]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - drivers/iio/proximity/irsd200.c
Merge tag 'kvm-x86-misc-6.7' of https://github.com/kvm-x86/linux into HEAD
[thirdparty/kernel/stable.git] / drivers / iio / proximity / irsd200.c
CommitLineData
3db3562b
WH
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Driver for Murata IRS-D200 PIR sensor.
4 *
5 * Copyright (C) 2023 Axis Communications AB
6 */
7
8#include <asm/unaligned.h>
9#include <linux/bitfield.h>
10#include <linux/gpio.h>
11#include <linux/i2c.h>
12#include <linux/module.h>
13#include <linux/regmap.h>
14
15#include <linux/iio/buffer.h>
16#include <linux/iio/events.h>
17#include <linux/iio/iio.h>
18#include <linux/iio/trigger.h>
19#include <linux/iio/trigger_consumer.h>
20#include <linux/iio/triggered_buffer.h>
21#include <linux/iio/types.h>
22
23#define IRS_DRV_NAME "irsd200"
24
25/* Registers. */
26#define IRS_REG_OP 0x00 /* Operation mode. */
27#define IRS_REG_DATA_LO 0x02 /* Sensor data LSB. */
28#define IRS_REG_DATA_HI 0x03 /* Sensor data MSB. */
29#define IRS_REG_STATUS 0x04 /* Interrupt status. */
30#define IRS_REG_COUNT 0x05 /* Count of exceeding threshold. */
31#define IRS_REG_DATA_RATE 0x06 /* Output data rate. */
32#define IRS_REG_FILTER 0x07 /* High-pass and low-pass filter. */
33#define IRS_REG_INTR 0x09 /* Interrupt mode. */
34#define IRS_REG_NR_COUNT 0x0a /* Number of counts before interrupt. */
35#define IRS_REG_THR_HI 0x0b /* Upper threshold. */
36#define IRS_REG_THR_LO 0x0c /* Lower threshold. */
37#define IRS_REG_TIMER_LO 0x0d /* Timer setting LSB. */
38#define IRS_REG_TIMER_HI 0x0e /* Timer setting MSB. */
39
40/* Interrupt status bits. */
41#define IRS_INTR_DATA 0 /* Data update. */
42#define IRS_INTR_TIMER 1 /* Timer expiration. */
43#define IRS_INTR_COUNT_THR_AND 2 /* Count "AND" threshold. */
44#define IRS_INTR_COUNT_THR_OR 3 /* Count "OR" threshold. */
45
46/* Operation states. */
47#define IRS_OP_ACTIVE 0x00
48#define IRS_OP_SLEEP 0x01
49
50/*
51 * Quantization scale value for threshold. Used for conversion from/to register
52 * value.
53 */
54#define IRS_THR_QUANT_SCALE 128
55
56#define IRS_UPPER_COUNT(count) FIELD_GET(GENMASK(7, 4), count)
57#define IRS_LOWER_COUNT(count) FIELD_GET(GENMASK(3, 0), count)
58
59/* Index corresponds to the value of IRS_REG_DATA_RATE register. */
60static const int irsd200_data_rates[] = {
61 50,
62 100,
63};
64
65/* Index corresponds to the (field) value of IRS_REG_FILTER register. */
66static const unsigned int irsd200_lp_filter_freq[] = {
67 10,
68 7,
69};
70
71/*
72 * Index corresponds to the (field) value of IRS_REG_FILTER register. Note that
73 * this represents a fractional value (e.g the first value corresponds to 3 / 10
74 * = 0.3 Hz).
