]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - drivers/md/bcache/btree.c
bcache: Populate writeback_rate_minimum attribute
[thirdparty/kernel/stable.git] / drivers / md / bcache / btree.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
cafe5635
KO
2/*
3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4 *
5 * Uses a block device as cache for other block devices; optimized for SSDs.
6 * All allocation is done in buckets, which should match the erase block size
7 * of the device.
8 *
9 * Buckets containing cached data are kept on a heap sorted by priority;
10 * bucket priority is increased on cache hit, and periodically all the buckets
11 * on the heap have their priority scaled down. This currently is just used as
12 * an LRU but in the future should allow for more intelligent heuristics.
13 *
14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15 * counter. Garbage collection is used to remove stale pointers.
16 *
17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18 * as keys are inserted we only sort the pages that have not yet been written.
19 * When garbage collection is run, we resort the entire node.
20 *
5fb94e9c 21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
cafe5635
KO
22 */
23
24#include "bcache.h"
25#include "btree.h"
26#include "debug.h"
65d45231 27#include "extents.h"
cafe5635
KO
28
29#include <linux/slab.h>
30#include <linux/bitops.h>
31#include <linux/hash.h>
72a44517 32#include <linux/kthread.h>
cd953ed0 33#include <linux/prefetch.h>
cafe5635
KO
34#include <linux/random.h>
35#include <linux/rcupdate.h>
e6017571 36#include <linux/sched/clock.h>
b2d09103
IM
37#include <linux/rculist.h>
38
cafe5635
KO
39#include <trace/events/bcache.h>
40
41/*
42 * Todo:
43 * register_bcache: Return errors out to userspace correctly
44 *
45 * Writeback: don't undirty key until after a cache flush
46 *
47 * Create an iterator for key pointers
48 *
49 * On btree write error, mark bucket such that it won't be freed from the cache
50 *
51 * Journalling:
52 * Check for bad keys in replay
53 * Propagate barriers
54 * Refcount journal entries in journal_replay
55 *
56 * Garbage collection:
57 * Finish incremental gc
58 * Gc should free old UUIDs, data for invalid UUIDs
59 *
60 * Provide a way to list backing device UUIDs we have data cached for, and
61 * probably how long it's been since we've seen them, and a way to invalidate
62 * dirty data for devices that will never be attached again
63 *
64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65 * that based on that and how much dirty data we have we can keep writeback
66 * from being starved
67 *
68 * Add a tracepoint or somesuch to watch for writeback starvation
69 *
70 * When btree depth > 1 and splitting an interior node, we have to make sure
71 * alloc_bucket() cannot fail. This should be true but is not completely
72 * obvious.
73 *
cafe5635
KO
74 * Plugging?
75 *
76 * If data write is less than hard sector size of ssd, round up offset in open
77 * bucket to the next whole sector
78 *
cafe5635
KO
79 * Superblock needs to be fleshed out for multiple cache devices
80 *
81 * Add a sysfs tunable for the number of writeback IOs in flight
82 *
83 * Add a sysfs tunable for the number of open data buckets
84 *
85 * IO tracking: Can we track when one process is doing io on behalf of another?
86 * IO tracking: Don't use just an average, weigh more recent stuff higher
87 *
88 * Test module load/unload
89 */
90
cafe5635
KO
91#define MAX_NEED_GC 64
92#define MAX_SAVE_PRIO 72
7f4a59de 93#define MAX_GC_TIMES 100
5c25c4fc
TJ
94#define MIN_GC_NODES 100
95#define GC_SLEEP_MS 100
cafe5635
KO
96
97#define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
98
99#define PTR_HASH(c, k) \
100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
101
df8e8970
KO
102#define insert_lock(s, b) ((b)->level <= (s)->lock)
103
104/*
105 * These macros are for recursing down the btree - they handle the details of
106 * locking and looking up nodes in the cache for you. They're best treated as
107 * mere syntax when reading code that uses them.
108 *
109 * op->lock determines whether we take a read or a write lock at a given depth.
110 * If you've got a read lock and find that you need a write lock (i.e. you're
111 * going to have to split), set op->lock and return -EINTR; btree_root() will
112 * call you again and you'll have the correct lock.
113 */
114
115/**
116 * btree - recurse down the btree on a specified key
117 * @fn: function to call, which will be passed the child node
118 * @key: key to recurse on
119 * @b: parent btree node
120 * @op: pointer to struct btree_op
121 */
122#define btree(fn, key, b, op, ...) \
123({ \
124 int _r, l = (b)->level - 1; \
125 bool _w = l <= (op)->lock; \
2452cc89
SP
126 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \
127 _w, b); \
df8e8970 128 if (!IS_ERR(_child)) { \
df8e8970
KO
129 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
130 rw_unlock(_w, _child); \
131 } else \
132 _r = PTR_ERR(_child); \
133 _r; \
134})
135
136/**
137 * btree_root - call a function on the root of the btree
138 * @fn: function to call, which will be passed the child node
139 * @c: cache set
140 * @op: pointer to struct btree_op
141 */
142#define btree_root(fn, c, op, ...) \
143({ \
144 int _r = -EINTR; \
145 do { \
146 struct btree *_b = (c)->root; \
147 bool _w = insert_lock(op, _b); \
148 rw_lock(_w, _b, _b->level); \
149 if (_b == (c)->root && \
150 _w == insert_lock(op, _b)) { \
df8e8970
KO
151 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
152 } \
153 rw_unlock(_w, _b); \
0a63b66d 154 bch_cannibalize_unlock(c); \
78365411
KO
155 if (_r == -EINTR) \
156 schedule(); \
df8e8970
KO
157 } while (_r == -EINTR); \
158 \
0a63b66d 159 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \
df8e8970
KO
160 _r; \
161})
162
a85e968e
KO
163static inline struct bset *write_block(struct btree *b)
164{
165 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
166}
167
2a285686
KO
168static void bch_btree_init_next(struct btree *b)
169{
170 /* If not a leaf node, always sort */
171 if (b->level && b->keys.nsets)
172 bch_btree_sort(&b->keys, &b->c->sort);
173 else
174 bch_btree_sort_lazy(&b->keys, &b->c->sort);
175
176 if (b->written < btree_blocks(b))
177 bch_bset_init_next(&b->keys, write_block(b),
178 bset_magic(&b->c->sb));
179
180}
181
cafe5635
KO
182/* Btree key manipulation */
183
3a3b6a4e 184void bkey_put(struct cache_set *c, struct bkey *k)
e7c590eb 185{
6f10f7d1 186 unsigned int i;
e7c590eb
KO
187
188 for (i = 0; i < KEY_PTRS(k); i++)
189 if (ptr_available(c, k, i))
190 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
191}
192
cafe5635
KO
193/* Btree IO */
194
195static uint64_t btree_csum_set(struct btree *b, struct bset *i)
196{
197 uint64_t crc = b->key.ptr[0];
fafff81c 198 void *data = (void *) i + 8, *end = bset_bkey_last(i);
cafe5635 199
169ef1cf 200 crc = bch_crc64_update(crc, data, end - data);
c19ed23a 201 return crc ^ 0xffffffffffffffffULL;
cafe5635
KO
202}
203
78b77bf8 204void bch_btree_node_read_done(struct btree *b)
cafe5635 205{
cafe5635 206 const char *err = "bad btree header";
ee811287 207 struct bset *i = btree_bset_first(b);
57943511 208 struct btree_iter *iter;
cafe5635 209
d19936a2 210 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
57943511 211 iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
cafe5635
KO
212 iter->used = 0;
213
280481d0 214#ifdef CONFIG_BCACHE_DEBUG
c052dd9a 215 iter->b = &b->keys;
280481d0
KO
216#endif
217
57943511 218 if (!i->seq)
cafe5635
KO
219 goto err;
220
221 for (;
a85e968e 222 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
cafe5635
KO
223 i = write_block(b)) {
224 err = "unsupported bset version";
225 if (i->version > BCACHE_BSET_VERSION)
226 goto err;
227
228 err = "bad btree header";
ee811287
KO
229 if (b->written + set_blocks(i, block_bytes(b->c)) >
230 btree_blocks(b))
cafe5635
KO
231 goto err;
232
233 err = "bad magic";
81ab4190 234 if (i->magic != bset_magic(&b->c->sb))
cafe5635
KO
235 goto err;
236
237 err = "bad checksum";
238 switch (i->version) {
239 case 0:
240 if (i->csum != csum_set(i))
241 goto err;
242 break;
243 case BCACHE_BSET_VERSION:
244 if (i->csum != btree_csum_set(b, i))
245 goto err;
246 break;
247 }
248
249 err = "empty set";
a85e968e 250 if (i != b->keys.set[0].data && !i->keys)
cafe5635
KO
251 goto err;
252
fafff81c 253 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
cafe5635 254
ee811287 255 b->written += set_blocks(i, block_bytes(b->c));
cafe5635
KO
256 }
257
258 err = "corrupted btree";
259 for (i = write_block(b);
a85e968e 260 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
cafe5635 261 i = ((void *) i) + block_bytes(b->c))
a85e968e 262 if (i->seq == b->keys.set[0].data->seq)
cafe5635
KO
263 goto err;
264
a85e968e 265 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
cafe5635 266
a85e968e 267 i = b->keys.set[0].data;
cafe5635 268 err = "short btree key";
a85e968e
KO
269 if (b->keys.set[0].size &&
270 bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
cafe5635
KO
271 goto err;
272
273 if (b->written < btree_blocks(b))
a85e968e
KO
274 bch_bset_init_next(&b->keys, write_block(b),
275 bset_magic(&b->c->sb));
cafe5635 276out:
d19936a2 277 mempool_free(iter, &b->c->fill_iter);
57943511 278 return;
cafe5635
KO
279err:
280 set_btree_node_io_error(b);
88b9f8c4 281 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
cafe5635 282 err, PTR_BUCKET_NR(b->c, &b->key, 0),
88b9f8c4 283 bset_block_offset(b, i), i->keys);
cafe5635
KO
284 goto out;
285}
286
4246a0b6 287static void btree_node_read_endio(struct bio *bio)
cafe5635 288{
57943511 289 struct closure *cl = bio->bi_private;
1fae7cf0 290
57943511
KO
291 closure_put(cl);
292}
cafe5635 293
78b77bf8 294static void bch_btree_node_read(struct btree *b)
57943511
KO
295{
296 uint64_t start_time = local_clock();
297 struct closure cl;
298 struct bio *bio;
cafe5635 299
c37511b8
KO
300 trace_bcache_btree_read(b);
301
57943511 302 closure_init_stack(&cl);
cafe5635 303
57943511 304 bio = bch_bbio_alloc(b->c);
4f024f37 305 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
57943511
KO
306 bio->bi_end_io = btree_node_read_endio;
307 bio->bi_private = &cl;
70fd7614 308 bio->bi_opf = REQ_OP_READ | REQ_META;
cafe5635 309
a85e968e 310 bch_bio_map(bio, b->keys.set[0].data);
cafe5635 311
57943511
KO
312 bch_submit_bbio(bio, b->c, &b->key, 0);
313 closure_sync(&cl);
cafe5635 314
4e4cbee9 315 if (bio->bi_status)
57943511
KO
316 set_btree_node_io_error(b);
317
318 bch_bbio_free(bio, b->c);
319
320 if (btree_node_io_error(b))
321 goto err;
322
323 bch_btree_node_read_done(b);
57943511 324 bch_time_stats_update(&b->c->btree_read_time, start_time);
57943511
KO
325
326 return;
327err:
61cbd250 328 bch_cache_set_error(b->c, "io error reading bucket %zu",
57943511 329 PTR_BUCKET_NR(b->c, &b->key, 0));
cafe5635
KO
330}
331
332static void btree_complete_write(struct btree *b, struct btree_write *w)
333{
334 if (w->prio_blocked &&
335 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
119ba0f8 336 wake_up_allocators(b->c);
cafe5635
KO
337
338 if (w->journal) {
339 atomic_dec_bug(w->journal);
340 __closure_wake_up(&b->c->journal.wait);
341 }
342
cafe5635
KO
343 w->prio_blocked = 0;
344 w->journal = NULL;
cafe5635
KO
345}
346
cb7a583e
KO
347static void btree_node_write_unlock(struct closure *cl)
348{
349 struct btree *b = container_of(cl, struct btree, io);
350
351 up(&b->io_mutex);
352}
353
57943511 354static void __btree_node_write_done(struct closure *cl)
cafe5635 355{
cb7a583e 356 struct btree *b = container_of(cl, struct btree, io);
cafe5635
KO
357 struct btree_write *w = btree_prev_write(b);
358
359 bch_bbio_free(b->bio, b->c);
360 b->bio = NULL;
361 btree_complete_write(b, w);
362
363 if (btree_node_dirty(b))
56b30770 364 schedule_delayed_work(&b->work, 30 * HZ);
cafe5635 365
cb7a583e 366 closure_return_with_destructor(cl, btree_node_write_unlock);
cafe5635
KO
367}
368
57943511 369static void btree_node_write_done(struct closure *cl)
cafe5635 370{
cb7a583e 371 struct btree *b = container_of(cl, struct btree, io);
cafe5635 372
491221f8 373 bio_free_pages(b->bio);
57943511 374 __btree_node_write_done(cl);
cafe5635
KO
375}
376
4246a0b6 377static void btree_node_write_endio(struct bio *bio)
57943511
KO
378{
379 struct closure *cl = bio->bi_private;
cb7a583e 380 struct btree *b = container_of(cl, struct btree, io);
57943511 381
4e4cbee9 382 if (bio->bi_status)
57943511
KO
383 set_btree_node_io_error(b);
384
4e4cbee9 385 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
57943511
KO
386 closure_put(cl);
387}
388
389static void do_btree_node_write(struct btree *b)
cafe5635 390{
cb7a583e 391 struct closure *cl = &b->io;
ee811287 392 struct bset *i = btree_bset_last(b);
cafe5635
KO
393 BKEY_PADDED(key) k;
394
395 i->version = BCACHE_BSET_VERSION;
396 i->csum = btree_csum_set(b, i);
397
57943511
KO
398 BUG_ON(b->bio);
399 b->bio = bch_bbio_alloc(b->c);
400
401 b->bio->bi_end_io = btree_node_write_endio;
faadf0c9 402 b->bio->bi_private = cl;
ee811287 403 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
70fd7614 404 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA;
169ef1cf 405 bch_bio_map(b->bio, i);
cafe5635 406
e49c7c37
KO
407 /*
408 * If we're appending to a leaf node, we don't technically need FUA -
409 * this write just needs to be persisted before the next journal write,
410 * which will be marked FLUSH|FUA.
