSB_ENTRIES;
530
531 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer));
532
533 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
534 return 0;
91a41032 535
c6a2ac71
TU
536 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(ring,
537 read_pointer));
538
539 return status;
91a41032
BW
540}
541
73e4d07f 542/**
3f7531c3 543 * intel_lrc_irq_handler() - handle Context Switch interrupts
73e4d07f
OM
544 * @ring: Engine Command Streamer to handle.
545 *
546 * Check the unread Context Status Buffers and manage the submission of new
547 * contexts to the ELSP accordingly.
548 */
3f7531c3 549void intel_lrc_irq_handler(struct intel_engine_cs *ring)
e981e7b1
TD
550{
551 struct drm_i915_private *dev_priv = ring->dev->dev_private;
552 u32 status_pointer;
c6a2ac71 553 unsigned int read_pointer, write_pointer;
5af05fef 554 u32 status = 0;
e981e7b1 555 u32 status_id;
c6a2ac71
TU
556 unsigned int submit_contexts = 0;
557
558 spin_lock(&ring->execlist_lock);
e981e7b1 559
c6a2ac71
TU
560 spin_lock(&dev_priv->uncore.lock);
561 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
562
563 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(ring));
e981e7b1
TD
564
565 read_pointer = ring->next_context_status_buffer;
5590a5f0 566 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
e981e7b1 567 if (read_pointer > write_pointer)
dfc53c5e 568 write_pointer += GEN8_CSB_ENTRIES;
e981e7b1 569
e981e7b1 570 while (read_pointer < write_pointer) {
c6a2ac71 571 status = get_context_status(ring, ++read_pointer, &status_id);
91a41032 572
c6a2ac71 573 if (unlikely(status & GEN8_CTX_STATUS_PREEMPTED)) {
e1fee72c
OM
574 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
575 if (execlists_check_remove_request(ring, status_id))
576 WARN(1, "Lite Restored request removed from queue\n");
577 } else
578 WARN(1, "Preemption without Lite Restore\n");
579 }
580
c6a2ac71
TU
581 if (status & (GEN8_CTX_STATUS_ACTIVE_IDLE |
582 GEN8_CTX_STATUS_ELEMENT_SWITCH))
583 submit_contexts +=
584 execlists_check_remove_request(ring, status_id);
e981e7b1
TD
585 }
586
c6a2ac71
TU
587 if (submit_contexts) {
588 if (!ring->disable_lite_restore_wa ||
589 (status & GEN8_CTX_STATUS_ACTIVE_IDLE))
590 execlists_context_unqueue__locked(ring);
5af05fef 591 }
e981e7b1 592
dfc53c5e 593 ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
e981e7b1 594
5590a5f0
BW
595 /* Update the read pointer to the old write pointer. Manual ringbuffer
596 * management ftw </sarcasm> */
c6a2ac71
TU
597 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(ring),
598 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
599 ring->next_context_status_buffer << 8));
600
601 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
602 spin_unlock(&dev_priv->uncore.lock);
603
604 spin_unlock(&ring->execlist_lock);
605
606 if (unlikely(submit_contexts > 2))
607 DRM_ERROR("More than two context complete events?\n");
e981e7b1
TD
608}
609
c6a2ac71 610static void execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 611{
e2f80391 612 struct intel_engine_cs *engine = request->ring;
6d3d8274 613 struct drm_i915_gem_request *cursor;
f1ad5a1f 614 int num_elements = 0;
acdd884a 615
ed54c1a1 616 if (request->ctx != request->i915->kernel_context)
e2f80391 617 intel_lr_context_pin(request->ctx, engine);
af3302b9 618
9bb1af44
JH
619 i915_gem_request_reference(request);
620
e2f80391 621 spin_lock_irq(&engine->execlist_lock);
acdd884a 622
e2f80391 623 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
f1ad5a1f
OM
624 if (++num_elements > 2)
625 break;
626
627 if (num_elements > 2) {
6d3d8274 628 struct drm_i915_gem_request *tail_req;
f1ad5a1f 629
e2f80391 630 tail_req = list_last_entry(&engine->execlist_queue,
6d3d8274 631 struct drm_i915_gem_request,
f1ad5a1f
OM
632 execlist_link);
633
ae70797d 634 if (request->ctx == tail_req->ctx) {
f1ad5a1f 635 WARN(tail_req->elsp_submitted != 0,
7ba717cf 636 "More than 2 already-submitted reqs queued\n");
7eb08a25 637 list_move_tail(&tail_req->execlist_link,
e2f80391 638 &engine->execlist_retired_req_list);
f1ad5a1f
OM
639 }
640 }
641
e2f80391 642 list_add_tail(&request->execlist_link, &engine->execlist_queue);
f1ad5a1f 643 if (num_elements == 0)
e2f80391 644 execlists_context_unqueue(engine);
acdd884a 645
e2f80391 646 spin_unlock_irq(&engine->execlist_lock);
acdd884a
MT
647}
648
2f20055d 649static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
ba8b7ccb 650{
e2f80391 651 struct intel_engine_cs *engine = req->ring;
ba8b7ccb
OM
652 uint32_t flush_domains;
653 int ret;
654
655 flush_domains = 0;
e2f80391 656 if (engine->gpu_caches_dirty)
ba8b7ccb
OM
657 flush_domains = I915_GEM_GPU_DOMAINS;
658
e2f80391 659 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
660 if (ret)
661 return ret;
662
e2f80391 663 engine->gpu_caches_dirty = false;
ba8b7ccb
OM
664 return 0;
665}
666
535fbe82 667static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
668 struct list_head *vmas)
669{
535fbe82 670 const unsigned other_rings = ~intel_ring_flag(req->ring);
ba8b7ccb
OM
671 struct i915_vma *vma;
672 uint32_t flush_domains = 0;
673 bool flush_chipset = false;
674 int ret;
675
676 list_for_each_entry(vma, vmas, exec_list) {
677 struct drm_i915_gem_object *obj = vma->obj;
678
03ade511 679 if (obj->active & other_rings) {
91af127f 680 ret = i915_gem_object_sync(obj, req->ring, &req);
03ade511
CW
681 if (ret)
682 return ret;
683 }
ba8b7ccb
OM
684
685 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
686 flush_chipset |= i915_gem_clflush_object(obj, false);
687
688 flush_domains |= obj->base.write_domain;
689 }
690
691 if (flush_domains & I915_GEM_DOMAIN_GTT)
692 wmb();
693
694 /* Unconditionally invalidate gpu caches and ensure that we do flush
695 * any residual writes from the previous batch.
696 */
2f20055d 697 return logical_ring_invalidate_all_caches(req);
ba8b7ccb
OM
698}
699
40e895ce 700int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 701{
e28e404c 702 int ret = 0;
bc0dce3f 703
f3cc01f0
MK
704 request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
705
a7e02199
AD
706 if (i915.enable_guc_submission) {
707 /*
708 * Check that the GuC has space for the request before
709 * going any further, as the i915_add_request() call
710 * later on mustn't fail ...
711 */
712 struct intel_guc *guc = &request->i915->guc;
713
714 ret = i915_guc_wq_check_space(guc->execbuf_client);
715 if (ret)
716 return ret;
717 }
718
e28e404c 719 if (request->ctx != request->i915->kernel_context)
e5292823 720 ret = intel_lr_context_pin(request->ctx, request->ring);
e28e404c
DG
721
722 return ret;
bc0dce3f
JH
723}
724
ae70797d 725static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
595e1eeb 726 int bytes)
bc0dce3f 727{
ae70797d 728 struct intel_ringbuffer *ringbuf = req->ringbuf;
e2f80391 729 struct intel_engine_cs *engine = req->ring;
ae70797d 730 struct drm_i915_gem_request *target;
b4716185
CW
731 unsigned space;
732 int ret;
bc0dce3f
JH
733
734 if (intel_ring_space(ringbuf) >= bytes)
735 return 0;
736
79bbcc29
JH
737 /* The whole point of reserving space is to not wait! */
738 WARN_ON(ringbuf->reserved_in_use);
739
e2f80391 740 list_for_each_entry(target, &engine->request_list, list) {
bc0dce3f
JH
741 /*
742 * The request queue is per-engine, so can contain requests
743 * from multiple ringbuffers. Here, we must ignore any that
744 * aren't from the ringbuffer we're considering.
745 */
ae70797d 746 if (target->ringbuf != ringbuf)
bc0dce3f
JH
747 continue;
748
749 /* Would completion of this request free enough space? */
ae70797d 750 space = __intel_ring_space(target->postfix, ringbuf->tail,
b4716185
CW
751 ringbuf->size);
752 if (space >= bytes)
bc0dce3f 753 break;
bc0dce3f
JH
754 }
755
e2f80391 756 if (WARN_ON(&target->list == &engine->request_list))
bc0dce3f
JH
757 return -ENOSPC;
758
ae70797d 759 ret = i915_wait_request(target);
bc0dce3f
JH
760 if (ret)
761 return ret;
762
b4716185
CW
763 ringbuf->space = space;
764 return 0;
bc0dce3f
JH
765}
766
767/*
768 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 769 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
770 *
771 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
772 * really happens during submission is that the context and current tail will be placed
773 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
774 * point, the tail *inside* the context is updated and the ELSP written to.
