]> git.ipfire.org Git - people/ms/linux.git/blame - drivers/lguest/page_tables.c
lguest: per-vcpu interrupt processing.
[people/ms/linux.git] / drivers / lguest / page_tables.c
CommitLineData
f938d2c8
RR
1/*P:700 The pagetable code, on the other hand, still shows the scars of
2 * previous encounters. It's functional, and as neat as it can be in the
3 * circumstances, but be wary, for these things are subtle and break easily.
4 * The Guest provides a virtual to physical mapping, but we can neither trust
5 * it nor use it: we verify and convert it here to point the hardware to the
6 * actual Guest pages when running the Guest. :*/
7
8/* Copyright (C) Rusty Russell IBM Corporation 2006.
d7e28ffe
RR
9 * GPL v2 and any later version */
10#include <linux/mm.h>
11#include <linux/types.h>
12#include <linux/spinlock.h>
13#include <linux/random.h>
14#include <linux/percpu.h>
15#include <asm/tlbflush.h>
47436aa4 16#include <asm/uaccess.h>
d7e28ffe
RR
17#include "lg.h"
18
f56a384e
RR
19/*M:008 We hold reference to pages, which prevents them from being swapped.
20 * It'd be nice to have a callback in the "struct mm_struct" when Linux wants
21 * to swap out. If we had this, and a shrinker callback to trim PTE pages, we
22 * could probably consider launching Guests as non-root. :*/
23
bff672e6
RR
24/*H:300
25 * The Page Table Code
26 *
27 * We use two-level page tables for the Guest. If you're not entirely
28 * comfortable with virtual addresses, physical addresses and page tables then
e1e72965
RR
29 * I recommend you review arch/x86/lguest/boot.c's "Page Table Handling" (with
30 * diagrams!).
bff672e6
RR
31 *
32 * The Guest keeps page tables, but we maintain the actual ones here: these are
33 * called "shadow" page tables. Which is a very Guest-centric name: these are
34 * the real page tables the CPU uses, although we keep them up to date to
35 * reflect the Guest's. (See what I mean about weird naming? Since when do
36 * shadows reflect anything?)
37 *
38 * Anyway, this is the most complicated part of the Host code. There are seven
39 * parts to this:
e1e72965
RR
40 * (i) Looking up a page table entry when the Guest faults,
41 * (ii) Making sure the Guest stack is mapped,
42 * (iii) Setting up a page table entry when the Guest tells us one has changed,
bff672e6 43 * (iv) Switching page tables,
e1e72965 44 * (v) Flushing (throwing away) page tables,
bff672e6
RR
45 * (vi) Mapping the Switcher when the Guest is about to run,
46 * (vii) Setting up the page tables initially.
47 :*/
48
bff672e6
RR
49
50/* 1024 entries in a page table page maps 1024 pages: 4MB. The Switcher is
51 * conveniently placed at the top 4MB, so it uses a separate, complete PTE
52 * page. */
df29f43e 53#define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
d7e28ffe 54
bff672e6
RR
55/* We actually need a separate PTE page for each CPU. Remember that after the
56 * Switcher code itself comes two pages for each CPU, and we don't want this
57 * CPU's guest to see the pages of any other CPU. */
df29f43e 58static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
d7e28ffe
RR
59#define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
60
e1e72965
RR
61/*H:320 The page table code is curly enough to need helper functions to keep it
62 * clear and clean.
bff672e6 63 *
df29f43e 64 * There are two functions which return pointers to the shadow (aka "real")
bff672e6
RR
65 * page tables.