411 *
412 * Similarly if we're writing a new btree root - the pointer is going to
413 * be in the next journal entry.
414 *
415 * But if we're writing a new btree node (that isn't a root) or
416 * appending to a non leaf btree node, we need either FUA or a flush
417 * when we write the parent with the new pointer. FUA is cheaper than a
418 * flush, and writes appending to leaf nodes aren't blocking anything so
419 * just make all btree node writes FUA to keep things sane.
420 */
421
cafe5635 422 bkey_copy(&k.key, &b->key);
ee811287 423 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
a85e968e 424 bset_sector_offset(&b->keys, i));
cafe5635 425
25d8be77 426 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
cafe5635
KO
427 int j;
428 struct bio_vec *bv;
429 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
430
7988613b 431 bio_for_each_segment_all(bv, b->bio, j)
cafe5635
KO
432 memcpy(page_address(bv->bv_page),
433 base + j * PAGE_SIZE, PAGE_SIZE);
434
cafe5635
KO
435 bch_submit_bbio(b->bio, b->c, &k.key, 0);
436
57943511 437 continue_at(cl, btree_node_write_done, NULL);
cafe5635 438 } else {
b0d30981
CL
439 /*
440 * No problem for multipage bvec since the bio is
441 * just allocated
442 */
cafe5635 443 b->bio->bi_vcnt = 0;
169ef1cf 444 bch_bio_map(b->bio, i);
cafe5635 445
cafe5635
KO
446 bch_submit_bbio(b->bio, b->c, &k.key, 0);
447
448 closure_sync(cl);
cb7a583e 449 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
cafe5635
KO
450 }
451}
452
2a285686 453void __bch_btree_node_write(struct btree *b, struct closure *parent)
cafe5635 454{
ee811287 455 struct bset *i = btree_bset_last(b);
cafe5635 456
2a285686
KO
457 lockdep_assert_held(&b->write_lock);
458
c37511b8
KO
459 trace_bcache_btree_write(b);
460
cafe5635 461 BUG_ON(current->bio_list);
57943511
KO
462 BUG_ON(b->written >= btree_blocks(b));
463 BUG_ON(b->written && !i->keys);
ee811287 464 BUG_ON(btree_bset_first(b)->seq != i->seq);
dc9d98d6 465 bch_check_keys(&b->keys, "writing");
cafe5635 466
cafe5635
KO
467 cancel_delayed_work(&b->work);
468
57943511 469 /* If caller isn't waiting for write, parent refcount is cache set */
cb7a583e
KO
470 down(&b->io_mutex);
471 closure_init(&b->io, parent ?: &b->c->cl);
57943511 472
cafe5635
KO
473 clear_bit(BTREE_NODE_dirty, &b->flags);
474 change_bit(BTREE_NODE_write_idx, &b->flags);
475
57943511 476 do_btree_node_write(b);
cafe5635 477
ee811287 478 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
cafe5635
KO
479 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
480
a85e968e 481 b->written += set_blocks(i, block_bytes(b->c));
2a285686 482}
a85e968e 483
2a285686
KO
484void bch_btree_node_write(struct btree *b, struct closure *parent)
485{
6f10f7d1 486 unsigned int nsets = b->keys.nsets;
2a285686
KO
487
488 lockdep_assert_held(&b->lock);
489
490 __bch_btree_node_write(b, parent);
cafe5635 491
78b77bf8
KO
492 /*
493 * do verify if there was more than one set initially (i.e. we did a
494 * sort) and we sorted down to a single set:
495 */
2a285686 496 if (nsets && !b->keys.nsets)
78b77bf8
KO
497 bch_btree_verify(b);
498
2a285686 499 bch_btree_init_next(b);
cafe5635
KO
500}
501
f269af5a
KO
502static void bch_btree_node_write_sync(struct btree *b)
503{
504 struct closure cl;
505
506 closure_init_stack(&cl);
2a285686
KO
507
508 mutex_lock(&b->write_lock);
f269af5a 509 bch_btree_node_write(b, &cl);
2a285686
KO
510 mutex_unlock(&b->write_lock);
511
f269af5a
KO
512 closure_sync(&cl);
513}
514
57943511 515static void btree_node_write_work(struct work_struct *w)
cafe5635
KO
516{
517 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
518
2a285686 519 mutex_lock(&b->write_lock);
cafe5635 520 if (btree_node_dirty(b))
2a285686
KO
521 __bch_btree_node_write(b, NULL);
522 mutex_unlock(&b->write_lock);
cafe5635
KO
523}
524
c18536a7 525static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
cafe5635 526{
ee811287 527 struct bset *i = btree_bset_last(b);
cafe5635
KO
528 struct btree_write *w = btree_current_write(b);
529
2a285686
KO
530 lockdep_assert_held(&b->write_lock);
531
57943511
KO
532 BUG_ON(!b->written);
533 BUG_ON(!i->keys);
cafe5635 534
57943511 535 if (!btree_node_dirty(b))
56b30770 536 schedule_delayed_work(&b->work, 30 * HZ);
cafe5635 537
57943511 538 set_btree_node_dirty(b);
cafe5635 539
c18536a7 540 if (journal_ref) {
cafe5635 541 if (w->journal &&
c18536a7 542 journal_pin_cmp(b->c, w->journal, journal_ref)) {
cafe5635
KO
543 atomic_dec_bug(w->journal);
544 w->journal = NULL;
545 }
546
547 if (!w->journal) {
c18536a7 548 w->journal = journal_ref;
cafe5635
KO
549 atomic_inc(w->journal);
550 }
551 }
552
cafe5635 553 /* Force write if set is too big */
57943511
KO
554 if (set_bytes(i) > PAGE_SIZE - 48 &&
555 !current->bio_list)
556 bch_btree_node_write(b, NULL);
cafe5635
KO
557}
558
559/*
560 * Btree in memory cache - allocation/freeing
561 * mca -> memory cache
562 */
563
cafe5635
KO
564#define mca_reserve(c) (((c->root && c->root->level) \
565 ? c->root->level : 1) * 8 + 16)
566#define mca_can_free(c) \
0a63b66d 567 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
cafe5635
KO
568
569static void mca_data_free(struct btree *b)
570{
cb7a583e 571 BUG_ON(b->io_mutex.count != 1);
cafe5635 572
a85e968e 573 bch_btree_keys_free(&b->keys);
cafe5635 574
0a63b66d 575 b->c->btree_cache_used--;
ee811287 576 list_move(&b->list, &b->c->btree_cache_freed);
cafe5635
KO
577}
578
579static void mca_bucket_free(struct btree *b)
580{
581 BUG_ON(btree_node_dirty(b));
582
583 b->key.ptr[0] = 0;
584 hlist_del_init_rcu(&b->hash);
585 list_move(&b->list, &b->c->btree_cache_freeable);
586}
587
6f10f7d1 588static unsigned int btree_order(struct bkey *k)
cafe5635
KO
589{
590 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
591}
592
593static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
594{
a85e968e 595 if (!bch_btree_keys_alloc(&b->keys,
6f10f7d1 596 max_t(unsigned int,
ee811287
KO
597 ilog2(b->c->btree_pages),
598 btree_order(k)),
599 gfp)) {
0a63b66d 600 b->c->btree_cache_used++;
ee811287
KO
601 list_move(&b->list, &b->c->btree_cache);
602 } else {
603 list_move(&b->list, &b->c->btree_cache_freed);
604 }
cafe5635
KO
605}
606
607static struct btree *mca_bucket_alloc(struct cache_set *c,
608 struct bkey *k, gfp_t gfp)
609{
610 struct btree *b = kzalloc(sizeof(struct btree), gfp);
1fae7cf0 611
cafe5635
KO
612 if (!b)
613 return NULL;
614
615 init_rwsem(&b->lock);
616 lockdep_set_novalidate_class(&b->lock);
2a285686
KO
617 mutex_init(&b->write_lock);
618 lockdep_set_novalidate_class(&b->write_lock);
cafe5635 619 INIT_LIST_HEAD(&b->list);
57943511 620 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
cafe5635 621 b->c = c;
cb7a583e 622 sema_init(&b->io_mutex, 1);
cafe5635
KO
623
624 mca_data_alloc(b, k, gfp);
625 return b;
626}
627
6f10f7d1 628static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
cafe5635 629{
e8e1d468
KO
630 struct closure cl;
631
632 closure_init_stack(&cl);
cafe5635
KO
633 lockdep_assert_held(&b->c->bucket_lock);
634
635 if (!down_write_trylock(&b->lock))
636 return -ENOMEM;
637
a85e968e 638 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
e8e1d468 639
a85e968e 640 if (b->keys.page_order < min_order)
cb7a583e
KO
641 goto out_unlock;
642
643 if (!flush) {
644 if (btree_node_dirty(b))
645 goto out_unlock;
646
647 if (down_trylock(&b->io_mutex))
648 goto out_unlock;
649 up(&b->io_mutex);
cafe5635
KO
650 }
651
2a285686 652 mutex_lock(&b->write_lock);
f269af5a 653 if (btree_node_dirty(b))
2a285686
KO
654 __bch_btree_node_write(b, &cl);
655 mutex_unlock(&b->write_lock);
656
657 closure_sync(&cl);
cafe5635 658
e8e1d468 659 /* wait for any in flight btree write */
cb7a583e
KO
660 down(&b->io_mutex);
661 up(&b->io_mutex);
e8e1d468 662
cafe5635 663 return 0;
cb7a583e
KO
664out_unlock:
665 rw_unlock(true, b);
666 return -ENOMEM;
cafe5635
KO
667}
668
7dc19d5a
DC
669static unsigned long bch_mca_scan(struct shrinker *shrink,
670 struct shrink_control *sc)
cafe5635
KO
671{
672 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
673 struct btree *b, *t;
674 unsigned long i, nr = sc->nr_to_scan;
7dc19d5a 675 unsigned long freed = 0;
ca71df31 676 unsigned int btree_cache_used;
cafe5635
KO
677
678 if (c->shrinker_disabled)
7dc19d5a 679 return SHRINK_STOP;
cafe5635 680
0a63b66d 681 if (c->btree_cache_alloc_lock)
7dc19d5a 682 return SHRINK_STOP;
cafe5635
KO
683
684 /* Return -1 if we can't do anything right now */
a698e08c 685 if (sc->gfp_mask & __GFP_IO)
cafe5635
KO
686 mutex_lock(&c->bucket_lock);
