]> git.ipfire.org Git - people/ms/linux.git/blame - drivers/lguest/page_tables.c
lguest: use native_set_* macros, which properly handle 64-bit entries when PAE is...
[people/ms/linux.git] / drivers / lguest / page_tables.c
CommitLineData
f938d2c8
RR
1/*P:700 The pagetable code, on the other hand, still shows the scars of
2 * previous encounters. It's functional, and as neat as it can be in the
3 * circumstances, but be wary, for these things are subtle and break easily.
4 * The Guest provides a virtual to physical mapping, but we can neither trust
a6bd8e13
RR
5 * it nor use it: we verify and convert it here then point the CPU to the
6 * converted Guest pages when running the Guest. :*/
f938d2c8
RR
7
8/* Copyright (C) Rusty Russell IBM Corporation 2006.
d7e28ffe
RR
9 * GPL v2 and any later version */
10#include <linux/mm.h>
11#include <linux/types.h>
12#include <linux/spinlock.h>
13#include <linux/random.h>
14#include <linux/percpu.h>
15#include <asm/tlbflush.h>
47436aa4 16#include <asm/uaccess.h>
58a24566 17#include <asm/bootparam.h>
d7e28ffe
RR
18#include "lg.h"
19
f56a384e
RR
20/*M:008 We hold reference to pages, which prevents them from being swapped.
21 * It'd be nice to have a callback in the "struct mm_struct" when Linux wants
22 * to swap out. If we had this, and a shrinker callback to trim PTE pages, we
23 * could probably consider launching Guests as non-root. :*/
24
bff672e6
RR
25/*H:300
26 * The Page Table Code
27 *
28 * We use two-level page tables for the Guest. If you're not entirely
29 * comfortable with virtual addresses, physical addresses and page tables then
e1e72965
RR
30 * I recommend you review arch/x86/lguest/boot.c's "Page Table Handling" (with
31 * diagrams!).
bff672e6
RR
32 *
33 * The Guest keeps page tables, but we maintain the actual ones here: these are
34 * called "shadow" page tables. Which is a very Guest-centric name: these are
35 * the real page tables the CPU uses, although we keep them up to date to
36 * reflect the Guest's. (See what I mean about weird naming? Since when do
37 * shadows reflect anything?)
38 *
39 * Anyway, this is the most complicated part of the Host code. There are seven
40 * parts to this:
e1e72965
RR
41 * (i) Looking up a page table entry when the Guest faults,
42 * (ii) Making sure the Guest stack is mapped,
43 * (iii) Setting up a page table entry when the Guest tells us one has changed,
bff672e6 44 * (iv) Switching page tables,
e1e72965 45 * (v) Flushing (throwing away) page tables,
bff672e6
RR
46 * (vi) Mapping the Switcher when the Guest is about to run,
47 * (vii) Setting up the page tables initially.
48 :*/
49
bff672e6
RR
50
51/* 1024 entries in a page table page maps 1024 pages: 4MB. The Switcher is
52 * conveniently placed at the top 4MB, so it uses a separate, complete PTE
53 * page. */
df29f43e 54#define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
d7e28ffe 55
bff672e6
RR
56/* We actually need a separate PTE page for each CPU. Remember that after the
57 * Switcher code itself comes two pages for each CPU, and we don't want this
58 * CPU's guest to see the pages of any other CPU. */
df29f43e 59static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
d7e28ffe
RR
60#define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
61
e1e72965
RR
62/*H:320 The page table code is curly enough to need helper functions to keep it
63 * clear and clean.
bff672e6 64 *
df29f43e 65 * There are two functions which return pointers to the shadow (aka "real")
bff672e6
RR
66 * page tables.
67 *
68 * spgd_addr() takes the virtual address and returns a pointer to the top-level
e1e72965
RR
69 * page directory entry (PGD) for that address. Since we keep track of several
70 * page tables, the "i" argument tells us which one we're interested in (it's
bff672e6 71 * usually the current one). */
382ac6b3 72static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr)
d7e28ffe 73{
df29f43e 74 unsigned int index = pgd_index(vaddr);
d7e28ffe 75
bff672e6 76 /* We kill any Guest trying to touch the Switcher addresses. */
d7e28ffe 77 if (index >= SWITCHER_PGD_INDEX) {
382ac6b3 78 kill_guest(cpu, "attempt to access switcher pages");
d7e28ffe
RR
79 index = 0;
80 }
bff672e6 81 /* Return a pointer index'th pgd entry for the i'th page table. */
382ac6b3 82 return &cpu->lg->pgdirs[i].pgdir[index];
d7e28ffe
RR
83}
84
e1e72965
RR
85/* This routine then takes the page directory entry returned above, which
86 * contains the address of the page table entry (PTE) page. It then returns a
87 * pointer to the PTE entry for the given address. */
2092aa27 88static pte_t *spte_addr(pgd_t spgd, unsigned long vaddr)
d7e28ffe 89{
df29f43e 90 pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
bff672e6 91 /* You should never call this if the PGD entry wasn't valid */
df29f43e 92 BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
90603d15 93 return &page[pte_index(vaddr)];
d7e28ffe
RR
94}
95
bff672e6
RR
96/* These two functions just like the above two, except they access the Guest
97 * page tables. Hence they return a Guest address. */
1713608f 98static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
d7e28ffe 99{
df29f43e 100 unsigned int index = vaddr >> (PGDIR_SHIFT);
1713608f 101 return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t);
d7e28ffe
RR
102}
103
934faab4 104static unsigned long gpte_addr(pgd_t gpgd, unsigned long vaddr)
d7e28ffe 105{
df29f43e
MZ
106 unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
107 BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
90603d15 108 return gpage + pte_index(vaddr) * sizeof(pte_t);
d7e28ffe 109}
a6bd8e13
RR
110/*:*/
111
71a3f4ed
RR
112/*M:014 get_pfn is slow: we could probably try to grab batches of pages here as
113 * an optimization (ie. pre-faulting). :*/
d7e28ffe 114
bff672e6
RR
115/*H:350 This routine takes a page number given by the Guest and converts it to
116 * an actual, physical page number. It can fail for several reasons: the
117 * virtual address might not be mapped by the Launcher, the write flag is set
118 * and the page is read-only, or the write flag was set and the page was
119 * shared so had to be copied, but we ran out of memory.
