]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - drivers/iommu/arm-smmu.c
iommu/arm-smmu: Remove broken big-endian check
[thirdparty/kernel/stable.git] / drivers / iommu / arm-smmu.c
CommitLineData
45ae7cff
WD
1/*
2 * IOMMU API for ARM architected SMMU implementations.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
16 *
17 * Copyright (C) 2013 ARM Limited
18 *
19 * Author: Will Deacon <will.deacon@arm.com>
20 *
21 * This driver currently supports:
22 * - SMMUv1 and v2 implementations
23 * - Stream-matching and stream-indexing
24 * - v7/v8 long-descriptor format
25 * - Non-secure access to the SMMU
26 * - 4k and 64k pages, with contiguous pte hints.
27 * - Up to 39-bit addressing
28 * - Context fault reporting
29 */
30
31#define pr_fmt(fmt) "arm-smmu: " fmt
32
33#include <linux/delay.h>
34#include <linux/dma-mapping.h>
35#include <linux/err.h>
36#include <linux/interrupt.h>
37#include <linux/io.h>
38#include <linux/iommu.h>
39#include <linux/mm.h>
40#include <linux/module.h>
41#include <linux/of.h>
42#include <linux/platform_device.h>
43#include <linux/slab.h>
44#include <linux/spinlock.h>
45
46#include <linux/amba/bus.h>
47
48#include <asm/pgalloc.h>
49
50/* Maximum number of stream IDs assigned to a single device */
51#define MAX_MASTER_STREAMIDS 8
52
53/* Maximum number of context banks per SMMU */
54#define ARM_SMMU_MAX_CBS 128
55
56/* Maximum number of mapping groups per SMMU */
57#define ARM_SMMU_MAX_SMRS 128
58
59/* Number of VMIDs per SMMU */
60#define ARM_SMMU_NUM_VMIDS 256
61
62/* SMMU global address space */
63#define ARM_SMMU_GR0(smmu) ((smmu)->base)
64#define ARM_SMMU_GR1(smmu) ((smmu)->base + (smmu)->pagesize)
65
66/* Page table bits */
67#define ARM_SMMU_PTE_PAGE (((pteval_t)3) << 0)
68#define ARM_SMMU_PTE_CONT (((pteval_t)1) << 52)
69#define ARM_SMMU_PTE_AF (((pteval_t)1) << 10)
70#define ARM_SMMU_PTE_SH_NS (((pteval_t)0) << 8)
71#define ARM_SMMU_PTE_SH_OS (((pteval_t)2) << 8)
72#define ARM_SMMU_PTE_SH_IS (((pteval_t)3) << 8)
73
74#if PAGE_SIZE == SZ_4K
75#define ARM_SMMU_PTE_CONT_ENTRIES 16
76#elif PAGE_SIZE == SZ_64K
77#define ARM_SMMU_PTE_CONT_ENTRIES 32
78#else
79#define ARM_SMMU_PTE_CONT_ENTRIES 1
80#endif
81
82#define ARM_SMMU_PTE_CONT_SIZE (PAGE_SIZE * ARM_SMMU_PTE_CONT_ENTRIES)
83#define ARM_SMMU_PTE_CONT_MASK (~(ARM_SMMU_PTE_CONT_SIZE - 1))
84#define ARM_SMMU_PTE_HWTABLE_SIZE (PTRS_PER_PTE * sizeof(pte_t))
85
86/* Stage-1 PTE */
87#define ARM_SMMU_PTE_AP_UNPRIV (((pteval_t)1) << 6)
88#define ARM_SMMU_PTE_AP_RDONLY (((pteval_t)2) << 6)
89#define ARM_SMMU_PTE_ATTRINDX_SHIFT 2
90
91/* Stage-2 PTE */
92#define ARM_SMMU_PTE_HAP_FAULT (((pteval_t)0) << 6)
93#define ARM_SMMU_PTE_HAP_READ (((pteval_t)1) << 6)
94#define ARM_SMMU_PTE_HAP_WRITE (((pteval_t)2) << 6)
95#define ARM_SMMU_PTE_MEMATTR_OIWB (((pteval_t)0xf) << 2)
96#define ARM_SMMU_PTE_MEMATTR_NC (((pteval_t)0x5) << 2)
97#define ARM_SMMU_PTE_MEMATTR_DEV (((pteval_t)0x1) << 2)
98
99/* Configuration registers */
100#define ARM_SMMU_GR0_sCR0 0x0
101#define sCR0_CLIENTPD (1 << 0)
102#define sCR0_GFRE (1 << 1)
103#define sCR0_GFIE (1 << 2)
104#define sCR0_GCFGFRE (1 << 4)
105#define sCR0_GCFGFIE (1 << 5)
106#define sCR0_USFCFG (1 << 10)
107#define sCR0_VMIDPNE (1 << 11)
108#define sCR0_PTM (1 << 12)
109#define sCR0_FB (1 << 13)
110#define sCR0_BSU_SHIFT 14
111#define sCR0_BSU_MASK 0x3
112
113/* Identification registers */
114#define ARM_SMMU_GR0_ID0 0x20
115#define ARM_SMMU_GR0_ID1 0x24
116#define ARM_SMMU_GR0_ID2 0x28
117#define ARM_SMMU_GR0_ID3 0x2c
118#define ARM_SMMU_GR0_ID4 0x30
119#define ARM_SMMU_GR0_ID5 0x34
120#define ARM_SMMU_GR0_ID6 0x38
121#define ARM_SMMU_GR0_ID7 0x3c
122#define ARM_SMMU_GR0_sGFSR 0x48
123#define ARM_SMMU_GR0_sGFSYNR0 0x50
124#define ARM_SMMU_GR0_sGFSYNR1 0x54
125#define ARM_SMMU_GR0_sGFSYNR2 0x58
126#define ARM_SMMU_GR0_PIDR0 0xfe0
127#define ARM_SMMU_GR0_PIDR1 0xfe4
128#define ARM_SMMU_GR0_PIDR2 0xfe8
129
130#define ID0_S1TS (1 << 30)
131#define ID0_S2TS (1 << 29)
132#define ID0_NTS (1 << 28)
133#define ID0_SMS (1 << 27)
134#define ID0_PTFS_SHIFT 24
135#define ID0_PTFS_MASK 0x2
136#define ID0_PTFS_V8_ONLY 0x2
137#define ID0_CTTW (1 << 14)
138#define ID0_NUMIRPT_SHIFT 16
139#define ID0_NUMIRPT_MASK 0xff
140#define ID0_NUMSMRG_SHIFT 0
141#define ID0_NUMSMRG_MASK 0xff
142
143#define ID1_PAGESIZE (1 << 31)
144#define ID1_NUMPAGENDXB_SHIFT 28
145#define ID1_NUMPAGENDXB_MASK 7
146#define ID1_NUMS2CB_SHIFT 16
147#define ID1_NUMS2CB_MASK 0xff
148#define ID1_NUMCB_SHIFT 0
149#define ID1_NUMCB_MASK 0xff
150
151#define ID2_OAS_SHIFT 4
152#define ID2_OAS_MASK 0xf
153#define ID2_IAS_SHIFT 0
154#define ID2_IAS_MASK 0xf
155#define ID2_UBS_SHIFT 8
156#define ID2_UBS_MASK 0xf
157#define ID2_PTFS_4K (1 << 12)
158#define ID2_PTFS_16K (1 << 13)
159#define ID2_PTFS_64K (1 << 14)
160
161#define PIDR2_ARCH_SHIFT 4
162#define PIDR2_ARCH_MASK 0xf
163
164/* Global TLB invalidation */
165#define ARM_SMMU_GR0_STLBIALL 0x60
166#define ARM_SMMU_GR0_TLBIVMID 0x64
167#define ARM_SMMU_GR0_TLBIALLNSNH 0x68
168#define ARM_SMMU_GR0_TLBIALLH 0x6c
169#define ARM_SMMU_GR0_sTLBGSYNC 0x70
170#define ARM_SMMU_GR0_sTLBGSTATUS 0x74
171#define sTLBGSTATUS_GSACTIVE (1 << 0)
172#define TLB_LOOP_TIMEOUT 1000000 /* 1s! */
173
174/* Stream mapping registers */
175#define ARM_SMMU_GR0_SMR(n) (0x800 + ((n) << 2))
176#define SMR_VALID (1 << 31)
177#define SMR_MASK_SHIFT 16
178#define SMR_MASK_MASK 0x7fff
179#define SMR_ID_SHIFT 0
180#define SMR_ID_MASK 0x7fff
181
182#define ARM_SMMU_GR0_S2CR(n) (0xc00 + ((n) << 2))
183#define S2CR_CBNDX_SHIFT 0
184#define S2CR_CBNDX_MASK 0xff
