]> git.ipfire.org Git - people/ms/linux.git/blame - drivers/lguest/page_tables.c
lguest: documentation VI: Switcher
[people/ms/linux.git] / drivers / lguest / page_tables.c
CommitLineData
f938d2c8
RR
1/*P:700 The pagetable code, on the other hand, still shows the scars of
2 * previous encounters. It's functional, and as neat as it can be in the
3 * circumstances, but be wary, for these things are subtle and break easily.
4 * The Guest provides a virtual to physical mapping, but we can neither trust
5 * it nor use it: we verify and convert it here to point the hardware to the
6 * actual Guest pages when running the Guest. :*/
7
8/* Copyright (C) Rusty Russell IBM Corporation 2006.
d7e28ffe
RR
9 * GPL v2 and any later version */
10#include <linux/mm.h>
11#include <linux/types.h>
12#include <linux/spinlock.h>
13#include <linux/random.h>
14#include <linux/percpu.h>
15#include <asm/tlbflush.h>
16#include "lg.h"
17
bff672e6
RR
18/*H:300
19 * The Page Table Code
20 *
21 * We use two-level page tables for the Guest. If you're not entirely
22 * comfortable with virtual addresses, physical addresses and page tables then
23 * I recommend you review lguest.c's "Page Table Handling" (with diagrams!).
24 *
25 * The Guest keeps page tables, but we maintain the actual ones here: these are
26 * called "shadow" page tables. Which is a very Guest-centric name: these are
27 * the real page tables the CPU uses, although we keep them up to date to
28 * reflect the Guest's. (See what I mean about weird naming? Since when do
29 * shadows reflect anything?)
30 *
31 * Anyway, this is the most complicated part of the Host code. There are seven
32 * parts to this:
33 * (i) Setting up a page table entry for the Guest when it faults,
34 * (ii) Setting up the page table entry for the Guest stack,
35 * (iii) Setting up a page table entry when the Guest tells us it has changed,
36 * (iv) Switching page tables,
37 * (v) Flushing (thowing away) page tables,
38 * (vi) Mapping the Switcher when the Guest is about to run,
39 * (vii) Setting up the page tables initially.
40 :*/
41
42/* Pages a 4k long, and each page table entry is 4 bytes long, giving us 1024
43 * (or 2^10) entries per page. */
d7e28ffe
RR
44#define PTES_PER_PAGE_SHIFT 10
45#define PTES_PER_PAGE (1 << PTES_PER_PAGE_SHIFT)
bff672e6
RR
46
47/* 1024 entries in a page table page maps 1024 pages: 4MB. The Switcher is
48 * conveniently placed at the top 4MB, so it uses a separate, complete PTE
49 * page. */
d7e28ffe
RR
50#define SWITCHER_PGD_INDEX (PTES_PER_PAGE - 1)
51
bff672e6
RR
52/* We actually need a separate PTE page for each CPU. Remember that after the
53 * Switcher code itself comes two pages for each CPU, and we don't want this
54 * CPU's guest to see the pages of any other CPU. */
d7e28ffe
RR
55static DEFINE_PER_CPU(spte_t *, switcher_pte_pages);
56#define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
57
bff672e6
RR
58/*H:320 With our shadow and Guest types established, we need to deal with
59 * them: the page table code is curly enough to need helper functions to keep
60 * it clear and clean.
61 *
62 * The first helper takes a virtual address, and says which entry in the top
63 * level page table deals with that address. Since each top level entry deals
64 * with 4M, this effectively divides by 4M. */
d7e28ffe
RR
65static unsigned vaddr_to_pgd_index(unsigned long vaddr)
66{
67 return vaddr >> (PAGE_SHIFT + PTES_PER_PAGE_SHIFT);
68}
69
bff672e6
RR
70/* There are two functions which return pointers to the shadow (aka "real")
71 * page tables.