120 *
a6bd8e13
RR
121 * This holds a reference to the page, so release_pte() is careful to put that
122 * back. */
d7e28ffe
RR
123static unsigned long get_pfn(unsigned long virtpfn, int write)
124{
125 struct page *page;
71a3f4ed
RR
126
127 /* gup me one page at this address please! */
128 if (get_user_pages_fast(virtpfn << PAGE_SHIFT, 1, write, &page) == 1)
129 return page_to_pfn(page);
130
bff672e6 131 /* This value indicates failure. */
71a3f4ed 132 return -1UL;
d7e28ffe
RR
133}
134
bff672e6
RR
135/*H:340 Converting a Guest page table entry to a shadow (ie. real) page table
136 * entry can be a little tricky. The flags are (almost) the same, but the
137 * Guest PTE contains a virtual page number: the CPU needs the real page
138 * number. */
382ac6b3 139static pte_t gpte_to_spte(struct lg_cpu *cpu, pte_t gpte, int write)
d7e28ffe 140{
df29f43e 141 unsigned long pfn, base, flags;
d7e28ffe 142
bff672e6
RR
143 /* The Guest sets the global flag, because it thinks that it is using
144 * PGE. We only told it to use PGE so it would tell us whether it was
145 * flushing a kernel mapping or a userspace mapping. We don't actually
146 * use the global bit, so throw it away. */
df29f43e 147 flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
bff672e6 148
3c6b5bfa 149 /* The Guest's pages are offset inside the Launcher. */
382ac6b3 150 base = (unsigned long)cpu->lg->mem_base / PAGE_SIZE;
3c6b5bfa 151
bff672e6
RR
152 /* We need a temporary "unsigned long" variable to hold the answer from
153 * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
154 * fit in spte.pfn. get_pfn() finds the real physical number of the
155 * page, given the virtual number. */
df29f43e 156 pfn = get_pfn(base + pte_pfn(gpte), write);
d7e28ffe 157 if (pfn == -1UL) {
382ac6b3 158 kill_guest(cpu, "failed to get page %lu", pte_pfn(gpte));
bff672e6
RR
159 /* When we destroy the Guest, we'll go through the shadow page
160 * tables and release_pte() them. Make sure we don't think
161 * this one is valid! */
df29f43e 162 flags = 0;
d7e28ffe 163 }
df29f43e
MZ
164 /* Now we assemble our shadow PTE from the page number and flags. */
165 return pfn_pte(pfn, __pgprot(flags));
d7e28ffe
RR
166}
167
bff672e6 168/*H:460 And to complete the chain, release_pte() looks like this: */
df29f43e 169static void release_pte(pte_t pte)
d7e28ffe 170{
71a3f4ed 171 /* Remember that get_user_pages_fast() took a reference to the page, in
bff672e6 172 * get_pfn()? We have to put it back now. */
df29f43e 173 if (pte_flags(pte) & _PAGE_PRESENT)
90603d15 174 put_page(pte_page(pte));
d7e28ffe 175}
bff672e6 176/*:*/
d7e28ffe 177
382ac6b3 178static void check_gpte(struct lg_cpu *cpu, pte_t gpte)
d7e28ffe 179{
31f4b46e
AD
180 if ((pte_flags(gpte) & _PAGE_PSE) ||
181 pte_pfn(gpte) >= cpu->lg->pfn_limit)
382ac6b3 182 kill_guest(cpu, "bad page table entry");
d7e28ffe
RR
183}
184
382ac6b3 185static void check_gpgd(struct lg_cpu *cpu, pgd_t gpgd)
d7e28ffe 186{
382ac6b3
GOC
187 if ((pgd_flags(gpgd) & ~_PAGE_TABLE) ||
188 (pgd_pfn(gpgd) >= cpu->lg->pfn_limit))
189 kill_guest(cpu, "bad page directory entry");
d7e28ffe
RR
190}
191
bff672e6 192/*H:330
e1e72965 193 * (i) Looking up a page table entry when the Guest faults.
bff672e6
RR
194 *
195 * We saw this call in run_guest(): when we see a page fault in the Guest, we
196 * come here. That's because we only set up the shadow page tables lazily as
197 * they're needed, so we get page faults all the time and quietly fix them up
198 * and return to the Guest without it knowing.