775 */
7c17d377 776static int
ae70797d 777intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 778{
7c17d377 779 struct intel_ringbuffer *ringbuf = request->ringbuf;
d1675198 780 struct drm_i915_private *dev_priv = request->i915;
f4e2dece 781 struct intel_engine_cs *engine = request->ring;
bc0dce3f 782
7c17d377
CW
783 intel_logical_ring_advance(ringbuf);
784 request->tail = ringbuf->tail;
bc0dce3f 785
7c17d377
CW
786 /*
787 * Here we add two extra NOOPs as padding to avoid
788 * lite restore of a context with HEAD==TAIL.
789 *
790 * Caller must reserve WA_TAIL_DWORDS for us!
791 */
792 intel_logical_ring_emit(ringbuf, MI_NOOP);
793 intel_logical_ring_emit(ringbuf, MI_NOOP);
794 intel_logical_ring_advance(ringbuf);
d1675198 795
f4e2dece 796 if (intel_ring_stopped(engine))
7c17d377 797 return 0;
bc0dce3f 798
f4e2dece
TU
799 if (engine->last_context != request->ctx) {
800 if (engine->last_context)
801 intel_lr_context_unpin(engine->last_context, engine);
802 if (request->ctx != request->i915->kernel_context) {
803 intel_lr_context_pin(request->ctx, engine);
804 engine->last_context = request->ctx;
805 } else {
806 engine->last_context = NULL;
807 }
808 }
809
d1675198
AD
810 if (dev_priv->guc.execbuf_client)
811 i915_guc_submit(dev_priv->guc.execbuf_client, request);
812 else
813 execlists_context_queue(request);
7c17d377
CW
814
815 return 0;
bc0dce3f
JH
816}
817
79bbcc29 818static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
bc0dce3f
JH
819{
820 uint32_t __iomem *virt;
821 int rem = ringbuf->size - ringbuf->tail;
822
bc0dce3f
JH
823 virt = ringbuf->virtual_start + ringbuf->tail;
824 rem /= 4;
825 while (rem--)
826 iowrite32(MI_NOOP, virt++);
827
828 ringbuf->tail = 0;
829 intel_ring_update_space(ringbuf);
bc0dce3f
JH
830}
831
ae70797d 832static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
bc0dce3f 833{
ae70797d 834 struct intel_ringbuffer *ringbuf = req->ringbuf;
79bbcc29
JH
835 int remain_usable = ringbuf->effective_size - ringbuf->tail;
836 int remain_actual = ringbuf->size - ringbuf->tail;
837 int ret, total_bytes, wait_bytes = 0;
838 bool need_wrap = false;
29b1b415 839
79bbcc29
JH
840 if (ringbuf->reserved_in_use)
841 total_bytes = bytes;
842 else
843 total_bytes = bytes + ringbuf->reserved_size;
29b1b415 844
79bbcc29
JH
845 if (unlikely(bytes > remain_usable)) {
846 /*
847 * Not enough space for the basic request. So need to flush
848 * out the remainder and then wait for base + reserved.
849 */
850 wait_bytes = remain_actual + total_bytes;
851 need_wrap = true;
852 } else {
853 if (unlikely(total_bytes > remain_usable)) {
854 /*
855 * The base request will fit but the reserved space
856 * falls off the end. So only need to to wait for the
857 * reserved size after flushing out the remainder.
858 */
859 wait_bytes = remain_actual + ringbuf->reserved_size;
860 need_wrap = true;
861 } else if (total_bytes > ringbuf->space) {
862 /* No wrapping required, just waiting. */
863 wait_bytes = total_bytes;
29b1b415 864 }
bc0dce3f
JH
865 }
866
79bbcc29
JH
867 if (wait_bytes) {
868 ret = logical_ring_wait_for_space(req, wait_bytes);
bc0dce3f
JH
869 if (unlikely(ret))
870 return ret;
79bbcc29
JH
871
872 if (need_wrap)
873 __wrap_ring_buffer(ringbuf);
bc0dce3f
JH
874 }
875
876 return 0;
877}
878
879/**
880 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
881 *
374887ba 882 * @req: The request to start some new work for
bc0dce3f
JH
883 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
884 *
885 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
886 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
887 * and also preallocates a request (every workload submission is still mediated through
888 * requests, same as it did with legacy ringbuffer submission).
889 *
890 * Return: non-zero if the ringbuffer is not ready to be written to.
891 */
3bbaba0c 892int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
bc0dce3f 893{
4d616a29 894 struct drm_i915_private *dev_priv;
bc0dce3f
JH
895 int ret;
896
4d616a29
JH
897 WARN_ON(req == NULL);
898 dev_priv = req->ring->dev->dev_private;
899
bc0dce3f
JH
900 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
901 dev_priv->mm.interruptible);
902 if (ret)
903 return ret;
904
ae70797d 905 ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
bc0dce3f
JH
906 if (ret)
907 return ret;
908
4d616a29 909 req->ringbuf->space -= num_dwords * sizeof(uint32_t);
bc0dce3f
JH
910 return 0;
911}
912
ccd98fe4
JH
913int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
914{
915 /*
916 * The first call merely notes the reserve request and is common for
917 * all back ends. The subsequent localised _begin() call actually
918 * ensures that the reservation is available. Without the begin, if
919 * the request creator immediately submitted the request without
920 * adding any commands to it then there might not actually be
921 * sufficient room for the submission commands.
922 */
923 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
924
925 return intel_logical_ring_begin(request, 0);
926}
927
73e4d07f
OM
928/**
929 * execlists_submission() - submit a batchbuffer for execution, Execlists style
930 * @dev: DRM device.
931 * @file: DRM file.
932 * @ring: Engine Command Streamer to submit to.
933 * @ctx: Context to employ for this submission.
934 * @args: execbuffer call arguments.
935 * @vmas: list of vmas.
936 * @batch_obj: the batchbuffer to submit.
937 * @exec_start: batchbuffer start virtual address pointer.
8e004efc 938 * @dispatch_flags: translated execbuffer call flags.
73e4d07f
OM
939 *
940 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
941 * away the submission details of the execbuffer ioctl call.
942 *
943 * Return: non-zero if the submission fails.
944 */
5f19e2bf 945int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 946 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 947 struct list_head *vmas)
454afebd 948{
5f19e2bf 949 struct drm_device *dev = params->dev;
e2f80391 950 struct intel_engine_cs *engine = params->ring;
ba8b7ccb 951 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 952 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
5f19e2bf 953 u64 exec_start;
ba8b7ccb
OM
954 int instp_mode;
955 u32 instp_mask;
956 int ret;
957
958 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
959 instp_mask = I915_EXEC_CONSTANTS_MASK;
960 switch (instp_mode) {
961 case I915_EXEC_CONSTANTS_REL_GENERAL:
962 case I915_EXEC_CONSTANTS_ABSOLUTE:
963 case I915_EXEC_CONSTANTS_REL_SURFACE:
e2f80391 964 if (instp_mode != 0 && engine != &dev_priv->ring[RCS]) {
ba8b7ccb
OM
965 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
966 return -EINVAL;
967 }
968
969 if (instp_mode != dev_priv->relative_constants_mode) {
970 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
971 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
972 return -EINVAL;
973 }
974
975 /* The HW changed the meaning on this bit on gen6 */
976 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
977 }
978 break;
979 default:
980 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
981 return -EINVAL;
982 }
983
ba8b7ccb
OM
984 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
985 DRM_DEBUG("sol reset is gen7 only\n");
986 return -EINVAL;
987 }
988
535fbe82 989 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
990 if (ret)
991 return ret;
992
e2f80391 993 if (engine == &dev_priv->ring[RCS] &&
ba8b7ccb 994 instp_mode != dev_priv->relative_constants_mode) {
4d616a29 995 ret = intel_logical_ring_begin(params->request, 4);
ba8b7ccb
OM
996 if (ret)
997 return ret;
998
999 intel_logical_ring_emit(ringbuf, MI_NOOP);
1000 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
f92a9162 1001 intel_logical_ring_emit_reg(ringbuf, INSTPM);
ba8b7ccb
OM
1002 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
1003 intel_logical_ring_advance(ringbuf);
1004
1005 dev_priv->relative_constants_mode = instp_mode;
1006 }
1007
5f19e2bf
JH
1008 exec_start = params->batch_obj_vm_offset +
1009 args->batch_start_offset;
1010
e2f80391 1011 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
ba8b7ccb
OM
1012 if (ret)
1013 return ret;
1014
95c24161 1015 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 1016
8a8edb59 1017 i915_gem_execbuffer_move_to_active(vmas, params->request);
adeca76d 1018 i915_gem_execbuffer_retire_commands(params);
ba8b7ccb 1019
454afebd
OM
1020 return 0;
1021}
1022
c86ee3a9
TD
1023void intel_execlists_retire_requests(struct intel_engine_cs *ring)
1024{
6d3d8274 1025 struct drm_i915_gem_request *req, *tmp;
c86ee3a9
TD
1026 struct list_head retired_list;
1027
1028 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1029 if (list_empty(&ring->execlist_retired_req_list))
1030 return;
1031
1032 INIT_LIST_HEAD(&retired_list);
b5eba372 1033 spin_lock_irq(&ring->execlist_lock);
c86ee3a9 1034 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
b5eba372 1035 spin_unlock_irq(&ring->execlist_lock);
c86ee3a9
TD
1036
1037 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
af3302b9
DV
1038 struct intel_context *ctx = req->ctx;
1039 struct drm_i915_gem_object *ctx_obj =
1040 ctx->engine[ring->id].state;
1041
ed54c1a1 1042 if (ctx_obj && (ctx != req->i915->kernel_context))
e5292823
TU
1043 intel_lr_context_unpin(ctx, ring);
1044
c86ee3a9 1045 list_del(&req->execlist_link);
f8210795 1046 i915_gem_request_unreference(req);