66 *
67 * spgd_addr() takes the virtual address and returns a pointer to the top-level
e1e72965
RR
68 * page directory entry (PGD) for that address. Since we keep track of several
69 * page tables, the "i" argument tells us which one we're interested in (it's
bff672e6 70 * usually the current one). */
df29f43e 71static pgd_t *spgd_addr(struct lguest *lg, u32 i, unsigned long vaddr)
d7e28ffe 72{
df29f43e 73 unsigned int index = pgd_index(vaddr);
d7e28ffe 74
bff672e6 75 /* We kill any Guest trying to touch the Switcher addresses. */
d7e28ffe
RR
76 if (index >= SWITCHER_PGD_INDEX) {
77 kill_guest(lg, "attempt to access switcher pages");
78 index = 0;
79 }
bff672e6 80 /* Return a pointer index'th pgd entry for the i'th page table. */
d7e28ffe
RR
81 return &lg->pgdirs[i].pgdir[index];
82}
83
e1e72965
RR
84/* This routine then takes the page directory entry returned above, which
85 * contains the address of the page table entry (PTE) page. It then returns a
86 * pointer to the PTE entry for the given address. */
df29f43e 87static pte_t *spte_addr(struct lguest *lg, pgd_t spgd, unsigned long vaddr)
d7e28ffe 88{
df29f43e 89 pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
bff672e6 90 /* You should never call this if the PGD entry wasn't valid */
df29f43e
MZ
91 BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
92 return &page[(vaddr >> PAGE_SHIFT) % PTRS_PER_PTE];
d7e28ffe
RR
93}
94
bff672e6
RR
95/* These two functions just like the above two, except they access the Guest
96 * page tables. Hence they return a Guest address. */
d7e28ffe
RR
97static unsigned long gpgd_addr(struct lguest *lg, unsigned long vaddr)
98{
df29f43e 99 unsigned int index = vaddr >> (PGDIR_SHIFT);
ee3db0f2 100 return lg->pgdirs[lg->pgdidx].gpgdir + index * sizeof(pgd_t);
d7e28ffe
RR
101}
102
103static unsigned long gpte_addr(struct lguest *lg,
df29f43e 104 pgd_t gpgd, unsigned long vaddr)
d7e28ffe 105{
df29f43e
MZ
106 unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
107 BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
108 return gpage + ((vaddr>>PAGE_SHIFT) % PTRS_PER_PTE) * sizeof(pte_t);
d7e28ffe
RR
109}
110
bff672e6
RR
111/*H:350 This routine takes a page number given by the Guest and converts it to
112 * an actual, physical page number. It can fail for several reasons: the
113 * virtual address might not be mapped by the Launcher, the write flag is set
114 * and the page is read-only, or the write flag was set and the page was
115 * shared so had to be copied, but we ran out of memory.
116 *
117 * This holds a reference to the page, so release_pte() is careful to
118 * put that back. */
d7e28ffe
RR
119static unsigned long get_pfn(unsigned long virtpfn, int write)
120{
121 struct page *page;
bff672e6 122 /* This value indicates failure. */
d7e28ffe
RR
123 unsigned long ret = -1UL;
124
bff672e6
RR
125 /* get_user_pages() is a complex interface: it gets the "struct
126 * vm_area_struct" and "struct page" assocated with a range of pages.
127 * It also needs the task's mmap_sem held, and is not very quick.
128 * It returns the number of pages it got. */
d7e28ffe
RR
129 down_read(&current->mm->mmap_sem);
130 if (get_user_pages(current, current->mm, virtpfn << PAGE_SHIFT,
131 1, write, 1, &page, NULL) == 1)
132 ret = page_to_pfn(page);
133 up_read(&current->mm->mmap_sem);
134 return ret;
135}
136
bff672e6
RR
137/*H:340 Converting a Guest page table entry to a shadow (ie. real) page table
138 * entry can be a little tricky. The flags are (almost) the same, but the
139 * Guest PTE contains a virtual page number: the CPU needs the real page
140 * number. */
df29f43e 141static pte_t gpte_to_spte(struct lguest *lg, pte_t gpte, int write)
d7e28ffe 142{
df29f43e 143 unsigned long pfn, base, flags;
d7e28ffe 144
bff672e6
RR
145 /* The Guest sets the global flag, because it thinks that it is using
146 * PGE. We only told it to use PGE so it would tell us whether it was
147 * flushing a kernel mapping or a userspace mapping. We don't actually
148 * use the global bit, so throw it away. */
df29f43e 149 flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
bff672e6 150
3c6b5bfa
RR
151 /* The Guest's pages are offset inside the Launcher. */
152 base = (unsigned long)lg->mem_base / PAGE_SIZE;
153
bff672e6
RR
154 /* We need a temporary "unsigned long" variable to hold the answer from
155 * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
156 * fit in spte.pfn. get_pfn() finds the real physical number of the
157 * page, given the virtual number. */
df29f43e 158 pfn = get_pfn(base + pte_pfn(gpte), write);
d7e28ffe 159 if (pfn == -1UL) {
df29f43e 160 kill_guest(lg, "failed to get page %lu", pte_pfn(gpte));
bff672e6
RR
161 /* When we destroy the Guest, we'll go through the shadow page
162 * tables and release_pte() them. Make sure we don't think
163 * this one is valid! */
df29f43e 164 flags = 0;
d7e28ffe 165 }
df29f43e
MZ
166 /* Now we assemble our shadow PTE from the page number and flags. */
167 return pfn_pte(pfn, __pgprot(flags));
d7e28ffe
RR
168}
169
bff672e6 170/*H:460 And to complete the chain, release_pte() looks like this: */
df29f43e 171static void release_pte(pte_t pte)
d7e28ffe 172{
bff672e6
RR
173 /* Remember that get_user_pages() took a reference to the page, in
174 * get_pfn()? We have to put it back now. */
df29f43e
MZ
175 if (pte_flags(pte) & _PAGE_PRESENT)
176 put_page(pfn_to_page(pte_pfn(pte)));
d7e28ffe 177}
bff672e6 178/*:*/
d7e28ffe 179
df29f43e 180static void check_gpte(struct lguest *lg, pte_t gpte)
d7e28ffe 181{
df29f43e
MZ
182 if ((pte_flags(gpte) & (_PAGE_PWT|_PAGE_PSE))
183 || pte_pfn(gpte) >= lg->pfn_limit)
d7e28ffe
RR
184 kill_guest(lg, "bad page table entry");
185}
186
df29f43e 187static void check_gpgd(struct lguest *lg, pgd_t gpgd)
d7e28ffe 188{
df29f43e 189 if ((pgd_flags(gpgd) & ~_PAGE_TABLE) || pgd_pfn(gpgd) >= lg->pfn_limit)
d7e28ffe
RR
190 kill_guest(lg, "bad page directory entry");
191}
192
bff672e6 193/*H:330
e1e72965 194 * (i) Looking up a page table entry when the Guest faults.