75 */
76static const unsigned int irsd200_hp_filter_freq[][2] = {
77 { 3, 10 },
78 { 5, 10 },
79};
80
81/* Register fields. */
82enum irsd200_regfield {
83 /* Data interrupt. */
84 IRS_REGF_INTR_DATA,
85 /* Timer interrupt. */
86 IRS_REGF_INTR_TIMER,
87 /* AND count threshold interrupt. */
88 IRS_REGF_INTR_COUNT_THR_AND,
89 /* OR count threshold interrupt. */
90 IRS_REGF_INTR_COUNT_THR_OR,
91
92 /* Low-pass filter frequency. */
93 IRS_REGF_LP_FILTER,
94 /* High-pass filter frequency. */
95 IRS_REGF_HP_FILTER,
96
97 /* Sentinel value. */
98 IRS_REGF_MAX
99};
100
101static const struct reg_field irsd200_regfields[] = {
102 [IRS_REGF_INTR_DATA] =
103 REG_FIELD(IRS_REG_INTR, IRS_INTR_DATA, IRS_INTR_DATA),
104 [IRS_REGF_INTR_TIMER] =
105 REG_FIELD(IRS_REG_INTR, IRS_INTR_TIMER, IRS_INTR_TIMER),
106 [IRS_REGF_INTR_COUNT_THR_AND] = REG_FIELD(
107 IRS_REG_INTR, IRS_INTR_COUNT_THR_AND, IRS_INTR_COUNT_THR_AND),
108 [IRS_REGF_INTR_COUNT_THR_OR] = REG_FIELD(
109 IRS_REG_INTR, IRS_INTR_COUNT_THR_OR, IRS_INTR_COUNT_THR_OR),
110
111 [IRS_REGF_LP_FILTER] = REG_FIELD(IRS_REG_FILTER, 1, 1),
112 [IRS_REGF_HP_FILTER] = REG_FIELD(IRS_REG_FILTER, 0, 0),
113};
114
115static const struct regmap_config irsd200_regmap_config = {
116 .reg_bits = 8,
117 .val_bits = 8,
118 .max_register = IRS_REG_TIMER_HI,
119};
120
121struct irsd200_data {
122 struct regmap *regmap;
123 struct regmap_field *regfields[IRS_REGF_MAX];
124 struct device *dev;
125};
126
127static int irsd200_setup(struct irsd200_data *data)
128{
129 unsigned int val;
130 int ret;
131
132 /* Disable all interrupt sources. */
133 ret = regmap_write(data->regmap, IRS_REG_INTR, 0);
134 if (ret) {
135 dev_err(data->dev, "Could not set interrupt sources (%d)\n",
136 ret);
137 return ret;
138 }
139
140 /* Set operation to active. */
141 ret = regmap_write(data->regmap, IRS_REG_OP, IRS_OP_ACTIVE);
142 if (ret) {
143 dev_err(data->dev, "Could not set operation mode (%d)\n", ret);
144 return ret;
145 }
146
147 /* Clear threshold count. */
148 ret = regmap_read(data->regmap, IRS_REG_COUNT, &val);
149 if (ret) {
150 dev_err(data->dev, "Could not clear threshold count (%d)\n",
151 ret);
152 return ret;
153 }
154
155 /* Clear status. */
156 ret = regmap_write(data->regmap, IRS_REG_STATUS, 0x0f);
157 if (ret) {
158 dev_err(data->dev, "Could not clear status (%d)\n", ret);
159 return ret;
160 }
161
162 return 0;
163}
164
165static int irsd200_read_threshold(struct irsd200_data *data,
166 enum iio_event_direction dir, int *val)
167{
168 unsigned int regval;
169 unsigned int reg;
170 int scale;
171 int ret;
172
173 /* Set quantization scale. */
174 if (dir == IIO_EV_DIR_RISING) {
175 scale = IRS_THR_QUANT_SCALE;
176 reg = IRS_REG_THR_HI;
177 } else if (dir == IIO_EV_DIR_FALLING) {
178 scale = -IRS_THR_QUANT_SCALE;
179 reg = IRS_REG_THR_LO;
180 } else {
181 return -EINVAL;
182 }
183
184 ret = regmap_read(data->regmap, reg, &regval);
185 if (ret) {
186 dev_err(data->dev, "Could not read threshold (%d)\n", ret);
187 return ret;
188 }
189
190 *val = ((int)regval) * scale;
191
192 return 0;
193}
194
195static int irsd200_write_threshold(struct irsd200_data *data,
196 enum iio_event_direction dir, int val)
197{
198 unsigned int regval;
199 unsigned int reg;
200 int scale;
201 int ret;
202
203 /* Set quantization scale. */
204 if (dir == IIO_EV_DIR_RISING) {
205 if (val < 0)
206 return -ERANGE;
207
208 scale = IRS_THR_QUANT_SCALE;
209 reg = IRS_REG_THR_HI;
210 } else if (dir == IIO_EV_DIR_FALLING) {
211 if (val > 0)
212 return -ERANGE;
213
214 scale = -IRS_THR_QUANT_SCALE;
215 reg = IRS_REG_THR_LO;
216 } else {
217 return -EINVAL;
218 }
219
220 regval = val / scale;
221
222 if (regval >= BIT(8))