c86ee3a9
TD
1047 }
1048}
1049
454afebd
OM
1050void intel_logical_ring_stop(struct intel_engine_cs *ring)
1051{
9832b9da
OM
1052 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1053 int ret;
1054
1055 if (!intel_ring_initialized(ring))
1056 return;
1057
1058 ret = intel_ring_idle(ring);
1059 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
1060 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1061 ring->name, ret);
1062
1063 /* TODO: Is this correct with Execlists enabled? */
1064 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
8de1b23e 1065 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
9832b9da
OM
1066 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
1067 return;
1068 }
1069 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
1070}
1071
4866d729 1072int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
48e29f55 1073{
e2f80391 1074 struct intel_engine_cs *engine = req->ring;
48e29f55
OM
1075 int ret;
1076
e2f80391 1077 if (!engine->gpu_caches_dirty)
48e29f55
OM
1078 return 0;
1079
e2f80391 1080 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
1081 if (ret)
1082 return ret;
1083
e2f80391 1084 engine->gpu_caches_dirty = false;
48e29f55
OM
1085 return 0;
1086}
1087
e5292823
TU
1088static int intel_lr_context_do_pin(struct intel_context *ctx,
1089 struct intel_engine_cs *ring)
dcb4c12a 1090{
e84fe803
NH
1091 struct drm_device *dev = ring->dev;
1092 struct drm_i915_private *dev_priv = dev->dev_private;
ca82580c
TU
1093 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1094 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
82352e90 1095 struct page *lrc_state_page;
77b04a04 1096 uint32_t *lrc_reg_state;
ca82580c 1097 int ret;
dcb4c12a
OM
1098
1099 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
ca82580c 1100
e84fe803
NH
1101 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1102 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1103 if (ret)
1104 return ret;
7ba717cf 1105
82352e90
TU
1106 lrc_state_page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
1107 if (WARN_ON(!lrc_state_page)) {
1108 ret = -ENODEV;
1109 goto unpin_ctx_obj;
1110 }
1111
e84fe803
NH
1112 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1113 if (ret)
1114 goto unpin_ctx_obj;
d1675198 1115
ca82580c
TU
1116 ctx->engine[ring->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
1117 intel_lr_context_descriptor_update(ctx, ring);
77b04a04
TU
1118 lrc_reg_state = kmap(lrc_state_page);
1119 lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
1120 ctx->engine[ring->id].lrc_reg_state = lrc_reg_state;
e84fe803 1121 ctx_obj->dirty = true;
e93c28f3 1122
e84fe803
NH
1123 /* Invalidate GuC TLB. */
1124 if (i915.enable_guc_submission)
1125 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
dcb4c12a 1126
7ba717cf
TD
1127 return ret;
1128
1129unpin_ctx_obj:
1130 i915_gem_object_ggtt_unpin(ctx_obj);
e84fe803
NH
1131
1132 return ret;
1133}
1134
e5292823
TU
1135static int intel_lr_context_pin(struct intel_context *ctx,
1136 struct intel_engine_cs *engine)
e84fe803
NH
1137{
1138 int ret = 0;
e84fe803 1139
e5292823
TU
1140 if (ctx->engine[engine->id].pin_count++ == 0) {
1141 ret = intel_lr_context_do_pin(ctx, engine);
e84fe803
NH
1142 if (ret)
1143 goto reset_pin_count;
321fe304
TU
1144
1145 i915_gem_context_reference(ctx);
e84fe803
NH
1146 }
1147 return ret;
1148
a7cbedec 1149reset_pin_count:
e5292823 1150 ctx->engine[engine->id].pin_count = 0;
dcb4c12a
OM
1151 return ret;
1152}
1153
e5292823
TU
1154void intel_lr_context_unpin(struct intel_context *ctx,
1155 struct intel_engine_cs *engine)
dcb4c12a 1156{
e5292823 1157 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
af3302b9 1158
f4e2dece 1159 WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
e5292823
TU
1160 if (--ctx->engine[engine->id].pin_count == 0) {
1161 kunmap(kmap_to_page(ctx->engine[engine->id].lrc_reg_state));
1162 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
82352e90 1163 i915_gem_object_ggtt_unpin(ctx_obj);
e5292823
TU
1164 ctx->engine[engine->id].lrc_vma = NULL;
1165 ctx->engine[engine->id].lrc_desc = 0;
1166 ctx->engine[engine->id].lrc_reg_state = NULL;
321fe304
TU
1167
1168 i915_gem_context_unreference(ctx);
dcb4c12a
OM
1169 }
1170}
1171
e2be4faf 1172static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
1173{
1174 int ret, i;
e2f80391 1175 struct intel_engine_cs *engine = req->ring;
e2be4faf 1176 struct intel_ringbuffer *ringbuf = req->ringbuf;
e2f80391 1177 struct drm_device *dev = engine->dev;
771b9a53
MT
1178 struct drm_i915_private *dev_priv = dev->dev_private;
1179 struct i915_workarounds *w = &dev_priv->workarounds;
1180
cd7feaaa 1181 if (w->count == 0)
771b9a53
MT
1182 return 0;
1183
e2f80391 1184 engine->gpu_caches_dirty = true;
4866d729 1185 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1186 if (ret)
1187 return ret;
1188
4d616a29 1189 ret = intel_logical_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1190 if (ret)
1191 return ret;
1192
1193 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1194 for (i = 0; i < w->count; i++) {
f92a9162 1195 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
771b9a53
MT
1196 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1197 }
1198 intel_logical_ring_emit(ringbuf, MI_NOOP);
1199
1200 intel_logical_ring_advance(ringbuf);
1201
e2f80391 1202 engine->gpu_caches_dirty = true;
4866d729 1203 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1204 if (ret)
1205 return ret;
1206
1207 return 0;
1208}
1209
83b8a982 1210#define wa_ctx_emit(batch, index, cmd) \
17ee950d 1211 do { \
83b8a982
AS
1212 int __index = (index)++; \
1213 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
1214 return -ENOSPC; \
1215 } \
83b8a982 1216 batch[__index] = (cmd); \
17ee950d
AS
1217 } while (0)
1218
8f40db77 1219#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 1220 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
1221
1222/*
1223 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1224 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1225 * but there is a slight complication as this is applied in WA batch where the
1226 * values are only initialized once so we cannot take register value at the
1227 * beginning and reuse it further; hence we save its value to memory, upload a
1228 * constant value with bit21 set and then we restore it back with the saved value.
1229 * To simplify the WA, a constant value is formed by using the default value
1230 * of this register. This shouldn't be a problem because we are only modifying
1231 * it for a short period and this batch in non-premptible. We can ofcourse
1232 * use additional instructions that read the actual value of the register
1233 * at that time and set our bit of interest but it makes the WA complicated.
1234 *
1235 * This WA is also required for Gen9 so extracting as a function avoids
1236 * code duplication.
1237 */
1238static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1239 uint32_t *const batch,
1240 uint32_t index)
1241{
1242 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1243
a4106a78
AS
1244 /*
1245 * WaDisableLSQCROPERFforOCL:skl
1246 * This WA is implemented in skl_init_clock_gating() but since
1247 * this batch updates GEN8_L3SQCREG4 with default value we need to
1248 * set this bit here to retain the WA during flush.
1249 */
e87a005d 1250 if (IS_SKL_REVID(ring->dev, 0, SKL_REVID_E0))
a4106a78
AS
1251 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1252
f1afe24f 1253 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 1254 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1255 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1256 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1257 wa_ctx_emit(batch, index, 0);
1258
1259 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1260 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1261 wa_ctx_emit(batch, index, l3sqc4_flush);
1262
1263 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1264 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1265 PIPE_CONTROL_DC_FLUSH_ENABLE));
1266 wa_ctx_emit(batch, index, 0);
1267 wa_ctx_emit(batch, index, 0);
1268 wa_ctx_emit(batch, index, 0);
1269 wa_ctx_emit(batch, index, 0);
1270
f1afe24f 1271 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 1272 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1273 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1274 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1275 wa_ctx_emit(batch, index, 0);
9e000847
AS
1276
1277 return index;
1278}
1279
17ee950d
AS
1280static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1281 uint32_t offset,
1282 uint32_t start_alignment)
1283{
1284 return wa_ctx->offset = ALIGN(offset, start_alignment);
1285}
1286
1287static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1288 uint32_t offset,
1289 uint32_t size_alignment)
1290{
1291 wa_ctx->size = offset - wa_ctx->offset;
1292
1293 WARN(wa_ctx->size % size_alignment,
1294 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1295 wa_ctx->size, size_alignment);
1296 return 0;
1297}
1298
1299/**
1300 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1301 *
1302 * @ring: only applicable for RCS
1303 * @wa_ctx: structure representing wa_ctx
1304 * offset: specifies start of the batch, should be cache-aligned. This is updated
1305 * with the offset value received as input.