72 *
73 * spgd_addr() takes the virtual address and returns a pointer to the top-level
74 * page directory entry for that address. Since we keep track of several page
75 * tables, the "i" argument tells us which one we're interested in (it's
76 * usually the current one). */
d7e28ffe
RR
77static spgd_t *spgd_addr(struct lguest *lg, u32 i, unsigned long vaddr)
78{
79 unsigned int index = vaddr_to_pgd_index(vaddr);
80
bff672e6 81 /* We kill any Guest trying to touch the Switcher addresses. */
d7e28ffe
RR
82 if (index >= SWITCHER_PGD_INDEX) {
83 kill_guest(lg, "attempt to access switcher pages");
84 index = 0;
85 }
bff672e6 86 /* Return a pointer index'th pgd entry for the i'th page table. */
d7e28ffe
RR
87 return &lg->pgdirs[i].pgdir[index];
88}
89
bff672e6
RR
90/* This routine then takes the PGD entry given above, which contains the
91 * address of the PTE page. It then returns a pointer to the PTE entry for the
92 * given address. */
d7e28ffe
RR
93static spte_t *spte_addr(struct lguest *lg, spgd_t spgd, unsigned long vaddr)
94{
95 spte_t *page = __va(spgd.pfn << PAGE_SHIFT);
bff672e6 96 /* You should never call this if the PGD entry wasn't valid */
d7e28ffe
RR
97 BUG_ON(!(spgd.flags & _PAGE_PRESENT));
98 return &page[(vaddr >> PAGE_SHIFT) % PTES_PER_PAGE];
99}
100
bff672e6
RR
101/* These two functions just like the above two, except they access the Guest
102 * page tables. Hence they return a Guest address. */
d7e28ffe
RR
103static unsigned long gpgd_addr(struct lguest *lg, unsigned long vaddr)
104{
105 unsigned int index = vaddr >> (PAGE_SHIFT + PTES_PER_PAGE_SHIFT);
106 return lg->pgdirs[lg->pgdidx].cr3 + index * sizeof(gpgd_t);
107}
108
109static unsigned long gpte_addr(struct lguest *lg,
110 gpgd_t gpgd, unsigned long vaddr)
111{
112 unsigned long gpage = gpgd.pfn << PAGE_SHIFT;
113 BUG_ON(!(gpgd.flags & _PAGE_PRESENT));
114 return gpage + ((vaddr>>PAGE_SHIFT) % PTES_PER_PAGE) * sizeof(gpte_t);
115}
116
bff672e6
RR
117/*H:350 This routine takes a page number given by the Guest and converts it to
118 * an actual, physical page number. It can fail for several reasons: the
119 * virtual address might not be mapped by the Launcher, the write flag is set
120 * and the page is read-only, or the write flag was set and the page was
121 * shared so had to be copied, but we ran out of memory.
122 *
123 * This holds a reference to the page, so release_pte() is careful to
124 * put that back. */
d7e28ffe
RR
125static unsigned long get_pfn(unsigned long virtpfn, int write)
126{
127 struct page *page;
bff672e6 128 /* This value indicates failure. */
d7e28ffe
RR
129 unsigned long ret = -1UL;
130
bff672e6
RR
131 /* get_user_pages() is a complex interface: it gets the "struct
132 * vm_area_struct" and "struct page" assocated with a range of pages.
133 * It also needs the task's mmap_sem held, and is not very quick.
134 * It returns the number of pages it got. */
d7e28ffe
RR
135 down_read(&current->mm->mmap_sem);
136 if (get_user_pages(current, current->mm, virtpfn << PAGE_SHIFT,
137 1, write, 1, &page, NULL) == 1)
138 ret = page_to_pfn(page);
139 up_read(&current->mm->mmap_sem);
140 return ret;
141}
142
bff672e6
RR
143/*H:340 Converting a Guest page table entry to a shadow (ie. real) page table
144 * entry can be a little tricky. The flags are (almost) the same, but the
145 * Guest PTE contains a virtual page number: the CPU needs the real page
146 * number. */
d7e28ffe
RR
147static spte_t gpte_to_spte(struct lguest *lg, gpte_t gpte, int write)
148{
149 spte_t spte;
150 unsigned long pfn;
151
bff672e6
RR
152 /* The Guest sets the global flag, because it thinks that it is using
153 * PGE. We only told it to use PGE so it would tell us whether it was
154 * flushing a kernel mapping or a userspace mapping. We don't actually
155 * use the global bit, so throw it away. */
d7e28ffe 156 spte.flags = (gpte.flags & ~_PAGE_GLOBAL);
bff672e6
RR
157
158 /* We need a temporary "unsigned long" variable to hold the answer from
159 * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
