]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: Move WARN_ON/MISSING_CASE macros to i915_utils.h
[thirdparty/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9 158
70c2a24d
CW
159#define GEN8_CTX_STATUS_COMPLETED_MASK \
160 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161 GEN8_CTX_STATUS_PREEMPTED | \
162 GEN8_CTX_STATUS_ELEMENT_SWITCH)
163
8670d6f9
OM
164#define CTX_LRI_HEADER_0 0x01
165#define CTX_CONTEXT_CONTROL 0x02
166#define CTX_RING_HEAD 0x04
167#define CTX_RING_TAIL 0x06
168#define CTX_RING_BUFFER_START 0x08
169#define CTX_RING_BUFFER_CONTROL 0x0a
170#define CTX_BB_HEAD_U 0x0c
171#define CTX_BB_HEAD_L 0x0e
172#define CTX_BB_STATE 0x10
173#define CTX_SECOND_BB_HEAD_U 0x12
174#define CTX_SECOND_BB_HEAD_L 0x14
175#define CTX_SECOND_BB_STATE 0x16
176#define CTX_BB_PER_CTX_PTR 0x18
177#define CTX_RCS_INDIRECT_CTX 0x1a
178#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
179#define CTX_LRI_HEADER_1 0x21
180#define CTX_CTX_TIMESTAMP 0x22
181#define CTX_PDP3_UDW 0x24
182#define CTX_PDP3_LDW 0x26
183#define CTX_PDP2_UDW 0x28
184#define CTX_PDP2_LDW 0x2a
185#define CTX_PDP1_UDW 0x2c
186#define CTX_PDP1_LDW 0x2e
187#define CTX_PDP0_UDW 0x30
188#define CTX_PDP0_LDW 0x32
189#define CTX_LRI_HEADER_2 0x41
190#define CTX_R_PWR_CLK_STATE 0x42
191#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
192
56e51bf0 193#define CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 194 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
195 (reg_state)[(pos)+1] = (val); \
196} while (0)
197
198#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 199 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
200 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 202} while (0)
e5815a2e 203
9244a817 204#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
205 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 207} while (0)
2dba3239 208
71562919
MT
209#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
210#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 211
0e93cdd4
CW
212/* Typical size of the average request (2 pipecontrols and a MI_BB) */
213#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
214
a3aabe86
CW
215#define WA_TAIL_DWORDS 2
216
e2efd130 217static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 218 struct intel_engine_cs *engine);
a3aabe86
CW
219static void execlists_init_reg_state(u32 *reg_state,
220 struct i915_gem_context *ctx,
221 struct intel_engine_cs *engine,
222 struct intel_ring *ring);
7ba717cf 223
73e4d07f
OM
224/**
225 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
14bb2c11 226 * @dev_priv: i915 device private
73e4d07f
OM
227 * @enable_execlists: value of i915.enable_execlists module parameter.
228 *
229 * Only certain platforms support Execlists (the prerequisites being
27401d12 230 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
231 *
232 * Return: 1 if Execlists is supported and has to be enabled.
233 */
c033666a 234int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
127f1003 235{
a0bd6c31
ZL
236 /* On platforms with execlist available, vGPU will only
237 * support execlist mode, no ring buffer mode.
238 */
c033666a 239 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
a0bd6c31
ZL
240 return 1;
241
c033666a 242 if (INTEL_GEN(dev_priv) >= 9)
70ee45e1
DL
243 return 1;
244
127f1003
OM
245 if (enable_execlists == 0)
246 return 0;
247
5a21b665
DV
248 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
249 USES_PPGTT(dev_priv) &&
250 i915.use_mmio_flip >= 0)
127f1003
OM
251 return 1;
252
253 return 0;
254}
ede7d42b 255
73e4d07f 256/**
ca82580c
TU
257 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
258 * descriptor for a pinned context
ca82580c 259 * @ctx: Context to work on
9021ad03 260 * @engine: Engine the descriptor will be used with
73e4d07f 261 *
ca82580c
TU
262 * The context descriptor encodes various attributes of a context,
263 * including its GTT address and some flags. Because it's fairly
264 * expensive to calculate, we'll just do it once and cache the result,
265 * which remains valid until the context is unpinned.
266 *
6e5248b5
DV
267 * This is what a descriptor looks like, from LSB to MSB::
268 *
2355cf08 269 * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template)
6e5248b5
DV
270 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
271 * bits 32-52: ctx ID, a globally unique tag
272 * bits 53-54: mbz, reserved for use by hardware
273 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 274 */
ca82580c 275static void
e2efd130 276intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
0bc40be8 277 struct intel_engine_cs *engine)
84b790f8 278{
9021ad03 279 struct intel_context *ce = &ctx->engine[engine->id];
7069b144 280 u64 desc;
84b790f8 281
7069b144 282 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 283
2355cf08 284 desc = ctx->desc_template; /* bits 0-11 */
bde13ebd 285 desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
9021ad03 286 /* bits 12-31 */
7069b144 287 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 288
9021ad03 289 ce->lrc_desc = desc;
5af05fef
MT
290}
291
e2efd130 292uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
0bc40be8 293 struct intel_engine_cs *engine)
84b790f8 294{
0bc40be8 295 return ctx->engine[engine->id].lrc_desc;
ca82580c 296}
203a571b 297
bbd6c47e
CW
298static inline void
299execlists_context_status_change(struct drm_i915_gem_request *rq,
300 unsigned long status)
84b790f8 301{
bbd6c47e
CW
302 /*
303 * Only used when GVT-g is enabled now. When GVT-g is disabled,
304 * The compiler should eliminate this function as dead-code.
305 */
306 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
307 return;
6daccb0b 308
3fc03069
CD
309 atomic_notifier_call_chain(&rq->engine->context_status_notifier,
310 status, rq);
84b790f8
BW
311}
312
c6a2ac71
TU
313static void
314execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
315{
316 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
317 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
318 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
319 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
320}
321
70c2a24d 322static u64 execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 323{
70c2a24d 324 struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
04da811b
ZW
325 struct i915_hw_ppgtt *ppgtt =
326 rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
70c2a24d 327 u32 *reg_state = ce->lrc_reg_state;
ae1250b9 328
ed1501d4 329 assert_ring_tail_valid(rq->ring, rq->tail);
caddfe71 330 reg_state[CTX_RING_TAIL+1] = rq->tail;
ae1250b9 331
c6a2ac71
TU
332 /* True 32b PPGTT with dynamic page allocation: update PDP
333 * registers and point the unallocated PDPs to scratch page.
334 * PML4 is allocated during ppgtt init, so this is not needed
335 * in 48-bit mode.
336 */
949e8ab3 337 if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
c6a2ac71 338 execlists_update_context_pdps(ppgtt, reg_state);
70c2a24d
CW
339
340 return ce->lrc_desc;
ae1250b9
OM
341}
342
70c2a24d 343static void execlists_submit_ports(struct intel_engine_cs *engine)
bbd6c47e 344{
70c2a24d
CW
345 struct drm_i915_private *dev_priv = engine->i915;
346 struct execlist_port *port = engine->execlist_port;
bbd6c47e
CW
347 u32 __iomem *elsp =
348 dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
349 u64 desc[2];
350
c816e605 351 GEM_BUG_ON(port[0].count > 1);
70c2a24d
CW
352 if (!port[0].count)
353 execlists_context_status_change(port[0].request,
354 INTEL_CONTEXT_SCHEDULE_IN);
355 desc[0] = execlists_update_context(port[0].request);
ae9a043b 356 GEM_DEBUG_EXEC(port[0].context_id = upper_32_bits(desc[0]));
816ee798 357 port[0].count++;
70c2a24d
CW
358
359 if (port[1].request) {
360 GEM_BUG_ON(port[1].count);
361 execlists_context_status_change(port[1].request,
362 INTEL_CONTEXT_SCHEDULE_IN);
363 desc[1] = execlists_update_context(port[1].request);
ae9a043b 364 GEM_DEBUG_EXEC(port[1].context_id = upper_32_bits(desc[1]));
70c2a24d 365 port[1].count = 1;
bbd6c47e
CW
366 } else {
367 desc[1] = 0;
368 }
70c2a24d 369 GEM_BUG_ON(desc[0] == desc[1]);
bbd6c47e
CW
370
371 /* You must always write both descriptors in the order below. */
372 writel(upper_32_bits(desc[1]), elsp);
373 writel(lower_32_bits(desc[1]), elsp);
374
375 writel(upper_32_bits(desc[0]), elsp);
376 /* The context is automatically loaded after the following */
377 writel(lower_32_bits(desc[0]), elsp);
378}
379
70c2a24d 380static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
84b790f8 381{
70c2a24d 382 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
6095868a 383 i915_gem_context_force_single_submission(ctx));
70c2a24d 384}
84b790f8 385
70c2a24d
CW
386static bool can_merge_ctx(const struct i915_gem_context *prev,
387 const struct i915_gem_context *next)
388{
389 if (prev != next)
390 return false;
26720ab9 391
70c2a24d
CW
392 if (ctx_single_port_submission(prev))
393 return false;
26720ab9 394
70c2a24d 395 return true;
84b790f8
BW
396}
397
70c2a24d 398static void execlists_dequeue(struct intel_engine_cs *engine)
acdd884a 399{
20311bd3 400 struct drm_i915_gem_request *last;
70c2a24d 401 struct execlist_port *port = engine->execlist_port;
20311bd3 402 struct rb_node *rb;
70c2a24d
CW
403 bool submit = false;
404
6c943de6
CW
405 /* After execlist_first is updated, the tasklet will be rescheduled.