687 else if (!mutex_trylock(&c->bucket_lock))
688 return -1;
689
36c9ea98
KO
690 /*
691 * It's _really_ critical that we don't free too many btree nodes - we
692 * have to always leave ourselves a reserve. The reserve is how we
693 * guarantee that allocating memory for a new btree node can always
694 * succeed, so that inserting keys into the btree can always succeed and
695 * IO can always make forward progress:
696 */
cafe5635
KO
697 nr /= c->btree_pages;
698 nr = min_t(unsigned long, nr, mca_can_free(c));
699
700 i = 0;
ca71df31 701 btree_cache_used = c->btree_cache_used;
cafe5635 702 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
ca71df31
TJ
703 if (nr <= 0)
704 goto out;
cafe5635
KO
705
706 if (++i > 3 &&
e8e1d468 707 !mca_reap(b, 0, false)) {
cafe5635
KO
708 mca_data_free(b);
709 rw_unlock(true, b);
7dc19d5a 710 freed++;
cafe5635 711 }
ca71df31 712 nr--;
cafe5635
KO
713 }
714
ca71df31 715 for (; (nr--) && i < btree_cache_used; i++) {
b0f32a56
KO
716 if (list_empty(&c->btree_cache))
717 goto out;
718
cafe5635
KO
719 b = list_first_entry(&c->btree_cache, struct btree, list);
720 list_rotate_left(&c->btree_cache);
721
722 if (!b->accessed &&
e8e1d468 723 !mca_reap(b, 0, false)) {
cafe5635
KO
724 mca_bucket_free(b);
725 mca_data_free(b);
726 rw_unlock(true, b);
7dc19d5a 727 freed++;
cafe5635
KO
728 } else
729 b->accessed = 0;
730 }
731out:
cafe5635 732 mutex_unlock(&c->bucket_lock);
f3641c3a 733 return freed * c->btree_pages;
7dc19d5a
DC
734}
735
736static unsigned long bch_mca_count(struct shrinker *shrink,
737 struct shrink_control *sc)
738{
739 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
740
741 if (c->shrinker_disabled)
742 return 0;
743
0a63b66d 744 if (c->btree_cache_alloc_lock)
7dc19d5a
DC
745 return 0;
746
747 return mca_can_free(c) * c->btree_pages;
cafe5635
KO
748}
749
750void bch_btree_cache_free(struct cache_set *c)
751{
752 struct btree *b;
753 struct closure cl;
1fae7cf0 754
cafe5635
KO
755 closure_init_stack(&cl);
756
757 if (c->shrink.list.next)
758 unregister_shrinker(&c->shrink);
759
760 mutex_lock(&c->bucket_lock);
761
762#ifdef CONFIG_BCACHE_DEBUG
763 if (c->verify_data)
764 list_move(&c->verify_data->list, &c->btree_cache);
78b77bf8
KO
765
766 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
cafe5635
KO
767#endif
768
769 list_splice(&c->btree_cache_freeable,
770 &c->btree_cache);
771
772 while (!list_empty(&c->btree_cache)) {
773 b = list_first_entry(&c->btree_cache, struct btree, list);
774
775 if (btree_node_dirty(b))
776 btree_complete_write(b, btree_current_write(b));
777 clear_bit(BTREE_NODE_dirty, &b->flags);
778
779 mca_data_free(b);
780 }
781
782 while (!list_empty(&c->btree_cache_freed)) {
783 b = list_first_entry(&c->btree_cache_freed,
784 struct btree, list);
785 list_del(&b->list);
786 cancel_delayed_work_sync(&b->work);
787 kfree(b);
788 }
789
790 mutex_unlock(&c->bucket_lock);
791}
792
793int bch_btree_cache_alloc(struct cache_set *c)
794{
6f10f7d1 795 unsigned int i;
cafe5635 796
cafe5635 797 for (i = 0; i < mca_reserve(c); i++)
72a44517
KO
798 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
799 return -ENOMEM;
cafe5635
KO
800
801 list_splice_init(&c->btree_cache,
802 &c->btree_cache_freeable);
803
804#ifdef CONFIG_BCACHE_DEBUG
805 mutex_init(&c->verify_lock);
806
78b77bf8
KO
807 c->verify_ondisk = (void *)
808 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
809
cafe5635
KO
810 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
811
812 if (c->verify_data &&
a85e968e 813 c->verify_data->keys.set->data)
cafe5635
KO
814 list_del_init(&c->verify_data->list);
815 else
816 c->verify_data = NULL;
817#endif
818
7dc19d5a
DC
819 c->shrink.count_objects = bch_mca_count;
820 c->shrink.scan_objects = bch_mca_scan;
cafe5635
KO
821 c->shrink.seeks = 4;
822 c->shrink.batch = c->btree_pages * 2;
6c4ca1e3
ML
823
824 if (register_shrinker(&c->shrink))
825 pr_warn("bcache: %s: could not register shrinker",
826 __func__);
cafe5635
KO
827
828 return 0;
829}
830
831/* Btree in memory cache - hash table */
832
833static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
834{
835 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
836}
837
838static struct btree *mca_find(struct cache_set *c, struct bkey *k)
839{
840 struct btree *b;
841
842 rcu_read_lock();
843 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
844 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
845 goto out;
846 b = NULL;
847out:
848 rcu_read_unlock();
849 return b;
850}
851
0a63b66d
KO
852static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
853{
854 struct task_struct *old;
855
856 old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
857 if (old && old != current) {
858 if (op)
859 prepare_to_wait(&c->btree_cache_wait, &op->wait,
860 TASK_UNINTERRUPTIBLE);
861 return -EINTR;
862 }
863
864 return 0;
865}
866
867static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
868 struct bkey *k)
cafe5635 869{
e8e1d468 870 struct btree *b;
cafe5635 871
c37511b8
KO
872 trace_bcache_btree_cache_cannibalize(c);
873
0a63b66d
KO
874 if (mca_cannibalize_lock(c, op))
875 return ERR_PTR(-EINTR);
cafe5635 876
e8e1d468
KO
877 list_for_each_entry_reverse(b, &c->btree_cache, list)
878 if (!mca_reap(b, btree_order(k), false))
879 return b;
cafe5635 880
e8e1d468
KO
881 list_for_each_entry_reverse(b, &c->btree_cache, list)
882 if (!mca_reap(b, btree_order(k), true))
883 return b;
cafe5635 884
0a63b66d 885 WARN(1, "btree cache cannibalize failed\n");
e8e1d468 886 return ERR_PTR(-ENOMEM);
cafe5635
KO
887}
888
889/*
890 * We can only have one thread cannibalizing other cached btree nodes at a time,
891 * or we'll deadlock. We use an open coded mutex to ensure that, which a
892 * cannibalize_bucket() will take. This means every time we unlock the root of
893 * the btree, we need to release this lock if we have it held.
894 */
df8e8970 895static void bch_cannibalize_unlock(struct cache_set *c)
cafe5635 896{
0a63b66d
KO
897 if (c->btree_cache_alloc_lock == current) {
898 c->btree_cache_alloc_lock = NULL;
899 wake_up(&c->btree_cache_wait);
cafe5635
KO
900 }
901}
902
0a63b66d
KO
903static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
904 struct bkey *k, int level)
cafe5635
KO
905{
906 struct btree *b;
907
e8e1d468
KO
908 BUG_ON(current->bio_list);
909
cafe5635
KO
910 lockdep_assert_held(&c->bucket_lock);
911
912 if (mca_find(c, k))
913 return NULL;
914
915 /* btree_free() doesn't free memory; it sticks the node on the end of
916 * the list. Check if there's any freed nodes there:
917 */
918 list_for_each_entry(b, &c->btree_cache_freeable, list)
e8e1d468 919 if (!mca_reap(b, btree_order(k), false))
cafe5635
KO
920 goto out;
921
922 /* We never free struct btree itself, just the memory that holds the on
923 * disk node. Check the freed list before allocating a new one:
924 */
925 list_for_each_entry(b, &c->btree_cache_freed, list)
e8e1d468 926 if (!mca_reap(b, 0, false)) {
cafe5635 927 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
a85e968e 928 if (!b->keys.set[0].data)
cafe5635
KO
929 goto err;
930 else
931 goto out;
932 }
933
934 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
935 if (!b)
936 goto err;
937
938 BUG_ON(!down_write_trylock(&b->lock));
a85e968e 939 if (!b->keys.set->data)
cafe5635
KO
940 goto err;
941out:
cb7a583e 942 BUG_ON(b->io_mutex.count != 1);
cafe5635
KO
943
944 bkey_copy(&b->key, k);
945 list_move(&b->list, &c->btree_cache);
946 hlist_del_init_rcu(&b->hash);
947 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
948
949 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
d6fd3b11 950 b->parent = (void *) ~0UL;
a85e968e
KO
951 b->flags = 0;
952 b->written = 0;
953 b->level = level;
cafe5635 954
65d45231 955 if (!b->level)
a85e968e
KO
956 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
957 &b->c->expensive_debug_checks);
65d45231 958 else
a85e968e
KO
959 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
960 &b->c->expensive_debug_checks);
cafe5635
KO
961
962 return b;
963err:
964 if (b)
965 rw_unlock(true, b);
966
0a63b66d 967 b = mca_cannibalize(c, op, k);
cafe5635
KO
968 if (!IS_ERR(b))
969 goto out;
970
971 return b;
972}
973
47344e33 974/*
cafe5635
KO
975 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
976 * in from disk if necessary.
977 *
b54d6934 978 * If IO is necessary and running under generic_make_request, returns -EAGAIN.
cafe5635
KO
979 *
980 * The btree node will have either a read or a write lock held, depending on
981 * level and op->lock.