160 * fit in spte.pfn. get_pfn() finds the real physical number of the
161 * page, given the virtual number. */
d7e28ffe
RR
162 pfn = get_pfn(gpte.pfn, write);
163 if (pfn == -1UL) {
164 kill_guest(lg, "failed to get page %u", gpte.pfn);
bff672e6
RR
165 /* When we destroy the Guest, we'll go through the shadow page
166 * tables and release_pte() them. Make sure we don't think
167 * this one is valid! */
d7e28ffe
RR
168 spte.flags = 0;
169 }
bff672e6 170 /* Now we assign the page number, and our shadow PTE is complete. */
d7e28ffe
RR
171 spte.pfn = pfn;
172 return spte;
173}
174
bff672e6 175/*H:460 And to complete the chain, release_pte() looks like this: */
d7e28ffe
RR
176static void release_pte(spte_t pte)
177{
bff672e6
RR
178 /* Remember that get_user_pages() took a reference to the page, in
179 * get_pfn()? We have to put it back now. */
d7e28ffe
RR
180 if (pte.flags & _PAGE_PRESENT)
181 put_page(pfn_to_page(pte.pfn));
182}
bff672e6 183/*:*/
d7e28ffe
RR
184
185static void check_gpte(struct lguest *lg, gpte_t gpte)
186{
187 if ((gpte.flags & (_PAGE_PWT|_PAGE_PSE)) || gpte.pfn >= lg->pfn_limit)
188 kill_guest(lg, "bad page table entry");
189}
190
191static void check_gpgd(struct lguest *lg, gpgd_t gpgd)
192{
193 if ((gpgd.flags & ~_PAGE_TABLE) || gpgd.pfn >= lg->pfn_limit)
194 kill_guest(lg, "bad page directory entry");
195}
196
bff672e6
RR
197/*H:330
198 * (i) Setting up a page table entry for the Guest when it faults
199 *
200 * We saw this call in run_guest(): when we see a page fault in the Guest, we
201 * come here. That's because we only set up the shadow page tables lazily as
202 * they're needed, so we get page faults all the time and quietly fix them up
203 * and return to the Guest without it knowing.
204 *
205 * If we fixed up the fault (ie. we mapped the address), this routine returns
206 * true. */
d7e28ffe
RR
207int demand_page(struct lguest *lg, unsigned long vaddr, int errcode)
208{
209 gpgd_t gpgd;
210 spgd_t *spgd;
211 unsigned long gpte_ptr;
212 gpte_t gpte;
213 spte_t *spte;
214
bff672e6 215 /* First step: get the top-level Guest page table entry. */
d7e28ffe 216 gpgd = mkgpgd(lgread_u32(lg, gpgd_addr(lg, vaddr)));
bff672e6 217 /* Toplevel not present? We can't map it in. */
d7e28ffe
RR
218 if (!(gpgd.flags & _PAGE_PRESENT))
219 return 0;
220
bff672e6 221 /* Now look at the matching shadow entry. */
d7e28ffe
RR
222 spgd = spgd_addr(lg, lg->pgdidx, vaddr);
223 if (!(spgd->flags & _PAGE_PRESENT)) {
bff672e6 224 /* No shadow entry: allocate a new shadow PTE page. */
d7e28ffe 225 unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
bff672e6
RR
226 /* This is not really the Guest's fault, but killing it is
227 * simple for this corner case. */
d7e28ffe
RR
228 if (!ptepage) {
229 kill_guest(lg, "out of memory allocating pte page");
230 return 0;
231 }
bff672e6 232 /* We check that the Guest pgd is OK. */
d7e28ffe 233 check_gpgd(lg, gpgd);
bff672e6
RR
234 /* And we copy the flags to the shadow PGD entry. The page
235 * number in the shadow PGD is the page we just allocated. */
d7e28ffe
RR
236 spgd->raw.val = (__pa(ptepage) | gpgd.flags);
237 }
238
bff672e6
RR
239 /* OK, now we look at the lower level in the Guest page table: keep its
240 * address, because we might update it later. */
d7e28ffe
RR
241 gpte_ptr = gpte_addr(lg, gpgd, vaddr);
242 gpte = mkgpte(lgread_u32(lg, gpte_ptr));
243
bff672e6 244 /* If this page isn't in the Guest page tables, we can't page it in. */
d7e28ffe
RR
245 if (!(gpte.flags & _PAGE_PRESENT))
246 return 0;
247
bff672e6
RR
248 /* Check they're not trying to write to a page the Guest wants
249 * read-only (bit 2 of errcode == write). */
d7e28ffe
RR
250 if ((errcode & 2) && !(gpte.flags & _PAGE_RW))
251 return 0;
252
bff672e6 253 /* User access to a kernel page? (bit 3 == user access) */
d7e28ffe
RR
254 if ((errcode & 4) && !(gpte.flags & _PAGE_USER))
255 return 0;
256
bff672e6
RR
257 /* Check that the Guest PTE flags are OK, and the page number is below