bff672e6
RR
195 *
196 * We saw this call in run_guest(): when we see a page fault in the Guest, we
197 * come here. That's because we only set up the shadow page tables lazily as
198 * they're needed, so we get page faults all the time and quietly fix them up
199 * and return to the Guest without it knowing.
200 *
201 * If we fixed up the fault (ie. we mapped the address), this routine returns
e1e72965 202 * true. Otherwise, it was a real fault and we need to tell the Guest. */
d7e28ffe
RR
203int demand_page(struct lguest *lg, unsigned long vaddr, int errcode)
204{
df29f43e
MZ
205 pgd_t gpgd;
206 pgd_t *spgd;
d7e28ffe 207 unsigned long gpte_ptr;
df29f43e
MZ
208 pte_t gpte;
209 pte_t *spte;
d7e28ffe 210
bff672e6 211 /* First step: get the top-level Guest page table entry. */
2d37f94a 212 gpgd = lgread(lg, gpgd_addr(lg, vaddr), pgd_t);
bff672e6 213 /* Toplevel not present? We can't map it in. */
df29f43e 214 if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
d7e28ffe
RR
215 return 0;
216
bff672e6 217 /* Now look at the matching shadow entry. */
d7e28ffe 218 spgd = spgd_addr(lg, lg->pgdidx, vaddr);
df29f43e 219 if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
bff672e6 220 /* No shadow entry: allocate a new shadow PTE page. */
d7e28ffe 221 unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
bff672e6
RR
222 /* This is not really the Guest's fault, but killing it is
223 * simple for this corner case. */
d7e28ffe
RR
224 if (!ptepage) {
225 kill_guest(lg, "out of memory allocating pte page");
226 return 0;
227 }
bff672e6 228 /* We check that the Guest pgd is OK. */
d7e28ffe 229 check_gpgd(lg, gpgd);
bff672e6
RR
230 /* And we copy the flags to the shadow PGD entry. The page
231 * number in the shadow PGD is the page we just allocated. */
df29f43e 232 *spgd = __pgd(__pa(ptepage) | pgd_flags(gpgd));
d7e28ffe
RR
233 }
234
bff672e6
RR
235 /* OK, now we look at the lower level in the Guest page table: keep its
236 * address, because we might update it later. */
d7e28ffe 237 gpte_ptr = gpte_addr(lg, gpgd, vaddr);
2d37f94a 238 gpte = lgread(lg, gpte_ptr, pte_t);
d7e28ffe 239
bff672e6 240 /* If this page isn't in the Guest page tables, we can't page it in. */
df29f43e 241 if (!(pte_flags(gpte) & _PAGE_PRESENT))
d7e28ffe
RR
242 return 0;
243
bff672e6
RR
244 /* Check they're not trying to write to a page the Guest wants
245 * read-only (bit 2 of errcode == write). */
df29f43e 246 if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
d7e28ffe
RR
247 return 0;
248
e1e72965 249 /* User access to a kernel-only page? (bit 3 == user access) */
df29f43e 250 if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
d7e28ffe
RR
251 return 0;
252
bff672e6
RR
253 /* Check that the Guest PTE flags are OK, and the page number is below
254 * the pfn_limit (ie. not mapping the Launcher binary). */
d7e28ffe 255 check_gpte(lg, gpte);
e1e72965 256
bff672e6 257 /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
df29f43e 258 gpte = pte_mkyoung(gpte);
d7e28ffe 259 if (errcode & 2)
df29f43e 260 gpte = pte_mkdirty(gpte);
d7e28ffe 261
bff672e6 262 /* Get the pointer to the shadow PTE entry we're going to set. */
d7e28ffe 263 spte = spte_addr(lg, *spgd, vaddr);
bff672e6
RR
264 /* If there was a valid shadow PTE entry here before, we release it.