982 */
0a63b66d 983struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
2452cc89
SP
984 struct bkey *k, int level, bool write,
985 struct btree *parent)
cafe5635
KO
986{
987 int i = 0;
cafe5635
KO
988 struct btree *b;
989
990 BUG_ON(level < 0);
991retry:
992 b = mca_find(c, k);
993
994 if (!b) {
57943511
KO
995 if (current->bio_list)
996 return ERR_PTR(-EAGAIN);
997
cafe5635 998 mutex_lock(&c->bucket_lock);
0a63b66d 999 b = mca_alloc(c, op, k, level);
cafe5635
KO
1000 mutex_unlock(&c->bucket_lock);
1001
1002 if (!b)
1003 goto retry;
1004 if (IS_ERR(b))
1005 return b;
1006
57943511 1007 bch_btree_node_read(b);
cafe5635
KO
1008
1009 if (!write)
1010 downgrade_write(&b->lock);
1011 } else {
1012 rw_lock(write, b, level);
1013 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1014 rw_unlock(write, b);
1015 goto retry;
1016 }
1017 BUG_ON(b->level != level);
1018 }
1019
c2e8dcf7
CL
1020 if (btree_node_io_error(b)) {
1021 rw_unlock(write, b);
1022 return ERR_PTR(-EIO);
1023 }
1024
1025 BUG_ON(!b->written);
1026
2452cc89 1027 b->parent = parent;
cafe5635
KO
1028 b->accessed = 1;
1029
a85e968e
KO
1030 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1031 prefetch(b->keys.set[i].tree);
1032 prefetch(b->keys.set[i].data);
cafe5635
KO
1033 }
1034
a85e968e
KO
1035 for (; i <= b->keys.nsets; i++)
1036 prefetch(b->keys.set[i].data);
cafe5635 1037
cafe5635
KO
1038 return b;
1039}
1040
2452cc89 1041static void btree_node_prefetch(struct btree *parent, struct bkey *k)
cafe5635
KO
1042{
1043 struct btree *b;
1044
2452cc89
SP
1045 mutex_lock(&parent->c->bucket_lock);
1046 b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1047 mutex_unlock(&parent->c->bucket_lock);
cafe5635
KO
1048
1049 if (!IS_ERR_OR_NULL(b)) {
2452cc89 1050 b->parent = parent;
57943511 1051 bch_btree_node_read(b);
cafe5635
KO
1052 rw_unlock(true, b);
1053 }
1054}
1055
1056/* Btree alloc */
1057
e8e1d468 1058static void btree_node_free(struct btree *b)
cafe5635 1059{
c37511b8
KO
1060 trace_bcache_btree_node_free(b);
1061
cafe5635 1062 BUG_ON(b == b->c->root);
cafe5635 1063
2a285686
KO
1064 mutex_lock(&b->write_lock);
1065
cafe5635
KO
1066 if (btree_node_dirty(b))
1067 btree_complete_write(b, btree_current_write(b));
1068 clear_bit(BTREE_NODE_dirty, &b->flags);
1069
2a285686
KO
1070 mutex_unlock(&b->write_lock);
1071
cafe5635
KO
1072 cancel_delayed_work(&b->work);
1073
1074 mutex_lock(&b->c->bucket_lock);
cafe5635
KO
1075 bch_bucket_free(b->c, &b->key);
1076 mca_bucket_free(b);
1077 mutex_unlock(&b->c->bucket_lock);
1078}
1079
c5aa4a31 1080struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
2452cc89
SP
1081 int level, bool wait,
1082 struct btree *parent)
cafe5635
KO
1083{
1084 BKEY_PADDED(key) k;
1085 struct btree *b = ERR_PTR(-EAGAIN);
1086
1087 mutex_lock(&c->bucket_lock);
1088retry:
c5aa4a31 1089 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
cafe5635
KO
1090 goto err;
1091
3a3b6a4e 1092 bkey_put(c, &k.key);
cafe5635
KO
1093 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1094
0a63b66d 1095 b = mca_alloc(c, op, &k.key, level);
cafe5635
KO
1096 if (IS_ERR(b))
1097 goto err_free;
1098
1099 if (!b) {
b1a67b0f
KO
1100 cache_bug(c,
1101 "Tried to allocate bucket that was in btree cache");
cafe5635
KO
1102 goto retry;
1103 }
1104
cafe5635 1105 b->accessed = 1;
2452cc89 1106 b->parent = parent;
a85e968e 1107 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
cafe5635
KO
1108
1109 mutex_unlock(&c->bucket_lock);
c37511b8
KO
1110
1111 trace_bcache_btree_node_alloc(b);
cafe5635
KO
1112 return b;
1113err_free:
1114 bch_bucket_free(c, &k.key);
cafe5635
KO
1115err:
1116 mutex_unlock(&c->bucket_lock);
c37511b8 1117
913dc33f 1118 trace_bcache_btree_node_alloc_fail(c);
cafe5635
KO
1119 return b;
1120}
1121
c5aa4a31 1122static struct btree *bch_btree_node_alloc(struct cache_set *c,
2452cc89
SP
1123 struct btree_op *op, int level,
1124 struct btree *parent)
c5aa4a31 1125{
2452cc89 1126 return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
c5aa4a31
SP
1127}
1128
0a63b66d
KO
1129static struct btree *btree_node_alloc_replacement(struct btree *b,
1130 struct btree_op *op)
cafe5635 1131{
2452cc89 1132 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1fae7cf0 1133
67539e85 1134 if (!IS_ERR_OR_NULL(n)) {
2a285686 1135 mutex_lock(&n->write_lock);
89ebb4a2 1136 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
67539e85 1137 bkey_copy_key(&n->key, &b->key);
2a285686 1138 mutex_unlock(&n->write_lock);
67539e85 1139 }
cafe5635
KO
1140
1141 return n;
1142}
1143
8835c123
KO
1144static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1145{
6f10f7d1 1146 unsigned int i;
8835c123 1147
05335cff
KO
1148 mutex_lock(&b->c->bucket_lock);
1149
1150 atomic_inc(&b->c->prio_blocked);
1151
8835c123
KO
1152 bkey_copy(k, &b->key);
1153 bkey_copy_key(k, &ZERO_KEY);
1154
05335cff
KO
1155 for (i = 0; i < KEY_PTRS(k); i++)
1156 SET_PTR_GEN(k, i,
1157 bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1158 PTR_BUCKET(b->c, &b->key, i)));
8835c123 1159
05335cff 1160 mutex_unlock(&b->c->bucket_lock);
8835c123
KO
1161}
1162
78365411
KO
1163static int btree_check_reserve(struct btree *b, struct btree_op *op)
1164{
1165 struct cache_set *c = b->c;
1166 struct cache *ca;
6f10f7d1 1167 unsigned int i, reserve = (c->root->level - b->level) * 2 + 1;
78365411
KO
1168
1169 mutex_lock(&c->bucket_lock);
1170
1171 for_each_cache(ca, c, i)
1172 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1173 if (op)
0a63b66d 1174 prepare_to_wait(&c->btree_cache_wait, &op->wait,
78365411 1175 TASK_UNINTERRUPTIBLE);
0a63b66d
KO
1176 mutex_unlock(&c->bucket_lock);
1177 return -EINTR;
78365411
KO
1178 }
1179
1180 mutex_unlock(&c->bucket_lock);
0a63b66d
KO
1181
1182 return mca_cannibalize_lock(b->c, op);
78365411
KO
1183}
1184
cafe5635
KO
1185/* Garbage collection */
1186
487dded8
KO
1187static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1188 struct bkey *k)
cafe5635
KO
1189{
1190 uint8_t stale = 0;
6f10f7d1 1191 unsigned int i;
cafe5635
KO
1192 struct bucket *g;
1193
1194 /*
1195 * ptr_invalid() can't return true for the keys that mark btree nodes as
1196 * freed, but since ptr_bad() returns true we'll never actually use them
1197 * for anything and thus we don't want mark their pointers here
1198 */
1199 if (!bkey_cmp(k, &ZERO_KEY))
1200 return stale;
1201
1202 for (i = 0; i < KEY_PTRS(k); i++) {
1203 if (!ptr_available(c, k, i))
1204 continue;
1205
1206 g = PTR_BUCKET(c, k, i);
1207
3a2fd9d5
KO
1208 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1209 g->last_gc = PTR_GEN(k, i);
cafe5635
KO
1210
1211 if (ptr_stale(c, k, i)) {
1212 stale = max(stale, ptr_stale(c, k, i));
1213 continue;
1214 }
1215
1216 cache_bug_on(GC_MARK(g) &&
1217 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1218 c, "inconsistent ptrs: mark = %llu, level = %i",
1219 GC_MARK(g), level);
1220
1221 if (level)
1222 SET_GC_MARK(g, GC_MARK_METADATA);
1223 else if (KEY_DIRTY(k))
1224 SET_GC_MARK(g, GC_MARK_DIRTY);
4fe6a816
KO
1225 else if (!GC_MARK(g))
1226 SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
cafe5635
KO
1227
1228 /* guard against overflow */
6f10f7d1 1229 SET_GC_SECTORS_USED(g, min_t(unsigned int,
cafe5635 1230 GC_SECTORS_USED(g) + KEY_SIZE(k),
94717447 1231 MAX_GC_SECTORS_USED));
cafe5635
KO
1232
1233 BUG_ON(!GC_SECTORS_USED(g));
1234 }
1235
1236 return stale;
1237}
1238
1239#define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1240
487dded8
KO
1241void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1242{
6f10f7d1 1243 unsigned int i;
487dded8
KO
1244
1245 for (i = 0; i < KEY_PTRS(k); i++)
1246 if (ptr_available(c, k, i) &&
1247 !ptr_stale(c, k, i)) {
1248 struct bucket *b = PTR_BUCKET(c, k, i);
1249
1250 b->gen = PTR_GEN(k, i);
1251
1252 if (level && bkey_cmp(k, &ZERO_KEY))
1253 b->prio = BTREE_PRIO;
1254 else if (!level && b->prio == BTREE_PRIO)
1255 b->prio = INITIAL_PRIO;
1256 }
1257
1258 __bch_btree_mark_key(c, level, k);
1259}
1260
d44c2f9e
TJ
1261void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1262{
1263 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1264}
1265
a1f0358b 1266static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
cafe5635
KO
1267{
1268 uint8_t stale = 0;
6f10f7d1 1269 unsigned int keys = 0, good_keys = 0;
cafe5635
KO
1270 struct bkey *k;
1271 struct btree_iter iter;
1272 struct bset_tree *t;
1273