185#define S2CR_TYPE_SHIFT 16
186#define S2CR_TYPE_MASK 0x3
187#define S2CR_TYPE_TRANS (0 << S2CR_TYPE_SHIFT)
188#define S2CR_TYPE_BYPASS (1 << S2CR_TYPE_SHIFT)
189#define S2CR_TYPE_FAULT (2 << S2CR_TYPE_SHIFT)
190
191/* Context bank attribute registers */
192#define ARM_SMMU_GR1_CBAR(n) (0x0 + ((n) << 2))
193#define CBAR_VMID_SHIFT 0
194#define CBAR_VMID_MASK 0xff
195#define CBAR_S1_MEMATTR_SHIFT 12
196#define CBAR_S1_MEMATTR_MASK 0xf
197#define CBAR_S1_MEMATTR_WB 0xf
198#define CBAR_TYPE_SHIFT 16
199#define CBAR_TYPE_MASK 0x3
200#define CBAR_TYPE_S2_TRANS (0 << CBAR_TYPE_SHIFT)
201#define CBAR_TYPE_S1_TRANS_S2_BYPASS (1 << CBAR_TYPE_SHIFT)
202#define CBAR_TYPE_S1_TRANS_S2_FAULT (2 << CBAR_TYPE_SHIFT)
203#define CBAR_TYPE_S1_TRANS_S2_TRANS (3 << CBAR_TYPE_SHIFT)
204#define CBAR_IRPTNDX_SHIFT 24
205#define CBAR_IRPTNDX_MASK 0xff
206
207#define ARM_SMMU_GR1_CBA2R(n) (0x800 + ((n) << 2))
208#define CBA2R_RW64_32BIT (0 << 0)
209#define CBA2R_RW64_64BIT (1 << 0)
210
211/* Translation context bank */
212#define ARM_SMMU_CB_BASE(smmu) ((smmu)->base + ((smmu)->size >> 1))
213#define ARM_SMMU_CB(smmu, n) ((n) * (smmu)->pagesize)
214
215#define ARM_SMMU_CB_SCTLR 0x0
216#define ARM_SMMU_CB_RESUME 0x8
217#define ARM_SMMU_CB_TTBCR2 0x10
218#define ARM_SMMU_CB_TTBR0_LO 0x20
219#define ARM_SMMU_CB_TTBR0_HI 0x24
220#define ARM_SMMU_CB_TTBCR 0x30
221#define ARM_SMMU_CB_S1_MAIR0 0x38
222#define ARM_SMMU_CB_FSR 0x58
223#define ARM_SMMU_CB_FAR_LO 0x60
224#define ARM_SMMU_CB_FAR_HI 0x64
225#define ARM_SMMU_CB_FSYNR0 0x68
226
227#define SCTLR_S1_ASIDPNE (1 << 12)
228#define SCTLR_CFCFG (1 << 7)
229#define SCTLR_CFIE (1 << 6)
230#define SCTLR_CFRE (1 << 5)
231#define SCTLR_E (1 << 4)
232#define SCTLR_AFE (1 << 2)
233#define SCTLR_TRE (1 << 1)
234#define SCTLR_M (1 << 0)
235#define SCTLR_EAE_SBOP (SCTLR_AFE | SCTLR_TRE)
236
237#define RESUME_RETRY (0 << 0)
238#define RESUME_TERMINATE (1 << 0)
239
240#define TTBCR_EAE (1 << 31)
241
242#define TTBCR_PASIZE_SHIFT 16
243#define TTBCR_PASIZE_MASK 0x7
244
245#define TTBCR_TG0_4K (0 << 14)
246#define TTBCR_TG0_64K (1 << 14)
247
248#define TTBCR_SH0_SHIFT 12
249#define TTBCR_SH0_MASK 0x3
250#define TTBCR_SH_NS 0
251#define TTBCR_SH_OS 2
252#define TTBCR_SH_IS 3
253
254#define TTBCR_ORGN0_SHIFT 10
255#define TTBCR_IRGN0_SHIFT 8
256#define TTBCR_RGN_MASK 0x3
257#define TTBCR_RGN_NC 0
258#define TTBCR_RGN_WBWA 1
259#define TTBCR_RGN_WT 2
260#define TTBCR_RGN_WB 3
261
262#define TTBCR_SL0_SHIFT 6
263#define TTBCR_SL0_MASK 0x3
264#define TTBCR_SL0_LVL_2 0
265#define TTBCR_SL0_LVL_1 1
266
267#define TTBCR_T1SZ_SHIFT 16
268#define TTBCR_T0SZ_SHIFT 0
269#define TTBCR_SZ_MASK 0xf
270
271#define TTBCR2_SEP_SHIFT 15
272#define TTBCR2_SEP_MASK 0x7
273
274#define TTBCR2_PASIZE_SHIFT 0
275#define TTBCR2_PASIZE_MASK 0x7
276
277/* Common definitions for PASize and SEP fields */
278#define TTBCR2_ADDR_32 0
279#define TTBCR2_ADDR_36 1
280#define TTBCR2_ADDR_40 2
281#define TTBCR2_ADDR_42 3
282#define TTBCR2_ADDR_44 4
283#define TTBCR2_ADDR_48 5
284
285#define MAIR_ATTR_SHIFT(n) ((n) << 3)
286#define MAIR_ATTR_MASK 0xff
287#define MAIR_ATTR_DEVICE 0x04
288#define MAIR_ATTR_NC 0x44
289#define MAIR_ATTR_WBRWA 0xff
290#define MAIR_ATTR_IDX_NC 0
291#define MAIR_ATTR_IDX_CACHE 1
292#define MAIR_ATTR_IDX_DEV 2
293
294#define FSR_MULTI (1 << 31)
295#define FSR_SS (1 << 30)
296#define FSR_UUT (1 << 8)
297#define FSR_ASF (1 << 7)
298#define FSR_TLBLKF (1 << 6)
299#define FSR_TLBMCF (1 << 5)
300#define FSR_EF (1 << 4)
301#define FSR_PF (1 << 3)
302#define FSR_AFF (1 << 2)
303#define FSR_TF (1 << 1)
304
305#define FSR_IGN (FSR_AFF | FSR_ASF | FSR_TLBMCF | \
306 FSR_TLBLKF)
307#define FSR_FAULT (FSR_MULTI | FSR_SS | FSR_UUT | \
308 FSR_EF | FSR_PF | FSR_TF)
309
310#define FSYNR0_WNR (1 << 4)
311
312struct arm_smmu_smr {
313 u8 idx;
314 u16 mask;
315 u16 id;
316};
317
318struct arm_smmu_master {
319 struct device_node *of_node;
320
321 /*
322 * The following is specific to the master's position in the
323 * SMMU chain.
324 */
325 struct rb_node node;
326 int num_streamids;
327 u16 streamids[MAX_MASTER_STREAMIDS];
328
329 /*
330 * We only need to allocate these on the root SMMU, as we
331 * configure unmatched streams to bypass translation.
332 */
333 struct arm_smmu_smr *smrs;
334};
335
336struct arm_smmu_device {
337 struct device *dev;
338 struct device_node *parent_of_node;
339
340 void __iomem *base;
341 unsigned long size;
342 unsigned long pagesize;
343
344#define ARM_SMMU_FEAT_COHERENT_WALK (1 << 0)
345#define ARM_SMMU_FEAT_STREAM_MATCH (1 << 1)
346#define ARM_SMMU_FEAT_TRANS_S1 (1 << 2)
347#define ARM_SMMU_FEAT_TRANS_S2 (1 << 3)
348#define ARM_SMMU_FEAT_TRANS_NESTED (1 << 4)
349 u32 features;
350 int version;
351
352 u32 num_context_banks;
353 u32 num_s2_context_banks;
354 DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
355 atomic_t irptndx;
356
357 u32 num_mapping_groups;
358 DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
359
360 unsigned long input_size;
361 unsigned long s1_output_size;
362 unsigned long s2_output_size;
363
364 u32 num_global_irqs;
365 u32 num_context_irqs;
366 unsigned int *irqs;
367
368 DECLARE_BITMAP(vmid_map, ARM_SMMU_NUM_VMIDS);
369
370 struct list_head list;
371 struct rb_root masters;
372};
373
374struct arm_smmu_cfg {
375 struct arm_smmu_device *smmu;
376 u8 vmid;
377 u8 cbndx;
378 u8 irptndx;
379 u32 cbar;
380 pgd_t *pgd;
381};
382
383struct arm_smmu_domain {
384 /*
385 * A domain can span across multiple, chained SMMUs and requires
386 * all devices within the domain to follow the same translation
387 * path.