265 * This can happen with a write to a previously read-only entry. */
d7e28ffe
RR
266 release_pte(*spte);
267
bff672e6
RR
268 /* If this is a write, we insist that the Guest page is writable (the
269 * final arg to gpte_to_spte()). */
df29f43e 270 if (pte_dirty(gpte))
d7e28ffe 271 *spte = gpte_to_spte(lg, gpte, 1);
df29f43e 272 else
bff672e6
RR
273 /* If this is a read, don't set the "writable" bit in the page
274 * table entry, even if the Guest says it's writable. That way
e1e72965
RR
275 * we will come back here when a write does actually occur, so
276 * we can update the Guest's _PAGE_DIRTY flag. */
df29f43e 277 *spte = gpte_to_spte(lg, pte_wrprotect(gpte), 0);
d7e28ffe 278
bff672e6
RR
279 /* Finally, we write the Guest PTE entry back: we've set the
280 * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags. */
2d37f94a 281 lgwrite(lg, gpte_ptr, pte_t, gpte);
bff672e6 282
e1e72965
RR
283 /* The fault is fixed, the page table is populated, the mapping
284 * manipulated, the result returned and the code complete. A small
285 * delay and a trace of alliteration are the only indications the Guest
286 * has that a page fault occurred at all. */
d7e28ffe
RR
287 return 1;
288}
289
e1e72965
RR
290/*H:360
291 * (ii) Making sure the Guest stack is mapped.
bff672e6 292 *
e1e72965
RR
293 * Remember that direct traps into the Guest need a mapped Guest kernel stack.
294 * pin_stack_pages() calls us here: we could simply call demand_page(), but as
295 * we've seen that logic is quite long, and usually the stack pages are already
296 * mapped, so it's overkill.
bff672e6
RR
297 *
298 * This is a quick version which answers the question: is this virtual address
299 * mapped by the shadow page tables, and is it writable? */
d7e28ffe
RR
300static int page_writable(struct lguest *lg, unsigned long vaddr)
301{
df29f43e 302 pgd_t *spgd;
d7e28ffe
RR
303 unsigned long flags;
304
e1e72965 305 /* Look at the current top level entry: is it present? */
d7e28ffe 306 spgd = spgd_addr(lg, lg->pgdidx, vaddr);
df29f43e 307 if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
d7e28ffe
RR
308 return 0;
309
bff672e6
RR
310 /* Check the flags on the pte entry itself: it must be present and
311 * writable. */
df29f43e
MZ
312 flags = pte_flags(*(spte_addr(lg, *spgd, vaddr)));
313
d7e28ffe
RR
314 return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
315}
316
bff672e6
RR
317/* So, when pin_stack_pages() asks us to pin a page, we check if it's already
318 * in the page tables, and if not, we call demand_page() with error code 2
319 * (meaning "write"). */
d7e28ffe
RR
320void pin_page(struct lguest *lg, unsigned long vaddr)
321{
322 if (!page_writable(lg, vaddr) && !demand_page(lg, vaddr, 2))
323 kill_guest(lg, "bad stack page %#lx", vaddr);
324}
325
bff672e6 326/*H:450 If we chase down the release_pgd() code, it looks like this: */
df29f43e 327static void release_pgd(struct lguest *lg, pgd_t *spgd)
d7e28ffe 328{
bff672e6 329 /* If the entry's not present, there's nothing to release. */
df29f43e 330 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
d7e28ffe 331 unsigned int i;
bff672e6
RR
332 /* Converting the pfn to find the actual PTE page is easy: turn
333 * the page number into a physical address, then convert to a
334 * virtual address (easy for kernel pages like this one). */
df29f43e 335 pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
bff672e6 336 /* For each entry in the page, we might need to release it. */
df29f43e 337 for (i = 0; i < PTRS_PER_PTE; i++)
d7e28ffe 338 release_pte(ptepage[i]);
bff672e6 339 /* Now we can free the page of PTEs */
d7e28ffe 340 free_page((long)ptepage);
e1e72965 341 /* And zero out the PGD entry so we never release it twice. */
df29f43e 342 *spgd = __pgd(0);
d7e28ffe
RR
343 }
344}
345
e1e72965
RR
346/*H:445 We saw flush_user_mappings() twice: once from the flush_user_mappings()
347 * hypercall and once in new_pgdir() when we re-used a top-level pgdir page.