1274 gc->nodes++;
1275
c052dd9a 1276 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
cafe5635 1277 stale = max(stale, btree_mark_key(b, k));
a1f0358b 1278 keys++;
cafe5635 1279
a85e968e 1280 if (bch_ptr_bad(&b->keys, k))
cafe5635
KO
1281 continue;
1282
cafe5635
KO
1283 gc->key_bytes += bkey_u64s(k);
1284 gc->nkeys++;
a1f0358b 1285 good_keys++;
cafe5635
KO
1286
1287 gc->data += KEY_SIZE(k);
cafe5635
KO
1288 }
1289
a85e968e 1290 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
cafe5635 1291 btree_bug_on(t->size &&
a85e968e 1292 bset_written(&b->keys, t) &&
cafe5635
KO
1293 bkey_cmp(&b->key, &t->end) < 0,
1294 b, "found short btree key in gc");
1295
a1f0358b
KO
1296 if (b->c->gc_always_rewrite)
1297 return true;
cafe5635 1298
a1f0358b
KO
1299 if (stale > 10)
1300 return true;
cafe5635 1301
a1f0358b
KO
1302 if ((keys - good_keys) * 2 > keys)
1303 return true;
cafe5635 1304
a1f0358b 1305 return false;
cafe5635
KO
1306}
1307
a1f0358b 1308#define GC_MERGE_NODES 4U
cafe5635
KO
1309
1310struct gc_merge_info {
1311 struct btree *b;
6f10f7d1 1312 unsigned int keys;
cafe5635
KO
1313};
1314
fc2d5988
CL
1315static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1316 struct keylist *insert_keys,
1317 atomic_t *journal_ref,
1318 struct bkey *replace_key);
a1f0358b
KO
1319
1320static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
0a63b66d 1321 struct gc_stat *gc, struct gc_merge_info *r)
cafe5635 1322{
6f10f7d1 1323 unsigned int i, nodes = 0, keys = 0, blocks;
a1f0358b 1324 struct btree *new_nodes[GC_MERGE_NODES];
0a63b66d 1325 struct keylist keylist;
b54d6934 1326 struct closure cl;
a1f0358b 1327 struct bkey *k;
b54d6934 1328
0a63b66d
KO
1329 bch_keylist_init(&keylist);
1330
1331 if (btree_check_reserve(b, NULL))
1332 return 0;
1333
a1f0358b 1334 memset(new_nodes, 0, sizeof(new_nodes));
b54d6934 1335 closure_init_stack(&cl);
cafe5635 1336
a1f0358b 1337 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
cafe5635
KO
1338 keys += r[nodes++].keys;
1339
1340 blocks = btree_default_blocks(b->c) * 2 / 3;
1341
1342 if (nodes < 2 ||
a85e968e 1343 __set_blocks(b->keys.set[0].data, keys,
ee811287 1344 block_bytes(b->c)) > blocks * (nodes - 1))
a1f0358b 1345 return 0;
cafe5635 1346
a1f0358b 1347 for (i = 0; i < nodes; i++) {
0a63b66d 1348 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
a1f0358b
KO
1349 if (IS_ERR_OR_NULL(new_nodes[i]))
1350 goto out_nocoalesce;
cafe5635
KO
1351 }
1352
0a63b66d
KO
1353 /*
1354 * We have to check the reserve here, after we've allocated our new
1355 * nodes, to make sure the insert below will succeed - we also check
1356 * before as an optimization to potentially avoid a bunch of expensive
1357 * allocs/sorts
1358 */
1359 if (btree_check_reserve(b, NULL))
1360 goto out_nocoalesce;
1361
2a285686
KO
1362 for (i = 0; i < nodes; i++)
1363 mutex_lock(&new_nodes[i]->write_lock);
1364
cafe5635 1365 for (i = nodes - 1; i > 0; --i) {
ee811287
KO
1366 struct bset *n1 = btree_bset_first(new_nodes[i]);
1367 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
cafe5635
KO
1368 struct bkey *k, *last = NULL;
1369
1370 keys = 0;
1371
a1f0358b
KO
1372 if (i > 1) {
1373 for (k = n2->start;
fafff81c 1374 k < bset_bkey_last(n2);
a1f0358b
KO
1375 k = bkey_next(k)) {
1376 if (__set_blocks(n1, n1->keys + keys +
ee811287
KO
1377 bkey_u64s(k),
1378 block_bytes(b->c)) > blocks)
a1f0358b
KO
1379 break;
1380
1381 last = k;
1382 keys += bkey_u64s(k);
1383 }
1384 } else {
cafe5635
KO
1385 /*
1386 * Last node we're not getting rid of - we're getting
1387 * rid of the node at r[0]. Have to try and fit all of
1388 * the remaining keys into this node; we can't ensure
1389 * they will always fit due to rounding and variable
1390 * length keys (shouldn't be possible in practice,
1391 * though)
1392 */
a1f0358b 1393 if (__set_blocks(n1, n1->keys + n2->keys,
ee811287
KO
1394 block_bytes(b->c)) >
1395 btree_blocks(new_nodes[i]))
a1f0358b 1396 goto out_nocoalesce;
cafe5635
KO
1397
1398 keys = n2->keys;
a1f0358b 1399 /* Take the key of the node we're getting rid of */
cafe5635 1400 last = &r->b->key;
a1f0358b 1401 }
cafe5635 1402
ee811287
KO
1403 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1404 btree_blocks(new_nodes[i]));
cafe5635 1405
a1f0358b
KO
1406 if (last)
1407 bkey_copy_key(&new_nodes[i]->key, last);
cafe5635 1408
fafff81c 1409 memcpy(bset_bkey_last(n1),
cafe5635 1410 n2->start,
fafff81c 1411 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
cafe5635
KO
1412
1413 n1->keys += keys;
a1f0358b 1414 r[i].keys = n1->keys;
cafe5635
KO
1415
1416 memmove(n2->start,
fafff81c
KO
1417 bset_bkey_idx(n2, keys),
1418 (void *) bset_bkey_last(n2) -
1419 (void *) bset_bkey_idx(n2, keys));
cafe5635
KO
1420
1421 n2->keys -= keys;
1422
0a63b66d 1423 if (__bch_keylist_realloc(&keylist,
085d2a3d 1424 bkey_u64s(&new_nodes[i]->key)))
a1f0358b
KO
1425 goto out_nocoalesce;
1426
1427 bch_btree_node_write(new_nodes[i], &cl);
0a63b66d 1428 bch_keylist_add(&keylist, &new_nodes[i]->key);
cafe5635
KO
1429 }
1430
2a285686
KO
1431 for (i = 0; i < nodes; i++)
1432 mutex_unlock(&new_nodes[i]->write_lock);
1433
05335cff
KO
1434 closure_sync(&cl);
1435
1436 /* We emptied out this node */
1437 BUG_ON(btree_bset_first(new_nodes[0])->keys);
1438 btree_node_free(new_nodes[0]);
1439 rw_unlock(true, new_nodes[0]);
400ffaa2 1440 new_nodes[0] = NULL;
05335cff 1441
a1f0358b 1442 for (i = 0; i < nodes; i++) {
0a63b66d 1443 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
a1f0358b 1444 goto out_nocoalesce;
cafe5635 1445
0a63b66d
KO
1446 make_btree_freeing_key(r[i].b, keylist.top);
1447 bch_keylist_push(&keylist);
a1f0358b 1448 }
cafe5635 1449
0a63b66d
KO
1450 bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1451 BUG_ON(!bch_keylist_empty(&keylist));
a1f0358b
KO
1452
1453 for (i = 0; i < nodes; i++) {
1454 btree_node_free(r[i].b);
1455 rw_unlock(true, r[i].b);
1456
1457 r[i].b = new_nodes[i];
1458 }
1459
a1f0358b
KO
1460 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1461 r[nodes - 1].b = ERR_PTR(-EINTR);
1462
1463 trace_bcache_btree_gc_coalesce(nodes);
cafe5635 1464 gc->nodes--;
cafe5635 1465
0a63b66d
KO
1466 bch_keylist_free(&keylist);
1467
a1f0358b
KO
1468 /* Invalidated our iterator */
1469 return -EINTR;
1470
1471out_nocoalesce:
1472 closure_sync(&cl);
0a63b66d 1473 bch_keylist_free(&keylist);
a1f0358b 1474
0a63b66d 1475 while ((k = bch_keylist_pop(&keylist)))
a1f0358b
KO
1476 if (!bkey_cmp(k, &ZERO_KEY))
1477 atomic_dec(&b->c->prio_blocked);
1478
1479 for (i = 0; i < nodes; i++)
1480 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1481 btree_node_free(new_nodes[i]);
1482 rw_unlock(true, new_nodes[i]);
1483 }
1484 return 0;
cafe5635
KO
1485}
1486
0a63b66d
KO
1487static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1488 struct btree *replace)
1489{
1490 struct keylist keys;
1491 struct btree *n;
1492
1493 if (btree_check_reserve(b, NULL))
1494 return 0;
1495
1496 n = btree_node_alloc_replacement(replace, NULL);
1497
1498 /* recheck reserve after allocating replacement node */
1499 if (btree_check_reserve(b, NULL)) {
1500 btree_node_free(n);
1501 rw_unlock(true, n);
1502 return 0;
1503 }
1504
1505 bch_btree_node_write_sync(n);
1506
1507 bch_keylist_init(&keys);
1508 bch_keylist_add(&keys, &n->key);
1509
1510 make_btree_freeing_key(replace, keys.top);
1511 bch_keylist_push(&keys);
1512
1513 bch_btree_insert_node(b, op, &keys, NULL, NULL);
1514 BUG_ON(!bch_keylist_empty(&keys));
1515
1516 btree_node_free(replace);
1517 rw_unlock(true, n);
1518
1519 /* Invalidated our iterator */
1520 return -EINTR;
1521}
1522
6f10f7d1 1523static unsigned int btree_gc_count_keys(struct btree *b)
cafe5635 1524{
a1f0358b
KO
1525 struct bkey *k;
1526 struct btree_iter iter;
6f10f7d1 1527 unsigned int ret = 0;
cafe5635 1528
c052dd9a 1529 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
a1f0358b
KO
1530 ret += bkey_u64s(k);
1531
1532 return ret;
1533}
cafe5635 1534
7f4a59de
TJ
1535static size_t btree_gc_min_nodes(struct cache_set *c)
1536{
1537 size_t min_nodes;
1538
1539 /*
1540 * Since incremental GC would stop 100ms when front
1541 * side I/O comes, so when there are many btree nodes,
1542 * if GC only processes constant (100) nodes each time,
1543 * GC would last a long time, and the front side I/Os
1544 * would run out of the buckets (since no new bucket
1545 * can be allocated during GC), and be blocked again.