199 *
200 * If we fixed up the fault (ie. we mapped the address), this routine returns
e1e72965 201 * true. Otherwise, it was a real fault and we need to tell the Guest. */
df1693ab 202bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
d7e28ffe 203{
df29f43e
MZ
204 pgd_t gpgd;
205 pgd_t *spgd;
d7e28ffe 206 unsigned long gpte_ptr;
df29f43e
MZ
207 pte_t gpte;
208 pte_t *spte;
d7e28ffe 209
bff672e6 210 /* First step: get the top-level Guest page table entry. */
382ac6b3 211 gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
bff672e6 212 /* Toplevel not present? We can't map it in. */
df29f43e 213 if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
df1693ab 214 return false;
d7e28ffe 215
bff672e6 216 /* Now look at the matching shadow entry. */
382ac6b3 217 spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
df29f43e 218 if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
bff672e6 219 /* No shadow entry: allocate a new shadow PTE page. */
d7e28ffe 220 unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
bff672e6
RR
221 /* This is not really the Guest's fault, but killing it is
222 * simple for this corner case. */
d7e28ffe 223 if (!ptepage) {
382ac6b3 224 kill_guest(cpu, "out of memory allocating pte page");
df1693ab 225 return false;
d7e28ffe 226 }
bff672e6 227 /* We check that the Guest pgd is OK. */
382ac6b3 228 check_gpgd(cpu, gpgd);
bff672e6
RR
229 /* And we copy the flags to the shadow PGD entry. The page
230 * number in the shadow PGD is the page we just allocated. */
df29f43e 231 *spgd = __pgd(__pa(ptepage) | pgd_flags(gpgd));
d7e28ffe
RR
232 }
233
bff672e6
RR
234 /* OK, now we look at the lower level in the Guest page table: keep its
235 * address, because we might update it later. */
934faab4 236 gpte_ptr = gpte_addr(gpgd, vaddr);
382ac6b3 237 gpte = lgread(cpu, gpte_ptr, pte_t);
d7e28ffe 238
bff672e6 239 /* If this page isn't in the Guest page tables, we can't page it in. */
df29f43e 240 if (!(pte_flags(gpte) & _PAGE_PRESENT))
df1693ab 241 return false;
d7e28ffe 242
bff672e6
RR
243 /* Check they're not trying to write to a page the Guest wants
244 * read-only (bit 2 of errcode == write). */
df29f43e 245 if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
df1693ab 246 return false;
d7e28ffe 247
e1e72965 248 /* User access to a kernel-only page? (bit 3 == user access) */
df29f43e 249 if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
df1693ab 250 return false;
d7e28ffe 251
bff672e6
RR
252 /* Check that the Guest PTE flags are OK, and the page number is below
253 * the pfn_limit (ie. not mapping the Launcher binary). */
382ac6b3 254 check_gpte(cpu, gpte);
e1e72965 255
bff672e6 256 /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
df29f43e 257 gpte = pte_mkyoung(gpte);
d7e28ffe 258 if (errcode & 2)
df29f43e 259 gpte = pte_mkdirty(gpte);
d7e28ffe 260
bff672e6 261 /* Get the pointer to the shadow PTE entry we're going to set. */
2092aa27 262 spte = spte_addr(*spgd, vaddr);
bff672e6
RR
263 /* If there was a valid shadow PTE entry here before, we release it.
264 * This can happen with a write to a previously read-only entry. */
d7e28ffe
RR
265 release_pte(*spte);
266
bff672e6
RR
267 /* If this is a write, we insist that the Guest page is writable (the
268 * final arg to gpte_to_spte()). */
df29f43e 269 if (pte_dirty(gpte))
382ac6b3 270 *spte = gpte_to_spte(cpu, gpte, 1);
df29f43e 271 else
bff672e6
RR
272 /* If this is a read, don't set the "writable" bit in the page
273 * table entry, even if the Guest says it's writable. That way
e1e72965
RR
274 * we will come back here when a write does actually occur, so
275 * we can update the Guest's _PAGE_DIRTY flag. */
90603d15 276 native_set_pte(spte, gpte_to_spte(cpu, pte_wrprotect(gpte), 0));
d7e28ffe 277
bff672e6
RR
278 /* Finally, we write the Guest PTE entry back: we've set the
279 * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags. */
382ac6b3 280 lgwrite(cpu, gpte_ptr, pte_t, gpte);
bff672e6 281
e1e72965
RR
282 /* The fault is fixed, the page table is populated, the mapping
283 * manipulated, the result returned and the code complete. A small
284 * delay and a trace of alliteration are the only indications the Guest
285 * has that a page fault occurred at all. */
df1693ab 286 return true;
d7e28ffe
RR
287}
288
e1e72965
RR
289/*H:360
290 * (ii) Making sure the Guest stack is mapped.
bff672e6 291 *
e1e72965
RR
292 * Remember that direct traps into the Guest need a mapped Guest kernel stack.