223 return -ERANGE;
224
225 ret = regmap_write(data->regmap, reg, regval);
226 if (ret) {
227 dev_err(data->dev, "Could not write threshold (%d)\n", ret);
228 return ret;
229 }
230
231 return 0;
232}
233
234static int irsd200_read_data(struct irsd200_data *data, s16 *val)
235{
236 __le16 buf;
237 int ret;
238
239 ret = regmap_bulk_read(data->regmap, IRS_REG_DATA_LO, &buf,
240 sizeof(buf));
241 if (ret) {
242 dev_err(data->dev, "Could not bulk read data (%d)\n", ret);
243 return ret;
244 }
245
246 *val = le16_to_cpu(buf);
247
248 return 0;
249}
250
251static int irsd200_read_data_rate(struct irsd200_data *data, int *val)
252{
253 unsigned int regval;
254 int ret;
255
256 ret = regmap_read(data->regmap, IRS_REG_DATA_RATE, &regval);
257 if (ret) {
258 dev_err(data->dev, "Could not read data rate (%d)\n", ret);
259 return ret;
260 }
261
262 if (regval >= ARRAY_SIZE(irsd200_data_rates))
263 return -ERANGE;
264
265 *val = irsd200_data_rates[regval];
266
267 return 0;
268}
269
270static int irsd200_write_data_rate(struct irsd200_data *data, int val)
271{
272 size_t idx;
273 int ret;
274
275 for (idx = 0; idx < ARRAY_SIZE(irsd200_data_rates); ++idx) {
276 if (irsd200_data_rates[idx] == val)
277 break;
278 }
279
280 if (idx == ARRAY_SIZE(irsd200_data_rates))
281 return -ERANGE;
282
283 ret = regmap_write(data->regmap, IRS_REG_DATA_RATE, idx);
284 if (ret) {
285 dev_err(data->dev, "Could not write data rate (%d)\n", ret);
286 return ret;
287 }
288
289 /*
290 * Data sheet says the device needs 3 seconds of settling time. The
291 * device operates normally during this period though. This is more of a
292 * "guarantee" than trying to prevent other user space reads/writes.
293 */
294 ssleep(3);
295
296 return 0;
297}
298
299static int irsd200_read_timer(struct irsd200_data *data, int *val, int *val2)
300{
301 __le16 buf;
302 int ret;
303
304 ret = regmap_bulk_read(data->regmap, IRS_REG_TIMER_LO, &buf,
305 sizeof(buf));
306 if (ret) {
307 dev_err(data->dev, "Could not bulk read timer (%d)\n", ret);
308 return ret;
309 }
310
311 ret = irsd200_read_data_rate(data, val2);
312 if (ret)
313 return ret;
314
315 *val = le16_to_cpu(buf);
316
317 return 0;
318}
319
320static int irsd200_write_timer(struct irsd200_data *data, int val, int val2)
321{
322 unsigned int regval;
323 int data_rate;
324 __le16 buf;
325 int ret;
326
327 if (val < 0 || val2 < 0)
328 return -ERANGE;
329
330 ret = irsd200_read_data_rate(data, &data_rate);
331 if (ret)
332 return ret;
333
334 /* Quantize from seconds. */
335 regval = val * data_rate + (val2 * data_rate) / 1000000;
336
337 /* Value is 10 bits. */
338 if (regval >= BIT(10))
339 return -ERANGE;
340
341 buf = cpu_to_le16((u16)regval);
342
343 ret = regmap_bulk_write(data->regmap, IRS_REG_TIMER_LO, &buf,
344 sizeof(buf));
345 if (ret) {
346 dev_err(data->dev, "Could not bulk write timer (%d)\n", ret);
347 return ret;
348 }
349
350 return 0;
351}
352
353static int irsd200_read_nr_count(struct irsd200_data *data, int *val)
354{
355 unsigned int regval;
356 int ret;
357
358 ret = regmap_read(data->regmap, IRS_REG_NR_COUNT, &regval);
359 if (ret) {
360 dev_err(data->dev, "Could not read nr count (%d)\n", ret);
361 return ret;
362 }
363
364 *val = regval;
365
366 return 0;
367}
368
369static int irsd200_write_nr_count(struct irsd200_data *data, int val)
370{
371 unsigned int regval;
372 int ret;
373
374 /* A value of zero means that IRS_REG_STATUS is never set. */
375 if (val <= 0 || val >= 8)
376 return -ERANGE;
377
378 regval = val;
379
380 if (regval >= 2) {
381 /*
382 * According to the data sheet, timer must be also set in this
383 * case (i.e. be non-zero). Check and enforce that.