388 */
389 struct arm_smmu_device *leaf_smmu;
390 struct arm_smmu_cfg root_cfg;
391 phys_addr_t output_mask;
392
393 spinlock_t lock;
394};
395
396static DEFINE_SPINLOCK(arm_smmu_devices_lock);
397static LIST_HEAD(arm_smmu_devices);
398
399static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
400 struct device_node *dev_node)
401{
402 struct rb_node *node = smmu->masters.rb_node;
403
404 while (node) {
405 struct arm_smmu_master *master;
406 master = container_of(node, struct arm_smmu_master, node);
407
408 if (dev_node < master->of_node)
409 node = node->rb_left;
410 else if (dev_node > master->of_node)
411 node = node->rb_right;
412 else
413 return master;
414 }
415
416 return NULL;
417}
418
419static int insert_smmu_master(struct arm_smmu_device *smmu,
420 struct arm_smmu_master *master)
421{
422 struct rb_node **new, *parent;
423
424 new = &smmu->masters.rb_node;
425 parent = NULL;
426 while (*new) {
427 struct arm_smmu_master *this;
428 this = container_of(*new, struct arm_smmu_master, node);
429
430 parent = *new;
431 if (master->of_node < this->of_node)
432 new = &((*new)->rb_left);
433 else if (master->of_node > this->of_node)
434 new = &((*new)->rb_right);
435 else
436 return -EEXIST;
437 }
438
439 rb_link_node(&master->node, parent, new);
440 rb_insert_color(&master->node, &smmu->masters);
441 return 0;
442}
443
444static int register_smmu_master(struct arm_smmu_device *smmu,
445 struct device *dev,
446 struct of_phandle_args *masterspec)
447{
448 int i;
449 struct arm_smmu_master *master;
450
451 master = find_smmu_master(smmu, masterspec->np);
452 if (master) {
453 dev_err(dev,
454 "rejecting multiple registrations for master device %s\n",
455 masterspec->np->name);
456 return -EBUSY;
457 }
458
459 if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
460 dev_err(dev,
461 "reached maximum number (%d) of stream IDs for master device %s\n",
462 MAX_MASTER_STREAMIDS, masterspec->np->name);
463 return -ENOSPC;
464 }
465
466 master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
467 if (!master)
468 return -ENOMEM;
469
470 master->of_node = masterspec->np;
471 master->num_streamids = masterspec->args_count;
472
473 for (i = 0; i < master->num_streamids; ++i)
474 master->streamids[i] = masterspec->args[i];
475
476 return insert_smmu_master(smmu, master);
477}
478
479static struct arm_smmu_device *find_parent_smmu(struct arm_smmu_device *smmu)
480{
481 struct arm_smmu_device *parent;
482
483 if (!smmu->parent_of_node)
484 return NULL;
485
486 spin_lock(&arm_smmu_devices_lock);
487 list_for_each_entry(parent, &arm_smmu_devices, list)
488 if (parent->dev->of_node == smmu->parent_of_node)
489 goto out_unlock;
490
491 parent = NULL;
492 dev_warn(smmu->dev,
493 "Failed to find SMMU parent despite parent in DT\n");
494out_unlock:
495 spin_unlock(&arm_smmu_devices_lock);
496 return parent;
497}
498
499static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
500{
501 int idx;
502
503 do {
504 idx = find_next_zero_bit(map, end, start);
505 if (idx == end)
506 return -ENOSPC;
507 } while (test_and_set_bit(idx, map));
508
509 return idx;
510}
511
512static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
513{
514 clear_bit(idx, map);
515}
516
517/* Wait for any pending TLB invalidations to complete */
518static void arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
519{
520 int count = 0;
521 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
522
523 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
524 while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
525 & sTLBGSTATUS_GSACTIVE) {
526 cpu_relax();
527 if (++count == TLB_LOOP_TIMEOUT) {
528 dev_err_ratelimited(smmu->dev,
529 "TLB sync timed out -- SMMU may be deadlocked\n");
530 return;
531 }
532 udelay(1);
533 }
534}
535
536static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
537{
538 int flags, ret;
539 u32 fsr, far, fsynr, resume;
540 unsigned long iova;
541 struct iommu_domain *domain = dev;
542 struct arm_smmu_domain *smmu_domain = domain->priv;
543 struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
544 struct arm_smmu_device *smmu = root_cfg->smmu;
545 void __iomem *cb_base;
546
547 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, root_cfg->cbndx);
548 fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
549
550 if (!(fsr & FSR_FAULT))
551 return IRQ_NONE;
552
553 if (fsr & FSR_IGN)
554 dev_err_ratelimited(smmu->dev,
555 "Unexpected context fault (fsr 0x%u)\n",
556 fsr);
557
558 fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
559 flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
560
561 far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
562 iova = far;
563#ifdef CONFIG_64BIT
564 far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
565 iova |= ((unsigned long)far << 32);
566#endif
567
568 if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
569 ret = IRQ_HANDLED;
570 resume = RESUME_RETRY;
571 } else {
572 ret = IRQ_NONE;
573 resume = RESUME_TERMINATE;
574 }
575
576 /* Clear the faulting FSR */
577 writel(fsr, cb_base + ARM_SMMU_CB_FSR);
578
579 /* Retry or terminate any stalled transactions */
580 if (fsr & FSR_SS)
581 writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);
582
583 return ret;
584}
585
586static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
587{
588 u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
589 struct arm_smmu_device *smmu = dev;
590 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
591
592 gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
593 gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
594 gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
595 gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
596
597 dev_err_ratelimited(smmu->dev,
598 "Unexpected global fault, this could be serious\n");
599 dev_err_ratelimited(smmu->dev,
600 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
601 gfsr, gfsynr0, gfsynr1, gfsynr2);
602
603 writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
604 return IRQ_NONE;
605}
606
607static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain)
608{
609 u32 reg;
610 bool stage1;
611 struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
612 struct arm_smmu_device *smmu = root_cfg->smmu;
613 void __iomem *cb_base, *gr0_base, *gr1_base;
614
615 gr0_base = ARM_SMMU_GR0(smmu);
616 gr1_base = ARM_SMMU_GR1(smmu);
617 stage1 = root_cfg->cbar != CBAR_TYPE_S2_TRANS;
618 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, root_cfg->cbndx);
619
620 /* CBAR */
621 reg = root_cfg->cbar |
622 (root_cfg->vmid << CBAR_VMID_SHIFT);
623 if (smmu->version == 1)
624 reg |= root_cfg->irptndx << CBAR_IRPTNDX_SHIFT;
625
626 /* Use the weakest memory type, so it is overridden by the pte */
627 if (stage1)
628 reg |= (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
629 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(root_cfg->cbndx));
630
631 if (smmu->version > 1) {
632 /* CBA2R */
633#ifdef CONFIG_64BIT
634 reg = CBA2R_RW64_64BIT;
635#else
636 reg = CBA2R_RW64_32BIT;
637#endif
638 writel_relaxed(reg,
639 gr1_base + ARM_SMMU_GR1_CBA2R(root_cfg->cbndx));
640
641 /* TTBCR2 */
642 switch (smmu->input_size) {
643 case 32:
644 reg = (TTBCR2_ADDR_32 << TTBCR2_SEP_SHIFT);
645 break;
646 case 36:
647 reg = (TTBCR2_ADDR_36 << TTBCR2_SEP_SHIFT);
648 break;
649 case 39:
650 reg = (TTBCR2_ADDR_40 << TTBCR2_SEP_SHIFT);
651 break;
652 case 42:
653 reg = (TTBCR2_ADDR_42 << TTBCR2_SEP_SHIFT);
654 break;
655 case 44:
656 reg = (TTBCR2_ADDR_44 << TTBCR2_SEP_SHIFT);
657 break;
658 case 48:
659 reg = (TTBCR2_ADDR_48 << TTBCR2_SEP_SHIFT);
660 break;
661 }
662
663 switch (smmu->s1_output_size) {
664 case 32:
665 reg |= (TTBCR2_ADDR_32 << TTBCR2_PASIZE_SHIFT);
666 break;
667 case 36:
668 reg |= (TTBCR2_ADDR_36 << TTBCR2_PASIZE_SHIFT);
669 break;
670 case 39:
671 reg |= (TTBCR2_ADDR_40 << TTBCR2_PASIZE_SHIFT);
672 break;
673 case 42:
674 reg |= (TTBCR2_ADDR_42 << TTBCR2_PASIZE_SHIFT);
675 break;
676 case 44:
677 reg |= (TTBCR2_ADDR_44 << TTBCR2_PASIZE_SHIFT);
678 break;
679 case 48:
680 reg |= (TTBCR2_ADDR_48 << TTBCR2_PASIZE_SHIFT);
681 break;
682 }
683
684 if (stage1)
685 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
686 }
687
688 /* TTBR0 */
689 reg = __pa(root_cfg->pgd);
45ae7cff
WD
690 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
691 reg = (phys_addr_t)__pa(root_cfg->pgd) >> 32;
692 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
45ae7cff
WD
693
694 /*
695 * TTBCR
696 * We use long descriptor, with inner-shareable WBWA tables in TTBR0.