293 * pin_stack_pages() calls us here: we could simply call demand_page(), but as
294 * we've seen that logic is quite long, and usually the stack pages are already
295 * mapped, so it's overkill.
bff672e6
RR
296 *
297 * This is a quick version which answers the question: is this virtual address
298 * mapped by the shadow page tables, and is it writable? */
df1693ab 299static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr)
d7e28ffe 300{
df29f43e 301 pgd_t *spgd;
d7e28ffe
RR
302 unsigned long flags;
303
e1e72965 304 /* Look at the current top level entry: is it present? */
382ac6b3 305 spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
df29f43e 306 if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
df1693ab 307 return false;
d7e28ffe 308
bff672e6
RR
309 /* Check the flags on the pte entry itself: it must be present and
310 * writable. */
2092aa27 311 flags = pte_flags(*(spte_addr(*spgd, vaddr)));
df29f43e 312
d7e28ffe
RR
313 return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
314}
315
bff672e6
RR
316/* So, when pin_stack_pages() asks us to pin a page, we check if it's already
317 * in the page tables, and if not, we call demand_page() with error code 2
318 * (meaning "write"). */
1713608f 319void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
d7e28ffe 320{
1713608f 321 if (!page_writable(cpu, vaddr) && !demand_page(cpu, vaddr, 2))
382ac6b3 322 kill_guest(cpu, "bad stack page %#lx", vaddr);
d7e28ffe
RR
323}
324
bff672e6 325/*H:450 If we chase down the release_pgd() code, it looks like this: */
90603d15 326static void release_pgd(pgd_t *spgd)
d7e28ffe 327{
bff672e6 328 /* If the entry's not present, there's nothing to release. */
df29f43e 329 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
d7e28ffe 330 unsigned int i;
bff672e6
RR
331 /* Converting the pfn to find the actual PTE page is easy: turn
332 * the page number into a physical address, then convert to a
333 * virtual address (easy for kernel pages like this one). */
df29f43e 334 pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
bff672e6 335 /* For each entry in the page, we might need to release it. */
df29f43e 336 for (i = 0; i < PTRS_PER_PTE; i++)
d7e28ffe 337 release_pte(ptepage[i]);
bff672e6 338 /* Now we can free the page of PTEs */
d7e28ffe 339 free_page((long)ptepage);
e1e72965 340 /* And zero out the PGD entry so we never release it twice. */
df29f43e 341 *spgd = __pgd(0);
d7e28ffe
RR
342 }
343}
344
e1e72965
RR
345/*H:445 We saw flush_user_mappings() twice: once from the flush_user_mappings()
346 * hypercall and once in new_pgdir() when we re-used a top-level pgdir page.
347 * It simply releases every PTE page from 0 up to the Guest's kernel address. */
d7e28ffe
RR
348static void flush_user_mappings(struct lguest *lg, int idx)
349{
350 unsigned int i;
bff672e6 351 /* Release every pgd entry up to the kernel's address. */
47436aa4 352 for (i = 0; i < pgd_index(lg->kernel_address); i++)
90603d15 353 release_pgd(lg->pgdirs[idx].pgdir + i);
d7e28ffe
RR
354}
355
e1e72965
RR
356/*H:440 (v) Flushing (throwing away) page tables,
357 *
358 * The Guest has a hypercall to throw away the page tables: it's used when a
359 * large number of mappings have been changed. */
1713608f 360void guest_pagetable_flush_user(struct lg_cpu *cpu)
d7e28ffe 361{
bff672e6 362 /* Drop the userspace part of the current page table. */
1713608f 363 flush_user_mappings(cpu->lg, cpu->cpu_pgd);
d7e28ffe 364}
bff672e6 365/*:*/
d7e28ffe 366
47436aa4 367/* We walk down the guest page tables to get a guest-physical address */
1713608f 368unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
47436aa4
RR
369{
370 pgd_t gpgd;
371 pte_t gpte;
372
373 /* First step: get the top-level Guest page table entry. */
382ac6b3 374 gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
47436aa4 375 /* Toplevel not present? We can't map it in. */
6afbdd05 376 if (!(pgd_flags(gpgd) & _PAGE_PRESENT)) {
382ac6b3 377 kill_guest(cpu, "Bad address %#lx", vaddr);
6afbdd05
RR
378 return -1UL;
379 }
47436aa4 380
382ac6b3 381 gpte = lgread(cpu, gpte_addr(gpgd, vaddr), pte_t);
47436aa4 382 if (!(pte_flags(gpte) & _PAGE_PRESENT))
382ac6b3 383 kill_guest(cpu, "Bad address %#lx", vaddr);
47436aa4
RR
384
385 return pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK);
386}
387
bff672e6
RR
388/* We keep several page tables. This is a simple routine to find the page
389 * table (if any) corresponding to this top-level address the Guest has given
390 * us. */
d7e28ffe
RR
391static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
392{
393 unsigned int i;