406 *
407 * If we are currently running (inside the tasklet) and a third
408 * party queues a request and so updates engine->execlist_first under
409 * the spinlock (which we have elided), it will atomically set the
410 * TASKLET_SCHED flag causing the us to be re-executed and pick up
411 * the change in state (the update to TASKLET_SCHED incurs a memory
412 * barrier making this cross-cpu checking safe).
413 */
414 if (!READ_ONCE(engine->execlist_first))
415 return;
416
70c2a24d
CW
417 last = port->request;
418 if (last)
419 /* WaIdleLiteRestore:bdw,skl
420 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
9b81d556 421 * as we resubmit the request. See gen8_emit_breadcrumb()
70c2a24d
CW
422 * for where we prepare the padding after the end of the
423 * request.
424 */
425 last->tail = last->wa_tail;
e981e7b1 426
70c2a24d 427 GEM_BUG_ON(port[1].request);
acdd884a 428
70c2a24d
CW
429 /* Hardware submission is through 2 ports. Conceptually each port
430 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
431 * static for a context, and unique to each, so we only execute
432 * requests belonging to a single context from each ring. RING_HEAD
433 * is maintained by the CS in the context image, it marks the place
434 * where it got up to last time, and through RING_TAIL we tell the CS
435 * where we want to execute up to this time.
436 *
437 * In this list the requests are in order of execution. Consecutive
438 * requests from the same context are adjacent in the ringbuffer. We
439 * can combine these requests into a single RING_TAIL update:
440 *
441 * RING_HEAD...req1...req2
442 * ^- RING_TAIL
443 * since to execute req2 the CS must first execute req1.
444 *
445 * Our goal then is to point each port to the end of a consecutive
446 * sequence of requests as being the most optimal (fewest wake ups
447 * and context switches) submission.
779949f4 448 */
acdd884a 449
9f7886d0 450 spin_lock_irq(&engine->timeline->lock);
20311bd3
CW
451 rb = engine->execlist_first;
452 while (rb) {
453 struct drm_i915_gem_request *cursor =
454 rb_entry(rb, typeof(*cursor), priotree.node);
455
70c2a24d
CW
456 /* Can we combine this request with the current port? It has to
457 * be the same context/ringbuffer and not have any exceptions
458 * (e.g. GVT saying never to combine contexts).
c6a2ac71 459 *
70c2a24d
CW
460 * If we can combine the requests, we can execute both by
461 * updating the RING_TAIL to point to the end of the second
462 * request, and so we never need to tell the hardware about
463 * the first.
53292cdb 464 */
70c2a24d
CW
465 if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
466 /* If we are on the second port and cannot combine
467 * this request with the last, then we are done.
468 */
469 if (port != engine->execlist_port)
470 break;
471
472 /* If GVT overrides us we only ever submit port[0],
473 * leaving port[1] empty. Note that we also have
474 * to be careful that we don't queue the same
475 * context (even though a different request) to
476 * the second port.
477 */
d7ab992c
MH
478 if (ctx_single_port_submission(last->ctx) ||
479 ctx_single_port_submission(cursor->ctx))
70c2a24d
CW
480 break;
481
482 GEM_BUG_ON(last->ctx == cursor->ctx);
483
484 i915_gem_request_assign(&port->request, last);
485 port++;
486 }
d55ac5bf 487
20311bd3
CW
488 rb = rb_next(rb);
489 rb_erase(&cursor->priotree.node, &engine->execlist_queue);
490 RB_CLEAR_NODE(&cursor->priotree.node);
491 cursor->priotree.priority = INT_MAX;
492
d55ac5bf 493 __i915_gem_request_submit(cursor);
d7d96833 494 trace_i915_gem_request_in(cursor, port - engine->execlist_port);
70c2a24d
CW
495 last = cursor;
496 submit = true;
497 }
498 if (submit) {
70c2a24d 499 i915_gem_request_assign(&port->request, last);
20311bd3 500 engine->execlist_first = rb;
53292cdb 501 }
9f7886d0 502 spin_unlock_irq(&engine->timeline->lock);
53292cdb 503
70c2a24d
CW
504 if (submit)
505 execlists_submit_ports(engine);
acdd884a
MT
506}
507
70c2a24d 508static bool execlists_elsp_idle(struct intel_engine_cs *engine)
e981e7b1 509{
70c2a24d 510 return !engine->execlist_port[0].request;
e981e7b1
TD
511}
512
816ee798 513static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
91a41032 514{
816ee798 515 const struct execlist_port *port = engine->execlist_port;
91a41032 516
816ee798 517 return port[0].count + port[1].count < 2;
91a41032
BW
518}
519
6e5248b5 520/*
73e4d07f
OM
521 * Check the unread Context Status Buffers and manage the submission of new
522 * contexts to the ELSP accordingly.
523 */
27af5eea 524static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 525{
27af5eea 526 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
70c2a24d 527 struct execlist_port *port = engine->execlist_port;
c033666a 528 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 529
3756685a 530 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 531
899f6204
CW
532 /* Prefer doing test_and_clear_bit() as a two stage operation to avoid
533 * imposing the cost of a locked atomic transaction when submitting a
534 * new request (outside of the context-switch interrupt).
535 */
536 while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
70c2a24d
CW
537 u32 __iomem *csb_mmio =
538 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
539 u32 __iomem *buf =
540 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
4af0d727 541 unsigned int head, tail;
70c2a24d 542
2e70b8c6
CW
543 /* The write will be ordered by the uncached read (itself
544 * a memory barrier), so we do not need another in the form
545 * of a locked instruction. The race between the interrupt
546 * handler and the split test/clear is harmless as we order
547 * our clear before the CSB read. If the interrupt arrived
548 * first between the test and the clear, we read the updated
549 * CSB and clear the bit. If the interrupt arrives as we read
550 * the CSB or later (i.e. after we had cleared the bit) the bit
551 * is set and we do a new loop.
552 */
553 __clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
4af0d727
CW
554 head = readl(csb_mmio);
555 tail = GEN8_CSB_WRITE_PTR(head);
556 head = GEN8_CSB_READ_PTR(head);
557 while (head != tail) {
558 unsigned int status;
559
560 if (++head == GEN8_CSB_ENTRIES)
561 head = 0;
70c2a24d 562
2ffe80aa
CW
563 /* We are flying near dragons again.
564 *
565 * We hold a reference to the request in execlist_port[]
566 * but no more than that. We are operating in softirq
567 * context and so cannot hold any mutex or sleep. That
568 * prevents us stopping the requests we are processing
569 * in port[] from being retired simultaneously (the
570 * breadcrumb will be complete before we see the
571 * context-switch). As we only hold the reference to the
572 * request, any pointer chasing underneath the request
573 * is subject to a potential use-after-free. Thus we
574 * store all of the bookkeeping within port[] as
575 * required, and avoid using unguarded pointers beneath
576 * request itself. The same applies to the atomic
577 * status notifier.