697 */
698 if (smmu->version > 1) {
699 if (PAGE_SIZE == SZ_4K)
700 reg = TTBCR_TG0_4K;
701 else
702 reg = TTBCR_TG0_64K;
703
704 if (!stage1) {
705 switch (smmu->s2_output_size) {
706 case 32:
707 reg |= (TTBCR2_ADDR_32 << TTBCR_PASIZE_SHIFT);
708 break;
709 case 36:
710 reg |= (TTBCR2_ADDR_36 << TTBCR_PASIZE_SHIFT);
711 break;
712 case 40:
713 reg |= (TTBCR2_ADDR_40 << TTBCR_PASIZE_SHIFT);
714 break;
715 case 42:
716 reg |= (TTBCR2_ADDR_42 << TTBCR_PASIZE_SHIFT);
717 break;
718 case 44:
719 reg |= (TTBCR2_ADDR_44 << TTBCR_PASIZE_SHIFT);
720 break;
721 case 48:
722 reg |= (TTBCR2_ADDR_48 << TTBCR_PASIZE_SHIFT);
723 break;
724 }
725 } else {
726 reg |= (64 - smmu->s1_output_size) << TTBCR_T0SZ_SHIFT;
727 }
728 } else {
729 reg = 0;
730 }
731
732 reg |= TTBCR_EAE |
733 (TTBCR_SH_IS << TTBCR_SH0_SHIFT) |
734 (TTBCR_RGN_WBWA << TTBCR_ORGN0_SHIFT) |
735 (TTBCR_RGN_WBWA << TTBCR_IRGN0_SHIFT) |
736 (TTBCR_SL0_LVL_1 << TTBCR_SL0_SHIFT);
737 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
738
739 /* MAIR0 (stage-1 only) */
740 if (stage1) {
741 reg = (MAIR_ATTR_NC << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_NC)) |
742 (MAIR_ATTR_WBRWA << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_CACHE)) |
743 (MAIR_ATTR_DEVICE << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_DEV));
744 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
745 }
746
747 /* Nuke the TLB */
748 writel_relaxed(root_cfg->vmid, gr0_base + ARM_SMMU_GR0_TLBIVMID);
749 arm_smmu_tlb_sync(smmu);
750
751 /* SCTLR */
752 reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
753 if (stage1)
754 reg |= SCTLR_S1_ASIDPNE;
755#ifdef __BIG_ENDIAN
756 reg |= SCTLR_E;
757#endif
758 writel(reg, cb_base + ARM_SMMU_CB_SCTLR);
759}
760
761static int arm_smmu_init_domain_context(struct iommu_domain *domain,
762 struct device *dev)
763{
764 int irq, ret, start;
765 struct arm_smmu_domain *smmu_domain = domain->priv;
766 struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
767 struct arm_smmu_device *smmu, *parent;
768
769 /*
770 * Walk the SMMU chain to find the root device for this chain.
771 * We assume that no masters have translations which terminate
772 * early, and therefore check that the root SMMU does indeed have
773 * a StreamID for the master in question.
774 */
775 parent = dev->archdata.iommu;
776 smmu_domain->output_mask = -1;
777 do {
778 smmu = parent;
779 smmu_domain->output_mask &= (1ULL << smmu->s2_output_size) - 1;
780 } while ((parent = find_parent_smmu(smmu)));
781
782 if (!find_smmu_master(smmu, dev->of_node)) {
783 dev_err(dev, "unable to find root SMMU for device\n");
784 return -ENODEV;
785 }
786
787 ret = __arm_smmu_alloc_bitmap(smmu->vmid_map, 0, ARM_SMMU_NUM_VMIDS);
788 if (IS_ERR_VALUE(ret))
789 return ret;
790
791 root_cfg->vmid = ret;
792 if (smmu->features & ARM_SMMU_FEAT_TRANS_NESTED) {
793 /*
794 * We will likely want to change this if/when KVM gets
795 * involved.
796 */
797 root_cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
798 start = smmu->num_s2_context_banks;
799 } else if (smmu->features & ARM_SMMU_FEAT_TRANS_S2) {
800 root_cfg->cbar = CBAR_TYPE_S2_TRANS;
801 start = 0;
802 } else {
803 root_cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
804 start = smmu->num_s2_context_banks;
805 }
806
807 ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
808 smmu->num_context_banks);
809 if (IS_ERR_VALUE(ret))
810 goto out_free_vmid;
811
812 root_cfg->cbndx = ret;
813
814 if (smmu->version == 1) {
815 root_cfg->irptndx = atomic_inc_return(&smmu->irptndx);
816 root_cfg->irptndx %= smmu->num_context_irqs;
817 } else {
818 root_cfg->irptndx = root_cfg->cbndx;
819 }
820
821 irq = smmu->irqs[smmu->num_global_irqs + root_cfg->irptndx];
822 ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
823 "arm-smmu-context-fault", domain);
824 if (IS_ERR_VALUE(ret)) {
825 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
826 root_cfg->irptndx, irq);
827 root_cfg->irptndx = -1;
828 goto out_free_context;
829 }
830
831 root_cfg->smmu = smmu;
832 arm_smmu_init_context_bank(smmu_domain);
833 return ret;
834
835out_free_context:
836 __arm_smmu_free_bitmap(smmu->context_map, root_cfg->cbndx);
837out_free_vmid:
838 __arm_smmu_free_bitmap(smmu->vmid_map, root_cfg->vmid);
839 return ret;
840}
841
842static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
843{
844 struct arm_smmu_domain *smmu_domain = domain->priv;
845 struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
846 struct arm_smmu_device *smmu = root_cfg->smmu;
847 int irq;
848
849 if (!smmu)
850 return;
851
852 if (root_cfg->irptndx != -1) {
853 irq = smmu->irqs[smmu->num_global_irqs + root_cfg->irptndx];
854 free_irq(irq, domain);
855 }
856
857 __arm_smmu_free_bitmap(smmu->vmid_map, root_cfg->vmid);
858 __arm_smmu_free_bitmap(smmu->context_map, root_cfg->cbndx);
859}
860
861static int arm_smmu_domain_init(struct iommu_domain *domain)
862{
863 struct arm_smmu_domain *smmu_domain;
864 pgd_t *pgd;
865
866 /*
867 * Allocate the domain and initialise some of its data structures.
868 * We can't really do anything meaningful until we've added a
869 * master.
870 */
871 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
872 if (!smmu_domain)
873 return -ENOMEM;
874
875 pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
876 if (!pgd)
877 goto out_free_domain;
878 smmu_domain->root_cfg.pgd = pgd;
879
880 spin_lock_init(&smmu_domain->lock);
881 domain->priv = smmu_domain;
882 return 0;
883
884out_free_domain:
885 kfree(smmu_domain);
886 return -ENOMEM;
887}
888
889static void arm_smmu_free_ptes(pmd_t *pmd)
890{
891 pgtable_t table = pmd_pgtable(*pmd);
892 pgtable_page_dtor(table);
893 __free_page(table);
894}
895
896static void arm_smmu_free_pmds(pud_t *pud)
897{
898 int i;
899 pmd_t *pmd, *pmd_base = pmd_offset(pud, 0);
900
901 pmd = pmd_base;
902 for (i = 0; i < PTRS_PER_PMD; ++i) {
903 if (pmd_none(*pmd))
904 continue;
905
906 arm_smmu_free_ptes(pmd);
907 pmd++;
908 }
909
910 pmd_free(NULL, pmd_base);
911}
912
913static void arm_smmu_free_puds(pgd_t *pgd)
914{
915 int i;
916 pud_t *pud, *pud_base = pud_offset(pgd, 0);
917
918 pud = pud_base;
919 for (i = 0; i < PTRS_PER_PUD; ++i) {
920 if (pud_none(*pud))
921 continue;
922
923 arm_smmu_free_pmds(pud);
924 pud++;
925 }
926
927 pud_free(NULL, pud_base);
928}
929
930static void arm_smmu_free_pgtables(struct arm_smmu_domain *smmu_domain)
931{
932 int i;
933 struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
934 pgd_t *pgd, *pgd_base = root_cfg->pgd;
935
936 /*
937 * Recursively free the page tables for this domain. We don't
938 * care about speculative TLB filling, because the TLB will be
939 * nuked next time this context bank is re-allocated and no devices
940 * currently map to these tables.