394 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
4357bd94 395 if (lg->pgdirs[i].pgdir && lg->pgdirs[i].gpgdir == pgtable)
d7e28ffe
RR
396 break;
397 return i;
398}
399
bff672e6
RR
400/*H:435 And this is us, creating the new page directory. If we really do
401 * allocate a new one (and so the kernel parts are not there), we set
402 * blank_pgdir. */
1713608f 403static unsigned int new_pgdir(struct lg_cpu *cpu,
ee3db0f2 404 unsigned long gpgdir,
d7e28ffe
RR
405 int *blank_pgdir)
406{
407 unsigned int next;
408
bff672e6
RR
409 /* We pick one entry at random to throw out. Choosing the Least
410 * Recently Used might be better, but this is easy. */
382ac6b3 411 next = random32() % ARRAY_SIZE(cpu->lg->pgdirs);
bff672e6 412 /* If it's never been allocated at all before, try now. */
382ac6b3
GOC
413 if (!cpu->lg->pgdirs[next].pgdir) {
414 cpu->lg->pgdirs[next].pgdir =
415 (pgd_t *)get_zeroed_page(GFP_KERNEL);
bff672e6 416 /* If the allocation fails, just keep using the one we have */
382ac6b3 417 if (!cpu->lg->pgdirs[next].pgdir)
1713608f 418 next = cpu->cpu_pgd;
d7e28ffe 419 else
bff672e6
RR
420 /* This is a blank page, so there are no kernel
421 * mappings: caller must map the stack! */
d7e28ffe
RR
422 *blank_pgdir = 1;
423 }
bff672e6 424 /* Record which Guest toplevel this shadows. */
382ac6b3 425 cpu->lg->pgdirs[next].gpgdir = gpgdir;
d7e28ffe 426 /* Release all the non-kernel mappings. */
382ac6b3 427 flush_user_mappings(cpu->lg, next);
d7e28ffe
RR
428
429 return next;
430}
431
bff672e6
RR
432/*H:430 (iv) Switching page tables
433 *
90603d15 434 * Now we've seen all the page table setting and manipulation, let's see
e1e72965
RR
435 * what happens when the Guest changes page tables (ie. changes the top-level
436 * pgdir). This occurs on almost every context switch. */
4665ac8e 437void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
d7e28ffe
RR
438{
439 int newpgdir, repin = 0;
440
bff672e6 441 /* Look to see if we have this one already. */
382ac6b3 442 newpgdir = find_pgdir(cpu->lg, pgtable);
bff672e6
RR
443 /* If not, we allocate or mug an existing one: if it's a fresh one,
444 * repin gets set to 1. */
382ac6b3 445 if (newpgdir == ARRAY_SIZE(cpu->lg->pgdirs))
1713608f 446 newpgdir = new_pgdir(cpu, pgtable, &repin);
bff672e6 447 /* Change the current pgd index to the new one. */
1713608f 448 cpu->cpu_pgd = newpgdir;
bff672e6 449 /* If it was completely blank, we map in the Guest kernel stack */
d7e28ffe 450 if (repin)
4665ac8e 451 pin_stack_pages(cpu);
d7e28ffe
RR
452}
453
bff672e6 454/*H:470 Finally, a routine which throws away everything: all PGD entries in all
e1e72965
RR
455 * the shadow page tables, including the Guest's kernel mappings. This is used
456 * when we destroy the Guest. */
d7e28ffe
RR
457static void release_all_pagetables(struct lguest *lg)
458{
459 unsigned int i, j;
460
bff672e6 461 /* Every shadow pagetable this Guest has */
d7e28ffe
RR
462 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
463 if (lg->pgdirs[i].pgdir)
bff672e6 464 /* Every PGD entry except the Switcher at the top */
d7e28ffe 465 for (j = 0; j < SWITCHER_PGD_INDEX; j++)
90603d15 466 release_pgd(lg->pgdirs[i].pgdir + j);
d7e28ffe
RR
467}
468
bff672e6
RR
469/* We also throw away everything when a Guest tells us it's changed a kernel
470 * mapping. Since kernel mappings are in every page table, it's easiest to
e1e72965
RR
471 * throw them all away. This traps the Guest in amber for a while as
472 * everything faults back in, but it's rare. */
4665ac8e 473void guest_pagetable_clear_all(struct lg_cpu *cpu)
d7e28ffe 474{
4665ac8e 475 release_all_pagetables(cpu->lg);
bff672e6 476 /* We need the Guest kernel stack mapped again. */
4665ac8e 477 pin_stack_pages(cpu);
d7e28ffe 478}
e1e72965
RR
479/*:*/
480/*M:009 Since we throw away all mappings when a kernel mapping changes, our
481 * performance sucks for guests using highmem. In fact, a guest with
482 * PAGE_OFFSET 0xc0000000 (the default) and more than about 700MB of RAM is
483 * usually slower than a Guest with less memory.
484 *
485 * This, of course, cannot be fixed. It would take some kind of... well, I
486 * don't know, but the term "puissant code-fu" comes to mind. :*/
d7e28ffe 487
bff672e6
RR
488/*H:420 This is the routine which actually sets the page table entry for then
489 * "idx"'th shadow page table.
490 *
491 * Normally, we can just throw out the old entry and replace it with 0: if they
492 * use it demand_page() will put the new entry in. We need to do this anyway:
493 * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page
494 * is read from, and _PAGE_DIRTY when it's written to.