384 */
385 ret = irsd200_read_timer(data, &val, &val);
386 if (ret)
387 return ret;
388
389 if (val == 0) {
390 dev_err(data->dev,
391 "Timer must be non-zero when nr count is %u\n",
392 regval);
393 return -EPERM;
394 }
395 }
396
397 ret = regmap_write(data->regmap, IRS_REG_NR_COUNT, regval);
398 if (ret) {
399 dev_err(data->dev, "Could not write nr count (%d)\n", ret);
400 return ret;
401 }
402
403 return 0;
404}
405
406static int irsd200_read_lp_filter(struct irsd200_data *data, int *val)
407{
408 unsigned int regval;
409 int ret;
410
411 ret = regmap_field_read(data->regfields[IRS_REGF_LP_FILTER], &regval);
412 if (ret) {
413 dev_err(data->dev, "Could not read lp filter frequency (%d)\n",
414 ret);
415 return ret;
416 }
417
418 *val = irsd200_lp_filter_freq[regval];
419
420 return 0;
421}
422
423static int irsd200_write_lp_filter(struct irsd200_data *data, int val)
424{
425 size_t idx;
426 int ret;
427
428 for (idx = 0; idx < ARRAY_SIZE(irsd200_lp_filter_freq); ++idx) {
429 if (irsd200_lp_filter_freq[idx] == val)
430 break;
431 }
432
433 if (idx == ARRAY_SIZE(irsd200_lp_filter_freq))
434 return -ERANGE;
435
436 ret = regmap_field_write(data->regfields[IRS_REGF_LP_FILTER], idx);
437 if (ret) {
438 dev_err(data->dev, "Could not write lp filter frequency (%d)\n",
439 ret);
440 return ret;
441 }
442
443 return 0;
444}
445
446static int irsd200_read_hp_filter(struct irsd200_data *data, int *val,
447 int *val2)
448{
449 unsigned int regval;
450 int ret;
451
452 ret = regmap_field_read(data->regfields[IRS_REGF_HP_FILTER], &regval);
453 if (ret) {
454 dev_err(data->dev, "Could not read hp filter frequency (%d)\n",
455 ret);
456 return ret;
457 }
458
459 *val = irsd200_hp_filter_freq[regval][0];
460 *val2 = irsd200_hp_filter_freq[regval][1];
461
462 return 0;
463}
464
465static int irsd200_write_hp_filter(struct irsd200_data *data, int val, int val2)
466{
467 size_t idx;
468 int ret;
469
470 /* Truncate fractional part to one digit. */
471 val2 /= 100000;
472
473 for (idx = 0; idx < ARRAY_SIZE(irsd200_hp_filter_freq); ++idx) {
474 if (irsd200_hp_filter_freq[idx][0] == val2)
475 break;
476 }
477
478 if (idx == ARRAY_SIZE(irsd200_hp_filter_freq) || val != 0)
479 return -ERANGE;
480
481 ret = regmap_field_write(data->regfields[IRS_REGF_HP_FILTER], idx);
482 if (ret) {
483 dev_err(data->dev, "Could not write hp filter frequency (%d)\n",
484 ret);
485 return ret;
486 }
487
488 return 0;
489}
490
491static int irsd200_read_raw(struct iio_dev *indio_dev,
492 struct iio_chan_spec const *chan, int *val,
493 int *val2, long mask)
494{
495 struct irsd200_data *data = iio_priv(indio_dev);
496 int ret;
497 s16 buf;
498
499 switch (mask) {
500 case IIO_CHAN_INFO_RAW:
501 ret = irsd200_read_data(data, &buf);
502 if (ret)
503 return ret;
504
505 *val = buf;
506 return IIO_VAL_INT;
507 case IIO_CHAN_INFO_SAMP_FREQ:
508 ret = irsd200_read_data_rate(data, val);
509 if (ret)
510 return ret;
511
512 return IIO_VAL_INT;
513 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
514 ret = irsd200_read_lp_filter(data, val);
515 if (ret)
516 return ret;
517
518 return IIO_VAL_INT;
519 case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