578 */
579
4af0d727 580 status = readl(buf + 2 * head);
70c2a24d
CW
581 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
582 continue;
583
86aa7e76 584 /* Check the context/desc id for this event matches */
4af0d727 585 GEM_DEBUG_BUG_ON(readl(buf + 2 * head + 1) !=
ae9a043b 586 port[0].context_id);
86aa7e76 587
70c2a24d
CW
588 GEM_BUG_ON(port[0].count == 0);
589 if (--port[0].count == 0) {
590 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
fe9ae7a3 591 GEM_BUG_ON(!i915_gem_request_completed(port[0].request));
70c2a24d
CW
592 execlists_context_status_change(port[0].request,
593 INTEL_CONTEXT_SCHEDULE_OUT);
594
d7d96833 595 trace_i915_gem_request_out(port[0].request);
70c2a24d
CW
596 i915_gem_request_put(port[0].request);
597 port[0] = port[1];
598 memset(&port[1], 0, sizeof(port[1]));
70c2a24d 599 }
26720ab9 600
70c2a24d
CW
601 GEM_BUG_ON(port[0].count == 0 &&
602 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
4af0d727 603 }
e1fee72c 604
4af0d727 605 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
70c2a24d 606 csb_mmio);
e981e7b1
TD
607 }
608
70c2a24d
CW
609 if (execlists_elsp_ready(engine))
610 execlists_dequeue(engine);
c6a2ac71 611
70c2a24d 612 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
e981e7b1
TD
613}
614
20311bd3
CW
615static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
616{
617 struct rb_node **p, *rb;
618 bool first = true;
619
620 /* most positive priority is scheduled first, equal priorities fifo */
621 rb = NULL;
622 p = &root->rb_node;
623 while (*p) {
624 struct i915_priotree *pos;
625
626 rb = *p;
627 pos = rb_entry(rb, typeof(*pos), node);
628 if (pt->priority > pos->priority) {
629 p = &rb->rb_left;
630 } else {
631 p = &rb->rb_right;
632 first = false;
633 }
634 }
635 rb_link_node(&pt->node, rb, p);
636 rb_insert_color(&pt->node, root);
637
638 return first;
639}
640
f4ea6bdd 641static void execlists_submit_request(struct drm_i915_gem_request *request)
acdd884a 642{
4a570db5 643 struct intel_engine_cs *engine = request->engine;
5590af3e 644 unsigned long flags;
acdd884a 645
663f71e7
CW
646 /* Will be called from irq-context when using foreign fences. */
647 spin_lock_irqsave(&engine->timeline->lock, flags);
acdd884a 648
3833281a 649 if (insert_request(&request->priotree, &engine->execlist_queue)) {
20311bd3 650 engine->execlist_first = &request->priotree.node;
48ea2554 651 if (execlists_elsp_ready(engine))
3833281a
CW
652 tasklet_hi_schedule(&engine->irq_tasklet);
653 }
acdd884a 654
663f71e7 655 spin_unlock_irqrestore(&engine->timeline->lock, flags);
acdd884a
MT
656}
657
20311bd3
CW
658static struct intel_engine_cs *
659pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
660{
661 struct intel_engine_cs *engine;
662
663 engine = container_of(pt,
664 struct drm_i915_gem_request,
665 priotree)->engine;
666 if (engine != locked) {
667 if (locked)
668 spin_unlock_irq(&locked->timeline->lock);
669 spin_lock_irq(&engine->timeline->lock);
670 }
671
672 return engine;
673}
674
675static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
676{
677 struct intel_engine_cs *engine = NULL;
678 struct i915_dependency *dep, *p;
679 struct i915_dependency stack;
680 LIST_HEAD(dfs);
681
682 if (prio <= READ_ONCE(request->priotree.priority))
683 return;
684
70cd1476
CW
685 /* Need BKL in order to use the temporary link inside i915_dependency */
686 lockdep_assert_held(&request->i915->drm.struct_mutex);
20311bd3
CW
687
688 stack.signaler = &request->priotree;
689 list_add(&stack.dfs_link, &dfs);
690
691 /* Recursively bump all dependent priorities to match the new request.
692 *
693 * A naive approach would be to use recursion:
694 * static void update_priorities(struct i915_priotree *pt, prio) {
695 * list_for_each_entry(dep, &pt->signalers_list, signal_link)
696 * update_priorities(dep->signal, prio)
697 * insert_request(pt);
698 * }
699 * but that may have unlimited recursion depth and so runs a very
700 * real risk of overunning the kernel stack. Instead, we build
701 * a flat list of all dependencies starting with the current request.
702 * As we walk the list of dependencies, we add all of its dependencies
703 * to the end of the list (this may include an already visited
704 * request) and continue to walk onwards onto the new dependencies. The
705 * end result is a topological list of requests in reverse order, the
706 * last element in the list is the request we must execute first.
707 */
708 list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
709 struct i915_priotree *pt = dep->signaler;
710
711 list_for_each_entry(p, &pt->signalers_list, signal_link)
712 if (prio > READ_ONCE(p->signaler->priority))
713 list_move_tail(&p->dfs_link, &dfs);
714
0798cff4 715 list_safe_reset_next(dep, p, dfs_link);
20311bd3
CW
716 if (!RB_EMPTY_NODE(&pt->node))
717 continue;
718
719 engine = pt_lock_engine(pt, engine);
720
721 /* If it is not already in the rbtree, we can update the
722 * priority inplace and skip over it (and its dependencies)
723 * if it is referenced *again* as we descend the dfs.
724 */
725 if (prio > pt->priority && RB_EMPTY_NODE(&pt->node)) {
726 pt->priority = prio;
727 list_del_init(&dep->dfs_link);
728 }
729 }
730
731 /* Fifo and depth-first replacement ensure our deps execute before us */
732 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
733 struct i915_priotree *pt = dep->signaler;
734
735 INIT_LIST_HEAD(&dep->dfs_link);
736
737 engine = pt_lock_engine(pt, engine);
738
739 if (prio <= pt->priority)
740 continue;
741
742 GEM_BUG_ON(RB_EMPTY_NODE(&pt->node));
743
744 pt->priority = prio;
745 rb_erase(&pt->node, &engine->execlist_queue);
746 if (insert_request(pt, &engine->execlist_queue))
747 engine->execlist_first = &pt->node;
748 }
749
750 if (engine)
751 spin_unlock_irq(&engine->timeline->lock);
752
753 /* XXX Do we need to preempt to make room for us and our deps? */
754}
755
e8a9c58f
CW
756static int execlists_context_pin(struct intel_engine_cs *engine,
757 struct i915_gem_context *ctx)
dcb4c12a 758{
9021ad03 759 struct intel_context *ce = &ctx->engine[engine->id];
2947e408 760 unsigned int flags;
7d774cac 761 void *vaddr;
ca82580c 762 int ret;
dcb4c12a 763
91c8a326 764 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
ca82580c 765
9021ad03 766 if (ce->pin_count++)
24f1d3cc 767 return 0;
a533b4ba 768 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
24f1d3cc 769
e8a9c58f
CW
770 if (!ce->state) {
771 ret = execlists_context_deferred_alloc(ctx, engine);
772 if (ret)
773 goto err;
774 }
56f6e0a7 775 GEM_BUG_ON(!ce->state);
e8a9c58f 776
72b72ae4 777 flags = PIN_GLOBAL | PIN_HIGH;
feef2a7c
DCS
778 if (ctx->ggtt_offset_bias)
779 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
2947e408
CW
780
781 ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
e84fe803 782 if (ret)
24f1d3cc 783 goto err;
7ba717cf 784
bf3783e5 785 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
7d774cac
TU
786 if (IS_ERR(vaddr)) {
787 ret = PTR_ERR(vaddr);
bf3783e5 788 goto unpin_vma;
82352e90
TU
789 }
790
d3ef1af6 791 ret = intel_ring_pin(ce->ring, ctx->ggtt_offset_bias);
e84fe803 792 if (ret)
7d774cac 793 goto unpin_map;
d1675198 794
0bc40be8 795 intel_lr_context_descriptor_update(ctx, engine);
9021ad03 796
a3aabe86
CW
797 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
798 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
bde13ebd 799 i915_ggtt_offset(ce->ring->vma);
a3aabe86 800
a4f5ea64 801 ce->state->obj->mm.dirty = true;
e93c28f3 802
9a6feaf0 803 i915_gem_context_get(ctx);
24f1d3cc 804 return 0;
7ba717cf 805
7d774cac 806unpin_map:
bf3783e5
CW
807 i915_gem_object_unpin_map(ce->state->obj);
808unpin_vma:
809 __i915_vma_unpin(ce->state);
24f1d3cc 810err:
9021ad03 811 ce->pin_count = 0;
e84fe803
NH
812 return ret;
813}
814
e8a9c58f
CW
815static void execlists_context_unpin(struct intel_engine_cs *engine,
816 struct i915_gem_context *ctx)
e84fe803 817{
9021ad03 818 struct intel_context *ce = &ctx->engine[engine->id];
e84fe803 819
91c8a326 820 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
9021ad03 821 GEM_BUG_ON(ce->pin_count == 0);
321fe304 822
9021ad03 823 if (--ce->pin_count)
24f1d3cc 824 return;
e84fe803 825
aad29fbb 826 intel_ring_unpin(ce->ring);
dcb4c12a 827
bf3783e5
CW
828 i915_gem_object_unpin_map(ce->state->obj);
829 i915_vma_unpin(ce->state);
321fe304 830
9a6feaf0 831 i915_gem_context_put(ctx);
dcb4c12a
OM
832}
833
f73e7399 834static int execlists_request_alloc(struct drm_i915_gem_request *request)
ef11c01d
CW
835{
836 struct intel_engine_cs *engine = request->engine;
837 struct intel_context *ce = &request->ctx->engine[engine->id];
73dec95e 838 u32 *cs;
ef11c01d
CW
839 int ret;
840
e8a9c58f
CW
841 GEM_BUG_ON(!ce->pin_count);
842
ef11c01d
CW
843 /* Flush enough space to reduce the likelihood of waiting after
844 * we start building the request - in which case we will just
845 * have to repeat work.