1306 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1307 * @batch: page in which WA are loaded
1308 * @offset: This field specifies the start of the batch, it should be
1309 * cache-aligned otherwise it is adjusted accordingly.
1310 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1311 * initialized at the beginning and shared across all contexts but this field
1312 * helps us to have multiple batches at different offsets and select them based
1313 * on a criteria. At the moment this batch always start at the beginning of the page
1314 * and at this point we don't have multiple wa_ctx batch buffers.
1315 *
1316 * The number of WA applied are not known at the beginning; we use this field
1317 * to return the no of DWORDS written.
4d78c8dc 1318 *
17ee950d
AS
1319 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1320 * so it adds NOOPs as padding to make it cacheline aligned.
1321 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1322 * makes a complete batch buffer.
1323 *
1324 * Return: non-zero if we exceed the PAGE_SIZE limit.
1325 */
1326
1327static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1328 struct i915_wa_ctx_bb *wa_ctx,
1329 uint32_t *const batch,
1330 uint32_t *offset)
1331{
0160f055 1332 uint32_t scratch_addr;
17ee950d
AS
1333 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1334
7ad00d1a 1335 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1336 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1337
c82435bb
AS
1338 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1339 if (IS_BROADWELL(ring->dev)) {
604ef734
AH
1340 int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1341 if (rc < 0)
1342 return rc;
1343 index = rc;
c82435bb
AS
1344 }
1345
0160f055
AS
1346 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1347 /* Actual scratch location is at 128 bytes offset */
1348 scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1349
83b8a982
AS
1350 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1351 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1352 PIPE_CONTROL_GLOBAL_GTT_IVB |
1353 PIPE_CONTROL_CS_STALL |
1354 PIPE_CONTROL_QW_WRITE));
1355 wa_ctx_emit(batch, index, scratch_addr);
1356 wa_ctx_emit(batch, index, 0);
1357 wa_ctx_emit(batch, index, 0);
1358 wa_ctx_emit(batch, index, 0);
0160f055 1359
17ee950d
AS
1360 /* Pad to end of cacheline */
1361 while (index % CACHELINE_DWORDS)
83b8a982 1362 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1363
1364 /*
1365 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1366 * execution depends on the length specified in terms of cache lines
1367 * in the register CTX_RCS_INDIRECT_CTX
1368 */
1369
1370 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1371}
1372
1373/**
1374 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1375 *
1376 * @ring: only applicable for RCS
1377 * @wa_ctx: structure representing wa_ctx
1378 * offset: specifies start of the batch, should be cache-aligned.
1379 * size: size of the batch in DWORDS but HW expects in terms of cachelines
4d78c8dc 1380 * @batch: page in which WA are loaded
17ee950d
AS
1381 * @offset: This field specifies the start of this batch.
1382 * This batch is started immediately after indirect_ctx batch. Since we ensure
1383 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1384 *
1385 * The number of DWORDS written are returned using this field.
1386 *
1387 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1388 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1389 */
1390static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1391 struct i915_wa_ctx_bb *wa_ctx,
1392 uint32_t *const batch,
1393 uint32_t *offset)
1394{
1395 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1396
7ad00d1a 1397 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1398 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1399
83b8a982 1400 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1401
1402 return wa_ctx_end(wa_ctx, *offset = index, 1);
1403}
1404
0504cffc
AS
1405static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1406 struct i915_wa_ctx_bb *wa_ctx,
1407 uint32_t *const batch,
1408 uint32_t *offset)
1409{
a4106a78 1410 int ret;
0907c8f7 1411 struct drm_device *dev = ring->dev;
0504cffc
AS
1412 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1413
0907c8f7 1414 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1415 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1416 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7 1417 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1418
a4106a78
AS
1419 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1420 ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1421 if (ret < 0)
1422 return ret;
1423 index = ret;
1424
0504cffc
AS
1425 /* Pad to end of cacheline */
1426 while (index % CACHELINE_DWORDS)
1427 wa_ctx_emit(batch, index, MI_NOOP);
1428
1429 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1430}
1431
1432static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1433 struct i915_wa_ctx_bb *wa_ctx,
1434 uint32_t *const batch,
1435 uint32_t *offset)
1436{
0907c8f7 1437 struct drm_device *dev = ring->dev;
0504cffc
AS
1438 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1439
9b01435d 1440 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
e87a005d 1441 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
cbdc12a9 1442 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
9b01435d 1443 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1444 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1445 wa_ctx_emit(batch, index,
1446 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1447 wa_ctx_emit(batch, index, MI_NOOP);
1448 }
1449
0907c8f7 1450 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1451 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1452 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7
AS
1453 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1454
0504cffc
AS
1455 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1456
1457 return wa_ctx_end(wa_ctx, *offset = index, 1);
1458}
1459
17ee950d
AS
1460static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1461{
1462 int ret;
1463
1464 ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1465 if (!ring->wa_ctx.obj) {
1466 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1467 return -ENOMEM;
1468 }
1469
1470 ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1471 if (ret) {
1472 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1473 ret);
1474 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1475 return ret;
1476 }
1477
1478 return 0;
1479}
1480
1481static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1482{
1483 if (ring->wa_ctx.obj) {
1484 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1485 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1486 ring->wa_ctx.obj = NULL;
1487 }
1488}
1489
1490static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1491{
1492 int ret;
1493 uint32_t *batch;
1494 uint32_t offset;
1495 struct page *page;
1496 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1497
1498 WARN_ON(ring->id != RCS);
1499
5e60d790 1500 /* update this when WA for higher Gen are added */
0504cffc
AS
1501 if (INTEL_INFO(ring->dev)->gen > 9) {
1502 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1503 INTEL_INFO(ring->dev)->gen);
5e60d790 1504 return 0;
0504cffc 1505 }
5e60d790 1506
c4db7599
AS
1507 /* some WA perform writes to scratch page, ensure it is valid */
1508 if (ring->scratch.obj == NULL) {
1509 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1510 return -EINVAL;
1511 }
1512
17ee950d
AS
1513 ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1514 if (ret) {
1515 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1516 return ret;
1517 }
1518
033908ae 1519 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
17ee950d
AS
1520 batch = kmap_atomic(page);
1521 offset = 0;
1522
1523 if (INTEL_INFO(ring->dev)->gen == 8) {
1524 ret = gen8_init_indirectctx_bb(ring,
1525 &wa_ctx->indirect_ctx,
1526 batch,
1527 &offset);
1528 if (ret)
1529 goto out;
1530
1531 ret = gen8_init_perctx_bb(ring,
1532 &wa_ctx->per_ctx,
1533 batch,
1534 &offset);
1535 if (ret)
1536 goto out;
0504cffc
AS
1537 } else if (INTEL_INFO(ring->dev)->gen == 9) {
1538 ret = gen9_init_indirectctx_bb(ring,
1539 &wa_ctx->indirect_ctx,
1540 batch,
1541 &offset);
1542 if (ret)
1543 goto out;
1544
1545 ret = gen9_init_perctx_bb(ring,
1546 &wa_ctx->per_ctx,
1547 batch,
1548 &offset);
1549 if (ret)
1550 goto out;
17ee950d
AS
1551 }
1552
1553out:
1554 kunmap_atomic(batch);
1555 if (ret)
1556 lrc_destroy_wa_ctx_obj(ring);
1557
1558 return ret;
1559}
1560
9b1136d5
OM
1561static int gen8_init_common_ring(struct intel_engine_cs *ring)
1562{
1563 struct drm_device *dev = ring->dev;
1564 struct drm_i915_private *dev_priv = dev->dev_private;
c6a2ac71 1565 unsigned int next_context_status_buffer_hw;
9b1136d5 1566
e84fe803 1567 lrc_setup_hardware_status_page(ring,
ed54c1a1 1568 dev_priv->kernel_context->engine[ring->id].state);
e84fe803 1569
73d477f6
OM
1570 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1571 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1572
9b1136d5
OM
1573 I915_WRITE(RING_MODE_GEN7(ring),
1574 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1575 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1576 POSTING_READ(RING_MODE_GEN7(ring));
dfc53c5e
MT
1577
1578 /*
1579 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1580 * zero, we need to read the write pointer from hardware and use its
1581 * value because "this register is power context save restored".
1582 * Effectively, these states have been observed:
1583 *
1584 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1585 * BDW | CSB regs not reset | CSB regs reset |
1586 * CHT | CSB regs not reset | CSB regs not reset |
5590a5f0
BW
1587 * SKL | ? | ? |
1588 * BXT | ? | ? |
dfc53c5e 1589 */
5590a5f0
BW
1590 next_context_status_buffer_hw =
1591 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(ring)));
dfc53c5e
MT
1592
1593 /*
1594 * When the CSB registers are reset (also after power-up / gpu reset),
1595 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1596 * this special case, so the first element read is CSB[0].
1597 */
1598 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1599 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1600
1601 ring->next_context_status_buffer = next_context_status_buffer_hw;
9b1136d5
OM
1602 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1603
1604 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1605
1606 return 0;
1607}
1608
1609static int gen8_init_render_ring(struct intel_engine_cs *ring)
1610{
1611 struct drm_device *dev = ring->dev;
1612 struct drm_i915_private *dev_priv = dev->dev_private;
1613 int ret;
1614
1615 ret = gen8_init_common_ring(ring);
1616 if (ret)
1617 return ret;
1618
1619 /* We need to disable the AsyncFlip performance optimisations in order
1620 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1621 * programmed to '1' on all products.