520 ret = irsd200_read_hp_filter(data, val, val2);
521 if (ret)
522 return ret;
523
524 return IIO_VAL_FRACTIONAL;
525 default:
526 return -EINVAL;
527 }
528}
529
530static int irsd200_read_avail(struct iio_dev *indio_dev,
531 struct iio_chan_spec const *chan,
532 const int **vals, int *type, int *length,
533 long mask)
534{
535 switch (mask) {
536 case IIO_CHAN_INFO_SAMP_FREQ:
537 *vals = irsd200_data_rates;
538 *type = IIO_VAL_INT;
539 *length = ARRAY_SIZE(irsd200_data_rates);
540 return IIO_AVAIL_LIST;
541 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
542 *vals = irsd200_lp_filter_freq;
543 *type = IIO_VAL_INT;
544 *length = ARRAY_SIZE(irsd200_lp_filter_freq);
545 return IIO_AVAIL_LIST;
546 case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
547 *vals = (int *)irsd200_hp_filter_freq;
548 *type = IIO_VAL_FRACTIONAL;
549 *length = 2 * ARRAY_SIZE(irsd200_hp_filter_freq);
550 return IIO_AVAIL_LIST;
551 default:
552 return -EINVAL;
553 }
554}
555
556static int irsd200_write_raw(struct iio_dev *indio_dev,
557 struct iio_chan_spec const *chan, int val,
558 int val2, long mask)
559{
560 struct irsd200_data *data = iio_priv(indio_dev);
561
562 switch (mask) {
563 case IIO_CHAN_INFO_SAMP_FREQ:
564 return irsd200_write_data_rate(data, val);
565 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
566 return irsd200_write_lp_filter(data, val);
567 case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
568 return irsd200_write_hp_filter(data, val, val2);
569 default:
570 return -EINVAL;
571 }
572}
573
574static int irsd200_read_event(struct iio_dev *indio_dev,
575 const struct iio_chan_spec *chan,
576 enum iio_event_type type,
577 enum iio_event_direction dir,
578 enum iio_event_info info, int *val, int *val2)
579{
580 struct irsd200_data *data = iio_priv(indio_dev);
581 int ret;
582
583 switch (info) {
584 case IIO_EV_INFO_VALUE:
585 ret = irsd200_read_threshold(data, dir, val);
586 if (ret)
587 return ret;
588
589 return IIO_VAL_INT;
590 case IIO_EV_INFO_RUNNING_PERIOD:
591 ret = irsd200_read_timer(data, val, val2);
592 if (ret)
593 return ret;
594
595 return IIO_VAL_FRACTIONAL;
596 case IIO_EV_INFO_RUNNING_COUNT:
597 ret = irsd200_read_nr_count(data, val);
598 if (ret)
599 return ret;
600
601 return IIO_VAL_INT;
602 default:
603 return -EINVAL;
604 }
605}
606
607static int irsd200_write_event(struct iio_dev *indio_dev,
608 const struct iio_chan_spec *chan,
609 enum iio_event_type type,
610 enum iio_event_direction dir,
611 enum iio_event_info info, int val, int val2)
612{
613 struct irsd200_data *data = iio_priv(indio_dev);
614
615 switch (info) {
616 case IIO_EV_INFO_VALUE:
617 return irsd200_write_threshold(data, dir, val);
618 case IIO_EV_INFO_RUNNING_PERIOD:
619 return irsd200_write_timer(data, val, val2);
620 case IIO_EV_INFO_RUNNING_COUNT:
621 return irsd200_write_nr_count(data, val);
622 default:
623 return -EINVAL;
624 }
625}
626
627static int irsd200_read_event_config(struct iio_dev *indio_dev,
628 const struct iio_chan_spec *chan,
629 enum iio_event_type type,
630 enum iio_event_direction dir)
631{
632 struct irsd200_data *data = iio_priv(indio_dev);
633 unsigned int val;