846 */
847 request->reserved_space += EXECLISTS_REQUEST_SIZE;
848
e8a9c58f 849 GEM_BUG_ON(!ce->ring);
ef11c01d
CW
850 request->ring = ce->ring;
851
ef11c01d
CW
852 if (i915.enable_guc_submission) {
853 /*
854 * Check that the GuC has space for the request before
855 * going any further, as the i915_add_request() call
856 * later on mustn't fail ...
857 */
858 ret = i915_guc_wq_reserve(request);
859 if (ret)
e8a9c58f 860 goto err;
ef11c01d
CW
861 }
862
73dec95e
TU
863 cs = intel_ring_begin(request, 0);
864 if (IS_ERR(cs)) {
865 ret = PTR_ERR(cs);
ef11c01d 866 goto err_unreserve;
73dec95e 867 }
ef11c01d
CW
868
869 if (!ce->initialised) {
870 ret = engine->init_context(request);
871 if (ret)
872 goto err_unreserve;
873
874 ce->initialised = true;
875 }
876
877 /* Note that after this point, we have committed to using
878 * this request as it is being used to both track the
879 * state of engine initialisation and liveness of the
880 * golden renderstate above. Think twice before you try
881 * to cancel/unwind this request now.
882 */
883
884 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
885 return 0;
886
887err_unreserve:
888 if (i915.enable_guc_submission)
889 i915_guc_wq_unreserve(request);
e8a9c58f 890err:
ef11c01d
CW
891 return ret;
892}
893
9e000847
AS
894/*
895 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
896 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
897 * but there is a slight complication as this is applied in WA batch where the
898 * values are only initialized once so we cannot take register value at the
899 * beginning and reuse it further; hence we save its value to memory, upload a
900 * constant value with bit21 set and then we restore it back with the saved value.
901 * To simplify the WA, a constant value is formed by using the default value
902 * of this register. This shouldn't be a problem because we are only modifying
903 * it for a short period and this batch in non-premptible. We can ofcourse
904 * use additional instructions that read the actual value of the register
905 * at that time and set our bit of interest but it makes the WA complicated.
906 *
907 * This WA is also required for Gen9 so extracting as a function avoids
908 * code duplication.
909 */
097d4f1c
TU
910static u32 *
911gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
17ee950d 912{
097d4f1c
TU
913 *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
914 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
915 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
916 *batch++ = 0;
917
918 *batch++ = MI_LOAD_REGISTER_IMM(1);
919 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
920 *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
921
9f235dfa
TU
922 batch = gen8_emit_pipe_control(batch,
923 PIPE_CONTROL_CS_STALL |
924 PIPE_CONTROL_DC_FLUSH_ENABLE,
925 0);
097d4f1c
TU
926
927 *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
928 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
929 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
930 *batch++ = 0;
931
932 return batch;
17ee950d
AS
933}
934
6e5248b5
DV
935/*
936 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
937 * initialized at the beginning and shared across all contexts but this field
938 * helps us to have multiple batches at different offsets and select them based
939 * on a criteria. At the moment this batch always start at the beginning of the page
940 * and at this point we don't have multiple wa_ctx batch buffers.
4d78c8dc 941 *
6e5248b5
DV
942 * The number of WA applied are not known at the beginning; we use this field
943 * to return the no of DWORDS written.
17ee950d 944 *
6e5248b5
DV
945 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
946 * so it adds NOOPs as padding to make it cacheline aligned.
947 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
948 * makes a complete batch buffer.
17ee950d 949 */
097d4f1c 950static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
17ee950d 951{
7ad00d1a 952 /* WaDisableCtxRestoreArbitration:bdw,chv */
097d4f1c 953 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
17ee950d 954
c82435bb 955 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
097d4f1c
TU
956 if (IS_BROADWELL(engine->i915))
957 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
c82435bb 958
0160f055
AS
959 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
960 /* Actual scratch location is at 128 bytes offset */
9f235dfa
TU
961 batch = gen8_emit_pipe_control(batch,
962 PIPE_CONTROL_FLUSH_L3 |
963 PIPE_CONTROL_GLOBAL_GTT_IVB |
964 PIPE_CONTROL_CS_STALL |
965 PIPE_CONTROL_QW_WRITE,
966 i915_ggtt_offset(engine->scratch) +
967 2 * CACHELINE_BYTES);
0160f055 968
17ee950d 969 /* Pad to end of cacheline */
097d4f1c
TU
970 while ((unsigned long)batch % CACHELINE_BYTES)
971 *batch++ = MI_NOOP;
17ee950d
AS
972
973 /*
974 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
975 * execution depends on the length specified in terms of cache lines
976 * in the register CTX_RCS_INDIRECT_CTX
977 */
978
097d4f1c 979 return batch;
17ee950d
AS
980}
981
6e5248b5
DV
982/*
983 * This batch is started immediately after indirect_ctx batch. Since we ensure
984 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
17ee950d 985 *
6e5248b5 986 * The number of DWORDS written are returned using this field.
17ee950d
AS
987 *
988 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
989 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
990 */
097d4f1c 991static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
17ee950d 992{
7ad00d1a 993 /* WaDisableCtxRestoreArbitration:bdw,chv */
097d4f1c
TU
994 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
995 *batch++ = MI_BATCH_BUFFER_END;
17ee950d 996
097d4f1c 997 return batch;
17ee950d
AS
998}
999
097d4f1c 1000static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
0504cffc 1001{
9fb5026f 1002 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
097d4f1c 1003 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
a4106a78 1004
9fb5026f 1005 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
097d4f1c
TU
1006 *batch++ = MI_LOAD_REGISTER_IMM(1);
1007 *batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
1008 *batch++ = _MASKED_BIT_DISABLE(
1009 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
1010 *batch++ = MI_NOOP;
873e8171 1011
066d4628
MK
1012 /* WaClearSlmSpaceAtContextSwitch:kbl */
1013 /* Actual scratch location is at 128 bytes offset */
097d4f1c 1014 if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
9f235dfa
TU
1015 batch = gen8_emit_pipe_control(batch,
1016 PIPE_CONTROL_FLUSH_L3 |
1017 PIPE_CONTROL_GLOBAL_GTT_IVB |
1018 PIPE_CONTROL_CS_STALL |
1019 PIPE_CONTROL_QW_WRITE,
1020 i915_ggtt_offset(engine->scratch)
1021 + 2 * CACHELINE_BYTES);
066d4628 1022 }
3485d99e 1023
9fb5026f 1024 /* WaMediaPoolStateCmdInWABB:bxt,glk */
3485d99e
TG
1025 if (HAS_POOLED_EU(engine->i915)) {
1026 /*
1027 * EU pool configuration is setup along with golden context
1028 * during context initialization. This value depends on
1029 * device type (2x6 or 3x6) and needs to be updated based
1030 * on which subslice is disabled especially for 2x6
1031 * devices, however it is safe to load default
1032 * configuration of 3x6 device instead of masking off
1033 * corresponding bits because HW ignores bits of a disabled
1034 * subslice and drops down to appropriate config. Please
1035 * see render_state_setup() in i915_gem_render_state.c for
1036 * possible configurations, to avoid duplication they are
1037 * not shown here again.