348 * It simply releases every PTE page from 0 up to the Guest's kernel address. */
d7e28ffe
RR
349static void flush_user_mappings(struct lguest *lg, int idx)
350{
351 unsigned int i;
bff672e6 352 /* Release every pgd entry up to the kernel's address. */
47436aa4 353 for (i = 0; i < pgd_index(lg->kernel_address); i++)
d7e28ffe
RR
354 release_pgd(lg, lg->pgdirs[idx].pgdir + i);
355}
356
e1e72965
RR
357/*H:440 (v) Flushing (throwing away) page tables,
358 *
359 * The Guest has a hypercall to throw away the page tables: it's used when a
360 * large number of mappings have been changed. */
d7e28ffe
RR
361void guest_pagetable_flush_user(struct lguest *lg)
362{
bff672e6 363 /* Drop the userspace part of the current page table. */
d7e28ffe
RR
364 flush_user_mappings(lg, lg->pgdidx);
365}
bff672e6 366/*:*/
d7e28ffe 367
47436aa4
RR
368/* We walk down the guest page tables to get a guest-physical address */
369unsigned long guest_pa(struct lguest *lg, unsigned long vaddr)
370{
371 pgd_t gpgd;
372 pte_t gpte;
373
374 /* First step: get the top-level Guest page table entry. */
2d37f94a 375 gpgd = lgread(lg, gpgd_addr(lg, vaddr), pgd_t);
47436aa4
RR
376 /* Toplevel not present? We can't map it in. */
377 if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
378 kill_guest(lg, "Bad address %#lx", vaddr);
379
2d37f94a 380 gpte = lgread(lg, gpte_addr(lg, gpgd, vaddr), pte_t);
47436aa4
RR
381 if (!(pte_flags(gpte) & _PAGE_PRESENT))
382 kill_guest(lg, "Bad address %#lx", vaddr);
383
384 return pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK);
385}
386
bff672e6
RR
387/* We keep several page tables. This is a simple routine to find the page
388 * table (if any) corresponding to this top-level address the Guest has given
389 * us. */
d7e28ffe
RR
390static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
391{
392 unsigned int i;
393 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
ee3db0f2 394 if (lg->pgdirs[i].gpgdir == pgtable)
d7e28ffe
RR
395 break;
396 return i;
397}
398
bff672e6
RR
399/*H:435 And this is us, creating the new page directory. If we really do
400 * allocate a new one (and so the kernel parts are not there), we set
401 * blank_pgdir. */
d7e28ffe 402static unsigned int new_pgdir(struct lguest *lg,
ee3db0f2 403 unsigned long gpgdir,
d7e28ffe
RR
404 int *blank_pgdir)
405{
406 unsigned int next;
407
bff672e6
RR
408 /* We pick one entry at random to throw out. Choosing the Least
409 * Recently Used might be better, but this is easy. */
d7e28ffe 410 next = random32() % ARRAY_SIZE(lg->pgdirs);
bff672e6 411 /* If it's never been allocated at all before, try now. */
d7e28ffe 412 if (!lg->pgdirs[next].pgdir) {
df29f43e 413 lg->pgdirs[next].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL);
bff672e6 414 /* If the allocation fails, just keep using the one we have */
d7e28ffe
RR
415 if (!lg->pgdirs[next].pgdir)
416 next = lg->pgdidx;
417 else
bff672e6
RR
418 /* This is a blank page, so there are no kernel
419 * mappings: caller must map the stack! */
d7e28ffe
RR
420 *blank_pgdir = 1;
421 }
bff672e6 422 /* Record which Guest toplevel this shadows. */
ee3db0f2 423 lg->pgdirs[next].gpgdir = gpgdir;
d7e28ffe
RR
424 /* Release all the non-kernel mappings. */
425 flush_user_mappings(lg, next);
426
427 return next;
428}
429
bff672e6
RR
430/*H:430 (iv) Switching page tables
431 *
e1e72965
RR
432 * Now we've seen all the page table setting and manipulation, let's see what
433 * what happens when the Guest changes page tables (ie. changes the top-level
434 * pgdir). This occurs on almost every context switch. */
d7e28ffe
RR
435void guest_new_pagetable(struct lguest *lg, unsigned long pgtable)
436{
437 int newpgdir, repin = 0;
438
bff672e6 439 /* Look to see if we have this one already. */
d7e28ffe 440 newpgdir = find_pgdir(lg, pgtable);
bff672e6
RR
441 /* If not, we allocate or mug an existing one: if it's a fresh one,
442 * repin gets set to 1. */
d7e28ffe
RR
443 if (newpgdir == ARRAY_SIZE(lg->pgdirs))
444 newpgdir = new_pgdir(lg, pgtable, &repin);
bff672e6 445 /* Change the current pgd index to the new one. */
d7e28ffe 446 lg->pgdidx = newpgdir;