634 int ret;
635
636 switch (type) {
637 case IIO_EV_TYPE_THRESH:
638 ret = regmap_field_read(
639 data->regfields[IRS_REGF_INTR_COUNT_THR_OR], &val);
640 if (ret)
641 return ret;
642
643 return val;
644 default:
645 return -EINVAL;
646 }
647}
648
649static int irsd200_write_event_config(struct iio_dev *indio_dev,
650 const struct iio_chan_spec *chan,
651 enum iio_event_type type,
652 enum iio_event_direction dir, int state)
653{
654 struct irsd200_data *data = iio_priv(indio_dev);
655 unsigned int tmp;
656 int ret;
657
658 switch (type) {
659 case IIO_EV_TYPE_THRESH:
660 /* Clear the count register (by reading from it). */
661 ret = regmap_read(data->regmap, IRS_REG_COUNT, &tmp);
662 if (ret)
663 return ret;
664
665 return regmap_field_write(
666 data->regfields[IRS_REGF_INTR_COUNT_THR_OR], !!state);
667 default:
668 return -EINVAL;
669 }
670}
671
672static irqreturn_t irsd200_irq_thread(int irq, void *dev_id)
673{
674 struct iio_dev *indio_dev = dev_id;
675 struct irsd200_data *data = iio_priv(indio_dev);
676 enum iio_event_direction dir;
677 unsigned int lower_count;
678 unsigned int upper_count;
679 unsigned int status = 0;
680 unsigned int source = 0;
681 unsigned int clear = 0;
682 unsigned int count = 0;
683 int ret;
684
685 ret = regmap_read(data->regmap, IRS_REG_INTR, &source);
686 if (ret) {
687 dev_err(data->dev, "Could not read interrupt source (%d)\n",
688 ret);
689 return IRQ_HANDLED;
690 }
691
692 ret = regmap_read(data->regmap, IRS_REG_STATUS, &status);
693 if (ret) {
694 dev_err(data->dev, "Could not acknowledge interrupt (%d)\n",
695 ret);
696 return IRQ_HANDLED;
697 }
698
699 if (status & BIT(IRS_INTR_DATA) && iio_buffer_enabled(indio_dev)) {
700 iio_trigger_poll_nested(indio_dev->trig);
701 clear |= BIT(IRS_INTR_DATA);
702 }
703
704 if (status & BIT(IRS_INTR_COUNT_THR_OR) &&
705 source & BIT(IRS_INTR_COUNT_THR_OR)) {
706 /*
707 * The register value resets to zero after reading. We therefore
708 * need to read once and manually extract the lower and upper
709 * count register fields.
710 */
711 ret = regmap_read(data->regmap, IRS_REG_COUNT, &count);
712 if (ret)
713 dev_err(data->dev, "Could not read count (%d)\n", ret);
714
715 upper_count = IRS_UPPER_COUNT(count);
716 lower_count = IRS_LOWER_COUNT(count);
717
718 /*
719 * We only check the OR mode to be able to push events for
720 * rising and falling thresholds. AND mode is covered when both
721 * upper and lower count is non-zero, and is signaled with
722 * IIO_EV_DIR_EITHER.
723 */
724 if (upper_count && !lower_count)
725 dir = IIO_EV_DIR_RISING;
726 else if (!upper_count && lower_count)
727 dir = IIO_EV_DIR_FALLING;
728 else
729 dir = IIO_EV_DIR_EITHER;
730
731 iio_push_event(indio_dev,
732 IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0,
733 IIO_EV_TYPE_THRESH, dir),
734 iio_get_time_ns(indio_dev));
735
736 /*
737 * The OR mode will always trigger when the AND mode does, but
738 * not vice versa. However, it seems like the AND bit needs to
739 * be cleared if data capture _and_ threshold count interrupts
740 * are desirable, even though it hasn't explicitly been selected
741 * (with IRS_REG_INTR). Either way, it doesn't hurt...