258 * the pfn_limit (ie. not mapping the Launcher binary). */
d7e28ffe 259 check_gpte(lg, gpte);
bff672e6 260 /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
d7e28ffe
RR
261 gpte.flags |= _PAGE_ACCESSED;
262 if (errcode & 2)
263 gpte.flags |= _PAGE_DIRTY;
264
bff672e6 265 /* Get the pointer to the shadow PTE entry we're going to set. */
d7e28ffe 266 spte = spte_addr(lg, *spgd, vaddr);
bff672e6
RR
267 /* If there was a valid shadow PTE entry here before, we release it.
268 * This can happen with a write to a previously read-only entry. */
d7e28ffe
RR
269 release_pte(*spte);
270
bff672e6
RR
271 /* If this is a write, we insist that the Guest page is writable (the
272 * final arg to gpte_to_spte()). */
d7e28ffe
RR
273 if (gpte.flags & _PAGE_DIRTY)
274 *spte = gpte_to_spte(lg, gpte, 1);
275 else {
bff672e6
RR
276 /* If this is a read, don't set the "writable" bit in the page
277 * table entry, even if the Guest says it's writable. That way
278 * we come back here when a write does actually ocur, so we can
279 * update the Guest's _PAGE_DIRTY flag. */
d7e28ffe
RR
280 gpte_t ro_gpte = gpte;
281 ro_gpte.flags &= ~_PAGE_RW;
282 *spte = gpte_to_spte(lg, ro_gpte, 0);
283 }
284
bff672e6
RR
285 /* Finally, we write the Guest PTE entry back: we've set the
286 * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags. */
d7e28ffe 287 lgwrite_u32(lg, gpte_ptr, gpte.raw.val);
bff672e6
RR
288
289 /* We succeeded in mapping the page! */
d7e28ffe
RR
290 return 1;
291}
292
bff672e6
RR
293/*H:360 (ii) Setting up the page table entry for the Guest stack.
294 *
295 * Remember pin_stack_pages() which makes sure the stack is mapped? It could
296 * simply call demand_page(), but as we've seen that logic is quite long, and
297 * usually the stack pages are already mapped anyway, so it's not required.
298 *
299 * This is a quick version which answers the question: is this virtual address
300 * mapped by the shadow page tables, and is it writable? */
d7e28ffe
RR
301static int page_writable(struct lguest *lg, unsigned long vaddr)
302{
303 spgd_t *spgd;
304 unsigned long flags;
305
bff672e6 306 /* Look at the top level entry: is it present? */
d7e28ffe
RR
307 spgd = spgd_addr(lg, lg->pgdidx, vaddr);
308 if (!(spgd->flags & _PAGE_PRESENT))
309 return 0;
310
bff672e6
RR
311 /* Check the flags on the pte entry itself: it must be present and
312 * writable. */
d7e28ffe
RR
313 flags = spte_addr(lg, *spgd, vaddr)->flags;
314 return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
315}
316
bff672e6
RR
317/* So, when pin_stack_pages() asks us to pin a page, we check if it's already
318 * in the page tables, and if not, we call demand_page() with error code 2
319 * (meaning "write"). */
d7e28ffe
RR
320void pin_page(struct lguest *lg, unsigned long vaddr)
321{
322 if (!page_writable(lg, vaddr) && !demand_page(lg, vaddr, 2))
323 kill_guest(lg, "bad stack page %#lx", vaddr);
324}
325
bff672e6 326/*H:450 If we chase down the release_pgd() code, it looks like this: */
d7e28ffe
RR
327static void release_pgd(struct lguest *lg, spgd_t *spgd)
328{
bff672e6 329 /* If the entry's not present, there's nothing to release. */
d7e28ffe
RR
330 if (spgd->flags & _PAGE_PRESENT) {
331 unsigned int i;
bff672e6
RR
332 /* Converting the pfn to find the actual PTE page is easy: turn
333 * the page number into a physical address, then convert to a
334 * virtual address (easy for kernel pages like this one). */
d7e28ffe 335 spte_t *ptepage = __va(spgd->pfn << PAGE_SHIFT);
bff672e6 336 /* For each entry in the page, we might need to release it. */
d7e28ffe
RR
337 for (i = 0; i < PTES_PER_PAGE; i++)
338 release_pte(ptepage[i]);
bff672e6 339 /* Now we can free the page of PTEs */
d7e28ffe 340 free_page((long)ptepage);
bff672e6 341 /* And zero out the PGD entry we we never release it twice. */
d7e28ffe
RR
342 spgd->raw.val = 0;
343 }
344}
345
bff672e6
RR
346/*H:440 (v) Flushing (thowing away) page tables,
347 *
348 * We saw flush_user_mappings() called when we re-used a top-level pgdir page.