1622 *
1623 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1624 */
1625 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1626
9b1136d5
OM
1627 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1628
771b9a53 1629 return init_workarounds_ring(ring);
9b1136d5
OM
1630}
1631
82ef822e
DL
1632static int gen9_init_render_ring(struct intel_engine_cs *ring)
1633{
1634 int ret;
1635
1636 ret = gen8_init_common_ring(ring);
1637 if (ret)
1638 return ret;
1639
1640 return init_workarounds_ring(ring);
1641}
1642
7a01a0a2
MT
1643static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1644{
1645 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
e2f80391 1646 struct intel_engine_cs *engine = req->ring;
7a01a0a2
MT
1647 struct intel_ringbuffer *ringbuf = req->ringbuf;
1648 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1649 int i, ret;
1650
1651 ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1652 if (ret)
1653 return ret;
1654
1655 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1656 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1657 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1658
e2f80391
TU
1659 intel_logical_ring_emit_reg(ringbuf,
1660 GEN8_RING_PDP_UDW(engine, i));
7a01a0a2 1661 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
e2f80391
TU
1662 intel_logical_ring_emit_reg(ringbuf,
1663 GEN8_RING_PDP_LDW(engine, i));
7a01a0a2
MT
1664 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1665 }
1666
1667 intel_logical_ring_emit(ringbuf, MI_NOOP);
1668 intel_logical_ring_advance(ringbuf);
1669
1670 return 0;
1671}
1672
be795fc1 1673static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
8e004efc 1674 u64 offset, unsigned dispatch_flags)
15648585 1675{
be795fc1 1676 struct intel_ringbuffer *ringbuf = req->ringbuf;
8e004efc 1677 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1678 int ret;
1679
7a01a0a2
MT
1680 /* Don't rely in hw updating PDPs, specially in lite-restore.
1681 * Ideally, we should set Force PD Restore in ctx descriptor,
1682 * but we can't. Force Restore would be a second option, but
1683 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1684 * not idle). PML4 is allocated during ppgtt init so this is
1685 * not needed in 48-bit.*/
7a01a0a2
MT
1686 if (req->ctx->ppgtt &&
1687 (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7
ZL
1688 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1689 !intel_vgpu_active(req->i915->dev)) {
2dba3239
MT
1690 ret = intel_logical_ring_emit_pdps(req);
1691 if (ret)
1692 return ret;
1693 }
7a01a0a2
MT
1694
1695 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1696 }
1697
4d616a29 1698 ret = intel_logical_ring_begin(req, 4);
15648585
OM
1699 if (ret)
1700 return ret;
1701
1702 /* FIXME(BDW): Address space and security selectors. */
6922528a
AJ
1703 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1704 (ppgtt<<8) |
1705 (dispatch_flags & I915_DISPATCH_RS ?
1706 MI_BATCH_RESOURCE_STREAMER : 0));
15648585
OM
1707 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1708 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1709 intel_logical_ring_emit(ringbuf, MI_NOOP);
1710 intel_logical_ring_advance(ringbuf);
1711
1712 return 0;
1713}
1714
73d477f6
OM
1715static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1716{
1717 struct drm_device *dev = ring->dev;
1718 struct drm_i915_private *dev_priv = dev->dev_private;
1719 unsigned long flags;
1720
7cd512f1 1721 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1722 return false;
1723
1724 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1725 if (ring->irq_refcount++ == 0) {
1726 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1727 POSTING_READ(RING_IMR(ring->mmio_base));
1728 }
1729 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1730
1731 return true;
1732}
1733
1734static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1735{
1736 struct drm_device *dev = ring->dev;
1737 struct drm_i915_private *dev_priv = dev->dev_private;
1738 unsigned long flags;
1739
1740 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1741 if (--ring->irq_refcount == 0) {
1742 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1743 POSTING_READ(RING_IMR(ring->mmio_base));
1744 }
1745 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1746}
1747
7deb4d39 1748static int gen8_emit_flush(struct drm_i915_gem_request *request,
4712274c
OM
1749 u32 invalidate_domains,
1750 u32 unused)
1751{
7deb4d39 1752 struct intel_ringbuffer *ringbuf = request->ringbuf;
e2f80391
TU
1753 struct intel_engine_cs *engine = ringbuf->ring;
1754 struct drm_device *dev = engine->dev;
4712274c
OM
1755 struct drm_i915_private *dev_priv = dev->dev_private;
1756 uint32_t cmd;
1757 int ret;
1758
4d616a29 1759 ret = intel_logical_ring_begin(request, 4);
4712274c
OM
1760 if (ret)
1761 return ret;
1762
1763 cmd = MI_FLUSH_DW + 1;
1764
f0a1fb10
CW
1765 /* We always require a command barrier so that subsequent
1766 * commands, such as breadcrumb interrupts, are strictly ordered
1767 * wrt the contents of the write cache being flushed to memory
1768 * (and thus being coherent from the CPU).
1769 */
1770 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1771
1772 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1773 cmd |= MI_INVALIDATE_TLB;
e2f80391 1774 if (engine == &dev_priv->ring[VCS])
f0a1fb10 1775 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1776 }
1777
1778 intel_logical_ring_emit(ringbuf, cmd);
1779 intel_logical_ring_emit(ringbuf,
1780 I915_GEM_HWS_SCRATCH_ADDR |
1781 MI_FLUSH_DW_USE_GTT);
1782 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1783 intel_logical_ring_emit(ringbuf, 0); /* value */
1784 intel_logical_ring_advance(ringbuf);
1785
1786 return 0;
1787}
1788
7deb4d39 1789static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
4712274c
OM
1790 u32 invalidate_domains,
1791 u32 flush_domains)
1792{
7deb4d39 1793 struct intel_ringbuffer *ringbuf = request->ringbuf;
e2f80391
TU
1794 struct intel_engine_cs *engine = ringbuf->ring;
1795 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1a5a9ce7 1796 bool vf_flush_wa = false;
4712274c
OM
1797 u32 flags = 0;
1798 int ret;
1799
1800 flags |= PIPE_CONTROL_CS_STALL;
1801
1802 if (flush_domains) {
1803 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1804 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1805 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1806 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1807 }
1808
1809 if (invalidate_domains) {
1810 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1811 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1812 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1813 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1814 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1815 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1816 flags |= PIPE_CONTROL_QW_WRITE;
1817 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1818
1a5a9ce7
BW
1819 /*
1820 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1821 * pipe control.
1822 */
e2f80391 1823 if (IS_GEN9(engine->dev))
1a5a9ce7
BW
1824 vf_flush_wa = true;
1825 }
9647ff36 1826
4d616a29 1827 ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
4712274c
OM
1828 if (ret)
1829 return ret;
1830
9647ff36
ID
1831 if (vf_flush_wa) {
1832 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1833 intel_logical_ring_emit(ringbuf, 0);
1834 intel_logical_ring_emit(ringbuf, 0);
1835 intel_logical_ring_emit(ringbuf, 0);
1836 intel_logical_ring_emit(ringbuf, 0);
1837 intel_logical_ring_emit(ringbuf, 0);
1838 }
1839
4712274c
OM
1840 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1841 intel_logical_ring_emit(ringbuf, flags);
1842 intel_logical_ring_emit(ringbuf, scratch_addr);
1843 intel_logical_ring_emit(ringbuf, 0);
1844 intel_logical_ring_emit(ringbuf, 0);
1845 intel_logical_ring_emit(ringbuf, 0);
1846 intel_logical_ring_advance(ringbuf);
1847
1848 return 0;
1849}
1850
e94e37ad
OM
1851static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1852{
1853 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1854}
1855
1856static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1857{
1858 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1859}
1860
319404df
ID
1861static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1862{
1863
1864 /*
1865 * On BXT A steppings there is a HW coherency issue whereby the
1866 * MI_STORE_DATA_IMM storing the completed request's seqno
1867 * occasionally doesn't invalidate the CPU cache. Work around this by
1868 * clflushing the corresponding cacheline whenever the caller wants
1869 * the coherency to be guaranteed. Note that this cacheline is known
1870 * to be clean at this point, since we only write it in
1871 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1872 * this clflush in practice becomes an invalidate operation.
1873 */
1874
1875 if (!lazy_coherency)
1876 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1877
1878 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1879}
1880
1881static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1882{
1883 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1884
1885 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1886 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1887}
1888
7c17d377
CW
1889/*
1890 * Reserve space for 2 NOOPs at the end of each request to be
1891 * used as a workaround for not being allowed to do lite
1892 * restore with HEAD==TAIL (WaIdleLiteRestore).