742 */
743 clear |= BIT(IRS_INTR_COUNT_THR_OR) |
744 BIT(IRS_INTR_COUNT_THR_AND);
745 }
746
747 if (!clear)
748 return IRQ_NONE;
749
750 ret = regmap_write(data->regmap, IRS_REG_STATUS, clear);
751 if (ret)
752 dev_err(data->dev,
753 "Could not clear interrupt status (%d)\n", ret);
754
755 return IRQ_HANDLED;
756}
757
758static irqreturn_t irsd200_trigger_handler(int irq, void *pollf)
759{
760 struct iio_dev *indio_dev = ((struct iio_poll_func *)pollf)->indio_dev;
761 struct irsd200_data *data = iio_priv(indio_dev);
ea191d0f 762 s64 buf[2] = {};
3db3562b
WH
763 int ret;
764
ea191d0f 765 ret = irsd200_read_data(data, (s16 *)buf);
3db3562b
WH
766 if (ret)
767 goto end;
768
ea191d0f 769 iio_push_to_buffers_with_timestamp(indio_dev, buf,
3db3562b
WH
770 iio_get_time_ns(indio_dev));
771
772end:
773 iio_trigger_notify_done(indio_dev->trig);
774
775 return IRQ_HANDLED;
776}
777
778static int irsd200_set_trigger_state(struct iio_trigger *trig, bool state)
779{
780 struct irsd200_data *data = iio_trigger_get_drvdata(trig);
781 int ret;
782
783 ret = regmap_field_write(data->regfields[IRS_REGF_INTR_DATA], state);
784 if (ret) {
785 dev_err(data->dev, "Could not %s data interrupt source (%d)\n",
786 state ? "enable" : "disable", ret);
787 }
788
789 return ret;
790}
791
792static const struct iio_info irsd200_info = {
793 .read_raw = irsd200_read_raw,
794 .read_avail = irsd200_read_avail,
795 .write_raw = irsd200_write_raw,
796 .read_event_value = irsd200_read_event,
797 .write_event_value = irsd200_write_event,
798 .read_event_config = irsd200_read_event_config,
799 .write_event_config = irsd200_write_event_config,
800};
801
802static const struct iio_trigger_ops irsd200_trigger_ops = {
803 .set_trigger_state = irsd200_set_trigger_state,
804 .validate_device = iio_trigger_validate_own_device,
805};
806
807static const struct iio_event_spec irsd200_event_spec[] = {
808 {
809 .type = IIO_EV_TYPE_THRESH,
810 .dir = IIO_EV_DIR_RISING,
811 .mask_separate = BIT(IIO_EV_INFO_VALUE),
812 },
813 {
814 .type = IIO_EV_TYPE_THRESH,
815 .dir = IIO_EV_DIR_FALLING,
816 .mask_separate = BIT(IIO_EV_INFO_VALUE),
817 },
818 {
819 .type = IIO_EV_TYPE_THRESH,
820 .dir = IIO_EV_DIR_EITHER,
821 .mask_separate =
822 BIT(IIO_EV_INFO_RUNNING_PERIOD) |
823 BIT(IIO_EV_INFO_RUNNING_COUNT) |
824 BIT(IIO_EV_INFO_ENABLE),
825 },
826};
827
828static const struct iio_chan_spec irsd200_channels[] = {
829 {
830 .type = IIO_PROXIMITY,
831 .info_mask_separate =
832 BIT(IIO_CHAN_INFO_RAW) |
833 BIT(IIO_CHAN_INFO_SAMP_FREQ) |
834 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) |
835 BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY),
836 .info_mask_separate_available =
837 BIT(IIO_CHAN_INFO_SAMP_FREQ) |
838 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) |
839 BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY),
840 .event_spec = irsd200_event_spec,
841 .num_event_specs = ARRAY_SIZE(irsd200_event_spec),
842 .scan_type = {
843 .sign = 's',
844 .realbits = 16,
845 .storagebits = 16,
846 .endianness = IIO_CPU,
847 },
848 },
849};
850
851static int irsd200_probe(struct i2c_client *client)