941 */
942 pgd = pgd_base;
943 for (i = 0; i < PTRS_PER_PGD; ++i) {
944 if (pgd_none(*pgd))
945 continue;
946 arm_smmu_free_puds(pgd);
947 pgd++;
948 }
949
950 kfree(pgd_base);
951}
952
953static void arm_smmu_domain_destroy(struct iommu_domain *domain)
954{
955 struct arm_smmu_domain *smmu_domain = domain->priv;
956 arm_smmu_destroy_domain_context(domain);
957 arm_smmu_free_pgtables(smmu_domain);
958 kfree(smmu_domain);
959}
960
961static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
962 struct arm_smmu_master *master)
963{
964 int i;
965 struct arm_smmu_smr *smrs;
966 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
967
968 if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
969 return 0;
970
971 if (master->smrs)
972 return -EEXIST;
973
974 smrs = kmalloc(sizeof(*smrs) * master->num_streamids, GFP_KERNEL);
975 if (!smrs) {
976 dev_err(smmu->dev, "failed to allocate %d SMRs for master %s\n",
977 master->num_streamids, master->of_node->name);
978 return -ENOMEM;
979 }
980
981 /* Allocate the SMRs on the root SMMU */
982 for (i = 0; i < master->num_streamids; ++i) {
983 int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
984 smmu->num_mapping_groups);
985 if (IS_ERR_VALUE(idx)) {
986 dev_err(smmu->dev, "failed to allocate free SMR\n");
987 goto err_free_smrs;
988 }
989
990 smrs[i] = (struct arm_smmu_smr) {
991 .idx = idx,
992 .mask = 0, /* We don't currently share SMRs */
993 .id = master->streamids[i],
994 };
995 }
996
997 /* It worked! Now, poke the actual hardware */
998 for (i = 0; i < master->num_streamids; ++i) {
999 u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
1000 smrs[i].mask << SMR_MASK_SHIFT;
1001 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
1002 }
1003
1004 master->smrs = smrs;
1005 return 0;
1006
1007err_free_smrs:
1008 while (--i >= 0)
1009 __arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
1010 kfree(smrs);
1011 return -ENOSPC;
1012}
1013
1014static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1015 struct arm_smmu_master *master)
1016{
1017 int i;
1018 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1019 struct arm_smmu_smr *smrs = master->smrs;
1020
1021 /* Invalidate the SMRs before freeing back to the allocator */
1022 for (i = 0; i < master->num_streamids; ++i) {
1023 u8 idx = smrs[i].idx;
1024 writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
1025 __arm_smmu_free_bitmap(smmu->smr_map, idx);
1026 }
1027
1028 master->smrs = NULL;
1029 kfree(smrs);
1030}
1031
1032static void arm_smmu_bypass_stream_mapping(struct arm_smmu_device *smmu,
1033 struct arm_smmu_master *master)
1034{
1035 int i;
1036 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1037
1038 for (i = 0; i < master->num_streamids; ++i) {
1039 u16 sid = master->streamids[i];
1040 writel_relaxed(S2CR_TYPE_BYPASS,
1041 gr0_base + ARM_SMMU_GR0_S2CR(sid));
1042 }
1043}
1044
1045static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1046 struct arm_smmu_master *master)
1047{
1048 int i, ret;
1049 struct arm_smmu_device *parent, *smmu = smmu_domain->root_cfg.smmu;
1050 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1051
1052 ret = arm_smmu_master_configure_smrs(smmu, master);
1053 if (ret)
1054 return ret;
1055
1056 /* Bypass the leaves */
1057 smmu = smmu_domain->leaf_smmu;
1058 while ((parent = find_parent_smmu(smmu))) {
1059 /*
1060 * We won't have a StreamID match for anything but the root
1061 * smmu, so we only need to worry about StreamID indexing,
1062 * where we must install bypass entries in the S2CRs.
1063 */
1064 if (smmu->features & ARM_SMMU_FEAT_STREAM_MATCH)
1065 continue;
1066
1067 arm_smmu_bypass_stream_mapping(smmu, master);
1068 smmu = parent;
1069 }
1070
1071 /* Now we're at the root, time to point at our context bank */
1072 for (i = 0; i < master->num_streamids; ++i) {
1073 u32 idx, s2cr;
1074 idx = master->smrs ? master->smrs[i].idx : master->streamids[i];
1075 s2cr = (S2CR_TYPE_TRANS << S2CR_TYPE_SHIFT) |
1076 (smmu_domain->root_cfg.cbndx << S2CR_CBNDX_SHIFT);
1077 writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1078 }
1079
1080 return 0;
1081}
1082
1083static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1084 struct arm_smmu_master *master)
1085{
1086 struct arm_smmu_device *smmu = smmu_domain->root_cfg.smmu;
1087
1088 /*
1089 * We *must* clear the S2CR first, because freeing the SMR means
1090 * that it can be re-allocated immediately.
1091 */
1092 arm_smmu_bypass_stream_mapping(smmu, master);
1093 arm_smmu_master_free_smrs(smmu, master);
1094}
1095
1096static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1097{
1098 int ret = -EINVAL;
1099 struct arm_smmu_domain *smmu_domain = domain->priv;
1100 struct arm_smmu_device *device_smmu = dev->archdata.iommu;
1101 struct arm_smmu_master *master;
1102
1103 if (!device_smmu) {
1104 dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1105 return -ENXIO;
1106 }
1107
1108 /*
1109 * Sanity check the domain. We don't currently support domains
1110 * that cross between different SMMU chains.
1111 */
1112 spin_lock(&smmu_domain->lock);
1113 if (!smmu_domain->leaf_smmu) {
1114 /* Now that we have a master, we can finalise the domain */
1115 ret = arm_smmu_init_domain_context(domain, dev);
1116 if (IS_ERR_VALUE(ret))
1117 goto err_unlock;
1118
1119 smmu_domain->leaf_smmu = device_smmu;
1120 } else if (smmu_domain->leaf_smmu != device_smmu) {
1121 dev_err(dev,
1122 "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1123 dev_name(smmu_domain->leaf_smmu->dev),
1124 dev_name(device_smmu->dev));
1125 goto err_unlock;
1126 }
1127 spin_unlock(&smmu_domain->lock);
1128
1129 /* Looks ok, so add the device to the domain */
1130 master = find_smmu_master(smmu_domain->leaf_smmu, dev->of_node);
1131 if (!master)
1132 return -ENODEV;
1133
1134 return arm_smmu_domain_add_master(smmu_domain, master);
1135
1136err_unlock:
1137 spin_unlock(&smmu_domain->lock);
1138 return ret;
1139}
1140
1141static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1142{
1143 struct arm_smmu_domain *smmu_domain = domain->priv;
1144 struct arm_smmu_master *master;
1145
1146 master = find_smmu_master(smmu_domain->leaf_smmu, dev->of_node);
1147 if (master)
1148 arm_smmu_domain_remove_master(smmu_domain, master);
1149}
1150
1151static void arm_smmu_flush_pgtable(struct arm_smmu_device *smmu, void *addr,
1152 size_t size)
1153{
1154 unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
1155
1156 /*
1157 * If the SMMU can't walk tables in the CPU caches, treat them
1158 * like non-coherent DMA since we need to flush the new entries
1159 * all the way out to memory. There's no possibility of recursion
1160 * here as the SMMU table walker will not be wired through another
1161 * SMMU.
1162 */
1163 if (!(smmu->features & ARM_SMMU_FEAT_COHERENT_WALK))
1164 dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
1165 DMA_TO_DEVICE);
1166}
1167
1168static bool arm_smmu_pte_is_contiguous_range(unsigned long addr,
1169 unsigned long end)
1170{
1171 return !(addr & ~ARM_SMMU_PTE_CONT_MASK) &&
1172 (addr + ARM_SMMU_PTE_CONT_SIZE <= end);
1173}
1174
1175static int arm_smmu_alloc_init_pte(struct arm_smmu_device *smmu, pmd_t *pmd,
1176 unsigned long addr, unsigned long end,
1177 unsigned long pfn, int flags, int stage)
1178{
1179 pte_t *pte, *start;
1180 pteval_t pteval = ARM_SMMU_PTE_PAGE | ARM_SMMU_PTE_AF;
1181
1182 if (pmd_none(*pmd)) {
1183 /* Allocate a new set of tables */
1184 pgtable_t table = alloc_page(PGALLOC_GFP);
1185 if (!table)
1186 return -ENOMEM;
1187
1188 arm_smmu_flush_pgtable(smmu, page_address(table),
1189 ARM_SMMU_PTE_HWTABLE_SIZE);
1190 pgtable_page_ctor(table);
1191 pmd_populate(NULL, pmd, table);
1192 arm_smmu_flush_pgtable(smmu, pmd, sizeof(*pmd));
1193 }
1194
1195 if (stage == 1) {
1196 pteval |= ARM_SMMU_PTE_AP_UNPRIV;
1197 if (!(flags & IOMMU_WRITE) && (flags & IOMMU_READ))
1198 pteval |= ARM_SMMU_PTE_AP_RDONLY;
1199
1200 if (flags & IOMMU_CACHE)
1201 pteval |= (MAIR_ATTR_IDX_CACHE <<
1202 ARM_SMMU_PTE_ATTRINDX_SHIFT);
1203 } else {
1204 pteval |= ARM_SMMU_PTE_HAP_FAULT;
1205 if (flags & IOMMU_READ)
1206 pteval |= ARM_SMMU_PTE_HAP_READ;
1207 if (flags & IOMMU_WRITE)
1208 pteval |= ARM_SMMU_PTE_HAP_WRITE;
1209 if (flags & IOMMU_CACHE)
1210 pteval |= ARM_SMMU_PTE_MEMATTR_OIWB;
1211 else
1212 pteval |= ARM_SMMU_PTE_MEMATTR_NC;
1213 }
1214
1215 /* If no access, create a faulting entry to avoid TLB fills */
1216 if (!(flags & (IOMMU_READ | IOMMU_WRITE)))
1217 pteval &= ~ARM_SMMU_PTE_PAGE;
1218
1219 pteval |= ARM_SMMU_PTE_SH_IS;
1220 start = pmd_page_vaddr(*pmd) + pte_index(addr);
1221 pte = start;
1222
1223 /*
1224 * Install the page table entries. This is fairly complicated
1225 * since we attempt to make use of the contiguous hint in the
1226 * ptes where possible. The contiguous hint indicates a series
1227 * of ARM_SMMU_PTE_CONT_ENTRIES ptes mapping a physically
1228 * contiguous region with the following constraints:
1229 *
1230 * - The region start is aligned to ARM_SMMU_PTE_CONT_SIZE
1231 * - Each pte in the region has the contiguous hint bit set
1232 *
1233 * This complicates unmapping (also handled by this code, when
1234 * neither IOMMU_READ or IOMMU_WRITE are set) because it is
1235 * possible, yet highly unlikely, that a client may unmap only
1236 * part of a contiguous range. This requires clearing of the
1237 * contiguous hint bits in the range before installing the new
1238 * faulting entries.