349 * It simply releases every PTE page from 0 up to the kernel address. */
d7e28ffe
RR
350static void flush_user_mappings(struct lguest *lg, int idx)
351{
352 unsigned int i;
bff672e6 353 /* Release every pgd entry up to the kernel's address. */
d7e28ffe
RR
354 for (i = 0; i < vaddr_to_pgd_index(lg->page_offset); i++)
355 release_pgd(lg, lg->pgdirs[idx].pgdir + i);
356}
357
bff672e6
RR
358/* The Guest also has a hypercall to do this manually: it's used when a large
359 * number of mappings have been changed. */
d7e28ffe
RR
360void guest_pagetable_flush_user(struct lguest *lg)
361{
bff672e6 362 /* Drop the userspace part of the current page table. */
d7e28ffe
RR
363 flush_user_mappings(lg, lg->pgdidx);
364}
bff672e6 365/*:*/
d7e28ffe 366
bff672e6
RR
367/* We keep several page tables. This is a simple routine to find the page
368 * table (if any) corresponding to this top-level address the Guest has given
369 * us. */
d7e28ffe
RR
370static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
371{
372 unsigned int i;
373 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
374 if (lg->pgdirs[i].cr3 == pgtable)
375 break;
376 return i;
377}
378
bff672e6
RR
379/*H:435 And this is us, creating the new page directory. If we really do
380 * allocate a new one (and so the kernel parts are not there), we set
381 * blank_pgdir. */
d7e28ffe
RR
382static unsigned int new_pgdir(struct lguest *lg,
383 unsigned long cr3,
384 int *blank_pgdir)
385{
386 unsigned int next;
387
bff672e6
RR
388 /* We pick one entry at random to throw out. Choosing the Least
389 * Recently Used might be better, but this is easy. */
d7e28ffe 390 next = random32() % ARRAY_SIZE(lg->pgdirs);
bff672e6 391 /* If it's never been allocated at all before, try now. */
d7e28ffe
RR
392 if (!lg->pgdirs[next].pgdir) {
393 lg->pgdirs[next].pgdir = (spgd_t *)get_zeroed_page(GFP_KERNEL);
bff672e6 394 /* If the allocation fails, just keep using the one we have */
d7e28ffe
RR
395 if (!lg->pgdirs[next].pgdir)
396 next = lg->pgdidx;
397 else
bff672e6
RR
398 /* This is a blank page, so there are no kernel
399 * mappings: caller must map the stack! */
d7e28ffe
RR
400 *blank_pgdir = 1;
401 }
bff672e6 402 /* Record which Guest toplevel this shadows. */
d7e28ffe
RR
403 lg->pgdirs[next].cr3 = cr3;
404 /* Release all the non-kernel mappings. */
405 flush_user_mappings(lg, next);
406
407 return next;
408}
409
bff672e6
RR
410/*H:430 (iv) Switching page tables
411 *
412 * This is what happens when the Guest changes page tables (ie. changes the
413 * top-level pgdir). This happens on almost every context switch. */
d7e28ffe
RR
414void guest_new_pagetable(struct lguest *lg, unsigned long pgtable)
415{
416 int newpgdir, repin = 0;
417
bff672e6 418 /* Look to see if we have this one already. */
d7e28ffe 419 newpgdir = find_pgdir(lg, pgtable);
bff672e6
RR
420 /* If not, we allocate or mug an existing one: if it's a fresh one,
421 * repin gets set to 1. */
d7e28ffe
RR
422 if (newpgdir == ARRAY_SIZE(lg->pgdirs))
423 newpgdir = new_pgdir(lg, pgtable, &repin);
bff672e6 424 /* Change the current pgd index to the new one. */
d7e28ffe 425 lg->pgdidx = newpgdir;
bff672e6 426 /* If it was completely blank, we map in the Guest kernel stack */
d7e28ffe
RR
427 if (repin)
428 pin_stack_pages(lg);
429}
430
bff672e6