bff672e6 447 /* If it was completely blank, we map in the Guest kernel stack */
d7e28ffe
RR
448 if (repin)
449 pin_stack_pages(lg);
450}
451
bff672e6 452/*H:470 Finally, a routine which throws away everything: all PGD entries in all
e1e72965
RR
453 * the shadow page tables, including the Guest's kernel mappings. This is used
454 * when we destroy the Guest. */
d7e28ffe
RR
455static void release_all_pagetables(struct lguest *lg)
456{
457 unsigned int i, j;
458
bff672e6 459 /* Every shadow pagetable this Guest has */
d7e28ffe
RR
460 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
461 if (lg->pgdirs[i].pgdir)
bff672e6 462 /* Every PGD entry except the Switcher at the top */
d7e28ffe
RR
463 for (j = 0; j < SWITCHER_PGD_INDEX; j++)
464 release_pgd(lg, lg->pgdirs[i].pgdir + j);
465}
466
bff672e6
RR
467/* We also throw away everything when a Guest tells us it's changed a kernel
468 * mapping. Since kernel mappings are in every page table, it's easiest to
e1e72965
RR
469 * throw them all away. This traps the Guest in amber for a while as
470 * everything faults back in, but it's rare. */
d7e28ffe
RR
471void guest_pagetable_clear_all(struct lguest *lg)
472{
473 release_all_pagetables(lg);
bff672e6 474 /* We need the Guest kernel stack mapped again. */
d7e28ffe
RR
475 pin_stack_pages(lg);
476}
e1e72965
RR
477/*:*/
478/*M:009 Since we throw away all mappings when a kernel mapping changes, our
479 * performance sucks for guests using highmem. In fact, a guest with
480 * PAGE_OFFSET 0xc0000000 (the default) and more than about 700MB of RAM is
481 * usually slower than a Guest with less memory.
482 *
483 * This, of course, cannot be fixed. It would take some kind of... well, I
484 * don't know, but the term "puissant code-fu" comes to mind. :*/
d7e28ffe 485
bff672e6
RR
486/*H:420 This is the routine which actually sets the page table entry for then
487 * "idx"'th shadow page table.
488 *
489 * Normally, we can just throw out the old entry and replace it with 0: if they
490 * use it demand_page() will put the new entry in. We need to do this anyway:
491 * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page
492 * is read from, and _PAGE_DIRTY when it's written to.
493 *
494 * But Avi Kivity pointed out that most Operating Systems (Linux included) set
495 * these bits on PTEs immediately anyway. This is done to save the CPU from
496 * having to update them, but it helps us the same way: if they set
497 * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
498 * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
499 */
d7e28ffe 500static void do_set_pte(struct lguest *lg, int idx,
df29f43e 501 unsigned long vaddr, pte_t gpte)
d7e28ffe 502{
e1e72965 503 /* Look up the matching shadow page directory entry. */
df29f43e 504 pgd_t *spgd = spgd_addr(lg, idx, vaddr);
bff672e6
RR
505
506 /* If the top level isn't present, there's no entry to update. */
df29f43e 507 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
bff672e6 508 /* Otherwise, we start by releasing the existing entry. */
df29f43e 509 pte_t *spte = spte_addr(lg, *spgd, vaddr);
d7e28ffe 510 release_pte(*spte);
bff672e6
RR
511
512 /* If they're setting this entry as dirty or accessed, we might
513 * as well put that entry they've given us in now. This shaves
514 * 10% off a copy-on-write micro-benchmark. */
df29f43e 515 if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
d7e28ffe 516 check_gpte(lg, gpte);
df29f43e
MZ
517 *spte = gpte_to_spte(lg, gpte,
518 pte_flags(gpte) & _PAGE_DIRTY);
d7e28ffe 519 } else
e1e72965
RR
520 /* Otherwise kill it and we can demand_page() it in
521 * later. */
df29f43e 522 *spte = __pte(0);
d7e28ffe
RR
523 }
524}
525
bff672e6
RR
526/*H:410 Updating a PTE entry is a little trickier.
527 *
528 * We keep track of several different page tables (the Guest uses one for each
529 * process, so it makes sense to cache at least a few). Each of these have
530 * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for
531 * all processes. So when the page table above that address changes, we update
532 * all the page tables, not just the current one. This is rare.