1239 *
1240 * Note that re-mapping an address range without first unmapping
1241 * it is not supported, so TLB invalidation is not required here
1242 * and is instead performed at unmap and domain-init time.
1243 */
1244 do {
1245 int i = 1;
1246 pteval &= ~ARM_SMMU_PTE_CONT;
1247
1248 if (arm_smmu_pte_is_contiguous_range(addr, end)) {
1249 i = ARM_SMMU_PTE_CONT_ENTRIES;
1250 pteval |= ARM_SMMU_PTE_CONT;
1251 } else if (pte_val(*pte) &
1252 (ARM_SMMU_PTE_CONT | ARM_SMMU_PTE_PAGE)) {
1253 int j;
1254 pte_t *cont_start;
1255 unsigned long idx = pte_index(addr);
1256
1257 idx &= ~(ARM_SMMU_PTE_CONT_ENTRIES - 1);
1258 cont_start = pmd_page_vaddr(*pmd) + idx;
1259 for (j = 0; j < ARM_SMMU_PTE_CONT_ENTRIES; ++j)
1260 pte_val(*(cont_start + j)) &= ~ARM_SMMU_PTE_CONT;
1261
1262 arm_smmu_flush_pgtable(smmu, cont_start,
1263 sizeof(*pte) *
1264 ARM_SMMU_PTE_CONT_ENTRIES);
1265 }
1266
1267 do {
1268 *pte = pfn_pte(pfn, __pgprot(pteval));
1269 } while (pte++, pfn++, addr += PAGE_SIZE, --i);
1270 } while (addr != end);
1271
1272 arm_smmu_flush_pgtable(smmu, start, sizeof(*pte) * (pte - start));
1273 return 0;
1274}
1275
1276static int arm_smmu_alloc_init_pmd(struct arm_smmu_device *smmu, pud_t *pud,
1277 unsigned long addr, unsigned long end,
1278 phys_addr_t phys, int flags, int stage)
1279{
1280 int ret;
1281 pmd_t *pmd;
1282 unsigned long next, pfn = __phys_to_pfn(phys);
1283
1284#ifndef __PAGETABLE_PMD_FOLDED
1285 if (pud_none(*pud)) {
1286 pmd = pmd_alloc_one(NULL, addr);
1287 if (!pmd)
1288 return -ENOMEM;
1289 } else
1290#endif
1291 pmd = pmd_offset(pud, addr);
1292
1293 do {
1294 next = pmd_addr_end(addr, end);
1295 ret = arm_smmu_alloc_init_pte(smmu, pmd, addr, end, pfn,
1296 flags, stage);
1297 pud_populate(NULL, pud, pmd);
1298 arm_smmu_flush_pgtable(smmu, pud, sizeof(*pud));
1299 phys += next - addr;
1300 } while (pmd++, addr = next, addr < end);
1301
1302 return ret;
1303}
1304
1305static int arm_smmu_alloc_init_pud(struct arm_smmu_device *smmu, pgd_t *pgd,
1306 unsigned long addr, unsigned long end,
1307 phys_addr_t phys, int flags, int stage)
1308{
1309 int ret = 0;
1310 pud_t *pud;
1311 unsigned long next;
1312
1313#ifndef __PAGETABLE_PUD_FOLDED
1314 if (pgd_none(*pgd)) {
1315 pud = pud_alloc_one(NULL, addr);
1316 if (!pud)
1317 return -ENOMEM;
1318 } else
1319#endif
1320 pud = pud_offset(pgd, addr);
1321
1322 do {
1323 next = pud_addr_end(addr, end);
1324 ret = arm_smmu_alloc_init_pmd(smmu, pud, addr, next, phys,
1325 flags, stage);
1326 pgd_populate(NULL, pud, pgd);
1327 arm_smmu_flush_pgtable(smmu, pgd, sizeof(*pgd));
1328 phys += next - addr;
1329 } while (pud++, addr = next, addr < end);
1330
1331 return ret;
1332}
1333
1334static int arm_smmu_handle_mapping(struct arm_smmu_domain *smmu_domain,
1335 unsigned long iova, phys_addr_t paddr,
1336 size_t size, int flags)
1337{
1338 int ret, stage;
1339 unsigned long end;
1340 phys_addr_t input_mask, output_mask;
1341 struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
1342 pgd_t *pgd = root_cfg->pgd;
1343 struct arm_smmu_device *smmu = root_cfg->smmu;
1344
1345 if (root_cfg->cbar == CBAR_TYPE_S2_TRANS) {
1346 stage = 2;
1347 output_mask = (1ULL << smmu->s2_output_size) - 1;
1348 } else {
1349 stage = 1;
1350 output_mask = (1ULL << smmu->s1_output_size) - 1;
1351 }
1352
1353 if (!pgd)
1354 return -EINVAL;
1355
1356 if (size & ~PAGE_MASK)
1357 return -EINVAL;
1358
1359 input_mask = (1ULL << smmu->input_size) - 1;
1360 if ((phys_addr_t)iova & ~input_mask)
1361 return -ERANGE;
1362
1363 if (paddr & ~output_mask)
1364 return -ERANGE;
1365
1366 spin_lock(&smmu_domain->lock);
1367 pgd += pgd_index(iova);
1368 end = iova + size;
1369 do {
1370 unsigned long next = pgd_addr_end(iova, end);
1371
1372 ret = arm_smmu_alloc_init_pud(smmu, pgd, iova, next, paddr,
1373 flags, stage);
1374 if (ret)
1375 goto out_unlock;
1376
1377 paddr += next - iova;
1378 iova = next;
1379 } while (pgd++, iova != end);
1380
1381out_unlock:
1382 spin_unlock(&smmu_domain->lock);
1383
1384 /* Ensure new page tables are visible to the hardware walker */
1385 if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK)
1386 dsb();
1387
1388 return ret;
1389}
1390
1391static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1392 phys_addr_t paddr, size_t size, int flags)
1393{
1394 struct arm_smmu_domain *smmu_domain = domain->priv;
1395 struct arm_smmu_device *smmu = smmu_domain->leaf_smmu;
1396
1397 if (!smmu_domain || !smmu)
1398 return -ENODEV;
1399
1400 /* Check for silent address truncation up the SMMU chain. */
1401 if ((phys_addr_t)iova & ~smmu_domain->output_mask)
1402 return -ERANGE;
1403
1404 return arm_smmu_handle_mapping(smmu_domain, iova, paddr, size, flags);
1405}
1406
1407static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1408 size_t size)
1409{
1410 int ret;
1411 struct arm_smmu_domain *smmu_domain = domain->priv;
1412 struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
1413 struct arm_smmu_device *smmu = root_cfg->smmu;
1414 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1415
1416 ret = arm_smmu_handle_mapping(smmu_domain, iova, 0, size, 0);
1417 writel_relaxed(root_cfg->vmid, gr0_base + ARM_SMMU_GR0_TLBIVMID);
1418 arm_smmu_tlb_sync(smmu);
1419 return ret ? ret : size;
1420}
1421
1422static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1423 dma_addr_t iova)
1424{
1425 pgd_t *pgd;
1426 pud_t *pud;
1427 pmd_t *pmd;
1428 pte_t *pte;
1429 struct arm_smmu_domain *smmu_domain = domain->priv;
1430 struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
1431 struct arm_smmu_device *smmu = root_cfg->smmu;
1432
1433 spin_lock(&smmu_domain->lock);
1434 pgd = root_cfg->pgd;
1435 if (!pgd)
1436 goto err_unlock;
1437
1438 pgd += pgd_index(iova);
1439 if (pgd_none_or_clear_bad(pgd))
1440 goto err_unlock;
1441
1442 pud = pud_offset(pgd, iova);
1443 if (pud_none_or_clear_bad(pud))
1444 goto err_unlock;
1445
1446 pmd = pmd_offset(pud, iova);
1447 if (pmd_none_or_clear_bad(pmd))
1448 goto err_unlock;
1449
1450 pte = pmd_page_vaddr(*pmd) + pte_index(iova);
1451 if (pte_none(pte))
1452 goto err_unlock;
1453
1454 spin_unlock(&smmu_domain->lock);
1455 return __pfn_to_phys(pte_pfn(*pte)) | (iova & ~PAGE_MASK);
1456
1457err_unlock:
1458 spin_unlock(&smmu_domain->lock);
1459 dev_warn(smmu->dev,
1460 "invalid (corrupt?) page tables detected for iova 0x%llx\n",
1461 (unsigned long long)iova);
1462 return -EINVAL;
1463}
1464
1465static int arm_smmu_domain_has_cap(struct iommu_domain *domain,
1466 unsigned long cap)
1467{
1468 unsigned long caps = 0;
1469 struct arm_smmu_domain *smmu_domain = domain->priv;
1470
1471 if (smmu_domain->root_cfg.smmu->features & ARM_SMMU_FEAT_COHERENT_WALK)
1472 caps |= IOMMU_CAP_CACHE_COHERENCY;
1473
1474 return !!(cap & caps);
1475}
1476
1477static int arm_smmu_add_device(struct device *dev)
1478{
1479 struct arm_smmu_device *child, *parent, *smmu;