RR
431/*H:470 Finally, a routine which throws away everything: all PGD entries in all
432 * the shadow page tables. This is used when we destroy the Guest. */
d7e28ffe
RR
433static void release_all_pagetables(struct lguest *lg)
434{
435 unsigned int i, j;
436
bff672e6 437 /* Every shadow pagetable this Guest has */
d7e28ffe
RR
438 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
439 if (lg->pgdirs[i].pgdir)
bff672e6 440 /* Every PGD entry except the Switcher at the top */
d7e28ffe
RR
441 for (j = 0; j < SWITCHER_PGD_INDEX; j++)
442 release_pgd(lg, lg->pgdirs[i].pgdir + j);
443}
444
bff672e6
RR
445/* We also throw away everything when a Guest tells us it's changed a kernel
446 * mapping. Since kernel mappings are in every page table, it's easiest to
447 * throw them all away. This is amazingly slow, but thankfully rare. */
d7e28ffe
RR
448void guest_pagetable_clear_all(struct lguest *lg)
449{
450 release_all_pagetables(lg);
bff672e6 451 /* We need the Guest kernel stack mapped again. */
d7e28ffe
RR
452 pin_stack_pages(lg);
453}
454
bff672e6
RR
455/*H:420 This is the routine which actually sets the page table entry for then
456 * "idx"'th shadow page table.
457 *
458 * Normally, we can just throw out the old entry and replace it with 0: if they
459 * use it demand_page() will put the new entry in. We need to do this anyway:
460 * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page
461 * is read from, and _PAGE_DIRTY when it's written to.
462 *
463 * But Avi Kivity pointed out that most Operating Systems (Linux included) set
464 * these bits on PTEs immediately anyway. This is done to save the CPU from
465 * having to update them, but it helps us the same way: if they set
466 * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
467 * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
468 */
d7e28ffe
RR
469static void do_set_pte(struct lguest *lg, int idx,
470 unsigned long vaddr, gpte_t gpte)
471{
bff672e6 472 /* Look up the matching shadow page directot entry. */
d7e28ffe 473 spgd_t *spgd = spgd_addr(lg, idx, vaddr);
bff672e6
RR
474
475 /* If the top level isn't present, there's no entry to update. */
d7e28ffe 476 if (spgd->flags & _PAGE_PRESENT) {
bff672e6 477 /* Otherwise, we start by releasing the existing entry. */
d7e28ffe
RR
478 spte_t *spte = spte_addr(lg, *spgd, vaddr);
479 release_pte(*spte);
bff672e6
RR
480
481 /* If they're setting this entry as dirty or accessed, we might
482 * as well put that entry they've given us in now. This shaves
483 * 10% off a copy-on-write micro-benchmark. */
d7e28ffe
RR
484 if (gpte.flags & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
485 check_gpte(lg, gpte);
486 *spte = gpte_to_spte(lg, gpte, gpte.flags&_PAGE_DIRTY);
487 } else
bff672e6 488 /* Otherwise we can demand_page() it in later. */
d7e28ffe
RR
489 spte->raw.val = 0;
490 }
491}
492
bff672e6
RR
493/*H:410 Updating a PTE entry is a little trickier.
494 *
495 * We keep track of several different page tables (the Guest uses one for each
496 * process, so it makes sense to cache at least a few). Each of these have
497 * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for
498 * all processes. So when the page table above that address changes, we update
499 * all the page tables, not just the current one. This is rare.