533 *
534 * The benefit is that when we have to track a new page table, we can copy keep
535 * all the kernel mappings. This speeds up context switch immensely. */
d7e28ffe 536void guest_set_pte(struct lguest *lg,
ee3db0f2 537 unsigned long gpgdir, unsigned long vaddr, pte_t gpte)
d7e28ffe 538{
bff672e6
RR
539 /* Kernel mappings must be changed on all top levels. Slow, but
540 * doesn't happen often. */
47436aa4 541 if (vaddr >= lg->kernel_address) {
d7e28ffe
RR
542 unsigned int i;
543 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
544 if (lg->pgdirs[i].pgdir)
545 do_set_pte(lg, i, vaddr, gpte);
546 } else {
bff672e6 547 /* Is this page table one we have a shadow for? */
ee3db0f2 548 int pgdir = find_pgdir(lg, gpgdir);
d7e28ffe 549 if (pgdir != ARRAY_SIZE(lg->pgdirs))
bff672e6 550 /* If so, do the update. */
d7e28ffe
RR
551 do_set_pte(lg, pgdir, vaddr, gpte);
552 }
553}
554
bff672e6 555/*H:400
e1e72965 556 * (iii) Setting up a page table entry when the Guest tells us one has changed.
bff672e6
RR
557 *
558 * Just like we did in interrupts_and_traps.c, it makes sense for us to deal
559 * with the other side of page tables while we're here: what happens when the
560 * Guest asks for a page table to be updated?
561 *
562 * We already saw that demand_page() will fill in the shadow page tables when
563 * needed, so we can simply remove shadow page table entries whenever the Guest
564 * tells us they've changed. When the Guest tries to use the new entry it will
565 * fault and demand_page() will fix it up.
566 *
567 * So with that in mind here's our code to to update a (top-level) PGD entry:
568 */
ee3db0f2 569void guest_set_pmd(struct lguest *lg, unsigned long gpgdir, u32 idx)
d7e28ffe
RR
570{
571 int pgdir;
572
bff672e6
RR
573 /* The kernel seems to try to initialize this early on: we ignore its
574 * attempts to map over the Switcher. */
d7e28ffe
RR
575 if (idx >= SWITCHER_PGD_INDEX)
576 return;
577
bff672e6 578 /* If they're talking about a page table we have a shadow for... */
ee3db0f2 579 pgdir = find_pgdir(lg, gpgdir);
d7e28ffe 580 if (pgdir < ARRAY_SIZE(lg->pgdirs))
bff672e6 581 /* ... throw it away. */
d7e28ffe
RR
582 release_pgd(lg, lg->pgdirs[pgdir].pgdir + idx);
583}
584
bff672e6
RR
585/*H:500 (vii) Setting up the page tables initially.
586 *
587 * When a Guest is first created, the Launcher tells us where the toplevel of
588 * its first page table is. We set some things up here: */
d7e28ffe
RR
589int init_guest_pagetable(struct lguest *lg, unsigned long pgtable)
590{
bff672e6
RR
591 /* We start on the first shadow page table, and give it a blank PGD
592 * page. */
d7e28ffe 593 lg->pgdidx = 0;
ee3db0f2 594 lg->pgdirs[lg->pgdidx].gpgdir = pgtable;
df29f43e 595 lg->pgdirs[lg->pgdidx].pgdir = (pgd_t*)get_zeroed_page(GFP_KERNEL);
d7e28ffe
RR
596 if (!lg->pgdirs[lg->pgdidx].pgdir)
597 return -ENOMEM;
598 return 0;
599}
600
47436aa4
RR
601/* When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
602void page_table_guest_data_init(struct lguest *lg)
603{
604 /* We get the kernel address: above this is all kernel memory. */
605 if (get_user(lg->kernel_address, &lg->lguest_data->kernel_address)
606 /* We tell the Guest that it can't use the top 4MB of virtual
607 * addresses used by the Switcher. */
608 || put_user(4U*1024*1024, &lg->lguest_data->reserve_mem)
609 || put_user(lg->pgdirs[lg->pgdidx].gpgdir,&lg->lguest_data->pgdir))
610 kill_guest(lg, "bad guest page %p", lg->lguest_data);
611
612 /* In flush_user_mappings() we loop from 0 to
613 * "pgd_index(lg->kernel_address)". This assumes it won't hit the
614 * Switcher mappings, so check that now. */
615 if (pgd_index(lg->kernel_address) >= SWITCHER_PGD_INDEX)
616 kill_guest(lg, "bad kernel address %#lx", lg->kernel_address);
617}
618
bff672e6 619/* When a Guest dies, our cleanup is fairly simple. */
d7e28ffe
RR
620void free_guest_pagetable(struct lguest *lg)
621{
622 unsigned int i;
623
bff672e6 624 /* Throw away all page table pages. */
d7e28ffe 625 release_all_pagetables(lg);
bff672e6 626 /* Now free the top levels: free_page() can handle 0 just fine. */
d7e28ffe
RR
627 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
628 free_page((long)lg->pgdirs[i].pgdir);
629}
630
bff672e6
RR
631/*H:480 (vi) Mapping the Switcher when the Guest is about to run.