1546 * So GC should not process constant nodes, but varied
1547 * nodes according to the number of btree nodes, which
1548 * realized by dividing GC into constant(100) times,
1549 * so when there are many btree nodes, GC can process
1550 * more nodes each time, otherwise, GC will process less
1551 * nodes each time (but no less than MIN_GC_NODES)
1552 */
1553 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1554 if (min_nodes < MIN_GC_NODES)
1555 min_nodes = MIN_GC_NODES;
1556
1557 return min_nodes;
1558}
1559
1560
a1f0358b
KO
1561static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1562 struct closure *writes, struct gc_stat *gc)
1563{
a1f0358b
KO
1564 int ret = 0;
1565 bool should_rewrite;
a1f0358b 1566 struct bkey *k;
a1f0358b 1567 struct btree_iter iter;
cafe5635 1568 struct gc_merge_info r[GC_MERGE_NODES];
2a285686 1569 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
cafe5635 1570
c052dd9a 1571 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
cafe5635 1572
2a285686
KO
1573 for (i = r; i < r + ARRAY_SIZE(r); i++)
1574 i->b = ERR_PTR(-EINTR);
cafe5635 1575
a1f0358b 1576 while (1) {
a85e968e 1577 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
a1f0358b 1578 if (k) {
0a63b66d 1579 r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
2452cc89 1580 true, b);
a1f0358b
KO
1581 if (IS_ERR(r->b)) {
1582 ret = PTR_ERR(r->b);
1583 break;
1584 }
1585
1586 r->keys = btree_gc_count_keys(r->b);
1587
0a63b66d 1588 ret = btree_gc_coalesce(b, op, gc, r);
a1f0358b
KO
1589 if (ret)
1590 break;
cafe5635
KO
1591 }
1592
a1f0358b
KO
1593 if (!last->b)
1594 break;
cafe5635 1595
a1f0358b
KO
1596 if (!IS_ERR(last->b)) {
1597 should_rewrite = btree_gc_mark_node(last->b, gc);
0a63b66d
KO
1598 if (should_rewrite) {
1599 ret = btree_gc_rewrite_node(b, op, last->b);
1600 if (ret)
a1f0358b 1601 break;
a1f0358b
KO
1602 }
1603
1604 if (last->b->level) {
1605 ret = btree_gc_recurse(last->b, op, writes, gc);
1606 if (ret)
1607 break;
1608 }
cafe5635 1609
a1f0358b
KO
1610 bkey_copy_key(&b->c->gc_done, &last->b->key);
1611
1612 /*
1613 * Must flush leaf nodes before gc ends, since replace
1614 * operations aren't journalled
1615 */
2a285686 1616 mutex_lock(&last->b->write_lock);
a1f0358b
KO
1617 if (btree_node_dirty(last->b))
1618 bch_btree_node_write(last->b, writes);
2a285686 1619 mutex_unlock(&last->b->write_lock);
a1f0358b
KO
1620 rw_unlock(true, last->b);
1621 }
1622
1623 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1624 r->b = NULL;
cafe5635 1625
5c25c4fc 1626 if (atomic_read(&b->c->search_inflight) &&
7f4a59de 1627 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
5c25c4fc
TJ
1628 gc->nodes_pre = gc->nodes;
1629 ret = -EAGAIN;
1630 break;
1631 }
1632
cafe5635
KO
1633 if (need_resched()) {
1634 ret = -EAGAIN;
1635 break;
1636 }
cafe5635
KO
1637 }
1638
2a285686
KO
1639 for (i = r; i < r + ARRAY_SIZE(r); i++)
1640 if (!IS_ERR_OR_NULL(i->b)) {
1641 mutex_lock(&i->b->write_lock);
1642 if (btree_node_dirty(i->b))
1643 bch_btree_node_write(i->b, writes);
1644 mutex_unlock(&i->b->write_lock);
1645 rw_unlock(true, i->b);
a1f0358b 1646 }
cafe5635 1647
cafe5635
KO
1648 return ret;
1649}
1650
1651static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1652 struct closure *writes, struct gc_stat *gc)
1653{
1654 struct btree *n = NULL;
a1f0358b
KO
1655 int ret = 0;
1656 bool should_rewrite;
cafe5635 1657
a1f0358b
KO
1658 should_rewrite = btree_gc_mark_node(b, gc);
1659 if (should_rewrite) {
0a63b66d 1660 n = btree_node_alloc_replacement(b, NULL);
cafe5635 1661
a1f0358b
KO
1662 if (!IS_ERR_OR_NULL(n)) {
1663 bch_btree_node_write_sync(n);
2a285686 1664
a1f0358b
KO
1665 bch_btree_set_root(n);
1666 btree_node_free(b);
1667 rw_unlock(true, n);
cafe5635 1668
a1f0358b
KO
1669 return -EINTR;
1670 }
1671 }
cafe5635 1672
487dded8
KO
1673 __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1674
a1f0358b
KO
1675 if (b->level) {
1676 ret = btree_gc_recurse(b, op, writes, gc);
1677 if (ret)
1678 return ret;
cafe5635
KO
1679 }
1680
a1f0358b
KO
1681 bkey_copy_key(&b->c->gc_done, &b->key);
1682
cafe5635
KO
1683 return ret;
1684}
1685
1686static void btree_gc_start(struct cache_set *c)
1687{
1688 struct cache *ca;
1689 struct bucket *b;
6f10f7d1 1690 unsigned int i;
cafe5635
KO
1691
1692 if (!c->gc_mark_valid)
1693 return;
1694
1695 mutex_lock(&c->bucket_lock);
1696
1697 c->gc_mark_valid = 0;
1698 c->gc_done = ZERO_KEY;
1699
1700 for_each_cache(ca, c, i)
1701 for_each_bucket(b, ca) {
3a2fd9d5 1702 b->last_gc = b->gen;
29ebf465 1703 if (!atomic_read(&b->pin)) {
4fe6a816 1704 SET_GC_MARK(b, 0);
29ebf465
KO
1705 SET_GC_SECTORS_USED(b, 0);
1706 }
cafe5635
KO
1707 }
1708
cafe5635
KO
1709 mutex_unlock(&c->bucket_lock);
1710}
1711
d44c2f9e 1712static void bch_btree_gc_finish(struct cache_set *c)
cafe5635 1713{
cafe5635
KO
1714 struct bucket *b;
1715 struct cache *ca;
6f10f7d1 1716 unsigned int i;
cafe5635
KO
1717
1718 mutex_lock(&c->bucket_lock);
1719
1720 set_gc_sectors(c);
1721 c->gc_mark_valid = 1;
1722 c->need_gc = 0;
1723
cafe5635
KO
1724 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1725 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1726 GC_MARK_METADATA);
1727
bf0a628a
NS
1728 /* don't reclaim buckets to which writeback keys point */
1729 rcu_read_lock();
2831231d 1730 for (i = 0; i < c->devices_max_used; i++) {
bf0a628a
NS
1731 struct bcache_device *d = c->devices[i];
1732 struct cached_dev *dc;
1733 struct keybuf_key *w, *n;
6f10f7d1 1734 unsigned int j;
bf0a628a
NS
1735
1736 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1737 continue;
1738 dc = container_of(d, struct cached_dev, disk);
1739
1740 spin_lock(&dc->writeback_keys.lock);
1741 rbtree_postorder_for_each_entry_safe(w, n,
1742 &dc->writeback_keys.keys, node)
1743 for (j = 0; j < KEY_PTRS(&w->key); j++)
1744 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1745 GC_MARK_DIRTY);
1746 spin_unlock(&dc->writeback_keys.lock);
1747 }
1748 rcu_read_unlock();
1749
d44c2f9e 1750 c->avail_nbuckets = 0;
cafe5635
KO
1751 for_each_cache(ca, c, i) {
1752 uint64_t *i;
1753
1754 ca->invalidate_needs_gc = 0;
1755
1756 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1757 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1758
1759 for (i = ca->prio_buckets;
1760 i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1761 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1762
1763 for_each_bucket(b, ca) {
cafe5635
KO
1764 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1765
4fe6a816
KO
1766 if (atomic_read(&b->pin))
1767 continue;
1768
1769 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1770
1771 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
d44c2f9e 1772 c->avail_nbuckets++;
cafe5635
KO
1773 }
1774 }
1775
cafe5635 1776 mutex_unlock(&c->bucket_lock);
cafe5635
KO
1777}
1778
72a44517 1779static void bch_btree_gc(struct cache_set *c)
cafe5635 1780{
cafe5635 1781 int ret;
cafe5635
KO
1782 struct gc_stat stats;
1783 struct closure writes;
1784 struct btree_op op;
cafe5635 1785 uint64_t start_time = local_clock();
57943511 1786
c37511b8 1787 trace_bcache_gc_start(c);
cafe5635
KO
1788
1789 memset(&stats, 0, sizeof(struct gc_stat));
1790 closure_init_stack(&writes);
b54d6934 1791 bch_btree_op_init(&op, SHRT_MAX);
cafe5635
KO
1792
1793 btree_gc_start(c);
1794
771f393e 1795 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
a1f0358b
KO
1796 do {
1797 ret = btree_root(gc_root, c, &op, &writes, &stats);
1798 closure_sync(&writes);
c5f1e5ad 1799 cond_resched();
cafe5635 1800
5c25c4fc
TJ
1801 if (ret == -EAGAIN)
1802 schedule_timeout_interruptible(msecs_to_jiffies
1803 (GC_SLEEP_MS));
1804 else if (ret)
a1f0358b 1805 pr_warn("gc failed!");
771f393e 1806 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
cafe5635 1807
d44c2f9e 1808 bch_btree_gc_finish(c);
57943511
KO
1809 wake_up_allocators(c);
1810
169ef1cf 1811 bch_time_stats_update(&c->btree_gc_time, start_time);
cafe5635
KO
1812
1813 stats.key_bytes *= sizeof(uint64_t);
cafe5635 1814 stats.data <<= 9;
d44c2f9e 1815 bch_update_bucket_in_use(c, &stats);
cafe5635 1816 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
cafe5635 1817
c37511b8 1818 trace_bcache_gc_end(c);
cafe5635 1819
72a44517
KO
1820 bch_moving_gc(c);
1821}
1822
be628be0 1823static bool gc_should_run(struct cache_set *c)
72a44517 1824{
a1f0358b 1825 struct cache *ca;
6f10f7d1 1826 unsigned int i;
72a44517 1827
be628be0
KO
1828 for_each_cache(ca, c, i)
1829 if (ca->invalidate_needs_gc)
1830 return true;
72a44517 1831
be628be0
KO
1832 if (atomic_read(&c->sectors_to_gc) < 0)
1833 return true;
72a44517 1834
be628be0
KO
1835 return false;
1836}
a1f0358b 1837
be628be0
KO
1838static int bch_gc_thread(void *arg)
1839{
1840 struct cache_set *c = arg;
a1f0358b 1841
be628be0
KO
1842 while (1) {
1843 wait_event_interruptible(c->gc_wait,
771f393e
CL
1844 kthread_should_stop() ||
1845 test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1846 gc_should_run(c));
a1f0358b 1847
771f393e
CL
1848 if (kthread_should_stop() ||
1849 test_bit(CACHE_SET_IO_DISABLE, &c->flags))
be628be0
KO
1850 break;
1851
1852 set_gc_sectors(c);
1853 bch_btree_gc(c);
72a44517
KO
1854 }
1855
771f393e 1856 wait_for_kthread_stop();
72a44517 1857 return 0;
cafe5635
KO
1858}
1859
72a44517 1860int bch_gc_thread_start(struct cache_set *c)
cafe5635 1861{
be628be0 1862 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
9d134117 1863 return PTR_ERR_OR_ZERO(c->gc_thread);
cafe5635
KO
1864}
1865
1866/* Initial partial gc */
1867
487dded8 1868static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
cafe5635 1869{
50310164 1870 int ret = 0;
50310164 1871 struct bkey *k, *p = NULL;
cafe5635
KO
1872 struct btree_iter iter;
1873
487dded8
KO
1874 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1875 bch_initial_mark_key(b->c, b->level, k);
cafe5635 1876
487dded8 1877 bch_initial_mark_key(b->c, b->level + 1, &b->key);
cafe5635
KO
1878
1879 if (b->level) {
c052dd9a 1880 bch_btree_iter_init(&b->keys, &iter, NULL);
cafe5635 1881
50310164 1882 do {
a85e968e
KO
1883 k = bch_btree_iter_next_filter(&iter, &b->keys,
1884 bch_ptr_bad);
7f4a59de 1885 if (k) {
2452cc89 1886 btree_node_prefetch(b, k);
7f4a59de
TJ
1887 /*
1888 * initiallize c->gc_stats.nodes
1889 * for incremental GC
1890 */
1891 b->c->gc_stats.nodes++;
1892 }
cafe5635 1893
50310164 1894 if (p)
487dded8 1895 ret = btree(check_recurse, p, b, op);
cafe5635 1896
50310164
KO
1897 p = k;
1898 } while (p && !ret);
cafe5635
KO
1899 }
1900
487dded8 1901 return ret;
cafe5635
KO
1902}
1903
c18536a7 1904int bch_btree_check(struct cache_set *c)
cafe5635 1905{
c18536a7 1906 struct btree_op op;
cafe5635 1907
b54d6934 1908 bch_btree_op_init(&op, SHRT_MAX);
cafe5635 1909
487dded8 1910 return btree_root(check_recurse, c, &op);
cafe5635
KO
1911}
1912
2531d9ee
KO
1913void bch_initial_gc_finish(struct cache_set *c)
1914{
1915 struct cache *ca;
1916 struct bucket *b;
6f10f7d1 1917 unsigned int i;
2531d9ee
KO
1918
1919 bch_btree_gc_finish(c);
1920
1921 mutex_lock(&c->bucket_lock);
1922
1923 /*
1924 * We need to put some unused buckets directly on the prio freelist in
1925 * order to get the allocator thread started - it needs freed buckets in
1926 * order to rewrite the prios and gens, and it needs to rewrite prios
1927 * and gens in order to free buckets.
1928 *
1929 * This is only safe for buckets that have no live data in them, which
1930 * there should always be some of.