495 *
496 * But Avi Kivity pointed out that most Operating Systems (Linux included) set
497 * these bits on PTEs immediately anyway. This is done to save the CPU from
498 * having to update them, but it helps us the same way: if they set
499 * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
500 * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
501 */
382ac6b3 502static void do_set_pte(struct lg_cpu *cpu, int idx,
df29f43e 503 unsigned long vaddr, pte_t gpte)
d7e28ffe 504{
e1e72965 505 /* Look up the matching shadow page directory entry. */
382ac6b3 506 pgd_t *spgd = spgd_addr(cpu, idx, vaddr);
bff672e6
RR
507
508 /* If the top level isn't present, there's no entry to update. */
df29f43e 509 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
bff672e6 510 /* Otherwise, we start by releasing the existing entry. */
2092aa27 511 pte_t *spte = spte_addr(*spgd, vaddr);
d7e28ffe 512 release_pte(*spte);
bff672e6
RR
513
514 /* If they're setting this entry as dirty or accessed, we might
515 * as well put that entry they've given us in now. This shaves
516 * 10% off a copy-on-write micro-benchmark. */
df29f43e 517 if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
382ac6b3
GOC
518 check_gpte(cpu, gpte);
519 *spte = gpte_to_spte(cpu, gpte,
df29f43e 520 pte_flags(gpte) & _PAGE_DIRTY);
d7e28ffe 521 } else
e1e72965
RR
522 /* Otherwise kill it and we can demand_page() it in
523 * later. */
df29f43e 524 *spte = __pte(0);
d7e28ffe
RR
525 }
526}
527
bff672e6
RR
528/*H:410 Updating a PTE entry is a little trickier.
529 *
530 * We keep track of several different page tables (the Guest uses one for each
531 * process, so it makes sense to cache at least a few). Each of these have
532 * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for
533 * all processes. So when the page table above that address changes, we update
534 * all the page tables, not just the current one. This is rare.
535 *
a6bd8e13
RR
536 * The benefit is that when we have to track a new page table, we can keep all
537 * the kernel mappings. This speeds up context switch immensely. */
382ac6b3 538void guest_set_pte(struct lg_cpu *cpu,
ee3db0f2 539 unsigned long gpgdir, unsigned long vaddr, pte_t gpte)
d7e28ffe 540{
a6bd8e13
RR
541 /* Kernel mappings must be changed on all top levels. Slow, but doesn't
542 * happen often. */
382ac6b3 543 if (vaddr >= cpu->lg->kernel_address) {
d7e28ffe 544 unsigned int i;
382ac6b3
GOC
545 for (i = 0; i < ARRAY_SIZE(cpu->lg->pgdirs); i++)
546 if (cpu->lg->pgdirs[i].pgdir)
547 do_set_pte(cpu, i, vaddr, gpte);
d7e28ffe 548 } else {
bff672e6 549 /* Is this page table one we have a shadow for? */
382ac6b3
GOC
550 int pgdir = find_pgdir(cpu->lg, gpgdir);
551 if (pgdir != ARRAY_SIZE(cpu->lg->pgdirs))
bff672e6 552 /* If so, do the update. */
382ac6b3 553 do_set_pte(cpu, pgdir, vaddr, gpte);
d7e28ffe
RR
554 }
555}
556
bff672e6 557/*H:400
e1e72965 558 * (iii) Setting up a page table entry when the Guest tells us one has changed.
bff672e6
RR
559 *
560 * Just like we did in interrupts_and_traps.c, it makes sense for us to deal
561 * with the other side of page tables while we're here: what happens when the
562 * Guest asks for a page table to be updated?
563 *
564 * We already saw that demand_page() will fill in the shadow page tables when
565 * needed, so we can simply remove shadow page table entries whenever the Guest
566 * tells us they've changed. When the Guest tries to use the new entry it will
567 * fault and demand_page() will fix it up.
568 *
569 * So with that in mind here's our code to to update a (top-level) PGD entry:
570 */
ee3db0f2 571void guest_set_pmd(struct lguest *lg, unsigned long gpgdir, u32 idx)
d7e28ffe
RR
572{
573 int pgdir;
574
bff672e6
RR
575 /* The kernel seems to try to initialize this early on: we ignore its
576 * attempts to map over the Switcher. */
d7e28ffe
RR
577 if (idx >= SWITCHER_PGD_INDEX)
578 return;
579
bff672e6 580 /* If they're talking about a page table we have a shadow for... */
ee3db0f2 581 pgdir = find_pgdir(lg, gpgdir);
d7e28ffe 582 if (pgdir < ARRAY_SIZE(lg->pgdirs))
bff672e6 583 /* ... throw it away. */
90603d15 584 release_pgd(lg->pgdirs[pgdir].pgdir + idx);
d7e28ffe
RR
585}
586
58a24566
MZ
587/* Once we know how much memory we have we can construct simple identity
588 * (which set virtual == physical) and linear mappings
589 * which will get the Guest far enough into the boot to create its own.