1480 struct arm_smmu_master *master = NULL;
1481
1482 spin_lock(&arm_smmu_devices_lock);
1483 list_for_each_entry(parent, &arm_smmu_devices, list) {
1484 smmu = parent;
1485
1486 /* Try to find a child of the current SMMU. */
1487 list_for_each_entry(child, &arm_smmu_devices, list) {
1488 if (child->parent_of_node == parent->dev->of_node) {
1489 /* Does the child sit above our master? */
1490 master = find_smmu_master(child, dev->of_node);
1491 if (master) {
1492 smmu = NULL;
1493 break;
1494 }
1495 }
1496 }
1497
1498 /* We found some children, so keep searching. */
1499 if (!smmu) {
1500 master = NULL;
1501 continue;
1502 }
1503
1504 master = find_smmu_master(smmu, dev->of_node);
1505 if (master)
1506 break;
1507 }
1508 spin_unlock(&arm_smmu_devices_lock);
1509
1510 if (!master)
1511 return -ENODEV;
1512
1513 dev->archdata.iommu = smmu;
1514 return 0;
1515}
1516
1517static void arm_smmu_remove_device(struct device *dev)
1518{
1519 dev->archdata.iommu = NULL;
1520}
1521
1522static struct iommu_ops arm_smmu_ops = {
1523 .domain_init = arm_smmu_domain_init,
1524 .domain_destroy = arm_smmu_domain_destroy,
1525 .attach_dev = arm_smmu_attach_dev,
1526 .detach_dev = arm_smmu_detach_dev,
1527 .map = arm_smmu_map,
1528 .unmap = arm_smmu_unmap,
1529 .iova_to_phys = arm_smmu_iova_to_phys,
1530 .domain_has_cap = arm_smmu_domain_has_cap,
1531 .add_device = arm_smmu_add_device,
1532 .remove_device = arm_smmu_remove_device,
1533 .pgsize_bitmap = (SECTION_SIZE |
1534 ARM_SMMU_PTE_CONT_SIZE |
1535 PAGE_SIZE),
1536};
1537
1538static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1539{
1540 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1541 int i = 0;
1542 u32 scr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sCR0);
1543
1544 /* Mark all SMRn as invalid and all S2CRn as bypass */
1545 for (i = 0; i < smmu->num_mapping_groups; ++i) {
1546 writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(i));
1547 writel_relaxed(S2CR_TYPE_BYPASS, gr0_base + ARM_SMMU_GR0_S2CR(i));
1548 }
1549
1550 /* Invalidate the TLB, just in case */
1551 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_STLBIALL);
1552 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1553 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1554
1555 /* Enable fault reporting */
1556 scr0 |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1557
1558 /* Disable TLB broadcasting. */
1559 scr0 |= (sCR0_VMIDPNE | sCR0_PTM);
1560
1561 /* Enable client access, but bypass when no mapping is found */
1562 scr0 &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1563
1564 /* Disable forced broadcasting */
1565 scr0 &= ~sCR0_FB;
1566
1567 /* Don't upgrade barriers */
1568 scr0 &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1569
1570 /* Push the button */
1571 arm_smmu_tlb_sync(smmu);
1572 writel(scr0, gr0_base + ARM_SMMU_GR0_sCR0);
1573}
1574
1575static int arm_smmu_id_size_to_bits(int size)
1576{
1577 switch (size) {
1578 case 0:
1579 return 32;
1580 case 1:
1581 return 36;
1582 case 2:
1583 return 40;
1584 case 3:
1585 return 42;
1586 case 4:
1587 return 44;
1588 case 5:
1589 default:
1590 return 48;
1591 }
1592}
1593
1594static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1595{
1596 unsigned long size;
1597 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1598 u32 id;
1599
1600 dev_notice(smmu->dev, "probing hardware configuration...\n");
1601
1602 /* Primecell ID */
1603 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_PIDR2);
1604 smmu->version = ((id >> PIDR2_ARCH_SHIFT) & PIDR2_ARCH_MASK) + 1;
1605 dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);
1606
1607 /* ID0 */
1608 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1609#ifndef CONFIG_64BIT
1610 if (((id >> ID0_PTFS_SHIFT) & ID0_PTFS_MASK) == ID0_PTFS_V8_ONLY) {
1611 dev_err(smmu->dev, "\tno v7 descriptor support!\n");
1612 return -ENODEV;
1613 }
1614#endif
1615 if (id & ID0_S1TS) {
1616 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1617 dev_notice(smmu->dev, "\tstage 1 translation\n");
1618 }
1619
1620 if (id & ID0_S2TS) {
1621 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1622 dev_notice(smmu->dev, "\tstage 2 translation\n");
1623 }
1624
1625 if (id & ID0_NTS) {
1626 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1627 dev_notice(smmu->dev, "\tnested translation\n");
1628 }
1629
1630 if (!(smmu->features &
1631 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2 |
1632 ARM_SMMU_FEAT_TRANS_NESTED))) {
1633 dev_err(smmu->dev, "\tno translation support!\n");
1634 return -ENODEV;
1635 }
1636
1637 if (id & ID0_CTTW) {
1638 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1639 dev_notice(smmu->dev, "\tcoherent table walk\n");
1640 }
1641
1642 if (id & ID0_SMS) {
1643 u32 smr, sid, mask;
1644
1645 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1646 smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
1647 ID0_NUMSMRG_MASK;
1648 if (smmu->num_mapping_groups == 0) {
1649 dev_err(smmu->dev,
1650 "stream-matching supported, but no SMRs present!\n");
1651 return -ENODEV;
1652 }
1653
1654 smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
1655 smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
1656 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1657 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1658
1659 mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
1660 sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
1661 if ((mask & sid) != sid) {
1662 dev_err(smmu->dev,
1663 "SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
1664 mask, sid);
1665 return -ENODEV;
1666 }
1667
1668 dev_notice(smmu->dev,
1669 "\tstream matching with %u register groups, mask 0x%x",
1670 smmu->num_mapping_groups, mask);
1671 }
1672
1673 /* ID1 */
1674 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1675 smmu->pagesize = (id & ID1_PAGESIZE) ? SZ_64K : SZ_4K;
1676
1677 /* Check that we ioremapped enough */
1678 size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1679 size *= (smmu->pagesize << 1);
1680 if (smmu->size < size)
1681 dev_warn(smmu->dev,
1682 "device is 0x%lx bytes but only mapped 0x%lx!\n",
1683 size, smmu->size);
1684
1685 smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) &
1686 ID1_NUMS2CB_MASK;
1687 smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1688 if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1689 dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1690 return -ENODEV;
1691 }
1692 dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1693 smmu->num_context_banks, smmu->num_s2_context_banks);
1694
1695 /* ID2 */
1696 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1697 size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1698
1699 /*
1700 * Stage-1 output limited by stage-2 input size due to pgd
1701 * allocation (PTRS_PER_PGD).