1893 */
1894#define WA_TAIL_DWORDS 2
1895
1896static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1897{
1898 return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1899}
1900
c4e76638 1901static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1902{
c4e76638 1903 struct intel_ringbuffer *ringbuf = request->ringbuf;
4da46e1e
OM
1904 int ret;
1905
7c17d377 1906 ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
4da46e1e
OM
1907 if (ret)
1908 return ret;
1909
7c17d377
CW
1910 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1911 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1912
4da46e1e 1913 intel_logical_ring_emit(ringbuf,
7c17d377
CW
1914 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1915 intel_logical_ring_emit(ringbuf,
1916 hws_seqno_address(request->ring) |
1917 MI_FLUSH_DW_USE_GTT);
4da46e1e 1918 intel_logical_ring_emit(ringbuf, 0);
c4e76638 1919 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
4da46e1e
OM
1920 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1921 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377
CW
1922 return intel_logical_ring_advance_and_submit(request);
1923}
4da46e1e 1924
7c17d377
CW
1925static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1926{
1927 struct intel_ringbuffer *ringbuf = request->ringbuf;
1928 int ret;
53292cdb 1929
7c17d377
CW
1930 ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1931 if (ret)
1932 return ret;
1933
1934 /* w/a for post sync ops following a GPGPU operation we
1935 * need a prior CS_STALL, which is emitted by the flush
1936 * following the batch.
1937 */
1938 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(5));
1939 intel_logical_ring_emit(ringbuf,
1940 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1941 PIPE_CONTROL_CS_STALL |
1942 PIPE_CONTROL_QW_WRITE));
1943 intel_logical_ring_emit(ringbuf, hws_seqno_address(request->ring));
1944 intel_logical_ring_emit(ringbuf, 0);
1945 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1946 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1947 return intel_logical_ring_advance_and_submit(request);
4da46e1e
OM
1948}
1949
be01363f 1950static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1951{
cef437ad 1952 struct render_state so;
cef437ad
DL
1953 int ret;
1954
be01363f 1955 ret = i915_gem_render_state_prepare(req->ring, &so);
cef437ad
DL
1956 if (ret)
1957 return ret;
1958
1959 if (so.rodata == NULL)
1960 return 0;
1961
be795fc1 1962 ret = req->ring->emit_bb_start(req, so.ggtt_offset,
be01363f 1963 I915_DISPATCH_SECURE);
cef437ad
DL
1964 if (ret)
1965 goto out;
1966
84e81020
AS
1967 ret = req->ring->emit_bb_start(req,
1968 (so.ggtt_offset + so.aux_batch_offset),
1969 I915_DISPATCH_SECURE);
1970 if (ret)
1971 goto out;
1972
b2af0376 1973 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1974
cef437ad
DL
1975out:
1976 i915_gem_render_state_fini(&so);
1977 return ret;
1978}
1979
8753181e 1980static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1981{
1982 int ret;
1983
e2be4faf 1984 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1985 if (ret)
1986 return ret;
1987
3bbaba0c
PA
1988 ret = intel_rcs_context_init_mocs(req);
1989 /*
1990 * Failing to program the MOCS is non-fatal.The system will not
1991 * run at peak performance. So generate an error and carry on.
1992 */
1993 if (ret)
1994 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1995
be01363f 1996 return intel_lr_context_render_state_init(req);
e7778be1
TD
1997}
1998
73e4d07f
OM
1999/**
2000 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2001 *
2002 * @ring: Engine Command Streamer.
2003 *
2004 */
454afebd
OM
2005void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
2006{
6402c330 2007 struct drm_i915_private *dev_priv;
9832b9da 2008
48d82387
OM
2009 if (!intel_ring_initialized(ring))
2010 return;
2011
6402c330
JH
2012 dev_priv = ring->dev->dev_private;
2013
b0366a54
DG
2014 if (ring->buffer) {
2015 intel_logical_ring_stop(ring);
2016 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
2017 }
48d82387
OM
2018
2019 if (ring->cleanup)
2020 ring->cleanup(ring);
2021
2022 i915_cmd_parser_fini_ring(ring);
06fbca71 2023 i915_gem_batch_pool_fini(&ring->batch_pool);
48d82387
OM
2024
2025 if (ring->status_page.obj) {
2026 kunmap(sg_page(ring->status_page.obj->pages->sgl));
2027 ring->status_page.obj = NULL;
2028 }
17ee950d 2029
c6a2ac71 2030 ring->idle_lite_restore_wa = 0;
ca82580c
TU
2031 ring->disable_lite_restore_wa = false;
2032 ring->ctx_desc_template = 0;
2033
17ee950d 2034 lrc_destroy_wa_ctx_obj(ring);
b0366a54 2035 ring->dev = NULL;
454afebd
OM
2036}
2037
c9cacf93
TU
2038static void
2039logical_ring_default_vfuncs(struct drm_device *dev,
2040 struct intel_engine_cs *ring)
2041{
2042 /* Default vfuncs which can be overriden by each engine. */
2043 ring->init_hw = gen8_init_common_ring;
2044 ring->emit_request = gen8_emit_request;
2045 ring->emit_flush = gen8_emit_flush;
2046 ring->irq_get = gen8_logical_ring_get_irq;
2047 ring->irq_put = gen8_logical_ring_put_irq;
2048 ring->emit_bb_start = gen8_emit_bb_start;
2049 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2050 ring->get_seqno = bxt_a_get_seqno;
2051 ring->set_seqno = bxt_a_set_seqno;
2052 } else {
2053 ring->get_seqno = gen8_get_seqno;
2054 ring->set_seqno = gen8_set_seqno;
2055 }
2056}
2057
d9f3af96
TU
2058static inline void
2059logical_ring_default_irqs(struct intel_engine_cs *ring, unsigned shift)
2060{
2061 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2062 ring->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2063}
2064
c9cacf93
TU
2065static int
2066logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
454afebd 2067{
ed54c1a1 2068 struct intel_context *dctx = to_i915(dev)->kernel_context;
48d82387 2069 int ret;
48d82387
OM
2070
2071 /* Intentionally left blank. */
2072 ring->buffer = NULL;
2073
2074 ring->dev = dev;
2075 INIT_LIST_HEAD(&ring->active_list);
2076 INIT_LIST_HEAD(&ring->request_list);
06fbca71 2077 i915_gem_batch_pool_init(dev, &ring->batch_pool);
48d82387
OM
2078 init_waitqueue_head(&ring->irq_queue);
2079
608c1a52 2080 INIT_LIST_HEAD(&ring->buffers);
acdd884a 2081 INIT_LIST_HEAD(&ring->execlist_queue);
c86ee3a9 2082 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
acdd884a
MT
2083 spin_lock_init(&ring->execlist_lock);
2084
ca82580c
TU
2085 logical_ring_init_platform_invariants(ring);
2086
48d82387
OM
2087 ret = i915_cmd_parser_init_ring(ring);
2088 if (ret)
b0366a54 2089 goto error;
48d82387 2090
ed54c1a1 2091 ret = intel_lr_context_deferred_alloc(dctx, ring);
e84fe803 2092 if (ret)
b0366a54 2093 goto error;
e84fe803
NH
2094
2095 /* As this is the default context, always pin it */
e5292823 2096 ret = intel_lr_context_do_pin(dctx, ring);
e84fe803
NH
2097 if (ret) {
2098 DRM_ERROR(
2099 "Failed to pin and map ringbuffer %s: %d\n",
2100 ring->name, ret);
b0366a54 2101 goto error;
e84fe803 2102 }
564ddb2f 2103
b0366a54
DG
2104 return 0;
2105
2106error:
2107 intel_logical_ring_cleanup(ring);
564ddb2f 2108 return ret;
454afebd
OM
2109}
2110
2111static int logical_render_ring_init(struct drm_device *dev)
2112{
2113 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 2114 struct intel_engine_cs *engine = &dev_priv->ring[RCS];
99be1dfe 2115 int ret;
454afebd 2116
e2f80391
TU
2117 engine->name = "render ring";
2118 engine->id = RCS;
2119 engine->exec_id = I915_EXEC_RENDER;
2120 engine->guc_id = GUC_RENDER_ENGINE;
2121 engine->mmio_base = RENDER_RING_BASE;
d9f3af96 2122
e2f80391 2123 logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
73d477f6 2124 if (HAS_L3_DPF(dev))
e2f80391 2125 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 2126
e2f80391 2127 logical_ring_default_vfuncs(dev, engine);
c9cacf93
TU
2128
2129 /* Override some for render ring. */
82ef822e 2130 if (INTEL_INFO(dev)->gen >= 9)
e2f80391 2131 engine->init_hw = gen9_init_render_ring;
82ef822e 2132 else
e2f80391
TU
2133 engine->init_hw = gen8_init_render_ring;
2134 engine->init_context = gen8_init_rcs_context;
2135 engine->cleanup = intel_fini_pipe_control;
2136 engine->emit_flush = gen8_emit_flush_render;
2137 engine->emit_request = gen8_emit_request_render;
9b1136d5 2138
e2f80391 2139 engine->dev = dev;
c4db7599 2140
e2f80391 2141 ret = intel_init_pipe_control(engine);
99be1dfe
DV
2142 if (ret)
2143 return ret;
2144
e2f80391 2145 ret = intel_init_workaround_bb(engine);
17ee950d
AS
2146 if (ret) {
2147 /*
2148 * We continue even if we fail to initialize WA batch
2149 * because we only expect rare glitches but nothing
2150 * critical to prevent us from using GPU
2151 */
2152 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2153 ret);
2154 }
2155
e2f80391 2156 ret = logical_ring_init(dev, engine);
c4db7599 2157 if (ret) {
e2f80391 2158 lrc_destroy_wa_ctx_obj(engine);
c4db7599 2159 }
17ee950d
AS
2160
2161 return ret;
454afebd
OM
2162}
2163
2164static int logical_bsd_ring_init(struct drm_device *dev)
2165{
2166 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 2167 struct intel_engine_cs *engine = &dev_priv->ring[VCS];
454afebd 2168
e2f80391
TU
2169 engine->name = "bsd ring";
2170 engine->id = VCS;
2171 engine->exec_id = I915_EXEC_BSD;
2172 engine->guc_id = GUC_VIDEO_ENGINE;
2173 engine->mmio_base = GEN6_BSD_RING_BASE;
454afebd 2174
e2f80391
TU
2175 logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
2176 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2177
e2f80391 2178 return logical_ring_init(dev, engine);
454afebd
OM
2179}
2180
2181static int logical_bsd2_ring_init(struct drm_device *dev)
2182{
2183 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 2184 struct intel_engine_cs *engine = &dev_priv->ring[VCS2];
454afebd 2185
e2f80391
TU
2186 engine->name = "bsd2 ring";
2187 engine->id = VCS2;
2188 engine->exec_id = I915_EXEC_BSD;
2189 engine->guc_id = GUC_VIDEO_ENGINE2;
2190 engine->mmio_base = GEN8_BSD2_RING_BASE;
454afebd 2191
e2f80391
TU
2192 logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
2193 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2194
e2f80391 2195 return logical_ring_init(dev, engine);
454afebd
OM
2196}
2197
2198static int logical_blt_ring_init(struct drm_device *dev)
2199{
2200 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 2201 struct intel_engine_cs *engine = &dev_priv->ring[BCS];
454afebd 2202
e2f80391
TU
2203 engine->name = "blitter ring";
2204 engine->id = BCS;
2205 engine->exec_id = I915_EXEC_BLT;
2206 engine->guc_id = GUC_BLITTER_ENGINE;
2207 engine->mmio_base = BLT_RING_BASE;
454afebd 2208
e2f80391
TU
2209 logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
2210 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2211
e2f80391 2212 return logical_ring_init(dev, engine);
454afebd
OM
2213}
2214
2215static int logical_vebox_ring_init(struct drm_device *dev)
2216{
2217 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 2218 struct intel_engine_cs *engine = &dev_priv->ring[VECS];
454afebd 2219
e2f80391
TU
2220 engine->name = "video enhancement ring";
2221 engine->id = VECS;
2222 engine->exec_id = I915_EXEC_VEBOX;
2223 engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
2224 engine->mmio_base = VEBOX_RING_BASE;
454afebd 2225
e2f80391
TU
2226 logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
2227 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2228
e2f80391 2229 return logical_ring_init(dev, engine);
454afebd
OM
2230}
2231
73e4d07f
OM
2232/**
2233 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2234 * @dev: DRM device.