1038 */
097d4f1c
TU
1039 *batch++ = GEN9_MEDIA_POOL_STATE;
1040 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1041 *batch++ = 0x00777000;
1042 *batch++ = 0;
1043 *batch++ = 0;
1044 *batch++ = 0;
3485d99e
TG
1045 }
1046
0504cffc 1047 /* Pad to end of cacheline */
097d4f1c
TU
1048 while ((unsigned long)batch % CACHELINE_BYTES)
1049 *batch++ = MI_NOOP;
0504cffc 1050
097d4f1c 1051 return batch;
0504cffc
AS
1052}
1053
097d4f1c 1054static u32 *gen9_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
0504cffc 1055{
097d4f1c 1056 *batch++ = MI_BATCH_BUFFER_END;
0504cffc 1057
097d4f1c 1058 return batch;
0504cffc
AS
1059}
1060
097d4f1c
TU
1061#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1062
1063static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
17ee950d 1064{
48bb74e4
CW
1065 struct drm_i915_gem_object *obj;
1066 struct i915_vma *vma;
1067 int err;
17ee950d 1068
097d4f1c 1069 obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
48bb74e4
CW
1070 if (IS_ERR(obj))
1071 return PTR_ERR(obj);
17ee950d 1072
a01cb37a 1073 vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
48bb74e4
CW
1074 if (IS_ERR(vma)) {
1075 err = PTR_ERR(vma);
1076 goto err;
17ee950d
AS
1077 }
1078
48bb74e4
CW
1079 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1080 if (err)
1081 goto err;
1082
1083 engine->wa_ctx.vma = vma;
17ee950d 1084 return 0;
48bb74e4
CW
1085
1086err:
1087 i915_gem_object_put(obj);
1088 return err;
17ee950d
AS
1089}
1090
097d4f1c 1091static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
17ee950d 1092{
19880c4a 1093 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
17ee950d
AS
1094}
1095
097d4f1c
TU
1096typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1097
0bc40be8 1098static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d 1099{
48bb74e4 1100 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
097d4f1c
TU
1101 struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1102 &wa_ctx->per_ctx };
1103 wa_bb_func_t wa_bb_fn[2];
17ee950d 1104 struct page *page;
097d4f1c
TU
1105 void *batch, *batch_ptr;
1106 unsigned int i;
48bb74e4 1107 int ret;
17ee950d 1108
097d4f1c
TU
1109 if (WARN_ON(engine->id != RCS || !engine->scratch))
1110 return -EINVAL;
17ee950d 1111
097d4f1c
TU
1112 switch (INTEL_GEN(engine->i915)) {
1113 case 9:
1114 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1115 wa_bb_fn[1] = gen9_init_perctx_bb;
1116 break;
1117 case 8:
1118 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1119 wa_bb_fn[1] = gen8_init_perctx_bb;
1120 break;
1121 default:
1122 MISSING_CASE(INTEL_GEN(engine->i915));
5e60d790 1123 return 0;
0504cffc 1124 }
5e60d790 1125
097d4f1c 1126 ret = lrc_setup_wa_ctx(engine);
17ee950d
AS
1127 if (ret) {
1128 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1129 return ret;
1130 }
1131
48bb74e4 1132 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
097d4f1c 1133 batch = batch_ptr = kmap_atomic(page);
17ee950d 1134
097d4f1c
TU
1135 /*
1136 * Emit the two workaround batch buffers, recording the offset from the
1137 * start of the workaround batch buffer object for each and their
1138 * respective sizes.
1139 */
1140 for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1141 wa_bb[i]->offset = batch_ptr - batch;
1142 if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
1143 ret = -EINVAL;
1144 break;
1145 }
1146 batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1147 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
17ee950d
AS
1148 }
1149
097d4f1c
TU
1150 BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1151
17ee950d
AS
1152 kunmap_atomic(batch);
1153 if (ret)
097d4f1c 1154 lrc_destroy_wa_ctx(engine);
17ee950d
AS
1155
1156 return ret;
1157}
1158
22cc440e
CW
1159static u32 port_seqno(struct execlist_port *port)
1160{
1161 return port->request ? port->request->global_seqno : 0;
1162}
1163
0bc40be8 1164static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1165{
c033666a 1166 struct drm_i915_private *dev_priv = engine->i915;
821ed7df
CW
1167 int ret;
1168
1169 ret = intel_mocs_init_engine(engine);
1170 if (ret)
1171 return ret;
9b1136d5 1172
ad07dfcd 1173 intel_engine_reset_breadcrumbs(engine);
f3b8f912 1174 intel_engine_init_hangcheck(engine);
821ed7df 1175
0bc40be8 1176 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
0bc40be8 1177 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5 1178 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
f3b8f912
CW
1179 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1180 engine->status_page.ggtt_offset);
1181 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
dfc53c5e 1182
0bc40be8 1183 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1184
c87d50cc 1185 /* After a GPU reset, we may have requests to replay */
f747026c 1186 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
31de7350 1187 if (!i915.enable_guc_submission && !execlists_elsp_idle(engine)) {
22cc440e
CW
1188 DRM_DEBUG_DRIVER("Restarting %s from requests [0x%x, 0x%x]\n",
1189 engine->name,
1190 port_seqno(&engine->execlist_port[0]),
1191 port_seqno(&engine->execlist_port[1]));
c87d50cc
CW
1192 engine->execlist_port[0].count = 0;
1193 engine->execlist_port[1].count = 0;
821ed7df 1194 execlists_submit_ports(engine);
c87d50cc 1195 }
821ed7df
CW
1196
1197 return 0;
9b1136d5
OM
1198}
1199
0bc40be8 1200static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1201{
c033666a 1202 struct drm_i915_private *dev_priv = engine->i915;
9b1136d5
OM
1203 int ret;
1204
0bc40be8 1205 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1206 if (ret)
1207 return ret;
1208
1209 /* We need to disable the AsyncFlip performance optimisations in order
1210 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1211 * programmed to '1' on all products.
1212 *
1213 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1214 */
1215 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1216
9b1136d5
OM
1217 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1218
0bc40be8 1219 return init_workarounds_ring(engine);
9b1136d5
OM
1220}
1221
0bc40be8 1222static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1223{
1224 int ret;
1225
0bc40be8 1226 ret = gen8_init_common_ring(engine);
82ef822e
DL
1227 if (ret)
1228 return ret;
1229
0bc40be8 1230 return init_workarounds_ring(engine);
82ef822e
DL
1231}
1232
821ed7df
CW
1233static void reset_common_ring(struct intel_engine_cs *engine,
1234 struct drm_i915_gem_request *request)
1235{
821ed7df 1236 struct execlist_port *port = engine->execlist_port;
c0dcb203
CW
1237 struct intel_context *ce;
1238
1239 /* If the request was innocent, we leave the request in the ELSP
1240 * and will try to replay it on restarting. The context image may
1241 * have been corrupted by the reset, in which case we may have
1242 * to service a new GPU hang, but more likely we can continue on
1243 * without impact.
1244 *
1245 * If the request was guilty, we presume the context is corrupt
1246 * and have to at least restore the RING register in the context
1247 * image back to the expected values to skip over the guilty request.
1248 */
1249 if (!request || request->fence.error != -EIO)
1250 return;
821ed7df 1251
a3aabe86
CW
1252 /* We want a simple context + ring to execute the breadcrumb update.
1253 * We cannot rely on the context being intact across the GPU hang,
1254 * so clear it and rebuild just what we need for the breadcrumb.
1255 * All pending requests for this context will be zapped, and any
1256 * future request will be after userspace has had the opportunity
1257 * to recreate its own state.
1258 */
c0dcb203 1259 ce = &request->ctx->engine[engine->id];
a3aabe86
CW
1260 execlists_init_reg_state(ce->lrc_reg_state,
1261 request->ctx, engine, ce->ring);
1262
821ed7df 1263 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
a3aabe86
CW
1264 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1265 i915_ggtt_offset(ce->ring->vma);
821ed7df 1266 ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
a3aabe86 1267
821ed7df 1268 request->ring->head = request->postfix;
821ed7df
CW
1269 intel_ring_update_space(request->ring);
1270
821ed7df 1271 /* Catch up with any missed context-switch interrupts */
821ed7df
CW
1272 if (request->ctx != port[0].request->ctx) {
1273 i915_gem_request_put(port[0].request);
1274 port[0] = port[1];
1275 memset(&port[1], 0, sizeof(port[1]));
1276 }
1277
821ed7df 1278 GEM_BUG_ON(request->ctx != port[0].request->ctx);
a3aabe86
CW
1279
1280 /* Reset WaIdleLiteRestore:bdw,skl as well */
450362d3
CW
1281 request->tail =
1282 intel_ring_wrap(request->ring,
1283 request->wa_tail - WA_TAIL_DWORDS*sizeof(u32));
ed1501d4 1284 assert_ring_tail_valid(request->ring, request->tail);
821ed7df
CW
1285}
1286
7a01a0a2
MT
1287static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1288{
1289 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
4a570db5 1290 struct intel_engine_cs *engine = req->engine;
e7167769 1291 const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
73dec95e
TU
1292 u32 *cs;
1293 int i;
7a01a0a2 1294
73dec95e
TU
1295 cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1296 if (IS_ERR(cs))
1297 return PTR_ERR(cs);
7a01a0a2 1298
73dec95e 1299 *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
e7167769 1300 for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
7a01a0a2
MT
1301 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1302
73dec95e
TU
1303 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1304 *cs++ = upper_32_bits(pd_daddr);
1305 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1306 *cs++ = lower_32_bits(pd_daddr);
7a01a0a2
MT
1307 }
1308
73dec95e
TU
1309 *cs++ = MI_NOOP;
1310 intel_ring_advance(req, cs);
7a01a0a2
MT
1311
1312 return 0;
1313}
1314
be795fc1 1315static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
803688ba 1316 u64 offset, u32 len,
54af56db 1317 const unsigned int flags)
15648585 1318{
73dec95e 1319 u32 *cs;
15648585
OM
1320 int ret;
1321
7a01a0a2
MT
1322 /* Don't rely in hw updating PDPs, specially in lite-restore.