1702 */
1703#ifdef CONFIG_64BIT
1704 /* Current maximum output size of 39 bits */
1705 smmu->s1_output_size = min(39UL, size);
1706#else
1707 smmu->s1_output_size = min(32UL, size);
1708#endif
1709
1710 /* The stage-2 output mask is also applied for bypass */
1711 size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1712 smmu->s2_output_size = min((unsigned long)PHYS_MASK_SHIFT, size);
1713
1714 if (smmu->version == 1) {
1715 smmu->input_size = 32;
1716 } else {
1717#ifdef CONFIG_64BIT
1718 size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1719 size = min(39, arm_smmu_id_size_to_bits(size));
1720#else
1721 size = 32;
1722#endif
1723 smmu->input_size = size;
1724
1725 if ((PAGE_SIZE == SZ_4K && !(id & ID2_PTFS_4K)) ||
1726 (PAGE_SIZE == SZ_64K && !(id & ID2_PTFS_64K)) ||
1727 (PAGE_SIZE != SZ_4K && PAGE_SIZE != SZ_64K)) {
1728 dev_err(smmu->dev, "CPU page size 0x%lx unsupported\n",
1729 PAGE_SIZE);
1730 return -ENODEV;
1731 }
1732 }
1733
1734 dev_notice(smmu->dev,
1735 "\t%lu-bit VA, %lu-bit IPA, %lu-bit PA\n",
1736 smmu->input_size, smmu->s1_output_size, smmu->s2_output_size);
1737 return 0;
1738}
1739
1740static int arm_smmu_device_dt_probe(struct platform_device *pdev)
1741{
1742 struct resource *res;
1743 struct arm_smmu_device *smmu;
1744 struct device_node *dev_node;
1745 struct device *dev = &pdev->dev;
1746 struct rb_node *node;
1747 struct of_phandle_args masterspec;
1748 int num_irqs, i, err;
1749
1750 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
1751 if (!smmu) {
1752 dev_err(dev, "failed to allocate arm_smmu_device\n");
1753 return -ENOMEM;
1754 }
1755 smmu->dev = dev;
1756
1757 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1758 if (!res) {
1759 dev_err(dev, "missing base address/size\n");
1760 return -ENODEV;
1761 }
1762
1763 smmu->size = resource_size(res);
1764 smmu->base = devm_request_and_ioremap(dev, res);
1765 if (!smmu->base)
1766 return -EADDRNOTAVAIL;
1767
1768 if (of_property_read_u32(dev->of_node, "#global-interrupts",
1769 &smmu->num_global_irqs)) {
1770 dev_err(dev, "missing #global-interrupts property\n");
1771 return -ENODEV;
1772 }
1773
1774 num_irqs = 0;
1775 while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
1776 num_irqs++;
1777 if (num_irqs > smmu->num_global_irqs)
1778 smmu->num_context_irqs++;
1779 }
1780
1781 if (num_irqs < smmu->num_global_irqs) {
1782 dev_warn(dev, "found %d interrupts but expected at least %d\n",
1783 num_irqs, smmu->num_global_irqs);
1784 smmu->num_global_irqs = num_irqs;
1785 }
1786 smmu->num_context_irqs = num_irqs - smmu->num_global_irqs;
1787
1788 smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
1789 GFP_KERNEL);
1790 if (!smmu->irqs) {
1791 dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
1792 return -ENOMEM;
1793 }
1794
1795 for (i = 0; i < num_irqs; ++i) {
1796 int irq = platform_get_irq(pdev, i);
1797 if (irq < 0) {
1798 dev_err(dev, "failed to get irq index %d\n", i);
1799 return -ENODEV;
1800 }
1801 smmu->irqs[i] = irq;
1802 }
1803
1804 i = 0;
1805 smmu->masters = RB_ROOT;
1806 while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
1807 "#stream-id-cells", i,
1808 &masterspec)) {
1809 err = register_smmu_master(smmu, dev, &masterspec);
1810 if (err) {
1811 dev_err(dev, "failed to add master %s\n",
1812 masterspec.np->name);
1813 goto out_put_masters;
1814 }
1815
1816 i++;
1817 }
1818 dev_notice(dev, "registered %d master devices\n", i);
1819
1820 if ((dev_node = of_parse_phandle(dev->of_node, "smmu-parent", 0)))
1821 smmu->parent_of_node = dev_node;
1822
1823 err = arm_smmu_device_cfg_probe(smmu);
1824 if (err)
1825 goto out_put_parent;
1826
1827 if (smmu->version > 1 &&
1828 smmu->num_context_banks != smmu->num_context_irqs) {
1829 dev_err(dev,
1830 "found only %d context interrupt(s) but %d required\n",
1831 smmu->num_context_irqs, smmu->num_context_banks);
1832 goto out_put_parent;
1833 }
1834
1835 arm_smmu_device_reset(smmu);
1836
1837 for (i = 0; i < smmu->num_global_irqs; ++i) {
1838 err = request_irq(smmu->irqs[i],
1839 arm_smmu_global_fault,
1840 IRQF_SHARED,
1841 "arm-smmu global fault",
1842 smmu);
1843 if (err) {
1844 dev_err(dev, "failed to request global IRQ %d (%u)\n",
1845 i, smmu->irqs[i]);
1846 goto out_free_irqs;
1847 }
1848 }
1849
1850 INIT_LIST_HEAD(&smmu->list);
1851 spin_lock(&arm_smmu_devices_lock);
1852 list_add(&smmu->list, &arm_smmu_devices);
1853 spin_unlock(&arm_smmu_devices_lock);
1854 return 0;
1855
1856out_free_irqs:
1857 while (i--)
1858 free_irq(smmu->irqs[i], smmu);
1859
1860out_put_parent:
1861 if (smmu->parent_of_node)
1862 of_node_put(smmu->parent_of_node);
1863
1864out_put_masters:
1865 for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1866 struct arm_smmu_master *master;
1867 master = container_of(node, struct arm_smmu_master, node);
1868 of_node_put(master->of_node);
1869 }
1870
1871 return err;
1872}
1873
1874static int arm_smmu_device_remove(struct platform_device *pdev)
1875{
1876 int i;
1877 struct device *dev = &pdev->dev;
1878 struct arm_smmu_device *curr, *smmu = NULL;
1879 struct rb_node *node;
1880
1881 spin_lock(&arm_smmu_devices_lock);
1882 list_for_each_entry(curr, &arm_smmu_devices, list) {
1883 if (curr->dev == dev) {
1884 smmu = curr;
1885 list_del(&smmu->list);
1886 break;
1887 }
1888 }
1889 spin_unlock(&arm_smmu_devices_lock);
1890
1891 if (!smmu)
1892 return -ENODEV;
1893
1894 if (smmu->parent_of_node)
1895 of_node_put(smmu->parent_of_node);
1896
1897 for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1898 struct arm_smmu_master *master;
1899 master = container_of(node, struct arm_smmu_master, node);
1900 of_node_put(master->of_node);
1901 }
1902
1903 if (!bitmap_empty(smmu->vmid_map, ARM_SMMU_NUM_VMIDS))
1904 dev_err(dev, "removing device with active domains!\n");
1905
1906 for (i = 0; i < smmu->num_global_irqs; ++i)
1907 free_irq(smmu->irqs[i], smmu);
1908
1909 /* Turn the thing off */
1910 writel(sCR0_CLIENTPD, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_sCR0);
1911 return 0;
1912}
1913
1914#ifdef CONFIG_OF
1915static struct of_device_id arm_smmu_of_match[] = {
1916 { .compatible = "arm,smmu-v1", },
1917 { .compatible = "arm,smmu-v2", },
1918 { .compatible = "arm,mmu-400", },
1919 { .compatible = "arm,mmu-500", },
1920 { },
1921};
1922MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
1923#endif
1924
1925static struct platform_driver arm_smmu_driver = {
1926 .driver = {
1927 .owner = THIS_MODULE,
1928 .name = "arm-smmu",
1929 .of_match_table = of_match_ptr(arm_smmu_of_match),
1930 },
1931 .probe = arm_smmu_device_dt_probe,
1932 .remove = arm_smmu_device_remove,
1933};
1934
1935static int __init arm_smmu_init(void)
1936{
1937 int ret;
1938
1939 ret = platform_driver_register(&arm_smmu_driver);
1940 if (ret)
1941 return ret;
1942
1943 /* Oh, for a proper bus abstraction */
1944 if (!iommu_present(&platform_bus_type));
1945 bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
1946
1947 if (!iommu_present(&amba_bustype));
1948 bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1949
1950 return 0;
1951}
1952
1953static void __exit arm_smmu_exit(void)
1954{
1955 return platform_driver_unregister(&arm_smmu_driver);
1956}
1957
1958module_init(arm_smmu_init);
1959module_exit(arm_smmu_exit);
1960
1961MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
1962MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1963MODULE_LICENSE("GPL v2");