500 *
501 * The benefit is that when we have to track a new page table, we can copy keep
502 * all the kernel mappings. This speeds up context switch immensely. */
d7e28ffe
RR
503void guest_set_pte(struct lguest *lg,
504 unsigned long cr3, unsigned long vaddr, gpte_t gpte)
505{
bff672e6
RR
506 /* Kernel mappings must be changed on all top levels. Slow, but
507 * doesn't happen often. */
d7e28ffe
RR
508 if (vaddr >= lg->page_offset) {
509 unsigned int i;
510 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
511 if (lg->pgdirs[i].pgdir)
512 do_set_pte(lg, i, vaddr, gpte);
513 } else {
bff672e6 514 /* Is this page table one we have a shadow for? */
d7e28ffe
RR
515 int pgdir = find_pgdir(lg, cr3);
516 if (pgdir != ARRAY_SIZE(lg->pgdirs))
bff672e6 517 /* If so, do the update. */
d7e28ffe
RR
518 do_set_pte(lg, pgdir, vaddr, gpte);
519 }
520}
521
bff672e6
RR
522/*H:400
523 * (iii) Setting up a page table entry when the Guest tells us it has changed.
524 *
525 * Just like we did in interrupts_and_traps.c, it makes sense for us to deal
526 * with the other side of page tables while we're here: what happens when the
527 * Guest asks for a page table to be updated?
528 *
529 * We already saw that demand_page() will fill in the shadow page tables when
530 * needed, so we can simply remove shadow page table entries whenever the Guest
531 * tells us they've changed. When the Guest tries to use the new entry it will
532 * fault and demand_page() will fix it up.
533 *
534 * So with that in mind here's our code to to update a (top-level) PGD entry:
535 */
d7e28ffe
RR
536void guest_set_pmd(struct lguest *lg, unsigned long cr3, u32 idx)
537{
538 int pgdir;
539
bff672e6
RR
540 /* The kernel seems to try to initialize this early on: we ignore its
541 * attempts to map over the Switcher. */
d7e28ffe
RR
542 if (idx >= SWITCHER_PGD_INDEX)
543 return;
544
bff672e6 545 /* If they're talking about a page table we have a shadow for... */
d7e28ffe
RR
546 pgdir = find_pgdir(lg, cr3);
547 if (pgdir < ARRAY_SIZE(lg->pgdirs))
bff672e6 548 /* ... throw it away. */
d7e28ffe
RR
549 release_pgd(lg, lg->pgdirs[pgdir].pgdir + idx);
550}
551
bff672e6
RR
552/*H:500 (vii) Setting up the page tables initially.
553 *
554 * When a Guest is first created, the Launcher tells us where the toplevel of
555 * its first page table is. We set some things up here: */
d7e28ffe
RR
556int init_guest_pagetable(struct lguest *lg, unsigned long pgtable)
557{
bff672e6
RR
558 /* In flush_user_mappings() we loop from 0 to
559 * "vaddr_to_pgd_index(lg->page_offset)". This assumes it won't hit
560 * the Switcher mappings, so check that now. */
d7e28ffe
RR
561 if (vaddr_to_pgd_index(lg->page_offset) >= SWITCHER_PGD_INDEX)
562 return -EINVAL;
bff672e6
RR
563 /* We start on the first shadow page table, and give it a blank PGD
564 * page. */
d7e28ffe
RR
565 lg->pgdidx = 0;
566 lg->pgdirs[lg->pgdidx].cr3 = pgtable;
567 lg->pgdirs[lg->pgdidx].pgdir = (spgd_t*)get_zeroed_page(GFP_KERNEL);
568 if (!lg->pgdirs[lg->pgdidx].pgdir)
569 return -ENOMEM;
570 return 0;
571}
572
bff672e6 573/* When a Guest dies, our cleanup is fairly simple. */
d7e28ffe
RR
574void free_guest_pagetable(struct lguest *lg)
575{
576 unsigned int i;
577
bff672e6 578 /* Throw away all page table pages. */
d7e28ffe 579 release_all_pagetables(lg);
bff672e6 580 /* Now free the top levels: free_page() can handle 0 just fine. */
d7e28ffe
RR
581 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
582 free_page((long)lg->pgdirs[i].pgdir);
583}
584
bff672e6
RR
585/*H:480 (vi) Mapping the Switcher when the Guest is about to run.