1323 * Ideally, we should set Force PD Restore in ctx descriptor,
1324 * but we can't. Force Restore would be a second option, but
1325 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1326 * not idle). PML4 is allocated during ppgtt init so this is
1327 * not needed in 48-bit.*/
7a01a0a2 1328 if (req->ctx->ppgtt &&
54af56db
MK
1329 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
1330 !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
1331 !intel_vgpu_active(req->i915)) {
1332 ret = intel_logical_ring_emit_pdps(req);
1333 if (ret)
1334 return ret;
7a01a0a2 1335
666796da 1336 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1337 }
1338
73dec95e
TU
1339 cs = intel_ring_begin(req, 4);
1340 if (IS_ERR(cs))
1341 return PTR_ERR(cs);
15648585
OM
1342
1343 /* FIXME(BDW): Address space and security selectors. */
54af56db
MK
1344 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
1345 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1346 (flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
73dec95e
TU
1347 *cs++ = lower_32_bits(offset);
1348 *cs++ = upper_32_bits(offset);
1349 *cs++ = MI_NOOP;
1350 intel_ring_advance(req, cs);
15648585
OM
1351
1352 return 0;
1353}
1354
31bb59cc 1355static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
73d477f6 1356{
c033666a 1357 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc
CW
1358 I915_WRITE_IMR(engine,
1359 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1360 POSTING_READ_FW(RING_IMR(engine->mmio_base));
73d477f6
OM
1361}
1362
31bb59cc 1363static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
73d477f6 1364{
c033666a 1365 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc 1366 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
73d477f6
OM
1367}
1368
7c9cf4e3 1369static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
4712274c 1370{
73dec95e 1371 u32 cmd, *cs;
4712274c 1372
73dec95e
TU
1373 cs = intel_ring_begin(request, 4);
1374 if (IS_ERR(cs))
1375 return PTR_ERR(cs);
4712274c
OM
1376
1377 cmd = MI_FLUSH_DW + 1;
1378
f0a1fb10
CW
1379 /* We always require a command barrier so that subsequent
1380 * commands, such as breadcrumb interrupts, are strictly ordered
1381 * wrt the contents of the write cache being flushed to memory
1382 * (and thus being coherent from the CPU).
1383 */
1384 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1385
7c9cf4e3 1386 if (mode & EMIT_INVALIDATE) {
f0a1fb10 1387 cmd |= MI_INVALIDATE_TLB;
1dae2dfb 1388 if (request->engine->id == VCS)
f0a1fb10 1389 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1390 }
1391
73dec95e
TU
1392 *cs++ = cmd;
1393 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1394 *cs++ = 0; /* upper addr */
1395 *cs++ = 0; /* value */
1396 intel_ring_advance(request, cs);
4712274c
OM
1397
1398 return 0;
1399}
1400
7deb4d39 1401static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
7c9cf4e3 1402 u32 mode)
4712274c 1403{
b5321f30 1404 struct intel_engine_cs *engine = request->engine;
bde13ebd
CW
1405 u32 scratch_addr =
1406 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0b2d0934 1407 bool vf_flush_wa = false, dc_flush_wa = false;
73dec95e 1408 u32 *cs, flags = 0;
0b2d0934 1409 int len;
4712274c
OM
1410
1411 flags |= PIPE_CONTROL_CS_STALL;
1412
7c9cf4e3 1413 if (mode & EMIT_FLUSH) {
4712274c
OM
1414 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1415 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1416 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1417 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1418 }
1419
7c9cf4e3 1420 if (mode & EMIT_INVALIDATE) {
4712274c
OM
1421 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1422 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1423 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1424 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1425 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1426 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1427 flags |= PIPE_CONTROL_QW_WRITE;
1428 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1429
1a5a9ce7
BW
1430 /*
1431 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1432 * pipe control.
1433 */
c033666a 1434 if (IS_GEN9(request->i915))
1a5a9ce7 1435 vf_flush_wa = true;
0b2d0934
MK
1436
1437 /* WaForGAMHang:kbl */
1438 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1439 dc_flush_wa = true;
1a5a9ce7 1440 }
9647ff36 1441
0b2d0934
MK
1442 len = 6;
1443
1444 if (vf_flush_wa)
1445 len += 6;
1446
1447 if (dc_flush_wa)
1448 len += 12;
1449
73dec95e
TU
1450 cs = intel_ring_begin(request, len);
1451 if (IS_ERR(cs))
1452 return PTR_ERR(cs);
4712274c 1453
9f235dfa
TU
1454 if (vf_flush_wa)
1455 cs = gen8_emit_pipe_control(cs, 0, 0);
9647ff36 1456
9f235dfa
TU
1457 if (dc_flush_wa)
1458 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
1459 0);
0b2d0934 1460
9f235dfa 1461 cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
0b2d0934 1462
9f235dfa
TU
1463 if (dc_flush_wa)
1464 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
0b2d0934 1465
73dec95e 1466 intel_ring_advance(request, cs);
4712274c
OM
1467
1468 return 0;
1469}
1470
7c17d377
CW
1471/*
1472 * Reserve space for 2 NOOPs at the end of each request to be
1473 * used as a workaround for not being allowed to do lite
1474 * restore with HEAD==TAIL (WaIdleLiteRestore).
1475 */
73dec95e 1476static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
4da46e1e 1477{
73dec95e
TU
1478 *cs++ = MI_NOOP;
1479 *cs++ = MI_NOOP;
1480 request->wa_tail = intel_ring_offset(request, cs);
caddfe71 1481}
4da46e1e 1482
73dec95e 1483static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
caddfe71 1484{
7c17d377
CW
1485 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1486 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1487
73dec95e
TU
1488 *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1489 *cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1490 *cs++ = 0;
1491 *cs++ = request->global_seqno;
1492 *cs++ = MI_USER_INTERRUPT;
1493 *cs++ = MI_NOOP;
1494 request->tail = intel_ring_offset(request, cs);
ed1501d4 1495 assert_ring_tail_valid(request->ring, request->tail);
caddfe71 1496
73dec95e 1497 gen8_emit_wa_tail(request, cs);
7c17d377 1498}
4da46e1e 1499
98f29e8d
CW
1500static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1501
caddfe71 1502static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
73dec95e 1503 u32 *cs)
7c17d377 1504{
ce81a65c
MW
1505 /* We're using qword write, seqno should be aligned to 8 bytes. */
1506 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1507
7c17d377
CW
1508 /* w/a for post sync ops following a GPGPU operation we
1509 * need a prior CS_STALL, which is emitted by the flush
1510 * following the batch.
1511 */
73dec95e
TU
1512 *cs++ = GFX_OP_PIPE_CONTROL(6);
1513 *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
1514 PIPE_CONTROL_QW_WRITE;
1515 *cs++ = intel_hws_seqno_address(request->engine);
1516 *cs++ = 0;
1517 *cs++ = request->global_seqno;
ce81a65c 1518 /* We're thrashing one dword of HWS. */
73dec95e
TU
1519 *cs++ = 0;
1520 *cs++ = MI_USER_INTERRUPT;
1521 *cs++ = MI_NOOP;
1522 request->tail = intel_ring_offset(request, cs);
ed1501d4 1523 assert_ring_tail_valid(request->ring, request->tail);
caddfe71 1524
73dec95e 1525 gen8_emit_wa_tail(request, cs);
4da46e1e
OM
1526}
1527
98f29e8d
CW
1528static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1529
8753181e 1530static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1531{
1532 int ret;
1533
4ac9659e 1534 ret = intel_ring_workarounds_emit(req);
e7778be1
TD
1535 if (ret)
1536 return ret;
1537
3bbaba0c
PA
1538 ret = intel_rcs_context_init_mocs(req);
1539 /*
1540 * Failing to program the MOCS is non-fatal.The system will not
1541 * run at peak performance. So generate an error and carry on.
1542 */
1543 if (ret)
1544 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1545
4e50f082 1546 return i915_gem_render_state_emit(req);
e7778be1
TD
1547}
1548
73e4d07f
OM
1549/**
1550 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
14bb2c11 1551 * @engine: Engine Command Streamer.
73e4d07f 1552 */
0bc40be8 1553void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1554{
6402c330 1555 struct drm_i915_private *dev_priv;
9832b9da 1556
27af5eea
TU
1557 /*
1558 * Tasklet cannot be active at this point due intel_mark_active/idle
1559 * so this is just for documentation.