2235 *
2236 * This function inits the engines for an Execlists submission style (the equivalent in the
2237 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2238 * those engines that are present in the hardware.
2239 *
2240 * Return: non-zero if the initialization failed.
2241 */
454afebd
OM
2242int intel_logical_rings_init(struct drm_device *dev)
2243{
2244 struct drm_i915_private *dev_priv = dev->dev_private;
2245 int ret;
2246
2247 ret = logical_render_ring_init(dev);
2248 if (ret)
2249 return ret;
2250
2251 if (HAS_BSD(dev)) {
2252 ret = logical_bsd_ring_init(dev);
2253 if (ret)
2254 goto cleanup_render_ring;
2255 }
2256
2257 if (HAS_BLT(dev)) {
2258 ret = logical_blt_ring_init(dev);
2259 if (ret)
2260 goto cleanup_bsd_ring;
2261 }
2262
2263 if (HAS_VEBOX(dev)) {
2264 ret = logical_vebox_ring_init(dev);
2265 if (ret)
2266 goto cleanup_blt_ring;
2267 }
2268
2269 if (HAS_BSD2(dev)) {
2270 ret = logical_bsd2_ring_init(dev);
2271 if (ret)
2272 goto cleanup_vebox_ring;
2273 }
2274
454afebd
OM
2275 return 0;
2276
454afebd
OM
2277cleanup_vebox_ring:
2278 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2279cleanup_blt_ring:
2280 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2281cleanup_bsd_ring:
2282 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2283cleanup_render_ring:
2284 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2285
2286 return ret;
2287}
2288
0cea6502
JM
2289static u32
2290make_rpcs(struct drm_device *dev)
2291{
2292 u32 rpcs = 0;
2293
2294 /*
2295 * No explicit RPCS request is needed to ensure full
2296 * slice/subslice/EU enablement prior to Gen9.
2297 */
2298 if (INTEL_INFO(dev)->gen < 9)
2299 return 0;
2300
2301 /*
2302 * Starting in Gen9, render power gating can leave
2303 * slice/subslice/EU in a partially enabled state. We
2304 * must make an explicit request through RPCS for full
2305 * enablement.
2306 */
2307 if (INTEL_INFO(dev)->has_slice_pg) {
2308 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2309 rpcs |= INTEL_INFO(dev)->slice_total <<
2310 GEN8_RPCS_S_CNT_SHIFT;
2311 rpcs |= GEN8_RPCS_ENABLE;
2312 }
2313
2314 if (INTEL_INFO(dev)->has_subslice_pg) {
2315 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2316 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2317 GEN8_RPCS_SS_CNT_SHIFT;
2318 rpcs |= GEN8_RPCS_ENABLE;
2319 }
2320
2321 if (INTEL_INFO(dev)->has_eu_pg) {
2322 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2323 GEN8_RPCS_EU_MIN_SHIFT;
2324 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2325 GEN8_RPCS_EU_MAX_SHIFT;
2326 rpcs |= GEN8_RPCS_ENABLE;
2327 }
2328
2329 return rpcs;
2330}
2331
71562919
MT
2332static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *ring)
2333{
2334 u32 indirect_ctx_offset;
2335
2336 switch (INTEL_INFO(ring->dev)->gen) {
2337 default:
2338 MISSING_CASE(INTEL_INFO(ring->dev)->gen);
2339 /* fall through */
2340 case 9:
2341 indirect_ctx_offset =
2342 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2343 break;
2344 case 8:
2345 indirect_ctx_offset =
2346 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2347 break;
2348 }
2349
2350 return indirect_ctx_offset;
2351}
2352
8670d6f9
OM
2353static int
2354populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2355 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2356{
2d965536
TD
2357 struct drm_device *dev = ring->dev;
2358 struct drm_i915_private *dev_priv = dev->dev_private;
ae6c4806 2359 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
8670d6f9
OM
2360 struct page *page;
2361 uint32_t *reg_state;
2362 int ret;
2363
2d965536
TD
2364 if (!ppgtt)
2365 ppgtt = dev_priv->mm.aliasing_ppgtt;
2366
8670d6f9
OM
2367 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2368 if (ret) {
2369 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2370 return ret;
2371 }
2372
2373 ret = i915_gem_object_get_pages(ctx_obj);
2374 if (ret) {
2375 DRM_DEBUG_DRIVER("Could not get object pages\n");
2376 return ret;
2377 }
2378
2379 i915_gem_object_pin_pages(ctx_obj);
2380
2381 /* The second page of the context object contains some fields which must
2382 * be set up prior to the first execution. */
033908ae 2383 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
8670d6f9
OM
2384 reg_state = kmap_atomic(page);
2385
2386 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2387 * commands followed by (reg, value) pairs. The values we are setting here are
2388 * only for the first context restore: on a subsequent save, the GPU will
2389 * recreate this batchbuffer with new values (including all the missing
2390 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0
VS
2391 reg_state[CTX_LRI_HEADER_0] =
2392 MI_LOAD_REGISTER_IMM(ring->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2393 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(ring),
2394 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2395 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
99cf8ea1
MT
2396 (HAS_RESOURCE_STREAMER(dev) ?
2397 CTX_CTRL_RS_CTX_ENABLE : 0)));
0d925ea0
VS
2398 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(ring->mmio_base), 0);
2399 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(ring->mmio_base), 0);
7ba717cf
TD
2400 /* Ring buffer start address is not known until the buffer is pinned.
2401 * It is written to the context image in execlists_update_context()
2402 */
0d925ea0
VS
2403 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START, RING_START(ring->mmio_base), 0);
2404 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL, RING_CTL(ring->mmio_base),
2405 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2406 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U, RING_BBADDR_UDW(ring->mmio_base), 0);
2407 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L, RING_BBADDR(ring->mmio_base), 0);
2408 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE, RING_BBSTATE(ring->mmio_base),
2409 RING_BB_PPGTT);
2410 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(ring->mmio_base), 0);
2411 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(ring->mmio_base), 0);
2412 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE, RING_SBBSTATE(ring->mmio_base), 0);
8670d6f9 2413 if (ring->id == RCS) {
0d925ea0
VS
2414 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(ring->mmio_base), 0);
2415 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(ring->mmio_base), 0);
2416 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET, RING_INDIRECT_CTX_OFFSET(ring->mmio_base), 0);
17ee950d
AS
2417 if (ring->wa_ctx.obj) {
2418 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2419 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2420
2421 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2422 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2423 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2424
2425 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
71562919 2426 intel_lr_indirect_ctx_offset(ring) << 6;
17ee950d
AS
2427
2428 reg_state[CTX_BB_PER_CTX_PTR+1] =
2429 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2430 0x01;
2431 }
8670d6f9 2432 }
0d925ea0
VS
2433 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2434 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(ring->mmio_base), 0);
2435 /* PDP values well be assigned later if needed */
2436 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(ring, 3), 0);
2437 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(ring, 3), 0);
2438 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(ring, 2), 0);
2439 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(ring, 2), 0);
2440 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(ring, 1), 0);
2441 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(ring, 1), 0);
2442 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(ring, 0), 0);
2443 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(ring, 0), 0);
d7b2633d 2444
2dba3239
MT
2445 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2446 /* 64b PPGTT (48bit canonical)
2447 * PDP0_DESCRIPTOR contains the base address to PML4 and
2448 * other PDP Descriptors are ignored.