586 *
587 * The Switcher and the two pages for this CPU need to be available to the
588 * Guest (and not the pages for other CPUs). We have the appropriate PTE pages
589 * for each CPU already set up, we just need to hook them in. */
d7e28ffe
RR
590void map_switcher_in_guest(struct lguest *lg, struct lguest_pages *pages)
591{
592 spte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages);
593 spgd_t switcher_pgd;
594 spte_t regs_pte;
595
bff672e6
RR
596 /* Make the last PGD entry for this Guest point to the Switcher's PTE
597 * page for this CPU (with appropriate flags). */
d7e28ffe
RR
598 switcher_pgd.pfn = __pa(switcher_pte_page) >> PAGE_SHIFT;
599 switcher_pgd.flags = _PAGE_KERNEL;
600 lg->pgdirs[lg->pgdidx].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
601
bff672e6
RR
602 /* We also change the Switcher PTE page. When we're running the Guest,
603 * we want the Guest's "regs" page to appear where the first Switcher
604 * page for this CPU is. This is an optimization: when the Switcher
605 * saves the Guest registers, it saves them into the first page of this
606 * CPU's "struct lguest_pages": if we make sure the Guest's register
607 * page is already mapped there, we don't have to copy them out
608 * again. */
d7e28ffe
RR
609 regs_pte.pfn = __pa(lg->regs_page) >> PAGE_SHIFT;
610 regs_pte.flags = _PAGE_KERNEL;
611 switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTES_PER_PAGE]
612 = regs_pte;
613}
bff672e6 614/*:*/
d7e28ffe
RR
615
616static void free_switcher_pte_pages(void)
617{
618 unsigned int i;
619
620 for_each_possible_cpu(i)
621 free_page((long)switcher_pte_page(i));
622}
623
bff672e6
RR
624/*H:520 Setting up the Switcher PTE page for given CPU is fairly easy, given
625 * the CPU number and the "struct page"s for the Switcher code itself.
626 *
627 * Currently the Switcher is less than a page long, so "pages" is always 1. */
d7e28ffe
RR
628static __init void populate_switcher_pte_page(unsigned int cpu,
629 struct page *switcher_page[],
630 unsigned int pages)
631{
632 unsigned int i;
633 spte_t *pte = switcher_pte_page(cpu);
634
bff672e6 635 /* The first entries are easy: they map the Switcher code. */
d7e28ffe
RR
636 for (i = 0; i < pages; i++) {
637 pte[i].pfn = page_to_pfn(switcher_page[i]);
638 pte[i].flags = _PAGE_PRESENT|_PAGE_ACCESSED;
639 }
640
bff672e6 641 /* The only other thing we map is this CPU's pair of pages. */
d7e28ffe
RR
642 i = pages + cpu*2;
643
bff672e6 644 /* First page (Guest registers) is writable from the Guest */
d7e28ffe
RR
645 pte[i].pfn = page_to_pfn(switcher_page[i]);
646 pte[i].flags = _PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW;
bff672e6
RR
647 /* The second page contains the "struct lguest_ro_state", and is
648 * read-only. */
d7e28ffe
RR
649 pte[i+1].pfn = page_to_pfn(switcher_page[i+1]);
650 pte[i+1].flags = _PAGE_PRESENT|_PAGE_ACCESSED;
651}
652
bff672e6
RR
653/*H:510 At boot or module load time, init_pagetables() allocates and populates
654 * the Switcher PTE page for each CPU. */
d7e28ffe
RR
655__init int init_pagetables(struct page **switcher_page, unsigned int pages)
656{
657 unsigned int i;
658
659 for_each_possible_cpu(i) {
660 switcher_pte_page(i) = (spte_t *)get_zeroed_page(GFP_KERNEL);
661 if (!switcher_pte_page(i)) {
662 free_switcher_pte_pages();
663 return -ENOMEM;
664 }
665 populate_switcher_pte_page(i, switcher_page, pages);
666 }
667 return 0;
668}
bff672e6 669/*:*/
d7e28ffe 670
bff672e6 671/* Cleaning up simply involves freeing the PTE page for each CPU. */
d7e28ffe
RR
672void free_pagetables(void)
673{
674 free_switcher_pte_pages();
675}