1560 */
1561 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1562 tasklet_kill(&engine->irq_tasklet);
1563
c033666a 1564 dev_priv = engine->i915;
6402c330 1565
0bc40be8 1566 if (engine->buffer) {
0bc40be8 1567 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1568 }
48d82387 1569
0bc40be8
TU
1570 if (engine->cleanup)
1571 engine->cleanup(engine);
48d82387 1572
57e88531
CW
1573 if (engine->status_page.vma) {
1574 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1575 engine->status_page.vma = NULL;
48d82387 1576 }
e8a9c58f
CW
1577
1578 intel_engine_cleanup_common(engine);
17ee950d 1579
097d4f1c 1580 lrc_destroy_wa_ctx(engine);
c033666a 1581 engine->i915 = NULL;
3b3f1650
AG
1582 dev_priv->engine[engine->id] = NULL;
1583 kfree(engine);
454afebd
OM
1584}
1585
ff44ad51 1586static void execlists_set_default_submission(struct intel_engine_cs *engine)
ddd66c51 1587{
ff44ad51
CW
1588 engine->submit_request = execlists_submit_request;
1589 engine->schedule = execlists_schedule;
c9203e82 1590 engine->irq_tasklet.func = intel_lrc_irq_handler;
ddd66c51
CW
1591}
1592
c9cacf93 1593static void
e1382efb 1594logical_ring_default_vfuncs(struct intel_engine_cs *engine)
c9cacf93
TU
1595{
1596 /* Default vfuncs which can be overriden by each engine. */
0bc40be8 1597 engine->init_hw = gen8_init_common_ring;
821ed7df 1598 engine->reset_hw = reset_common_ring;
e8a9c58f
CW
1599
1600 engine->context_pin = execlists_context_pin;
1601 engine->context_unpin = execlists_context_unpin;
1602
f73e7399
CW
1603 engine->request_alloc = execlists_request_alloc;
1604
0bc40be8 1605 engine->emit_flush = gen8_emit_flush;
9b81d556 1606 engine->emit_breadcrumb = gen8_emit_breadcrumb;
98f29e8d 1607 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
ff44ad51
CW
1608
1609 engine->set_default_submission = execlists_set_default_submission;
ddd66c51 1610
31bb59cc
CW
1611 engine->irq_enable = gen8_logical_ring_enable_irq;
1612 engine->irq_disable = gen8_logical_ring_disable_irq;
0bc40be8 1613 engine->emit_bb_start = gen8_emit_bb_start;
c9cacf93
TU
1614}
1615
d9f3af96 1616static inline void
c2c7f240 1617logical_ring_default_irqs(struct intel_engine_cs *engine)
d9f3af96 1618{
c2c7f240 1619 unsigned shift = engine->irq_shift;
0bc40be8
TU
1620 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1621 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1622}
1623
7d774cac 1624static int
bf3783e5 1625lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
04794adb 1626{
57e88531 1627 const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac 1628 void *hws;
04794adb
TU
1629
1630 /* The HWSP is part of the default context object in LRC mode. */
bf3783e5 1631 hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
7d774cac
TU
1632 if (IS_ERR(hws))
1633 return PTR_ERR(hws);
57e88531
CW
1634
1635 engine->status_page.page_addr = hws + hws_offset;
bde13ebd 1636 engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
57e88531 1637 engine->status_page.vma = vma;
7d774cac
TU
1638
1639 return 0;
04794adb
TU
1640}
1641
bb45438f
TU
1642static void
1643logical_ring_setup(struct intel_engine_cs *engine)
1644{
1645 struct drm_i915_private *dev_priv = engine->i915;
1646 enum forcewake_domains fw_domains;
1647
019bf277
TU
1648 intel_engine_setup_common(engine);
1649
bb45438f
TU
1650 /* Intentionally left blank. */
1651 engine->buffer = NULL;
1652
1653 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1654 RING_ELSP(engine),
1655 FW_REG_WRITE);
1656
1657 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1658 RING_CONTEXT_STATUS_PTR(engine),
1659 FW_REG_READ | FW_REG_WRITE);
1660
1661 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1662 RING_CONTEXT_STATUS_BUF_BASE(engine),
1663 FW_REG_READ);
1664
1665 engine->fw_domains = fw_domains;
1666
bb45438f
TU
1667 tasklet_init(&engine->irq_tasklet,
1668 intel_lrc_irq_handler, (unsigned long)engine);
1669
bb45438f
TU
1670 logical_ring_default_vfuncs(engine);
1671 logical_ring_default_irqs(engine);
bb45438f
TU
1672}
1673
a19d6ff2
TU
1674static int
1675logical_ring_init(struct intel_engine_cs *engine)
1676{
1677 struct i915_gem_context *dctx = engine->i915->kernel_context;
1678 int ret;
1679
019bf277 1680 ret = intel_engine_init_common(engine);
a19d6ff2
TU
1681 if (ret)
1682 goto error;
1683
a19d6ff2
TU
1684 /* And setup the hardware status page. */
1685 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1686 if (ret) {
1687 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1688 goto error;
1689 }
1690
1691 return 0;
1692
1693error:
1694 intel_logical_ring_cleanup(engine);
1695 return ret;
1696}
1697
88d2ba2e 1698int logical_render_ring_init(struct intel_engine_cs *engine)
a19d6ff2
TU
1699{
1700 struct drm_i915_private *dev_priv = engine->i915;
1701 int ret;
1702
bb45438f
TU
1703 logical_ring_setup(engine);
1704
a19d6ff2
TU
1705 if (HAS_L3_DPF(dev_priv))
1706 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1707
1708 /* Override some for render ring. */
1709 if (INTEL_GEN(dev_priv) >= 9)
1710 engine->init_hw = gen9_init_render_ring;
1711 else
1712 engine->init_hw = gen8_init_render_ring;
1713 engine->init_context = gen8_init_rcs_context;
a19d6ff2 1714 engine->emit_flush = gen8_emit_flush_render;
9b81d556 1715 engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
98f29e8d 1716 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
a19d6ff2 1717
f51455d4 1718 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
a19d6ff2
TU
1719 if (ret)
1720 return ret;
1721
1722 ret = intel_init_workaround_bb(engine);
1723 if (ret) {
1724 /*
1725 * We continue even if we fail to initialize WA batch
1726 * because we only expect rare glitches but nothing
1727 * critical to prevent us from using GPU
1728 */
1729 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1730 ret);
1731 }
1732
d038fc7e 1733 return logical_ring_init(engine);
a19d6ff2
TU
1734}
1735
88d2ba2e 1736int logical_xcs_ring_init(struct intel_engine_cs *engine)
bb45438f
TU
1737{
1738 logical_ring_setup(engine);
1739
1740 return logical_ring_init(engine);
454afebd
OM
1741}
1742
0cea6502 1743static u32
c033666a 1744make_rpcs(struct drm_i915_private *dev_priv)
0cea6502
JM
1745{
1746 u32 rpcs = 0;
1747
1748 /*
1749 * No explicit RPCS request is needed to ensure full
1750 * slice/subslice/EU enablement prior to Gen9.
1751 */
c033666a 1752 if (INTEL_GEN(dev_priv) < 9)
0cea6502
JM
1753 return 0;
1754
1755 /*
1756 * Starting in Gen9, render power gating can leave
1757 * slice/subslice/EU in a partially enabled state. We
1758 * must make an explicit request through RPCS for full
1759 * enablement.
1760 */
43b67998 1761 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
0cea6502 1762 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
f08a0c92 1763 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
0cea6502
JM
1764 GEN8_RPCS_S_CNT_SHIFT;
1765 rpcs |= GEN8_RPCS_ENABLE;
1766 }
1767
43b67998 1768 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
0cea6502 1769 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
57ec171e 1770 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
0cea6502
JM
1771 GEN8_RPCS_SS_CNT_SHIFT;
1772 rpcs |= GEN8_RPCS_ENABLE;
1773 }
1774
43b67998
ID
1775 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1776 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502 1777 GEN8_RPCS_EU_MIN_SHIFT;
43b67998 1778 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502
JM
1779 GEN8_RPCS_EU_MAX_SHIFT;
1780 rpcs |= GEN8_RPCS_ENABLE;
1781 }
1782
1783 return rpcs;
1784}
1785
0bc40be8 1786static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
1787{
1788 u32 indirect_ctx_offset;
1789
c033666a 1790 switch (INTEL_GEN(engine->i915)) {
71562919 1791 default:
c033666a 1792 MISSING_CASE(INTEL_GEN(engine->i915));
71562919
MT
1793 /* fall through */
1794 case 9:
1795 indirect_ctx_offset =
1796 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1797 break;
1798 case 8:
1799 indirect_ctx_offset =
1800 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1801 break;
1802 }
1803
1804 return indirect_ctx_offset;
1805}
1806
56e51bf0 1807static void execlists_init_reg_state(u32 *regs,
a3aabe86
CW
1808 struct i915_gem_context *ctx,
1809 struct intel_engine_cs *engine,
1810 struct intel_ring *ring)
8670d6f9 1811{
a3aabe86
CW
1812 struct drm_i915_private *dev_priv = engine->i915;
1813 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
56e51bf0
TU
1814 u32 base = engine->mmio_base;
1815 bool rcs = engine->id == RCS;
1816
1817 /* A context is actually a big batch buffer with several
1818 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
1819 * values we are setting here are only for the first context restore:
1820 * on a subsequent save, the GPU will recreate this batchbuffer with new
1821 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
1822 * we are not initializing here).