2449 */
2450 ASSIGN_CTX_PML4(ppgtt, reg_state);
2451 } else {
2452 /* 32b PPGTT
2453 * PDP*_DESCRIPTOR contains the base address of space supported.
2454 * With dynamic page allocation, PDPs may not be allocated at
2455 * this point. Point the unallocated PDPs to the scratch page
2456 */
c6a2ac71 2457 execlists_update_context_pdps(ppgtt, reg_state);
2dba3239
MT
2458 }
2459
8670d6f9
OM
2460 if (ring->id == RCS) {
2461 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0
VS
2462 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2463 make_rpcs(dev));
8670d6f9
OM
2464 }
2465
2466 kunmap_atomic(reg_state);
8670d6f9
OM
2467 i915_gem_object_unpin_pages(ctx_obj);
2468
2469 return 0;
2470}
2471
73e4d07f
OM
2472/**
2473 * intel_lr_context_free() - free the LRC specific bits of a context
2474 * @ctx: the LR context to free.
2475 *
2476 * The real context freeing is done in i915_gem_context_free: this only
2477 * takes care of the bits that are LRC related: the per-engine backing
2478 * objects and the logical ringbuffer.
2479 */
ede7d42b
OM
2480void intel_lr_context_free(struct intel_context *ctx)
2481{
8c857917
OM
2482 int i;
2483
e28e404c
DG
2484 for (i = I915_NUM_RINGS; --i >= 0; ) {
2485 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
8c857917 2486 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f 2487
e28e404c
DG
2488 if (!ctx_obj)
2489 continue;
dcb4c12a 2490
e28e404c
DG
2491 if (ctx == ctx->i915->kernel_context) {
2492 intel_unpin_ringbuffer_obj(ringbuf);
2493 i915_gem_object_ggtt_unpin(ctx_obj);
8c857917 2494 }
e28e404c
DG
2495
2496 WARN_ON(ctx->engine[i].pin_count);
2497 intel_ringbuffer_free(ringbuf);
2498 drm_gem_object_unreference(&ctx_obj->base);
8c857917
OM
2499 }
2500}
2501
c5d46ee2
DG
2502/**
2503 * intel_lr_context_size() - return the size of the context for an engine
2504 * @ring: which engine to find the context size for
2505 *
2506 * Each engine may require a different amount of space for a context image,
2507 * so when allocating (or copying) an image, this function can be used to
2508 * find the right size for the specific engine.
2509 *
2510 * Return: size (in bytes) of an engine-specific context image
2511 *
2512 * Note: this size includes the HWSP, which is part of the context image
2513 * in LRC mode, but does not include the "shared data page" used with
2514 * GuC submission. The caller should account for this if using the GuC.
2515 */
95a66f7e 2516uint32_t intel_lr_context_size(struct intel_engine_cs *ring)
8c857917
OM
2517{
2518 int ret = 0;
2519
468c6816 2520 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
8c857917
OM
2521
2522 switch (ring->id) {
2523 case RCS:
468c6816
MN
2524 if (INTEL_INFO(ring->dev)->gen >= 9)
2525 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2526 else
2527 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2528 break;
2529 case VCS:
2530 case BCS:
2531 case VECS:
2532 case VCS2:
2533 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2534 break;
2535 }
2536
2537 return ret;
ede7d42b
OM
2538}
2539
70b0ea86 2540static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1df06b75
TD
2541 struct drm_i915_gem_object *default_ctx_obj)
2542{
2543 struct drm_i915_private *dev_priv = ring->dev->dev_private;
d1675198 2544 struct page *page;
1df06b75 2545
d1675198
AD
2546 /* The HWSP is part of the default context object in LRC mode. */
2547 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2548 + LRC_PPHWSP_PN * PAGE_SIZE;
2549 page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2550 ring->status_page.page_addr = kmap(page);
1df06b75
TD
2551 ring->status_page.obj = default_ctx_obj;
2552
2553 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2554 (u32)ring->status_page.gfx_addr);
2555 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1df06b75
TD
2556}
2557
73e4d07f 2558/**
e84fe803 2559 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
73e4d07f
OM
2560 * @ctx: LR context to create.
2561 * @ring: engine to be used with the context.
2562 *
2563 * This function can be called more than once, with different engines, if we plan
2564 * to use the context with them. The context backing objects and the ringbuffers
2565 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2566 * the creation is a deferred call: it's better to make sure first that we need to use
2567 * a given ring with the context.
2568 *
32197aab 2569 * Return: non-zero on error.
73e4d07f 2570 */
e84fe803
NH
2571
2572int intel_lr_context_deferred_alloc(struct intel_context *ctx,
e28e404c 2573 struct intel_engine_cs *ring)
ede7d42b 2574{
8c857917
OM
2575 struct drm_device *dev = ring->dev;
2576 struct drm_i915_gem_object *ctx_obj;
2577 uint32_t context_size;
84c2377f 2578 struct intel_ringbuffer *ringbuf;
8c857917
OM
2579 int ret;
2580
ede7d42b 2581 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
bfc882b4 2582 WARN_ON(ctx->engine[ring->id].state);
ede7d42b 2583
95a66f7e 2584 context_size = round_up(intel_lr_context_size(ring), 4096);
8c857917 2585
d1675198
AD
2586 /* One extra page as the sharing data between driver and GuC */
2587 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2588
149c86e7 2589 ctx_obj = i915_gem_alloc_object(dev, context_size);
3126a660
DC
2590 if (!ctx_obj) {
2591 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2592 return -ENOMEM;
8c857917
OM
2593 }
2594
01101fa7
CW
2595 ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2596 if (IS_ERR(ringbuf)) {
2597 ret = PTR_ERR(ringbuf);
e84fe803 2598 goto error_deref_obj;
8670d6f9
OM
2599 }
2600
2601 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2602 if (ret) {
2603 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
e84fe803 2604 goto error_ringbuf;
84c2377f
OM
2605 }
2606
2607 ctx->engine[ring->id].ringbuf = ringbuf;
8c857917 2608 ctx->engine[ring->id].state = ctx_obj;
ede7d42b 2609
ed54c1a1 2610 if (ctx != ctx->i915->kernel_context && ring->init_context) {
e84fe803 2611 struct drm_i915_gem_request *req;
76c39168 2612
26827088
DG
2613 req = i915_gem_request_alloc(ring, ctx);
2614 if (IS_ERR(req)) {
2615 ret = PTR_ERR(req);
2616 DRM_ERROR("ring create req: %d\n", ret);
e84fe803 2617 goto error_ringbuf;
771b9a53
MT
2618 }
2619
e84fe803
NH
2620 ret = ring->init_context(req);
2621 if (ret) {
2622 DRM_ERROR("ring init context: %d\n",
2623 ret);
2624 i915_gem_request_cancel(req);
2625 goto error_ringbuf;
2626 }
2627 i915_add_request_no_flush(req);
564ddb2f 2628 }
ede7d42b 2629 return 0;
8670d6f9 2630
01101fa7
CW
2631error_ringbuf:
2632 intel_ringbuffer_free(ringbuf);
e84fe803 2633error_deref_obj:
8670d6f9 2634 drm_gem_object_unreference(&ctx_obj->base);
e84fe803
NH
2635 ctx->engine[ring->id].ringbuf = NULL;
2636 ctx->engine[ring->id].state = NULL;
8670d6f9 2637 return ret;
ede7d42b 2638}
3e5b6f05
TD
2639
2640void intel_lr_context_reset(struct drm_device *dev,
2641 struct intel_context *ctx)
2642{
2643 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 2644 struct intel_engine_cs *engine;
3e5b6f05
TD
2645 int i;
2646
e2f80391 2647 for_each_ring(engine, dev_priv, i) {
3e5b6f05 2648 struct drm_i915_gem_object *ctx_obj =
e2f80391 2649 ctx->engine[engine->id].state;
3e5b6f05 2650 struct intel_ringbuffer *ringbuf =
e2f80391 2651 ctx->engine[engine->id].ringbuf;
3e5b6f05
TD
2652 uint32_t *reg_state;
2653 struct page *page;
2654
2655 if (!ctx_obj)
2656 continue;
2657
2658 if (i915_gem_object_get_pages(ctx_obj)) {
2659 WARN(1, "Failed get_pages for context obj\n");
2660 continue;
2661 }
033908ae 2662 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
3e5b6f05
TD
2663 reg_state = kmap_atomic(page);
2664
2665 reg_state[CTX_RING_HEAD+1] = 0;
2666 reg_state[CTX_RING_TAIL+1] = 0;
2667
2668 kunmap_atomic(reg_state);
2669
2670 ringbuf->head = 0;
2671 ringbuf->tail = 0;
2672 }
2673}