1931 */
1932 for_each_cache(ca, c, i) {
1933 for_each_bucket(b, ca) {
682811b3
TJ
1934 if (fifo_full(&ca->free[RESERVE_PRIO]) &&
1935 fifo_full(&ca->free[RESERVE_BTREE]))
2531d9ee
KO
1936 break;
1937
1938 if (bch_can_invalidate_bucket(ca, b) &&
1939 !GC_MARK(b)) {
1940 __bch_invalidate_one_bucket(ca, b);
682811b3
TJ
1941 if (!fifo_push(&ca->free[RESERVE_PRIO],
1942 b - ca->buckets))
1943 fifo_push(&ca->free[RESERVE_BTREE],
1944 b - ca->buckets);
2531d9ee
KO
1945 }
1946 }
1947 }
1948
1949 mutex_unlock(&c->bucket_lock);
1950}
1951
cafe5635
KO
1952/* Btree insertion */
1953
829a60b9
KO
1954static bool btree_insert_key(struct btree *b, struct bkey *k,
1955 struct bkey *replace_key)
cafe5635 1956{
6f10f7d1 1957 unsigned int status;
cafe5635
KO
1958
1959 BUG_ON(bkey_cmp(k, &b->key) > 0);
1fa8455d 1960
829a60b9
KO
1961 status = bch_btree_insert_key(&b->keys, k, replace_key);
1962 if (status != BTREE_INSERT_STATUS_NO_INSERT) {
1963 bch_check_keys(&b->keys, "%u for %s", status,
1964 replace_key ? "replace" : "insert");
cafe5635 1965
829a60b9
KO
1966 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
1967 status);
1968 return true;
1969 } else
1970 return false;
cafe5635
KO
1971}
1972
59158fde
KO
1973static size_t insert_u64s_remaining(struct btree *b)
1974{
3572324a 1975 long ret = bch_btree_keys_u64s_remaining(&b->keys);
59158fde
KO
1976
1977 /*
1978 * Might land in the middle of an existing extent and have to split it
1979 */
1980 if (b->keys.ops->is_extents)
1981 ret -= KEY_MAX_U64S;
1982
1983 return max(ret, 0L);
1984}
1985
26c949f8 1986static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
1b207d80
KO
1987 struct keylist *insert_keys,
1988 struct bkey *replace_key)
cafe5635
KO
1989{
1990 bool ret = false;
dc9d98d6 1991 int oldsize = bch_count_data(&b->keys);
cafe5635 1992
26c949f8 1993 while (!bch_keylist_empty(insert_keys)) {
c2f95ae2 1994 struct bkey *k = insert_keys->keys;
26c949f8 1995
59158fde 1996 if (bkey_u64s(k) > insert_u64s_remaining(b))
403b6cde
KO
1997 break;
1998
1999 if (bkey_cmp(k, &b->key) <= 0) {
3a3b6a4e
KO
2000 if (!b->level)
2001 bkey_put(b->c, k);
26c949f8 2002
829a60b9 2003 ret |= btree_insert_key(b, k, replace_key);
26c949f8
KO
2004 bch_keylist_pop_front(insert_keys);
2005 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
26c949f8 2006 BKEY_PADDED(key) temp;
c2f95ae2 2007 bkey_copy(&temp.key, insert_keys->keys);
26c949f8
KO
2008
2009 bch_cut_back(&b->key, &temp.key);
c2f95ae2 2010 bch_cut_front(&b->key, insert_keys->keys);
26c949f8 2011
829a60b9 2012 ret |= btree_insert_key(b, &temp.key, replace_key);
26c949f8
KO
2013 break;
2014 } else {
2015 break;
2016 }
cafe5635
KO
2017 }
2018
829a60b9
KO
2019 if (!ret)
2020 op->insert_collision = true;
2021
403b6cde
KO
2022 BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2023
dc9d98d6 2024 BUG_ON(bch_count_data(&b->keys) < oldsize);
cafe5635
KO
2025 return ret;
2026}
2027
26c949f8
KO
2028static int btree_split(struct btree *b, struct btree_op *op,
2029 struct keylist *insert_keys,
1b207d80 2030 struct bkey *replace_key)
cafe5635 2031{
d6fd3b11 2032 bool split;
cafe5635
KO
2033 struct btree *n1, *n2 = NULL, *n3 = NULL;
2034 uint64_t start_time = local_clock();
b54d6934 2035 struct closure cl;
17e21a9f 2036 struct keylist parent_keys;
b54d6934
KO
2037
2038 closure_init_stack(&cl);
17e21a9f 2039 bch_keylist_init(&parent_keys);
cafe5635 2040
0a63b66d
KO
2041 if (btree_check_reserve(b, op)) {
2042 if (!b->level)
2043 return -EINTR;
2044 else
2045 WARN(1, "insufficient reserve for split\n");
2046 }
78365411 2047
0a63b66d 2048 n1 = btree_node_alloc_replacement(b, op);
cafe5635
KO
2049 if (IS_ERR(n1))
2050 goto err;
2051
ee811287
KO
2052 split = set_blocks(btree_bset_first(n1),
2053 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
cafe5635 2054
cafe5635 2055 if (split) {
6f10f7d1 2056 unsigned int keys = 0;
cafe5635 2057
ee811287 2058 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
c37511b8 2059
2452cc89 2060 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
cafe5635
KO
2061 if (IS_ERR(n2))
2062 goto err_free1;
2063
d6fd3b11 2064 if (!b->parent) {
2452cc89 2065 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
cafe5635
KO
2066 if (IS_ERR(n3))
2067 goto err_free2;
2068 }
2069
2a285686
KO
2070 mutex_lock(&n1->write_lock);
2071 mutex_lock(&n2->write_lock);
2072
1b207d80 2073 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
cafe5635 2074
d6fd3b11
KO
2075 /*
2076 * Has to be a linear search because we don't have an auxiliary
cafe5635
KO
2077 * search tree yet
2078 */
2079
ee811287
KO
2080 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2081 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
fafff81c 2082 keys));
cafe5635 2083
fafff81c 2084 bkey_copy_key(&n1->key,
ee811287
KO
2085 bset_bkey_idx(btree_bset_first(n1), keys));
2086 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
cafe5635 2087
ee811287
KO
2088 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2089 btree_bset_first(n1)->keys = keys;
cafe5635 2090
ee811287
KO
2091 memcpy(btree_bset_first(n2)->start,
2092 bset_bkey_last(btree_bset_first(n1)),
2093 btree_bset_first(n2)->keys * sizeof(uint64_t));
cafe5635
KO
2094
2095 bkey_copy_key(&n2->key, &b->key);
2096
17e21a9f 2097 bch_keylist_add(&parent_keys, &n2->key);
b54d6934 2098 bch_btree_node_write(n2, &cl);
2a285686 2099 mutex_unlock(&n2->write_lock);
cafe5635 2100 rw_unlock(true, n2);
c37511b8 2101 } else {
ee811287 2102 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
c37511b8 2103
2a285686 2104 mutex_lock(&n1->write_lock);
1b207d80 2105 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
c37511b8 2106 }
cafe5635 2107
17e21a9f 2108 bch_keylist_add(&parent_keys, &n1->key);
b54d6934 2109 bch_btree_node_write(n1, &cl);
2a285686 2110 mutex_unlock(&n1->write_lock);
cafe5635
KO
2111
2112 if (n3) {
d6fd3b11 2113 /* Depth increases, make a new root */
2a285686 2114 mutex_lock(&n3->write_lock);
cafe5635 2115 bkey_copy_key(&n3->key, &MAX_KEY);
17e21a9f 2116 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
b54d6934 2117 bch_btree_node_write(n3, &cl);
2a285686 2118 mutex_unlock(&n3->write_lock);
cafe5635 2119
b54d6934 2120 closure_sync(&cl);
cafe5635
KO
2121 bch_btree_set_root(n3);
2122 rw_unlock(true, n3);
d6fd3b11
KO
2123 } else if (!b->parent) {
2124 /* Root filled up but didn't need to be split */
b54d6934 2125 closure_sync(&cl);
cafe5635
KO
2126 bch_btree_set_root(n1);
2127 } else {
17e21a9f 2128 /* Split a non root node */
b54d6934 2129 closure_sync(&cl);
17e21a9f
KO
2130 make_btree_freeing_key(b, parent_keys.top);
2131 bch_keylist_push(&parent_keys);
2132
17e21a9f
KO
2133 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2134 BUG_ON(!bch_keylist_empty(&parent_keys));
cafe5635
KO
2135 }
2136
05335cff 2137 btree_node_free(b);
cafe5635 2138 rw_unlock(true, n1);
cafe5635 2139
169ef1cf 2140 bch_time_stats_update(&b->c->btree_split_time, start_time);
cafe5635
KO
2141
2142 return 0;
2143err_free2:
5f5837d2 2144 bkey_put(b->c, &n2->key);
e8e1d468 2145 btree_node_free(n2);
cafe5635
KO
2146 rw_unlock(true, n2);
2147err_free1:
5f5837d2 2148 bkey_put(b->c, &n1->key);
e8e1d468 2149 btree_node_free(n1);
cafe5635
KO
2150 rw_unlock(true, n1);
2151err:
0a63b66d 2152 WARN(1, "bcache: btree split failed (level %u)", b->level);
5f5837d2 2153
cafe5635
KO
2154 if (n3 == ERR_PTR(-EAGAIN) ||
2155 n2 == ERR_PTR(-EAGAIN) ||
2156 n1 == ERR_PTR(-EAGAIN))
2157 return -EAGAIN;
2158
cafe5635
KO
2159 return -ENOMEM;
2160}
2161
26c949f8 2162static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
c18536a7 2163 struct keylist *insert_keys,
1b207d80
KO
2164 atomic_t *journal_ref,
2165 struct bkey *replace_key)
cafe5635 2166{
2a285686
KO
2167 struct closure cl;
2168
17e21a9f
KO
2169 BUG_ON(b->level && replace_key);
2170
2a285686
KO
2171 closure_init_stack(&cl);
2172
2173 mutex_lock(&b->write_lock);
2174
2175 if (write_block(b) != btree_bset_last(b) &&
2176 b->keys.last_set_unwritten)
2177 bch_btree_init_next(b); /* just wrote a set */
2178
59158fde 2179 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2a285686
KO
2180 mutex_unlock(&b->write_lock);
2181 goto split;
2182 }
3b3e9e50 2183
2a285686 2184 BUG_ON(write_block(b) != btree_bset_last(b));
cafe5635 2185
2a285686
KO
2186 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2187 if (!b->level)
2188 bch_btree_leaf_dirty(b, journal_ref);
2189 else
2190 bch_btree_node_write(b, &cl);
2191 }
17e21a9f 2192
2a285686
KO
2193 mutex_unlock(&b->write_lock);
2194
2195 /* wait for btree node write if necessary, after unlock */
2196 closure_sync(&cl);
2197
2198 return 0;
2199split:
2200 if (current->bio_list) {
2201 op->lock = b->c->root->level + 1;
2202 return -EAGAIN;
2203 } else if (op->lock <= b->c->root->level) {
2204 op->lock = b->c->root->level + 1;
2205 return -EINTR;
2206 } else {
2207 /* Invalidated all iterators */
2208 int ret = btree_split(b, op, insert_keys, replace_key);
2209
2210 if (bch_keylist_empty(insert_keys))
2211 return 0;
2212 else if (!ret)
2213 return -EINTR;
2214 return ret;
17e21a9f 2215 }
26c949f8 2216}
cafe5635 2217
e7c590eb
KO
2218int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2219 struct bkey *check_key)
2220{
2221 int ret = -EINTR;
2222 uint64_t btree_ptr = b->key.ptr[0];
2223 unsigned long seq = b->seq;
2224 struct keylist insert;
2225 bool upgrade = op->lock == -1;
2226
2227 bch_keylist_init(&insert);
2228
2229 if (upgrade) {
2230 rw_unlock(false, b);
2231 rw_lock(true, b, b->level);
2232
2233 if (b->key.ptr[0] != btree_ptr ||
c63ca787 2234 b->seq != seq + 1) {
fd01991d 2235 op->lock = b->level;
e7c590eb 2236 goto out;
c63ca787 2237 }
e7c590eb
KO
2238 }
2239
2240 SET_KEY_PTRS(check_key, 1);