590 *
591 * We lay them out of the way, just below the initrd (which is why we need to
592 * know its size here). */
593static unsigned long setup_pagetables(struct lguest *lg,
594 unsigned long mem,
595 unsigned long initrd_size)
596{
597 pgd_t __user *pgdir;
598 pte_t __user *linear;
599 unsigned int mapped_pages, i, linear_pages, phys_linear;
600 unsigned long mem_base = (unsigned long)lg->mem_base;
601
602 /* We have mapped_pages frames to map, so we need
603 * linear_pages page tables to map them. */
604 mapped_pages = mem / PAGE_SIZE;
605 linear_pages = (mapped_pages + PTRS_PER_PTE - 1) / PTRS_PER_PTE;
606
607 /* We put the toplevel page directory page at the top of memory. */
608 pgdir = (pgd_t *)(mem + mem_base - initrd_size - PAGE_SIZE);
609
610 /* Now we use the next linear_pages pages as pte pages */
611 linear = (void *)pgdir - linear_pages * PAGE_SIZE;
612
613 /* Linear mapping is easy: put every page's address into the
614 * mapping in order. */
615 for (i = 0; i < mapped_pages; i++) {
616 pte_t pte;
617 pte = pfn_pte(i, __pgprot(_PAGE_PRESENT|_PAGE_RW|_PAGE_USER));
618 if (copy_to_user(&linear[i], &pte, sizeof(pte)) != 0)
619 return -EFAULT;
620 }
621
622 /* The top level points to the linear page table pages above.
623 * We setup the identity and linear mappings here. */
624 phys_linear = (unsigned long)linear - mem_base;
625 for (i = 0; i < mapped_pages; i += PTRS_PER_PTE) {
626 pgd_t pgd;
627 pgd = __pgd((phys_linear + i * sizeof(pte_t)) |
628 (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER));
629
630 if (copy_to_user(&pgdir[i / PTRS_PER_PTE], &pgd, sizeof(pgd))
631 || copy_to_user(&pgdir[pgd_index(PAGE_OFFSET)
632 + i / PTRS_PER_PTE],
633 &pgd, sizeof(pgd)))
634 return -EFAULT;
635 }
636
637 /* We return the top level (guest-physical) address: remember where
638 * this is. */
639 return (unsigned long)pgdir - mem_base;
640}
641
bff672e6
RR
642/*H:500 (vii) Setting up the page tables initially.
643 *
644 * When a Guest is first created, the Launcher tells us where the toplevel of
645 * its first page table is. We set some things up here: */
58a24566 646int init_guest_pagetable(struct lguest *lg)
d7e28ffe 647{
58a24566
MZ
648 u64 mem;
649 u32 initrd_size;
650 struct boot_params __user *boot = (struct boot_params *)lg->mem_base;
651
652 /* Get the Guest memory size and the ramdisk size from the boot header
653 * located at lg->mem_base (Guest address 0). */
654 if (copy_from_user(&mem, &boot->e820_map[0].size, sizeof(mem))
655 || get_user(initrd_size, &boot->hdr.ramdisk_size))
656 return -EFAULT;
657
bff672e6
RR
658 /* We start on the first shadow page table, and give it a blank PGD
659 * page. */
58a24566
MZ
660 lg->pgdirs[0].gpgdir = setup_pagetables(lg, mem, initrd_size);
661 if (IS_ERR_VALUE(lg->pgdirs[0].gpgdir))
662 return lg->pgdirs[0].gpgdir;
1713608f
GOC
663 lg->pgdirs[0].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL);
664 if (!lg->pgdirs[0].pgdir)
d7e28ffe 665 return -ENOMEM;
1713608f 666 lg->cpus[0].cpu_pgd = 0;
d7e28ffe
RR
667 return 0;
668}
669
47436aa4 670/* When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
382ac6b3 671void page_table_guest_data_init(struct lg_cpu *cpu)
47436aa4
RR
672{
673 /* We get the kernel address: above this is all kernel memory. */
382ac6b3
GOC
674 if (get_user(cpu->lg->kernel_address,
675 &cpu->lg->lguest_data->kernel_address)
47436aa4
RR
676 /* We tell the Guest that it can't use the top 4MB of virtual
677 * addresses used by the Switcher. */
382ac6b3
GOC
678 || put_user(4U*1024*1024, &cpu->lg->lguest_data->reserve_mem)
679 || put_user(cpu->lg->pgdirs[0].gpgdir, &cpu->lg->lguest_data->pgdir))
680 kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
47436aa4
RR
681
682 /* In flush_user_mappings() we loop from 0 to
683 * "pgd_index(lg->kernel_address)". This assumes it won't hit the
684 * Switcher mappings, so check that now. */
382ac6b3
GOC
685 if (pgd_index(cpu->lg->kernel_address) >= SWITCHER_PGD_INDEX)
686 kill_guest(cpu, "bad kernel address %#lx",
687 cpu->lg->kernel_address);
47436aa4
RR
688}
689
bff672e6 690/* When a Guest dies, our cleanup is fairly simple. */
d7e28ffe
RR
691void free_guest_pagetable(struct lguest *lg)
692{
693 unsigned int i;
694
bff672e6 695 /* Throw away all page table pages. */
d7e28ffe 696 release_all_pagetables(lg);
bff672e6 697 /* Now free the top levels: free_page() can handle 0 just fine. */
d7e28ffe
RR
698 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
699 free_page((long)lg->pgdirs[i].pgdir);
700}
701
bff672e6
RR
702/*H:480 (vi) Mapping the Switcher when the Guest is about to run.