1823 */
1824 regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
1825 MI_LRI_FORCE_POSTED;
1826
1827 CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
1828 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1829 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1830 (HAS_RESOURCE_STREAMER(dev_priv) ?
1831 CTX_CTRL_RS_CTX_ENABLE : 0)));
1832 CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
1833 CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
1834 CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
1835 CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
1836 RING_CTL_SIZE(ring->size) | RING_VALID);
1837 CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
1838 CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
1839 CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
1840 CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
1841 CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
1842 CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
1843 if (rcs) {
1844 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
1845 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
1846 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
1847 RING_INDIRECT_CTX_OFFSET(base), 0);
8670d6f9 1848
48bb74e4 1849 if (engine->wa_ctx.vma) {
0bc40be8 1850 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
bde13ebd 1851 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
17ee950d 1852
56e51bf0 1853 regs[CTX_RCS_INDIRECT_CTX + 1] =
097d4f1c
TU
1854 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
1855 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
17ee950d 1856
56e51bf0 1857 regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
0bc40be8 1858 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d 1859
56e51bf0 1860 regs[CTX_BB_PER_CTX_PTR + 1] =
097d4f1c 1861 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
17ee950d 1862 }
8670d6f9 1863 }
56e51bf0
TU
1864
1865 regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1866
1867 CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
0d925ea0 1868 /* PDP values well be assigned later if needed */
56e51bf0
TU
1869 CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
1870 CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
1871 CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
1872 CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
1873 CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
1874 CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
1875 CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
1876 CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
d7b2633d 1877
949e8ab3 1878 if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2dba3239
MT
1879 /* 64b PPGTT (48bit canonical)
1880 * PDP0_DESCRIPTOR contains the base address to PML4 and
1881 * other PDP Descriptors are ignored.
1882 */
56e51bf0 1883 ASSIGN_CTX_PML4(ppgtt, regs);
2dba3239
MT
1884 }
1885
56e51bf0
TU
1886 if (rcs) {
1887 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1888 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
1889 make_rpcs(dev_priv));
8670d6f9 1890 }
a3aabe86
CW
1891}
1892
1893static int
1894populate_lr_context(struct i915_gem_context *ctx,
1895 struct drm_i915_gem_object *ctx_obj,
1896 struct intel_engine_cs *engine,
1897 struct intel_ring *ring)
1898{
1899 void *vaddr;
1900 int ret;
1901
1902 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1903 if (ret) {
1904 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1905 return ret;
1906 }
1907
1908 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
1909 if (IS_ERR(vaddr)) {
1910 ret = PTR_ERR(vaddr);
1911 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
1912 return ret;
1913 }
a4f5ea64 1914 ctx_obj->mm.dirty = true;
a3aabe86
CW
1915
1916 /* The second page of the context object contains some fields which must
1917 * be set up prior to the first execution. */
1918
1919 execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
1920 ctx, engine, ring);
8670d6f9 1921
7d774cac 1922 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
1923
1924 return 0;
1925}
1926
c5d46ee2
DG
1927/**
1928 * intel_lr_context_size() - return the size of the context for an engine
14bb2c11 1929 * @engine: which engine to find the context size for
c5d46ee2
DG
1930 *
1931 * Each engine may require a different amount of space for a context image,
1932 * so when allocating (or copying) an image, this function can be used to
1933 * find the right size for the specific engine.
1934 *
1935 * Return: size (in bytes) of an engine-specific context image
1936 *
1937 * Note: this size includes the HWSP, which is part of the context image
1938 * in LRC mode, but does not include the "shared data page" used with
1939 * GuC submission. The caller should account for this if using the GuC.
1940 */
0bc40be8 1941uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
1942{
1943 int ret = 0;
1944
c033666a 1945 WARN_ON(INTEL_GEN(engine->i915) < 8);
8c857917 1946
0bc40be8 1947 switch (engine->id) {
8c857917 1948 case RCS:
c033666a 1949 if (INTEL_GEN(engine->i915) >= 9)
468c6816
MN
1950 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1951 else
1952 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
1953 break;
1954 case VCS:
1955 case BCS:
1956 case VECS:
1957 case VCS2:
1958 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1959 break;
1960 }
1961
1962 return ret;
ede7d42b
OM
1963}
1964
e2efd130 1965static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 1966 struct intel_engine_cs *engine)
ede7d42b 1967{
8c857917 1968 struct drm_i915_gem_object *ctx_obj;
9021ad03 1969 struct intel_context *ce = &ctx->engine[engine->id];
bf3783e5 1970 struct i915_vma *vma;
8c857917 1971 uint32_t context_size;
7e37f889 1972 struct intel_ring *ring;
8c857917
OM
1973 int ret;
1974
9021ad03 1975 WARN_ON(ce->state);
ede7d42b 1976
f51455d4
CW
1977 context_size = round_up(intel_lr_context_size(engine),
1978 I915_GTT_PAGE_SIZE);
8c857917 1979
d1675198
AD
1980 /* One extra page as the sharing data between driver and GuC */
1981 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
1982
12d79d78 1983 ctx_obj = i915_gem_object_create(ctx->i915, context_size);
fe3db79b 1984 if (IS_ERR(ctx_obj)) {
3126a660 1985 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 1986 return PTR_ERR(ctx_obj);
8c857917
OM
1987 }
1988
a01cb37a 1989 vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
bf3783e5
CW
1990 if (IS_ERR(vma)) {
1991 ret = PTR_ERR(vma);
1992 goto error_deref_obj;
1993 }
1994
7e37f889 1995 ring = intel_engine_create_ring(engine, ctx->ring_size);
dca33ecc
CW
1996 if (IS_ERR(ring)) {
1997 ret = PTR_ERR(ring);
e84fe803 1998 goto error_deref_obj;
8670d6f9
OM
1999 }
2000
dca33ecc 2001 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
8670d6f9
OM
2002 if (ret) {
2003 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
dca33ecc 2004 goto error_ring_free;
84c2377f
OM
2005 }
2006
dca33ecc 2007 ce->ring = ring;
bf3783e5 2008 ce->state = vma;
9021ad03 2009 ce->initialised = engine->init_context == NULL;
ede7d42b
OM
2010
2011 return 0;
8670d6f9 2012
dca33ecc 2013error_ring_free:
7e37f889 2014 intel_ring_free(ring);
e84fe803 2015error_deref_obj:
f8c417cd 2016 i915_gem_object_put(ctx_obj);
8670d6f9 2017 return ret;
ede7d42b 2018}
3e5b6f05 2019
821ed7df 2020void intel_lr_context_resume(struct drm_i915_private *dev_priv)
3e5b6f05 2021{
e2f80391 2022 struct intel_engine_cs *engine;
bafb2f7d 2023 struct i915_gem_context *ctx;
3b3f1650 2024 enum intel_engine_id id;
bafb2f7d
CW
2025
2026 /* Because we emit WA_TAIL_DWORDS there may be a disparity
2027 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2028 * that stored in context. As we only write new commands from
2029 * ce->ring->tail onwards, everything before that is junk. If the GPU
2030 * starts reading from its RING_HEAD from the context, it may try to
2031 * execute that junk and die.
2032 *
2033 * So to avoid that we reset the context images upon resume. For
2034 * simplicity, we just zero everything out.
2035 */
2036 list_for_each_entry(ctx, &dev_priv->context_list, link) {
3b3f1650 2037 for_each_engine(engine, dev_priv, id) {
bafb2f7d
CW
2038 struct intel_context *ce = &ctx->engine[engine->id];
2039 u32 *reg;
3e5b6f05 2040
bafb2f7d
CW
2041 if (!ce->state)
2042 continue;
7d774cac 2043
bafb2f7d
CW
2044 reg = i915_gem_object_pin_map(ce->state->obj,
2045 I915_MAP_WB);
2046 if (WARN_ON(IS_ERR(reg)))
2047 continue;
3e5b6f05 2048
bafb2f7d
CW
2049 reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2050 reg[CTX_RING_HEAD+1] = 0;
2051 reg[CTX_RING_TAIL+1] = 0;
3e5b6f05 2052
a4f5ea64 2053 ce->state->obj->mm.dirty = true;
bafb2f7d 2054 i915_gem_object_unpin_map(ce->state->obj);
3e5b6f05 2055
bafb2f7d 2056 ce->ring->head = ce->ring->tail = 0;
bafb2f7d
CW
2057 intel_ring_update_space(ce->ring);
2058 }
3e5b6f05
TD
2059 }
2060}