2241 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2242
2243 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2244
2245 bch_keylist_add(&insert, check_key);
2246
1b207d80 2247 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
e7c590eb
KO
2248
2249 BUG_ON(!ret && !bch_keylist_empty(&insert));
2250out:
2251 if (upgrade)
2252 downgrade_write(&b->lock);
2253 return ret;
2254}
2255
cc7b8819
KO
2256struct btree_insert_op {
2257 struct btree_op op;
2258 struct keylist *keys;
2259 atomic_t *journal_ref;
2260 struct bkey *replace_key;
2261};
cafe5635 2262
08239ca2 2263static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
cc7b8819
KO
2264{
2265 struct btree_insert_op *op = container_of(b_op,
2266 struct btree_insert_op, op);
cafe5635 2267
cc7b8819
KO
2268 int ret = bch_btree_insert_node(b, &op->op, op->keys,
2269 op->journal_ref, op->replace_key);
2270 if (ret && !bch_keylist_empty(op->keys))
2271 return ret;
2272 else
2273 return MAP_DONE;
cafe5635
KO
2274}
2275
cc7b8819
KO
2276int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2277 atomic_t *journal_ref, struct bkey *replace_key)
cafe5635 2278{
cc7b8819 2279 struct btree_insert_op op;
cafe5635 2280 int ret = 0;
cafe5635 2281
cc7b8819 2282 BUG_ON(current->bio_list);
4f3d4014 2283 BUG_ON(bch_keylist_empty(keys));
cafe5635 2284
cc7b8819
KO
2285 bch_btree_op_init(&op.op, 0);
2286 op.keys = keys;
2287 op.journal_ref = journal_ref;
2288 op.replace_key = replace_key;
cafe5635 2289
cc7b8819
KO
2290 while (!ret && !bch_keylist_empty(keys)) {
2291 op.op.lock = 0;
2292 ret = bch_btree_map_leaf_nodes(&op.op, c,
2293 &START_KEY(keys->keys),
2294 btree_insert_fn);
2295 }
cafe5635 2296
cc7b8819
KO
2297 if (ret) {
2298 struct bkey *k;
cafe5635 2299
cc7b8819 2300 pr_err("error %i", ret);
cafe5635 2301
cc7b8819 2302 while ((k = bch_keylist_pop(keys)))
3a3b6a4e 2303 bkey_put(c, k);
cc7b8819
KO
2304 } else if (op.op.insert_collision)
2305 ret = -ESRCH;
6054c6d4 2306
cafe5635
KO
2307 return ret;
2308}
2309
2310void bch_btree_set_root(struct btree *b)
2311{
6f10f7d1 2312 unsigned int i;
e49c7c37
KO
2313 struct closure cl;
2314
2315 closure_init_stack(&cl);
cafe5635 2316
c37511b8
KO
2317 trace_bcache_btree_set_root(b);
2318
cafe5635
KO
2319 BUG_ON(!b->written);
2320
2321 for (i = 0; i < KEY_PTRS(&b->key); i++)
2322 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2323
2324 mutex_lock(&b->c->bucket_lock);
2325 list_del_init(&b->list);
2326 mutex_unlock(&b->c->bucket_lock);
2327
2328 b->c->root = b;
cafe5635 2329
e49c7c37
KO
2330 bch_journal_meta(b->c, &cl);
2331 closure_sync(&cl);
cafe5635
KO
2332}
2333
48dad8ba
KO
2334/* Map across nodes or keys */
2335
2336static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2337 struct bkey *from,
2338 btree_map_nodes_fn *fn, int flags)
2339{
2340 int ret = MAP_CONTINUE;
2341
2342 if (b->level) {
2343 struct bkey *k;
2344 struct btree_iter iter;
2345
c052dd9a 2346 bch_btree_iter_init(&b->keys, &iter, from);
48dad8ba 2347
a85e968e 2348 while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
48dad8ba
KO
2349 bch_ptr_bad))) {
2350 ret = btree(map_nodes_recurse, k, b,
2351 op, from, fn, flags);
2352 from = NULL;
2353
2354 if (ret != MAP_CONTINUE)
2355 return ret;
2356 }
2357 }
2358
2359 if (!b->level || flags == MAP_ALL_NODES)
2360 ret = fn(op, b);
2361
2362 return ret;
2363}
2364
2365int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2366 struct bkey *from, btree_map_nodes_fn *fn, int flags)
2367{
b54d6934 2368 return btree_root(map_nodes_recurse, c, op, from, fn, flags);
48dad8ba
KO
2369}
2370
2371static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2372 struct bkey *from, btree_map_keys_fn *fn,
2373 int flags)
2374{
2375 int ret = MAP_CONTINUE;
2376 struct bkey *k;
2377 struct btree_iter iter;
2378
c052dd9a 2379 bch_btree_iter_init(&b->keys, &iter, from);
48dad8ba 2380
a85e968e 2381 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
48dad8ba
KO
2382 ret = !b->level
2383 ? fn(op, b, k)
2384 : btree(map_keys_recurse, k, b, op, from, fn, flags);
2385 from = NULL;
2386
2387 if (ret != MAP_CONTINUE)
2388 return ret;
2389 }
2390
2391 if (!b->level && (flags & MAP_END_KEY))
2392 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2393 KEY_OFFSET(&b->key), 0));
2394
2395 return ret;
2396}
2397
2398int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2399 struct bkey *from, btree_map_keys_fn *fn, int flags)
2400{
b54d6934 2401 return btree_root(map_keys_recurse, c, op, from, fn, flags);
48dad8ba
KO
2402}
2403
cafe5635
KO
2404/* Keybuf code */
2405
2406static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2407{
2408 /* Overlapping keys compare equal */
2409 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2410 return -1;
2411 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2412 return 1;
2413 return 0;
2414}
2415
2416static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2417 struct keybuf_key *r)
2418{
2419 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2420}
2421
48dad8ba
KO
2422struct refill {
2423 struct btree_op op;
6f10f7d1 2424 unsigned int nr_found;
48dad8ba
KO
2425 struct keybuf *buf;
2426 struct bkey *end;
2427 keybuf_pred_fn *pred;
2428};
cafe5635 2429
48dad8ba
KO
2430static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2431 struct bkey *k)
2432{
2433 struct refill *refill = container_of(op, struct refill, op);
2434 struct keybuf *buf = refill->buf;
2435 int ret = MAP_CONTINUE;
cafe5635 2436
48dad8ba
KO
2437 if (bkey_cmp(k, refill->end) >= 0) {
2438 ret = MAP_DONE;
2439 goto out;
2440 }
cafe5635 2441
48dad8ba
KO
2442 if (!KEY_SIZE(k)) /* end key */
2443 goto out;
cafe5635 2444
48dad8ba
KO
2445 if (refill->pred(buf, k)) {
2446 struct keybuf_key *w;
cafe5635 2447
48dad8ba 2448 spin_lock(&buf->lock);
cafe5635 2449
48dad8ba
KO
2450 w = array_alloc(&buf->freelist);
2451 if (!w) {
2452 spin_unlock(&buf->lock);
2453 return MAP_DONE;
2454 }
cafe5635 2455
48dad8ba
KO
2456 w->private = NULL;
2457 bkey_copy(&w->key, k);
cafe5635 2458
48dad8ba
KO
2459 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2460 array_free(&buf->freelist, w);
48a915a8
KO
2461 else
2462 refill->nr_found++;
cafe5635 2463
48dad8ba
KO
2464 if (array_freelist_empty(&buf->freelist))
2465 ret = MAP_DONE;
cafe5635 2466
48dad8ba 2467 spin_unlock(&buf->lock);
cafe5635 2468 }
48dad8ba
KO
2469out:
2470 buf->last_scanned = *k;
2471 return ret;
cafe5635
KO
2472}
2473
2474void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
72c27061 2475 struct bkey *end, keybuf_pred_fn *pred)
cafe5635
KO
2476{
2477 struct bkey start = buf->last_scanned;
48dad8ba 2478 struct refill refill;
cafe5635
KO
2479
2480 cond_resched();
2481
b54d6934 2482 bch_btree_op_init(&refill.op, -1);
48a915a8
KO
2483 refill.nr_found = 0;
2484 refill.buf = buf;
2485 refill.end = end;
2486 refill.pred = pred;
48dad8ba
KO
2487
2488 bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2489 refill_keybuf_fn, MAP_END_KEY);
cafe5635 2490
48a915a8
KO
2491 trace_bcache_keyscan(refill.nr_found,
2492 KEY_INODE(&start), KEY_OFFSET(&start),
2493 KEY_INODE(&buf->last_scanned),
2494 KEY_OFFSET(&buf->last_scanned));
cafe5635
KO
2495
2496 spin_lock(&buf->lock);
2497
2498 if (!RB_EMPTY_ROOT(&buf->keys)) {
2499 struct keybuf_key *w;
1fae7cf0 2500
cafe5635
KO
2501 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2502 buf->start = START_KEY(&w->key);
2503
2504 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2505 buf->end = w->key;
2506 } else {
2507 buf->start = MAX_KEY;
2508 buf->end = MAX_KEY;
2509 }
2510
2511 spin_unlock(&buf->lock);
2512}
2513
2514static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2515{
2516 rb_erase(&w->node, &buf->keys);
2517 array_free(&buf->freelist, w);
2518}
2519
2520void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2521{
2522 spin_lock(&buf->lock);
2523 __bch_keybuf_del(buf, w);
2524 spin_unlock(&buf->lock);
2525}
2526
2527bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2528 struct bkey *end)
2529{
2530 bool ret = false;
2531 struct keybuf_key *p, *w, s;
1fae7cf0 2532
cafe5635
KO
2533 s.key = *start;
2534
2535 if (bkey_cmp(end, &buf->start) <= 0 ||
2536 bkey_cmp(start, &buf->end) >= 0)
2537 return false;
2538
2539 spin_lock(&buf->lock);
2540 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2541
2542 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2543 p = w;
2544 w = RB_NEXT(w, node);
2545
2546 if (p->private)
2547 ret = true;
2548 else
2549 __bch_keybuf_del(buf, p);
2550 }
2551
2552 spin_unlock(&buf->lock);
2553 return ret;
2554}
2555
2556struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2557{
2558 struct keybuf_key *w;
1fae7cf0 2559
cafe5635
KO
2560 spin_lock(&buf->lock);
2561
2562 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2563
2564 while (w && w->private)
2565 w = RB_NEXT(w, node);
2566
2567 if (w)
2568 w->private = ERR_PTR(-EINTR);
2569
2570 spin_unlock(&buf->lock);
2571 return w;
2572}
2573
2574struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
48dad8ba
KO
2575 struct keybuf *buf,
2576 struct bkey *end,
2577 keybuf_pred_fn *pred)
cafe5635
KO
2578{
2579 struct keybuf_key *ret;
2580
2581 while (1) {
2582 ret = bch_keybuf_next(buf);
2583 if (ret)
2584 break;
2585
2586 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2587 pr_debug("scan finished");
2588 break;
2589 }
2590
72c27061 2591 bch_refill_keybuf(c, buf, end, pred);
cafe5635
KO
2592 }
2593
2594 return ret;
2595}
2596
72c27061 2597void bch_keybuf_init(struct keybuf *buf)
cafe5635 2598{
cafe5635
KO
2599 buf->last_scanned = MAX_KEY;
2600 buf->keys = RB_ROOT;
2601
2602 spin_lock_init(&buf->lock);
2603 array_allocator_init(&buf->freelist);
2604}