852{
853 struct iio_trigger *trigger;
854 struct irsd200_data *data;
855 struct iio_dev *indio_dev;
856 size_t i;
857 int ret;
858
859 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
860 if (!indio_dev)
861 return dev_err_probe(&client->dev, -ENOMEM,
862 "Could not allocate iio device\n");
863
864 data = iio_priv(indio_dev);
865 data->dev = &client->dev;
866
867 data->regmap = devm_regmap_init_i2c(client, &irsd200_regmap_config);
868 if (IS_ERR(data->regmap))
869 return dev_err_probe(data->dev, PTR_ERR(data->regmap),
870 "Could not initialize regmap\n");
871
872 for (i = 0; i < IRS_REGF_MAX; ++i) {
873 data->regfields[i] = devm_regmap_field_alloc(
874 data->dev, data->regmap, irsd200_regfields[i]);
875 if (IS_ERR(data->regfields[i]))
876 return dev_err_probe(
877 data->dev, PTR_ERR(data->regfields[i]),
878 "Could not allocate register field %zu\n", i);
879 }
880
881 ret = devm_regulator_get_enable(data->dev, "vdd");
882 if (ret)
883 return dev_err_probe(
884 data->dev, ret,
885 "Could not get and enable regulator (%d)\n", ret);
886
887 ret = irsd200_setup(data);
888 if (ret)
889 return ret;
890
891 indio_dev->info = &irsd200_info;
892 indio_dev->name = IRS_DRV_NAME;
893 indio_dev->channels = irsd200_channels;
894 indio_dev->num_channels = ARRAY_SIZE(irsd200_channels);
895 indio_dev->modes = INDIO_DIRECT_MODE;
896
897 if (!client->irq)
898 return dev_err_probe(data->dev, -ENXIO, "No irq available\n");
899
900 ret = devm_iio_triggered_buffer_setup(data->dev, indio_dev, NULL,
901 irsd200_trigger_handler, NULL);
902 if (ret)
903 return dev_err_probe(
904 data->dev, ret,
905 "Could not setup iio triggered buffer (%d)\n", ret);
906
907 ret = devm_request_threaded_irq(data->dev, client->irq, NULL,
908 irsd200_irq_thread,
909 IRQF_TRIGGER_RISING | IRQF_ONESHOT,
910 NULL, indio_dev);
911 if (ret)
912 return dev_err_probe(data->dev, ret,
913 "Could not request irq (%d)\n", ret);
914
915 trigger = devm_iio_trigger_alloc(data->dev, "%s-dev%d", indio_dev->name,
916 iio_device_id(indio_dev));
917 if (!trigger)
918 return dev_err_probe(data->dev, -ENOMEM,
919 "Could not allocate iio trigger\n");
920
921 trigger->ops = &irsd200_trigger_ops;
922 iio_trigger_set_drvdata(trigger, data);
923
924 ret = devm_iio_trigger_register(data->dev, trigger);
925 if (ret)
926 return dev_err_probe(data->dev, ret,
927 "Could not register iio trigger (%d)\n",
928 ret);
929
930 ret = devm_iio_device_register(data->dev, indio_dev);
931 if (ret)
932 return dev_err_probe(data->dev, ret,
933 "Could not register iio device (%d)\n",
934 ret);
935
936 return 0;
937}
938
939static const struct of_device_id irsd200_of_match[] = {
940 {
941 .compatible = "murata,irsd200",
942 },
943 {}
944};
945MODULE_DEVICE_TABLE(of, irsd200_of_match);
946
947static struct i2c_driver irsd200_driver = {
948 .driver = {
949 .name = IRS_DRV_NAME,
950 .of_match_table = irsd200_of_match,
951 },
952 .probe = irsd200_probe,
953};
954module_i2c_driver(irsd200_driver);
955
956MODULE_AUTHOR("Waqar Hameed <waqar.hameed@axis.com>");
957MODULE_DESCRIPTION("Murata IRS-D200 PIR sensor driver");
958MODULE_LICENSE("GPL");