703 *
e1e72965 704 * The Switcher and the two pages for this CPU need to be visible in the
bff672e6 705 * Guest (and not the pages for other CPUs). We have the appropriate PTE pages
e1e72965
RR
706 * for each CPU already set up, we just need to hook them in now we know which
707 * Guest is about to run on this CPU. */
0c78441c 708void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
d7e28ffe 709{
df29f43e
MZ
710 pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages);
711 pgd_t switcher_pgd;
712 pte_t regs_pte;
a53a35a8 713 unsigned long pfn;
d7e28ffe 714
bff672e6
RR
715 /* Make the last PGD entry for this Guest point to the Switcher's PTE
716 * page for this CPU (with appropriate flags). */
ed1dc778 717 switcher_pgd = __pgd(__pa(switcher_pte_page) | __PAGE_KERNEL_EXEC);
df29f43e 718
1713608f 719 cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
d7e28ffe 720
bff672e6
RR
721 /* We also change the Switcher PTE page. When we're running the Guest,
722 * we want the Guest's "regs" page to appear where the first Switcher
723 * page for this CPU is. This is an optimization: when the Switcher
724 * saves the Guest registers, it saves them into the first page of this
725 * CPU's "struct lguest_pages": if we make sure the Guest's register
726 * page is already mapped there, we don't have to copy them out
727 * again. */
a53a35a8 728 pfn = __pa(cpu->regs_page) >> PAGE_SHIFT;
90603d15
MZ
729 native_set_pte(&regs_pte, pfn_pte(pfn, PAGE_KERNEL));
730 native_set_pte(&switcher_pte_page[pte_index((unsigned long)pages)],
731 regs_pte);
d7e28ffe 732}
bff672e6 733/*:*/
d7e28ffe
RR
734
735static void free_switcher_pte_pages(void)
736{
737 unsigned int i;
738
739 for_each_possible_cpu(i)
740 free_page((long)switcher_pte_page(i));
741}
742
bff672e6
RR
743/*H:520 Setting up the Switcher PTE page for given CPU is fairly easy, given
744 * the CPU number and the "struct page"s for the Switcher code itself.
745 *
746 * Currently the Switcher is less than a page long, so "pages" is always 1. */
d7e28ffe
RR
747static __init void populate_switcher_pte_page(unsigned int cpu,
748 struct page *switcher_page[],
749 unsigned int pages)
750{
751 unsigned int i;
df29f43e 752 pte_t *pte = switcher_pte_page(cpu);
d7e28ffe 753
bff672e6 754 /* The first entries are easy: they map the Switcher code. */
d7e28ffe 755 for (i = 0; i < pages; i++) {
90603d15
MZ
756 native_set_pte(&pte[i], mk_pte(switcher_page[i],
757 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
d7e28ffe
RR
758 }
759
bff672e6 760 /* The only other thing we map is this CPU's pair of pages. */
d7e28ffe
RR
761 i = pages + cpu*2;
762
bff672e6 763 /* First page (Guest registers) is writable from the Guest */
90603d15
MZ
764 native_set_pte(&pte[i], pfn_pte(page_to_pfn(switcher_page[i]),
765 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW)));
df29f43e 766
bff672e6
RR
767 /* The second page contains the "struct lguest_ro_state", and is
768 * read-only. */
90603d15
MZ
769 native_set_pte(&pte[i+1], pfn_pte(page_to_pfn(switcher_page[i+1]),
770 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
d7e28ffe
RR
771}
772
e1e72965
RR
773/* We've made it through the page table code. Perhaps our tired brains are
774 * still processing the details, or perhaps we're simply glad it's over.
775 *
a6bd8e13
RR
776 * If nothing else, note that all this complexity in juggling shadow page tables
777 * in sync with the Guest's page tables is for one reason: for most Guests this
778 * page table dance determines how bad performance will be. This is why Xen
779 * uses exotic direct Guest pagetable manipulation, and why both Intel and AMD
780 * have implemented shadow page table support directly into hardware.
e1e72965
RR
781 *
782 * There is just one file remaining in the Host. */
783
bff672e6
RR
784/*H:510 At boot or module load time, init_pagetables() allocates and populates
785 * the Switcher PTE page for each CPU. */
d7e28ffe
RR
786__init int init_pagetables(struct page **switcher_page, unsigned int pages)
787{
788 unsigned int i;
789
790 for_each_possible_cpu(i) {
df29f43e 791 switcher_pte_page(i) = (pte_t *)get_zeroed_page(GFP_KERNEL);
d7e28ffe
RR
792 if (!switcher_pte_page(i)) {
793 free_switcher_pte_pages();
794 return -ENOMEM;
795 }
796 populate_switcher_pte_page(i, switcher_page, pages);
797 }
798 return 0;
799}
bff672e6 800/*:*/
d7e28ffe 801
bff672e6 802/* Cleaning up simply involves freeing the PTE page for each CPU. */
d7e28ffe
RR
803void free_pagetables(void)
804{
805 free_switcher_pte_pages();
806}