632 *
e1e72965 633 * The Switcher and the two pages for this CPU need to be visible in the
bff672e6 634 * Guest (and not the pages for other CPUs). We have the appropriate PTE pages
e1e72965
RR
635 * for each CPU already set up, we just need to hook them in now we know which
636 * Guest is about to run on this CPU. */
d7e28ffe
RR
637void map_switcher_in_guest(struct lguest *lg, struct lguest_pages *pages)
638{
df29f43e
MZ
639 pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages);
640 pgd_t switcher_pgd;
641 pte_t regs_pte;
d7e28ffe 642
bff672e6
RR
643 /* Make the last PGD entry for this Guest point to the Switcher's PTE
644 * page for this CPU (with appropriate flags). */
df29f43e
MZ
645 switcher_pgd = __pgd(__pa(switcher_pte_page) | _PAGE_KERNEL);
646
d7e28ffe
RR
647 lg->pgdirs[lg->pgdidx].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
648
bff672e6
RR
649 /* We also change the Switcher PTE page. When we're running the Guest,
650 * we want the Guest's "regs" page to appear where the first Switcher
651 * page for this CPU is. This is an optimization: when the Switcher
652 * saves the Guest registers, it saves them into the first page of this
653 * CPU's "struct lguest_pages": if we make sure the Guest's register
654 * page is already mapped there, we don't have to copy them out
655 * again. */
df29f43e
MZ
656 regs_pte = pfn_pte (__pa(lg->regs_page) >> PAGE_SHIFT, __pgprot(_PAGE_KERNEL));
657 switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTRS_PER_PTE] = regs_pte;
d7e28ffe 658}
bff672e6 659/*:*/
d7e28ffe
RR
660
661static void free_switcher_pte_pages(void)
662{
663 unsigned int i;
664
665 for_each_possible_cpu(i)
666 free_page((long)switcher_pte_page(i));
667}
668
bff672e6
RR
669/*H:520 Setting up the Switcher PTE page for given CPU is fairly easy, given
670 * the CPU number and the "struct page"s for the Switcher code itself.
671 *
672 * Currently the Switcher is less than a page long, so "pages" is always 1. */
d7e28ffe
RR
673static __init void populate_switcher_pte_page(unsigned int cpu,
674 struct page *switcher_page[],
675 unsigned int pages)
676{
677 unsigned int i;
df29f43e 678 pte_t *pte = switcher_pte_page(cpu);
d7e28ffe 679
bff672e6 680 /* The first entries are easy: they map the Switcher code. */
d7e28ffe 681 for (i = 0; i < pages; i++) {
df29f43e
MZ
682 pte[i] = mk_pte(switcher_page[i],
683 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED));
d7e28ffe
RR
684 }
685
bff672e6 686 /* The only other thing we map is this CPU's pair of pages. */
d7e28ffe
RR
687 i = pages + cpu*2;
688
bff672e6 689 /* First page (Guest registers) is writable from the Guest */
df29f43e
MZ
690 pte[i] = pfn_pte(page_to_pfn(switcher_page[i]),
691 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW));
692
bff672e6
RR
693 /* The second page contains the "struct lguest_ro_state", and is
694 * read-only. */
df29f43e
MZ
695 pte[i+1] = pfn_pte(page_to_pfn(switcher_page[i+1]),
696 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED));
d7e28ffe
RR
697}
698
e1e72965
RR
699/* We've made it through the page table code. Perhaps our tired brains are
700 * still processing the details, or perhaps we're simply glad it's over.
701 *
702 * If nothing else, note that all this complexity in juggling shadow page
703 * tables in sync with the Guest's page tables is for one reason: for most
704 * Guests this page table dance determines how bad performance will be. This
705 * is why Xen uses exotic direct Guest pagetable manipulation, and why both
706 * Intel and AMD have implemented shadow page table support directly into
707 * hardware.
708 *
709 * There is just one file remaining in the Host. */
710
bff672e6
RR
711/*H:510 At boot or module load time, init_pagetables() allocates and populates
712 * the Switcher PTE page for each CPU. */
d7e28ffe
RR
713__init int init_pagetables(struct page **switcher_page, unsigned int pages)
714{
715 unsigned int i;
716
717 for_each_possible_cpu(i) {
df29f43e 718 switcher_pte_page(i) = (pte_t *)get_zeroed_page(GFP_KERNEL);
d7e28ffe
RR
719 if (!switcher_pte_page(i)) {
720 free_switcher_pte_pages();
721 return -ENOMEM;
722 }
723 populate_switcher_pte_page(i, switcher_page, pages);
724 }
725 return 0;
726}
bff672e6 727/*:*/
d7e28ffe 728
bff672e6 729/* Cleaning up simply involves freeing the PTE page for each CPU. */
d7e28ffe
RR
730void free_pagetables(void)
731{
732 free_switcher_pte_pages();
733}